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ABSTRACT

Recent observations of cumulus clouds strongly support the hypothesis of Squires (1958) that much of
the mixing within such clouds is associated with downward propagating currents initiated near their
tops. A similarity theory is here proposed to describe the properties of such currents; the use of similarity
is defended on the basis of the observed and predicted scale of the downdrafts. The theory suggests that
downward-propagating unsaturated thermals are pervasive throughout all but the largest convective clouds
and that quasi-steady unsaturated downdraft plumes may exist in the lower portions of cumulonimbi. In
addition to providing a reasonable explanation for the microstructure of and liquid water distribution within
cumulus clouds, the theory appears to account for certain severe convective phenomena, including down-
bursts. A new but related cloud instability is proposed to account for the occurrence of mamma.

1. Introduction

Early aircraft observations of small cumulus clouds
(e.g., Malkus, 1954) firmly put to rest any notion that
the properties of such clouds could be explained
merely by the pseudo-adiabatic ascent of air from
cloud base. The observations indicated that the
liquid water content and buoyancy of the clouds
were far smaller than their respective adiabatic val-
ues; indeed, the temperature lapse rate within the
clouds closely approximated that of their environ-
ment. It was natural to assume, as did Stommel
(1947), that as in the case of dry thermals and plumes,
most of the discrepancies were due to mixing through
the sides of the cloud. Observations (e.g., Warner,
1955) show, however, that little systematic variation
in cloud properties occurs across the cloud, in con-
trast to laboratory plumes and thermals in which the
time-mean quantities roughly conform to Gaussian
distributions. These and other considerations led
Squires (1958) to propose that the bulk of the mixing
in such clouds is due to unsaturated downdrafts ini-
tiated at the cloud tops and driven by evaporative
cooling. Such downdrafts are fundamentally distinct
from classical dry or moist convection in that they
rely on turbulent mixing to provide simultaneously
the liquid water and dry air necessary for evapora-
tive cooling. The phenomenon is therefore peculiar
to clouds. Squires (1958) was able to show, using a
simple model employing constant eddy mixing, that
such downdrafts are capable of penetrating to great
depths within typical clouds.
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Squires’ idea is particularly attractive as it ac-
counts for many of those observed properties of
cumulus clouds which cannot be explained by simple
entraining plume models. These characteristics in-
clude the lateral distribution of cloud properties, the
magnitude of the ratio of actual to adiabatic liquid
water content (Warner, 1970), the frequent appear-
ance of dry holes in the bases of clouds (Warner,
1955), the weak dependence of maximum liquid water
content on cloud diameter in all but the smallest
clouds (Squires, 1958), and the breakup of cloud
updraft at higher levels (Malkus, 1954). In light of
these observations and Squires’ theory, it seems
surprising that many theoretical investigations of
cumulus dynamics continue to rely on lateral en-
trainment to provide the necessary mixing. This
weakness is especially apparent in cumulus param-
eterization schemes.

A recent aircraft study of Colorado cumulus clouds
by Paluch (1979) shows rather dramatically that the
properties of air deep within the clouds are attribut-
able primarily to the mixing of air from below cloud
base with environmental air from near the cloud top,
rather than by mixing with environmental air originat-
ing near or below the level where the measurements
were taken. In her investigation, Paluch identifies
two adiabatically invariant scalar quantities which
mix in a linear or nearly linear fashion. These quan-
tities are the total water content Q (when precipita-
tion-size particles are absent) and a modified equiva-
lent potential temperature 6,. These are measured
by aircraft within the clouds and plotted together
with an environmental sounding of the same quanti-
ties in a 0-6, coordinate system. The measurements
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generally fall along a straight line connecting points
on the environmental curve representing sub-cloud
and cloud-top air, respectively, suggesting that the
mixture involves relatively little environmental air
from middle levels. This is perhaps the first persua-
sive study of the origin of air within extratropical
cumulus clouds.

In a review of turbulence and mixing processes in
cloud dynamics, Telford (1975) suggests that penetra-
tive downdrafts are the dominant mixing process in
clouds and points out that the scale of the former is
such that they are not resolvable in most numerical
cloud models; neither can most turbulence param-
eterizations adequately account for their existence.
Telford proposes that small cumuli are nearly in
hydrostatic equilibrium with their environment, the
equilibrium being brought about by the cooling effect
of penetrative downdrafts. His calculation of the
liquid water content of equilibrium clouds is in good
agreement with observations.

Subsequent to Squires’ (1958) initial analysis, little
has been done in the way of describing the individ-
val unsaturated downdrafts. In the following section,
the capacity of similarity theory to adequately de-
scribe the dynamics of unsaturated downdrafts is
explored.

2. On the use of similarity theory in describing pene-
trative unsaturated downdrafts

The description of the mean properties of fully
turbulent dry convective plumes and thermals using
similarity theory has been developed primarily by
Schmidt (1941), Batchelor (1954) and Morton et al.
(1956). The latter group also were among the first to
carry out detailed measurements of laboratory
plumes and thermals in stratified fluids. The simi-
larity theory is found to provide an excellent de-
.- scription of the laboratory phenomena.

The basic assumptions on which the similarity
theories rely are that (i) the radial profiles of vertical
velocity and buoyancy are geometrically similar at
all heights, (ii) the mean rate of entrainment of en-
vironmental fluid is proportional at all heights to a
characteristic mean velocity, and (iii) local variations
of density throughout the convective elements are
- small compared to a reference density. It is further
assumed that the environment of the convective
elements is stationary, and that the convective ele-
ments are steady in some coordinate system. The
stationary environment is applicable to convection
which is fundamentally local rather than global in
character; in the latter case the entire fluid is pre-
sumed to be in motion, rendering useless the con-
cept of maintained or instantaneous point sources.

The fundamental premise upon which assumptions
(i) and (ii) strongly rely is that no velocity or length
scales may be formed from the parameters specifying
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the boundary and initial conditions of the fluid sys-
tem. In that case, the length scales describing the
size of turbulent eddies and the lateral variation of
mean velocity and buoyancy may only depend on
the distance at any time from the source. This will
be precisely the case, for example, in a plume over a
maintained point source of heat in a semi-infinite
homogeneous fluid, provided that the Reynolds
number is effectively infinite and that the buoyancy
is small compared to the acceleration of gravity.
Then the only relevant boundary condition is the
maintained buoyancy flux, from which one cannot
form a length scale. If the fluid is stably stratified,
however, an external length scale can be formed
from the boundary buoyancy flux and the Briint-
Viisdla frequency; this scale determines the maxi-
mum penétration height of the plume and makes
questionable the similarity assumption. Morton et
al. (1956) have shown that in this case, the similarity
description fails only near the top of the plume and
still provides a useful description of the plume prop-
erties in its middle and lower sections. ‘
The similarity approach, however, cannot be ade-
quate for treating the dynamics of cumulus clouds
since these merely represent the ascending branches
of a global instability and, as such, must possess
horizontal scales which are related to the vertical
scale of the unstable layer. Indeed, the visual ap-
pearance of cumulus clouds strongly suggests a
fundamental relationship between vertical and hori-
zontal scales and does not suggest the conical ex-
pansion of plumes over a point source of heat. It
must be pointed out, however, that moist convec-
tive updrafts are more local in character than their
dry counterparts since the one-way nature of the
condensation insures that the dry environmental
downdrafts will be relatively weak and broad com-
pared to the cloudy updrafts. ,
The dynamics of evaporatively driven penetrative
downdrafts are fundamentally distinct from those of
moist convective updrafts in that mixing is necessary
to sustain the former, while it always works against
the latter. Thus cumulus clouds are relatively broad
so as to minimize the effects of lateral entrainment,
while the scale of penetrative downdrafts is small
enough that lateral entrainment can provide the lig-
uid water necessary to drive the downdraft. Observa-
tions of cumulus clouds (Warner, 1955; McCarthy,
1974) suggest that lateral entrainment is important
only in clouds with diameters < 1 km, while the
scale of the horizontal fluctuations of vertical veloc-
ity, liquid water content and buoyancy within larger
clouds is very much smaller than the lateral dimen-
sions of the clouds themselves (e.g., Malkus, 1954;
Warner, 1955; Warner and Squires, 1958). As in the
case of moist convection, the one-way nature of the
penetrative downdraft process insures that down-
drafts resulting purely from the cloud-top instability
will be relatively intense and isolated, while any
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upward return circulation forced by the downdrafis
will be broad and weak. Deardorff (1980) suggests
that this is the case for penetrative downdrafts in
stratocumuli. The isolated character of penetrative
downdrafts may not apply near the tops of growing
cumuli, where the downdrafts are probably initiated
by the static instability in the upper portion of the
cloud.

These ideas suggest that in the ideal case of an
inert, homogeneous cloud of great vertical extent,
the lateral scale of penetrative downdrafts is in-
ternally rather than externally determined and, to
the extent to which this is true, their dynamics may
be described using the similarity approach. While it
must be admitted that clouds, especially cumulus
clouds, are far from being homogeneous and inert,
it appears that the similarity approach may consti-
tute a plausible means of isolating and highlighting
the dynamics of the individual penetrative down-
drafts. The theory, which ideally pertains to the
properties of unsaturated plumes and thermals in
deep, inert clouds, provides a wealth of physical
insight regarding the dynamics of these motions.
We therefore proceed by developing one-dimensional
equations describing the radially averaged properties
of evaporatively cooled unsaturated plumes and
thermals.

3. Pemetrative plumes

Penetrative convection can occur when the en-
vironmental air overlying the cloud is sufficiently
cool and dry. When such air is mixed downward
into the cloudy air, the cloud water evaporates and
cools the mixture to the point wihere it is negatively
buoyant with respect to the surrounding cloudy air;
hence it accelerates downward. Were it not for the
effect of water vapor and liquid water on the buoy-
ancy of air, it could be easily seen that the criterion
for this instability is that the moist static energy A
of the overlying environmental air be less than that of
the cloudy air. In fact, the effect of liquid water and
water vapor is not negligible, as shown by Randall
(1980) who states the exact instability criterion

Ah < aL,A(q + 1),
where

L, éq*
1+ = q)
c,T aT /,

L, aq*
1+ + yT{—
( K ( oT )

I

a

D

v = 0.608
and g* is the saturation mixing ratio. Ah and A(q + /)
are the jumps across cloud top of moist static energy
and total water, respectively. Since the latter is gen-

erally negative, the actual criterion for instability is
more stringent than Ak < 0.
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Depending con the degree of instability, the initia-
tion of the downward convection may be charac-
terized by the magnitude of the downward fluxes ¢f
negative buoyancy and total water deficit which re-
sult from the instability. We shall use these fluxes
as initial or boundary conditions for penetrative con-
vection under the assumption that the cloud-top in-
stability criterion is satisfied.

The derivation of conservation equations describ-
ing the radially averaged properties cf a cylindrically
symmetric steady plume descending from a main-
tained point source closely follows the development
of the plume equations given by Morton et al. (1956).
The assumptions regarding the nature of the plume
are as follows:

(i) Radial profiles of vertical velocity, buoyancy
and water vapor are geometrically similar at all
heights.

(ii) The mean entrainment velocity is proportional
to the radially averaged vertical velocity.

(iii) The total buoyancy is small compared to the
acceleration of gravity.

(iv) The Froude number is small.

(v) Molecular viscosity is negligible, i.e., the
plume is fully turbulent.

(vi) The environment is stationary or moving with
uniform vertical velocity.

Assumptions (i), (ii), (iii) and (vi) have been dis-
cussed in Section 2. The assumption that the Froude
number is small asserts that, as a result of the small
scale of the plume, aerodynamic effects are negligible
compared to buoyant accelerations; this assumption
together with (v) have been very well supported by
laboratory experiments.

An additional assumption also must be made with
regard to the effects of phase transition:

(vii) All entrained liquid water evaporates immedi-
ately provided the plume is unsaturated.

This assumption will be very nearly valid for liquid
cloud droplets, but must fail for precipitation par-
ticles. The evaporation of entrained ice will be dis-
cussed in Section 6.

On the basis of laboratory measurements, Morton
et al. (1956) assume a Gaussian radial distribution
of the scalar plume quantities. This assumption poses
a special problem in the present case since the liquid
water deficit cannot have a Gaussian distribution
unless the plume is unsaturated only at its central
axis. We therefore assume top-hat profiles for the
plume quantities in the present case, recognizing
that the shape of the assumed profile only affects
certain numerical constants and does not alier the
sought-for parameter dependences.

The plume is taken to propagate downward from
z = 0 so that the entrainment assumpticn takes the
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form
u=aw,

where & is a mean radial turbulent entrainment veloc-
ity, w the plume vertical velocity (taken to be nega-
tive), and « the entrainment constant.

Following Morton et al. (1956), the radially inte-
grated conservation equations for mass (excluding
water vapor) and momentum are

-‘-i- (R*w) = —2Raw, (1)
dz .

d

— (R*w?) = R*(B + gl.), (2)
dz )
where R(z) is the plume radius and B(z) is the plume
temperature surplus, defined as A

[ Tvp - Tvc)
g( Tv b
where T,, and T, are the virtual temperatures of the
plume and cloud, respectively, T, is a constant ref-
_ erence virtual temperature, and g is the acceleration
of gravity. The momentum equation (2) includes the
hydrostatic effect of the cloud liquid water mixing
ratio [, on the density deficit of the plume. The total
plume buoyancy is then B + gl..
- The conservation equations for heat and water
may be derived by first considering the radially in-
tegrated conservation equation for any quantity A
conserved in moist-adiabatic processes. The steady-
state, Boussinesq conservation equation for A may
be written

B =

vV-VA = 0.

Integrating the above over a slice of the plume of
depth Az and radius R and applying the divergence
theorem yields

2aRAzawA, + m(RWA,)1a. — TM(R2WA,), = 0,

where A, and A, are the scalar quantity in the plume
and surrounding cloud respectively. Dividing through
by Az and taking the limit as Az — 0, the above
becomes

d
—2RawA, = — (R*wA)).
dz

Using. (1) we can write the above as
d d
A, — (R*Ww) = — (R>wA
7 (Rw) = — (RwA,)

or alternatively
dA,

dz ' ®

ii— [R?w(A, — A)] = —R*w
dz
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One quantity which is nearly conserved in a re-
versible moist-adiabatic process is the liquid water
static energy defined as

“hy=cpT + gz — L,

where c,, is a weighted average heat capacity for
moist air. The replacement of c,, by its dry
equivalent c, introduces a small error; however, it
can be shown that the quantity ¢,T, is a closer ap-
proximation to c,,T than is ¢,T. Thus we define
a virtual liquid water static energy

hyp =cpT, + gz — Lyl

and take this to be nearly conserved in a moist adia-
batic process. Multiplying 4, through by g/c,T,
and substituting into (3) yields

d( g

2‘( = hlvc) s (4)

A

d
— [R*w(B + MI,)] = —R*w
dz

where M is a latent heat constant defined as

L,
M==2
cpTy

The right-hand side of (4) also may be written

~Rw (N2 - M dl“) ,

dz

ii(ﬂ - r) .

T,\ dz
Here N is a Briint-Viisila frequency and I the dry
adiabatic lapse rate.

A further conservative property in a strictly re-

versible moist-adiabatic process is the total water L,
where

where
N? =

L=q+1

and g is the vapor mixing ratio. Substituting the
above into (3) and assuming that the plume is un-
saturated and contains no liquid water, we obtain
d dL
— [R*w(g — L.)] = —R*w —= ,
4 dz q ¢ dz
where L, is the total water of the surrounding cloud. .
The set (1), (2), (4) and (5) can be somewhat simpli-
fied by introducing new dependent variables pro-
portional to the mass, momentum, buoyancy and
water deficit fluxes. These are

(S0

X = R*w,
U =Rw,
F = R*>wB,

Q =R*w(q — L.).

In terms of these new variables, we may con-
veniently specify boundary conditions at z = 0. Fol-



Aucust 1981 KERRY A.

lowing Morton et al. (1956), the mass and momentum
fluxes are taken to be zero while finite buoyancy and
water deficit fluxes are specified at z = 0. This speci-
fication will lead to infinite buoyancy and water defi-
cit at z = 0, which artificiality is attributable to the
use of a point source. The physical consequences of
this artificiality can be circumvented to a degree,
for any physical problem, by defining a ‘‘virtual
source’’ where the projection of the observed plume
boundaries intersect at z > 0. The boundary condi-
tions may be written

X=U=90
F=F0 at Z=0'
Q =0

For the sake of simplicity, we will examine the
case of a cloud in which the static stability, liquid
water and lapse rate of mixing ratio are all constant.
(The lapse rate of mixing ratio only affects the water
deficit budget and does not affect the dynamics of
the plume except in so far as it determines whether
or not the plume becomes saturated.) For these sim-
ple cloud conditions, the conservation equations can
be considerably simplified by introducing nondimen-
sional dependent and independent variables. Denot-
ing the old dimensional variables by asterisks, the
new variables are defined

X* = 258 U2N-SI4F 314
7% = 2-SBqUZN-3AF 147
U* = 2U4AN-12F 112

[¥ = 2758 UNSIMF UApf Y

F* =F,F,

0* =N+~ ZE)o.

dz*

Using these new variables, the dimensionless
forms of (1), (2), (4) and (5) are

ax

—=-U mass, (6)
dz

du*

7 = X(F + gM~Xl.) momentum, (7)
z

dF d

—=-X - — (X, heat, 8
dz z; Xl hea ®
d—Q— =X water, )
dz
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and the boundary conditions are

X=U=0

F=1 at z=0. (i0)
inrs dgi\! :

0 = guFy Ny~ S5 )

The set (6)-(8) is identical to that derived by Morton
et al. (1956) except for the additional terms in the
momentum and heat equations describing, respec-
tively, the effects of cloud water on plume buoyancy
and the evaporation of liquid water. Note that (%)
is independent of (6)-(8) except that a prediction of
saturation invalidates the assumptions underlying
(7) and (8). Also note that (7) is the only nonlinear
equation.

Egs. (6)-(8) are numerically integrated using
simple forward differencing and a dimensionless in-
crement in z of —0.01. The integration is started by
solving analytically the difference equations associ-
ated with (6)—(8) to approximately first order in Az.
This results in

U(Az) = —4713(—Az)?3,
X(Az) = —2753(—Az)%3,
F(Az) = 1 + 27503~ Az)"3,.

The integration is carried forward until U vanishes.

The water deficit equation (9) has an analytic solu-
tion in terms of the buoyancy flux F, the mass flux
X and the cloud liquid water. By eliminating X be-
tween (8) and (9) there results

(—1-(F+Q+ch)=0.
dz

This integrates to

F+Q+Xl.=1+ Q,, (11)
where Q, is the normalized initial water deficit flux.
The actual saturation deficit of the plume can be
deduced using the Clausius-Clapeyron equation to
relate the mixing ratio of the plume to that of its
cloudy environment; the latter is assumed saturated.
Thus the average saturation mixing ratio within the
plume may be expressed approximately as

* o g ¥ i’_ *) 2
gt ~ 4. exp(Rng B*), (12)
where gf and g} are the saturation mixing ratios of
the plume and cloud, L, and R,, are the latent heat of
vaporization and the gas constant for water vapor,
T is a mean reference temperature, and B* is the
dimensional plume heat surplus. Dividing (11)
through by X and subtracting the normalized form
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FiGg. 1. Nondimensional plume radius R, buoyancy B and
vertical velocity W as functions of dimensionless depth, for
three values of the normalized cloud water content (/.).
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of (12), one obtains
qs—q=qc(ea8_ 1)+B

2 * \ —1
+[1_._]!_(_di) ]lc_ﬁ"_, (13)
M dz* X

where the mixing ratios have been normalized via

q* = 2-5/8( — %)F0114N—3/4a—ll2q

Z
and a is defined
a= LvRv—lT—lg—12—5/8N5/4F0114a—1/2.

By inspection of (13), one observes that since B
is generally negative, a necessary but insufficient
condition for the plume to remain unsaturated at

large X is that
d * 2
(_ qc)>i’
dz* M

which is equivalent to the requirement that the moist
static energy decrease upward in the cloud. This is
likely to be the case in most clouds except those
which contain moist-adiabatic updrafts. Exact pro-
files of the saturation deficit may be constructed
using (13) once the dimensionless buoyancy and mass
flux are determined.

The solutions for the steady plume radius, buoy-
ancy and vertical velocity as functions of z are shown
in Fig. 1 for three values of the normalized cloud
water content /.. The computations have been car-
ried out under the assumption that the plume remains
unsaturated. The solution for [, = 0 is identical to
that obtained by Morton et al. (1956) and has been
presented for comparison. The quantities plotted
have been normalized according to

* = DIBQUZN =34 U4R
B* = 2-5/8q VZNSIHE 14B
W* = 2-Usq 12N VAR U4py

(14)

The plumes trace out nearly conical cross sections
until they are within ~20% of their maximum pene-
tration depths; moreover, the vertex angle of the
coneis a very weak function of the cloud liquid water
content. The magnitude of the heat deficit is always a
monotonically decreasing function of depth while the
depth at which the temperature deficit of the plume
vanishes is very close to the bottom of the plume.
(The total buoyancy, which includes the effect of
liquid water on cloud density, vanishes at a some-
what higher level within the plume.) The magnitude
of the vertical velocity is also a monotonic function
of depth for normalized liquid water content < 2.5;
for greater values of cloud water the vertical velocity
has a maximum negative value at a depth of roughly
half the total vertical extent of the plume.
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Simple curve fits describing the maximum dimen-
sionless penetration depth and vertical velocity of
the plume as a function of cloud liquid water yield

~Zmax = 2.83 + 1.3817®
~Wmax = 0.17 + 0.34{,

In dimensional form, these expressions are
—z¥ax = 1.835F V4N 314112
+ 1.620aV/5N~5I2F ;~1107fTI5[%715
—Wmnax = 0.156F /4N 1412
+ 0.481 N7 M}

Note that the terms containing the dependence on
liquid water have relatively weak dependences on
the initial buoyancy flux and the entrainment param-
eter a. Table 1 shows maximum plume penetrative
depths and vertical velocity as functions of cloud
water content for typical values of cloud static sta-
bility and initial buoyancy flux. The value of « is
taken to be 0.20 to be consistent with the measure-
ments of dry laboratory plumes by Morton ez al.
(1956); the penetration depths are computed assum-
ing that saturation does not occur.

One observes that the plumes are capable of de-
scending through rather large depths if they remain
unsaturated, which condition, according to (13), may
be realized if the moist static energy decreases up-
ward sufficiently rapidly. The penetration depths are
probably somewhat overestimated due to the use of a
top-hat profile.

As mentioned previously, the penetration depth
of the plume is limited, if not by saturation, by the
monotonic downward decrease of its surface area-
to-volume ratio to the extent that insufficient cloud
water is entrained and evaporated to sustain the
negative buoyancy against adiabatic warming. In an
actual penetrative plume, however, the buoyancy
should first become positive near the central axis if
the air contains no liquid water there. This may lead
to reversed vorticity generation near the central axis
and the eventual splitting of the plume into several
smaller elements. The possibility, therefore, of a
branching behavior should be considered. We will
return to this question in the following section.

= 2.5.

’ [

4. Penetrative thermals

Idealized laboratory convection is generally pro-
duced by maintained localized sources of buoyancy
or the instantaneous release of a small volume of
buoyant fluid within a much larger volume of sta-
tionary fluid. In the former case a steady plume is
produced while in the latter a discrete element is
generated. While the arguments presented in Section
2 suggest that similarity theory ought to describe
well the properties of penetrative downdrafts, there
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TaBLE 1. Maximum penetration depth and vertical velocity
(where applicable) of penetrative plumes as a function of cloud
liquid water content. Calculations are performed assuming the
plume remains unsaturated, and for N*? = 5§ x 10~® s72, o = 0.20,
M = 82 m?s™! and F, = 350 m* s~%. The maximum penetration
depth is insensitive to the value of F, except when /. = 0.

I. (g kg™ —Zmax (km) ~Wmax (M §77)

0 0.73 —_

0.5 2.50 —

1 5.42 6.02
2 13.10 11.59
3 22.55 17.17
4 33.38 22.75
5 45.35 28.33

is little to suggest whether the downdrafis take the
form of steady plumes or thermals, or perhaps a
quasi-periodic succession of thermals which behave
in some ways like both of these forms of convection.
In any event, the general properties of penetrative
downdrafts ought to be illuminated by examining the
characteristics of both pure plumes and thermals.

The derivations of Morton et al. (1956) are again
closely followed in the present treatment of discrete
penetrative thermals. The same basic assumptions
are made regarding the radial distribution of thermal
properties, the self-similarity and the entrainment.
The latter is in this case characterized by a mean
inflow velocity over the entire surface of the thermal,
which is assumed to be spherical (the assumption
regarding the thermal’s geometry again only affects
the numerical constants). The conservation equations
for the total time rate of change of mass, momentum,
heat and water deficit are

i1—R3 = —3R%aw mass, (15)
dt
d
ZR:’W =R¥B + gl.) momentum, (16)
d d
— R3B = —N?R*w — Ml.— R?® heat, a7
dt dt
d d .
—R¥q — L)) = —R®— L, water deficit, (18)

dt dt

where R is the mean thermal radius and the remain-
ing variables are defined as before. For convenience,
the independent variable may be transformed from
time to height using

————— w—.
dz
For convenience in defining the boundary condi-

tions, new dependent variables proportional to vol-
ume, Kkinetic energy, total water deficit and total
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heat deficit are defined as follows:

V=R3"
= 2
K=w (19)
"~ Q=R¥q - L.)
F =R°B

In terms of the new variables, the conservation
equations (15)-(18) are written

A 3aves, 20)

dz :
fj-g — 6KV~ = 2FV-i + 2gl,, (¥3})

Lo M, v , (22

dz dz

L
9 _ v (23)
dz dz

The boundary conditions defining a point source of
heat and water deficit at z = 0 are

V=K=90 .
F=F, , at z=0. 24)
Q =0,

For simplicity, we again treat the case of constant
N, constant cloud water /. and constant lapse rate
of cloud saturation mixing ratio. As in the case of
dry thermals, the penetrative thermal equations have
analytic solutions which can be arrived at by solving
(20), (22) and (21) in that order. The water deficit

equation (23) can also be solved given the solution

of (20). For clarity, we express the solutions in terms
of the radius, vertical velocity, heat and saturation
deficit:

R = -az, (25)
w? =~V 3F,z7%"
- (M — g)l.z — 1eN222, (26)
B = —Foa~327% — MI, — VaN?z, 27
(gs — @)= Qoa™%z7% — I,

B) - 1] - 1( - dq“)z. 28)
4 dz )

The last expression has been derived from (23) and

the Clausius-Clapeyron equation (12); the subscripts

zero denote the initial values of the quantities. The

expression (28) clearly shows the various contribu-

tions to the moisture budget. The first term on the

right is the contribution from the initial flux of water
deficit and decays as z7%, while the second term

+ [ex L,
qc p(Rng
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results from the entrained cloud liquid water. The
third term represents the efféct of the thermal’s tem-
perature deficit on the saturation mixing ratio, and
the last term represents the effect of the increasing
cloud mixing ratio along the path of the thermal.
The depth at which saturation will occur, provided
the vertical velocity is still negative and finite, can
be obtained from (28). The third term on the right of
(28) can usually be neglected in this calculation pro-
vided that saturation does not occur too close to the
initial source. Provided that

Ic > 2_3’2a‘3i4(_Q0)1/4( _ &)3/4’

dz

analysis of the balance of the remaining terms re-
veals that the level at which saturation occurs is
approximately

—Zgar = a_l(_QO)lBlc—”s- (29)

A more precise analysis of (28) shows that satura-
tion will never occur if

(30
Z

-3
0, = 6.7513a3( - @) .
dz | .
These conditions on the initial flux of water deficit
are ultimately related to the cloud-top instability
criterion. ' ;

Provided that the thermal remains unsaturated, the
maximum penetration depth and maximum vertical
velocity attained by the descending thermal may be
assessed using (26). Analysis of the dominant balance
of terms in (26) shows that the first term on the right
may be neglected in computing the maximum pene-
tration depth and vertical velocity if

I, > Fo'4a 34N32(M — g)™.

The right-hand side of the above is O(107%) so that
the condition is easily satisfied even in small clouds.
Neglecting the first term on the right of (26), then,
the maximum penetration depth is

—Zmax = 3%H(M — g)N74, (€2))
and the maximum vertical velocity is
~Wmnax = (M — g)N7U,, (32)
occurring at a height
-z =1%(M — g)N4,. 33)

Note that the maximum vertical velocity occurs at
exactly half the maximum penetration depth and that
none of the above expressions depends on the initial
conditions or the entrainment parameter. The maxi-
mum penetration depth and vertical velocity depend
linearly on the liquid water concentration. Table 2
shows these quantities as a function of liquid water
concentration for comparison with the plume quanti-
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ties listed in Table 1. It is assumed that the thermal
remains unsaturated.

It is again evident that penetrative convection can
reach great depths at characteristic velocities similar
to those associated with typical convective updrafts.
As in the case of the plume, the thermal loses its
negative buoyancy when the surface-area-to-volume
ratio becomes too small for the entrainment and
evaporation of liquid water to keep pace with adia-
batic warming.

In the case of laboratory dry thermals, the mo-
tion follows a damped oscillation after the maximum
height has been attained. In the present example,
however, a different behavior is implied. Unlike the
dry thermal, the penetrative thermal, were it to come
to rest at its maximum penetration depth, would be
unstable in the same sense as it was initially since
the unsaturated neutrally buoyant air within the ther-
mal has a smaller 6, than the surrounding dry air
(unless the thermal ‘‘undershoots’’ the cloud base).
Since the instability is always greatest for perturba-

. tions of small horizontal cross section, it would ap-
pear that at some point in its descent the thermal
will break up into smaller entities. It proves useful
to examine certain properties of dry thermals in this
context.

Scorer (1957) examined the properties of the down-
ward convection of discrete masses of fluid released
within a homogeneous fluid of smaller density. His
observations show that the motion resembles that of
a spherical vortex (e.g., Lamb, 1945), with descent
along the axis of symmetry and ascent along the
periphery. The leading edge of the thermal is rela-
tively smooth despite the static instability in this
region, while the trailing edge is highly turbulent.
The lack of strong turbulence along the leading edge
is perhaps due to the fact that instabilities which
do develop are swept around the leading edge before
they can grow to substantial amplitude. Inany event,
the stability of the leading edge is associated with
some aspect of the relative flow.

In dry thermals or plumes, the maximum magni-
tudes of the buoyancy and vertical velocity generally
occur near the central axis, and the radial profiles
are observed to conform roughly to Gaussian dis-
tributions. As the penetrative downdraft contains
an unsaturated core and since most of the evapora-
tion may occur away from the central axis, such a
distribution may not be maintained and geometric
similarity should break down at some point. The
magnitude of the negative buoyancy should decrease
and perhaps even reverse sign as the downdraft ex-
pands, leading to reversed momentum generation
along the central axis and a breakup of the down-
draft into smaller entities. This branching behavior
should continue indefinitely, as long as there remains
cloud water available for evaporation and as long as
the equivalent potential temperature of the cloud
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TABLE 2. Maximum penetration depth and vertical velocity of
penetrative thermals as a function of cloud liquid water content.
Calculations are performed assuming the thermal remains unsat-
urated, and for N> =5 x 107572, o = 0.285, M = 82 m? s~
and F, = 10° m* s~2. The results are insensitive to both a and
F, except when [, = 0.

I (g kg™ —Zmax (km) ~Wmax (M §77)

0 0.91 —

0.5 1.65 2.92
1 3.30 5.83
2 6.60 11.67
3 9.90 17.50
4 13.20 23.34
5 16.50 29.17

decreases upward. The length of each branch will
be proportional to (M — g)N~%,, as expressed by
(31). Thus an inert cloud whose top is unstable by
the criterion developed by Randall (1980) will con-
tinue to cool and dry through its entire depth by the
action of the penetrative thermals until the cloud
top criterion can no longer be satisfied, or until the
cloud dissipates entirely. It should also be pointed
out that since the cloud top may be unstable to pene-
trative disturbances even when it is statically stable,
the cloud may continue to dissipate even after the
bulk of it is in hydrostatic equilibrium with its en-
vironment. Thus the ‘‘equilibrium cloud’’ proposed
by Telford (1975) may still be unstable to penetra-
tive disturbances, although a means of initiating those
disturbances may be absent in that case.

5. Cumulus ciouds and penetrative downdrafts

" The pervasive and strong instability of inert clouds
to deeply penetrating downdrafts initiated at their
tops carries strong implications for the development
of cumulus clouds. Not only are the summits of
developing cumulus clouds unstable in the classical
sense but, in general, they are also unstable to the
penetrative downdraft. While the previously dis-
cussed similarity theory for such thermals is clearly
inadequate for the detailed treatment of penetrative
convection in cumulus clouds, which are highly tur-
bulent and whose tops are globally rather than locally
unstable, the theory does suggest that penetrative
convection will occur under a wide variety of cir-
cumstances and with characteristic velocities com-
parable to those associated with convective ascent.
Indeed, it would appear that the only moist convec-
tive motions immune to the influence of penetrative
downdrafts are those within clouds whose tops do
not meet the cloud-top instability criterion and those
associated with quasi-steady convective updrafts
which are so intense as to preclude the penetration
of downdrafts from aloft. The existence of regions
of essentially moist-adiabatic ascent within severe
thunderstorms (Heymsfield et al., 1978) provides
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supporting evidence for these possibilities and lends
further credence to the notion that entrainment from
the sides of the cloud is comparatively insignificant.

The idea, first suggested by Squires (1958), that
penetrative downdrafts dominate the mixing process
within cumuli has been strongly reiterated by Tel-
ford (1975), who stressed that direct observations
of cumulus clouds strongly support this premise in
preference to the lateral entrainment model. The
relevant observations are:

1) Theliquid water content of cumuliis well below
its adiabatic value, and its ratio to the latter is gen-
erally a decreasing function of height (Warner, 1955;
Squires, 1958). The importance of some mechanism
of entrainment of environmental air is thus illustrated.

2) The liquid water in cumulus clouds shows no
systematic tendency to peak near the center of the
cloud, and large dry gaps are commonly observed
(Warner, 1955). These observations contradict the
premise of the lateral entrainment model.

3) The maximum water content of cumulus clouds
is not a function of their width (Warner, 1955), as
would be implied by lateral entrainment theory.

4) The strongest mixing occurs near the cloud top
(Warner, 1977).

To these observations we can now add the results
of Paluch (1979) who examined glider observations
of large, nonprecipitating cumulus clouds in Colorado.
As has been mentioned in the Introduction, Paluch’s
results demonstrate that the observed cloudy air
within the cumuli she studied represents a mixture
of subcloud-layer air and environmental air near
the cloud top, with little influerice from environ-
mental air from near the cloud top.

The objections to the lateral entrainment model
raised by the observations are supported by the fact
that one-dimensional steady-state models built on
the lateral entrainment assumption consistently pre-
dict excessive liquid water contents when the simu-
lated cloud top is made to conform with the observa-
tions, as has been pointed out by Warner (1970),
who suggested that such simulations are essentially
exercises in empirical curve fitting. By contrast, a
simple model proposed by Telford (1975) assumes
that actual clouds are far closer to a state of hy-
drostatic equilibrium with their environment than
they are to a state wherein the cloud properties
reflect moist adiabatic ascent. Telford argues that
the equilibrium is achieved by the mixing of environ-
mental air at cloud top with cloudy air at each level
within the cloud. The equilibrium clouds computed
using several thermodynamic soundings have liquid
water distributions which are closer to those of ob-
served clouds than can be achieved with models
which rely on lateral entrainment.

One problem which arises in applying the previous
calculations to cumulus clouds is the assumption of
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_constant liquid water content; this assumption im-

plies that some sedimentation of cloud water has
occurred. It is instructive to consider the case of a
two-step process in which air from a well-mixed
subcloud layer is moist adiabatically lifted to a pre-
scribed level and then subject to the action of pene-
trative downdrafts. We permit no sedimentation of
liquid water so that both the liquid water static en-
ergy h, and the moist static energy h,, are nearly
conservative.

At each level in the resulting cloud a fraction e
of cloudy air originating in the subcloud layer is
mixed with a fraction 1 — e of air from the pre-
scribed cloud-top environment in such a way that
the resulting mixture is just saturated and contains
no liquid water. This mixture will have the maximum
possible temperature deficit compared to the sur-
rounding cloud. Although this temperature deficit is
not precisely equivalent to the buoyancy of the mix-
ture, we can use its value to assess the potential for
downdrafts at various levels in the cloud.

The saturation mixing ratio of the mixture may be
estimated using (12) under the assumption that the
temperature deficit is very small compared to the
mean temperature. We obtain

qsm = qc[l + a(sm - SC)], (34)

where g, is the saturation mixing ratio of the mix-
ture, g. the mixing ratio of the cloud, s,, and s, the

- dry static energies of the mixture and cloud respec-

tively, and a a constant equal to L,/R,c,T?. Since
total water is conserved and the mixture contains no
liquid water, its vapor mixing ratio is

qm = €q, + (1 — €)q:, (35

where g, and g, are the vapor mixing ratios of the
boundary-layer air and cloud-top environment, re-
spectively. The value of € which makes the mixture
just saturated is obtained by equating (34) and (35):

dsm — 4
- qp — 4t

Since s, depends on € in (34), the above relation is
implicit for e. '

We now find the temperature deficit (dry static
energy deficit) of the mixture using the value of €
given by (36). Since liquid water static energy 4,
is conserved during the mixing, we have

him = €hy, + (1 - &)hy,

where h,, and h,, are the values of /4, in the subcloud-
layer and cloud-top environment, respectively. Since
the mixture, the subcloud layer, and the cloud-top
environment all contain no liquid water, 4, is in each
case equivalent to the dry static energy s. Thus we
have '

€ =

(36)

Sm = €8 + (1 — €)sy, 37
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where {he subscripts have {ne usuzal meaning. At
each level in the cloud, tae dry static ensrgy may,
by virtue of conservation of k;, be expressed as

Se =8, + Lyl (38)

where [, is the adiabatic value cof the cloud liguid
water mixing ratio. Using (36) for ¢ in (37), and
maXing use of tae fact thatl, = g, — q,., we obtain,
after some manipulation of (37) and (38),

hy — hy
qs — q¢ + aq{s; — sp) ’

where h, and h, are the moist static energies of the
subcloud layer and cloud-tco environment, respec-
tively. After noting that ¢, — q,and s, — s, are typi-
cally positive, we see that waenever b, > h,a mixture
of air from above cloud top with air from the sub-
cloud layer can always be found which is colder than
tae cloud air. Alsc, since /, increases usward from
zero at cloud base while g, decreases upward, the
maximum possible temperature deficii increases up-
ward from zero at cloud base, according to (39).
Even when the effects of liguid water and waier
vapor on density are censidered, it is apvarent from
(39) or (37) that a negatively bucyant downdraft is
impossiole at cloud base unless some sedimentation
of liguid water has occurred. In that case, &, is not
conserved and it is possible ic generate negative
bucyancy at cloud base. We shall later return to
this peint in discussing 2 possible mechanism for
downbursts.

Finally, it may be noted that the deminant role
of penetrative dewndrafts in cumulus dynamics, im-
plied by both cobservations and the present work,
casts some doubt on the validiiy of many numerical
simulations of small convective clouds performed to
date. Tre very small horizonta! scale together with
the substantial vertical extent of penetrative down-
drafis suggest that they can neitaer be resclved ex-
plicitly within most models, nor can their existence
be accounted for through the use of the type of turbu-
lence parameterizations currenily employed. Anim-
portant exception might be the simulation of large
convective storms with stable ice anvils, above which
6. is too high to permit the formation of penetra-
tive downdrafts (see Secticn §), or whese guasi-
steady uodrafls are so sireag as to prevent thie down-
drafts "rom penetrating substantial depiks intc the
clouds. Numerical simulaticns cf tais type ¢f cleud
have been relatively successful (e.g., Xlemp and
Wilhelmsen, 1978). For smaller clouds, some prog-
ress nas been made in redreseniing venetrating
downdrafts, most noteably by Raymend (1979)
wic treats moist convection as a two-scale process
that accounts for the penetrative downdrafts. His
medel is successful in preducing realistic distribu-
ticns of liguid weater, veloeity tarbulence, es-

Se = Sm =1a

(39)

amg
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secially wnen taese cuaniities are compared to these
produced by latera! entrainment models. These re-
sults, togetner with the evidence vpresented here,
suggest tnat the failure tc acccunt for the presence
of senetrative downgdrafts in most cumulus clouds
may lead to a serious misrepresentation of their
dynarmics.

6. Mamme formations and coud-based detrainment
imstability

An unusual form of downward convection is some-
times observed on the underside of middle- or high-
based stratiform clouds, most freguently those as-
scciated wiih outfiow from strong thunderstorms.
The convecticn takes the form of downward pro-
jecting protuberances often of highly laminar ap-
pearance, con the underside of the clouds, which
are sometimes high enough to be composed mostly
of ice crystals. A photograph of one such formation
is presented in fig. 2. Although the individual
elements are highly laminar in appearance, air-
craft flying through their cores encounter moderate
to strong turbulence (Hlad, 1944). Ludlam and Scorer
(1953) attribute mamma to conditional instability
resulting from the simultaneous moist adiabatic and
dry adiabatic descent of the cloud air and subcloud
air, resoectively, but decline to offer an explanation
of the laminar appearance of the clouds.

A possible alternative explanation for mamma is
taat they are manifestations of undershoocting pene-
trative thermals initiated at the cloud tops. The
results of the previcus section indicate, however,
that the saturation vapor pressure and its vertical
lapse rate are too small at the altitudes at which
mamma are commonly observed to permit the rapid
growth of penetrative downdrafts. it is not clear
that the cloud top instability criterion is ever satis-
fled at the tops of cirrus anvils which frequently
penetrate into the lower stratosphere, nor is it cer-
tain that the ice crystals within the anvil can evapo-
rate rapidly enough to drive substantial downdrafts.

A more attractive alternative is that mammatus
formations result from another cloud instability
which was first discussed by Scorer (1972). The in-
stability is analogous to cloud-top entrainment in-
stability and, as it cccurs at the cloud base, might
be calied Cloud-3ase Detrainment Instability (CBDI).
This occurs when cloudy air overlies unsaturated
air with a higher value of liguid water static energy.
The mechanism of C3D21 is illustrated in Fig. 3. If
cioudy air is mixed downward into unsaturaied air
with a larger value of 4, and just enough mixing
occurs tc evapcrate all of the liquid water in the
cleudy air, the resulting mixiure will be negatively
bucyant with respect tc the surrounding air. This is
so bDecause in the absence of precipitaticn 4, is both
moist-adiabatically conservative and linearly mix-
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F1:G. 2. A display of mammatus on the underside of a cumulonimbus anvil.
(Photo courtesy of David Hoadley.)

able, so that the resulting mixture will have an &,
lower than the surrounding air, Since in the absence
of liquid water h, = s, the mixture is negatively
buoyant and will accelerate downward. The instabil-
ity criterion is then

Ah; <0 (40

and g < g* below cloud base, where A#, is the jump
in liquid water static energy across cloud base, and
q and g* are the mixing ratio and saturation mix-
ing ratio, respectively, of subcloud-base air. The
above criterion neglects the effect of water vapor on
density.

Since, in general, the air ascending into a cloud
base will approach saturation and since the cloud
water increases upward from zero at cloud base,
CBDI must be limited to clouds resulting from the
horizontal advection of cloudy air over clear air, as
in the case of a thunderstorm anvil. The instability
is a consequence of the differential advection of 4,.

The dynamics of individual CBDI thermals are in

some ways similar to those of penetrative down-
drafts. CBDI also relies on mixing and should there--
fore seek small scales. Unlike the penetrative down-
drafts, however, CBDI thermals rapidly exhaust their
initial liquid water supply and quickly lose their
negative buoyancy as a result. Such thermals can
not therefore be expected to penetrate very far into
the subcloud environment. .

A similarity solution for CBDI thermals is here
pursued under the same justification as was provided
for the solutions for penetrative downdrafts. We as-
sume here that the liquid water within the thermal
is evaporated at a rate just sufficient to keep the
thermal saturated. Other assumptions used are as in
the case of penetrative thermals. The conservation
equations for the spherical CBDI thermal are

_d_R3 = —3aR? mass, 41
dz

d

= R%w? = 2R%B — gl) momentum, (42)
A
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a) A cloudy parce! is detrained
into dry, sub-cloud air

air causes evaporation

b) Mixing with the sub-cloud ¢) The negatively buoyant parcel

accelerates downward

F1G. 3. Illustration of the mechanism of cloud-base detrainment instability.

d

d—-R3(B — Ml) = —R>N? heat, (43)
z

d d
ZR¥qy + 1 - q.) = —R* 2L water surplus, (44)
dz dz
where [ is the thermal’s liquid water content, g, the
(saturation) mixing ratio within the thermal, and g,
the environmental mixing ratio. We define volume-
integrated heat and water surpluses as

F = R°B
and :
Q = Ra(Qs +1 - qe)-
The initial conditions for the set (41)-(44) are then

R=w=20
F =F, at z = 0. (45)
Q=0

For simplicity, we examine the case where the sub-
cloud mixing ratio is constant. Then by (44) Q = Q,
for all z and the solutions for the thermal’s radius
and liquid water content are

R = —az, (46)
Qo ( Lv )

| = + ge ex — B, (47
iz ge — qes €XP R,Tg 47

v

where g, is the environmental saturation mixing
ratio and the Clausius-Clapeyron equation has been
used to relate the saturation mixing ratio of the
thermal to that of the environment. The solution of
the heat equation (43) follows under the assumption
that N? is constant and that / is nonzero. Because
of the dependence of / on B in (47), the solution
must be written in implicit form:

L
- B)
R, Tg
. -F,
+ Mg, — %Nz

3Z3

B + Mg, exp(

(48)

Due to the form of (48), an exact analytic solution
to the momentum equation (42) is not available. One
may nevertheless estimate the maximum penetra-
tion depth of the thermal by finding the levels at which

the liquid water and temperature deficit of the ther-
mal vanish, using (47) and (48), respectively. If the
temperature deficit is small enough that the last term
in (47) can be assumed equal to g, then

=0 at ~z=a(qe — qe)_anOl/s- 49)

The level of vanishing temperature deficit is esti-
mated by assuming that the first term on the right of
(48) is negligible at this level. This will be true if

(qe‘g —_ qe) » 2—312(_Fo)llda—3/4N3/2M—l_
Then

B=0 at —z=4MN%q, — q.). (50)

The penetration depth of the thermal will be slightly
greater than the values given in (49) or (50), which-
ever is smaller. Note that the instability is most
prominent in environments of moderate relative hu-
midity; if the environment is too dry the thermal
loses its liquid water content very rapidly, while
when the environment is moist the evaporation pro-
ceeds too slowly to sustain the negative buoyancy
against adiabatic warming. In the latter case branch-
ing behavior is perhaps a possibility.

An order-of-magnitude estimate of vertical veloci-
ties characteristic of CBDI thermals can be made
using (42). Assuming, for this purpose, that the ex-
ponential terms in (47) and (48) are order unity, (42)
integrates to

~ (800 — Fo)a™3z72 — H(m — g)
X (Ges — ge)z — heN?z2. (51)

Assuming that the thermal retains its liquid water
until the maximum velocity has been attained, the
maximum velocity predicted by (41), ignoring the
first term on the right, is

=%(m — gIN"YqGes — qe)- (52)

For values of these parameters likely to be en-
countered in the environment of mamma, this max-
imum vertical velocity is on the order of a few meters
per second. Warner (1973) reports vertical velocities
of mamma elements of between —1.2 and =3.1m
s~1, with a mean of —2.3 m s™1.

It is necessary also to explain the very laminar
appearance of mamma (Fig. 2) and to-account for

~Wmax
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TaBLE 3. Evaporation rates of cumulonimbus ice crystals
exposed to an environment of 70% relative humidity,p = 400 mb
and T = 240 K. I, is the ice water content of crystals of average
length L,. 7; is an evaporation time scale = 0.57L/(dL;/dt).

_ dl;
I, dt
[10~2 g m~3 [107¢ g m™3

L; (mm) (size cat.)™] (size cat.)™' s™!] 74 (8)
.0.07 1.32 9.23 143
0.21 7.79 17.68 523
0.36 13.74 19.56 924
0.50 1 23.22 23.69 1294
0.64 26.78 27.37 1665
0.79 30.39 23.35 2035
0.93 36.29 18.34 2405
1.08 47.39 22.15 2804
1.25 51.09 25.49 3236
1.42 57.49 19.71 3668
1.58 69.72 17.01 4098
1.75 83.01 27.04 4530

1.92 81.92 16.51 4963

Approximate summed quantities:
I1=053gm™3

dl
— =267 10*gm3s!
dr &

-1
T{ =1(i1-) ] = 1984 s = 33 min.
dt

their presence in ice clouds. Until recently, there
has been very little in the way of either observations
of ice spectra within clouds or theoretical estimates
of evaporation rates of ice crystals in sub-saturated
air. Hall and Pruppacher (1976) have shown that
the time rate of change of ice crystal length due to
sublimation is independent of crystal length for
crystals of length > 0.2-0.3 mm. For crystals of
smaller length, the rate of change of length increases
with decreasing length. Heymsfield and Knollenberg
(1972) have shown that the ice-water content of cir-
rus clouds comprised of bullet crystals may be ex-
pressed as '

N
I[g m™3] = 1.65 x 1075 ¥ N,L}'"™4,

i=1

(53)

where N; is the number of particles per cubic
meter of length L; [mm]. Under the assumption that
the total number of size categories N is not a func-
tion of time, the above may be differentiated in time
with the result that

di o, dL; -
—[gm3s1 =Y A, —, 54
dt [g ] igl dt ( )
where
’ L Liy™ — I, L7y I;
A= —| i TiaL i }L;-“ + 1.74 — . (55)
Li+1 - Li—1 Li

and I ; is the ice water content within the size cate-
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gory i. The second term on the right of (55) repre-
sents the contribution to the evaporation rate from
the evaporation within each size category, while the
first term is a finite-difference approximation for the
rate at which ice crystals enter category i. Since
dL,;/dt is approximately constant, one can see by
inspection of (54) and (55) that evaporation rates
will be larger if much of the ice water is contained
in small crystals.

Measurements of size spectra within cirrus clouds
have been presented by Heymsfield and Knollen-
berg (1972). These measurements show that while
the number concentration of ice crystals has a dis-
tinct peak at ~0.5 mm in most cirrus clouds, the
spectrum peaks at the smallest size category meas-
ured within cirrus anvils associated with cumulo-
nimbus clouds. This suggests that evaporation of ice
may proceed rapidly enough in cirrus anvils to drive
CBDI thermals. Table 3 shows calculations of the
evaporation rates within each size category measured
within a cumulonimbus anvil, using the measure-
ments of Heymsfield and Knollenberg (1972) and
the evaporation model presented by Hall and Prup-
pacher (1976), assuming a pressure of 400 mb, a
temperature of 240 K and a relative humidity of 70%.
Table 4 lists similar calculations for cirrus uncinus
clouds. (Here, the positive rate of change of ice
water content in the smaller categories results from
the additions to those categories from the shorten-
ing of crystals in larger categories.)

If the similarity theory for either penetrative down-
drafts or CBDI thermals is to be applied to an ice
cloud one must have evaporation time scales similar
to the advective time scale of the similarity thermal.
The latter time scale is approximately

TABLE 4. Evaporation rates of cirrus uncinus ice crystals
exposed to an environment of 70% relative humidity, p = 400 mb
and T = 240 K. I, is the ice water content of crystals of average
length L,. 7; is an evaporation time scale [r; = 0.57L/(dL/dt)).

_ dl,
I dt
. [1072 g m™2 [10¢gm™2

L; (mm) (size cat.)™'] (size cat.)" ! s7] 7; (8)
0.167 0.22 -0.62 288
0.333 0.49 -2.96 638
0.500 9.88 -1.69 . 958
0.667 23.65 9.69 1278
0.833 38.42 34.89 1596
1.000 31.35 56.46 1916
1.167 10.79 39.81 2236
1.333 2.72 9.63 2554
5.01 4.74 2874

1.500

Approximate summed quantities:
I=0.122gm™

dl
— =150%X 107*gm3s?!
dr &

7 = 813 s.
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w dl\™!
Tthermat ~~ ('l_ d'_z) .

Estimating / and w from (47) and (52), respectively,
we have

Tthermal ~ (m - g)_lN(Qes - qe)_lz

for the CBDI thermal. Using (49) as an estimate for
z there results '

Tthermat ~~ (m - g)-lN(qes _Qe)_4/3a_lQ0113~ (56)

For typical values of the parameters which appear
in (56), this amounts to a time scale of roughly 50—
500 s. Comparing these values to those associated
with the evaporation of ice (Tables 3 and 4), it is
seen that the downward propagation of thermals in
ice clouds will be considerably damped by the effect
of the long time scale associated with the evapora-
tion of ice. It is likely that large ice crystals will
remain within the mamma elements even after they
have passed their level of neutral buoyancy, ac-
counting for their opaque appearance. The laminar
character of the visible elements may be attributable
to the strong static stability at their leading edges
after they have ‘“‘undershot’’ their equilibrium level,
although it must be admitted that the elements even
appear laminar early in their development.

Another possibility, suggested by a reviewer, is
that the broad spectrum of particle sizes and associ-
ated fallspeeds within mamma elements smooths out
their visible boundaries even in the presence of some
small-scale turbulence. This would not occur in up-
ward-expanding buoyant elements which contain
only small particles.

Finally, the effect of CBDI convection on the im-
mediate subcloud environment will be to cool the air
just below cloud base, establishing a dry-adiabatic
lapse rate in this region and an inversion at cloud
base. Neutral stability to CBDI perturbations will
occur when the jump of dry static energy across
cloud base is

As = LAl

Measurements of the thermodynamic structure of
the near-cloud-base environment of outflow clouds
would thus provide evidence for the occurrence of
CBDI convection.

7. Downbursts

The term ‘‘downburst’” has been introduced by
Fujita (Fujita and Byers, 1977) to describe excep-
tionally strong, very small-scale downdrafts within
intense thunderstorms. These downdrafts have typi-
cal horizontal dimensions of 500-2000 m and are
thus almost an order-or-magnitude smaller than the
general region of descending air within large thunder-
storms. The downbursts are sometimes powerful
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F1G. 4. Schematic air flow in and around a right-moving
supercell thunderstorm. M and L denote middle- and low-level
air, respectively. The region of precipitation is shown by
hatching, and the approximate locations of the gust front and
tornado (when present) are shown. (After Browning, 1964.)

enough to cause damage at the surface; the damage
patterns attest to the very small scale of the down-
drafts (e.g., Fujita and Byers, 1977). Downbursts
present a major hazard to aircraft (Fujita and Byers,
1977, Fujita and Caracena, 1977).

The general subsiding motion in the downdraft
region of thunderstorms is thought to be a conse-
quence of the evaporation (and melting) of precipi-
tation falling into dry air entering from the middle
troposphere (e.g., Ludlam, 1963). The scale of such
a draft is determined by the scale of the region of
falling precipitation and is thus of the same order as
the dimensions of the main updraft. The side-by-side
arrangement of updraft and downdraft is evident in
strong thunderstorms in environments of consider-
able low- and middle-level ambient wind shear; to-
gether they constitute the dynamical system which
is the storm itself. The comparatively small scale of
downbursts suggests that these are a consequence of
a dynamically distinct mechanism. We here propose
that penetrative downdrafts are responsible for
downbursts and account for their high intensity and
small scale. :

The potential for intense penetrative downdrafis
within severe convective storms appears as a conse-
quence of the associated strong negative vertical
gradient of equivalent potential temperature in the
lower troposphere together with the nearly adiabatic
liquid water content of the main updraft. Observa-
tions (e.g., Marwitz, 1972) and numerical simula-
tions (e.g., Klemp and Wilhelmson, 1978) reveal
strong systematic entrainment of potentially cold
environmental air at middle levels in the storm, par-
ticularly along the forward edge of the storm. In the
right-moving supercell storm (Fig. 4) the middle-level
potentially cold air appears to enter the storm from
the right-front quadrant, traveling over and cycloni-
cally around the main updraft (Browning, 1964;
Klemp and Wilhelmson, 1978). The superposition
of the dry potentially cold air over cloudy air which
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has very high liquid water content suggests a strong
potential for intense penetrative downdrafts. The po-
tential for strong evaporative cooling is enhanced
by the small median diameter of the water drops
which characterize the radar vault region of the up-
draft. The instability may be realized when the cloud
air of high liquid water content loses its upward
velocity due to liquid water loading or dynamically
induced downward pressure gradients, allowing the
potentially cold air to penetrate downward from
middle levels. It should be noted that the ability of
potentially cold air to penetrate to the surface with a
substantial temperature deficit depends on the ex-
istence of precipitation at least somewhere along
the trajectory of the downdraft, as demonstrated
in Section 5.

One specific possible scenario for the occurrence
of a downburst involves the mesocyclone of super-
cell storms. In one such mesocyclone studied by
Brandes (1978), the rotation of the lower region of
the mesocyclone was apparently sufficient to stop
the updraft through the ‘‘vortex valve’’ effect, leav-
ing a column of air with high liquid water content
and small vertical velocity near the mesocyclone
center directly below a region of inflowing poten-
tially cold air (see Brandes, 1978, Fig. 7). Doppler
measurements of the storm do show a small region
of strongly descending air near the mesocyclone
center, though this may be due to the adverse verti-
cal pressure gradient associated with the aforemen-
tioned vortex valve effect, as discussed by Brandes
(1978). A close association between downbursts and
mesocyclones has been noted recently by Forbes
and Wakimoto (1981).

It would appear that the very small scale of down-
bursts precludes the possibility that they have been
simulated by current numerical thunderstorm models
(e.g., Schlesinger, 1978; Klemp and Wilhelmson,
1978; Clark, 1979), though these models should be
capable of explicitly resolving penetrative down-
drafts if the model resolution is greatly increased.
The possible significance of penetrative downdrafts
in overall thunderstorm evolution, -as well as the
potential hazard they may pose under extreme cir-
cumstances warrants further investigation of their
dynamical characteristics.

8. Conclusions

A similarity theory describing the properties of
unsaturated penetrative downdrafts initiated at the
top of deep, inert clouds has been presented; it is
argued that the use of such theory is justified by the
very small scale of individual penetrative elements.
An equivalent theory has been applied to the de-
scription of thermals resulting from Cloud-Base De-
trainment Instability (CBDI). The results show that
provided the cloud-top instability criterion is met,

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 38

unsaturated downdrafts may penetrate deep into
clouds, with velocities comparable to those associ-
ated with the buoyant updrafts. The theory also sug-
gests that individual thermals or plumes may branch
into a number of similar entities after having pene-
trated a certain distance into the cloud. Under special
conditions sometimes associated with severe con-
vective storms, penetrative downdrafts may be suf-
ficiently intense to cause damage at the surface and
are perhaps related to downbursts, as described by’
Fuyjita and Byers (1977). In the latter case, the drafts,
rather than being initiated at the top of the cloud,
may instead result from the systematic entrainment
of potentially cold air at middle levels within the
storm cloud.

CBDI thermals may account for mamma forma-
tions. in water clouds or those ice clouds in which

"much of the cloud ice is contained in very small

crystals.

Finally, we emphasize that the results of the pres-
ent analysis, taken together with the myriad observa-
tions of small and moderate cumulus clouds, strongly
suggest that classical entrainment models developed
on the basis of laboratory experiments do not apply
when phase changes of water substance are impor-
tant to the thermodynamics and must finally be
abandoned in favor of models in which mixing
through the cloud top dominates the internal dy-
namics of the clouds. The small horizontal scale
of the individual penetrative elements, coupled with
the large vertical distances which they traverse,
would appear to render useless most of the turbu-
lence parameterizations currently used in cumulus
models, except perhaps for those models with ex-
ceptional resolution or, which describe clouds whose
tops are too high or whose quasi-steady updrafts
are too strong to permit the penetration of poten-
tially cold air from above. A radically new approach
to cumulus modelling, such as that proposed by Ray-
mond (1979), seems necessary. The recognition of
the importance of cloud-top instability in cumulus
dynamics ought to lead to a reassessment of the
understanding of the interaction of cumulus clouds
with the large-scale environment, and so should in-
fluence future efforts to parameterize this interaction.
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