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1. Introduction

An error in the linear stability analysis presented
in Emanuel (1979) (hereafter referred to as “I”’) has
been drawn to the attention of the author by Steven
Meacham, currently a postdoctoral associate at MIT.
The error, which pertains to the case of no-slip
boundaries only, affects principally the critical shear
parameter and wavelength of the instability. In this
comment, we present numerically derived solutions
for the critical shears and associated wavelengths and
eigenmodes when no-slip boundaries are present.

2. Numerical solutions of the linear eigenvalue prob-
lem

The source of the error is in the derivation of the
no-slip boundary conditions on the streamfunction
(28) in 1. These conditions had been derived from
(25) and (26), which in turn are integrals of various
combinations of the original linear equations. It is
argued in I that the two integration constants that
appear in the derivations of (25) and (26) must vanish
in order to exclude an arbitrary geostrophic solution
of the same form as the basic flow. In one case,
however, the integration constant may be a function
of z alone and it is not possible to prove that it must
vanish under general circumstances. Under steady
conditions, the boundary conditions may be expressed
in terms of integrals of the streamfunction, which
show that the no-slip conditions are Prandtl number-
dependent. We conclude that the last two conditions
(28) in I are in error. ,

In order to find correct solutions, we turn to a
simple numerical solution of the linear equations for
zonal vorticity, zonal velocity and buoyancy. We
start with the hydrostatic form of the adiabatic Bous-
sinesq primitive equations for two-dimensional per-
turbations to a geostrophic zonal flow that varies with
y and z only, as given by (1)-(5) of L:
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where the notation is the same as in I. Next we define
a streamfunction ¥ such that

a
PR J: 3
0z dy
and a buoyancy B
__ P
=—g—.
Po

Using these notations and eliminating pressure be-
tween (2) and (3) there results
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where the primes have been dropped for convenience.

We next nondimensionalize the dependent and
independent variables as follows:

z* = Hz,

N?¢
* =
Y HfUz(l + g) ¥

2

t*F=—1,
y* = H%Y,
u* = afH? u,
14
go LU

K



748

where the asterisks denote dimensional variables and
o is the Prandtl number v/x. We also assume periodic
behavior in y, seeking solutions of the form ™. With
these substitutions, (6)-(8) become
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The parameters which ‘appear here are an’ inverse
Taylor number T, a shear parameter x, and a Prandtl
number o; all of these are defined in L.

The above set of equations are ‘solved numerically
as an initial value problem, subject to the no-slip
heat conducting boundary conditions

¢=é\£=u=B=0 on z=0,1.
0z '

The integrations are started using the analytic inviscid-
limit solutions discussed in I and carried forward in
" time far enough to ascertain whether the perturbation
kinetic energy is 1ncreasmg or decreasing with time.
The integration scheme is straightforward, using leap-
. frog time integration (with smoothing every ten time
steps) and centered second-order differencing in z.
The viscous terms are lagged one time step for
stability.

In order to determine the critical shear, integrations
were carried out for different values of x until ap-
proximately steady solutions were found. This was
repeated for different values of the wavenumber /
until the minimum value of x was obtained. In this
way, we determined the critical value of x and the
wavenumber characterizing the onset of instability.

In the case of free-slip boundaries, the boundary
conditions may be expressed as homogeneous con-
ditions on ¢ and some of its vertical derivatives alone
(see I). Moreover, if B and u are eliminated from the
time-independent form of the set (9)-(11), the resulting
equation for ¥ may be reduced to sixth-order and the
only parameters which appear in the equation are x
and T. Therefore, the critical value of x is not' a
function of the Prandtl number ¢ (the Prandtl number
dependence of the critical Richardson number is
contained in the definition of x). When no-slip
boundaries are present, however, it is no longer
possible to express the boundary conditions as ho-
mogeneous conditions on ¥ and some of its vertical
~ derivatives alone. It is, however, still possible to

reduce the time-independent form of (9)-(11) to a-

single sixth-order equation for ¥, as shown in 1. Four
of the boundary conditions are homogeneous: ¥
= dy/dz = 0 on z = 0, 1. The other two may be

expressed as integrals of ¢ itself. Integrating the time-
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independent form of (9) between the boundaries,
there results

i
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while merely: evaluating the time-independent form
of (10) at z = 0 and z = 1 results in the relation
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since B ‘vanishes on the boundaries. Eliminating the
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Similarly, if we integrate the tlme-mdependent form
of (11) once, there results .
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while evaluating the first derivative of the time-
independent form of (10) with respect to z at z = 0
and z = 1 results in.the relation
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since, from (9), d*u/dz* vanishes on the boundaries.
Eliminating the quantity dB/dz|} between (15) and
(16), we obtain

PPx f Ydz =

The relations (14) and (17) may be considered the
remaining two boundary conditions on . But note
that (14) retains a Prandtl number dependence, so
that in contrast to the free-slip case, the critical value
of x will be dependent on ¢ when no-sltp boundaries
are present.

This Prandtl number dependence is verified in the
time integrations, although it appears to be quite
weak for reasonable values of T. Under no conditions
was an oscillatory instability observed; after the tran-
sients died away the time dependence always took
the form of exponential growth or decay. This supports
the conclusions reached by McIntyre (1970) regarding
viscous symmetric instability in an unbounded fluid.

The critical value of x, minimized with respect to
wavenumber, is shown for ¢ = 1 as a function of T
in Fig. 1, which replaces Fig. 3 of I. There is a range
of T extending from 0 to about 5 X 10™* where the
critical shear for no-slip boundaries is actually smaller
than that associated with free-slip boundaries; for
greater viscosity, the critical shear is larger for no-slip
than for free-slip boundaries. This nicely parallels the

gip
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F1G. 1. The critical value of the shear parameter x as a function of the viscous
parameter T for free-slip and no-slip boundaries. Straight dashed lines are asymptotic
solutions for large 7' asymptotic solution for small 7 by Walton (1975) also depicted.
No-slip results pertain only to the case ¢ = 1.

solutions for the critical Rayleigh number in rotating
Benard convection. When the diffusion is sufficiently
small, the boundary dissipation actually assists the
instability by reducing the inertial stability of the
horizontal inflow and outflow branches of the circu-
lation.

For large 7, x becomes linearly proportional to 7,
as explained in I. For no-slip boundaries, the rela-
tionship is approximately

Limx = 17 800T

T—oo
when / =~ 1.4. This should be compared with the
free-slip asymptotic solution for large 7 from I:
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FIG. 2. Nondimensional wavelength associated with the onset of
instability, as a function of 7. No-slip solution pertains to the case
¢ = 1. Note that scale is different from Fig. 5 of L.

Limyx = 109507

T—o
when / =~ 0.838. We see that, in contrast to the
results of I, the critical value of x for no-slip bound-
aries is substantially greater than the value associated
with free-slip boundaries at large 7.

The wavelength L (=2n/l) associated with the
onset of instability when ¢ = 1 is shown as a function
of .T in Fig. 2, which replaces Fig. 5 of I. The
wavelength is actually larger for the no-slip case when
T is relatively small, but becomes smaller than the
free-slip wavelength at large 7. This again reflects the
competing effects of greater dissipation and less inertial
stability along no-slip boundaries.

I have performed some experiments that demon-
strate that the critical value of x when no-slip bound-
aries are present does indeed depend upon the Prandtl
number, although the dependence is weak. Table 1
shows the critical value of x and the wavelength at
the onset of instability for various values of ¢ when

TABLE 1. Critical value of x for T = 10~* and various
Prandtl numbers.

o Xe L.
0.2 7.58 3.30
1 6.75 3.30
716 325

5 7.58 3.1

10 8.17 29
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FIG. 3. (a) Streamfunction characterizing the onset of instability FIG. 4. (a) As in Fig. 3a, but for T = 10™. (b) As in Fig. 3b but
for no-slip boundaries, ¢ = 1, and T = 1075, One full wavelength for T = 107*. Relative amplitude is 0.1675. (c) As in Fig. 3c but
is shown. Y increases to the right. (b) As in (a), but for zonal for T = 107* Relative amplitude is 0.055.
velocity perturbation. The amplitude of the perturbation is 0.0208 .
times the streamfunction amplitude. (c) As in (a), but for buoyancy
perturbation. Relative amplitude is 0.0182.
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HG. 5. (a) As in Fig. 4a, but for o = 10. (b) As in Fig. 4b but FIG. 6. (a) As in Fig. 4a, but for ¢ = 0.2.. (b) As in Fig. 4b but
for ¢ = 10. Relative amplitude = 0.099. (c) Asin Fig. 4c but for for ¢ = 0.2. Relative amplitude = 0.3102. (c) As in Fig. 4¢c but for
o = 10. Relative amplitude = 0.0455. . o = 0.2. Relative amplitude = 0.2797.
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T = 107 It appears that the minimum x occurs
close to (if not at) ¢ = 1, with slightly larger values
at very small and very large o. Although this dem-
onstrates a Prandtl number dependence, I leave a
complete documentation of this effect to later work.

Finally, it is instructive to examine the form of the
solutions for ¥, u and B. Figure 3 shows these fields
for ¢ = 1 and T = 107%, Note that there is clearly a

negative correlation between u# and w, so that the’

disturbances convert mean zonal to disturbance ki-
netic energy. Most of the temperature perturbations
occur near the boundaries due to horizontal temper-
ature advection; in the interior the flow is nearly
along isentropic surfaces so that temperature pertur-
bations there are very weak. Due to the slope of the
disturbances, there are regions where the static stability
perturbation is strongly negative. In these regions,
one might expect a slow increase in the slope of the
perturbations with time, ultimately resulting in more
or less upright convection.

Figure 4 is identical to Fig. 3, except that T
= 107*. Here the only qualitative difference is that
the zonal velocity perturbations have retreated into
the interior. Figure 5 is for conditions identical to
those shown in Fig. 4, except that here the Prandtl
number is 10. Here we find remarkable differences:
there are clearly positive correlations of both # and
w and B and w. These disturbances thus have totally
different energetics from the ¢ = 1 case in that kinetic

energy is lost to, and available potential energy ex- .

tracted from, the mean flow. Likewise, Fig. 6 (for ¢
='(.2) demonstrates that the reverse is true when o
< 1; i.e., the disturbances extract kinetic energy from
and give up potential energy to the mean flow. This
strong dependence of the disturbance energetics on ¢
was discovered by Miller (1985) and has important
implications for the effect of symmetric instability on
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the mean flow. The reader is referred to Miller’s
(1985) paper for a detailed discussion of this point.

3. Conclusions

The correct solutions for the onset of symmetric
instability in a viscous fluid when no-slip boundaries
are present have been obtained numerically. They
show that the critical value of the zonal shear is
smaller for no-slip than for free-slip boundaries,
provided that the viscosity is smaller than a critical
value, while for very viscous flow the reverse is true.
This is qualitatively similar to the Rayleigh convection
solutions in a rotating fluid. In contrast to the case
of free-slip boundaries, the critical value of x is
weakly dependent on the Prandtl number when
no-slip boundaries are present. The time integrations
do not show any indication that oscillatory instability
is preferred under any conditions. Finally, an exam-
ination of the structure of the streamfunction, zonal
velocity and buoyancy fields shows that for sufficiently
large Prandtl number, symmetric instability derives
energy from the mean state potential energy and
gives up kinetic energy to the mean flow, in contrast
to the case in which the Prandtl is smaller than or
equal to 1. A full description of this interesting aspect
of the energetics of symmetric instability may be
found in Miller (1985).
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