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ABSTRACT

Adaptive sampling uses information about individual atmospheric situations to identify regions where addi-
tional observations are likely to improve weather forecasts of interest. The observation network could be adapted
for a wide range of forecasting goals, and it could be adapted either by allocating existing observations differently
or by adding observations from programmable platforms to the existing network. In this study, observing
strategies are explored in a simulated idealized system with a three-dimensional quasigeostrophic model and a
realistic data assimilation scheme. Using simple error norms, idealized adaptive observations are compared to
nonadaptive observations for a range of observation densities.

The results presented show that in this simulated system, the influence of both adaptive and nonadaptive
observations depends strongly on the observation density. For sparse observation networks, the simple adaptive
strategies tested are beneficial: adaptive observations can, on average, reduce analysis and forecast errors more
than the same number of nonadaptive observations, and they can reduce errors by a given amount using fewer
observational resources. In contrast, for dense observation networks it is much more difficult to benefit from
adapting observations, at least for the data assimilation method used here. The results suggest that the adaptive
strategies tested are most effective when the observations are adapted regularly and frequently, giving the data
assimilation system as many opportunities as possible to reduce errors as they evolve. They also indicate that
ensemble-based estimates of initial condition errors may be useful for adaptive observations. Further study is
needed to understand the extent to which the results from this idealized study apply to more complex, more
realistic systems.

1. Introduction

For several decades, it has been known that numerical
weather forecasts are sensitive to small changes in initial
conditions. This means that even if the atmosphere could
be modeled perfectly, errors in the initial conditions
would grow, leading to forecast errors and forecast fail-
ures. The initial conditions for operational numerical
weather prediction (NWP) models, called analyses, are
based on a combination of short-range numerical fore-
casts with observations. The observations, where avail-
able, constrain the atmospheric state in the forecast mod-
el to be as close as possible to the true atmospheric
state.

The current observation network is made up of three
types of observation platforms. Fixed platforms, such
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as rawinsonde stations, observe at preselected times and
locations, generally near population centers and thus
over land. In the data gaps left by the fixed network,
there are observations from platforms of opportunity,
such as planes and ships, and from remote sensing plat-
forms. At any given time, however, these latter two types
of platforms are usually at locations that were selected
for reasons other than weather prediction. Observations
over the oceans often also have limited areal coverage
or vertical resolution.

Because the observation network is inhomogeneous,
in any forecast situation there are likely to be regions
where information about the initial conditions is partic-
ularly important, but where there are insufficient ob-
servations. If we could identify these important regions,
it might be possible to deploy programmable observa-
tion platforms, or reallocate existing platforms, to take
data in them and improve the initial conditions. These
adaptive (also called targeted) observations could both
reduce global analysis errors and help predict important
weather phenomena on various temporal and spatial
scales.
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Forecasts will probably benefit little from observa-
tions in regions where the initial conditions are already
quite accurate or where errors will have only a small
effect on forecasts of interest. Thus, effective adaptive
observation strategies are likely to incorporate infor-
mation both about probable analysis errors and about
rapidly amplifying forecast errors. In addition to sub-
jectively identifying important features (Snyder 1996),
several types of objective adaptive observation strate-
gies have been proposed, including estimating errors in
the initial conditions using ensemble spread (e.g., Lo-
renz and Emanuel 1998), using adjoint techniques to
calculate optimal perturbations (singular vectors) or sen-
sitivities of forecasts to small changes in the initial con-
ditions (e.g., Bergot et al. 1999; Gelaro et al. 1999;
Palmer et al. 1998), and combining the error probability
and error growth criteria in a subspace of ensemble
perturbations (e.g., the ensemble transform technique;
Bishop and Toth 1999). Berliner et al. (1999) provide
mathematical formulations for several aspects of adap-
tive observation problems.

Current work on adaptive observations includes sev-
eral approaches, ranging from taking observations to
improve weather forecasts in real time to idealized stud-
ies with simplified models. In the real atmosphere, adap-
tive observations have been tested for midlatitude fore-
casts in several recent field experiments and operational
programs, including the Fronts and Atlantic Storm Track
Experiment (Emanuel and Langland 1998; Gelaro et al.
1999; Langland et al. 1999a; Szunyogh et al. 1999), the
North Pacific Experiment (Langland et al. 1999b; Lang-
land 1999; and Toth et al. 1999), and the Winter Storm
Reconnaissance Program (Szunyogh et al. 2000; Toth
et al. 2000), and for tropical cyclone forecasts (Langland
1999). Although the results have been encouraging, the
influence of the real-world adaptive observations has
been mixed. The limited information available in the
real world also makes it difficult to interpret the results
in detail and to obtain enough good cases to allow one
to draw firm conclusions.

To eliminate many of the practical constraints in test-
ing real-world observations, observing system simula-
tion experiments (OSSEs) use a forecast model and a
data assimilation system to simulate observations and
an analysis and forecast cycle. Using a simplified fore-
cast model for OSSEs both significantly reduces the
computational cost and makes understanding the results
easier. Thus, several adaptive observations studies have
been performed with one-dimensional models (e.g., Lo-
renz and Emanuel 1998; Hansen and Smith 2000). Test-
ing observation strategies with low-order models is an
important first step. Because the models used in these
studies have few degrees of freedom and do not require
a complex three-dimensional data assimilation system,
however, the results may only apply to real NWP in a
limited sense.

We use an approach that bridges the gap between the
full numerical weather prediction system and the ide-

alized simple model experiments described above: an
idealized OSSE setup with a fully three-dimensional,
yet simplified, quasigeostrophic forecast model and a
realistic data assimilation system. The basic framework
for the experiments follows that used by Lorenz and
Emanuel (1998) and previous observing system simu-
lation studies (e.g., Jastrow and Halem 1970). With re-
peatable experiments, simulated observations, and per-
fect knowledge, we avoid many of the logistics that
make improving real-time forecasts difficult; we are lim-
ited neither by the number of possible cases nor by our
ability to sample those cases well. Later, if desired, some
of the idealizations can be relaxed and the importance
of the real-world constraints evaluated.

The goal of this study is not to evaluate specific adap-
tive observation strategies. Instead, we have chosen to
address more general aspects of observation networks.
The understanding gained can help us develop improved
observing and forecasting strategies; it can also help us
interpret results from other studies of observing sys-
tems. Only two simplified adaptive strategies, based
only on error in the initial conditions, are tested, along
with two nonadaptive strategies. Most results presented
are also aggregated over a large number of cases, in
terms of domain- and time-averaged error; the improve-
ment (or degradation) that occurs in any individual fore-
cast is a complex issue that is addressed in a separate
work (Morss and Emanuel 2000).

Sections 2 and 3 describe the quasigeostrophic model
and three-dimensional variational data assimilation sys-
tem and why they were chosen. Throughout the study,
we consider how the simplified model and the data as-
similation system used might affect the results. Section
4 explains the OSSE setup, and section 5 explains how
the observation strategies were selected and imple-
mented. In section 6, results are presented from net-
works with different densities of fixed observations. We
do not focus on the details of the fixed observation
results but rather use them to develop a framework for
studying further changes in observation networks.

In section 7, we compare global adaptive observations
to global nonadaptive observations. First, we evaluate
whether an idealized adaptive strategy can improve
analyses and forecasts on a statistically significant basis,
in a fully three-dimensional dynamical system with a
realistic data assimilation system. Then, we explore how
one might best allocate a limited amount of observa-
tional resources in space and time. Section 8 discusses
two major limitations of the idealized strategy: imper-
fect knowledge of errors in the initial conditions, and
targeting lead time. In section 9, we compare observing
strategies when, instead of being implemented globally,
they are added to a preexisting fixed observing network.
Finally, we summarize and discuss whether and how
the results might extend to more complex forecasting
systems.
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2. Quasigeostrophic model

The quasigeostrophic (QG) model used is a gridpoint
beta-plane channel model, periodic in longitude, de-
veloped at the National Center for Atmospheric Re-
search and described in Rotunno and Bao (1996). This
multilevel QG model was selected because its large-
scale three-dimensional dynamical behavior is similar
to that of the real atmosphere, yet its relative simplicity
makes a large number of runs computationally feasible.
Only an overview of the QG model is given here; for
further details, see Rotunno and Bao (1996) and Morss
(1999).

The version of the QG model used in this study has
constant stratification and a tropopause with fixed height
(but varying temperature) at the upper boundary. It is
forced by relaxing potential vorticity in the interior and
potential temperature at the upper and lower boundaries
to a specified zonal mean state; the model has no orog-
raphy or seasonal cycle. The zonal mean reference state
is a Hoskins–West jet (Hoskins and West 1979), with a
zonal wind (u) maximum at the tropopause, u 5 0 at
the channel walls, and a corresponding meridional tem-
perature gradient. The maximum zonal wind speed of
the reference-state jet is scaled to 60 m s21, and the
relaxation timescale is 20 days. Dissipation includes
fourth-order horizontal diffusion and, at the lower
boundary, Ekman pumping.

The dimensional domain in this study has a circum-
ference of 16 000 km, a channel width of 8000 km
(approximately 708 latitude), and a depth (H) of 9 km.
The Rossby radius of deformation (Rd 5 NH/ f, where
the Brunt–Väisälä frequency N 5 0.011 293 s21 and f
5 1 3 1024 s21) is approximately 1000 km.

The standard-resolution runs have 250-km horizontal
grid spacing and 5 vertical levels, with an error doubling
time of approximately 2–3.5 days. With 125-km hori-
zontal grid spacing and 8 vertical levels, the error dou-
bling time is 1–2 days. The results in sections 6 and 7
have been tested for the higher model resolution, and
they are qualitatively similar to those shown (Morss
1999). It is not computationally feasible, however, to
run all experiments for the higher resolution. Therefore,
to compensate for the somewhat slow error growth at
the standard resolution, some experiments have also
been performed with different observation frequencies
(sections 6b and 7b).

3. Data assimilation system

The data assimilation system controls how observa-
tions are incorporated into the forecast model. Thus, it
is a key aspect of any data impact study using a rela-
tively complex forecast model. For the initial evaluation
of observation strategies, we implemented a three-di-
mensional variational (3DVAR) data assimilation
scheme. The 3DVAR used here is based on the Spectral
Statistical-Interpolation analysis system currently op-

erational at the National Centers for Environmental Pre-
diction in the United States (Parrish and Derber 1992,
hereafter PD92) and is similar to the systems operational
at several other weather prediction centers. The data
assimilation system is described only briefly here; for
further detail, see the appendix and Morss (1999).

Although more sophisticated data assimilation sys-
tems are currently being developed and implemented,
3DVAR was selected because it has been well tested,
it is similar to operational schemes, it is easily adaptable,
and it is computationally less intensive than more com-
plex schemes. Relative to more sophisticated schemes,
3DVAR is advantageous because the way it incorporates
the observational information is easier to understand. It
also serves as a baseline data assimilation system, with
which future data assimilation systems can be compared
(e.g., Hamill and Snyder 2000).

3DVAR produces an analysis field at each data as-
similation time by combining a weighted short-term
model forecast (also called the first guess or the back-
ground field) with weighted observations. How much
weight the analysis gives to the background field relative
to the observations is determined by statistics (variances
and covariances) provided for both the expected errors
in the background field and the expected errors in the
observations. The algorithm used is the standard
3DVAR algorithm given in the appendix and derived
in PD92 and Morss (1999).

The data assimilation system can easily be modified
to include many types of observations at any location.
For simplicity, however, all observations in these ex-
periments simulate rawinsondes measuring winds and
potential temperature at model grid points and model
levels. The observation errors specified in the 3DVAR
are assumed to be uncorrelated between different ra-
winsondes and between wind and temperature obser-
vations (Dey and Morone 1985). The variances for wind
and temperature observation errors at different levels
were adapted from the values in PD92 for rawinsonde
observation errors. The vertical correlations between
observation errors were obtained from the simple func-
tion given in Eq. (3.19) in Bergman (1979). The full
matrix of observation error covariances is given in
Morss (1999); the sensitivity of the results to the specific
values used has been tested and is small.

The background error statistics specified in the
3DVAR control how the data assimilation spreads the
observational information to nonobserved locations and
variables; they are defined in terms of the QG model
variables (interior potential vorticity and boundary po-
tential temperature). As in most other implementations
of 3DVAR, these statistics must be simplified to create
an algorithm which is computationally feasible. Follow-
ing PD92, the background error covariances are as-
sumed to be fixed in time, to be diagonal in spectral
space, and to have separable vertical and horizontal
structures. In addition, only simple vertical correlations
are specified. Since streamfunction, and thus wind and
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temperature, are determined in the model and the data
assimilation algorithm by inverting potential vorticity,
even this simple form of background error covariances
yields complex vertical covariance structures for the
wind and temperature observations.

To allow us to separate the effects of changes in the
observation network from the effects of changes in the
data assimilation system, in this study we also use the
same background error statistics for all observing net-
works and all data assimilation intervals. The back-
ground error statistics can then be optimized for a fixed
network and a standard data assimilation interval and
used in the 3DVAR for all observing networks. Unlike
in operational 3DVAR systems, where the background
error is not known and must be estimated, in this ide-
alized system the true background error can be used to
develop the background error covariances directly.
Thus, to the extent that the assumptions about their
structure are valid, the weights in our 3DVAR are cor-
rect for a particular network. The appendix provides
more detail on how the statistics were generated and
shows sample statistics.

The analysis increments produced by this 3DVAR for
one observation are qualitatively similar to those shown
in PD92 for midlatitudes; an example is shown in the
appendix. As in PD92, the background error statistics
used here are nearly isotropic, are zonally invariant, and
have no knowledge of specific atmospheric dynamical
situations. They are, however, similar to those in most
currently operational data assimilation systems.

We have tested how this simulated system behaves
when several of the assumptions and parameters in the
data assimilation system are altered; the results are sum-
marized in section 6 and presented in further detail in
Morss (1999). Nonetheless, the data assimilation is a
crucial part of how the forecast system responds to any
changes in observation networks, and it is not possible
to evaluate the importance of all of its aspects. There-
fore, potential limitations of the assimilation scheme,
and of atmospheric data assimilation in general, are con-
sidered when evaluating the results.

4. Experimental design

The observing system simulation experiments (OSS-
Es) are set up by first defining a ‘‘truth’’ solution as an
arbitrary state of the QG model described in section 2.
An initial ‘‘model’’ (also referred to as ‘‘control’’) so-
lution is produced by adding random noise to the initial
truth state. Then:

1) The forecast (QG) model equations are used to in-
tegrate both the model and the truth states forward
in time until the next data assimilation period.

2) Observation locations are selected (targeted) accord-
ing to one of the strategies described in section 5.

3) Simulated rawinsonde observations are constructed

by sampling winds and temperature from the truth
state.

4) The observational data are assimilated into the model
background field to form an analysis.

5) The analysis becomes the new model state in step
1. The analysis can also be integrated forward in
time to create forecasts, and ensembles of perturbed
forecasts can be generated.

This idealized setup mimics the analysis cycle in real
numerical weather prediction, with one major advan-
tage: because the actual true state is known at all times,
analyses and forecasts are evaluated using this true state,
instead of using limited information from observations
or analyses.

In the results shown here, simulated rawinsondes ob-
serve wind and temperature at all model levels (includ-
ing the upper and lower boundaries) at each selected
observation location, with random observation errors
added. The random observation errors are produced as
described in Houtekamer (1993), using a Gaussian dis-
tribution and the eigenvectors and eigenvalues of the
observation error covariance matrix used in the data
assimilation system. The statistics of the observation
errors are then the same as those assumed in the data
assimilation system. The error structure in the simulated
radiosondes is similar to that in Houtekamer (1993); for
example, the first eigenvector of the covariance matrix
is nearly equivalent barotropic.

To prevent results from being biased by one very
‘‘bad’’ observation in a key location, the Gaussian error
distribution used to generate the observation errors is
truncated at one standard deviation. This simulates a
quality control algorithm. The experiments have also
been run without errors in the observations, and the
results are similar to those shown (Morss 1999).

In this study, the same equations are used to integrate
both the truth and model states. This simulates perfect
knowledge of the atmospheric dynamic equations. As-
suming a perfect model limits forecast errors to result
only from errors in the initial conditions and thus sim-
plifies understanding the results. Once the basic inter-
actions between observation networks, data assimilation
systems, and forecast models are better understood in
the context of a perfect model, adding forecast model
error is an important next step.

The standard observation and data assimilation in-
tervals are both 12 h. For each of the standard resolution
experiments with a 12-h or shorter interval, the exper-
iment was spun up for 90 days, to equilibrate the model
state to the specific observational network. Error statis-
tics were then gathered over a 90-day run. For the ex-
periments with data assimilation intervals of 1 day and
longer, the spinup and run times were each 180 days.
Each experiment was performed three times, with dif-
ferent initial truth states, different initial model state
perturbations, a different set of fixed or random obser-
vation locations, and a different set of random errors in
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the observations. The spread of results from the three
runs suggests the possible spread in the results for each
observation density; experiments with error distribu-
tions that cannot clearly be separated are considered
indistinguishable. Several results are also presented for
a single 360-day run following a 30-day spinup period.

5. Observing strategies

In order to compare different types of observation
networks, we define three basic strategies for allocating
observations: fixed, random, and adaptive. Although
there are many ways to adapt observations, in this study
only two simplified sample adaptive strategies—one
idealized and the other a more realizable approximation
to the idealized strategy—are tested. All strategies have
approximately the same overall distribution of obser-
vation locations.

Unless otherwise stated, observations are allocated
globally, all according to the same strategy, and they
are allocated at each data assimilation time just prior to
taking the observations. In many scenarios, it is unre-
alistic to have such a short time period between selecting
adaptive observation locations and observing at them;
this issue, however, is addressed only briefly, in section
8c.

a. Fixed observations

For fixed observations, observation locations are se-
lected randomly prior to the experiment, then left fixed
throughout the experiment. This simulates a fixed, in-
homogeneously distributed rawinsonde network. Two
constraints are placed on the randomly selected fixed
observation locations. First, except at observation den-
sities greater than 25% of grid points, observation lo-
cations are selected at grid points that are not directly
adjacent (i.e., the observation locations are separated by
more than 250 km). Second, the overall distribution of
the fixed locations is weighted to approximately match
the overall distribution of adaptive observation loca-
tions. Because the adaptive strategy tends to choose
more observation locations near the center of the chan-
nel (section 5c), the meridional locations of the fixed
observations are sampled from a Gaussian distribution
centered at midchannel with a standard deviation of
1500 km.

The observations are not equally spaced, so some
regions have fewer observations than others; there are,
however, no systematic data voids in these experiments.
We have tested a variety of observation spacing and
distribution constraints, and except as noted for dense
observations in section 6, the specific choices do not
affect the results. A sample fixed observation network
is shown in Fig. 1a.

b. Random observations

For random observations, observation locations are
selected randomly at each targeting time. This strategy
is tested in order to differentiate the potential benefits
of targeting observations consciously from the benefits
of simply moving observation locations. Any effective
adaptive strategy should therefore, at minimum, reduce
errors more than a random, ‘‘null’’ targeting strategy.

The random observation locations are selected ac-
cording to the same constraints as the fixed observation
locations: they are at nonadjacent grid points and are
weighted toward the center of the channel. Again, we
have tested different constraints for spacing and dis-
tributing the observations, and they do not significantly
affect the results. A sample random observation network
is shown in Fig. 1a.

c. Adaptive observations: General considerations

Adaptive observations are defined as observation lo-
cations selected ‘‘intelligently’’ according to some strat-
egy at each targeting time. The first strategy tested is
idealized, based on the actual error in the initial con-
ditions (which is known in these experiments). Although
this strategy cannot be implemented in the real atmo-
sphere, it allows us to compare different configurations
of adaptive observations knowing that the strategy is
not limited by imperfect knowledge of the true atmo-
spheric state. The second strategy is a semirealistic ap-
proximation to the idealized strategy; it estimates errors
in the initial conditions from an ensemble of perturbed
forecasts.

The only constraint placed on the observation loca-
tions selected by the two adaptive strategies is that they
be at nonadjacent grid points. We have tested larger
minimum observation spacing constraints, and as in the
case of fixed observations, except where noted they do
not significantly affect the results. Figure 1b shows a
sample adaptive observation network at an arbitrary
time.

As demonstrated in Fig. 1b, the adaptive strategies
tested tend to select observation locations near the center
of the channel, in the vicinity of the jet. Thus, as pre-
viously described, we constrained the fixed and random
strategies to have a similar preference. The adaptively
selected locations also tend to cluster near each other
to some extent. To assess the importance of the clus-
tering of adaptive observations, we have implemented
both the random and adaptive strategies with simulated
rawinsondes deployed in clusters of prespecified shapes
and sizes, rather than singly; results are discussed in
sections 7a and 8.

d. Specific adaptive strategies tested

The adaptive strategies tested here incorporate only
information about errors in the initial conditions. Al-
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FIG. 1. (a) Set of 32 locations selected by the fixed or random observation strategy at a sample
observing time. (b) Set of 32 locations selected by the idealized AER adaptive observation strategy
at a sample observing time. Longitude (periodic) is plotted on the x axis and latitude on the y
axis. The grid spacing is 250 km.

though other criteria, such as future error growth, are
important when adapting observations, we limited the
initial investigation to strategies based on reducing anal-
ysis error for several reasons. First, the main purpose
of this study is to examine how and when forecast errors
can be reduced when an intelligent adaptive strategy is
used, not to compare different adaptive strategies. Error
in the initial conditions is one of the likely important
criteria for targeting observations, and basing a strategy
on it is both very simple and computationally quick
relative to calculating rapidly growing perturbations
(Lorenz and Emanuel 1998). In addition, more complex
strategies are likely to place observations at locations
with smaller existing errors, where the data assimilation
system may not perform as well (since the signal-to-
noise ratio in the observations is smaller). Testing strat-
egies based on errors in the initial conditions thus re-
duces the confusion between the observing network re-

sults and the limitations of the data assimilation system.
Finally, by estimating the theoretical upper bound of
error reduction possible using strategies based on initial
condition errors, we provide results with which to com-
pare more complex and more realistic strategies.

1) IDEALIZED ANALYSIS ERROR REDUCTION

ADAPTIVE STRATEGY

The idealized analysis error reduction (idealized
AER) strategy selects observation locations, prior to
each observation time, where the background and truth
states differ the most. In the absence of observations,
the analysis error is largest where the background error
is largest; thus, this strategy assumes that observing at
these locations will minimize the analysis error. Re-
ducing the analysis error will ideally then, on average,
reduce the forecast error. Note that this strategy does
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FIG. 2. Domain- and time- root-mean-square-averaged analysis error (streamfunction norm) as
a function of the density of fixed observations, for a 3-h, 6-h, 12-h, 1-day, and 2-day data assim-
ilation interval. Three of the symbols plotted for each observation density and data assimilation
interval are the root-mean-square-average analysis errors for each of the three separate runs de-
scribed in section 4; the spread of the symbols suggests the range of errors for each observation
density. The fourth symbol and the connecting line are the root-mean-square-average of the three
runs. For each of the runs, the y axis is normalized by the average error in the absence of obser-
vations, that is, the saturation error. The x axis is normalized by the maximum number of observation
locations (the number of gridpoints in the x–y plane, 2112) and represents the spatial observation
density at each data assimilation time. Here, 1% of grid points observed corresponds to an average
of approximately 1 observation every (2000 km)2 in the dynamically active portion of the domain
at every data assimulation time; the Rossby radius of deformation (Rd) ø 1000 km.

not assess how important any specific part of the initial
conditions is for a future forecast, nor does it know how
the data assimilation will incorporate the observations.
Therefore, it is not guaranteed to select the locations
where observations will reduce analysis or forecast error
the most.

2) ESTIMATED ANALYSIS ERROR REDUCTION

ADAPTIVE STRATEGY

The estimated AER strategy selects observation lo-
cations where the background error is estimated, based
on the spread of an ensemble of QG model forecasts,
to be large. The ensemble in this study is produced by
assimilating a different set of perturbed observations,
at the same locations, separately into each ensemble
member at each analysis time. The observation pertur-
bations are generated by sampling the same observation
error distribution described in section 4; the perturba-
tions are added to the errors that are already present in

the control observations. This ensemble simulates errors
propagating through an analysis and forecast cycle. It
is similar to the multiple replication ensemble tested in
Lorenz and Emanuel (1998), to the perturbed obser-
vation ensemble in Hamill et al. (2000), to the OSSE-
MC procedure described in Houtekamer and Derome
(1995), and to the ensemble currently operational at the
Atmospheric Environment Service in Canada (with an
unperturbed forecast model).

6. Average errors for different fixed observation
densities

Before testing adaptive observations, it is important
to understand how the simulated observing system ad-
justs to changes in a typical observation network. Figure
2 shows, for a fixed observation network and several
data assimilation intervals, how the time- and domain-
averaged analysis error decreases as the number of ob-
servations increases; note that both axes are logarithmic.
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TABLE 1. Means, standard deviations, and maxima of domain-averaged analysis errors and 3-day forecast errors for different fixed observation
densities during a 360-day time series (following a 30-day spinup period). The error norm is streamfunction in nondimensional units 3 100.
Because we have only tested one observation network for each observation density, small changes between results for different observation
networks are not statistically significant.

Observation network

Analysis error

Mean Std dev Max

3-day forecast error

Mean Std dev Max

None
4 fixed
8 fixed

16 fixed
32 fixed
64 fixed

128 fixed
256 fixed

40.16
30.00
23.03

7.64
1.17
0.75
0.54
0.39

6.74
8.24
6.19
2.47
0.27
0.13
0.07
0.05

57.33
58.61
43.58
15.95

2.60
1.35
0.81
0.58

40.12
34.34
30.75
15.96

2.79
1.88
1.38
1.05

6.74
7.71
7.80
5.20
0.97
0.58
0.43
0.30

57.26
56.62
57.93
32.14

7.21
4.60
3.75
2.44

In Fig. 2 and subsequent figures, the observation density
is normalized by the maximum number of observation
locations (2112) and the analysis error is normalized by
the error in the absence of observations, that is, the
saturation error. As discussed in section 6a, all com-
parisons shown are similar for forecast errors and for
other error norms. For each observation density and data
assimilation interval, the symbols plotted represent the
results for the three different runs described in section
4. The spread of the symbols suggests the range of re-
sults for each observation density; it also indicates how
dependent the results can be on minor parameters, even
with 90 or more days of cases. In this section, we discuss
primarily the results for the standard, 12-h data assim-
ilation interval; the results for different data assimilation
intervals are compared in section 6b.

This simulated system has three general regimes in
observation density. On the left of Fig. 2, for few ob-
servations, the data assimilation system does not have
enough information to resolve even the large-scale er-
rors in the initial conditions. It can make only small
local improvements that are quickly swamped by the
error growth; the errors in the model state remain es-
sentially saturated, and only a small benefit is accu-
mulated from adding a few observations.

As more fixed observations are added, the data as-
similation system begins to resolve more synoptic fea-
tures at more times. In the middle observation density
regime, therefore, both the mean error and the time var-
iability in the error decrease dramatically as the obser-
vation density increases. This is evident from the sym-
bols and their spread in Fig. 2 and from the results for
a 360-day time series in Table 1.

On the right of Fig. 2, for many observations, adding
observations again produces only a small additional
benefit. Given the errors in the observations, the as-
sumptions in the data assimilation system, and the rel-
atively small error growth at small scales in the forecast
model, in the dense observation regime the analysis er-
rors are already small. Not only are the average errors
small, but so is the error variability; as the maximum
errors in Table 1 show, dense observations also leave

no cases with large errors. This dense observation limit
was also evident in observing system simulation ex-
periments performed several decades ago (Bengtsson
and Gustavsson 1971; Bengtsson and Gustavsson 1972;
Morel et al. 1971).

The apparent power-law behavior for dense obser-
vations is suggestive of the n21/2 asymptotic behavior
expected in the limit that n, the number of observations,
is much larger than the number of degrees of freedom
in the analysis.1 Further examination, however, indicates
a more subtle relationship between the curves shown in
Fig. 2 and this asymptotic result. First, the number of
observations is not large compared to the number of
degrees of freedom, and fits to the curves yield slopes
that are significantly different from ½. In addition, the
slopes themselves depend on a number of aspects of the
experimental design and the implementation of the data
assimilation scheme, such the convergence tolerance for
the 3DVAR solver (Morss 1999).

For a 12-h data assimilation interval, the middle ob-
servation density regime occurs in the range of an av-
erage of 1 fixed observation every (2000 km)2 in the
most dynamically active areas of the domain. With on
the order of 1 observation per Rossby radius of defor-
mation (1000 km), then, the data assimilation system
receives information that is sufficiently dense in space
and time to resolve the dominant features effectively at
all times. The error reduction is dominated by obser-
vations at synoptic scales not just for streamfunction
errors but for all error norms tested (Morss 1999).

One might ask if the distinctive shape of Fig. 2 is a
consequence of the experimental design. We have tested
modifying many aspects of the experiments and have
found that the specific appearance of Fig. 2 is sensitive
to changes in the 3DVAR and experimental setup, but
the general shape is not. The results for different data

1 In this limit, there are many observations of each variable (u, y , u)
at each grid point and level. These sets of redundant observations
can then, in essence, be replaced by single observations equal to the
mean of each set and having expected errors that decrease as n21/2.
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assimilation intervals in Fig. 2 are typical: changes can
alter the slope of the curve in the three regimes and the
range of observation densities occupied by each of the
regimes, but both the data sparse and data dense limits
remain [further examples and discussion can be found
in Morss (1999)]. The only aspects of the experiments
that have not been modified in this study and could
affect the curve shape are the quasigeostrophic dynam-
ics, the perfect model assumption, and several of the
assumptions in the data assimilation system. We expect
these to be more important for dense than for sparse
observations.

In the remainder of the study, we focus on the non-
dense (sparse and middle) observation regime for sev-
eral reasons. First, as shown in Morss (1999), the de-
tailed results for dense observations are sensitive to
small changes in the data assimilation system and ex-
perimental setup. Also, the results for dense observa-
tions are likely to be most affected by the simplified
model dynamics, the perfect model assumption, and the
3DVAR data assimilation scheme. Finally, it is outside
the dense regime that additional observations have the
greatest benefit, and thus that adaptive observations
have the greatest potential. An effective adaptive ob-
servation strategy will move the middle regime to a
lower observation density (to the left) compared to a
fixed or random strategy, producing the same average
error reduction with fewer observations.

Note that this regime of highest influence was not
selected a priori but rather was defined by the system,
and that it occurs at a fairly low observation density.
In order to better allocate observational resources for
NWP, further study is needed to understand when and
where different observation density regimes are relevant
for operational atmospheric forecast models, data as-
similation systems, and observation networks.

a. Sensitivity to error norm

The error depicted in Fig. 2 and subsequent figures
is root-mean-square analysis error averaged in time,
throughout the domain, and at all levels, with a stream-
function norm. The general curve shape and the com-
parisons shown are similar for all other analysis error
norms tested (including energy, potential vorticity,
winds, and temperature), and for the analysis error at
individual levels. Results are also qualitatively similar
for various time- and domain-averaged forecast error
norms. Only the specific slopes and values change, with
differences primarily in the data-dense regime (Morss
1999).

When adapting observations, we would like to reduce
not only domain-averaged errors but also errors in sig-
nificant forecast events. We have tested using the fore-
cast error associated with important individual atmo-
spheric systems as an error norm, and on a statistical
basis in these experiments, results are similar to those
for domain-averaged error norms. This occurs because

at any given time, the domain tends to be dominated by
a few atmospheric systems. The large analysis and fore-
cast errors tend to be localized near these systems, and
reducing errors in these regions is what reduces domain-
averaged analysis and forecast errors. Thus, all results
are presented for domain-averaged analysis error with
a streamfunction norm, but they are similar to results
for other error norms.

b. Sensitivity to data assimilation interval

Figure 2 shows the average error for different spatial
densities of fixed observations when data are taken and
assimilated at different regular intervals. Changing the
data assimilation interval explores the effects of incor-
porating data from fixed locations less or more fre-
quently. It also tests the sensitivity of the results to the
ratio between the data input interval and the timescales
for advection and error growth. Consistent with the as-
sumption of fixed data assimilation for all observation
densities, the 3DVAR data assimilation remains fixed,
optimized for a single observation density and a 12-h
interval.

The x axis in Fig. 2 is the spatial density of obser-
vations at each data assimilation time. For each density
along the x axis, as the data assimilation interval is
halved (say from 12 to 6 h), the same number of ob-
servations is taken twice as often. Intuitively, one might
think that twice as much data would produce a better
analysis, but Fig. 2 demonstrates that this is not always
true. For both sparse and dense observations, for ex-
ample, observing at fixed locations more frequently im-
proves the analysis only slightly.2

In fact, the 3- and 6-h observation interval results are
similar not only for sparse and dense observations, but
also in the middle observation density regime. Given
that the advective timescale (on the order of 12 h) and
the error growth timescale (several days) are longer than
the interval between observations, this redundancy of
frequent fixed observations is expected, since the anal-
ysis error at low and middle observational densities is
controlled by the incompleteness of the observations
rather than their accuracy. With the QG model run at
approximately double resolution, so that the advective
timescale remains the same but the error growth is faster,
fixed observations are redundant on approximately the
same timescale (Morss 1999). This suggests that the
advective timescale dominates in determining the re-
dundancy of fixed observations. Only in the middle re-

2 Because of the assumptions used to develop the 3DVAR input
statistics, the data assimilation system uses additional data subopti-
mally, especially in the data-dense regime. Thus, with a better data
assimilation system, more frequent observations might be more ben-
eficial. The dense observation results are also likely to be affected
by the lack of model error and the unrealistic subsynoptic-scale dy-
namics.
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FIG. 3. As in Fig. 2, but with the x axis normalized both by the number of grid points and by
the number of data assimilation intervals per day. The x axis represents the observation density
in space and time, that is, allocation of a fixed amount of observational resources.

gime in data density, and only for longer data assimi-
lation intervals, does changing the rate at which data
are taken significantly affect the results.

Figure 3 presents the same results as in Fig. 2, but
with the x axis of each curve normalized by the number
of data assimilation times per day (and focused on the
regime of interest, nondense observations). The x axis
is now observation density in space and time, and might
be thought of as the rate at which observation resources
are expended. Each observation density represents a
constant amount of data per day but input at different
frequencies. Given a certain number of observations
each day, we can now ask how frequently we would
like to observe, at the expense of observing at fewer
locations, to maximize error reduction. In section 7b,
the results in Fig. 3 are compared with similar results
for random and adaptive observations.

If we are restricted to fixed observation locations, Fig.
3 shows that, for a constant rate of expenditure of ob-
servations, the analysis error is reduced most when we
sample at more locations less frequently (instead of at
fewer locations more frequently). This is as expected,
since as described earlier, data gathered frequently at
fixed locations is on average redundant; filling in the
gaps between the observations is more beneficial than
adding observations at the same locations more fre-

quently than the advective timescale.3 For data assim-
ilation less frequent than every 12–24 h, the fixed ob-
servations are no longer redundant, and there is no clear
preference for allocating the observations in space and
time.

Fundamentally, the results from the fixed observation
experiments demonstrate how, for a given forecasting
system, the effect of adding observations in space and
time can depend strongly on the observation density
and the error regime. Understanding that this occurs
even for simple observation networks is important for
interpreting the results for adaptive observations pre-
sented next.

7. Comparison of fixed, random, and idealized
adaptive observing strategies

Figure 4 compares the average analysis error as a
function of observation density for three types of global

3 This should not be interpreted to indicate that rawinsondes more
frequent than 12 h are not useful in real atmospheric prediction.
Further study is needed with a more realistic forecasting system (in-
cluding a more complex and imperfect forecast model). In addition,
more frequent data from fixed platforms may be beneficial for ap-
plications not addressed here.
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FIG. 4. As in Fig. 2, but for global fixed, random, and idealized AER adaptive observations,
all for a 12-h data assimilation interval. The fixed observation results are the same as those for
the 12-h data assimilation interval in Fig. 2. The observation strategies are defined in section 5.

observation networks: fixed, random, and idealized
AER adaptive (described in section 5). The data assim-
ilation and targeting intervals are 12 h. As in the fixed
observation experiments, the data assimilation system
is the same for all observation networks. The spread of
the symbols again suggests the range of results for each
type of observation network. The influence of the ob-
servations is measured in terms of analysis error av-
eraged throughout the domain and over many model
states. As discussed in section 6a and demonstrated in
Morss (1999), comparisons for other time-averaged
analysis and forecast error norms are qualitatively sim-
ilar to those shown.

Above a certain observation density, the three strat-
egies shown in Fig. 4 produce similar results. Thus, for
spatially dense observations, this data assimilation and
forecast model system has on average little preference
among the observation strategies tested. The remainder
of the discussion focuses in the spatially nondense data
regime, where adding and adapting observations have
the greatest potential to reduce errors.

Recall from section 6b that fixed observations are
redundant at shorter data assimilation intervals. Thus,
for nondense observations taken at a 12-h data assim-
ilation interval, a randomly moving observation net-
work can perform on average slightly better than a fixed
network. Adaptive strategies must improve upon both

the fixed and random strategies to be considered effec-
tive.

As Fig. 4 clearly shows, adaptive observations can,
on average, reduce errors significantly more than the
same number of random or fixed observations. The ide-
alized AER strategy in Fig. 4 uses energy averaged at
all levels as the norm for targeting. Most other targeting
norms tested—including background error measured in
terms of root-mean-square-averaged potential vorticity
(averaged enstrophy), winds, and temperature at all lev-
els, and each of these norms at individual levels—pro-
duce similar average improvements. Further tests have
revealed that a streamfunction norm is less effective for
AER targeting, presumably because it smooths smaller-
scale structures.

Although the specific values depend on the details of
the experiment and the adaptive strategy tested, Fig. 4
illustrates the range of error reduction we can expect
from the idealized AER adaptive strategy for nondense
observations. In the example shown, to achieve the rapid
drop-off of error, we only need to take about one half
as many adaptive observations as we would fixed or
random observations. We thus consider the idealized
AER adaptive strategy effective for nondense obser-
vations. At least in the context of a QG model, then,
with good information about the background errors, it
is possible to adapt observation networks objectively to
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FIG. 5. As in Fig. 4, but for a 3-h data assimilation interval.

reduce average analysis and forecast errors—as long as
one is in the appropriate data density and frequency
regime.

a. Clustered observations

As discussed in section 6a, at any given time the
largest errors tend to focus in a few regions of the do-
main. Thus, the adaptive strategy tested tends to cluster
the observations in one or several groups (e.g., Fig. 1b).
To ensure that the different results for the random and
idealized adaptive strategies are not caused by their dif-
ferent observation spacing tendencies, we have also test-
ed observing the targeted locations with ‘‘clusters’’ of
rawinsondes, rather than with single rawinsondes as in
previous experiments. For all strategies, in the clustered
observation experiments we observe simultaneously at
several locations in a prespecified pattern around each
targeted location, spacing the targeted locations so that
the observation clusters do not overlap. This simulates,
for example, one or more aircraft sent with infinite speed
to drop several rawinsondes within a specific region.

In general, the adaptive and random strategies com-
pare similarly for single observations and for various-
sized and various-shaped observation clusters. The dif-
ference between the strategies is therefore not due sole-
ly, or even primarily, to how they space the observa-
tions.

For less effective AER adaptive strategies or at longer
data assimilation intervals, however, the results can be

sensitive to whether and how the observations are clus-
tered. For the estimated AER adaptive strategy, for ex-
ample, observations in prespecified patterns can reduce
errors more than the same number of single observations
(section 8). Some comparisons among observation clus-
ters of different shapes and sizes are discussed in Morss
(1999). Note, however, that the relative effectiveness of
different observation clusters is highly dependent on the
specific situation and the data assimilation system.

b. Sensitivity to data assimilation interval

Given a certain number of observations, we would
like to know not only how to distribute them in space,
among strategies and targeted locations, but also how
to distribute them in time. For example, if there are eight
observation platforms available, each of which can be
sent anywhere to observe but only once per day, should
they be used all at once or at different times? To address
this issue, in this section we compare how the same
three observation strategies (fixed, random, and ideal-
ized AER adaptive) behave as the time interval between
observations is changed. As in section 6b, this also tests
how sensitive the results are to the ratio between the
data input interval and the model timescales.

The same set of experiments as in Fig. 4 have been
performed for data assimilation intervals from 3 h to 2
days; results for a 3-h interval are shown in Fig. 5. As
discussed in section 6b, observations taken frequently
at fixed locations are on average redundant. Thus, as
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FIG. 6. As in Fig. 3, for random observations. The x axis represents observation density in
space and time, that is, allocation of a fixed amount of observational resources.

data are taken more frequently, moving observation lo-
cations randomly becomes more beneficial compared to
keeping them fixed.

Moving observations adaptively also becomes more
beneficial as data are taken more frequently, compared
to both fixed and random observations. For example,
recall from Fig. 4 that to reduce the average analysis
error by a factor of about 30 compared to saturation,
for a 12-h data assimilation interval we require about
twice as many fixed or random observations as we do
adaptive observations. For a 3-h interval (Fig. 5), to
reduce the errors by the same factor of 30, we require
about 4 times as many random observations or about 8
times as many fixed observations as we do adaptive
observations.

With less frequent data input (not shown), the random
and fixed strategies converge, confirming that obser-
vations at fixed locations are not redundant at periods
longer than 12 h. The adaptive strategy is also less ben-
eficial when data is taken less frequently, and its influ-
ence depends more on the background error norm used
to target and the prespecified clustering and spacing of
the observations.

For the model at approximately double resolution,
where the advective timescale is the same but the error
growth is faster, more frequent targeting and observing
is generally needed to see the same benefit from adapt-
ing observations (Morss 1999). Thus, the error growth
timescale is likely more important than the advective

timescale when determining the effectiveness of AER
adaptive observations.

To compare the strategies at different rates of data
input in another way, Figs. 6 and 7 allocate the same
total number of random or idealized AER adaptive ob-
servations at different data assimilation intervals (as in
Fig. 3 for fixed observations). For dense observations,
the results are similar to those shown in Fig. 2 and
discussed in section 6b for fixed observations; again,
we focus on the results for nondense observations.

If observation locations are randomly selected at each
time, Fig. 6 indicates that this forecast model and data
assimilation system has no preference for how the ob-
servations are allocated in time. If observation locations
are fixed, there is either no preference for allocation in
time or, at shorter data assimilation intervals, errors are
reduced the most when observations are taken at more
locations less often (Fig. 3). Figure 7, on the other hand,
demonstrates that the adaptive strategy performs best
when observations are taken at fewer locations more
often.

To understand in more detail why the adaptive strat-
egy performs best when taking fewer observations more
frequently, we analyzed results from several other ex-
periments. First, we tested moving the adaptive obser-
vation locations only at alternate data assimilation times.
If data is taken every 12 h, for example, but the adaptive
observation locations are only moved every 24 h, the
errors are between those for the standard 12-h and the
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FIG. 7. As in Fig. 3, for idealized AER adaptive observations. The x axis represents observation
density in space and time, that is, allocation of a fixed amount of observational resources.

FIG. 8. Sample sequence of adaptive observation locations selected at 3-h intervals over the course of 1.5
days, from an experiment with 2 single idealized AER adaptive observations assimilated every 3 h.

standard 24-h adaptive observation and data assimila-
tion experiments (Morss 1999). We also tracked the se-
quence of adaptive locations selected in many different
cases, as synoptic systems and errors evolved. An ex-
ample is shown in Fig. 8; note how, at some times, the
adaptive strategy chooses to observe at locations that
are close together or in regions that have recently been
observed.

These results suggest that, in this simulated system,
the AER adaptive strategy benefits on average both from
repeating observation locations and from having the op-
portunity to choose observation locations more fre-
quently. This is, in large part, due to deficiencies in the
data assimilation system; if errors remain large despite
previous observations, observing frequently gives the
data assimilation more chances to reduce them. Even if
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the 3DVAR is able to use the adaptive observations to
reduce errors, selecting observation locations frequently
gives the adaptive strategy the opportunity to target
those errors that continue to grow rapidly. Observing
more frequently may also help reduce errors as they
begin to grow, before they become very large. Frequent
targeting, then, allows the adaptive strategy both to com-
pensate for deficiencies in the assimilation scheme and
to control the magnitude of rapidly growing errors.

With a strategy that has more information about future
error growth or about how the data assimilation system
performs, adaptive observations may not always so
clearly prefer to be allocated at more times, rather than
at more locations. Nevertheless, observing frequently
with any strategy can help compensate for the imperfect
data assimilation systems and the imperfect information
available in the real world.

8. Adaptive sampling using ensemble spread to
estimate background error

The idealized AER adaptive strategy is a useful tool
for exploring a large number of adaptive observation
configurations. Unfortunately, it is impossible to imple-
ment in the real world. Therefore, we next test a more
realizable adaptive strategy, one that uses ensemble
spread to estimate the locations with the largest back-
ground errors. The estimated AER adaptive strategy and
the ensemble generation technique are described in sec-
tion 5d. The ensemble-based strategy tested here is rel-
atively simple, incorporating limited information from
the ensemble; almost certainly neither the strategy nor
the ensemble formulation is ideal for adapting obser-
vations. Nevertheless, it can be used to begin evaluating
the potential for estimating background error for adap-
tive observations.

Observations are assimilated every 12 h, again using
the standard 3DVAR data assimilation system. The re-
sults shown in this section are for a 13-member ensem-
ble (12 perturbed trajectories in addition to the control);
the effects of ensemble size are discussed in section 8b.
The results shown are also for observation locations
selected using an ensemble of 12-h forecasts generated
at the data assimilation time prior to the observation
time, that is, with observation locations selected only
12 h before the data are taken. The potential for targeting
observation locations at longer lead times is discussed
briefly in section 8c.

a. Comparison with fixed, random, and idealized
adaptive observing strategies

If a single simulated rawinsonde is deployed at each
selected location, the estimated AER adaptive strategy
is not an improvement over the fixed or random strategy.
However, if observations are taken from a prespecified
cluster of rawinsondes at each location (as described in
section 7a), the estimated AER adaptive strategy is ben-

eficial. Figure 9 compares the average error for random,
estimated AER adaptive, and idealized AER adaptive
clustered observations; in this example, the cluster is a
triangle of three observations around each location se-
lected by each strategy. The differences among results
for the strategies vary with the cluster pattern, but the
estimated strategy generally performs on average better
than the random strategy but worse than the idealized
strategy.

In Fig. 9, the ensemble spread is defined as the av-
erage difference between the ensemble members and the
mean of the ensemble, with a vertically averaged energy
norm (the same norm as for the background error in the
idealized AER strategy results shown). As with the dif-
ferent background error norms tested for the idealized
strategy, using a root-mean-square potential vorticity
norm for estimated AER adaptive observations produces
results similar to an energy norm, while a root-mean-
square streamfunction norm is less effective. We have
tested several other ensemble spread norms, including
an extremum energy norm (based on results in Buizza
and Palmer 1998), and all produce similar results. We
have also found that the estimated adaptive strategy
tends to perform better when there are a few fixed ob-
servations in the domain than when all observations are
taken adaptively (Morss 1999).

To understand why the estimated AER adaptive strat-
egy is more effective for clustered than for single ob-
servations, we have compared the ensemble spread to
the background error on a case-by-case basis (Morss
1999). As discussed in sections 6.1, at any time there
are generally a few regions with large forecast errors,
associated with dynamically active synoptic systems. In
these same dynamically active regions, the ensemble
members diverge, producing large spread. Thus, the en-
semble spread and the background error often identify
the same general regions. Because the ensemble does
not know which specific errors are present in the control
forecast initial conditions, however, it estimates back-
ground error imperfectly in several ways. First, the ac-
tual errors are often large in only one part of a region
identified by the ensemble spread as likely to have er-
rors. The ensemble spread thus tends to have less small-
scale structure than the actual background error, and it
is less focused on specific subregions. In addition, in
some cases a region of large ensemble spread is some-
what offset from a region with large background errors.
Finally, even when the ensemble spread and the back-
ground error identify similar regions, they sometimes
prioritize among those regions differently.

Such discrepancies arise whenever the statistics of a
random variable (such as the background error) are com-
pared to a specific realization of that variable. Such
discrepancies are thus inherent in any practical estimate
of background error. Consequently, with imperfect in-
formation about background errors, adapting observa-
tions in clusters rather than singly may be beneficial
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FIG. 9. Average reduction in the domain-averaged error in the control analysis as a function
of observation density for random, idealized AER adaptive, and estimated AER adaptive clustered
observations. A triangle of three observations is taken around each targeted location for all of
the strategies. The observation and data assimilation intervals are 12 h. For the estimated AER
strategy, the ensemble has 13 members (12 perturbed forecasts in addition to the control). The x
axis is normalized both by the number of grid points (2112) and by the number of observations
taken for each targeted location (3); the x axis is also shifted so that the maximum observation
density is 100% 3 the number of observations for each targeted location.

because it minimizes the effects of the mismatch be-
tween background error and its estimate.

Ensembles of perturbed forecasts contain information
besides an estimate of background error, and the back-
ground error is not the only criterion important for
adapting observations. Thus, we could almost certainly
use ensembles to develop a more sophisticated, more
effective adaptive observation strategy than the one im-
plemented here. As a first attempt at ensemble-based
targeting in this idealized system, therefore, the results
in Fig. 9 are encouraging.

b. Ensemble size

The results in Fig. 9 are for a 13-member ensemble.
We have also performed the same set of experiments
with different-sized ensembles; for all of the ensemble
and observation configurations tested, having more than
6 perturbed forecasts benefits the estimated AER adap-
tive strategy little if at all (Morss 1999). Comparisons
between background errors and spreads of different-
sized ensembles in individual cases suggest that large
ensembles do not benefit the estimated AER adaptive
strategy because with only a few perturbed members,

an ensemble is on average able to identify the few gen-
eral regions with large background errors (Morss 1999).
The specific number of ensemble members required,
however, is likely to depend on the simplified dynamics
and the simplified geometry of the QG forecast model.
In addition, we have only tested simple uses of the en-
semble; larger ensembles may be useful for more so-
phisticated targeting techniques.

c. Targeting lead time

In the real world, many adaptive observing platforms
(particularly moving in situ platforms) require that ob-
servation locations be selected well in advance of the
observation time. In recent field experiments, for ex-
ample, aircraft constraints required that adaptive obser-
vation locations be selected 36–48 h in advance, with
preliminary flight planning beginning even earlier. Lon-
ger targeting lead times complicate adapting observa-
tions for two reasons. First, adaptive observations are
likely to be most important in uncertain forecast situ-
ations, when analysis and forecast errors make it most
difficult to select observation locations in advance. Sec-
ond, currently most proposed adaptive strategies incor-
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porate no information about future, already planned ob-
servations. If observations are taken in important re-
gions between the targeting time and the observation
time, the adaptive strategy may have overestimated the
need for data in those regions. These issues have raised
concerns that adaptive strategies, particularly those
based on estimating probable errors, are not practical
when advance planning is required.

The results in Fig. 9 are for observation locations
selected with a 12-h lead time. We have also tested
targeting at longer lead times (Morss 1999); the ideal-
ized AER strategy then uses errors in a longer lead time
control forecast, and the estimated AER strategy uses
the spread in a longer lead time ensemble forecast. The
results suggest that, as expected, both the idealized and
estimated AER adaptive strategies become much less
effective as the targeting lead time increases. On av-
erage, however, the adaptive strategies are still an im-
provement over random observations for lead times of
up to 1–3 days (depending on the observation config-
uration).

We have compared actual background errors to longer
lead time ensemble spreads and control forecast errors
in individual cases. The comparisons suggest that, at
longer lead times, the AER adaptive strategies are still
able to identify the general regions with large errors but
not the specific subregions (Morss 1999). How useful
estimates of errors in the initial conditions will be at
longer lead times, then, depends on how much detail
we require in the estimate and how rapidly our forecast
skill decays with time. Estimates of errors at longer lead
times may also be more useful if we are able to observe
in a larger region.

The longer lead time targeting results are preliminary
and are likely to depend on several limitations of these
experiments, particularly the perfect model assumption.
Thus, further study is needed to determine the extent to
which lead time requirements limit the potential of adap-
tive sampling. Nevertheless, the results from this study
suggest that, with a relatively small ensemble, estimates
of background error may be useful for targeting obser-
vations at lead times of 12 h or longer.

9. Observations added to a preexisting observation
network

It is unlikely that all real atmospheric observations
will be taken adaptively in the near future. Initially,
however, we allocated all observations according to only
one strategy at a time so that we could avoid having to
consider how fixed and moving observations might in-
teract. Figure 10 compares the global observation strat-
egy results from Fig. 4 with results for idealized adap-
tive observations in a more realistic scenario: obser-
vations added to a preexisting network of fixed obser-
vations. The targeted observations are added every 12 h
to 16 fixed observations, and they are constrained to be
more than 250 km (1 grid spacing) from the preexisting

observations. The average error is plotted as a function
of the density of all (fixed and moving) observations.

As adaptive observations are added to the network,
the results from the mixed observation network rapidly
asymptote to the results from the all adaptive network.
As Table 2 shows, regularly adding AER adaptive ob-
servations to a reasonably sparse fixed observation net-
work not only significantly reduces the mean error more
than adding fixed or random observations—it also sig-
nificantly reduces the day-to-day variability in the error.
The regularly added adaptive observations reduce the
mean error and the error variability primarily by re-
ducing the error in the situations when the error would
otherwise be very large (Fig. 11). Results for the esti-
mated AER adaptive strategy lie between those for the
random and idealized AER strategies; again, the esti-
mated strategy is more effective for clustered than for
single observations.

Figure 11 also demonstrates how the results for a
given strategy can vary significantly over time. Over
the full 360-day run and for single rather than clustered
observations, the results vary even more dramatically
than those shown, and they can do so over time periods
of several months or more. Thus, even in this idealized
system, many cases and much data are required to de-
finitively distinguish between strategies. This is partic-
ularly true for strategies for which the benefit is less
apparent.

For adaptive observations added to other preexisting
fixed observation densities, the time-averaged results
asymptote to the results for an all adaptive network as
they do in Fig. 10. For dense observations, the errors
for a global adaptive network are only slightly smaller
than those for a global nonadaptive network, if at all,
so there is much less potential for reducing errors by
adding adaptive observations. As we would expect,
therefore, for preexisting networks with more than ap-
proximately 64 fixed observations (3.0% of grid points),
the influence of added fixed, random, and adaptive ob-
servations is nearly indistinguishable for both average
errors and error variability (shown in Table 3 and in
Morss 1999). As discussed in section 6, for dense ob-
servation networks there are no cases with large errors,
so the added adaptive observations also reduce the max-
imum error only slightly. Regular adaptive observations
may still be beneficial for dense observing networks,
but they are likely to require a more specific error norm,
a more sophisticated strategy, and a better data assim-
ilation system.

The results demonstrate that in this idealized system,
we can reduce the largest domain-averaged analysis and
forecast errors simply by observing at every data as-
similation time at the few locations with the largest
background errors, without explicitly taking future error
growth into account. Given the limitations of the data
assimilation system, the QG model, and the adaptive
strategy, only one or a few observations taken regularly
at well-selected locations are needed to improve the
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FIG. 10. Analysis error reduction as a function of the total number of observations for single
global fixed, random, and idealized AER adaptive observations, and for single adaptive obser-
vations added to a preexisting network of 16 fixed observations. All observations are allocated,
taken, and assimilated every 12 h. The global observation strategy results are the same as those
in Fig. 4 but are shown only for a subset of the observation densities. The added adaptive
observation results are plotted as a function of the total observation density, that is, the density
of the fixed and adaptive observations together. The axes are magnified to show the regime of
interest.

analysis nearly as much as is possible. This suggests
that at least for nondense observation networks, regular
adaptive observations have significant potential to im-
prove analysis and forecast errors both on average and
in cases with large errors.

10. Summary

The results presented show, first of all, that for ob-
servation networks that are sufficiently sparse in space,
regular adaptive observations can on average improve
analyses and forecasts. This has not previously been
demonstrated on a statistically significant basis with a
three-dimensional forecast model and a realistic data
assimilation system. Adaptive observations are benefi-
cial in two ways. First, for a fixed amount of obser-
vational resources, adaptive observations can reduce er-
rors more than fixed or random observations. The errors
are reduced both on average and in the situations in
which the errors would otherwise be largest. Second, if
we wish to reduce errors to a certain level, adaptive
observations can save observational resources.

Unfortunately, even the most effective adaptive strat-
egy tested in this study is not always beneficial. If there
are enough observations to resolve synoptic-scale fea-

tures reasonably well, adding or redistributing obser-
vations according to any strategy, adaptive or nonadap-
tive, improves analyses and forecasts only a small
amount. The benefit from modifying the observation
network thus depends strongly on the total observation
density, and on the preexisting errors. This concept,
while not new, is reemphasized by the results shown,
and its importance when evaluating observation net-
works is confirmed.

The type of adaptive strategy tested in this study per-
forms best when selecting a few observation locations
frequently, rather than more locations less frequently.
When a few adaptive observations are added to a pre-
existing observation network at every data assimilation
time, the results rapidly asymptote to those for a global
adaptive network. Thus, adding adaptive observations
to a fixed network is on average beneficial (or not ben-
eficial) in the same scenarios as adapting all observa-
tions is. This result indicates that regularly adapting only
part of an observation network can improve analyses
and forecasts.

The adaptive strategies tested are based only on error
in the initial conditions, with no information about fu-
ture error growth. With only a small number of ensemble
members, the spread of a multiple replication ensemble
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TABLE 2. As in Table 1, for a 360-day run with 1 single observation or 1 cluster of observations added to 16 fixed observations at every
data assimilation time according to one of three strategies: random, estimated AER adaptive, or idealized AER adaptive. The observation
cluster is 3 observations in a triangle around the selected location, the same cluster as for the results in Fig. 9. The ensemble for the estimated
strategy has 13 members. A time series of the errors during part of the run with 1 added cluster of observations is shown in Fig. 11.

Observation network

Analysis error

Mean Std dev Max

3-day forecast error

Mean Std dev Max

16 fixed 7.64 2.47 15.95 15.96 5.20 32.14

17 fixed
16 fixed 1 1 random
16 fixed 1 1 estimated adaptive
16 fixed 1 1 idealized adaptive

5.72
7.34
4.27
1.94

2.61
2.41
2.00
0.57

15.48
16.05
12.21

5.67

12.99
15.90

9.95
4.63

5.56
4.92
4.58
1.74

33.31
36.77
31.91
13.12

16 fixed 1 1 cluster random
16 fixed 1 1 cluster estimated adaptive
16 fixed 1 1 cluster idealized adaptive

4.28
1.96
1.38

2.04
0.55
0.31

11.97
5.44
2.67

9.43
4.58
3.19

4.49
1.66
1.09

27.17
13.52

9.99

FIG. 11. Domain-averaged 3-day forecast error plotted every 12 h during one 120-day period for 16 fixed
observations (thick solid line), 16 fixed observations 1 1 random observation cluster (dashed), 16 fixed
observations 1 1 estimated AER adaptive observation cluster (thin solid with circles), and 16 fixed obser-
vations 1 1 idealized AER adaptive observation cluster (medium solid). The observation cluster is a triangle
of three observations around each selected location. The ensemble for the estimated strategy has 13 members.
All observation strategies are implemented at each data assimilation time, every 12 h. The model state was
spun up prior to t 5 0 for each observation network. The error scale is streamfunction in nondimensional
units 3100.

provides a useful (but by no means ideal) estimate of
initial condition errors for adapting observations. The
results suggest, therefore, that it may be possible to
adapt observations effectively with the imperfect in-
formation available in the real world. Although the ex-
periments in this study are idealized, the success of a
simple strategy with a relatively simple data assimilation
system makes us optimistic that it may be possible, giv-
en the appropriate considerations, to use adaptive sam-
pling to improve atmospheric analyses and weather fore-
casts.

11. Discussion and future work

In this simulated system, the adaptive strategy tested
performs best when observing regularly and frequently.
Our experience suggests that this occurs because the
adaptive strategy does not know specifically how the
data assimilation system will incorporate the data into
the model nor how the forecast model will integrate the
resulting analysis increment forward in time. Without
this knowledge, the adaptive strategy tested in this
study, and perhaps any feasible realistic strategy, cannot
predict whether analysis or forecast errors will actually
be reduced once an observation is taken. More frequent

targeting, then, gives the AER adaptive strategy the op-
portunity to try to reduce large errors as they move and
evolve, whether they occur because an atmospheric fea-
ture has developed or is developing rapidly or because
past observations did not reduce the error sufficiently.

The influence of modifying the observation network
depends on how well the data assimilation system and
forecast model are able to use the new data. Therefore,
as observing platforms, data assimilation systems, and
forecast models evolve, the most important consider-
ations for adapting observations and the best observing
strategies are likely to change. For example, improving
the data assimilation system will make observations
more likely to improve analyses and forecasts; frequent
targeting may then not be as important. An improved
data assimilation is also likely to improve the benefit of
adding and adapting observations for denser observation
networks. Similarly, targeting less frequently or for
denser observations might be more effective using a
more sophisticated adaptive strategy, one which incor-
porates information about future error growth and/or
about the data assimilation system. However, both data
assimilation and the criteria for selecting observations
locations are statistical procedures, so one can never
guarantee that a particular observation, even if near per-
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TABLE 3. As in Tables 1 and 2, for 2 single observations added to 64 fixed observations at every data assimilation time. Again, small
changes are not statistically significant.

Observation network

Analysis error

Mean Std dev Max

3-day forecast error

Mean Std dev Max

64 fixed 0.75 0.13 1.35 1.88 0.58 4.60
66 fixed
64 fixed 1 2 random
64 fixed 1 2 idealized adaptive

0.74
0.75
0.69

0.12
0.12
0.11

1.28
1.31
1.18

1.79
1.85
1.64

0.56
0.58
0.47

4.31
5.10
3.84

fect, will improve the forecast of interest. Thus, adaptive
observing networks are likely, in general, to be most
beneficial when they are designed with the strengths and
weaknesses of data assimilation and forecasting systems
in mind.

How to best estimate initial condition errors for adap-
tive observations depends on how well the data assim-
ilation scheme can use observational data in different
situations. It is almost certain that an ensemble can be
used to estimate initial condition errors more effectively
than our first attempt does. For example, the data as-
similation system used in this study has more difficulty
correcting small background errors than it does medium
or large errors; we might therefore want to minimize
the risk of observing at locations with small errors by
not significantly overestimating background error. Be-
fore we can develop more useful estimates of initial
condition errors, however, further work is needed to
understand which aspects of initial condition errors are
the most important to estimate well (and not to estimate
poorly) for adapting observations.

Several aspects of our simulated system must be gen-
eralized before the results can be applied to real NWP.
First, we have assumed a perfect forecast model; the
model dynamical equations are the same as the true
dynamical equations, and the truth contains no subgrid-
scale processes that are not resolved by the model. Sec-
ond, the forecast model used for the OSSEs contains
only quasigeostrophic dynamics. These two assump-
tions are likely to be most important when modeling
subsynoptic-scale structures, that is, in our data-dense
regime. They are also likely to modify the governing
spatial scales and timescales, including the influence of
observations at specific observation densities and the
results for forecast errors. In addition, we have studied
the influence of observation networks only on a control
forecast, rather than on an ensemble of forecasts, and
we have tested only simplified strategies and idealized
observing platforms. Therefore, further study is needed
in a more complex and more realistic system to inves-
tigate how the results from this study extend to real
observing networks.
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APPENDIX

3DVAR Data Assimilation System: Further Detail

Given M observations and N analysis variables at any
time, we can define

L 5 an (M 3 N) operator that transforms from the
analysis variables and locations to the obser-
vation variables and locations.

From the observations (yo) and a background (first
guess) field (xb), we can then calculate

y 5 an M-component vector of observation
residuals (5yo 2 Lxb, the difference be-
tween observations and the background
field at observation locations).

To assimilate the observations, we solve for

x 5 an N-component vector of analysis incre-
ments (at analysis locations)

by inverting

[I 1 BLT(O 1 F)21L]x 5 BLT(O 1 F)21y, (A1)

where

B 5 the N 3 N matrix of covariances between the
background errors (called the background er-
ror covariance matrix) and

O 1 F 5 the M 3 M observation error and represen-
tativeness covariance matrix.

Equation (A1) is derived in Morss (1999) and PD92.
At each assimilation time, the 3DVAR solves Eq. (A1)
for the analysis increments x using an iterative conjugate
residual solver (Morss 1999; the CR2 scheme in Smo-
larkiewicz and Margolin 1994). The analysis is gener-
ated by adding the analysis increment to the background
field (xa 5 xb 1 x); it then becomes the initial conditions
for the next model run.

To generate the background error statistics for this
study, we used the experimental setup described in sec-
tion 4 to accumulate 12-h forecast error statistics over a
large number of runs with a 12-h data assimilation in-
terval and different distributions of 32 fixed simulated
rawinsondes (observations at approximately 1.5% of grid
points). We then inserted the output statistics back into
the 3DVAR and accumulated new statistics, iterating sev-
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FIG. A1. Horizontal background error variances (diagonal elements of B) in the standard-res-
olution 3DVAR as a function of approximate global wavenumber, for nondimensionalized (a)
lower-boundary potential temperature and (b) upper-boundary potential temperature. The statistics
were calculated as described in section 3 and the appendix. Global wavenumber is not well defined
in the channel model, and it is shown here only to suggest how the error variances compare at
different spatial scales. For zonal wavenumber k and meridional half-wavenumber l as represented
in the quasigeostrophic model, we approximate global wavenumber as [(2.5 3 k)2 1 (5.2 3 0.5
3 l)2]1/2. The factors of 2.5 and 5.2 are included to adjust for the zonal and meridional extent of
the channel model compared to the ‘‘real’’ globe.

eral times. Sample background error covariance statistics
are shown in Fig. A1. Morss (1999) evaluates the sen-
sitivity of the results to some of the assumptions made
to develop the background error statistics.

Using these background error covariances, the
3DVAR interpolates a single observation to produce
analysis increments similar to those depicted in Fig. A2,
which are for one zonal wind observation at the middle
model level. Because the analysis variables are interior
potential vorticity and boundary potential temperature,
the 3DVAR infers (from B and L) that the zonal wind
measurement must have resulted from a dipole in po-
tential vorticity (Fig. A2d), spread in the vertical (not

shown). This potential vorticity dipole has wind and
temperature structures associated with it (Figs. A2a–c),
which are recovered using the operator L. Since the
3DVAR has no information about the specific atmo-
spheric structure that the observation came from, the
observation has been interpolated nearly isotropically.

These analysis increments depict the background er-
ror correlations in physical space; one can infer from
Fig. A2 the approximate correlation length scale in the
3DVAR with the current statistics. For more than one
observation (i.e., observations of more than one variable,
at more locations, and/or at more levels), the analysis
increments become more complex, and it is more difficult
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to interpret how the data assimilation uses each individual
observation. For further detail on the data assimilation
system and its behavior, see Morss (1999).
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