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ABSTRACT

Large errors developed by 24 h during a 25-member ensemble forecast of quantity of precipitation. The errors
could be attributed to an insufficient northeastward motion of the area of precipitation and excessive amounts.
This was determined by partitioning of the root-mean-square error into a distortion error, the sum of contributions
from incorrect position and magnitude, and a residual error. The distortion error accounted for more than half
of the total error. The distortion error occurs on the synoptic scale and can likely be somewhat ameliorated by
future improvements in analysis–forecast systems. The residual error occurs at smaller, less predictable scales,
and prospects for its deterministic improvement are not so sanguine.

1. Introduction

A 36-h ensemble quantitative precipitation forecast
(QPF) was discussed in detail by Du et al. (1997). The
ensemble-mean QPF field produced by the Pennsylvania
State University–National Center for Atmospheric Re-
search Mesoscale Model, Version 4 (MM4), with a mod-
ified version (Grell et al. 1991) of the Arakawa and
Schubert (1974) cumulus parameterization scheme, de-
veloped a very large error during the course of the fore-
cast, as illustrated in Figs. 1 and 2. Even larger errors
were found in an ensemble using a version (Anthes
1977) of the Kuo (1974) scheme (Mullen et al. 1999).
Note that the centroid of the predicted precipitation is
about 400 km south-southwest of the centroid of the
analyzed area and that the maximum predicted amount
is about twice the amount derived from observations.
These discrepancies, seen at 24 h after the initial time,
apparently increased with time, although a comparison
after 24 h could not be made with confidence, because
a substantial part of the area had moved into Canada
and offshore, where few observations were available.

The reason for this large difference is not clear, al-
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though it is related in part to the forecast position of a
surface cyclone being situated about 100–200 km south
of the analyzed position, as shown by Mullen and Du
(1994, their Fig. 2). Neither this error in the position of
the sea level cyclone, nor in the large error in prediction
of the precipitation shield relative to the cyclone (or in
the magnitude of the forecast precipitation), are believed
to be a general characteristic of the MM4 model or its
later versions.

Even a visual inspection of this case suggests that
errors on a relatively large scale quickly played a major
role in degrading overall QPF performance. The purpose
of this note is to decompose the QPF error of this en-
semble forecast into components due to displacement
and amplitude, and then examine performance after the
removal of these error components. It will be shown
that these error components occurred on the synoptic
scale and evolved coherently in time, and that they ac-
counted for most of the total error in the QPF field.

2. Computation of distortion error

Hoffman et al. (1995, hereafter referred to as H95)
demonstrate that the forecast error can be divided into
three components: displacement, amplitude, and resid-
ual errors. The displacement error measures the part of
total error that can be explained by translating the fore-
cast field. The amplitude error gives the part of the total
error that can be explained by multiplying the displaced
forecast field by a constant coefficient. The sum of the
displacement and the amplitude errors is termed the dis-
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FIG. 1. Analysis of precipitation accumulated 18–24 h after the
initial time (1200 UTC 14 Dec 1987), based on all rain gauges in
the United States bounded by the left border of the figure. This is
the verification area for the forecast. Isohyets are for 0.01, 0.1, and
0.5 in.

FIG. 2. Same as Fig. 1 but for ensemble mean predicted precipita-
tion. Isohyet are for 0.01, 0.1, 0.5, and 1 in.

tortion error, while the remainder of the total error is
called the residual error. The sum of the three com-
ponents equals the total error.

Application of the technique requires a priori speci-
fication of two parameters: 1) the area, or correlation
mask as termed by H95, over which the displacement
error is computed, and 2) the error metric to be mini-
mized. The technique is qualitatively similar to 2D
wavelet analyses (e.g., Briggs and Levine 1997) in the
sense that its ‘‘basis’’ function (the mask size and shape
vs the mother function for wavelets) is ‘‘local’’ and must
be chosen a priori. The decomposition is sensitive to
the size of the mask, with increases in its size typically
yielding smoother and larger-scale distortion fields and
bigger residual errors (H95). The verification area (Fig.
1) serves as our window. Its dimensions are 44 by 38
grid points, which equates to ;3500 km by ;3000 km
for the 80-km grid spacing. Regional variations in the
distortion error, which are obtained by translating the
mask (e.g., Fig. 9 of H95), and changes in area and
shape of the mask (e.g., Table 1 of H95), are not ex-
amined in this note.

The decomposition is also somewhat sensitive to the
choice of error metric (H95). We minimized the root-
mean-squared error (rmse) of the ensemble mean fields,
but any error measure could be minimized with the H95
technique. Sensitivity of our results to different metrics
is not examined in this note.

An underlying premise of the H95 decomposition is
that a substantial portion of the total forecast error can
be attributed to large-scale, coherent patterns that evolve
smoothly in time. For our decomposition of ensemble
mean QPF error associated with a strong baroclinic de-
velopment, the distortion error is predominately large
synoptic scale. The remaining residual error is smaller

scale, which for an 80-km mesh and a mask size of 3500
km by 3000 km would strongly reflect contributions
from meso-a-scale features (wavelengths of 200 to 2000
km).

3. Results

The total rmse, and contributions from the two com-
ponents and the residual as determined by the H95 meth-
od, are shown in Fig. 3 at 6-h intervals for the entire
36-h forecast. These quantities are shown for both the
ensemble mean and for the average of the individual
ensemble members. The reduction of total rmse (Fig.
3a) after 24 h is due in large part to displacement of
much of the analyzed and predicted storm out of the
United States, where verification was not possible. Nei-
ther component nor the residual can be dismissed as
relatively small. The large error growth during the first
24 h is produced by both the displacement and amplitude
components, with a noticeably slower growth in the
residual. The different growth rates lead to the distortion
error exceeding the residual after 12 h. Note that the
improvement of the ensemble mean over the average of
the members comes primarily from the amplitude error,
reflecting the incorrectly predicted magnitude of the pre-
cipitation.

The vector displacements and amplification factors
for the distortion of the ensemble mean forecast are
given in Table 1. After correcting each of the 25 en-
semble members by removing the distortion errors in
Table 1, a new corrected 25-member ensemble is made,
the ensemble mean of which is shown in Fig. 4. Com-
paring Fig. 4, as well as Fig. 2, with Fig. 1, it can be
qualitatively seen that the new ensemble mean forecast
(Fig. 4) is more accurate overall than the original en-
semble mean forecast (Fig. 2), especially in terms of
area coverage. While the overall rmse is reduced, some
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FIG. 3. (a) Total rmse (in.) of 6-h accumulated precipitation at all grid points in the verification area, as a function
of time during the forecast period. (b) The same but for the displacement error. (c) The same but for the amplitude error.
(d) The same but for the distortion error (dashed) and residual error (solid). The black line shows the average for all
individual members of the ensemble, while the gray line shows the ensemble mean.

TABLE 1. The average vector displacement errors and the average coefficients for the amplitude errors, as defined by Hoffman et al. (1995)
for minimization of the rmse, for 6-h total rainfall from the 25-member ensemble forecast. Distance and bearing for the displacement error
are to the nearest 10 km and 108, respectively. Bearing is measured clockwise from north; e.g., a 1808 direction denotes a forecast position
too far to the south, a 2708 direction denotes a forecast position too far to the west, etc. The amplitude coefficient is the factor by which
the displaced forecast is multiplied to minimize the rmse. See text.

0–6 h 6–12 h 12–18 h 18–24 h 24–30 h 30–36 h

Displacement

Amplitude coefficient

200 km
at 2408

1.24

260 km
at 2208

0.74

510 km
at 2008

0.46

360 km
at 2408

0.38

520 km
at 2208

0.37

390 km
at 2208

0.55

individual features of the corrected mean show some
noteworthy discrepancies with the verifying analysis.
For example, Fig. 4 has a 0.4 in. maximum in northern
West Virginia that lies within a local region of observed
minimal precipitation and is shifted far from the two
observed regions (lower Michigan, central Georgia)
with greater than 0.5 in. Clearly, the calibrated ensemble
forecast is even smoother than the unprocessed ensem-
ble mean.

It is insightful to compare the displacement error vec-
tor of Table 1 to average errors in position of the surface
cyclone (Mullen and Du 1994, their Fig. 2). As noted
in the introduction, both fields tend to be southward of
observations, but the precipitation field is erroneously
displaced nearly twice as far as the sea level pressure
(SLP) field. This difference indicates an improper phas-
ing of the QPF field relative to the predicted SLP field.
The difference could be due to a model deficiency, an
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FIG. 4. Same as for Fig. 1 but for the corrected ensemble mean
predicted precipitation. See text. FIG. 5. Average RPS over the 36-h forecast period, for the entire

verification area, as a function of the number of ensemble members.
Solid black curve represents the RPS for the raw forecasts. Solid
gray curve represents the RPS for the corrected forecasts (see text).
The horizontal dashed line represents the RPS for the climatological
control forecast. The dotted black line represents the RPS for a ‘‘per-
fect ensemble,’’ where one ensemble member is randomly selected
to serve as verification for the remaining 24 members. The results
for ensemble sizes between 3 and 20 members are the average of
2000 trials selected from the 25 ensemble members without replace-
ment; results for ensemble sizes of 1 and 2 are the average of all
unique combinations.

error in the unperturbed initial analysis upon which per-
turbations are superimposed, or some combination of
the two. For example, mesoscale gravity waves appar-
ently played a crucial role in triggering some of the
precipitation (Schneider 1990), and proper simulation
of them is utterly beyond the capabilities of an 80-km
model (Powers and Reed 1993). Alternatively, errors in
the unperturbed moisture field relative to the other fields
might also lead to larger displacement errors for pre-
cipitation.

A detailed evaluation of probabilistic QPF from the
ensemble is made by placing the analyzed precipitation
at each grid point in one of five mutually exclusive and
exhaustive categories (Du et al. 1997). These categories
are no measurable precipitation (less than 0.01 in.) and
four categories with lower bounds at 0.01, 0.10, 0.50,
and 1.00 in. The forecast amount at each grid point for
each ensemble member is then placed in one of these
same categories, and a raw frequency is computed. The
resulting probability distribution is verified by appli-
cation of the ranked probability score (RPS; Epstein
1969; Murphy 1971; Wilks 1995, pp. 269–272), while
the skill with respect to climatic frequencies (NOAA
1987) is measured by the ranked probability skill score
(RPSS).

The area showing positive RPSS for the uncorrected
forecast is 76.3% of the total verification area. When
the distortion error is removed from the individual en-
semble members to generate a calibrated ensemble and
forecast probabilities for the five categories are recom-
puted, the area of positive RPSS increases to 83.8% at
24 h. When verification is restricted to the area of either
observed precipitation or nonzero forecast probability
of 0.01 in., to simulate a conditional QPF, the area of
positive skill drops to 68% for the raw forecast and 70%
for the corrected one.

The impact of the distortion error on the RPS, av-

eraged over the entire verification domain and all 6-h
forecast periods, is shown in Fig. 5, for ensembles vary-
ing in size from 1 member to 20. The RPS of the raw
ensemble typically runs ;100% larger than the value
for a ‘‘perfect ensemble’’ system, where one member
is randomly selected to serve as verification for the re-
maining members. The perfect ensemble assumption
maximizes skill since model error is not considered and
a perfect knowledge of analysis error is assumed (Buizza
1997) and, thus, provides an estimate of the upper bound
of forecast accuracy. On the other hand, the RPS for
the corrected forecasts runs ;40% above the value for
the perfect ensemble. Thus, the distortion error for this
case accounts for more than half of the RPS error, rel-
ative to a perfect ensemble simulation.

4. Discussion

The displacement and amplitude errors, as defined
here, are on the synoptic scale. One might hope that
future improvements in the analysis–forecast system
would reduce these errors. On the contrary, the residual
error reflects the smaller scale of the details of the an-
alyzed and predicted patterns and will likely be more
difficult to reduce since these scales are less predictable
(e.g., Islam et al. 1993). Note that in the early stages
of the forecast, the total rmse is dominated by the small-
scale residual component and presumably the growth of
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the initial conditions errors, which can be ameliorated
to some extent by ensemble techniques without im-
provement in the model.

The distortion errors found in this case are undoubt-
edly case dependent and cannot be applied mindlessly
to another instance in which observations might show
a quite different error signature. It is appropriate to refer
to them as ‘‘model errors for this particular synoptic
situation,’’ or ‘‘model/situation’’ errors, where model
refers to the total analysis–forecast system and ensemble
construction strategy. Our results indicate that these
model/situation errors had a deleterious impact on the
accuracy and skill of this ensemble forecast for ensem-
ble sizes up to 20, and would likely not be substantially
reduced with further increases in ensemble size.

5. Summary

During a 25-member, 36-h, ensemble forecast of
quantity of precipitation, large errors developed. These
were an insufficient northeastward motion of the area
of precipitation and excessive amounts. A five-category
verification of the probabilities from the ensemble
shows positive skill over a substantial part of the ver-
ification area. This skill is increased by correcting the
ensemble mean forecast for errors in position and mag-
nitude of the precipitation by application of the method
developed by Hoffman et al. (1995). This method allows
partitioning of the total root-mean-square error into con-
tributions from incorrect position and magnitude, de-
noted the distortion error. The remaining residual error
is denoted random. We minimized the rmse for our ap-
plication of the method, but any error metric can be
used.

The results for this case point to the need of pursing
a better understanding of the relative roles of model
errors and initial data errors on ensemble forecasts of
precipitation. The decomposition technique of Hoffman
et al. (1995) offers a flexible, synoptically insightful way
to decompose coherent, scale-dependent error patterns
that may prove useful in that pursuit.
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