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Abstract

Classical formulations of data assimilation, whether sequential, ensemble-based or variational, are amplitude adjustment methods. Such
approaches can perform poorly when forecast locations of weather systems are displaced from their observations. Compensating position errors
by adjusting amplitudes can produce unacceptably “distorted” states, adversely affecting analysis, verification and subsequent forecasts.

There are many sources of position error. It is non-trivial to decompose position error into constituent sources and yet correcting position errors
during assimilation can be essential for operationally predicting strong, localized weather events such as tropical cyclones.

In this paper, we propose a method that accounts for both position and amplitude errors. The proposed method assimilates observations in
two steps. The first step is field alignment, where the current model state is aligned with observations by adjusting a continuous field of local
displacements, subject to certain constraints. The second step is amplitude adjustment, where contemporary assimilation approaches are used. We
demonstrate with 1D and 2D examples how applying field alignment produces better analyses with sparse and uncertain observations.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

It is important to accurately forecast the positions of
localized weather phenomena such as thunderstorms, squall
lines, hurricanes, precipitation, and fronts. Failure to do
so can result in a significant cost to commerce and life.
Position errors occur frequently in forecasts and, as noted by
several researchers, are a concern. For example, Alexander
et al. [1] have shown that mesoscale simulations of marine
cyclones using the MM5v1 [2] model initialized with NCEP
operational analyses consistently have position errors in real
forecast experiments. Thiebaux et al. [3] have shown that
position errors of major forecast features were negatively
affecting quality control decisions in NCEP models, and the
latter were improved when position errors were removed.
Sensitivity studies of precipitation data conducted by Jones and
MacPherson [4] show that position errors lead to significant
degradation of forecasts.
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02139, United States. Tel.: +1 617 2531969.
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Addressing the causes of position errors directly is difficult.
Hoffman et al. [5,6] argue that timing errors frequently generate
position errors. Mariano [7] argues that inadequate data and
model resolution, incorrect model physics, or simplifying
dynamical/statistical assumptions lead to position errors. To
be sure, position errors can arise from errors in background
flow, model parameters, inadequate model resolution, existence
of multi-scale interactions, and approximations of governing
equations and parameterizations, among others. If there were
a few parameters that could be estimated to resolve position
errors, then a parameter estimation method could be used.
The problem is that decomposing position errors into a few
constituent sources is non-trivial and yet position errors cannot
be ignored as operational examples suggest.

Indeed, this problem is significant enough that operational
schemes have been developed. For example, tropical cyclones
are often forecast to be in the wrong position, with ill-defined
centers. In “bogussing”, a technique employed operationally
to overcome this difficulty, a bogus cyclone with an assumed
structure and location/intensity is artificially introduced into
the analysis cycle either in the first guess or as synthetic
observations. The addition of the bogus vortex must be
complemented with the removal of the vortex in the forecast.

0167-2789/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2006.09.035
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“Addition” and “deletion” must be conducted with care. If the
addition is not “smooth”, significant shocks can be introduced
to the system and produce poor forecasts. If the incorrect
vortex is not removed properly, the resulting “ghost” vortex can
severely degrade the track forecast [8].

Bogussing attempts to correct a problem that contemporary
data assimilation is not designed to handle. Current data
assimilation approaches adjust amplitudes. In well defined
storms, even small position errors will cause the first guess used
in data assimilation to be spectacularly in error (in strength or
amplitude) at grid points near both the real and first-guess storm
positions. Thus, huge changes in first-guess amplitude may
be necessary to produce an acceptable analysis. Brewster [9]
argues that infrequent spatio-temporal features, incomplete data
at small scales and a lack of background error estimates makes
this problem hard to solve. Constructing background statistics
that can optimally support large amplitude adjustments is
problematic because it is difficult to construct amplitude
statistics that model position statistics well. As we shall see,
background error statistics that would be perfect without the
existence of position errors will become inappropriate because
position errors introduce bias (forecast mean and truth are
displaced) and/or inflate the background error (co)variance. The
effect of forecast bias has been examined before [10] and the
effect of poor background error covariances on analyses are
also known. As a result, a classical assimilation method (e.g.
three-dimensional variational assimilation, or 3DVAR) will not
always remove the feature from the incorrect location and
rebuild it at the proper place suggested by the observations, but
rather end up distorting the first guess.

Distorted analyses are a problem in their own right. An
analysis may be declared to be optimal under some objective
and yet bear little fidelity to what we expect to see. Distorted
analyses are also a problem for generating subsequent forecasts.
Thus, evidence from operational practice suggests that position
errors must be corrected to produce good forecasts. Addressing
modeling issues that lead to position errors is complicated
and correcting position errors with contemporary assimilation
methods can lead to distortions. In practice, even ad-hoc
procedures seem to improve matters.

The starting point of this paper is the search for an
objective method that can compensate for position errors
in the assimilation cycle. We develop a formulation of
the assimilation problem that adjusts both positions and
amplitudes. Our formulation arises from a Bayesian view
that conditions inference of displacements and amplitudes on
certain priors. These priors are constructed from forecasts
to capture amplitude statistics and regularization to specify
displacement constraints. Together, the data likelihood and
priors produce an optimization objective whose solution
minimizes position and amplitude errors.

We show that, for large-scale problems, this objective
can be solved in two steps. In the first step, called field
alignment, model fields are aligned with observations. The
alignment is carried out as a smooth (diffeomorphic) automatic
remapping of the coordinate system underlying the state. The
field alignment step essentially solves an auxiliary variational

procedure that minimizes the misfit between forecast states
and observations in the displacement space. Once fields are
aligned, the second step, amplitude adjustment, can be carried
out using contemporary data assimilation schemes. Thus, we
synthesize a scheme where the newly proposed alignment step
can be implemented as a preprocessor for both 3DVAR and
ensemble approaches. We demonstrate, using 2D examples
that the proposed methodology can significantly reduce the
detrimental effects of position errors.

The remainder of this paper is organized as follows. In
Section 2 related work is surveyed. In Section 3 the impact
of position errors on data assimilation is examined. Then, in
Section 4 we formulate the data assimilation problem in a
manner that accounts for position errors. We then provide an
efficient sequential solution in Section 5 and demonstrate its use
on two-dimensional examples in Section 6. We conclude with
a discussion of the relative merits of the proposed approach in
Section 7.

2. Related work

Several solutions to the position error problem have been
formulated. One solution is to detect features and formulate
a position control problem using detected features [11]. In
order to do this automatically, however, features need to be
defined, detected, and correspondences between model-state
and observations need to be established, automatically. Years
of computer vision research has shown that these problems
are extremely hard to solve. Features are not always readily
detected either because they are not well-defined or because
the data density is sparse, and the correspondence problem is
NP-complete and thus lacks a deterministic polynomial time
solution. Further, the alignment of features alone does not
provide a framework for aligning the rest of the state unless
additional constraints are imposed on the deformation.

Alexander et al. [1] propose a technique to improve the
forecasts of feature locations associated with marine cyclones
by using microwave integrated water-vapor imagery (IWV)
and image warping of forecast mesoscale fields. The warping
technique is based on manually selecting corresponding
features, solving for a third-degree polynomial transform
relating corresponding point coordinates and warping the entire
field using this transform. Although such warping techniques
have been used in the digital image processing community,
neither the physical basis that motivates their choice, nor how
the technique can be extended for automatically generating an
objective analysis is clear.

Mariano [7] developed a technique for “melding” fields
by detecting contours and determining the correspondence
automatically. The estimated field is a weighted combination
of contours, which does not distort the analysis. Such an
approach is difficult to use when fields with differing contrasts
are compared, or when observations are sparse.

In contrast to work by Mariano [7] and Alexander et al. [1],
the method proposed here employs no feature detection or
correspondence. The amplitude error between the fields is used
directly to synthesize the deformation (or warping).
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In a recent paper, Brewster [9] develops an alignment
algorithm using a displacement-based cost function and
a penalty term based on the inverse of a second order
autoregressive term. This method divides the domain into
overlapping control volumes, and the displacement is computed
in each volume. The size of the control volume is variable
and a multi-resolution formulation is proposed. This technique
is demonstrated on thunderstorm simulations. Although our
technique is also based on an Eulerian formulation, it is strictly
different. There is no use of an autoregressive constraint and
our result generalizes to diffeomorphic position errors.

In two papers, Hoffman et al. [5,6] develop a variational
technique for producing analyses having displacement and
amplitude errors, called distortion errors. Their formulation
uses an objective with three terms in a spectral representation:
a distortion cost function, a smoothness term for the
distortion, and a barrier penalty term that bounds the
distortion. The smoothness term is global and determined by
a distortion (co)variance term. They demonstrate that using
their method significantly reduces errors between ECMWF
analyses and microwave IWV observations. In contrast, we
use a local constraint for relating displacements. In their
technique, the covariance term is designed to capture the error
correlations between positions and amplitudes. We think that
the correlations between amplitude errors and displacement
errors are non-trivial and propose a solution that does not
require it. Further, we do not use a barrier penalty term and
our implementation is spatial.

3. Data assimilation with position errors

To compensate for nonlinearity arising from position
errors, we represent the misfits between model and data
phenomenologically, as errors in position and amplitude. This
leads to a new formulation of the assimilation objective. Before
we describe the details of this method, it is instructive to
understand the complications arising from position errors in
current assimilation methods.

Consider a Bayesian formulation of the data assimilation
problem [12]. The state vector Xn at a discrete time tn can
be estimated using all measurements Y0:n from an associated
conditional probability density P(Xn|Y0:n). If we suppose that
the dynamics is Markov in time, that is P(Xn|X0:n−1) =

P(Xn|Xn−1) and the observation errors are uncorrelated in
time, and therefore P(Y0:n) =

∏n
i=0 P(Yi ), then P(Xn|Y0:n)

can be evaluated via Bayes’ rule as:

P(Xn|Y0:n) ∝ P(Yn|Xn)P(Xn|Y0:n−1) (1)

= P(Yn|Xn)

∫
P(Xn|Xn−1)

×P(Xn−1|Y0:n−1)dXn−1 (2)

P(Xn|Y0:n) ∝ P(Yn|Xn)P(X f
n ) (3)

Eq. (1) presents the Bayesian form, ignoring the normalizing
constant P(Yn). Eq. (2) depicts the recursive formulation for
filtering. The distribution at the previous time P(Xn−1|Y0:n−1)

can be used to construct a conditional prior denoted P(X f
n )

in Eq. (3) and is called the forecast distribution at time tn .
Constructing this distribution is non-trivial because only in very
simple cases is it possible to integrate Eq. (2) analytically.
Modeling the forecast distribution remains one of the
outstanding challenges of contemporary data assimilation, with
approaches ranging from carefully crafted error uncertainties to
Monte Carlo methods.

To simplify the ensuing discussion, we adopt a linear
observation model, Yn = H Xn + η, where η is additive
measurement noise and uncorrelated in space and time, and H
is a linear observation operator. Further, we drop the explicit
dependence on time by writing X = Xn and observation
Y = Yn . Then, if the distributions in question are assumed
Gaussian, with P(X f ) ∼ N (X, B) and η ∼ N (0, R), the mean
of P(Xn|Y0:n) is equal to its mode, which is the value of X
that minimizes the following quadratic objective, written with
its solution:

J (X) = (X − X f )T B−1(X − X f )

+ (Y − H X)T R−1(Y − H X) (4)

X = X f
+ B HT(H B HT

+ R)−1(Y − H X f ) (5)

Eqs. (4) and (5) can be interpreted deterministically, where
Y and X f are fixed vectors called the observation and first
guess, and X is the estimated state. The matrices B and R
are the respective uncertainties in state and observations. As
shown, these equations are a simplified version (due to the
linear observation operator) of what is commonly known as
“3DVAR” in the meteorological community [13–16].

Eqs. (4) and (5) can also be interpreted probabilistically,
which forms the basis for the Ensemble Kalman Filter [17]. In
this case, an ensemble of estimates at time tn−1 are forecast to
time tn using the model. Let us call the forecast ensemble A f

=

[X f
1 . . . X f

S ], where the columns of A f are the S replicates of
the ensemble. To implement the Ensemble Kalman Filter, we
will assume that the observation equation is linear (as before)
with spatially and temporally uncorrelated additive noise. We
let Z represent a matrix of perturbed observations, Ã f be the
deviation from mean Ā f of A f , the innovation covariance be
C = (H Ã f )(H Ã f )T

+ R, and write:

A = A f
+ Ã f (H Ã f )T

× [(H Ã f )(H Ã f )T
+ R]

−1(Z − H A f ) (6)

= A f
+ Ã f (H Ã f )TC−1(Z − H A f ) (7)

Both these methods perform equally poorly in the presence
of position errors as the following examples will demonstrate.

Example 1. In Fig. 1, we show a forecast ensemble of one-
dimensional fronts on a circular domain containing 40 nodes.
The ensemble size is also 40. All the ensemble members have
varying amplitudes, but exactly the same front positions. In

this example, a front is defined as X̄ f (p) = e
−

(p−p0)T(p−p0)

2σ2
0

with p0 = 31 and σ0 = 2. An ensemble member X f
i is

generated by perturbing amplitude X f
i (p) = ai ∗ X̄ f (p) + bi ,

where the scalars are random variables ai ∼ N (1, 0.22) and



Aut
ho

r's
   

pe
rs

on
al

   
co

py

130 S. Ravela et al. / Physica D 230 (2007) 127–145

(A) Forecast ensemble. (B) Truth and observations. (C) Deterministic analysis.

(D) EnKF analysis.

Fig. 1. Panel (A) depicts a forecast ensemble with only amplitude perturbations. The ensemble mean is depicted as the dashed line. Panel (B) depicts the truth
(dotted line) and observations. Panel (C) depicts a deterministic analysis (solid line) and Panel (D) depicts the analysis (mean) obtained from an ensemble Kalman
filter (solid line).

Fig. 2. The covariance computed from the forecast ensemble with only
amplitude perturbations shown in Fig. 1(A).

bi ∼ N (0, 0.012). The mean of the ensemble can be verified
to be X̄ f (p). Fig. 1(A) shows the replicates and their mean
(dashed line). Fig. 2 shows the covariance computed of the
forecast ensemble.

Fig. 1(B) shows the “true” front as a dotted line. The truth
XT has exactly the same amplitude as the forecast ensemble
mean X̄ f (p), except that it is displaced. The truth has a peak

amplitude of 1 non-dimensional unit and smallest amplitude of
zero.

Observations are generated by sampling the truth fairly
densely in space (10 observations at every fourth node on a
40-dimensional state vector). Thus the observation operator H
is a binary incidence matrix of size 10 × 40. The observational
uncertainty is Gaussian, identical and independently distributed
(iid) with a standard deviation of 0.05. This is substantially less
than the background error variance at the front (see Fig. 2).
Thus, the i th observation vector sample Yi is synthesized from
truth according to the linear observation equation Yi = H XT

+

η, where η ∼ N (0, 0.052I). Note that, in this example, the
forecast ensemble has Gaussian statistics, but there is a bias
between truth and the forecast ensemble mean.

We implement a deterministic scheme, using as first guess
the forecast mean X̄ f . We use the forecast replicates to compute
B statistically (see Fig. 2) and specify R and H from the above
discussed construction. We then synthesize a single observation
vector Y using the observation equation and then compute
the innovation δ = Y − H X̄ f , and solve the linear system
δ = (H B HT

+ R)µ for the unknown vector µ using a
conjugate gradient method (readily available in MATLAB as
the pcg command). This is similar to the PSAS scheme [13],
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with the key difference being the statistical computation of
the background error covariance. Finally, we will obtain the
solution as X̄ f

+ B HTµ.
In Fig. 1(C), the analysis from the procedure just discussed

is shown. It is clear that the analysis (solid line) looks like
neither the forecast ensemble nor the truth. It’s somewhere in
between, being pulled by the observations in some places and
the background at others. It has replaced a single front with a
bimodal front of far weaker strength.

We then implement an EnKF scheme. To do so, we compute
the innovation covariance C = H B HT

+ R by computing
B from the ensemble and specifying R and H as in the
deterministic case. We then compute the pseudo-inverse of
C using singular value decomposition. Then, each forecast
ensemble member A f (:, i) = X f

i is paired with a perturbed
observation Z(:, i) = Yi and applied to Eq. (6).1 Fig. 1(D)
shows the result of the ensemble Kalman filter, where the
analysis is the ensemble mean. It is also distorted, although in a
slightly different way.

Example 2. In Fig. 3, a forecast ensemble containing both
amplitude and position error is generated. In this example,
an ensemble member X f

i is defined as X f
i (p) = ai ∗

e
−

(p−pi )
T(p−pi )

2σ2
0 +bi , where σ0, ai and bi and p0 are defined in the

same way as Example 1, and pi ∼ N (p0, σ0). We then compute
B from 40 ensemble members. The replicates and their mean
are shown in Fig. 3(A). Fig. 3(B) depicts truth and observations.
The matrices R and H defining the observation equation are
exactly the same as in Example 1.

Fig. 3(C) depicts the result of the deterministic scheme (as
discussed in Example 1), when the forecast mean is used as the
first guess. It may be argued, in this case, that the ensemble
mean is really not a good depiction of the front due to the
large position errors, and hence a poor choice as a first guess.
Therefore, we select as first guess a state X f

i with ai = 1, bi =

0 and pi = p0. The result of doing so is shown in Fig. 3(D),
with the analysis again being the solid line. In fact, any replicate
in the forecast ensemble produces similarly distorted analysis.
This can be seen from the Ensemble Kalman Filter (EnKF)
solution. Fig. 3(E) depicts the performance of EnKF with the
analysis-ensemble mean as the issued analysis. In each of these
figures the analysis is also distorted.

Example 3. In Figs. 4 and 5, we construct a third example,
with variability only in position. Fig. 4(A) depicts a forecast
front. This front is an (unnormalized) Gaussian, of standard
deviation 2.5 position units and is centered at a position of 25.

That is, X f (p) = e
−

(p−p0)T(p−p0)

2σ2
0 , where p0 = 25 and σ0 =

2.5. This forecast is used to produce a background covariance
in the following way. We suppose that the front’s position
is uncertain and generate a large number (3000) samples by

1 In this case, the observations shown in Fig. 1(B) represents one
perturbation.

perturbing position. That is, we generate samples X f
i (p) =

e
−

(p−pi )
T(p−pi )

2σ2
0 , where pi ∼ N (p0, σ0). We then compute B

from these samples.
A series of “truths” are generated as XT

j (p) =

e
−

(p−p j )
T(p−p j )

2σ2
0 , where p j is displaced farther away from the

forecast position p0 = 25, as shown in the left column of Fig. 5.
In each instance, the truth is sampled every fourth location,
for a total of 10 observations, to which Gaussian noise (iid) of
standard deviation 0.05 is added. That is, Y j = XT

j + η, where

η ∼ N (0, 0.052I). By this construction, H and R are specified.
We then produce a deterministic analysis using X f , B, H, R

and Y j as shown in the middle column of Fig. 5. These panels
depict the truth (dotted line), the first guess (dash-dot line),
which is the forecast, and an analysis (solid line). The analysis
produced is thus 3DVAR (PSAS variation), using exactly the
same scheme as discussed in Example 1 and also used for
the deterministic analyses in Example 2. It can be seen that
when the truth is close to the forecast, the analysis is quite
good. In fact, it is quite good so long as the position error
is smaller than σ0. As it gets farther away, the background
error covariance is not a good representation of the uncertainty
and the analysis becomes distorted. Although this example
suggests that introducing correlations across space (such as by
perturbing position) can account for position errors, we will
shortly see that this is not always a good choice.

It is tempting to overcome this distortion with an isotropic
background error covariance. The rationale is that an isotropic
background error covariance could reflect the loss of flow
dependence due to position uncertainty better than position
perturbations. So we produce a deterministic analysis using an
isotropic covariance Biso. We compute the isotropic covariance
as a circulant matrix constructed from a one-dimensional
unnormalized Gaussian kernel. The peak amplitude of this
Gaussian kernel is scaled to the maximum variance of the flow-
dependent error covariance shown in Fig. 4(B), and is about
0.1. The standard deviation of this Gaussian is determined from
the forecast shown in Fig. 4(A), by assuming a correlation
length equal to the distance where the power of the forecast
amplitude becomes half of its peak power. After some simple
algebraic manipulation, we can determine the scale of the
Gaussian kernel, σiso, used to produce the isotropic covariance

as σiso =

√
2 ln(2)

2 σ0. Since the forecast was generated with a
Gaussian of standard deviation σ0 = 2.5, therefore σiso = 1.47.
The resulting covariance Biso is shown in Fig. 4(C).

We then produce a deterministic analysis using X f , Biso, H,

R and Y j as shown in the right column of Fig. 5. These
panels depict the truth (dotted line), the first guess (dash-
dot line), which is the forecast, and an analysis (solid line).
The analysis produced is thus 3DVAR (PSAS variation), using
exactly the same scheme as discussed in Example 1, the
deterministic analyses in Example 2 and the flow-dependent
case just discussed. Except for the forecast error covariance all
other variables are exactly the same as in the flow-dependent
case shown in the middle column of Fig. 5. It can be seen from
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(A) Forecast ensemble. (B) Truth and observations.

(C) Deterministic analysis – 1. (D) Deterministic analysis – 2.

(E) EnKF analysis.

Fig. 3. Panel (A) shows the forecast ensemble containing amplitude and position perturbations. The forecast-ensemble mean is the dashed line. Panel (B) depicts
the truth (dotted line) and observations. Panel (C) shows a deterministic analysis (solid line) with the forecast ensemble mean as the first guess. Panel (D) depicts a
deterministic analysis using an ensemble member as the first guess. Panel (E) depicts the analysis ensemble mean (solid line) using an ensemble Kalman filter.

the right column of Fig. 5 that when the truth is close to the
forecast, the analysis is also quite good. As it gets farther away,
the isotropic background error covariance need not be a good
representation of the uncertainty and the analysis also becomes
distorted.

The effect of position errors is not surprising if one examines
how position errors can violate the assumptions driving the
estimation. The analysis can get distorted when the forecast
distribution has a bias, as Example 1 shows. This is because the
two sources of information, the observations and forecasts, are

supposed to be unbiased, that is their expectations are supposed
to be identical. Under a position error this assumption can be
violated and thus produce an imperfect estimate even if the
forecast ensemble is itself perfectly Gaussian.

In Example 2, the situation also includes one of poor
(co)variance. Here, individual forecasts of the ensemble are
seen as reasonably well-defined fronts. However, the forecast
uncertainty contains spurious correlations in amplitudes due to
the displacements between forecast replicates. The amplitude
correlations become artificially broad and, therefore, forecast
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(A) Forecast. (B) Background error covariance. (C) Isotropic covariance.

Fig. 4. Illustration of Example 3 (see text). Panel (A) shows the forecast. Panel (B) shows a background covariance (in color) constructed from the forecast. Panel
(C) shows an isotropic background error covariance, which is also used in the experiment. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. Results for Example 3: The left column shows truth and observations. Panels down the middle column shows truth (dotted line), the first guess (dash-dot
line) and the analysis (solid line) produced using 3DVAR with a flow-dependent covariance. The first guess is the same as the forecast in Fig. 4(A) and its uncertainty
is depicted in Fig. 4(B). Panels down the right column shows truth (dotted line), the first guess (dash-dot line) and the analysis (solid line) produced using 3DVAR
with an isotropic covariance. The first guess is the same as the forecast in Fig. 4(A) and its uncertainty is depicted in Fig. 4(C).
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uncertainty becomes an inaccurate representation, owing to
position error. As a result the analyses shown in Fig. 3(C–E),
while closer to the truth in some areas, has also forced large
distortions over a broader areas where observations are sparse
or more uncertain than the background.

Problems can arise even in a deterministic setting such
as Example 3. We designed a background error covariance
to account for potential position errors by allowing position
perturbations in the forecast. But doing so can only be effective
to the degree that it does not inflate amplitude (co)variance
artificially because this becomes much like the situation in
Example 2 just discussed. Selecting an isotropic background
error covariance also led to distortions. In the presence of sparse
uncertain observations, new amplitudes are born at the right
locations in the state but without necessarily removing the old
ones to satisfaction.

The trade-off between position errors and amplitude
covariance can be understood more formally. Suppose that
we have forecasts X i , and i = 1 . . . S, which we deem a
perfect Gaussian ensemble. Without loss of generality, we will
represent this ensemble by a random variable X . We think of X
as a spatially one-dimensional vector quantity, also referenced
by a position variable p as X (p). Let us suppose that X ∼

N (X̄ , CX X ). That is, the covariance CX X = EX [X̃ X̃T
], where

EX is the expectation under the distribution of X and X̃ =

X − X̄ . Let us consider a scalar position perturbation λ to this
perfect forecast distribution, that is X (p + λ). We now expand
this via Taylor series (assuming the expansion is possible) as
X (p + λ) = X (p) + λ ∂ X

∂p . The amplitude mean under the

position perturbation can be written as X̄λ = EX [X (p + λ)] =

X̄ +λEX

[
∂ X
∂p

]
. Further, we define the deviation of the gradients

as 1 =
∂ X
∂p − E

[
∂ X
∂p

]
. Then the covariance as a result of the

position perturbation is C = CX X +λEX [X̃1T
]+λEX [1X̃T

]+

λ2 EX [11T
]. If λ is assumed to be a Gaussian random variable

with mean 0 and standard deviation σλ, then we can say that the
expected amplitude covariance under the position perturbation
is Eλ[C] = CX X + σ 2

λ EX [11T
]. We define Cλ = Eλ[C] and

define C11 = EX [11T
] and therefore, we have

Cλ = CX X + σ 2
λ C11 (8)

Eq. (8) says that the expected amplitude covariance as
a result of random position perturbations is less certain or
“inflated” than without. The degree of inflation depends, to
the first order, on the spatial gradients and the variance of the
position perturbation.

This has a bearing to both deterministic and ensemble
assimilation schemes because, it is immaterial whether the
forecast ensemble contains a large position spread (Example 2)
or whether we allow artificial spatial correlations (Example 3)
to account for potential position errors. In each case, the
covariance is worse than the “perfect” one. Furthermore, even
if the only position error were a large bias (Example 1), we still
have a distortion problem. This situation is exacerbated when
observations are sparse and uncertain because the imperfect
background covariance can incorrectly adjust amplitudes. In

an ensemble setting, if we suppose that forecasts arise from
models, forecasting the mesoscale feature in the wrong place
in various ways, ensemble amplitude-assimilation methods can
no longer be expected to work well. In the deterministic
framework, designing an appropriate background under (non-
systematic) position errors becomes even more challenging.
What we can do, as this paper describes, is to pose an
objective that minimizes position and amplitude errors by
using the observations and available forecast(s). This, we
claim, compensates for position errors, even as it assimilates
amplitude data.

4. Data assimilation by field alignment

To address the position error problem, we reformulate the
classical quadratic objective in a way that allows position
adjustments in addition to amplitude adjustments. The key
step in this new approach is to explicitly represent and
minimize position errors. Therefore, we introduce auxiliary
control variables (displacements) that are estimated along
with amplitudes. The displacement variables are defined at
each node of the grid representing the state and specify a
deformation of the grid. By using this scheme we can control
both amplitudes and positions.

To make this framework more explicit it is useful to
introduce some notation. Let X = X (r) = {X [rT

1 ] . . . X [rT
m]}

be the model-state vector defined over a spatially discretized
computational grid Ω , and rT

= {r i = (xi , yi )
T, i ∈ Ω} be the

position indices. Similarly, let q be a vector of displacements.
That is, qT

= {q
i

= (∆xi ,∆yi )
T, i ∈ Ω}. Then the notation

X (r − q) represents displacement of X by q (see Fig. 6).
The displacement field q is real-valued, so X (r − q) must be
evaluated by interpolation if necessary.

In a probabilistic sense, we may suppose that finding (X, q)

that has the maximum a posteriori probability in the distribution
P(X, q|Y ) is appropriate. Using Bayes’ rule we obtain

P(X, q|Y ) ∝ P(Y |X, q)P(X f
|q)P(q) (9)

As before, we assume a linear observation model with
uncorrelated noise in space and time, and Markov dynamics.
If we make a Gaussian assumption of the component densities,
we can write:

(1) Data likelihood:

P(Y |X, q) =
1

(2π)
n
2 |R|

1
2

× e−
1
2 (Y−H X (r−q))T R−1(Y−H X (r−q)) (10)

This equation is the data-likelihood term. It implies that
the observations can be related using a Gaussian model
to the displaced state X (r − q), where X (r) is defined
on the original grid, and q is a displacement field. We
use the linear observation model here, and therefore Y =

H X (r − q) + η, η ∼ N (0, R). We should emphasize here
that the observation vector is fixed. Its elements are always
defined from the original grid.
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Fig. 6. A graphical illustration of field alignment. State vector on a discretized
grid is moved by deforming its grid (r) by a displacement (q).

(2) Amplitude prior:

P(X f
|q) =

1

(2π)
n
2 |B(q)|

1
2

× e−
1
2 (X (r−q)−X f (r−q))T B(q)−1(X (r−q)−X f (r−q)) (11)

This equation defines the amplitude prior. Given a fixed
displacement field q and a forecast X f (r) defined on
the original grid, it states that the forecast distribution is
assumed to be Gaussian in the position-corrected space,
even if it isn’t in the uncorrected space. Once we assume
Gaussian statistics in a position-corrected space, it is
immediately clear that the forecast statistics are conditioned
on the displacement field. In particular, its second moment,
the covariance B, is dependent on q. By simple analogy,
if we associate an error covariance on the original forecast
grid, this error covariance will have to be remapped when
the forecast grid is deformed. Thus, we write the forecast
covariance as B(q).

(3) Displacement prior:

P(q) =
1
α

e−L(q) (12)

This equation specifies a displacement prior. This prior is
constructed from an energy function L(q) which expresses
constraints on the displacement field. The proposed method
for constructing L is drawn from the nature of the expected
displacement field. Displacements can be represented as
smooth flow fields in many fluid flows and often arise
from systematic and large-scale background flow errors, for

example see [1]. Smoothness naturally leads to a Tikhonov
type formulation [18] and, in particular, L(q) is designed as
a gradient and a divergence penalty term. These constraints,
expressed in quadratic form, are:

L(q) =
w1

2

∑
j∈Ω

tr{[∇q
j
][∇q

j
]
T
} +

w2

2

∑
j∈Ω

[∇ · q
j
]
2 (13)

In Eq. (13), q j refers to the j th grid index and tr is
the trace. Eq. (13) is a weak constraint, weighted by the
corresponding weights w1 and w2. Note that the constant
α can be defined to make Eq. (12) a proper probability
density. In particular, define Z(q) = e−L(q) and define
α =

∫
q Z(q)dq. This integral exists and converges.

It is instructive to note that the constraints we impose are
local and can be contrasted to other approaches that assume
that the displacement field q has a particular distribution.
The most tempting is to assume that q has a uniform
distribution. Doing so, however, does not constrain the
solution at all; the prior is uninformative and has little
physical validity. Second, is to assume that q follows a
Gaussian, or more strongly, it is jointly Gaussian with
amplitude errors. This results in an approach similar to [5,
6], but it is unclear how to estimate the parameters of such
a distribution [19]. It is precisely this lack of knowledge of
the displacement prior that leads us to propose smoothness
constraints which, as the preceding discussion shows, can
be interpreted to have a Gaussian distribution.

With these definitions of probabilities, we are in a position
to construct an objective by evaluating the log probability. After
defining p = r − q, we can state an objective as:

J2(X, q) =
1
2
(X (p) − X f (p))T B(q)−1(X (p) − X f (p))

+
1
2
(Y − H X (p))T R−1(Y − H X (p))

+ L(q) −
1
2

ln(|B(q)|) (14)

Solving this objective is not easy. It isn’t clear how to
compute B(q). Neither is it clear that the gradients can be
computed easily. These difficulties can be overcome by making
several approximations.

The first choice we make is to consider a statistical
representation of uncertainty, using an ensemble of forecast
states. In this case, computing B is straightforward. Let us
suppose that S samples X = X1 . . . X S are to be estimated
along with associated displacements Q = q1, . . . , qS, from
S forecasts X f

s , s = 1 . . . S. Let ps = r − qs and X̄ f
=

1
S

∑S
s=1 X f

s (ps). The background error covariance is:

BQ = B(Xf
; Q) =

1
S − 1

S∑
s=1

× (X f
s (ps) − X̄ f )(X f (ps) − X̄ f )T (15)
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(A) One-step analysis (Example 1). (B) One-step analysis (Example 2).

Fig. 7. Results of the one-step method. Panel (A) depicts the analysis (solid line), truth (dotted line) and forecast ensemble mean (dash-dot line) obtained for
Example 1 (Fig. 1). Panel (B) depicts the analysis, truth and forecast ensemble mean, for Example 2 (Fig. 3).

The ensemble framework leads to a modified objective,
which we can write as:

J (X, Q) =
1
S

S∑
s=1

Js(X, Q) (16)

where Js is defined as, f or s = 1 . . . S

Js(X, Q) =
1
2
(Xs(ps) − X f

s (ps))
T B−1

Q (Xs(ps) − X f
s (ps))

+
1
2
(Ys − H Xs(ps))

T R−1(Ys − H Xs(ps))

+ L(qs) − ln(|BQ |) (17)

Eq. (17) can be used to align and estimate amplitudes for
each ensemble member. Note that each ensemble member is
paired with a perturbed observation Ys , just as in the original
EnKF framework.

The second choice we make is to construct an iterative
solution of the inference problem. That is, we define

J (X, Q|Q−) =
1
S

S∑
s=1

Js(X, Q|Q−) (18)

where Js(X, Q|Q−) is defined as:

Js(X, Q|Q−) =
1
2
(Xs(ps) − X f

s (ps))
T

×B−1
Q−(Xs(ps) − X f

s (ps))

+
1
2
(Ys − H Xs(ps))

T R−1(Ys − H Xs(ps))

+ L(qs) − ln(|BQ− |) (19)

Here, BQ− is a notation that it is fixed during the evaluation
of the objective. We therefore have an iterative basis for a
solution that avoids computation of derivatives of higher-order
terms. The gradients at an iteration can now be written for each

ensemble member s = 1 . . . S as:

∂ J s

∂qs
= (∇ Xs |ps − ∇ X f

s |ps)
T B−1

Q−(Xs(ps) − X f
s (ps))

+ ∇ Xs |ps HT R−1(H Xs(ps) − Ys) +
∂L

∂qs
(20)

∂ J s

∂ Xs
= B−1

Q−(Xs(ps) − X f
s (ps))

+ HT R−1(H Xs(ps) − Ys) (21)

∂L

∂q
s,i

= w1∇
2q

s,i
+ w2∇(∇ · q

s,i
) (22)

The term q
s,i

is the displacement at a grid point i associated
with an ensemble member s.

To minimize Eq. (18), the gradients are computed using
Eqs. (20)–(22), and all of this is supplied to a standard
optimization code. To be sure, the optimization proceeds
with initialization Xs = X f

s and Q = 0. Every time the
search algorithm requests an evaluation of the objective and
its gradient, the aforementioned equations are used with a new
set of perturbed observations. The search algorithm terminates
when there is no improvement in objective or an iteration limit
has been reached. We call this the one-step algorithm.

For the 1D example, Fig. 7(A), (B) demonstrate the estimate
(solid line) produced using a quasi-Newton algorithm, with a
BFGS2 Hessian update scheme [20–23], available as part of the
MATLAB implementation (medium-scale fminunc command).
We have also tried a conjugate-gradients implementation, with
no different results in these examples. In the cases shown in
Fig. 7(A), (B), the analysis issued is the final ensemble mean.

There are several points worth mentioning about the one-
step algorithm:

(1) Alignment is expressly Eulerian, individual features are
neither identified nor required for alignment, although

2 Broyden–Fletcher–Goldfarb–Shanno scheme.
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featuredness or texture clearly influences the solution. The
deformation is defined on the continuum and evolves over
iterations.

(2) The constraint in L is modeled as such because we expect
the fluid flow to be smooth. From a regularization point of
view, there can be other choices [24] as well.

(3) The regularization constraint is a weak constraint. This
implies that the constraints are not satisfied exactly. The
weights determine how strongly the constraints influence
the flow field.

The one-step algorithm essentially validates the idea of
simultaneous alignment and amplitude assimilation, but there
are several limitations.

First, this algorithm would scale poorly with state and
ensemble size. At each iteration the background covariance, its
inverse and determinant will have to be computed. This can
become prohibitive, even if the approach shares in flavor the
ensemble Kalman filter formulation for updating each ensemble
member separately.

Second, for two reasons, this method cannot be used to
solve the deterministic situation presented in Example 3. There
is no easy way to reshape the background error covariance
depicted in Fig. 4(B), as the preceding discussion has already
highlighted. So the one-step scheme really cannot function
in a purely deterministic mode. Even if we assume that this
uncertainty can be statistically computed via an ensemble,
in this particular example, the ensemble is purely position-
perturbed and has no amplitude perturbations. If we suppose
that each ensemble member is aligned perfectly, then the
ensemble collapses, presenting a practical difficulty.

5. Sequential solution

We propose a variation of the solution that can function
with deterministic or ensemble approaches alike, and can
tackle the dimensionality problem better. Instead of solving the
displacements and amplitudes “simultaneously”, we make an
approximation using the Euler–Lagrange equations. Following
Eqs. (20) and (21), these can be written as:

∂ J s

∂qs
= (∇ Xs |ps − ∇ X f

s |ps)
T B−1

Q−(Xs(ps) − X f
s (ps))

+ ∇ Xs |ps HT R−1(H Xs(ps) − Ys) +
∂L

∂qs
= 0 (23)

∂ J s

∂ Xs
= B−1

Q−(Xs(ps) − X f
s (ps))

+ HT R−1(H Xs(ps) − Ys) = 0 (24)

It is clear that these equations are highly non-linear functions
in Xs and qs. We solve them sequentially, in exactly two steps.
In the first step we fix Xs to X f

s in Eq. (23) and solve for Q̂. We
then use this solution to solve Eq. (24). The sequential approach
is a two-step approximation. The first step is the displacement
or alignment equation, written as:

∂L

∂qs
+ ∇ X f T

s |ps HT R−1(H X f
s (ps) − Ys) = 0 (25)

Using the regularization constraints the alignment equation
at a node i now becomes:

w1∇
2q

s,i
+ w2∇(∇ · q

s,i
) + [∇ X f T

s |ps HT R−1

×(H [X f
s (ps)] − Ys)]i = 0 (26)

This is the field alignment formulation where, phenomeno-
logically, Eq. (26) introduces a forcing based on the residual
between the model-field and observation-field modulated by the
local gradient. The constraints on the displacement field allow
the forcing to propagate to a consistent solution. Unfortunately,
Eq. (26) is also non-linear, and is therefore solved iteratively,
where it becomes a Poisson equation. During each iteration qs
is computed by holding the forcing term constant. The estimate
of displacement at each iteration is then used to deform a copy
of the original forecast model-field using bi-cubic interpolation.
Together with a perturbed observation sample, the forcing for
the next iteration is generated. The process is repeated until a
small displacement residual is obtained, the misfit with obser-
vations does not improve, or an iteration limit is reached. Upon
convergence, we have an aligned forecast ensemble X f

s (p̂s),
s = 1 . . . S, from which BQ̂ is computed. With these quanti-
ties, the amplitude recovery is written as:

Xs(p̂s) = X f
s (p̂s) + BQ̂ HT

×(H BQ̂ HT
+ R)−1(Ys − H X f

s (p̂s)) (27)

Eq. (27) can be implemented using several familiar schemes.
Here we outline three:

Ensemble scheme: Eq. (27) is the basis for the ensemble
Kalman filter, because Q̂ is fixed. In the simplest interpretation,
each position-corrected forecast replicate X f

s (p̂s) can be paired
with a perturbed observation Ys , to produce a filtered estimate
Xs . Thus, when the entire forecast ensemble is updated, a
posterior distribution is obtained, from which the analysis can
be issued (typically the mean). Of course, we must point out that
alternative schemes such as the square-root formulations can be
implemented because Eq. (27) expresses the standard quadratic
update equation that forms the basis for many assimilation
methods.

Deterministic ensemble scheme: In this mode, one can compute
the background after aligning individual replicates. The aligned
replicates can be used to compute a statistical background
error covariance. Once this is done, deterministic assimilation
proceeds from a single aligned first guess.

Purely deterministic scheme: The proposed two-step method
can also be used when a forecast ensemble is not available.
Since the alignment does not depend on the background error
covariance, one can align the first-guess field and use the
aligned first-guess to craft a state-dependent background error
covariance [25]. In essence, the same procedure that would be
used with the unaligned first-guess can be also used with the
aligned first-guess.

These schemes are demonstrated on the one-dimensional
examples used thus far. The matrices H and R are the same
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(A) Forecast ensemble. (B) Truth and observations.

(C) Aligned forecast ensemble. (D) Deterministic analysis.

(E) EnKF analysis.

Fig. 8. Two-step solution for Example 1. Panel (A) depicts the original forecast ensemble and its mean. Panel (B) depicts the truth and observations, also the same
as Fig. 1(B). Panel (C) depicts the aligned forecast ensemble and its mean (step 1). Panel (D) depicts the deterministic analysis after alignment (step 2). Panel (E)
depicts the analysis using the Ensemble Kalman Filter (step 2) after alignment.

as used to compute the previous solutions. In deterministic
schemes the observation vector will be the same, and in
ensemble schemes the perturbed observation ensembles are also
the same as the corresponding ones in the previous results. The
difference is in the use of the aligned forecast (ensemble) to
recompute the background and its covariance.

Fig. 8 shows the result of the two-step approach on
Example 1. Panel (A) depicts the unaligned forecast ensemble
and its mean, while panel (B) depicts truth and station
observations. Panel (C) shows the result of alignment with
the two-step approach, depicting the aligned ensemble and its
mean. From this starting point both deterministic and ensemble

assimilation schemes produce better analyses, as shown in
panels (D) and (E).

Similarly, Fig. 9 demonstrates the improvements for the
analogous situation depicted in Example 2 (Fig. 3). The
deterministic analyses with the aligned forecast ensemble mean
(panel D) or an ensemble member (panel E), or the EnKF
solution (panel F), all demonstrate improved analyses. The two-
step solution is also seen to be close to the one-step solution in
these examples, though this need not be the case in general.

Finally, Fig. 10 depicts the result of applying the two-
step solution to Example 3, specifically for the case shown
in the bottom row of Fig. 5. We closely simulate a purely
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(A) Forecast ensemble. (B) Truth and observations.

(C) Aligned forecast ensemble. (D) Deterministic analysis – 1.

(E) Deterministic analysis – 2. (F) EnKF analysis.

Fig. 9. Two-step solution for Example 2. Panel (A) depicts the original forecast ensemble and its mean. Panel (B) depicts the truth and observations, also the same
as Fig. 3(B). Panel (C) shows the aligned forecast ensemble and its mean (step 1). Panel (D) depicts the deterministic analysis using the aligned ensemble mean
as the first guess (step 2). Panel (E) depicts deterministic analysis using an ensemble member as the first guess (step 2), and panel (F) shows the analysis using the
Ensemble Kalman Filter (step 2).

deterministic formulation, in the sense that only the forecast
shown in Fig. 10(A) is aligned with the observations shown
(along with the truth) in Fig. 10(C). This aligned forecast is
shown in Fig. 10(D). The aligned forecast error covariance is
generated using the same position perturbation scheme for the
flow-dependent case as the unaligned version in Fig. 5. Thus,
rather than use an ensemble scheme and align each ensemble
member to generate the aligned forecast error covariance, we
have aligned the forecast to produce an aligned first guess and

then produce a new forecast error covariance. This is shown
in Fig. 10(E) and can be contrasted with the unaligned error
covariance shown in Fig. 10(B). As a result, the analysis using
a 3DVAR scheme (same as in Examples 1–3), is much closer to
the truth, shown as the solid line in Fig. 10(F).

Improvements in estimation can also be seen readily with
an isotropic background error covariance. As shown in Fig. 11,
the aligned forecast in panel A (same as Fig. 10(D)) is used with
the isotropic background error covariance in panel B (same as
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(A) Forecast. (B) Background error covariance.

(C) Truth and observations. (D) Aligned forecast.

(E) Aligned background covariance. (F) 3DVAR analysis.

Fig. 10. Panel (A) shows a forecast and Panel (B) depicts the covariance computed from the forecast. Panel (C) shows the truth (dotted line) and observations.
Panel (D) shows the aligned forecast (step 1), which becomes the first guess and Panel (E) shows the recomputed covariance. Panel (F) shows the 3DVAR solution
(step 2).

Fig. 4(C)) to estimate the state, shown in panel D. Much like
the case in Fig. 5 (right column), the performance is good when
the position error is absent.

The two-step approach presents a significant computational
saving over the one-step approach. The costs of computing the
gradients with respect to positions in the one-step is comparable
to one iteration of the alignment equation in the two-step.
Similarly, the cost of computing the gradients with respect
to amplitudes is comparable to the amplitude adjustment step
in the two-step. As discussed, the one-step algorithm is more
expensive from a dimensionality (memory) point of view.
It also has a greater time complexity because the gradients
with respect to amplitudes are computed at every iteration,
whereas an equivalent computation is performed exactly once
in the two-step. The BFGS scheme is capable of converging in
fewer iterations than it takes the alignment step to converge.
However, the time spent searching for the next amplitude-
position adjustment together with the time spent in each

iteration computing the gradient with respect to amplitudes
makes it far more expensive than the two-step. The gradient
computation with respect to displacements is O(Nn log n),
for state size n and N ensemble members and the gradient
computation with respect to amplitude is order O(n2 N ).
This order of magnitude difference cause makes the one-step
algorithm slower in our experiments by an order of magnitude.
For this reason and the fact that the two-step algorithm makes
no use for the background error covariance in the displacement
equation makes it feasible to use the alignment formulation as
a preprocessor for an operational data assimilation system.

6. Two-dimensional examples

In this section, we examine the two-step approach in a
two-dimensional problem. We use an ensemble of forecasts
to construct the forecast uncertainty. These replicates have
position and amplitude errors from truth. Comparisons will be
made between 3DVAR and the two-step approach.
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(A) Aligned forecast. (B) Isotropic covariance.

(C) Truth and observations. (D) 3DVAR analysis (isotropic).

Fig. 11. Panel (A) shows the aligned forecast (same as Fig. 10(D)) and Panel (B) depicts the associated isotropic background error covariance (same as Fig. 4(C)).
Panel (C) shows the truth (dotted line) and observations (same as Fig. 10(C)). Panel (D) shows the 3DVAR solution with aligned first-guess and isotropic background
error covariance.

(A) Truth. (B) Observations. (C) Truth, forecast ensemble.

(D) Forecast ensemble mean. (E) First guess. (F) 3DVAR analysis.

Fig. 12. Two-dimensional example of data assimilation under position errors. Panel (A) is a true vortex field, observed at sparse locations (+ sign) shown in panel
(B). Panel (C) shows an overlay of the forecast ensemble (white rings). Panel (D) depicts the forecast ensemble mean. The first guess is selected to be a coherent
vortex of similar structure as the observations from the ensemble, as shown in panel (E). Panel (F) depicts the result of a deterministic assimilation scheme.

Fig. 12(A) depicts the vorticity contours of a true vortex
field of size 32 × 32. Its peak amplitude is 0.6 non-dimensional
units and it is elliptical in shape. Fig. 12(B) depicts observed

locations (+), and the observation field is generated by adding
to truth a 10% (of peak amplitude) uncorrelated noise field in
space. Only 9.3% of the state is observed (96 observations), at
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(A) Truth. (B) Sample observations. (C) Aligned ensemble.

(D) Aligned ensemble mean. (E) First guess after alignment. (F) Two-step analysis.

Fig. 13. This figure demonstrates a two-dimensional example of data assimilation by field alignment. Panels (A) and (B) are the same as Fig. 12. Panel (C) is the
result of field alignment. This is reflected in panel (D) with better forecast ensemble mean. The first guess is selected from the ensemble as shown in panel (E). Panel
(F) depicts the result of a deterministic assimilation scheme after alignment.

Fig. 14. The distribution of peak amplitudes in the forecast ensemble before and after the alignment step. Even though the ensemble members change shape
(Fig. 13(C)) their amplitudes retain the spread that was in the pre-alignment ensemble.

randomly selected points. In particular, about 18 observations
lie on significant contour levels of the vortex.

Fig. 12(C) depicts the contours (white) of a forecast
ensemble (30 ensemble members) overlaid on truth. They are
circular in shape and reasonably “cover” truth. All the ensemble
members have position errors from truth as well as amplitude
errors. Their peak amplitude can vary by as much as 25%
and their position by 15 pixels. Fig. 12(D) depicts the forecast
ensemble mean, which is broader than most forecast ensemble
members and has a different shape than truth and its amplitude
is far diminished from truth (by 50%). Fig. 12(E) depicts
the first guess used for a 3DVAR procedure. The background
error covariance (B) is computed from the forecast ensemble.

Following the peak amplitude of 0.6 and 10% noise, the
observation uncertainty is constructed from a 0.06 standard
deviation, iid. Fig. 12(F) depicts the analysis produced by
3DVAR. The distortion of the vortex can be explained by the
fact that position errors produce a poor representation of the
background error covariance.

Fig. 13 depicts the same example using the proposed two-
step approach. Fig. 13(A), (B) are identical to corresponding
plots in Fig. 12. Fig. 13(C) depicts the aligned ensemble, using
the alignment formulation developed in the previous section. In
particular, Eq. (26) is used to align each ensemble member with
a perturbed observation (of which Fig. 13(B) is one sample). As
Fig. 13(C) shows, the forecast ensemble has both variations in
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size and shape from truth and using the available observations
has deformed its shape. Fig. 14 shows a histogram (distribution)
of peak amplitude before and after alignment. It shows in
particular that the amplitude spread is retained after alignment.
This is useful to see because it shows that the ensemble does
not over-fit the observations and retains its amplitude variability
even as the forecast replicates have adjusted their shape to
match the observations. The shape deformation is non-trivial
in that it includes an expansion of the forecast replicates, which
is a form of non-smooth deformation only possible because the
smoothness and non-divergence are weak constraints.

The ensemble mean after alignment is shown in Fig. 13(D).
An ensemble member is selected as the first guess for 3DVAR,
as shown in Fig. 13(E). The analysis is shown in Fig. 13(F). The
reason why the two-step approach works is because the aligned
ensemble may be considered to be a far better depiction of
background uncertainty than the one containing position errors.
Experiments using the EnKF to produce the analysis leaves us
with the same conclusions, as the one-dimensional examples
also show. These are not repeated here.

We examine in an experiment how much the two-step
improves over the 3DVAR solution. In this experiment, we
generate a true vortex (similar to the forecasts shown in Fig. 12).
This vortex is a two-dimensional (unnormalized) Gaussian. A
spatially uncorrelated noise of standard deviation 0.01 is added
to it, and measured at sparse randomly s elected locations,
covering 6.8% of the domain. A first guess is generated
with a vortex center randomly positioned in the domain. An
ensemble of forecasts is generated around the first guess by
perturbing the Gaussian standard deviation (0.2) and position (5
pixels). An analysis is produced by computing the forecast error
covariance from the ensemble using 3DVAR (PSAS variation,
see Example 1). The two-step approach is applied to the
ensemble. The aligned ensemble is used to compute a new
background error covariance, and the aligned first-guess is used
in 3DVAR. Analysis errors in both cases are computed from
truth using the root mean squared error (RMS). Fig. 15 shows
100 such simulations. The X -axis is the analysis error without
alignment and the Y -axis is the analysis error using the two-step
approach. This scatter-plot therefore indicates that the two-step
produces consistently better analyses.

6.1. Implementation

Gradients in the forcing terms of Eq. (26) are computed
using central differences. Laplacians in the displacement pde
are implemented using biharmonic operator, or the biLaplacian.
The displacement pde is solved using a spectral method.
Displacement updates to the state in its evolution to X̂ f are
done using bicubic interpolation.

The nominal boundary condition for the displacement pde
is homogeneous, q

i
= 0, i ∈ Boundary(Ω). In general,

the boundary condition depends on the problem being solved.
For example if a doubly periodic domain is assumed, then
the displacement pde must have circular conditions. Typical
experiments were carried out on domains of size 32 × 32 with
extended boundaries. A 32×32 problem is embedded in a larger

Fig. 15. A comparison of the analysis errors between the two-step approach
and deterministic shows substantial improvements. The X -axis shows the
analysis (RMS) error for 3DVAR and the Y -axis shows the corresponding error
for the two-step approach.

computational grid, that is the boundaries are considered “far
away”.

To demonstrate the sensitivity to parameters w1 and w2, we
construct an example shown in Fig. 16. This example contains
a field with two vortices. The left pane is the forecast, while
the middle pane is truth shown with station observations. The
peak amplitude of the field is 1 non-dimensional unit and the
smallest amplitude is zero. The domain is 32 × 32 and every
fourth pixel is observed without noise.

In the sequential approach, w1 and w2 only influence the
alignment solution and do not directly influence amplitude
adjustments. This is in contrast to their role in the one-step
algorithm, where the weights control the relative influence of
amplitude and position errors. Here, we choose to set w2 =

w1
3 ,

for in this case there is an analogy to interpreting w1 as a
viscosity parameter. Although w2 can be changed as well, but
when w1 = w2, the constraints lead to a singularity in the
displacement equation and must be avoided. For most practical
implementations, w2 =

w1
3 suffices. To pick a value of w1

we conducted simulations that could displace a tight Gaussian
of unit peak amplitude and standard deviation equal to 0.8 by
10 pixels in three iterations or more. This was satisfied by a
value of w1 ≥ 10−4. We then used this value as a lower bound
together with w2 =

w1
3 .

To examine the sensitivity to the parameters w1 and w2,
we examine the amplitude error (rms) between the aligned
and true state, as well as the number of iterations the
alignment algorithm takes to converge. Fig. 17 shows the error
at convergence, that is the error between the aligned first-
guess field and truth, when observations are sparse, but noise-
free. Error is defined as the absolute value of the maximum
error observed between the aligned first-guess field and truth.
Convergence is defined as the maximum error between the
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Fig. 16. To examine the sensitivity to weights w1 and w2, we use a two-vortex example. The panel on the left is the forecast field, the panel in the middle depicts
truth, which is observed without noise at station observations (dots). The panel on the right depicts the aligned forecast.

Fig. 17. This graph depicts the error between aligned first-guess and true fields
as a function of the value of w1, when w2 =

w1
3 . It demonstrates that the

alignment solution is robust to moderate changes in w1. The x-axis is on a
log-scale.

two fields reaching 0.05, or if 1000 iterations have elapsed.
Fig. 17 shows the error convergence for w1 varying from
10−5 to 10−3 (100 values total). This graph shows that the
first three parameter settings (10−5, 2 × 10−5 and 3 × 10−5

respectively) are insufficient to constrain the solution; in fact
it blows up. This is indicated by the large residuals and the
field is not aligned. Thereafter, we see that the field aligns
itself, to very nearly the same state, up to the convergence
criteria. As w1 is increased, the weights associated with the
constraints go up. Since the only adjustments they affect
are displacements, larger weights can make the alignment
more cohesive, forcing homogeneous motions at larger scales.
However, in our example, the embedding of the domain in a
larger computation grid also achieves this effect by forcing
the displacement field to smaller wave numbers in the spectral
solution.

Therefore, the predominant effect of increasing weights
is that the instantaneous displacement at every iteration gets
smaller and smaller, thus taking longer for convergence. This
can be seen in Fig. 18. As w1 increases so does the time to
alignment. The solution depicted in Fig. 16 (right panel) and
Fig. 13 was produced with a value of w1 = 10−4. Thus,
the alignment solution is robust to moderate changes in the
parameters and not very sensitive to them.

7. Discussion and conclusions

Position errors are ubiquitous in forecasting, and affect
verification. The sources of position errors are poorly

Fig. 18. This graph depicts the number of iterations (y-axis) it takes to align
the first guess with the observed field as a function of the value of w1 (x-axis)
when w2 =

w1
3 .

understood and reducing them to component sources is difficult.
But do they matter? We think so because the presence of
position errors can violate the assumptions driving current
assimilation techniques. When they do, the analysis will be
unsurprisingly bad. We believe that attention must be paid
to this problem and the proposed formulation demonstrates
how position information can be incorporated into an analysis
procedure.

Whilst the one-step algorithm, synthesized directly from the
Bayesian formulation, is interesting, it is not scalable and hence
subject to the criticism that this method may add yet another
layer to already expensive assimilation implementations for
large-scale problems. The one-step algorithm also required us
to construct statistical error covariances that may not be feasible
in reality.

The composite objective can be solved in two steps as an
approximation. At least in one-dimensional examples, we see
little difference between the one-step and two-step solutions.
This makes this algorithm attractive from a practical point of
view. We think that when the analyst decides that position
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errors are significant, as a quality control scheme may suggest,
applying the alignment procedure would be useful to mitigate
the effects of a poor background. This is feasible because
once we partition data assimilation in two steps, alignment
is essentially a preprocessing procedure to classical data
assimilation. Thus, forecast fields, after alignment, can be
used to construct new background error statistics (post hoc).
This makes what we propose useful with or without ensemble
forecasts.

We have also argued that the proposed alignment method
offers advantages over feature-based methods. Feature-based
methods detect key structures: in the case of vortices this may
be the vortex center. There are three main issues that contrast
the current approach with a feature-based approach. First, it
is not clear that features are well defined in model fields. In
observations, although features could be detected from satellite
imagery, it is not clear that this can be done without some
preprocessing of sparse point observations as we have used.
Essentially this requires the user to construct a full field from
sparse observations. Second, even if features can be detected, it
is unclear how to align the rest of the field. Aligning features
is not the same as aligning fields because features are sparse by
definition. The number of vortex or pressure centers, significant
contour levels, are far fewer than the number of nodes in the
state and the field deformation may not be a simple translation
of features. Third, our approach can, in principle, be extended
to incorporate detected features. This can be done by providing
boundary conditions to the alignment Eq. (26) by simply setting
the displacements to known values for certain grid nodes and
using the alignment procedure to fill-in displacement values at
remaining nodes. We have not demonstrated this but will do so
in future work.

We have also examined extensions of the two-step algorithm
to multivariate fields and are developing extensions to 3D
fields. In the former case, using pressure and velocity fields,
we see that alignment does not perturb a preexisting physical
balance. These extensions will be reported in subsequent
work demonstrating the utility of the two-step on large-scale
problems and in a dynamic setting.

The analysis produced with the use of alignment is
demonstrably much more realistic than a 3DVAR or EnKF
solution. In essence, the power of this algorithm lies in
the very simple and robust constraints that can be used to
ameliorate the position error problem affecting assimilation.
The sequential framework is a good approximation, but
more efficient approaches to solve for displacement–amplitude
adjustments jointly may prove attractive.
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