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ABSTRACT

A simple linear model is developed with the idea of demonstrating the basic physical processes that serve to
distinguish the dynamics of precipitating convection from those of the nonprecipitating variety. In particular,
it is shown that the hypothesis advanced by Seitter and Kuo to explain the slope and propagation of squall lines
in the context of a fully nonlinear numerical model operates also within a linear model. With a hierarchy of
linear models, it is demonstrated that 1) precipitating convection in a basic state consisting of a resting, uniform,

‘unstable cloud can propagate and exhibit sloping up- and down-drafts; 2) subcloud evaporation of falling pre-
cipitation leads to modifications of the aforementioned instabilities and the formation of a new mode that
travels rapidly and has peak amplitude in the subcloud layer; and 3) the introduction of a shear layer at the
cloud base serves to couple the subcloud layer mode mentioned here with the cloud layer and yields a deep,
rapidly growing, down-shear propagating mode which, while it has no critical level, nevertheless extracts kinetic
energy from the mean shear. These models predict that small vertical shear favors slow-moving shear-parallel
squall lines, somewhat larger shear leads to fast-moving shear-perpendicular lines, and very large shear favors

three-dimensional convection.

1. Introduction

Among the many aspects of moist convection that
continue to elude scientific explanation is the tendency
of some convective systems to organize themselves in
lines or arcs, sometimes far away from preexisting
quasi-linear structures such as fronts. These lines often.
propagate with respect to the background flow at all
levels (Zipser, 1977) and may be aligned parallel to
the mean vertical shear (Newton, 1950), perpendicular
to it (Barnes and Sieckman, 1984), or at odd angles to
it (Bluestein and Jain, 1985). Virtually all theories of
nonprecipitating convection show a strong tendency
for the convection to occur in lines oriented parallel
to the vertical shear. These studies include analytic so-
lutions and integral relations from linear theory (Kuo,
1963), numerical simulations (Deardorff, 1965; Asai
1970a,b), and analytic nonlinear steady-state models
(Moncrieff and Miller, 1976; Moncrieff, 1981).! At the
same time, models of moist convection which allow
for stable, unsaturated downdrafts (e.g., Lilly, 1960;
Bretherton, 1986) show a clear preference for three-
dimensional clouds, at least in unsheared environ-
ments. Thus both the orientation and the quasi-two-
dimensionality of many squall lines remain unex-
plained by simple theories.

! An exception occurs in the work of Kuo and Seitter (1985) who
found intermediate modes for cases of complex wind fields for which
the direction of the shear changes strongly with height. For these
wind profiles it is not clear what shear to define parallel and perpen-
dicular with respect to.
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The propagation of convective systems has also been
the subject of much controversy. Of particular interest
is the propagation of some tropical squall lines with
respect to the background wind at all levels (e.g., Zipser,
1977), and the movement of supercell thunderstorms
at velocities which systematically depart from the
background hodograph (Browning and Ludlam, 1962).
In the latter case, an attractive and apparently correct
explanation for the deviant propagation in terms of
pressure perturbations arising from the storm-mean
flow interaction has been advanced by Rotunno and
Klemp (1982). This explanation has been rather thor-
oughly tested against numerical simulations of supercell
thunderstorms. The great longitudinal extent of squall
lines, however, has restricted their simulation by three-
dimensional numerical models; such simulations have
only recently been attempted (M. Weisman, personal
communication, 1986). Among the more popular
simple theories of squall line formation and propaga-
tion is the “Wave-CISK” (Conditional Instability of
the Second Kind) theory advanced by Lindzen (1974)
and advocated by many others, including Raymond
(1975, 1976, 1983, 1984), Bolton (1984), and Emanuel
(1982). This theory holds that mesoscale convective
systems are manifestations of a constructive interaction
between cumulus convection and internal inertia—
gravity waves, the latter of which strongly govern the
propagation velocity of the systems. Such a constructive
interaction has never been determined from observa-
tions, however; nor have numerical simulations which
explicitly resolve cumulus convection shown wave-
CISK behavior. A recent attempt by Nehrkorn (1986)
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to account for both the propagation and orientation
of squall lines with respect to the background vertical
shear using wave-CISK theory showed that while
model parameters could be adjusted to obtain the ob-
served orientation, phase speeds were then too large
by a factor of from 2 to 5.

An attractive alternative to the wave-CISK view of
squall lines has recently been advanced by Seitter and
Kuo (1983). They pointed out that in nonprecipitating

-convection, buoyancy is a function of vertical dis-
placement alone. This strong dynamical constraint
prevents any propagating behavior (Bolton, 1980) and
also prevents the divergent component of the convec-
tive circulation from extracting kinetic energy from
constant background shear (Emanuel, 1984). In pre-
cipitating convection, however, important sinks of
buoyancy due to condensate loading, evaporation and
melting of falling water are gravitationally uncoupled
from vertical displacement of air parcels. By means of
fully nonlinear, two-dimensional numerical simulation
Seitter and Kuo (1983) were able to show that this
dephasing of buoyancy generation from updrafts can
lead to propagation and extraction of kinetic energy
from background shear. This is an important finding
as it potentially explains the orientation, phase speed
and slope of observed squall lines. The purpose of the
present paper is to show that the basic dynamics of the
mechanisms discussed by Seitter and Kuo (1983) can
be described in the context of simple linear models of
precipitating convection. While such models leave out
many important physical processes, they have the ad-
vantage of clearly illuminating the operation of the
particular dynamical mechanisms which are incorpo-
rated by design. Moreover, certain predictions of the
models can be at least qualitatively compared with na-
ture as a means of assessing the relative importance of
the processes included in the model.

We proceed in section 2 to derive a set of inviscid
equations linearized about a basic state which contains
a uniform suspension of very small cloud droplets. A
linearization of Kessler’s (1969) microphysical repre-
sentations describes the evolution of the rainwater field.
This “bare bones™ linear model describes the elemen-
tary effects of rainwater loading on convective dynam-
ics; it is shown that these effects lead to sloping updrafts
and slow propagation provided the rainwater loading
is not small compared to the thermal buoyancy. Ele-
mentary effects of subcloud evaporation of rain are
described in section 3 by adding a neutrally stratified
dry subcloud layer to the basic state discussed in section
2. The presence of the subcloud layer leads to modi-
fications of the modes described in section 2 and in-
troduces new modes as well. When a discontinuous
velocity profile is added to this basic state (section 4),
the new modes are preferentially amplified and for a
-range of shear values the growth rates exceed those in
the no-shear case. It is shown that these modes extract
kinetic energy from the mean shear but do not have a
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critical level. We summarize these results in section 5
and construct a tentative regime diagram showing the
optimum forms of precipitating convection as a func-
tion of mean shear and stability.

2. Effects of precipitation drag

We first consider a basic state consisting of a uniform
suspension of water droplets in resting air contained
between two infinite parallel plates the upper of which
is maintained at a smaller temperature than the lower.
The mixture of air and water droplets is in thermo-
dynamic equilibrium so that the air is just saturated
everywhere, and the system is in hydrostatic balance.
We consider the stability of this system to small per-
turbations whose time scale is large compared to the
time scale of condensation, so that the system is always
in thermodynamic equilibrium. For maximum sim-
plicity we consider two-dimensional perturbations
which are inviscid and Boussinesq. The linearized
equations for vorticity in the x-z plane and thermal
buoyancy are ' .

(1)

—=N221% Q)

where ¢ is the streamfunction, defined so that

A A4

w=—, u=-—-—,
ox a9z
B is the perturbation thermal buoyancy (g6,/6.9, where
6, and 6, are perturbation and reference virtual po-
tential temperatures), / is the perturbation liquid water
content per unit mass, and N? is a measure of the un-
stable stratification:
_Tno Ind,

2=
N= gl‘d az ’

where T',, and T'; are the moist and dry adiabatic lapse
rates, g is the acceleration of gravity and 6, is the mean
state equivalent potential temperature (Durran and
Klemp, 1982). In egs. (1) and (2) B may be interpreted
as the buoyancy due to all effects except condensate
loading.

Note that the second term on the right side of (1)
represents the generation of vorticity by perturbation
liquid water drag. In order to close the system of linear
equations, a predictive equation for perturbation liquid
water must be developed. For this purpose, we linearize
a system of equations representing cloud microphysics
developed by Kessler (1969), who divided the total
condensate field into cloud water (I,), which is advected
with the flow, and rainwater (/), which may fall at a
terminal velocity V7 (here taken to be positive). Kess-
ler’s rate equations for /, and [z, specialized to a sat-
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urated Boussinesq fluid and neglecting collisions be-
tween rainwater and cloud water, may be written

d._ _ddg ., _
dt  ox dz kle—a), A
dlr __, dlr _

o VT—az + k(. ) a), 4)

where ¢, is the saturation mixing ratio, V' is here con-
sidered constant, 4 is the “autoconversion threshold”
cloud water content, and k is defined

k kl if lc> a

o if l<a
The rate equations include growth of cloud droplets
by condensation, changes of rainwater content by
gravitational fallout, and conversion from cloud water
to rainwater at a rate which depends on the amount
of cloud water exceeding the autoconversion threshold
a. We consider the base state cloud water.in our linear

model to exactly equal the autoconversion threshold
amount g, so that the (almost) linear counterparts of

(3)-(5) are
o__oyds_,,

(5)

6

ot ox dz ©)

ol dlg ,

o Vr 3z + k., (7
k, if IL,>0

kE{ . ¢)]
0 if [.<0,

where primes denote departures from base state values.
The conditional nature of the conversion from cloud
water to rainwater, reflected by (8), imposes an essential
_nonlinearity in the system analogous to the mathe-
matical problem of moist convection treated by Lilly
(1960), Bretherton (1986) and others. In the interest
of maintaining the maximum simplicity, we must sim-
plify the condition (8) while recognizing that certain
fundamental aspects of the problem will be missed.
We will later argue that the effects illuminated by the
strictly linear model should have qualitative counter-
parts in more complete treatments of the problem. For
the present, then, we shall simply take k to be a constant
irrespective of the sign of /.. Physically, this means that
contours of cloud water deficit as well as rainwater fall
at velocity V.
The addition of (6) and (7) results in a relation for
the total perturbation water content,

o, s _ouda,
a Toz oxdz’

 wherel = I’ + Ir. Taking the limit of large k in (6) and
(7) we find that /. = 0 and /z = [ so that the above
becomes

©
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The system comprised of (1), (2) and (9) may be re-
garded as the maximally simple system which includes
the effects of condensate loading and fallout. We also
consider a system for which the temperature difference
between the plates is small enough so that dg,/dz and
N? may be regarded as constants. The set of equations
we will solve is summarized:

d_,, 9B ol .
Vo fax (10)
e (1
ot ox
al al  dydg,
= V=X 12
ot oz ox dz’ (12)

where N2, Vrand dg,/dz are constants.

a. Normal modes in an infinite domain

Wavelike solutions to the set (10)-(12) can be found
by considering normal modes in an unbounded do-
main. Noting the existence of internal length and time
scales, we first nondimensionalize the dependent and
independent variables as follows:

X*s Z* = VTN~1(X5 Z)’

=N

B* = VNB,

Y*=VrN~'Y,
g,

*= "'E VTN—II,

where the asterisks denote the dimensional values. The
length scale V7N~! is the only internal scale present
and represents the distance rain falls in the convective
time scale N™'. As will be shown later, this internal
scale, together with an externally imposed vertical scale,
partially determines the slope of the convection.
Assuming normal mode solutions of the form
e tiratkn) wwhere o is the (complex) growth rate, and r
and k are (real) vertical and horizontal wavenumbers,
the following cubic dispersion relation for ¢ results: -

62=ﬁ[1 -2 ]

o—ir
where 8 = (1 + r?/k?)~! and « is the sole dimensionless
parameter in the system:

(13)

dg;

=—g——=N72, 14
a=-g— (14)
This parameter may be interpreted as the ratio of con-
densate drag to all other sources of buoyancy generated
by a reversible displacement, and is related to the
quantity MCAPE defined by Seitter and Kuo (1983)
by

MCAPE = %NZHZ(I - a),
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where H is the vertical scale through which MCAPE
is defined. In (13) § is clearly related to the slope of
the disturbances but the vertical wavenumber (r) enters
separately as well. In the special case a = 0, the solution
to (13) (¢® = B) represents the solution of the classical
inviscid convection problem for which the growth rate
is maximized when the disturbances are vertical (8
=1).

General solutions may be found by solving the cubic
equation (13) exactly. The growth rate o, and phase
speed (¢ = —a;/k) of the disturbances are shown in
Figs. 1 and 2 for the cases r = 0.2 and r = 0.8. The
sign of ¢ is always opposite the sign of the slope of the
disturbances in the x-z plane. At large values of « and
small values of r, the growth rate reaches a maximum
at values of 8 between 0 and 1 indicating a preference
for modes with a finite slope in the x-z plane. Phase
speeds of the modes (Fig. 2) increase with «; recall that
they are scaled by the fall speed Vr. Naturally, there
is no preference for direction of propagation in this
system, nor are two-dimensional modes preferred over
three-dimensional convection. '

The solutions for growth rate shown in Fig. 1 imply
that for a given value of r there exists a critical value

a
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F1G. 1. Dimensionless growth rates of unbounded modes as a
function of 8 for several values of . Vertical wavenumber (a) r = 0.2
and (b) r = 0.8.
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FIG. 2. As in Fig. 1 but showing dimensionless phase speeds.

of a above which growing disturbances cannot exist.
This critical value can be found by taking the limit of
(13) as the real part of ¢(o,) goes to zero. We find that
the critical value of « satisfies the relation

1= (1+3x(a—1)'?
3 V172
= 3y(a— 1)[(1———X(a_ 1)2)

where x = 8/r>. The solution to the above corresponds
to a disturbance frequency given by

—1], (15)

ai=§{1—[1+3x(a-—1)]1/2}. (16)
In the limit of small x, the solutions are
lima.=14+2r/ V—,
x~0
1ima,~=——\/-[§. (17)
x>0

Thus, for 8 small and/or r large the critical value of «
can be quite large, though inspection of Fig. 1 shows
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that growth rates associated with large o will be small.
The existence of growing solutions for « greater than
one shows that precipitating convection can be main-
tained even when MCAPE, as defined by Seitter and
Kuo (1983), is negative; though as the latter point out,
convection cannot be initiated in such an environment
due to the finite time needed to form precipitation. In
the present model, condensate begins to fall immedi-
ately upon forming so that growing solutions may con-
ceivably exist as long as the thermal buoyancy (N? or
a) is positive.

The propagation and slope of the disturbances is
related to the gravitational de-phasing of condensate
loading from the updraft. The reader is referred to Seit-
ter and Kuo (1983) for a concise explanation of the
physical mechanism. The possibility of oscillatory
convection associated with falling precipitation was
perhaps first considered by Kessler (1969).

b. Solutions between parallel plates

Somewhat more interesting solutions can be ob-
tained by considering the basic state to be bounded
above and below by rigid horizontal plates separated
by a distance H. This introduces an external length
scale into the system and it is convenient to renormalize
the dependent and independent variables which appear
in (10)-(12). The new dimensionless variables are de-
fined as follows:

x* z* = H(x, ),
=N,
B* = N?HB,
Y* = H>NY,
I* = —(dq,/dz)HI,
V¥=NHVr, (18)

where the asterisks again denote the dimensional vari-
ables. We now substitute normal mode solutions of the
form

F(2) exp(at + ikx)

and eliminate 8 and / in favor of y. Thé resulting third-
order ordinary differential equation for the vertical
structure of ¥ is
%  d¥y 2 @y
UZVsz3 3 + Vrk“(1 UZ)Z
+ ok +a— 1)y =0. (19)

Besides the conditions forbidding flow normal to the
two boundaries, a third boundary condition is required.
For this we take / to vanish along the upper boundary
so that no condensate may fall into the system from
above. A consequence of this condition that follows
from (10) and (11) is that d*}/dz? must vanish along
z = 1. The three boundary conditions are then

KERRY A. EMANUEL

2187
v=0 on z=0
2,
¢=-Z—z%=0 on z=1. (20)

These, taken together with (19), constitute an eigen-
value problem for the complex value of ¢ as a function
of a, V7 and k. The dispersion relation is found by
substituting solutions of the form exp(irz) into (19),
finding the three roots of the resulting cubic equation
for r exactly and demanding that the conditions (20)
be satisfied. This results in a high-order transcendental
relation for the complex value of o, the roots of which
are found numerically.

Solutions of (19) with boundary conditions (20) fall
into two categories: stationary modes and propagating
convection. The former exist for all values of « less
than one and for « greater than one when Vr is finite.
Propagating modes occur at sufficiently large values of
a when V7 is finite. For each horizontal wavenumber
k, there are usually many discrete vertical modes. In
the case of propagating convection, the largest growth
rates are always associated with the gravest vertical
mode, while for stationary convection the most unsta-
ble mode may have a larger vertical wavenumber, de-
pending on « and V7. Growth rates and phase speeds
of these modes in the case where k = 5 aré shown in
Figs. 3 and 4. g

Several features of the eigenvalues are notable. For
values of « less than a critical value denoted by the
heavy line in Fig. 4 no propagating modes exist and
the most unstable stationary mode is the gravest vertical
mode. Above this critical value of «, propagating so-
lutions exist and always have the highest growth rates.
In this regime, the stationary modes have smaller ver-
tical scales which decrease discretely with increasing o
or decreasing V. Evidently, the stationary modes are

FIG. 3. Dimensionless growth rates of parallel-plate bounded sta-
tionary modes as a function of a and V7 for the case k = 5. Heavy
solid lines denote mode transitions.
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FI1G. 4. As in Fig. 3 but (a) for gravest propagating modes. Heavy
solid line at bottom shows limit of existence of propagating modes;
(b) dimensionless phase speeds.

increasingly dominated by the internal scale VN ™! as
Vrbecomes small and « increases. Phase speeds of the
propagating solutions increase with « except at small
values of Vrand a > 1 and for a given value of a there
always exists some value of V' which maximizes the
phase speed. This is perhaps a result of the particular
choice of scaling for the phase speed; Fig. 5 shows the
ratio ¢*/ V% as a function of « and the scaled depth
NH/V*%. For average atmospheric values of the param-
eters, phase speeds lie in the range of about 1-5m s,

The transition across o ~ 0.5 from stationary, ver-
tical convection to sloped, propagating modes deserves
some comment. In the limit of small «, the physics of
the instability is similar to that of classical convection.
Here the generation of kinetic energy is proportional
to the volume average correlation of buoyancy and
vertical velocity, B'w’. The most rapidly growing modes
maximize this correlation by maximizing the fraction
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of kinetic energy that resides in vertical motion; this
favors very narrow, upright down- and up-drafts which -
contain virtually no kinetic energy of horizontal mo-
tion. When condensate loading is significant (o ~ 1),
on the other hand, the generation of kinetic energy is
B'w' — gl'w'. There are two competing effects on the
optimal slopes of the convective drafts; sloping modes
allow condensate to fall out of the updrafts, thus de-
creasing /' in the updrafts while increasing it in down-
drafts, but this occurs at the expense of increasing the
amount of kinetic energy in horizontal motion. When
« is large enough, the first effect dominates and the
most unstable modes are sloped.

Despite the existence of an internal scale V¥N~!,
no short-wave cutoff is found in the inviscid solutions.
Figure 6 shows growth rates and phase speeds as func-
tions of wavenumber k for several values of «. Addition
of diffusion of heat, water and momentum would pro-
vide a short-wave cutoff but would make finding so-
lutions somewhat more difficult. The absence of a
short-wave cutoff represents a fundamental limitation
of this type of approach, and even the addition of dif-
fusion does not really overcome this limitation, since
real convection is fundamentally nonlinear and tur-
bulent. We again stress that while a linear model such
as that described here can usefully illuminate the basic
physics of a particular process, it cannot by itself pro-
vide a comprehensive treatment of the phenomenon.
The operation of the basic physical mechanisms sug-
gested by a linear theory should always be subject to
verification using observations and more sophisticated
nonlinear models. )

The structure of the disturbances varies strongly with
o and V5. Some examples of streamlines and precip-
itation associated with propagating modes are shown
in Figs. 7-9, while the structure of the stationary mode
is illustrated in Fig. 10. The disturbances always prop-
agate in a direction opposite to the slope of the distur-
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FIG. 5. As in Fig. 4b but showing phase speeds normalized by
V% as a function of o and NH/V¥.
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FI1G. 6. (a) Dimensionless growth rate as a function of k for
Vr = 0.1 and several values of o; (b) phase speeds.

bance for the reason elucidated by Seitter and Kuo
(1983). Note that Figs. 7 and 8 are for identical values
of a, Vr and k. In the first case, the mode appears to
be dominated by the internal scale V7N ! while in the
second its depth is more nearly determined by the scale
of the domain. When V7 is larger the disturbances tend
to have greater velocity amplitude in the upper portion
of the cloud, as shown in Fig. 9. In all the propagating
modes the rainwater field lags behind and below the
updraft. Negative values indicate depletion of the base
state cloud water and, as mentioned previously, the
linearization forces regions of depleted water as well
as surplus water to fall at ¥;. This produces an artificial
symmetry between upward and downward motion.
The stationary mode (Fig. 10) is similar to classical
convection except that the velocity amplitude is shifted
to higher levels.

The main result of this section is that propagating
convection is favored when « is larger than about 0.7,
i.e., when the drag exerted by condensate following a
reversible displacement is comparable to the thermal
buoyancy. Amplifying convection appears to be pos-
sible at values of « far exceeding unity; this is because
condensate is allowed to fall out of the system. In a
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strictly calm basic state there is no favored direction
of propagation; we show in section 4, however, that
vertical shear favors one direction. ‘

While the crudeness of some of the assumptions un-
derlying this analysis make it unwise to apply it to the
atmosphere, we can undertake to assess a from vertical
soundings. This shows that in the case of middle lati-
tude convection, where thermal buoyancy can be quite
large, « is usually much smaller than one and, as Seitter
and Kuo (1983) concluded, evaporation of falling rain
is far more important. In the tropics, however, the at-
mosphere is much less unstable and adiabatic water
content can be comparable to or even greater than the
measured thermal buoyancy. Here the effect of con-
densate loading and fallout may be more important in
determining the form of deep convection.

Perhaps the most unrealistic aspect of the present
formulation is the instability for both upward and
downward displacements. In nature, much of the rain-
water falls in unsaturated air which is stable to (down-
ward) displacements, and without evaporative cooling
the water loading would not lead to an unstable down-
draft. In our model, the cloud water in the basic state
provides enough evaporative cooling to insure insta-
bility for both signs of displacement. It is clear that a
nonlinear model is necessary to realistically incorporate
the effects of evaporating rainwater in unsaturated air.
It is, however, possible to examine some effects of
evaporation by incorporating into the basic state a sub-
saturated layer below cloud base. This is discussed
presently.

3. Effects of subcloud evaporation

To include the effects of evaporation below cloud
base we redefine the basic state as in Fig. 11. The upper
layer consists of an unstable uniform cloud, as in the
preceding analysis. The lower layer is subsaturated and
neutrally stratified. Rain falling into this layer from
above is allowed to evaporate at a rate proportional to
the amount present.

The linearized equations for the cloud layer are
identical to those presented in section 2 and ‘we nor-
malize the variables in both layers according to (18).
The nondimensional equations for vorticity, thermal
buoyancy and liquid water in the lower layer are

2
a(ifdz—f—k2¢)=ik(B—al), 21
oB=—aEMI, (22)
(T o

where E is the evaporation rate normalized by N (of
the cloud layer) and M is proportional to the heat of
vaporization:

M=L,/C,T,,
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FI1G. 7. (a) Streamfunction (normalized to have an amplitude of
1.0) associated with mode dominated by internal vertical scale
V%/N, for a = 2.0; ¥V = 0.032 and k = 2.1; modes shown move
from right to left at a dimensionless speed of 0.026; growth rate is
0.112. (b) Liguid water perturbation associated with mode shown in
(a); dimensionless amplitude is 8.0 times the streamfunction ampli-
tude.

where L, is the latent heat of vaporization, C, the heat
capacity at constant pressure and 7T is a reference sub-
cloud layer temperature.

Solutions to the system comprised of (19) in the
cloud layer and (21)~(23) in the subcloud layer together
with the boundary conditions (20) can be found by
matching vertical displacement, pressure and liquid
water content across cloud base. Once again it is pos-
sible to find an exact dispersion relation, but solutions
of the highly transcendental equation must be found
numerically.

The complete system is described by the dimension-
less parameters «, Vo, E and Z,, where the last is the
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dimensionless height of the cloud base. As this is too
large a parameter space to explore at all thoroughly,
we instead present specific examples of solutions,

We find that the most rapidly growing solutions fall
into two categories which we shall designate as the
“cloud mode” and the “subcloud mode,” respectively.
The first is simply a modification of the type of solution
discussed in the previous section while the second is a
new feature, .

An example of the streamlines associated with the
cloud mode is presented in Fig. 12. Here the subcloud
layer extends through only a tenth of the depth of the
domain, but evaporation is just strong enough to pro-
duce a secondary maximum in the streamfunction
within the subcloud layer. For modes with small growth

FIG. 8. As in Fig. 7a but for mode dominated bty external vertical
scale H: mode moves from right to left at dimensionless speed of
0.042 and has growth rate of 0.108. (b) Perturbation liquid water for
mode shown in (a); dimensionless amplitude is 8.0.
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FIG. 9. (a) Example of streamfunction (with normalized amplitude
of 1.0) when a = 0.5, Vr = 0.1 and k = 6.0; mode shown moves
from right to left at a speed of 0.008 and has a growth rate of 0.625.
(b) Liquid water perturbation associated with mode shown in (a);
amplitude = 7.72.

rates this feature represents a linear analog to a gust
front with the main momentum balance being between
the horizontal pressure gradient force and the inertial
acceleration:

where c is the phase speed and %' and p’ are perturbation
horizontal velocity and pressure, respectively. In this
example, the presence of the “gust front” does not ap-
preciably change the growth rate or phase speed of the
solution and in this respect it represents a minor mod-
ification of the modes discussed in Section 2.

The perturbation pressure field associated with the
streamlines of Fig. 12 is presented in Fig. 13. The major
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FIG. 10. (a) Example of streamfunction of stationary mode for
= 0.5, V7= 0.05 and k = 6.0; growth rate is 0.618. (b) Liquid water
perturbation associated with mode shown in (a); amplitude = 9.0.

pressure perturbation seems to be associated with the
subcloud layer cooling while above cloud base the
pressure has roughly the distribution that would be
calculated hydrostatically from the buoyancy field. The
pressure perturbations shown in Fig. 13 bear a re-
markable resemblance to those deduced within a trop-

|

H

=y
io

FIG. 11. Basic state containing uniform cloud in upper region of
constant static instability and a neutrally stratified unsaturated sub-
cloud layer.

Dry Subcloud Layer (N2=0)
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FIG. 12. (a) Streamfunction (normalized to have an amplitude of
1.0) associated with “cloud mode” for o = 1.0, Vo = 0.1, E = 0.5
and k = 8.0; mode moves from left to right with a dimensionless
speed of 0.022 and growth rate of 0.535; depth of subcloud layer is
0.1. (b) Perturbation liquid water associated with mode shown in (a);
amplitude = 8.45. .

ical squall line by LeMone et al. (1984b); see Fig. 14.
Here the low-level perturbations are no doubt asso-
ciated with subcloud cooling, and we wish to suggest
that the slope and magnitude of the pressure distri-
bution aloft is also related to phase-lagged buoyancy
effects associated with falling precipitation, though in
nature these may be associated more with evaporative
cooling than with condensate loading. It is perhaps
worth noting that the phase speed and slope of the
tropical squall line are in quantitative agreement with
the linear model. (Assuming that H ~ 10 km and N
~ 1072 57!, the mode in Figs. 12 and 13 moves at
about 2.2 m 5™}, which can be compared to the com-
posite speed of 2.2 m s~ ! reported by Barnes and Sieck-
man, 1984.)
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FIG. 13. Pressure perturbation associated with mode shown in Fig.
12; amplitude = 1.14 times the streamfunction amplitude.

It is apparent that whatever asymmetries in nature
might determine the direction of propagation of the
modes discussed here and in section 2 also determine
the sign of the vertical transport of horizontal momen-
tum. As the slopes of the streamlines shown here are
order one it is clear that the vertical flux of horizontal
momentum is quite large and, in the case of convection

in a calm environment, completely uncorrelated with

environmental winds. We wish to suggest that the large
momentum fluxes reported by LeMone (1983) and
others are consequences of phase-lagged buoyancy ef-
fects due to falling precipitation. More will be said

about this in section 4.

An example of the subcloud layer mode which ap-
pears in the model is shown in Fig. 15. This mode is

p’ (Pascals) FOR SLOW LINES (c<3m/s)

T T T T T T\ T T
0 -10-20 -39 L -30-20-10
=~ /

N

HEIGHT (km)

FI1G. 14. Composite pressure perturbation (F,) relative to inflow
environment for slow-moving tropical squall lines. Sloping line in-
dicates position of leading edge of clouds associated with squall. Dotted
lines at left indicate average flight levels of aircraft. Note vertical scale
exaggeration of 6:1. [From LeMone et al. (1984b)].
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FIG. 15. (a) Streamfunction associated with “subcloud mode” for
a =10, Vr=0.1, E = 0.25 and k = 4.0; depth of subcloud layer is
0.3; mode shown travels from right to left with a dimensionless speed
of 0.111 and has a growth rate of 0.173. (b) Liquid water perturbation
associated with mode shown in (a); amplitude = 2.73.

almost entirely confined to the subcloud layer and it
propagates at much larger velocities and has smaller
growth rates than do the cloud modes. Just enough
condensation occurs within the cloud layer to produce
falling precipitation whose evaporation drives this
mode. Even so, it is somewhat surprising that the am-
plitude is so small within the cloud layer in view of its
instability and the neutral stratification of the subcloud
layer. This mode is almost certainly an artifact of the
model, since in nature a much deeper perturbation
within the cloud layer would be necessary to cause pre-
cipitation. The shallowness of the perturbation within
the cloud is related to the large propagation speed of
the “gust front”; this aspect of the coupling between
cloud and subcloud layers is the subject of the next
section.
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4. Precipitating convection with-mean wind shear

It is well known from previous studies of linear non-
precipitating convection (e.g., Kuo, 1963) that the ad-
dition of a constant mean vertical shear of the hori-
zontal wind to the Rayleigh basic state leads to a dim-
inution of the growth rates of the convective
disturbances, which tend to line up with the shear. The
only instances in which cross-shear modes dominate
are those in which the shear profile has an inflection
point at which the shear is a maximum; in these cases
the cross-shear modes are driven primarily by the shear
itself and are clearly separable from the along-shear
convective modes (Asai, 1972). Hathaway and Som-
erville (1985) have also recently demonstrated that a
strong horizontal component of the Coriolis parameter
at right angles to the mean shear vector may lead to-
dominant cross-shear modes, though it is unlikely that
this effect is significant in the earth’s atmosphere.

The decoupling of buoyancy production from ver-
tical velocity in precipitating convection was shown by
Seitter and Kuo (1983) to allow the convection to ex-*
tract kinetic energy from the mean shear and this im-
plies that the most unstable modes of precipitating
convection may be aligned across the shear. In prin-
ciple, this point could be made in the context of the
present linear formulation by adding a constant mean
shear to the basic states described in the preceding sec-
tion. The nonhomogeneity of the resulting linear
equations introduces complications, however, which
make solution more difficult than is probably justified
in so crude a model. We therefore choose instead to
represent mean shear by a discontinuous jump in mean
velocity at cloud base, z,. This presents its own prob-
lems, since a discontinuous velocity profile is subject
to many shearing instabilities even when the stratifi-
cation is stable. We shall avoid this problem, however,
by considering only those unstable modes which have
no critical layer where their phase speed matches the
velocity of the mean flow. That is, we shall examine
relatively deep disturbances whose phase speeds fall
outside the range of velocities of the mean flow; these
disturbances do not satisfy the semicircle theorem of
Howard (1961) and are thus specifically related to the
presence of precipitation.

The modification to the basic state discussed in sec-
tion 3 consists simply in adding a right-to-left mean
velocity U to the cloud layer in Fig. 11. The resulting
dimensionless equations are identical to the set in-
cluding (19) and (21)~(23) with boundary conditions
(20) except that the growth rate o appearing in (19) is
replaced by the Doppler shifted complex expression o
+ ikU. The vertical displacement, pressure and liquid
water are all matched across the interface at z,. Note
that in general the streamfunction itself will be discon-
tinuous across zj,.

The variations of the growth rates and phase speeds
of both the subcloud and cloud modes with increasing



2194

a
0.6
/Subcloud Mode
0.5 //”—_—— ~~
0.4f A T
o ' / Cloud Mode
0.3 /
/
0.2~~~
o4
1 1 1 ] I § { L L 1
0 0.04 0.08 0.12 0.6 0.20
U
b .
0.2}
N
0.10} \
0.08- \\
u-c \\
0.06}-
\ Subcloud Mod
\\s-/ ] Ioul lode
0.04 ———
\\ R
o002 S~
) Cloud Mode —
1 1 B I 1 L 1 1

008 o1z 016
v

0 0.04 620
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Vr=0.1,E=05,2,=02and k = 5.0.

shear are shown in Fig. 16 for particular values of E,
Vr, o and z,. As the shear increases, the growth rate
of the cloud mode remains relatively constant while
~ that of the subcloud mode increases. At some particular

value of the shear, the growth rates of the two modes .

are equal; above this value the subcloud mode has
higher growth rates. Above a critical shear value, the
growth rate of the subcloud mode begins to decrease
again. As shown in Fig. 16b, the phase speed of the
cloud mode becomes smaller than the mean velocity
U of the upper layer when U is sufficiently large; at this
point the cloud modes have critical layers and inter-
pretation of the solutions becomes somewhat more dif-
ficult.

The streamlines associated with the subcloud mode
are shown in Fig. 17. As the shear increases, the sub-
cloud mode extends further into the cloud layer, in-
dicating a closer coupling of the evaporatively driven
downdraft and the cloud layer instability. The problem
of precipitation from a very shallow layer is alleviated.
The phase shift across the shear level is upshear, in-
dicating a downgradient momentum transport. Since
such a downgradient transport is forbidden for non-
precipitating modes without critical levels (Kuo, 1963),
the present results constitute a linear proof of the Seit-
ter-Kuo hypothesis.
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The growth rates and phase speeds of the most un-
stable mode are shown in Fig. 18 as a function of the
nondimensional evaporation rate E and the mean ver-
tical shear between the cloud and subcloud layers. The
highest growth rates occur for particular combinations
of the evaporation rate and the shear. The heavy dashed
line at the left of Fig. 18 separates the cloud and sub-
cloud modes.

Note that the transition from cloud to subcloud
mode at the left of Fig. 18 also denotes a weak mini-
mum of growth rate. This implies that for relatively
weak shear the preferred mode of convection in this
model is shear-parallel lines. This is because while weak
shear normal to the lines reduces the growth rate of
the convection, a component of shear parallel to the
lines has no effect whatever on the growth rates (e.g.,
see Kuo, 1963). Thus for a given weak shear, there will
be a weak tendency in the linear model for convection
to avoid having a perpendicular component of shear.
For stronger shears (to the right of the dotted line in
Fig. 18) the growth rates exceed those of the no-shear
(or shear-parallel) modes and thus the linear model
exhibits a preference for modes which line up perpen-
dicular to the shear. :

To the right of the growth rate maximum in Fig. 18
the growth rates decline with increasing shear. In this
regime, the most unstable modes will be rotated in the
x-y plane such that the perpendicular component of
shear remains at the optimum value shown in Fig. 18.
The symmetry of the mean flow is such that the direc-
tion of rotation of the modes away from the y axis is
immaterial; both clockwise and counterclockwise ro-
tations that reduce the orthogonal component of shear
to its optimum value will result in modes with maxi-
mum growth rates. This implies that convection in this
regime will in general be three dimensional.

The aforementioned results together with a few ad-
ditional calculations allow the construction of a ten-
tative model regime diagram, shown in Fig. 19. This
diagram has either evaporation rate or subcloud layer
depth along the ordinate and iow-level shear along the
abscissa and. pertains to moderate values of «, Vrand
horizontal wavenumber. For sufficiently small shear,
two-dimensional convection with roll axes aligned with
the shear is preferred. At intermediate values of the
shear convection takes the form of two-dimensional
lines with roll axes aligned across the direction of the
vertical shear. At very large shears three-dimensional
convection is preferred.

5. Comparison with observations and conclusions
N

- The obvious limitations of linear theory prevent a
detailed comparison of the present results with nature.
As stated in the Introduction, our purpose has been to
illustrate some of the key dynamical processes which
serve to distinguish precipitating moist convection from
the nonprecipitating variety, without claiming to have



FIG. 17. Variation of streamfunction with cloud-layer/subcloud-layer shear for «
k = 5.0. Cloud-layer wind and phase speed of modes is from right to left. (a) U
(d) U= ~0.12, (e) U = -0.16, (f) U = —0.20.

10, V7 = 0.1, E = 0.5, z, = 0.2 and
0.0, (b) U = —0.04, () U = —0.08,
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F1G. 18. Dimensionless growth rate as a function of evaporation
rate E and cloud-layer/subcloud-layer shear U for a = 1.0, V7= 0.1,
zp = 0.2 and k = 5.0. Growth rates to left of heavy dashed line at
left are associated with the “cloud mode”; all others pertain to “sub-
cloud” mode. Dotted line denotes growth rate maximum.

in any way simulated the complex processes at work
within clouds. As such, our conclusions are at best
suggestive. We, nevertheless, maintain that certain
qualitative aspects of convection within our simple
model have counterparts in nature to the extent that
the physics of the model captures the essence of the
dynamics of actual precipitating convective systems.
What we believe are the important qualitative, testable
hypotheses that follow from the present work are enu-
merated as follows:

1) Weakly buoyant precipitating convective lines
may exhibit substantial slopes with respect to the ver-
tical, even in the absence of mean shear, and should
propagate slowly with respect to the mean cross-line
flow in a direction determined by the slope, with the
bottom part of the convective line advancing first.

2) In environments characterized by weak shear in
the lower troposphere, weakly buoyant convective lines
should exhibit a tendency to align with the mean shear.
Their propagation across the direction of the shear will
be relatively slow (i.e., a few m s7!).

3) In environments with moderate vertical shear in
the lower troposphere, precipitating convection can

2-D
Sheor - Parallel
Convection .
. 2-0
f Shear - Perpendicuior
£ 2, Convection

3-D
Convection

140/ —~

FIG. 19. Qualitative model regime diagram. Evaporation rate and/
or subcloud-layer depth shown on ordinate while cloud-| layer/sub-
cloud- layer shear appears on abscissa.
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extract kinetic energy from the mean flow (as shown
originally by Seitter and Kuo, 1983) and should thus
exhibit a preference to occur in the form of lines ori-
ented across the vertical shear in the lower troposphere.
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The mean shear allows the cloud-layer convection to
couple closely with the evaporatively driven gust front
near the surface. In this regime, convective lines prop-
agate downshear and the present work predicts prop-
agation speeds slightly greater than the mean wind in
the cloud layer. Such convective lines transport hori-
zontal momentum down the low-level gradient.

4) When the shear in the lower troposphere is quite
large, convective lines, if they occur, should exhibit a
preference for an orientation which is skewed with re-
spect to the low-level shear; otherwise, three-dimen-
sional convection is indicated.

In the context of the present work, these results apply
to weakly buoyant convection [« ~ O(1)]; upright,
three-dimensional convection is indicated for strongly
buoyant (a < 1) conditions. By “weak,” “moderate,”
and “strong” shear we are in this instance comparing
the low-level vertical shear with a measure of the evap-
oration rate of rain falling into subcloud air. Specifi-
cally, as indicated by Fig. 18, the regime of convection
depends mostly on the parameter U/E which is di-
mensionally equivalent to AU*/E*h, where E* is a
measure of the evaporation rate, #* is the depth of the
subcloud layer, and AU* is the total change of mean
wind across the lower troposphere.

Points 1 through 3 are consistent with observations
of tropical squall lines reported recently by LeMone et
al. (1984b), Barnes and Sieckman (1984) and LeMone
et al. (1984a). They divided the observed squall lines
into two categories: slow-moving lines, which tend to
align with the mean shear and move across it at speeds
generally less than 3 m s™! (with respect to the ground);
and fast-moving lines which form in environments
which exhibit strong low-level jets. The fast-moving
lines are aligned across the direction of the low-level
jet and tend to move at speeds close to the maximum
Jjet speed, as noted also by Bolton (1984) and Fernandez
{1980). Composite environmental wind structures for
both lines are reproduced in Fig. 20. LeMone et al.
(1984a) note that both types of squall line exhibit pro-
nounced slopes in the vertical plane; the direction of
slope is opposite the propagation direction as in the
results of the present model. These slopes are associated
with vertical transports of cross-line horizontal mo-
mentum which may be uncorrelated with the mean
vertical shear, especially in the case of the slow-moving
lines (LeMone et al., 1984b).

The main difference between the environments of
fast- and slow-moving lines seems to lie in their re-
spective kinematic structures. Barnes and Sieckman
(1984) show that the total change in environmental
wind speed in the lowest 4 km is about twice as large
in the case of fast lines as it is when slow lines are
observed; as noted before, the fast lines are oriented
normal to the low-level shear while the slow lines tend
to be aligned with the shear. Differences in the ther-
modynamic environments of the two classes of lines
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appear to be somewhat more subtle, with the slow lines
appearing to form in environments with marginally
greater convective available potential energy (CAPE)
than the environments of fast lines exhibit.

LeMone et al. (1984b) have calculated vertical fluxes
of horizontal momentum using aircraft data. Data from
a fast line case (GATE Day 255) clearly show that the
cross-line momentum fluxes are downgradient in the
lowest 3 km but upgradient in the middle and upper
troposphere. The vertical flux of line-parallel momen-
tum is, on the other hand, always downgradient.

The slope, propagation, and environmental char-
acteristics of observed tropical squall lines are clearly
consistent with the qualitative, testable predictions of
the present linear model. Comparison of predicted and
observed perturbation pressure fields (Figs. 13 and 14)
lends further credence to the basic thesis on which the
model is founded; namely, that the slope and propa-
gation of certain precipitating convective lines are due
to the decoupling of buoyancy sinks from the vertical
velocity field. Comprehensive tests of these ideas must,
however, await further detailed simulation of tropical
squall lines using sophisticated numerical models.
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