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In a novel approach to hurricane wind risk assessment, a coupled ocean–atmosphere 

hurricane model is run along each of a large number of hurricane tracks 

synthesized by two independent methods.

H urricanes are among the most lethal and

 costly natural disasters affecting mankind.

 The Galveston, Texas, hurricane of 1900 was 

the deadliest natural catastrophe in U.S. history, 

and only a few years ago, in 1998, Hurricane Mitch 

killed upward of 11,000 in Central America. While 

the loss of life in the more developed countries has 

been greatly reduced by a highly successful program 

of warnings, evacuations, and advanced building 

construction and regulation, property losses are 

escalating rapidly owing to accelerated construction 

in hurricane-prone areas. Thus, Hurricane Katrina 

of 2005 was the single most costly natural disaster 

in U.S. history, incurring more than $125 billion in 

losses, while it has been estimated that were the 1926 

Miami, Florida, hurricane to strike today it would do 

more than $76 billion in damage (Pielke and Landsea 

1998).

In some cases, such as Hurricane Mitch, much 

of the death toll and property losses result from 

freshwater f looding produced by torrential rains. 

Unfortunately, quantitative understanding of 

hurricane-related precipitation, particularly over 

mountainous terrain, has not advanced to the point 

of yielding reliable precipitation forecasts, nor are 

historical records of hurricane-induced rainfall 

extensive enough to make meaningful estimates of 

f looding risks. But, the record of hurricane wind 

speeds is much more complete and, historically, much 

of the damage and loss of life results from hurricane 

winds and wind-induced storm surges. This has led 

to several efforts to assess risks associated with hur-

ricane winds. A comprehensive review of wind loss 

modeling is provided by Watson and Johnson (2004); 

here, we undertake a brief overview.

A STATISTICAL DETERMINISTIC 
APPROACH TO HURRICANE 

RISK ASSESSMENT
BY KERRY EMANUEL, SAI RAVELA, EMMANUEL VIVANT, AND CAMILLE RISI
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All current estimation techniques begin with 

historical compilations of hurricane tracks and 

intensities, such as the so-called “best track” data 

compilations maintained by forecasting operations 

such as the National Oceanic and Atmospheric 

Administration’s (NOAA’s) Tropical Prediction 

Center (TPC) and the U.S. Navy’s Joint Typhoon 

Warning Center (JTWC). The records typically 

contain the storm center position every 6 h, together 

with a single intensity estimate (maximum wind 

speed and/or central pressure) every time period. 

Early risk assessments (e.g., Georgiou et al. 1983; 

Neumann 1987) fitted standard distribution func-

tions, such as lognormal or Weibull distributions, 

to the distribution of maximum intensities of all 

historical storms coming within a specified radius 

of the point of interest, and then, drawing randomly 

from such distributions, used standard models of 

the radial structure of storms, together with transla-

tion speed and landfall information, to estimate the 

maximum wind achieved at the point of interest. A 

clear drawback of this approach is that estimates of 

the frequency of high-intensity events are sensitive 

to the shape of the tail of the assumed distribution, 

for which there is very little supporting data. This 

limitation was, to some extent, circumvented in the 

work of Darling (1991) and Chu and Wang (1998), 

who used empirical global distributions of relative 

intensity (the ratio of actual to potential intensity1) 

together with the climatology of potential intensity 

to infer local intensity distributions. A similar ap-

proach was taken by Murnane et al. (2000), who 

used global estimates of hurricane actual (rather 

than relative) wind intensity cumulative probabil-

ity distributions. A somewhat different tack was 

taken by Vickery et al. (2000), who used statistical 

properties of historical tracks and intensities to 

generate a large number of synthetic storms in the 

North Atlantic basin. Six-hour changes in direc-

tion, translation speed, and intensity along each 

track were modeled as linear functions of previous 

values of those quantities as well as position and sea 

surface temperature. A similar approach was taken 

by Casson and Coles (2000), though they generated 

synthetic tracks by randomly perturbing historical 

tracks, and simulated intensity along each track 

by drawing randomly from the whole collection of 

historical tracks over water. We follow Vickery et al. 

(2000) in generating large numbers of tracks, but use 

different techniques to accomplish this.

Most of the aforementioned wind risk assessment 

methods rely directly on historical hurricane-track 

data to estimate the frequency of storms passing close 

to points of interest, and must assume that the inten-

sity evolution is independent of the particular track 

taken by the storm [though Darling (1991) accounts 

for the time elapsed after storm formation]. Moreover, 

the relative intensity method must fail when storms 

move into regions of small or vanishing potential in-

tensity, as they often do in the western North Atlantic. 

Return-period estimation is particularly problematic 

in places like New England, which have experienced 

infrequent but enormously destructive storms, but 

for which the historical record is sparse and the local 

potential intensity is zero.

COMBINING STATISTICAL TRACK GEN-
ERATION WITH DETERMINISTIC INTEN-
SITY MODELING. As a step toward circumventing 

some of these difficulties, we developed two largely 

independent techniques for generating large numbers 

of synthetic hurricane tracks, along each of which 

we run a deterministic, coupled numerical model to 

simulate storm intensity. The two track generation 

techniques are described in detail in appendixes A 

and B, respectively, and the deterministic intensity 

model is reviewed in appendix C. Here, we provide 

a brief overview.

Both track methods originate storm tracks by a 

random draw from a space–time probability density 

function of genesis locations based on a compilation 

of historical genesis points derived from tropical 

cyclone best-track data, as described in detail in the 

“Synthetic track generation using Markov chains” 

section of the online supplement to this paper (DOI: 

10.1175/BAMS-87-3-Emanuel). For this purpose, we 

used best-track data during and after 1970, which is 

the first year we consider the global satellite detection 

of tropical cyclones to be complete.

The first track generation technique begins with 

certain key statistical features of historical hurricane 

tracks, including the spatiotemporal distribution of 

genesis and storm motion, and then generates synthet-

ic tracks taking 6-h steps and using a Markov chain2 

1 The maximum wind speed theoretically attainable in tropical cyclones given the large-scale thermodynamic conditions (e.g., 

see Emanuel 2000).
2 A Markov chain is a sequence of random values whose probabilities at a time interval depend upon the value of the number 

at the previous time. A simple example is the nonreturning random walk.
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for each 6-h displacement. In this Markov process, 

each 6-h step depends both on the properties of the last 

step and on the climatological probability distribution 

of rates of change of displacement in direction at the 

current position and time. By this means, the tracks 

conform to the observed statistics (as a function of 

space and time) of the motion of historical hurricanes 

while preserving memory of their previous motion. 

The key variables in this technique are the translation 

speed and direction, and their rates of change over 6 h. 

Details may be found in appendix A. For this purpose, 

we use historical hurricane data over the whole period 

of record, because we believe that observed storm 

movement is somewhat less problematic than storm 

origin locations in the presatellite era. A comparison 

of the 6-h displacement statistics 

from tracks generated this way with 

observed displacement statistics is 

shown in Fig. 1.

Among the many processes that 

influence hurricane intensity is the 

vertical shear of the environmental 

wind, and it is therefore necessary 

to account for varying wind shear 

to model realistic variations in 

hurricane intensity. A drawback 

of the Markov track generation 

method is that, when it comes time 

to model storm intensity along 

each track, one must assume that 

the track and the shear are largely 

independent. This drawback could 

be circumvented, to a degree, by 

using reanalysis data to develop 

statistical relationships between 

historical hurricane tracks and 

environmental wind. Another ap-

proach, which forms the basis of 

our second track technique, is to 

generate tracks and shear from the 

same synthetic wind fields. This 

may be possible, because, to a first 

approximation, hurricanes move 

with some weighted vertical mean 

of the environmental f low in which 

they are embedded (Holland 1983) plus a “beta 

drift,” owing to the effect of the vortex f low on the 

ambient potential vorticity distribution (Davies 

1948; Rossby 1949). The National Hurricane Center 

runs a simple model based on this principle, the 

“beta and advection model” (Marks 1992). Using 

this technique, we can create tracks and environ-

mental wind that are mutually consistent. Note 

that for the present purpose, it is not necessary for 

the track generator to also be a good track forecast 

model, as long as it is not biased.

Thus, our second synthetic track method, which 

also generates storms as a random draw from the 

collection of historical genesis points, moves the 

storms according to a weighted average of the 

FIG. 1. Histograms of observed (blue) 
and modeled (red) frequency distribu-
tions of 6-h (a) zonal and (b) meridional 
displacements for a region of the 
North Atlantic bounded by 10° and 
30°N and 80° and 30°W; 1,000 tracks 
from method 1 were used.
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ambient f low at 850 and 250 hPa, plus a constant3 

beta-drift correction, as detailed in appendix B. 

The ambient f low varies randomly in time, but it 

is constructed so that its mean, variance, and co-

variances conform to monthly mean climatologies 

derived from the National Centers for Environ-

mental Prediction (NCEP)–National Center for 

Atmospheric Research (NCAR) reanalysis dataset, 

and so that its kinetic energy follows the ω–3 power 

law of geostrophic turbulence. The 6-h displacement 

statistics from tracks generated using this method 

are compared to observations in Fig. 2.

As we shall see in the next section, each track 

method has advantages and disadvantages, and using 

both methods helps assess the overall quality of our 

hurricane risk assessment.

Once a synthetic track is produced by either meth-

od, it is then necessary to estimate the evolution of 

storm intensity along the track. In principle, one could 

use a Markov chain process to do this, making each 

increment of intensity (e.g., maximum wind speed) 

conditional on storm position, previous intensities, 

etc., as determined from historical storm data. A good 

way to do this would be in terms of relative intensity, 

pioneered by Darling (1991), with 

the climatological distributions as 

in Emanuel (2000). While such a 

procedure might work quite well in 

data-rich regions, the paucity of data 

in other regions (e.g., New England) 

and the fact that hurricanes moving 

out of the Tropics can still be quite 

damaging, even though the local 

potential intensity is small or zero, 

places limitations on the application 

of such a method.

Here we elect instead to run a 

deterministic numerical simulation 

of hurricane intensity along each 

synthetic track, using the model 

developed by Emanuel et al. (2004). 

This is a simple axisymmetric bal-

ance model coupled to an equally 

simple one-dimensional ocean mod-

el. Because the model is phrased in 

angular momentum coordinates, 

it yields exceptionally high resolu-

tion in the critical eyewall region of 

the storm. Given a storm track, the 

model is integrated forward in time 

to yield a prediction of wind speed. 

Details of this approach are provided 

in appendix C.

To generate hurricane wind risk 

assessments, both track methods are 

used first to generate large numbers 

of synthetic tracks. A filter is applied 

to the track generator to select tracks 

coming within a specified distance 

of a point or region of interest (e.g., a 

city or county). We then run the hur-

ricane intensity model along each 

3 In principle, this correction should decrease with the cosine 

of the latitude, but as storms move to higher latitudes, other 

steering influences come into play, which introduce errors at 

least as large as those arising from omitting this effect.

FIG. 2. Same as Fig. 1, but for the second track generation method.
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of the selected tracks to produce a history of storm 

maximum wind speed. The wind shear needed by the 

intensity model is taken from the same wind fields 

used to produce the track in the second track method, 

but separate random wind fields are used in the first. 

Thus, the storm motion and the vertical wind shear 

are mutually consistent for tracks generated by the 

second method, but not for the first.

The coupled deterministic model produces a max-

imum wind speed and a radius of maximum winds, 

but the detailed aspects of the radial storm structure 

are not used, owing to the coarse spatial resolution of 

the model. Instead, we use an idealized radial wind 

profile, fitted to the numerical output, to estimate 

maximum winds at fixed points in space away from 

the storm center, as described in appendix C. For this 

purpose, a fraction of the linear translation speed 

vector is added to the circular vortex wind field to 

account for some of the observed asymmetry in the 

overall storm wind pattern.

For each point of interest, the intensity model 

is run many (an order of 104) times to produce ex-

ceedence probabilities as a function of wind speed 

for that point. Both the synthetic track generation 

methods and the deterministic model are fast enough 

that it is practical to estimate exceedence probabilities 

to a comfortable level of statistical significance. We 

compare such probabilities to those estimated using 

previously published techniques, and to estimates 

made directly from historical data as contained in the 

hurricane database (HURDAT) record (Jarvinen et al. 

1984), which is updated through 2002 and revised to 

include storms from as early as 1851.

RESULTS. To illustrate the capabilities of the present 

approach, we have created three sets of synthetic hur-

ricanes. The first is random selection of 1000 storms 

affecting the North Atlantic as a whole. The other 

two are for cities with very different hurricane clima-

tologies: Miami, Florida, and Boston, Massachusetts. 

Miami has a relatively rich record of storms, and most 

of these have not undergone strong interactions with 

extratropical systems. Boston, at the other extreme, 

has only had a handful of storms in its history, and 

many of those can be presumed to have been affected 

by interactions with extratropical systems.

North Atlantic. Figure 3 compares cumulative frequen-

cy distributions of maximum wind speeds achieved in 

all 1,000 North Atlantic storms created using both of 

the track generators with all storms in the HURDAT 

record beginning in 1950, normalized to numbers 

of events per millennium. The ordinate shows the 

number of events whose wind speeds exceed the value 

given on the abscissa. The two methods give very 

similar results, and both slightly overestimate the 

number of intense storms, but, note that there are few 

real events to compare to in this latter category.

The cumulative histograms follow the bilinear 

cumulative frequency distribution of hurricane maxi-

mum wind speeds discussed by Emanuel (2000). It is 

important to note that such distributions are bounded 

so that there is, in general, a maximum wind speed 

that can be experienced at any given place. In general, 

this nearly corresponds to the potential intensity deep 

in the Tropics, but, especially at higher latitudes, the 

addition of the storm translation speed allows some 

maximum wind values to exceed the local potential 

intensity. As discussed in appendix C, this accounts 

for part (but not all) of the effect of extratropical 

transition.

The close correspondence of the intensity statis-

tics shown in Fig. 3, taken together with the good 

comparison of track displacement statistics shown 

in Figs. 1 and 2, suggests that this method is a viable 

approach to assessing hurricane wind risk.

Miami. Miami is an example of a city with a relatively 

high incidence of hurricanes. To produce annual 

exceedence probabilities for wind speed, we ran both 

track models to produce 3,000 tracks each, passing 

within 100 km of downtown Miami. We then ran 

the intensity model over each track to accumulate 

wind statistics for Miami. (Bear in mind that not all 

storms reach Miami before their wind speeds fall 

below 13 m s–1 and are thus terminated.) To facilitate 

FIG. 3. Cumulative histograms of maximum surface 
wind speeds achieved along tracks generated by the 
Markov chain method (red) and the second track 
generation method (blue), and compared to statistics 
derived directly from the best-track data (black).
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comparison with historical hurricane data, we first 

made histograms of the peak wind speed experienced 

anywhere within 100 km of downtown Miami in 

each storm. These are compared to the same statistic 

derived from HURDAT for both track methods in 

Fig. 4, expressed as number of events per millennium. 

In comparing the present results with HURDAT data, 

bear in mind that there are only 29 

HURDAT tracks with maximum 

winds in excess of 40 kts passing 

with 100 km of Miami during the 

period in question, versus the 3,000 

tracks used in both methods 1 and 

2. We also point out that there are 

biases in HURDAT arising, for ex-

ample, from changing conventions 

in converting between central sur-

face pressure and maximum wind 

(Landsea 1993). Given these biases 

and the small absolute sample size, 

it is likely that the present results are 

consistent with HURDAT within 

the statistical significance of the 

HURDAT-derived histogram. The 

comparison of the method 1 and 

method 2 results gives a crude mea-

sure of the errors associated with 

this approach; Fig. 4 shows that they 

are quite similar in this case.

Figure 5 shows the exceedence 

probabilities for an area within 

100 km of downtown Miami, derived 

using method 2, and compares them to probabilities 

estimated in the work of Jagger et al. (2001). The latter 

are for all of Miami–Dade County (which contains the 

city of Miami), and so should be expected to be a little 

smaller than the values we estimated using method 

2, which covers a somewhat larger area. Jagger et al. 

(2001) used a maximum likelihood technique based 

FIG. 5. Annual exceedence probability for downtown 
Miami from Jagger et al. 2001 (dots) and method 2 
(crosses). The former pertains to all Miami–Dade 
County, while the latter pertains to the maximum wind 
speed within 100 km of downtown Miami.

FIG. 4. Cumulative histograms of frequency of ex-
ceedence of wind speed within 100 km of downtown 
Miami. Results from HURDAT data (black) are com-
pared to model data for method 1 (red) and method 
2 (blue). There are 29 events in the HURDAT sample 
versus 3,000 in methods 1 and 2.
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on a county-level dataset assembled by Jarrell et al. 

(1992). Our results are remarkably consistent with 

theirs, considering the large difference between the 

two techniques and the datasets used.

The track producing the highest wind speed within 

100 km of Miami in method 2 is displayed in Fig. 6, 

together with the evolution of several key quantities 

along the track. This storm forms on 5 September, 

and beginning on 7 September accelerates north-

westward while intensifying rapidly, achieving a 

peak wind speed of 169 kts (and minimum central 

pressure of 892 hPa) just before landfall in south 

Florida. As shown in Fig. 6b, the peak winds exceed 

the local potential intensity, owing to the relatively 

large translation speed of this storm. After crossing 

southern Florida, this storm weakens to category 3, 

which it maintains until its second landfall in the 

Florida Panhandle on 10 September.

Figure 7 shows the tracks of the 30 “worst” events, 

ranked by the maximum wind speed experienced 

within 100 km of downtown Miami, for both track 

methods. Although the statistics of all of the tracks 

from both methods are similar, there are distinct 

differences in the tracks of the top 30 events. For 

example, none of the top 30 storms in method 2 ap-

proach Miami from west of south, while quite a few 

method 1 tracks do. This difference is not apparent 

in a random sample of tracks from both methods. A 

likely explanation for the differences in the top 30 

events is that, in method 2, storms traveling from west 

of south are likely to be associated with a stronger 

wind shear and are thus weaker, whereas in method 1 

the shear is largely independent of the track direction. 

This is so even though, in both methods, the shear is 

climatologically correct.

Boston. Both the power and the limitations of our 

technique are most evident when applied to places 

that experience infrequent (but sometimes devastat-

ing) storms. In these cases, the historical record may 

be greatly insufficient to make reasonable risk assess-

ments there from, yet there are still strong incentives to 

estimate risk. In method 1, the infrequency of storms 

affects the robustness of the statistics used in the 

Markov chain track generator, but there are no such 

limitations to method 2, because the flow variability 

FIG. 6. (a)(FACING PAGE) Track of the most intense of 
the 3,000 storms passing within 100 km of Miami using 
method 2, together with (b)(ABOVE) the evolution of 
maximum wind speed (blue), potential intensity (red), 
translation speed (green), and 250–850-hPa wind shear 
magnitude (light blue). The colors in (a) correspond to 
maximum wind speeds given by scale at left, and the 
numbers are dates in September.

FIG. 7. Thirty tracks yielding the highest peak winds within 
100 km of Miami from (a) method 1 and (b) method 2.
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is no less realistically represented by reanalysis data in 

high latitudes than in low latitudes; indeed, the flow at 

high latitudes may be more robust. On the other hand, 

the proposition that tropical cyclones move with some 

weighted vertical mean flow plus a correction becomes 

more dubious as extratropical transition occurs.

The model used to predict in-

tensity evolution has no explicit 

treatment of extratropical interac-

tions, though some of this effect in 

surface winds may be captured, as 

discussed in appendix C, by add-

ing the translation speed to the 

azimuthal winds.

Cumulative frequency distribu-

tions of the maximum wind speed 

within 100 km of downtown Boston 

from both methods are compared 

to HURDAT and to each other in 

Fig. 8. The HURDAT distributions 

are based on only 27 events, so cau-

tion should be used in interpreting 

the results. There are large differenc-

es in low-intensity events between 

the two methods, with a substan-

tially larger number of weak events 

when using method 2. This may be 

owing to artificially large survival 

rates of weak storms in method 2, in 

which there are more slow-moving 

storms that affect Boston. The two 

methods are somewhat more consistent in frequen-

cies of high-intensity events, though there are still 

generally more in method 2.

The track of the most intense storm affecting 

downtown Boston in method 2, with peak winds of 

84 kts, is shown in Fig. 9, together with the evolution 

of key quantities along the track. Much of the high 

wind speed in the Northeast is attributable to the 

rapid forward movement of the storm. As shown 

in Fig. 10, 93 of the 100 most intense storms affect-

ing Boston in method 2 originate in the tropical 

Atlantic—6 form in the Caribbean, and 1 originates 

in the Gulf of Mexico and travels across peninsular 

Florida. Also show in Fig. 10 is the track of Hurricane 

Bob of 1991, the most recent storm to produce hur-

ricane-force winds within 100 km of Boston. Its track 

falls well within the envelope of the 100 most intense 

storms of method 2.

SUMMARY. Dealing with natural hazards, from 

creating building codes to setting insurance premi-

ums and planning for evacuations and relief efforts, 

depends on an accurate assessment of risk. Estimates 

of hurricane wind risk based directly on the histori-

cal record suffer from the overall scarcity of events, 

particularly in regions that experience infrequent 

but sometimes devastating storms. Even in regions 

suffering a high frequency of events, fitting standard 

FIG. 8. Cumulative histograms of frequency of ex-
ceedence of wind speed within 100 km of downtown 
Boston. Results from HURDAT data (black) are com-
pared to model data for method 1 (red) and method 
2 (blue). There are 27 events in the HURDAT sample 
versus 3,000 in methods 1 and 2.
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probability distribution functions to observations may 

be inaccurate at the high-intensity end of the distribu-

tion, which is based on sparse data but accounts for 

a disproportionate amount of injury, loss of life, and 

destruction. Here we have attempted to circumvent 

some of these limitations by synthesizing large num-

bers of storm tracks and then running a deterministic 

hurricane intensity model along each track. This has 

the advantage of ensuring that the intensity of storms 

comforms broadly to the underlying physics, including 

the natural limitations imposed by potential intensity, 

ocean coupling, vertical wind shear, and landfall.

To synthesize hurricane tracks, we developed and 

tested two quite independent methods. The first con-

structs each track as a Markov chain whose probabili-

ty of vector displacement change depends on position, 

season, and the previous 6-h vector displacement, 

with the statistics determined by standard distribu-

tion functions fitted to observed track data. The sec-

ond postulates that hurricanes move with a weighted 

average of upper- and lower-tropospheric flow plus a 

“beta drift” correction. The flow is generated using 

synthetic time series of wind whose monthly mean, 

variance, and covariance conform to statistics derived 

from reanalysis data and whose kinetic energy obeys 

the observed ω–3 frequency distribution characteristic 

of geostrophic turbulence. Shear derived from these 

synthetic flows is used as input to the intensity model 

in both track methods. The statistics of storm motion 

produced by both methods conform well to observed 

displacement statistics and to each other.

Wind exceedence probabilities for Miami, Florida, 

generated using both track methods agree well 

with each other, with histograms based directly 

on HURDAT, and with estimates stemming from 

previously published research. Wind probabilities at 

Boston, Massachusetts, however, reveal the compara-

tive strengths and weaknesses of the two methods. 

Storms affecting high-latitude locations are almost 

always inf luenced by the interaction of tropical 

and extratropical systems; such an interaction is 

represented in the present work only by adding the 

storm’s translation speed to its tangential wind. Our 

second track method therefore cannot capture the 

effects of nonlinear interactions between tropical 

and extratropical systems, whereby either or both 

system may be intensified, giving a translation speed 

in excess of that which would have been produced 

by a strictly linear superposition of the preexist-

ing systems. This effect is, however, represented in 

our first track method, because it is reflected in the 

displacement statistics used in the Markov chain. 

On the other hand, the wind shear affecting storms 

generated by the first track method is independent 

of the storm motion. This may yield possibly large 

biases in tracks taken by the most severe events, as 

illustrated by Fig. 7. In addition, the second method 

may be used to generate tracks wherever the climato-

logical reanalysis winds are deemed reliable, whereas 

the quality of tracks generated using the first method 

may be compromised in regions with little historical 

data. Both methods rely on an accurate estimate of the 

space–time distribution of storm generation.

FIG. 9. As in Fig. 6, but for the most intense of the 3,000 
storms in the sample of storms affecting downtown 
Boston, using method 2. Dates are in August.

FIG. 10. Tracks of the 100 most intense of the 3,000 
storms in the sample of storms affecting downtown 
Boston, using method 2. Shown for comparison (in 
black) is the observed track of Hurricane Bob of 1991.
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To the extent that one has reliable characteriza-

tions of the interannual to interdecadel variation of 

atmospheric winds, for example, owing to El Niño 

(Gray 1984), the Atlantic Multidecadel Oscillation 

(Goldenberg et al. 2001), or the North Atlantic 

Oscillation (Elsner et al. 2000), and tropical cyclo-

genesis distributions, or a prediction of how they 

might change in a future climate, the second track 

method (and, to a lesser extent the first) can be used 

to estimate corresponding changes in hurricane 

wind risk. This is a subject of ongoing research by 

our group. One factor that is known to inf luence 

hurricane intensity is upper-ocean thermal vari-

ability. We are working to characterize the statistics 

of such variability and to incorporate this in our 

wind risk models.
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APPENDIX A: SYNTHETIC TRACK GEN-
ERATION USING MARKOV CHAINS. Our 

statistical approach to constructing synthetic tracks 

can be divided into three phases. First, a smooth, 

discrete space–time genesis probability distribution is 

constructed from the HURDAT (Jarvinen et al. 1984) 

track database and genesis events are sampled from 

this distribution. (For this purpose, we use data only 

from 1970 and later, when global storm detection by 

satellite is regarded as being complete.) Second, each 

sample is integrated forward in 6-h steps as a Markov 

chain (Lange 2003), using translation speed and 

direction and their rates of change as state variables. 

Transition probabilities for the Markov chain are con-

structed using variable-resolution, kernel-smoothed 

nonparametric densities conditioned on a prior state, 

time, and position.

The Markov chain model is motivated by the fact 

that the temporal autocorrelation spectra of speed 

and angles suggest meaningful correlation length 

scales of no longer than three (6 h) time units, in-

dicating a colored process that is well modeled as a 

Markov process (Lange 2003). We chose these state 

variables because we found that they can better repre-

sent track continuity than a latitude–longitude–time 

parameterization. We use kernel-smoothed, variable-

resolution representations (Wand and Jones 1994), 

motivated by the necessity to produce distributions 

that are not prone to sampling failures.

Tracks are terminated using two criteria: the first 

is a termination probability density function (PDF) 

constructed in a similar manner to the genesis PDF 

from HURDAT and, the second is when searches 

at multiple space–time resolutions fail to provide 

evidence for a transition. We continue tracks over 

land and cold water, because our intensity estima-

tor will naturally allow storms to decay under such 

circumstances. All of the Atlantic track data were de-

rived from the HURDAT track database maintained 

by the NOAA Tropical Prediction Center, covering 

the period of 1851–2002. For the purpose of deriving 

track-displacement statistics, we used data from this 

entire period, though comparison with calculations 

using only post-1970 data show some differences (see 

appendix B). We have also used TPC and JTWC track 

data to generate tracks in other ocean basins, but do 

not report on those results here.

Details of this track synthesizer are presented in 

the online supplement (DOI:10.1175/BAMS-87-3-

Emanuel) to this paper. Here we present some statisti-

cal analyses of tracks generated using this method.

Figure A1 compares a sample of 60 tracks generated 

by this technique to a random sample of HURDAT 

tracks. In general, the shape of the tracks is similar, 

though the synthetic tracks are a bit smoother. Figure 1 

FIG. A1. Sixty random tracks from (a) the Markov chain method, and (b) HURDAT data.
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compares the statistics of 6-h zonal and meridional dis-

placements of 1000 synthetic tracks to all 1289 tracks 

in the HURDAT data for a region of the North Atlantic 

bounded by 10° and 30°N latitude and 80° and 30°W 

longitude. We choose this region as one in which the 

synthetic tracks are likely to be maintained in an inten-

sity model, as opposed to regions like that just east of 

eastern North America, where many synthetic tracks 

have had large trajectories over land and are therefore 

unlikely to be maintained by an intensity model. The 

comparison is excellent, as one might expect, given that 

the statistics of the HURDAT data have been used to 

construct the synthetic tracks.

Another source of comparison was obtained 

from an experiment for quantifying the statistical 

dependence between the variables involved in the 

statistical model. The panel on the left of Fig. A2 is a 

matrix consisting of rates of change of direction and 

speed, and direction, speed, position, and time, with 

subscripts indicating lag (read from top to bottom or 

from right to left). This matrix is symmetric and the 

color reflects the normalized mutual information (Li 

et al. 2003) given by

 

Here, I is the mutual information (Shannon 1948), 

and H is the entropy (Cover and Thomas 1991), 

defined as

 

The matrix for HURDAT shows a pattern of depen-

dency that is replicated with good fidelity by our 

simulation.

APPENDIX B: TRACK GENERATION FROM 
SYNTHETIC WIND TIME SERIES. The object 

here is to produce synthetic times series of wind used 

both to generate hurricane tracks, under the assump-

tion that storms move with some vertical mean wind 

plus a drift term, and to generate realistically varying 

environmental wind shear along the track of each 

storm to use in the storm intensity model. So to keep 

matters simple, we choose to use winds only at the 

850- and 250-hPa levels. This choice is motivated by 

the finding of DeMaria and Kaplan (1994) that the 

wind shear between these two levels is well correlated 

with hurricane intensity change, and the shear between 

these levels is also used in the operational application 

of the coupled hurricane intensity prediction model 

described in appendix C. The motion of each storm 

is modeled as a weighted average of flow at these two 

levels, plus a beta-drift correction. This is similar to the 

“deep” version of the beta and advection model (Marks 

1992), which uses a weighted average flow between 850 

and 200 hPa. It should be noted that inclusion of levels 

other than at 850 and 200 hPa may slightly improve 

FIG. A2. The normalized mutual information between variables used to represent (a) a hurricane from HURDAT 
and (b) from tracks synthesized using Markov chains. The mutual information is a measure of statistical simi-
larity; here it is color coded according to the colorbar at right. The variables are time t, x, y, track direction a, 
translation speed s, time rate of change of angle, ar, and rate of change of translation speed sr. The subscripts 
denote time lags; thus, s–6 represents translation speed 6 h earlier.
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the results, based on experience with the beta and 

advection model.

We begin by generating a synthetic time series 

of the zonal wind component at 250 hPa, modeled 

as a Fourier series in time with a random phase 

and designed to have the observed monthly mean 

and variance from the mean. Using the same tech-

nique, we then generate a synthetic time series of 

the meridional wind component at 250 hPa, but, in 

addition to the constraints placed on the zonal wind, 

we constrain this time series to have the observed 

covariance with the 250-hPa zonal wind. Finally, 

synthetic time series of both of the 850-hPa wind 

components are generated and constrained to have 

the observed means, variances, and covariances with 

their respective components at 250 hPa and with 

each other. (We do not constrain the 850-hPa wind 

components to have the observed covariance with the 

opposite components at 250 hPa.) Note that we do not 

explicitly model spatial correlations of the mean flow. 

In effect, we assume that the time scale over which a 

hurricane traverses typical length scales associated 

with time-varying synoptic-scale systems is large 

compared to the time scale of fluctuations at a fixed 

point in space. Notwithstanding this, each storm will, 

of course, feel the effects of spatial variability of the 

monthly mean flow and its variance. Details of this 

method are presented in the “Generation of synthetic 

time series of 250- and 850-hPa flow” section of the 

online supplement to this paper (DOI:10.1175/BAMS-

87-3-Emanuel).

Monthly means, variances, and covariances were 

calculated using 40 yr of data from the NCEP–NCAR 

reanalysis dataset (Kalnay et al. 1996). Given time 

series of the flow at 250 and 850 hPa, it is straightfor-

ward to calculate the magnitude of the 850–250-hPa 

shear used by the hurricane intensity model described 

in appendix C. Hurricane tracks were synthesized 

from a weighted mean of the 250- and 850-hPa flow 

plus a correction for beta drift:

 V
track

 = αV
850

 + (1 – α)V
250

 + V
β
, (B1)

where V
850

 and V
250

 are the vector flows at the two pres-

sure levels, synthesized using the technique described 

in the online supplement to this paper (DOI:10.1175/

BAMS-87-3-Emanuel), α is a constant weight, and V
β
 

is a constant-vector beta-drift term. The weight α and 

the vector beta drift V
β
 are chosen somewhat subjec-

tively to optimize comparisons of the synthesized and 

observed displacement statistics. In the present work, 

we take α = 0.8, μ
β
 = 0 m s–1, and ν

β
 = 2.5 m s–1.

Given V
track

 from (1), we integrate 

 

forward in time (using a 30-min forward time step) 

to find the position vector x along each track. The 

reanalysis mean fields, variances, and covariances 

are then linearly interpolated in space and time to the 

new position (and new date), assigning the monthly 

mean to the 15th day of each month, and the posi-

tion equation is stepped forward again. Unlike the 

previous track generation method, we do not have the 

problem of running into regions where the generating 

statistics become poor, so instead we terminate the 

track if its maximum (storm relative) winds fall below 

13 m s–1, if it travels outside a predefined latitude–lon-

gitude box, or after 30 days, whichever happens first. 

For Atlantic storms, the bounding box is defined by 

4° and 50°N, 5° and 110°W.

Figure B1 shows an example of 60 randomly 

selected tracks produced by this method; these 

may be compared to 60 tracks generated by the first 

method (Fig. A1a) and to 60 randomly selected his-

torical tracks (Fig. A1b). In general, this track gen-

eration method produces somewhat more variable 

tracks than those produced with the Markov chain, 

with more tracks executing loops, etc. The zonal 

and meridional 6-h displacement statistics for 1000 

tracks in a region of the North Atlantic bounded by 

10° and 30°N latitude and 80° and 30°W longitude 

are shown in Fig. 2 and compared to the statistics 

of all 1289 historical tracks. Figure 2 should also be 

compared to Fig. 1, showing the same statistics for 

the first track method. The second track method 

produces 6-h displacement distributions that are 

slightly too broad when compared to either the 

historical tracks or the tracks produced by the 

first method.

FIG. B1. Sixty randomly selected tracks using the sec-
ond track generation method.
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Several factors may explain the 

inferior statistics of the second track 

method. First, the synthetic time 

series of winds used to generate the 

tracks are only approximations of real 

wind fields. Second, the notion that 

hurricanes move with some weighted 

mean of the 250- and 850-hPa wind 

plus a beta-drift correction is itself a 

rather crude approximation, espe-

cially considering that the beta drift 

is variable and that other factors, such 

as vertical shear, contribute to the 

storm's alteration of the background 

potential vorticity distribution. Not 

all f lows are conducive to tropical 

cyclone maintenance, and while the 

statistics that underlie the first track 

generation method no doubt reflect 

this, the second method has no way 

of accounting for this. But when we run our intensity 

model along each track, those going through flows 

unfavorable to hurricane maintenance will naturally 

terminate, and this may be expected to affect the track 

statistics. We have recalculated the displacement sta-

tistics after running the intensity model, and in the 

latitude–longitude box described in the preceding 

paragraph, the statistics are not appreciably different. 

Finally, it may be that the HURDAT displacement sta-

tistics are themselves biased, especially before the satel-

lite era, when large segments of the open-ocean tracks 

had to be inferred from sparse observations. To assess 

this effect, we recalculated the displacement statistics 

using HURDAT data only after 1970 (and renormal-

izing the count of the synthesized tracks). The result 

for the zonal displacements, shown in Fig. B2, shows 

a better match, suggesting that the earlier HURDAT 

data are indeed biased. (The results for the meridional 

displacements also show improvement.)

APPENDIX C: DETERMINISTIC MODELING 
OF HURRICANE INTENSITY. To estimate the 

intensity of hurricanes following the synthetic tracks, 

we run a deterministic numerical simulation of hur-

ricane intensity along each track, using the model 

developed by Emanuel et al. (2004). This is a simple 

axisymmetric balance model coupled to an equally 

simple one-dimensional ocean model. The model is 

phrased in angular momentum coordinates, yielding 

exceptionally high resolution (as high as 1 km) in the 

critical eyewall region of the storm. Given a storm 

track, the model is integrated forward in time to yield 

a prediction of wind speed. Because the atmospheric 

model is axisymmetric, it cannot explicitly account 

for the important influence of environmental wind 

shear, and this must therefore be represented para-

metrically; the procedure for doing this is described 

in detail in Emanuel et al. (2004). Bathymetry and to-

pography are included, and landfall is represented by 

reducing the surface enthalpy exchange coefficient, 

depending on the elevation of the land. The model is 

run quasi-operationally at NHC and JTWC and gives 

forecasts that are comparable in skill to other forecast 

methods (Emanuel and Rappaport 2000).

In addition to the storm track, the model requires 

estimates of potential intensity, upper-ocean thermal 

structure, and environmental wind shear along the 

track. In this application, we use monthly mean 

climatological potential intensity calculated from 

NCEP–NCAR reanalysis data, linearly interpo-

lated to the storm position and in time to the date in 

question. As shown by Emanuel et al. (2004), use of 

real-time potential intensity offers only a marginal 

improvement over the climatological means. As in the 

quasi-operational model, we use monthly mean cli-

matological upper-ocean thermal structure obtained 

from Levitus (1982). On the other hand, Emanuel 

et al. (2004) showed that upper-ocean thermal vari-

ability can have a significant influence on hurricane 

intensity in this model. Although we do not account 

for such variability here, we intend to include this 

in future work, using sea surface altimetry data to 

help quantify the climatological variability of the 

upper ocean.

Vertical wind shear is an important influence on 

hurricane intensity, in this model as in nature. Here 

FIG. B2. Same as Fig. 2a, but using only post-1970 HURDAT tracks.
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we apply the wind shear calculated from synthetic 

time series of winds at 850 and 250 hPa, as described 

in appendix B. In the case of the first track method, 

using Markov chains to generate tracks, this wind 

shear will be independent of the track displacements 

(though, of course, it will vary with position along the 

track and with season), but, in the second method, 

the same wind fields are used to generate tracks and 

shear, so the two will be mutually consistent.

In the quasi-operational application of the inten-

sity model, the integration is initialized by matching 

the time evolution of the intensity to that of the ob-

served storm prior to the initialization time. Here we 

simply prescribe an initial intensity of 15 m s–1 and 

an initial intensification rate of about 6 m s–1 day–1. 

If and when the predicted (storm relative) maximum 

drops below 13 m s–1, the storm is assumed to have 

dissipated and the integration is discontinued. In rare 

cases, the storm may reach the end of a track before 

this happens.

The rate of genesis of tropical cyclones is taken 

from climatology, as previously described, and is 

independent of the wind field taken at the begin-

ning of the synthetic time series whose generation 

is described in detail in the “Generation of synthetic 

time series of 250- and 850-hPa flow” section of the 

online supplement to this paper (DOI:10.1175/BAMS-

87-3-Emanuel). While it is unrealistic to assume that 

storms will be generated under conditions of large 

shear, the intensity model will quickly kill storms 

under these conditions. To save integration time, 

we regenerate the random wind series whenever the 

vertical shear at the genesis point exceeds 12 m s–1.

The intensity model takes, on the average, about 

15 s of wall-clock time to run a single track on a typi-

cal workstation computer. Thus, it is feasible to run a 

large number of tracks. For the purposes of this paper, 

we chose a limited number of sites of interest and then 

created a large number (on the order of 104) of syn-

thetic tracks passing within a specified radius of the 

site in question, running the intensity model along 

each track. (For high-latitude sites, such as Boston, 

only a small fraction of storms survive to influence 

the site, and this is accounted for in accumulating 

wind statistics for the site.)

To estimate wind speeds at fixed points in space, 

it is necessary to estimate the radial structure of the 

storm’s wind field. While the intensity model does 

predict such structure, it is not particularly realistic, 

owing to the coarse radial resolution outside the eye-

wall, and we elect instead to use a parametric radial 

wind profile fitted to the model-predicted maximum 

wind speed and radius of maximum winds. We use 

the parametric form developed by Emanuel (2004):

where V
m

 is the maximum wind speed, r is radius, r
m

 

is the radius of maximum winds, r
0
 is an outer radius 

at which the winds vanish, and b, m, and n are param-

eters governing the shape of the wind profile. Here we 

take r
0
 = 1200 km, b = 1/4, m = 1.6, and n = 0.9. (Here, 

V
m

 and r
m

 are supplied by the intensity model.) The 

liberal estimate of r
0
 only affects the outer structure 

of the vortex and thus should only affect probability 

assessments at low wind speeds. The structure given 

by (C1) is similar to that of the parametric vortex 

developed by Holland (1980).

To this axisymmetric wind field we add a fraction 

of the storm’s translation velocity in the direction of 

the storm’s motion. We find, empirically, that rela-

tively good agreement with historical data is obtained 

using 60% of the translation speed.

A weakness of the present approach is that dy-

namical interactions with extratropical systems 

are specifically excluded. Were such interactions 

linear, and were both the tropical cyclone and 

the extratropical systems with which it interacts 

quasigeostrophic, then the wind fields of all of 

the systems could be linearly superposed and the 

extratropical interaction would be accounted for 

by having added the translation speed to the wind 

speed. But extratropical transition is no doubt 

strongly nonlinear, and the circulation around 

the tropical cyclone may be expected, under some 

circumstances, to enhance the amplitude of ex-

tratropical potential vorticity anomalies, so one 

might expect that the present method would not 

deal adequately with extreme cases of extratropi-
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cal transition. A case in point is the New England 

Hurricane of 1938, whose translation velocity at 

landfall is estimated to have been around 30 m s–1 

(Minsinger 1988). It is hardly credible that such a 

velocity would result from the weighted mean of 

the 850- and 250-hPa f low that is used to calculate 

translation velocities by the second track method 

presented in this study, though it would presum-

ably be represented in the track statistics used in 

the Markov chain approach.

For each storm, we calculated the maximum wind 

speed experienced at the site of interest as well as the 

maximum wind speed experienced within a fixed 

distance from that site. Because the model was tuned 

for maximum winds reported by NHC, we take these 

winds to represent 1-min averages at an altitude of 10 m. 

By summing over the total number of events, annual 

wind exceedence probabilities and return periods can 

be estimated and these can be compared to estimates 

based directly on historical data such as HURDAT.
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