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Flawed Basis of Current Risk Modeling
Almost all current risk assessments are based on historical 

statistics
Historical records are flawed and short
Moreover, the past 50-150 years is a poor guide to the 

present owing to climate change that has already 
occurred

Risk modelers have been slow to migrate to a physics-based 
approach

Risk modeling industry is being challenged by non-profits and 
start-ups

Government and the insurance industry should accelerate this 
transition

TC researchers need to get involved in physical modeling of 
risk
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The Nature of the Beast
Start with total insured values (TIVs) of a particular insurance firm 

aggregated over zip codes

12,968 zip codesNet TIV:  $ 2 trillion



Procedure

Apply a set of 49,600 tropical cyclones making landfall in 
the continental U.S.

These have been generated using a physical model applied to 
the present climate (technique to be described shortly)

At each centroid, calculate the peak wind generated and apply 
a damage function that estimates the fraction of property 
value destroyed

Using insured value, calculate loss at each zip code and sum 
over all zip codes

From the set of 49,600 storms randomly draw 3 each year and 
create 1,000-year time series of damage

This is for stationary climate but the same idea can be applied 
to evolving climate states



Example:

Question:  Can we estimate average annual loss (AAL) from 50-100 years of record?

Answer:     Good luck with that!



Why Climate Risk is Dominated by Extreme Events:

Societies are usually well adapted to frequent events (> 1/100 yr)

Societies are often poorly adapted to rare events (< 1/100 yr)

Large cost increases result when > 100-yr events become < 100-yr events

Largest slope



Historical Records

Tropical cyclones:  ~< 100 years of good records (U.S.)

Even if we had 1000 years of great records, the past is no 
longer a good guide to the present

We need to turn to physical models to get better estimates of 
current (and future) weather risks



How can we bring physical modeling to 
bear on weather risk assessment?



Global climate models are far too coarse 
for purpose 



Wind Speed (meters per second)

Histograms of Tropical 
Cyclone Intensity as 
Simulated by a Global 
Model with 50 km grid 
point spacing. (Courtesy 

Isaac Held, GFDL)

Category 3

Global models do not 
simulate the storms that 

cause destruction

Observed

Modeled

Problem:  Today’s models are far too coarse to simulate 
destructive hurricanes



Numerical convergence in an axisymmetric, 
nonhydrostatic model (Rotunno and Emanuel, 1987)

HighResMip:  Grid spacings of 20‐200 km (NICAM has short run at 14 km)

We need high resolution AND O(1000 yr) simulations



Using Physics to Assess Hurricane Risk
(Downscaling)

Reliable, global records of coarse-scale climate are robust and 
widely available

Cull from these datasets the key statistics known to control 
tropical cyclone generation, movement, and intensity 
evolution

Bootstrap these key statistic to create unlimited synthetic time 
series of the hurricane-relevant environmental variables

Use these to drive specialized, very high resolution physical 
hurricane models 

Extensively evaluate the results against historical hurricane 
data

Exact same method can be applied to output of climate 
models



Risk Assessment Approach:
Step 1: Seed each ocean basin with a very large number 

of weak, randomly located cyclones

Step 2: Cyclones are assumed to move with the large 
scale atmospheric flow in which they are embedded, 
plus a correction for the earth’s rotation and sphericity 
(beta-drift)

Step 3: Run the CHIPS coupled intensity model for each 
cyclone, and note how many achieve at least tropical 
storm strength (CHIPS is phrased in angular 
momentum coordinates. Flow-dependent 
resolution)

Step 4: Using the small fraction of surviving events, 
determine storm statistics. Can generate 
100,000 events

Details:  Emanuel et al., Bull. Amer. Meteor. Soc, 2008



Origin points of successful seeds (red); observed genesis locations (blue)



Average annual number of tropical cyclones over the period 
1980‐2020 in observations (IBTrACS; Knapp et al. 2010; black 
bars) and from random seeding of ERA‐5 (gray bars)



Seasonal Cycle
North Atlantic

Seasonal Cycle
Northwest Pacific



Example:
Top 100 out of 2000 TCs Affecting Kyoto, 1981-2000



Same, but with top 20 historical tracks



Cumulative Distribution of Storm Lifetime Peak Wind 
Speed, with Sample of 1755 Synthetic Tracks

90% confidence bounds

Blue bars: Actual
Red bars: Predicted



Captures effects of regional climate phenomena 
(e.g. ENSO, AMM)

Blue bars: Actual
Red bars: Predicted



Captures Much of the Observed North Atlantic Interannual Variability

r2=0.65



Major Hurricanes
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Application to global gridded climate data:



Global CAT 5 Tropical Cyclone Frequency from 9 Current Generation 
(CMIP6) Climate Models

Application to Global Climate Change Simulations:



Time series of the latitudes 
at which tropical cyclones 
reach maximum intensity.

From Kossin et al. (2014)

Hurricanes are 
reaching peak 

intensity at higher 
latitudes



Potential Intensity Trend, 1979-2018, ERA 5 Reanalysis

(Trend shown only where p value < 0.05)



Projected Trend Over 21st Century: GFDL model 
under RCP 8.5 

ms-1decade-1



Satellite‐derived proportion of major hurricane fixes

Time series of fractional proportion of global 
major hurricane estimates to all hurricane 
estimates for the period 1979–2017. Each 
point, except the earliest, represents the data 
in a sequence of 3-y periods. The first data 
point is based on only 2 y (1979 and 1981) to 
avoid the years with no eastern hemisphere 
coverage. The linear Theil−Sen trend (black 
line) is significant at the 98% confidence level 
(Mann−Kendall P value = 0.02). The 
proportion increases by 25% in the 39-y period 
(about 6% per decade).

Kossin et al., PNAS, 2020



100-year hurricane peak wind based on 
downscaling 8 CMIP6 climate models, 1984-2014



100-year hurricane peak wind based on 
downscaling 8 CMIP6 climate models, 2070-2100



Hurricane Rain



U.S. Hurricane Fatalities, 1963-2022



Predicting Rainfall
The CHIPS models predicts updraft 
and downdraft convective mass flux 
as a function of time and potential 

radius, BUT:
Storing these variables at all radii 

would increase overall storage 
requirements by a factor of ~50
(We are dealing with 10,000-

100,000 individual events)



Basic strategy: Reconstruct time-evolving 
2-D wind field by fitting a canonical radial 
wind profile to predicted values of Vmax and 
rmax and adding a constant background wind. 
Allow resulting vortex to interact with 
background wind shear and thermodynamic 
fields.

Apply Quasi-Balanced Dynamics to Stored TC 
and Environmental Fields

Details:  Feldmann et al, J. App. Meteor. Clim., 2019



Testing the Algorithm

Identify TC rainfall affecting NEXRAD sites

Choose local Daily Global Historical Climatology 
Network (GHCN-D) rain gauges located near 
NEXRAD sites

Compare statistical distributions of storm total 
rainfall from synthetic TCs with NEXRAD-
derived rain and rain at nearby gauges

Details:  Feldmann et al, J. App. Meteor. Clim., 2019



NEXRAD Sites



An Example:

Estimated gauge 
sampling error

Estimated radar 
sampling error

Feldmann et al, J. App. Meteor. Clim., 2019



2,000 year rain event for Houston



100‐year hurricane storm total rain based on downscaling 
8 climate models, 1984‐2014



100‐year hurricane storm total rain based on downscaling 
8 climate models, 2070‐2100



A version of this risk model based on the FAST 
intensity emulator (in place of CHIPS) is freely 

available at

https://github.com/linjonathan/tropical_cyclone_risk



Typhoon Risk in Yokohama



Yokohama

Downscale 3000 events from ERA-5 reanalyses, 1985-2014, 
passing within 150 km of Yokohama

Downscale 3000 events from historical simulations of 8 
CMIP6-generation climate models, 1985-2014

Downscale 3000 events from SSP3-7.0 simulations of 8 
CMIP6-generation climate models, 2071-2100

If you would like to use these tropical cyclone sets for research 
purposes, please write me (emanuel@mit.edu)
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37 best tracks, 1985 to 2014
2730 synthetic tracks
90% of BT-size subsamples



Top 100 out of 3,000 TCs passing within 150 km of Yokohama, 
downscaled from ERA-5 reanalyses



Same but with top 10 typhoons passing within 150 km of Yokohama, 1985-
2014 superimposed (magenta curves)







Use synthetic tracks to estimate current and 
future TC economic risk

Procedure:

Generate 6,200 synthetic hurricane events affecting eastern 
U.S. from each of 8 global climate models for two period of 
time: 1985 – 2014 and 2071 – 2100 (SSP3 7.0)

Calculate peak wind speed at each zip code centroid for each 
hurricane event

Use damage function to convert peak with to percentage of 
insured value destroyed

Apply to TIV at each of the 12,968 zip codes and sum over 
them to estimate total loss to insurance form



Median annual loss (2-year return period)

1984 – 2014:   $ 12 ($2 – $34)

2070 – 2100:   $ 3.5 million  ($260 k – $56 million)

Average annual loss:

1984 – 2014:  $ 536 million ($108 million – $1.25 billion) 

2070 – 2100:  $ 4.1 billion ($590 million – $13.7 billion)

Annual average loss strongly dominated by VERY rare events!
These will not be evident in historical records



Making Risk Personal:

All Climate Change is Local!



Property currently for sale in Hilton Head, SC
Realtor.com

Work of First Street Foundation





Type address into RiskFactor (https://riskfactor.com)



Take-Away Points

We need to move away from sole dependence on flawed 
historical data in assessing climate- and weather-related 
natural hazard risks and embrace advanced physical 
modeling techniques

Government, the insurance industry, research laboratories, 
and institutions of higher education are crucial to this effort

We can no longer regard climate change as a problem for the 
future; it has already tangibly affected important risks, e.g. 
Hurricane Harvey’s rainfall was ~3 times more likely in 
2017 than in 1970

There is a large gap between current practice and what is 
possible and desirable.  Let’s fill it. 


