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EDWARD NORTON LORENZ

May 23, 1917–April 16, 2008

BY  KERRY  EMANUEL

ed lorenz, widely regarded as the founder of the modern 
theory of chaos, also developed revolutionary ideas 

about the energetics of stratified rotating fluids, and made 
important contributions to the understanding of atmo-
spheric dynamics and weather prediction. He was a devoted 
husband and father whose love of the outdoors was legendary. 
Through his profound contributions to science as well as his 
quiet demeanor, gentle humility, and love of nature, he set 
a compelling example of what it means to be a gentleman 
and a scholar.

CHILDHOOD

Edward Norton Lorenz was born in West Hartford, 
Connecticut, on May 23, 1917. His father, Edward Henry 
Lorenz, was born in Hartford in 1882; he attended Hart-
ford High School and Trinity College before majoring in 
mechanical engineering at the Massachusetts Institute of 
Technology, then located in downtown Boston. He was 
small in stature but an excellent distance runner and held 
the record for the 2-mile run at MIT. It was from him that 
his son acquired an early knowledge of science, particularly 
mathematics.
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Ed’s mother, Grace Norton, was born in Auburndale, 
Massachusetts, in 1887, but while a still young child, moved 
to Chicago with her mother and siblings after the untimely 
death of her father, Lewis M. Norton, who had developed 
the first course in chemical engineering in MIT’s chemistry 
department in 1888. Grace’s mother founded the department 
of home economics at the University of Chicago, the insti-
tution from which Grace ultimately graduated. Thereafter, 
Grace became a school teacher and contributed to many 
civic organizations. In his memoirs Ed states that his mother 
fostered in him a deep interest in games, particularly chess, 
and says she taught him more about life than anyone else.

Ed’s parents met at Waterville Valley, a summer resort 
in New Hampshire, and after they were married in 1916 
continued to summer there, imparting to their son a deep 
and abiding love of the outdoors. Ed spent many of his 
summers at Waterville Valley throughout his life.

Ed became fascinated with numbers at an early age. While 
his mother wheeled him down the street in a go-cart, young 
Ed would read out all the house numbers. Later, after he 
had learned multiplication, he took an interest in numbers 
that were perfect squares and could recite all such numbers 
between 1 and 10,000. He also enjoyed taking square roots 
using a longhand method, and even learned a method for 
extracting cube roots. He would spend many hours playing 
with mathematical puzzles with his father.

From his mother Ed developed a keen interest in games 
and learned to love card and board games of all kinds. This 
included chess, at which Ed excelled, becoming the captain of 
his high school and college chess teams. Later, while a faculty 
member at MIT, he would often spend his lunch hour at the 
faculty club playing chess with faculty colleagues, including 
Norbert Wiener, who routinely played simultaneous games 
with a set of his colleagues. In addition to games, Ed loved 
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crossword and jigsaw puzzles and would spend hours solving 
them with his father. They would compete to see who could 
solve each puzzle most rapidly, and record the times on the 
inside covers of the boxes. Throughout his life Ed kept a 
collection of jigsaw puzzles from his childhood.

When he was seven, Ed’s family went to visit friends who 
lived on a farm a few miles east of Hartford. By then he had 
already developed an interest in maps and would even draw 
maps of places that he had invented, drawing inset enlarge-
ments along the way. At this friend’s house he found an atlas 
that contained a page showing circular objects of various sizes 
and was especially struck by something that looked like a ball 
with a ring around it that reminded him of a hat he had 
seen in a cartoon. His father explained that he was looking 
at illustrations of the planets, thus initiating a lifelong love 
of astronomy. A year later Ed witnessed a total eclipse of the 
sun on a bitterly cold day in Hartford, with shadow bands 
shimmering across fields of snow. He was also interested in 
the weather, though it did not then occur to him that he 
would one day make a profession of it.

Ed had a good ear for music and could, by the time he 
was three, tell that his mother was singing off key—but he 
loved to listen to her anyway. He began violin lessons at the 
age of nine but concluded that he did not have the manual 
dexterity to produce a really pleasing sound. Nevertheless, 
his passion for music continued to develop, and many of his 
friends and colleagues will remember attending concerts with 
him and his wife, Jane, at the Chautauqua resort in Boulder, 
Colorado, where they often spent part of their summers, or 
at MIT where they both were avid patrons of the student 
symphony orchestra. During the years they lived in Lexington, 
Massachusetts, Ed was a member of the town’s choir.

Smaller than most boys his age, and also a year younger 
than most of his classmates, Ed did not excel at team sports 
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and was not particularly welcome when he tried to enter a 
game. Even so, by the time he entered high school he was 
equal to his peers in swimming and could swim underwater 
further than anyone. During summers in New Hampshire, 
he grew fond of hiking and discovered that, owing to his 
light weight, he could reach the tops of mountains faster 
than most of his friends. He later related that mountains 
and music were his greatest spare-time interests.

UNIVERSITY

Ed entered Dartmouth in 1934, having already decided 
that he wanted to major in mathematics. It is telling that 
of roughly 700 students entering Dartmouth that year, only 
seven went on to major in mathematics. Ed preferred the 
logical clarity of math to any of the other courses he encoun-
tered, including history, physics, and geology. In 1938 he 
entered the graduate school of the mathematics department 
at Harvard, delighting in being able to focus exclusively on 
math. It was here that he was first exposed to such topics as 
group theory, set theory, and combinatorial topology, taught 
by such luminaries as Saunders Mac Lane, Marshall Stone, 
and James Van Vleck (who was later awarded the Nobel Prize 
in Physics). Ed relates that although he had originally been 
attracted to math by his love of numbers, during his graduate 
years he seldom saw any number other than 0, 1, and 2. Ed 
chose to work on a problem in mathematical physics under 
the guidance of George Birkhoff, an eminent mathematician 
proficient in many fields but perhaps best known for his proof 
of Poincaré’s Last Geometric Theorem, a special case of the 
orbital three-body problem, which exhibits one of the key 
properties of chaos: sensitive dependence on initial condi-
tions. Ed’s master’s thesis was not about dynamical systems, 
however, but concerned a topic in Riemannian geometry.
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In 1942, just months before he expected to receive his 
doctoral degree, the war intervened and Ed had to choose 
between being drafted and training to become part of a 
team of weather forecasters for the army. Fortunately for 
science he chose the latter and in March 1942 enrolled 
as a cadet in the Army Air Corps (now the Air Force) in 
a special eight-month master’s program down the Charles 
River at MIT, ostensibly to train as a weather forecaster. In 
Ed’s own memorable words, “It soon became evident that we 
were studying to be meteorologists. The distinction is one 
that I was slow to appreciate.”1 Ed came to understand that 
meteorology concerned the scientific understanding of the 
atmosphere, while weather forecasting was simply a particular 
practical application of meteorology; it was possible to become 
a forecaster without having much real understanding of the 
atmosphere, and to aspire to the latter without being able 
to do the former. Nevertheless, the MIT program put equal 
emphasis on both. Mornings were devoted to theory, which 
seemed relevant to forecasting but had not really been shown 
to lead to improved forecasts. In the afternoons the trainees 
were taught to forecast, using sequences of past weather maps 
as case studies. He was exposed to MIT faculty members Hurd 
Willett, Henry Houghton, and Bernard Haurwitz, among 
others. According to Ed, “Our faculty in meteorology was 
as outstanding as any in the world, and it was natural that 
they should want to teach real science to their students. This 
was probably compatible with the Army’s philosophy that an 
officer is a gentleman.”1 The dichotomy between the theory 
of weather and the practice of weather forecasting fascinated 
Ed through the rest of his career.

At the end of the master’s program, in November 1942, 
Ed received orders that he, along with four classmates, would 
remain at MIT as instructors for the next year’s program. This 
also gave Ed the opportunity to attend advanced classes, and 
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he began to feel more like an experienced meteorologist. 
But he retained the nagging feeling that there was something 
important missing from the field.

Not only were we never shown how to use the dynamical equations to make 
weather forecasts, which I had naively assumed was the reason for our studying 
dynamic meteorology, but we were not even told whether they could be used 
in this manner. I also learned that some outstanding meteorologists at other 
universities believed that it was impossible.1

THE WAR

After completing the final training course at MIT, Ed 
received orders to go overseas. He first reported to Hawaii, 
where he absorbed another two months of training in tropical 
meteorology and then flew to Saipan in October 1944. With 
several Air Corps colleagues he helped set up a weather 
forecasting operation in support of airborne bombing raids 
against Japan. His principal job was forecasting upper-level 
winds, but the forecasters were hampered by a severe lack 
of observations because the Air Corps put little emphasis 
on weather data. (This problem culminated in December 
1944, when Admiral William F. Halsey, commander of the  
U.S. Third Fleet, having refused to devote a few aircraft to 
weather reconnaissance, sailed his fleet directly into the 
center of a severe typhoon, losing 3 ships and 790 men as a 
result.) The only observations between Siberia and Saipan 
were taken by the crews of U.S. aircraft themselves; Ed 
complained that the pilots, to save time, would often simply 
repeat the forecast as the observation. This made for excel-
lent forecast verification but hardly helped the forecasters 
make the next forecast.

In the spring of 1945 the weather operation was trans-
ferred to Guam,2 where Ed was appointed head of the upper-
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air section. The operation continued until a few months 
after the end of the war. Some insight into Ed’s character 
during this period is provided by his fellow forecaster, Patrick 
Suppes:

Although Ed was not a strongly outgoing individual, it turned out that he 
rather liked conversation on many topics, and of course as those who knew 
Ed will find unsurprising, he knew a lot and was prepared to talk about a 
great many different subjects.”3 

Professor Suppes notes that several members of the 
Weather Central, including Ed, were nominated for (but 
did not receive) a Bronze Star medal. Suppes’s nomination 
letter, which he believes must be similar to the one written 
for Ed, states,

Through high order technical skill and resourcefulness, he utilized scien-
tific principles to adapt known techniques and to devise new techniques of 
analysis and forecasting in the institution of a successful combat weather 
forecasting service.3

Those who know Ed principally through his research 
contributions might easily overlook his interests in the 
practical art of weather forecasting and his love of weather 
in general. But generations of students and colleagues at 
MIT will remember many occasions when Ed would appear 
silently in their office, as if by magic, and enthuse over some 
feature of the current weather map.

POSTWAR YEARS AND FAMILY LIFE

At the end of the war Ed reached a critical turning point 
in his career with his decision to switch to meteorology rather 
than completing his doctorate in mathematics at Harvard. He 
reached this decision after considerable deliberation, which 
included several conversations with Henry Houghton, head of 
the meteorology department at MIT. In Ed’s own words,
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Mathematicians seem to have no difficulty in creating new concepts faster 
than the old ones become well understood, and there will undoubtedly always 
be many challenging problems to solve. Nevertheless, I believed that some 
of the unsolved meteorological problems were more fundamental, and I felt 
confident that I could contribute to some of their solutions.1

Ed’s thesis, which was performed under the supervision 
of James Austin, earned him a doctorate of science degree 
in 1948; it described an application of fluid dynamical equa-
tions to the practical problem of predicting the motion of 
storms. This was a time just before the application of digital 
computers to weather prediction, and Ed’s method expanded 
the governing equations as power series in time. Even at the 
time he felt that his technique was “more cumbersome than 
some others that were currently being developed,”1 and to 
my knowledge it was never actually used. But this work did 
show Ed to be an innovative and independent thinker.

A few weeks after receiving his doctorate, Ed married Jane 
Loban, who had been working as a research assistant in the 
meteorology department at MIT. Jane was born in Dayton, 
Ohio, in 1919 but spent most of her childhood in Cedar 
Falls, Iowa. Her consuming interest was flying, and she flew 
small airplanes before she was old enough to drive a car. 
Her interest in flying led naturally to studies in meteorology, 
which in turn led to her appointment at MIT. Following their 
marriage they settled in Cambridge, Massachusetts, and lived 
in the Boston area for the remainder of their lives, raising 
three children: Nancy, Edward, and Cheryl. All three showed 
a keen interest in games and puzzles, as Ed had, and likewise 
acquired a great love of the outdoors, becoming first-class 
downhill skiers. According to Ed, “Many of my winter week-
ends were spent taking one or all of them, usually with my 
wife as well, to some ski area north of Boston; this, of course, 
was just what I had hoped would happen.”4
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Ed’s devotion to his family was evident to all who came 
to know him well. Although a reticent man, there were a 
few topics that were sure to get him going: hiking in the 
mountains, and his family, which later included several 
grandchildren. Jane suffered a series of debilitating illnesses 
toward the end of her life, leading Ed put to aside his own 
research and other interests to care for her.

THE GENERAL CIRCULATION OF THE ATMOSPHERE

After completing his doctorate, Ed accepted a job as a 
research scientist on a project to study the general circula-
tion of the atmosphere, a project headed by Victor Starr, 
who had come to MIT from the University of Chicago the 
year before. In some ways Starr was much like Ed: small in 
stature, reticent by nature, and intensely interested in the 
intellectual challenge of understanding the atmosphere. He 
became Ed’s mentor and close friend and was, next to his 
parents, the most important influence on his intellectual 
development. According to Ed,

In a day when there was still much confusion in meteorology, Starr’s clear 
and deliberate analyses of some of the fundamental problems proved highly 
refreshing, and they removed any lingering doubts as to the desirability of 
my change from mathematics to meteorology. The things I remember best 
and cherish most, in looking back over my scientific career, are the almost 
daily conversations with Victor Starr during the more than twenty-five years 
that I worked with him, first as a protégé and then as a colleague. His clear 
explanations of some specific points, his enthusiastic far-reaching speculations 
regarding others, and his general comments about philosophical matters 
taught me more than anything else what meteorology and more generally 
what science really is.4

During the time that Ed worked on the general circula-
tion project, he visited several research groups in the United 
States that were to influence his subsequent career. In the 
early 1950s he visited the laboratory of David Fultz at the 
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University of Chicago. Fultz was then conducting a series of 
“rotating dishpan” experiments, wherein rotating annular 
trays of water were heated at their peripheries and cooled in 
their centers, inducing a circulation of the water. While only 
a weak analog to the circulation of the atmosphere, many 
of the same features can be observed, including large-scale 
Rossby waves that may be stationary or whose amplitude may 
vacillate. At high enough rotation rates the waves become 
unstable and evolve irregularly in time, much like real weather 
systems. In 1951 Ed visited the Lowell Observatory in Flag-
staff, Arizona, where meteorologists, including Seymour Hess 
and Ralph Shapiro, were working with astronomers such as  
V. M. Slipher, who discovered the red-shift in stellar spectra. 
Ed found the work fascinating but was not in residence long 
enough to make any contribution to it. He did, however, 
publish a paper on the depth of the Jovian atmosphere.

Perhaps the most important trip that Ed undertook 
during this period was a visit to Jule Charney, Norman Phil-
lips, and others working under John von Neumann at the 
Institute for Advanced Study in Princeton, New Jersey, to 
apply the newly developed digital computer to the problem 
of numerical weather prediction. At this point Ed and Victor 
were not convinced that numerical solution of the equations 
governing atmospheric flow was even possible; indeed, the 
British mathematician L. F. Richardson had tried to do a 
calculation by hand in 1922 and failed rather spectacularly. 
Although Ed was not entirely persuaded during this visit, by 
the mid-1950s he saw that this was the way of the future. Ed 
must have made a positive impression on Charney because a 
few years later Charney made his own acceptance of the offer 
of a faculty position at MIT contingent upon the promotion 
of Ed to the faculty.

One of the problems Ed discussed with Victor Starr was 
that of the energetics of the atmosphere. Clearly the circula-
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tion of the atmosphere is an example of a forced dissipative 
system, but the flow of energy through the system had not 
been quantified. Whence, for example, do storms get their 
kinetic energy? Ed’s answer to this question constitutes his 
first important contribution to the published literature in 
science (1955). He first defined a quantity called “available 
potential energy” (APE) as the difference between the non-
kinetic energy (sum of the internal and potential energies) 
of a given state and that of a reference state, defined as the 
state that minimizes the nonkinetic energy under a strictly 
adiabatic rearrangement of mass in the system. This is the 
maximum amount of energy available for conversion to kinetic 
energy in the absence of external energy sources. He then 
showed that for suitably small departures of the actual state 
from the reference state, APE is proportional to the integral 
over the system of the square of the entropy perturbations 
from the reference state, provided the latter is stable to 
convective overturning. This allowed meteorologists to make 
accurate estimates of APE from atmospheric measurements. 
Ed next divided the kinetic and available potential energies 
into their averages over longitude and perturbations from 
those averages and showed that the mean state APE, gener-
ated by latitudinal gradients of heating, is first converted 
to eddy APE, then to eddy kinetic energy. Most of the eddy 
kinetic energy is then cascaded by unresolved eddies to 
smaller scales and finally to molecular dissipation, but some 
of it is transferred back to longitudinal mean kinetic energy. 
This upscale kinetic energy transfer, accomplished as large-
scale eddies give up their kinetic energy to the background 
flow, was noted a few years earlier by Starr and others, and 
proves to be characteristic of a class of rotating stratified 
flows whose large-scale eddies share certain properties with 
strictly two-dimensional turbulence.
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Ed’s work on atmospheric energetics and the general 
circulation of the atmosphere, begun when he was hired 
to work on Starr’s general circulation project, culminated 
in the publication of a treatise on the general circulation 
of the atmosphere (1967), a beautifully crafted exposition 
of the main features of atmospheric circulation, still used 
as a starting point by students and professional researchers 
interested in the topic.

THE ROAD TO CHAOS

In 1953 Ed was invited to visit UCLA for one year, to fill in 
for a faculty member on leave. There he met the Norwegian 
meteorologists Jacob Bjerknes, Jorgen Holmboe, and also  
Arnt Eliassen, with whom he formed a lifelong friendship. 
While at UCLA, Ed received a letter from Henry Houghton 
inviting him to join the MIT faculty and to take over lead-
ership of a statistical forecasting project started by Thomas 
Malone, who was leaving MIT to start a private forecasting 
venture.5 Ed was attracted to the prospect of a faculty posi-
tion, but he knew little about statistics even though statistical 
forecasting was at the time a major focus of research on fore-
casting techniques. Ed was more familiar with the concept of 
numerical weather prediction, then in its infancy, but began 
to see how the two techniques might be combined.

By this time a number of statistical forecasters had come 
to believe that linear regression models would perform at 
least as well as numerical methods ever could, apparently 
bolstered by a theorem developed by Norbert Weiner. Ed was 
deeply skeptical of this idea and determined to test it using 
a simple set of equations, which he would numerically inte-
grate and then see how well the result could be reproduced 
using linear regression methods. To do the integrations he 
would need a computer. Robert White, then at MIT, came to 
his aid and together they settled on a Royal McBee LGP-30 
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(a very early example of a desktop computer), which sat in 
Ed’s office for many years thereafter. This machine would 
now be regarded as unbelievably slow but was nearly state of 
the art in 1958 and faster than a desk calculator. “Suddenly 
I realized that my desire to do things with numbers would 
be fulfilled.”1

Ed realized from the outset that if the equations he chose 
produced periodic solutions, these solutions could be trivially 
reproduced by statistical methods. So he set about finding a 
set of equations whose solution would vary irregularly in time. 
After learning how to write and optimize computer programs, 
Ed settled on a set of 12 ordinary differential equations that 
represented approximations to the equations of motion for a 
rotating stratified fluid. He found that the solutions to these 
equations were nonperiodic in character. When he applied 
the linear regression method to the simulation, it produced 
mediocre results, as he had foreseen.

At one point, in 1961, Ed had wanted to examine one of 
the solutions in greater detail, so he stopped the computer 
and typed in the 12 numbers from a row that the computer 
had printed earlier in the integration. He started the machine 
again and stepped out for a cup of coffee. When he returned 
about an hour later, he found that the new solution did not 
agree with the original one. At first he suspected trouble with 
the machine, a common occurrence, but on closer examina-
tion of the output, he noticed that the new solution was the 
same as the original for the first few time steps, but then 
gradually diverged until ultimately the two solutions differed 
by as much as any two randomly chosen states of the system. 
He saw that the divergence originated in the fact that he 
had printed the output to three decimal places, whereas the 
internal numbers were accurate to six decimal places. His 
typed-in new initial conditions were inaccurate to less than 
one part in a thousand.
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“At this point, I became rather excited,” Ed relates.1 He 
realized at once that if the atmosphere behaved the same 
way, long-range weather prediction would be impossible 
owing to extreme sensitivity to initial conditions. During 
the following months, he persuaded himself that this sensi-
tivity to initial conditions and the nonperiodic nature of the 
solutions were somehow related, and was eventually able to 
prove this under fairly general conditions. Thus was born 
the modern theory of chaos.

Ed had also been wondering why patterns on weather 
maps had certain preferred geometries and not others that 
were equally admissible under the governing equations; 
he suspected that the actual state space of the atmosphere 
lies on some sort of surface (not an energy surface since 
the atmosphere is dissipative) whose geometry might be 
described analytically. He now tried to find such surfaces in his  
12-variable model but found that analyzing even such a limited 
model was rough going, and wondered whether it might be 
possible to find even simpler systems that exhibit nonperi-
odic behavior. About this time he visited Barry Saltzmann, 
who showed him the results of integrating a seven-variable 
model derived by truncating series expansion of equations 
governing thermal convection between parallel plates. While 
most of the solutions of this model are periodic in time, one 
set exhibited irregular variability, and Ed noticed that in this 
particular solution, four of the seven variables settled down 
to zero and stayed that way. Thus he realized that there are 
chaotic solutions to a three-variable system; this became the 
celebrated Lorenz (1963,1) model.

In analyzing the geometry of this model Ed showed that 
any finite volume in the three-dimensional state space would 
asymptotically vanish with time, so that two particles sepa-
rated from each other in a suitable direction would approach 
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each other and appear to merge. He recognized that such 
a merger had to be illusory.

It would seem, then, that the two surfaces merely appear to merge, and 
remain distinct surfaces. Following these surfaces along a path parallel to 
a trajectory, we see that each surface is really a pair of surfaces, so that, 
where they appear to merge, there are really four surfaces. Continuing this 
process for another circuit, we see that there are really eight surfaces, etc., 
and we finally conclude that there is an infinite complex of surfaces, each 
extremely close to one or the other of two merging surfaces.

Ed had discovered the fractal geometry of what would 
later be called a “strange attractor.” It had previously been 
assumed that the vanishing with time of any initial volume 
in state space would preclude any strong divergence of 
trajectories; Ed showed that this was not the case, and forced 
dissipative systems, such as his three-variable model, could 
exhibit sensitive dependence on initial conditions.

SIGNIFICANCE OF LORENZ’S WORK ON CHAOS

Ed’s 1963 paper was not the first to document nonperiodic 
behavior in mathematical systems. For example, Poincaré’s 
work in the late 19th century showed that low-dimensional 
Hamiltonian systems can exhibit nonperiodic solutions. At 
the time Ed’s paper appeared most physicists assumed that 
complex behavior is invariably the result of many degrees of 
freedom in the governing equations or boundary conditions. 
For example, Landau and Lifshitz (1959) qualitatively describe 
the complexity of turbulence in fluid flows as resulting from 
a large number of successive Hopf bifurcations involving ever-
increasing degrees of freedom. Ed’s work was more immedi-
ately foreshadowed by that of Allan (1962), who examined the 
nature of the solutions to the Rikitake equations, low-order 
truncations of the equations describing coupled dynamos. 
These are three coupled ordinary differential equations in 
time, quite similar to the Lorenz equations. While Allan 
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focused on the fixed points and periodic solutions of these 
equations, he also performed some numerical integrations 
that for some sets of parameters, exhibit irregular behavior 
in time. While he did not explore such solutions in detail, 
he noted that “the topology of the set of all trajectories for 
these equations is certain to be very curious.”

Curious indeed. What Ed demonstrated was that very 
simple, low-order forced-dissipative systems can produce 
highly complex solutions, described by fractal (“strange”) 
attractors, and that exhibit sensitive dependence on initial 
conditions. His work inspired mathematicians, such as James 
Yorke, to pursue the fractal nature of strange attractors, 
and his later work on the predictability of weather entered 
the popular lexicon as the “butterfly effect”6 through James 
Gleick’s popular book on chaos (1987).

The true implications of the butterfly effect are not fully 
appreciated even today. In low-order chaos, such as exhib-
ited by the Lorenz (1963,1) system, accurate solutions can 
be attained as far in the future as one likes by making the 
initial error sufficiently small. In higher-order systems, such 
as Lorenz himself later developed (1969), rapidly growing 
errors at the smallest scales can cascade upscale to influence 
the larger scales of interest. Such systems possess a finite 
predictability horizon even in the limit of vanishing initial 
error, and so are almost indistinguishable from nondeter-
ministic systems. Do the solutions of the full three-dimen-
sional Navier-Stokes equations exhibit such behavior? The 
answer is not yet known, and this question, together with 
the Riemann hypothesis, is one of the Clay Mathematics 
Millennium Prize problems, among the greatest unsolved 
problems of this century.

The advent of chaos theory constitutes one of the great 
scientific revolutions of the 20th century. It has influenced 
the course of all scientific and many engineering disciplines 
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and has even begun to affect philosophy and other endeavors 
outside science. For example, it is now recognized that the 
orbits of asteroids and some planets (including Earth) may 
be chaotic, possibly resulting in sudden large excursions from 
regular, quasi-periodic orbits. In the field of ecology it was 
once thought that populations could achieve steady states 
in steady environments, but here too it has been shown that 
population may be inherently unstable and exhibit chaotic 
fluctuations. Chemical reactions were once thought to be 
predictable, but some catalytic reactions in both organic and 
inorganic chemistry have been shown to be chaotic and this 
has proven relevant for understanding the biochemistry of 
the nervous system. Chaos theory has had a large influence in 
economics, where an important question arises as to whether 
one can distinguish between the existence of a low-order 
attractor and high-order noise. The existence of the former 
would imply some degree of finite-time predictability.

Control theory has also profited from research on chaos: 
we are learning how to control chaotic systems by introducing 
perturbations designed to keep systems close to their stable 
manifolds. In mathematics, chaos theory is being brought to 
bear on such problems as proving the normality of certain 
irrational numbers, such as π, which has been shown to be 
equivalent to proving that the attractors of certain chaotic 
dynamical systems have uniform statistical properties in state 
space. Perhaps the most interesting development in chaos 
theory is its possible relevance to the behavior of quantum 
systems near their classical limit. This endeavor, now known 
as quantum chaology, explores such issues as the implications 
of quantum uncertainty for macroscopic determinism.

LATER WORK AND LIFE

The general circulation of the atmosphere and the 
question of predictability of chaotic systems were Ed’s two 
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main research preoccupations for the remainder of his life, 
and he was keen on applying chaos theory to the practical 
problem of weather prediction. In 1964 Ed suggested that 
since the initial state of the atmosphere and ocean could 
never be known precisely, one should make a large number 
of numerical forecasts, each starting from slightly different 
but equally likely initial states. This practical alternative to 
the nearly impossible task of integrating the full Liouville 
equation provides information about the uncertainty of the 
forecast, and the mean of the different integrations is likely 
to be a better forecast than a single arbitrary integration. 
Today, ensemble numerical weather prediction has become 
a bedrock tool for weather prediction and is carried out by 
all the leading centers for computational weather prediction 
around the globe. Among these centers is the European 
Centre for Medium Range Weather Prediction, which Ed 
visited on a number of occasions. One visit led him to examine 
how small differences between analyzed or forecasted states 
one day apart grow with time in their operational numerical 
weather prediction model. He concluded that for the model 
then in use, errors in the pressure field roughly 5 km above 
the surface doubled in about 2.5 days; he, however, warned 
that as the spatial resolution of the model improved, enabling 
it to simulate finer-scale features with higher growth rates, 
this doubling time might decrease, leading eventually to a 
plateau in the skill of such forecasts.

Another problem that Ed recognized early on was the 
question of whether Earth’s climate is intransitive (i.e., Does 
it possess more than one attractor?). He was particularly 
interested in “almost intransitive” systems in which the system 
state can reside in one attractor basin for a while and then 
switch unpredictably to another basin of attraction; the two 
or more basins are fractally intertwined. Clearly it would be 
difficult to characterize such systems as possessing a single 
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“climate.” The character of almost intransitive systems and 
the question of whether Earth’s climate is an example of 
such a system remain outstanding and important issues.

The state space of chaotic systems usually contains voids: 
regions that the state does not naturally evolve through or 
evolves through only rarely. Nevertheless, it is always possible 
to initialize systems within such voids, and experience with 
many such systems shows that the state so initialized evolves 
away from the voids on timescales smaller than those char-
acterizing the usual evolution. In equations governing the 
flow of rotating stratified fluids like the atmosphere, this 
rapid evolution corresponds physically to fast internal waves 
or convection, while the slower evolution corresponds to the 
slower Rossby waves that govern the more predictable day-to-
day variations in wind and pressure. This behavior gave rise 
to the notion of a “slow manifold” and the issue arose as to 
whether such a slow manifold could be precisely defined as 
a distinct, invariant manifold within the whole state space of 
the system, so that a state initialized on the manifold would 
stay on it forever. The problem turned out to be subtle, and 
in his landmark 1986 paper on the subject, Ed showed that 
while manifolds that are locally invariant and locally slow 
do exist, global slow manifolds do not; this is related to the 
spontaneous generation of fast waves in an otherwise slowly 
evolving system.

Ed’s interest in bringing the lessons of chaos theory to 
bear on the practice of weather prediction led him in the 
late 1990s to explore the idea of adaptive sampling of the 
atmosphere. In situ measurements are made from “platforms 
of opportunity,” such as ships and aircraft, or by weather 
balloons launched from fixed points at specified times. Can 
one devise a sampling strategy that targets particular regions 
at particular times, depending on the state of the system? 
Using a 40-variable model, Ed showed that a simple strategy 
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based on making observations where the prior estimate 
is most likely to be in error led to a significant improve-
ment in the forecast compared to making random or fixed 
observations.

Ed’s work ultimately brought him much recognition. 
Among many awards, he received the Carl Gustaf Rossby  
Research Medal from the American Meteorological Society 
in 1969, the Symons Memorial Gold Medal from the Royal 
Meteorological Society in 1973, The Holger and Anna-Greta 
Crafoord Prize from the Royal Swedish Academy of Science in 
1983, the Kyoto Prize from the Inamori Foundation in 1991, 
The Roger Revelle Medal from the American Geophysical 
Union 1992, and the Buys Ballot Medal from the Royal 
Netherlands Academy of Arts and Sciences in 2004. He was 
elected to the National Academy of Sciences in 1975.

During the late 1990s, Jane was afflicted by poor health 
and she passed away in late 2001. Ed set aside his research 
and other interests during this time and devoted himself to 
her care. After her death he returned to his research inter-
ests, publishing another nine or so articles. He had a bout 
of cancer in the 1980s, and, suffered another attack of the 
disease in 2007. He died at home in April 2008, surrounded 
by his family and having worked on proofs of his latest paper 
just a few days earlier.

SUMMARY AND PERSONAL REFLECTIONS

Those of us privileged to have known Ed Lorenz will 
remember him as a gentle, quiet soul, almost painfully shy 
and modest to a fault. But engage him on a favorite topic—a 
fine point in atmospheric or dynamical systems theory, the 
virtues of a particular mountain trail, or anything to do with 
his extended family—and with a twinkle of his bright blue 
eyes he would come to life; at such times one always felt as 
if he were inwardly smiling at life. Ed was a true gentleman 
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and in his own quiet way showed a deep affection for his 
wife, Jane, and their children, and an old-fashioned sense 
of chivalry toward Jane. When invited to visit any of us with 
families, he would invariably bring some wonderful, usually 
mathematics-based toys for the children. He was much 
beloved as a teacher and for many years running won the 
prize awarded by MIT graduate students for the best teacher 
of the year.

Ed’s scientific legacy will no doubt focus on his work 
on chaos in forced dissipative systems and his discovery of 
the fractal nature of the state spaces of such systems. It has 
already had a profound effect on a large spectrum of disci-
plines, from mathematics and geophysics to economics and 
even philosophy. If quantum chaology were to demonstrate 
a link between quantum uncertainty and chaos, then history 
may well record that Ed Lorenz had begun the process of 
hammering the last nail into the coffin of Laplace’s daemon. 
Ed himself was not immune to some of the philosophical 
implications of his work, and in The Essence of Chaos (1993), 
mused in characteristic Lorenzian7 fashion on the problem 
of free will:

We must wholeheartedly believe in free will. If free will is a reality, we shall 
have made the correct choice. If it is not, we shall still not have made an 
incorrect choice, because we shall not have made any choice at all, not 
having a free will to do so.
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much of the material for this memoir was provided by Ed Lorenz’s autobio-
graphical note, “A Scientist by Choice,”1 and through a published interview 
with him (WMO, 1996). Ed’s son, Ned, and daughter, Nancy, contributed 
valuable suggestions. I am indebted to Tim Palmer of the European Centre 
for Medium Range Weather Forecasts, whose own biographical memoir for the 
Royal Society (Palmer, 2009) served as a valuable source, and to Joe Pedlosky 
at the Woods Hole Oceanographic Institution for helpful suggestions.

NOTES

1. A Scientist by Choice. Speech delivered on the occasion of Ed’s 
acceptance of the Kyoto Prize in 1991.
2. In his memoir, Lorenz states that the weather forecasting operation 
was moved to Okinawa in the spring of 1945. However, his forecaster 
colleague Patrick Suppes states that the operation moved to Guam. 
Since the Battle of Okinawa did not end until mid June, 1945, it seems 
unlikely that the weather operation was moved to Okinawa, but it is 
possible that Lorenz moved to Okinawa in the summer of 1945.
3. Personal communication with author, August 2008.
4. Lorenz’s reply to a questionnaire submitted in connection with 
his being awarded the Kyoto Prize in 1991.
5. It is not clear to me whether Ed knew that this offer was negoti-
ated by Jule Charney as a condition of Charney’s acceptance of an 
offer to join the MIT faculty.
6. Ed actually first used a seagull metaphor (Lorenz, 1963,2):
“One meteorologist remarked that if the theory were correct, one 
flap of a sea gull’s wings would be enough to alter the course of the 
weather forever. The controversy has not yet been settled, but the 
most recent evidence seems to favor the gulls.” The butterfly term 
was probably introduced by Joseph Smagorinsky (1969), but the 
concept has a long lineage, dating back, perhaps, to Franklin’s (1898) 
grasshopper: “Long range detailed weather prediction is therefore 
impossible, and the only detailed prediction which is possible is 
the inference of the ultimate trend and character of a storm from 
observations of its early stages; and the accuracy of this prediction is 
subject to the condition that the flight of a grasshopper in Montana 
may turn a storm aside from Philadelphia to New York!”
7. Ed’s statement may be thought of as his version of Pascal’s 
Wager.
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