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Temporal variations in tempestite thickness may be
a.geologic record of atmospheric CO;
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ABSTRACT

Storm-bed (tempestite) thickness reflects, in part, storm intensity, which is related to the
amount of atmospheric CO,. Thus, variations in tempestite thickness through geologic time
may record fluctuations of CO,. Geologic criteria other than storm-bed data have been used to

define specific intervals of time when the atmosphere was CO; enriched (greenhouse phases)

and CO; depleted (icehouse phases). If tempestite thickness, storm integsity, and CO; are
causally linked, greenhouse phases should correspond to deposits of thick tempestites (more
intense storms), and icehouse phases should be characterized by comparatively thin tempestites
(less intense storms). Tempestite thickness data provide a test of the greenhouse-icehouse
model, and initial results suggest general agreement with the independently derived climate
(CQ,) curve for the latest Precambrian through Phanerozoic.

INTRODUCTION

A. G. Fischer (1984) proposed two Phaner-
ozoic supercycles of mantle convection to
explain temporal patterns of eustasy, continental
movement, plutonism, and sedimentation. Each
supercycle comprises two phases defined by
fluctuations of atmospheric CO,: a CO,-
enriched “greenhouse” phase and a CO,p-
depleted “icehouse” phase (Fig. 1, top). The
maximum intensity that can be attained by trop-
ical cyclones (the most intense storms) is postu-
lated to increase with increased atmospheric
CO; (Emanuel, 1987). Storm intensity is re-
corded in tempestites deposited in subaqueous
environments {e.g., Aigner and Reineck, 1982;
Aigner, 1985; Brett et al., 1986). Therefore, it
should be possible to detect fluctuations in max-
imum storm intensity through time and thereby
determine the history of CO; fluctuations. The
most convenient measure of storm intensity pre-
served in the geologic record is storm-bed thick-
ness. Intense storms produce thicker tempestite
beds than less intense storms (other factors being
equal). In this paper, we propose a test of
Fischer’s climate model by using tempestite
maximum-thickness data.

Figure 1. Top: Fischer’s (1984) climate (CO,) curve for latest Precam-
brian and Phanerozoic. | = icehouse phase when CO, reaches min-
imum; G = greenhouse phase when CO, reaches maximum. Bottom:
Histogram of tempestite thickness for 12 geologic time intervals (aver-
ages of maximum thicknesses reported in literature sources for each .
interval, n = 84). 1—IP€ = latest Precambrian (n = 6; average = 16 cm;
range 3-50 cm); 2—e-m€ = Early-Middle Cambrian (n = 3; average = 28
cm; range 15-50 cm); 3—I€-mO = Late Cambrian-Middle Ordovician
(n=13; average = 51 cm; range 5-100 cm); 4-10—e$ = Late Ordovician-
Early Silurian (n = 11; average = 24 cm; range 5-60 cm); 5—mS-mD =
Middle Silurian- Middle Devonian (n = 9; average = 34 cm; range 10-133
cm); 6—ID-eC = Late Devonian-early Carboniferous (n = 10; average =
26 cm; range 5-50 cm); 7—IC-P = late Carboniferous-Permian (n = 4;
average = 33 cm; range 1-60 cm); 8——e-mT. = Early Middle Triassic (n =

TEST OF THE MODEL

It is predicted that the maximum thickness of
storm beds will be relatively low during ice-
house phases, and in particular during times
when ice sheets were present (reduced maxi-
mum storm intensity). Maximum thickness will
be comparatively high during greenhouse phases
(increased maximum storm intensity). Fischer’s
model comprises three major icehouse phases
(latest Precambrian through Middle Cambrian,
Late Devonian through Middle Triassic, and
late Cenozoic) and two major greenhouse
phases (Late Cambrian through Middle Devo-
nian, but with glaciation near the Ordovician/
Silurian boundary, and Late Triassic through
early Cenozoic; Fig. 1, top). Fischer’s climate
(CO;) curve shows a low it the latest Precam-
brian (our time interval 1), a rise in the Eatly to
Middle Cambrian (2) that continues through the
Late Cambrian and reaches a high in the Ordo-
vician (3), a sharp drop near the Ordovician/
Silurian boundary (4), a high during the
Silurian-Devonian (5), a decrease in the Late
Devonian and early Carbortiferous (6) to a low

in the late Carboniferous and Permian (7), a rise
in the Early to Middle Triassic (8) that continues
through the Late Triassic and Jurassic (9) to a
high in the Cretaceous (10), and a decrease in
the early Cenozoic (11) that continues through
the late Cenozoic (12).

Our test of Fischer’s model is based on max-
imum tempestite bed thicknesses in latest Pre-
cambrian and Phanerozoic geologic units, com-
piled from the literature. This test is difficult to
apply at present. The storm origin proposed for
some beds remains uncertain (see discussions in
Marsaglia and. Klein, 1983; Duke, 1985, 1987,
Klein and Marsaglia, 1987). Tempestites and
their thicknesses are not routinely reported, and
individual sedimentation events are not always
distinguished from amalgamated beds that
probably represent multiple storms. Tempestite
thickness decreases with increasing water depth
along a proximal-distal environmental gradient
(Aigner and Reineck, 1982; Brett et al., 1986).
We used only beds considered to be individual
sedimentation episodes. To control for varia-
tions in tempestite thickness due to differences
among depositional environments, we consid-
ered data from only clastic and mixed clastic-
carbonate marine shelves. We attempted to
control for proximal-distal thickness variations
by including only storm beds that were de-
scribed as distal and that most likely represent
individual events separated by background de-
position. Individual tempestites in the mid-shelf
environment are characterized by an erosional
base, are cross- or planar-l:iminated, and are
capped by fine-grained sand and/or shale
(background sediments). Proximal or shoreface

CLIMATE

TEMPESTITE THICKNESS

IPC e-mC

10— - -
€-mO }eslms-mo "o | rc-p ie'ﬁ"

IR-J l K

2; both 35 cm); 9—! ®-J = Late Triassic-Jurassic (n = 3; average = 40
cm; range 30-50 cm); 10—K = Cretaceous (n = 8; average = 127 cm; range 40-216 cm); 11—eCen = early Cenozoic (n = 4; average = 93 cm; range
80-100 cm); 12—ICen = late Cenozoic (n = 11; average = 62 cm; range 5-250 cm).
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Cordilleran orogenesis, the middle Cretaceous
“Columbian orogeny.” The details of the pro-
posed tectonic Hi:story are not well constrained,
particularly with regard to the unfolding of the
oroclinal “Z” formed by the Cretaceous meta-
morphic belts. Nonetheless, the basic hypothesis
provides an explanation for the seemingly irrec-
oncilable evidence for extension concurrent
with collision-related compression, and is actual-
istic because it is based on a neotectonic analog.
Moreover, the hypothesis is testable in three
ways.

1. The hypothesis predicts that extensional
tectonics should be recognizable throughout the
southern Brooks R&nge, Ruby terrane, and
Yukon-Tanana terrane, yet extension has only
been documented in one area in the Brooks
Range (Gottschalk-and Oldow, 1988) and in
one area in the Yukon-Tanana terrane (Pavlis et
al., 1988a). Inspectien of reconnaissance maps
of the Yukon-Tanana terrane and the Ruby ter-
rane suggests that ‘ather extensional structures
exist, although different modes of extension may
be present. A particularly significant test would
be offered by structural-metamorphic studies of
the major metamorphic belts of northern Alaska
(Yukon-Tanana, Ruby, and the southern Brooks
Range). In these areas, a characteristic feature is
that the latest major metamorphic fabric is es-
sentially flat on a regional scale. This fabric has
typically been ascribed to major overriding by
thrust sheets, yet seismic reflection data indicate
that regional flat fabrics are typical of the middle
and lower crust of many extensional terranes
(e.g., Serpa and de Voogd, 1987). Thus, a sim-
ilar origin should be considered for the latest,
low-angle fabric of the northern Alaska’meta-
morphic belts. ‘

2. The model predicts that the Yukon-
Koyukuk basin system of west-central Alaska
could represent a major extensional basin system
(Fig. 2, top). The stratigraphic succession from a
Jurassic-Cretaceous arc system to a major ba-
sinal setting with thick sediment accumulations
(Patton, 1973) is seemingly analogous to an ad-
vanced stage of back-arc rifting with nearly
complete continental breakup. Indeed, the Car-
pathian arc (Royden et al., 1983) may be a close
analog, and future studies need to consider this
analogy.

3. A great variety of metamorphic facies se-
ries has been recognized in northern Alaska,
ranging from blueschists and eclogites of the
Brooks Range (Armstrong et al, 1986) and
Yukon-Tanana terrane (e.g., Foster et al., 1987;
Hansen, 1988) to regional low-P, high-T belts
(e.g., see Foster et al., 1987). Detailed studies of
the pressure-temperature-time history of these
metamorphic belts are clearly needed because
theoretical models indicate that extensional ter-
ranes have distinctive P-7-¢ signatures (e.g.,
Thompson and England, 1984).
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