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Program

o Inferences from historical and geological
records

o Inferences from basic physics
@ Using physics to estimate risk

o Examples of changing risk



Historical Records

Pre-1943: Anecdotal accounts from coastal cities and ships

1943: Introduction of routine aircraft reconnaissance in
Atlantic, western North Pacific

1958: Inertial navigation permits direct measurement of
wind speed at flight level

1970: Complete global detection by satellites
1978: Introduction of satellite scatterometry

1987: Termination of airborne reconnaissance in western
North Pacific

2017: Introduction of CYGNSS scatterometry



Prior to 1970, Many Storms Were Missed
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Major hurricanes in the North Atlantic, 1851-2016, smoothed using a 10-
year running average. Shown in blue are storms that either passed through
the chain of Lesser Antilles or made landfall in the continental U.S.; all other
major hurricanes are shown in red. The dashed lines show the best fit trend
lines for each data set.



Trends in Global TC Frequency Over Threshold Intensities, from
Historical TC Data, 1980-2016. Trends Shown Only When p < 0.05.
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Distance Northward from Equator (km)

Distance Southward from Equator (km)
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Paleotempestology
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Time (yr BP)
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Extension to “Blue Holes” (e.g. in the Bahamas)
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% Coarse (63 um)
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Basic Physics: Energy Production

Isothermal
Loss

Moist adiabatic

- Moist adiabatic

Isothermal; large input of




Add nearby cycle; take difference
between two cycles




Theoretical Steady-State Maximum
Hurricane Wind Speed:
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Annual Maximum Potential Intensity (m/s)




Comparison of numerically simulated and theoretical intensities
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Cumulative Frequency of Storm Lifetime Maximum
Intensity Normalized by Potential Intensity
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Potential Intensity at Onset of Hurricane Irma
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Change in Potential Intensity After 1 year
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Trends in Thermodynamic Potential for Hurricanes, 1980-2010
(NCAR/NCEP Reanalysis)
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Projected Trend Over 21st Century: GFDL model
under RCP 8.5
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Inferences from Basic Theory:

o Potential intensity increases with global

warming

@ Incidence of high-intensity hurricanes should

Increase

9 Increases in potential intensity should be

faster in su

@ Hurricanes wil
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Using Physics to Estimate
Hurricane Risk



Not Use Global Climate Models to
Simulate Hurricanes?




Problem: Today’s models are far too coarse to simulate
destructive hurricanes

East Pacific

Category 3

e

20 30 40 &0

Wind Speed (meters per second)

Modeled /

Observed

Histograms of Tropical
Cyclone Intensity as
Simulated by a Global
Model with 30 mile grid
point spacing. (Courtesy
Isaac Held, GFDL)

Global models do not

simulate the storms that

cause destruction



How to deal with this?

» Embed high-resolution, fast coupled
ocean-atmosphere hurricane model in
global climate model or climate
reanalysis data

» Coupled Hurricane Intensity prediction
Model (CHIPS) has been used for 16
years to forecast real hurricanes in
near-real time



Real-time forecasts at http://wind.mit.edu/~emanuel/storm.htm]|
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RMS Intensity Error, 2009-2015
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How Can We Use This Model to
Help Assess Hurricane Risk in
Current and Future Climates?



Risk Assessment Approach:

Step 1: Seed each ocean basin with a very large number
of weak, randomly located cyclones

Step 2: Cyclones are assumed to move with the large
scale atmospheric flow in which they are embedded, plus
a correction for the earth’s rotation and sphericity

Step 3: Run the CHIPS model for each cyclone, and note
how many achieve at least tropical storm strength

Step 4: Using the small fraction of surviving events,
determine storm statistics. Can easily generate 100,000
events

Details: Emanuel et al., Bull. Amer. Meteor. Soc, 2008
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Top 200 out of 5180 TCs Affecting Shanghai

6 Shanghai_wp_ncep_reanal




Top 200 out of 5180 TCs Affecting Shanghai

Shanghai_wp_ncep_reanal




Cumulative Distribution of Storm Lifetime Peak Wind
Speed, with Sample of 1755 Synthetic Tracks
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Captures Much of the Observed North Atlantic Interannual Variability

Storm Maximum Power Dissipation
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North Atlantic Major Hurricanes Downscaled from NOAA 20" Century
Reanalysis
(Forced by sea surface temperature, surface pressure, and sea ice only)
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North Atlantic Major Hurricanes Downscaled from NOAA 20" Century
Reanalysis
(Forced by sea surface temperature, surface pressure, and sea ice only)
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Storm Surge Simulation (Ning Lin)
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Surge Return Periods for The Battery, New York
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Global Hurricane Power under RCP 8.5
Six CMIP5 Models
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Risk Assessment for Houston and Texas:

» Run 100 events for each year from 1980 to 2016 (3700
events total) passing within 300 km of Houston,
downscaled from three climate reanalyses

> Run 100 events each year from 1979-2015 passing over
the Texas coastline, downscaled from NCAR/NCEP
reanalyses. Calculate storm total rainfall for each event at
each of 78 points constituting a grid extending from 26° N
to 31° N and from 99° W to 94° W, at increments of 0.5°,
but excluding points over the Gulf

> Run 100 events each year during two periods: 1981-2000
and 2081-2100, passing within 300 km of Houston,
downscaled from six climate models



Example of Accumulated Rainfall from a Harvey-like Event
Downscaled from ERA Interim Reanalysis

ERA Interim Track Number 2640

August - September 2006
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Probability of Storm Accumulated Rainfall at Houston, from 3 Climate
Reanalyses, 1980-2016 Based on 3700 Events Each. Shading shows
spread among the reanalyses.

Return Periods of Storm Total Rain at Houston
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Probability of a Accumulated Hurricane Rain Anywhere in Texas,
based on 3700 Events Downscaled from NCAR/NCEP Reanalysis
with Rainfall Analyzed at 78 Points
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Probability of Storm Accumulated Rainfall in Harris County, from 6 Climate
models, 1981-2000, 2008-2027, and 2081-2100, Based on 2000 Events
Each, and Using RCP 8.5. Shading Shows Spread Among the Models.
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Contributions to Changes in Annual Mean Hurricane Rainfall at Houston
from Changes in Overall Event Frequency and in Average Storm Rainfall
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Contributions to Changes in Hurricane Rainfall at Houston from Changes in
Updraft Speed, Water Vapor Content, and Storm Duration
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Hurricane Irma




Irma

» Run 100 events each year during two
periods: 1981-2000 and 2081-2100,
passing within 300 km of Barbuda,
downscaled from six climate models



Probabilities of Storms of Irma’s Intensity within 300 km of Barbuda,
from 6 Climate models, 1981-2000 and 2081-2100, Based on 2000
Events Each. Shading shows spread among the models.

Return Periods of Storms within 300 km of Barbuda
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Hurricane Mar




Maria

» Run 100 events each year during two
periods: 1981-2000 and 2081-2100,
passing within 150 km of 17°N, 64°W,
downscaled from four climate models



Return Period (years)

Return Period of TCs within 150 km of 17 N, 64 W
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Figure ILI7: Increase in average annual losses with

historical and projected hurricane activity
Billion 201l USD, RCP 8.5 ensemble tropical cyclone activity
projections from Emanuel (2013)

$120
1-in-20
$100 [
Likely
$80 Range
1-in-20
$60 Sea level rise + l
changing storms
340 Sea level rise l
alone
T
$20 \
g mmm B * )
Historical Pro&ected Historical Projected Historical Projected
203 2050 2100

From: American Climate Prospectus Economic Risks in the United States



Summary

o The observational record of hurricanes is too
short and noisy, and of a quality too low to
make robust inferences of climate signals

o Satellite data do show a migration of peak
intensity toward higher latitudes and some
indication of a greater fraction of intense
storms

o Recovery of hurricane proxies from the
geological record is beginning to show
some climate signals



Summary (continued)

o Potential intensity theory demonstrates that
the thermodynamic limit on hurricane
intensity rises with temperature

@ Observations show that this limit is indeed
Increasing

@ Physics can be used to model hurricane risk in
current and future climates



Spare Slides



CYGNSS SNR Images of Southeast Texas
Before and After Hurricane Harvey Landfall
on Aug 25, 2017

(right) Time lapse SNR images in Houston metro
region

— Large increases in SNR indicate flooding

(below) Aug 29 SNR image with coastal flooding
circled

CYGNSS SNR (dB)
29-Aug-2017 00:00:00 UTC
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(courtesy Mary Morris, NASA/JPL)

Flood inundation signal. Courtesy Chris Ruf



Variation of Potential Intensity with Ocean Heat Flux,
Surface Wind Speed, CO,, and Solar Forcing
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Control Climate

—— Tropical Storm - Category 2
Category 3
- Category 4 - Category 5

i
B 18 Model Ensemble
100°W 80°W 60°W 40°W 20°W 0°

NWS Version (GFDL)

Tracks of North Atlantic hurricanes that reaches at least Category 4 intensity in the
climate of the late 20th century (top) and late 21st century (bottom). These storms
were simulated by a high resolution regional model driven by the global climate state
representing an average of 18 global climate models. The regional model was
developed at NOAA’'s Geophysical Fluid Dynamics Laboratory in Princeton, NJ. From
Bender and co-authors, Science, 2010.



Inferences from Spanish Shipwrecks
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MIT’s Hurricane Flood Risk

(with Sai Ravela, Ken Strzepek, and the MIT Resilience
Committee)




Sea Level Rise / Storm Surge Propagation (2070)
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