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ABSTRACT

We have constructed a simple, balanced, axisymmetric model as a means of understanding the existence of
the threshold amplitude for tropical cyclogenesis discovered by Rotunno and Emanuel. The model is similar
to Ooyama’s but is phrased in Schubert and Hack’s potential radius coordinates.

The essential difference between this and other balanced models lies in the representation of convective
clouds. In the present model the cumulus updraft mass flux depends simply and directly on the buoyancy (on
angular momentum surfaces) of lifted subcloud-layer air and is not explicitly constrained by moisture convergence.
The downdraft mass flux is equal to the updraft flux multiplied by (1 — ¢), where e is the precipitation efficiency.
The complete spectrum of convective clouds in nature is here represented by two extremes: deep clouds with
a precipitation efficiency of one, and shallow, nonprecipitating clouds. The former stabilize the atmosphere
both by heating the free atmosphere and drying out the subcloud layer, whereas the shallow clouds stabilize
only through drying of the subcloud layer. The two cloud types may coexist. In the crude vertical structure of
the model, shallow clouds have the same thermodynamic effect as precipitation-induced downdrafts. Model
runs without shallow clouds but with precipitation-induced downdrafts produce the same qualitative features
as the runs with shallow clouds.

The existence of low-precipitation-efficiency clouds is crucial to the model hurricane development. When a
weak vortex is placed in contact with the sea surface, the enhanced surface fluxes together with adiabatic cooling
induced by Ekman pumping destabilize the atmosphere. The initial convective clouds that form have relatively
low precipitation efficiency and thus only partially compensate for the adiabatic cooling associated with the
Ekman pumping. They do, however, import low 8, air into the subcloud layer. The vortex core therefore cools
and the vortex decays. Only when the anomalous surface fluxes are strong enough, and/or the middle troposphere
humid enough does the subcloud layer 6, increase, and with it the temperature of the core and the amplitude
of the cyclone.

The low-precipitation-efficiency clouds play a dual role, however. Once amplification begins, these clouds
continue to dominate the convection outside the eyewall, keeping the boundary layer 6, relatively low. Without
low-precipitation-efficiency clouds, large heating occurs in the outer region and the vortex expands and weakens.
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1. Introduction -

Tropical weather forecasters have long known that

tropical cyclones arise out of preexisting disturbances -

such as easterly waves or cyclonic. disturbances on
fronts that penetrate the tropics (Anthes 1982; Riehl
1954). Only when certain necessary conditions are ful-
filled will tropical cyclones develop (Gray 1968), but
even when these conditions are met only a small per-
centage of potential initiating disturbances result in
tropical storms (Bergeron 1954). Sufficient conditions
for tropical cyclogenesis remain enigmatic.

In spite of forecasting experience, early genesis the-
ories assumed that the mean state of the tropical at-
mosphere is linearly unstable to tropical cyclone-like
disturbances. The problem for the early theorists was
principally one of explaining the scale of the incipient
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cyclones, since conditional instability always gives rise
to disturbances of very small horizontal scale (see
Yanai 1964). The work of Ooyama (1964) and Char-
ney and Eliassen (1964 ) attempted to overcome this
problem by relating heating to vertical velocity at the
top of the boundary layer. Depending on the choice of
the vertical distribution of heating, growing distur-
bances with finite scale can be obtained. Numerical
simulations made by Anthes (1972a) showed that axi-
symmetric models could produce realistic tropical cy-
clones starting from very small perturbations in a con-
ditionally unstable atmosphere.

Common to all the early theories, including Con-
ditional Instability of the Second Kind (CISK), is the
assumption that the tropical atmosphere is condition-
ally unstable and that tropical cyclones result from a
linear instability in which infinitesimal disturbances
grow from the mean state of the tropical atmosphere.
The existence of an energy reservoir associated with
conditional instability has been challenged by Betts
(1982) and Xu and Emanuel (1989). They showed
that soundings from the deep tropics are nearly neutral
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to reversible ascent in the lower and middle tropo-
sphere. Xu and Emanuel (1989) demonstrate that the
density of a reversibly displaced parcel from the sub-
cloud layer is the minimum that can be obtained in a
nonprecipitating cloud and that the reversible moist
adiabat is thus the appropriate measure of marginal
stability in the tropical atmosphere. As marginal sta-
bility characterizes all very high Reynolds number
convection, it is not surprising that the convective
tropical atmosphere exhibits marginally stable sound-
ings. The maintenance of a moist—-neutral state is also
the basis of the Arakawa-Schubert (1974) convective
representation. Without convective available potential
energy, the energy for the CISK process is absent.

In contrast to genesis theories, explanations of the
maintenance of mature hurricanes have recognized for
almost 40 years the importance of the oceanic heat
source (e.g., see Kleinschmidt 1951; Riehl 1954). The
paramount role of heat transfer from the ocean was
conclusively established by Ooyama (1969), and
Emanuel (1986) demonstrated that the intensity of
mature tropical cyclones could be explained without
reference to ambient conditional instability. The ther-
modynamic disequilibrium between ocean and at-
mosphere is now universally recognized as the energy
source of mature tropical cyclones.

The lack of an observational basis for the idea that
tropical cyclones develop from a linear instability, to-
gether with the absence of a significant reservoir of
convective energy in the tropics, led Emanuel (1986)
to propose that tropical cyclones result from a finite-
amplitude instability involving the feedback between
the cyclone and wind-induced evaporation. This idea
was tested by Rotunno and Emanuel (1987; hereinafter
referred to as RE), who performed numerical integra-
tions with a nonhydrostatic primitive-equation model
that explicitly resolves convective clouds. The model
atmosphere was preconditioned by allowing convective
clouds to grow and decay until a convectively neutral
state was achieved. A finite-amplitude vortex was then
placed in the neutral atmosphere. .

The principal finding of RE was that weak initial
vortices decay while sufficiently strong ones amplify
into mature tropical cyclones, provided their initial
horizontal scale is not too large. This finding is well in
accord with the observation that even when the nec-
essary conditions are satisfied, real tropical cyclones do
not arise spontaneously but invariably develop out of
preexisting disturbances of presumably independent
dynamical origin.

It is the purpose of the present work to explore the
reasons for the finite-amplitude behavior found in the
simulations of RE. Rather than attempt to infer these
reasons from the complex fields of a complete model,
we have elected to construct a far simpler model that
retains only the essential physics. By omitting certain
physical processes, one can hope to discover just what
is and what is not essential. In section 2 we describe
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the model in detail and discuss the model’s sensitivity
to numerical parameters such as resolution and vis-
cosity. The principal results of this work are presented
in section 3, in which the finite-amplitude behavior of
the model vortex is explored. The sensitivity of the
model to other parameters such as initial vortex ge-
ometry and middle tropospheric moisture is discussed
in section 4. Section 5 contains concluding remarks.

2. Description of the model®

The basic design of the simplified model is similar
to that of Ooyama (1969) except that it is phrased in
angular momentum coordinates and contains a rep-
resentation of cumulus convection that is based on local
conditional (slantwise) instability alone and does not
explicitly depend on moisture convergence. The initial
state of the model is one of (slantwise) conditional
neutrality, as in RE. The model assumes the atmo-
sphere on the cyclone scale to be in gradient wind and
hydrostatic balance. '

The heart of the model is described in this chapter.
For the reader uninterested in the details of the model,
the dimensionless equations are summarized in section
2i, while the scaling and model parameters are listed

- in Tables 1 and 2. Section 2a and Fig. 1 describe the

model’s structure. The schema of this section is as fol-
lows:

a. Coordinate system and model structure

b. Balance condition

¢. Conservation of mass

d. Conservation of angular momentum

e. Saturation entropy

f. Conservation of entropy (8,)

8. Representation of cumulus convection

h. Scaling appropriate for air-sea interaction sys-
tems

i. Summary of dimensionless model equations and
parameters

J. Boundary and initial conditions and numerical
scheme.

In sections 2a-g the final results of derivations are en-
closed in boxes.

a. Coordinate system and model structure

The model is time dependent and axisymmetric,
with the two spatial coordinates being pressure and
“potential radius,” R. The latter variable was defined

! The model is written in standard FORTRAN 77 and is highly
documented. It is designed to be completely transportable and “user
friendly” and may be run on personal computers. The control sim-
ulation described herein, when run to 12 time units (approximately
190 simulated hours), uses 1 minute, 13 seconds of CPU time on a
DEC VAX 8550. The model is available from the author for the cost
of reproduction and mailing.
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by Schubert and Hack (1983) as the radius at which
a parcel would attain zero tangential velocity if dis-
placed radially while conserving angular momentum.
It is proportional to the square root of the absolute
angular momentum per unit mass:

f 2 f 2
) Re=rV+ > re,
where fis the Coriolis parameter (assumed constant),
r the radius from the storm center, and ¥ the azimuthal
velocity.

There are three reasons for using R as the model’s
radial coordinate. Since R is conserved in the absence
of friction, the only radial advections in R coordinates
will be due to frictional dissipation. Second, R surfaces
will become densely packed in regions of high vorticity
such as the eyewall, although regions of anticyclonic
relative vorticity will be relatively poorly represented.
The main reason for using R coordinates, however, is
that we will suppose that moist convection generally
acts to reduce the atmosphere to a state of neutrality
along angular momentum (R) surfaces, rather than in
the vertical. This appeared to be true in the model sim-
ulations of RE with explicit convection, and has been
observed to be the case in middle-latitude cyclones
(Emanuel 1988a). Kleinschmidt (1951 ) assumed this
to be the case in tropical cyclones. By using R coor-
dinates, a relaxation to moist adiabatic lapsé rates in
the model’s vertical coordinate is, in effect, a relaxation
along angular momentum surfaces. This process is de-
scribed in section 2g.

The vertical structure of the model is illustrated in
Fig. 1. A mass streamfunction, y, is calculated at the
middle level of the model from a Sawyer-Eliassen
equation (section 2j). The streamfunction at the top
of the boundary layer (yo) is diagnosed from a nonlin-

(1)

FIG. 1. Vertical structure of numerical model. Streamfunction is
defined at the middle level and top of the subcloud layer and physical
radius is calculated at the top and at the subcloud layer. The tem-
perature variable, s*, represents a vertically averaged value but is
ascribed to the middle level. Entropy, s, is calculated in the subcloud
layer and within the lower-tropospheric layer. The subsidiary tem-
perature variable, s¥%, is used to predict the shallow cumulus activity.
Deep clouds lift mass from the subcloud layer to the top layer while
shallow clouds exchange entropy between the lower troposphere and
the subcloud layer without producing a net mass flux.
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ear Ekman-layer formulation described in section 2d.
The model’s temperature variable is saturation- moist
entropy, s*, which is the moist entropy the atmosphere
would have if it were saturated while holding temper-
ature and pressure constant. It is defined approximately
(neglecting effects of water substance on heat capacities,
etc.) by

*
Lt R 2,
T Do
where T and p are temperature and pressure, p, a ref-
erence pressure, r* the saturation mixing ratio, L, the
heat of vaporization, and ¢, and R are the heat capacity
at constant pressure and gas constant. Neglecting effects
of variable water content, density may be regarded as
a function of pressure and s* alone. The saturation
moist entropy is related to saturation equivalent po-
tential temperature, 8% , by '

s* =¢, InT +

s* =c,Inf¥.

The state of slantwise conditional neutrality is char-
acterized by constant s* (moist adiabatic temperature
lapse rate) along angular momentum surfaces, with s*
equal to the actual moist entropy, s, in the boundary
layer (again neglecting the effect of variable water con-
tent onr density). Thus we take s* to be approximately
uniform along R surfaces, as discussed above. For con-
venience, we ascribe its value to the model’s middle
level. An additional temperature variable, s¥,, is pre-
dicted at the middle of the lower layer. Its value is used
only to predict the shallow clouds and does not directly
affect the model dynamics.

The moist entropy itself is defined in the model’s
subcloud layer (s5;) and in the middle of the lower tro-
pospheric layer (s,,). Entropy is related to equivalent
potential temperature by

§ = ¢, Inb,.

The subcloud-layer entropy is controlled by surface
fluxes, radial advection across R surfaces due to the
sink of angular momentum in the boundary layer,
fluxes by the mean flow through the top of the bound-
ary layer, and exchange of entropy by shallow cumulus
clouds. The prediction of lower-tropospheric entropy
(sm) turns out to be crucial to the budget of subcloud-
layer entropy, which in turn influences the cloud mass
fluxes, as described in section 2g.

The two variables related to azimuthal (tangential )
velocity are r; and r,, the physical radii of R surfaces
where they intersect the top of the subcloud layer and
the tropopause, respectively. Knowledge of R and r is
sufficient to determine the local azimuthal velocity.

b. Balance condition

The fundamental balance condition of the madel is
the thermal wind relation obtained by assuming slant-
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wise neutrality and hydrostatic and gradient balance
as derived by Emanuel (1986). It may be written

1 1 2 ds*
e e BT aR

(2)

where T and 7; are the absolute temperatures of the
sea surface and tropopause, respectively. Each of these
temperatures is held constant. The derivation of (2)
assumes that s* is constant along R surfaces; this is the
condition of slantwise neutrality (Emanuel 1988a). To
the extent that s* is not constant, it may be taken to
be the vertically averaged value in the model. The re-
lation (2) shows that when the radial gradient of s* is
negative, the R surfaces slope outward with height (r,
> r;), implying anticyclonic shear. .

¢. Conservation of mass

The conservation equations in this model are for-
mulated in a way that explicitly separates variables
outside of convective clouds from those inside the

. clouds, as originally suggested by Raymond (1983).
The fields outside of clouds are calculated explicitly,
while those on the inside are parameterized. The con-
servation equations of the model therefore pertain to
flow outside of clouds and the clouds themselves appear
as sources and sinks of mass and entropy (but not mo-
mentum since we implicitly account for this by con-
vecting along angular momentum surfaces).

In physical cylindrical coordinates, the hydrostatic
form of the mass continuity equation has the form

14

3
;5;(ru)+5;[(1 = 0)wg] = (3)

a
- 5 (Uwc);
where u is the radial velocity averaged over both cloud
and noncloud areas, w, and w. are the Lagrangian time
derivatives of pressure (the vertical velocities) in the
environment of clouds and within clouds, respectively,
and ¢ is the fractional areal coverage of convective
clouds. The right-hand side of (3) represents mass
sources and sinks due to convective clouds and will be
parameterized as described in section 2g.

It proves convenient to replace the variables # and
(1 — o)w, by new variables ¥ and G, defined as follows:

_w
= e (4)
(1~ oy = — 2. )

The variable ¢ will be a mass streamfunction in the

r-p plane in the absence of convection. Substitution
of (4) and (5) into (3) shows that G is related to the
cumulus mass flux by

G= f ow.r'dr
o

(6)
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Thus G is the radially integrated cumulus mass flux.
Although (4) and (5) are expressed in physical coor-
dinates, the variables ¥ and G will naturally appear in
the transformed system, as will be shown presently.

d. Conservation of angular momentum

A relation expressing angular momentum conser-
vation is easily derived from the definition of radial
velocity:

dr 1d¢ 106G

i~ ""re rew D

where the latter equality comes from (4). Using the
chain rule, the above can be transformed 1nto potential-
radius coordinates, resulting in

or?  dR or? _ (9 9G
* B (aP aP) (8)

dt dR
where the new coordinates are time (7), pressure (P),
and potential radius (R). Partial derivatives with re-
spect to 7 and P hold R rather than r fixed. Terms
involving the vertical advection (dP/dt) cancel be-
tween the left- and right-hand sides of (8).

‘We next specialize (8) to the top, bottom, and
boundary layers indicated in Fig. 1. In the top layer,
we assume no friction (dR/dt = 0) as there is no solid
boundary there (and thus no Ekman pumping) and
since no internal diffusion seems to be necessary for
numerical stability. In this layer we approximate the .
derivative in (8) by finite differences:

w1
or AP

9)

where r, is the physical radius at the top of the model,
AP the pressure difference across each of the main
model layers, and G the integrated cumulus mass flux
at the middle level. The variable ¥ is now the stream-
function at the middle level and ¢ and G are assumed
to vanish at the model top.

In the bottom layer, we include radial diffusion of
momentum (see section 3b). From the definition of
potential radius (1), we have

dR _ dM

JR—

- =Dv:
dt a

(10)

where M is the absolute angular momentum and D, is
the frictional drag. We use an eddy viscosity formu-
lation for D,, as in RE. This gives

1 4

198 (5,9 (v

ry? ory ””arb rp

;s &
rb2 ’

a3
- L 2nZ 11
2r,2 dry (rb g dr, (n
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with the eddy viscosity related to the local deformation
by

v Vv
p—1 2—-—_—-——
g lar,, Ty
[ |0 R? .
_2lrb6rb rit )|’ (12)

where [ is a length scale. Here r,, is the physical radius
at the top of the subcloud layer. With this formulation,
and representing vertical derivatives by finite differ-
ences, (8) becomes in the lower layer

Wi 1ol (5)

(13)

or AP RIR\""7ar,\r}

with v given by (12) and where v is the streamfunction
at the top of the boundary layer, to be discussed pres-
ently. We have also assumed that the divergence of the
cumulus mass flux vanishes in the lower layer (as dis-
cussed in section 2g), with all the mass inflow coming
from the subcloud layer.

In the boundary layer itself, we shall assume that
the frictional term in (8) is quite large compared to
the local time derivative. We therefore approximate
(8) by a balance between inward advection and de-
struction of angular momentum. The drag term, D,,
in ( 10) is approximated by the vertical divergence of
the vertical flux of angular momentum: '

__0F,
v E%p>
where g is the acceleration of gravity and we assume
that 3/9P ~ 8/dp; i.e., that there is little baroclinity
in the boundary layer. Here F, is the azimuthal stress.

Using (14) and ignoring the time derivative in (8), the
latter becomes
g r 9rtdF,

% _9G g1 or
P 3P 2fROR 0P
We again make the reasonable assumption that R sur-
faces are nearly vertical in the boundary layer, so that

r # r(P). Then (15) may be integrated through the
depth of the boundary layer to give

D (14)

(15)

grs 9y

2 fR 6R

where F, is the azimuthal surface stress, and we have
assumed that the turbulent stress vanishes at the top,
of the boundary layer.

The boundary-layer formulation ( 16 ) states that the
flow through the top of the boundary layer is the sum
of that needed to balance the cumulus mass flux out
of the boundary layer and the radial gradient of the
frictional stress as in classical Ekman layers.

As in RE, the surface stress is calculated using the
aerodynamic drag law,

Yo=G~ Fq, (16)
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[ Fu= =poCol Vol Vs, | (17)

where pg is a mean surface density and Cp is a drag
coefficient, which (as in RE) is given by Deacon’s for-
mula;

(18)

where Cpg and Cp, are constants. The wind speed V,
in (17) and (18) is approximated by the azimuthal
wind at the top of the boundary layer. The dependence
of Cp on |V};] reflects the dependence of surface
roughness on wind speed over the ocean. We include
this wind dependence based on its importance in RE
and its inclusion in similar balanced models, such as
that of Ooyama (1969).

| Co = Coo+ Con W4, |

e. Saturation moist entropy

The saturation moist entropy, s*, is the model’s
central temperature variable and is directly linked to
the circulation through the thermal wind relation, (2).

* We do not separate this variable into in-cloud and out-
of-cloud parts, but instead use the approximation that
the temperature in clouds is approximately the same
as that of their environment.

The equation for the areally averaged dry entropy,
Sd, is

sy

-87-{-(1 — 0wy

9s4

sy dsq
dP

=Dsd+H— owc(aP

), (19)

where H represents convective heating and radiational
cooling and D, is a radial diffusion term that was found
to be necessary to prevent discontinuities from forming.
The term (ds;/dP). is the lapse rate of dry entropy
inside of clouds.

Following Arakawa and Schubert (1974 ), we assume
that most of the actual local temperature change is due
to subsidence outside of clouds, and that heating in
clouds is very nearly balanced by adiabatic’ cooling;
ie.,

where H.,q is the radiative heating.

As the temperature is only predicted at one level in
the model, we must take the static-stability term to be
a constant in (19). Since the temperature lapse rate
has already been assumed to be moist adiabatic on R
surfaces, the static stability itself will be in practice a
weak function of temperature.

Finally, we relate changes in saturation moist en-
tropy (s*) at constant pressure to changes in s, using
an elementary relation of moist thermodynamics de-

. rived in Emanuel (1986):

T
(85*) = T+ (35)p,
m
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where I'; and T',, are the dry and moist adiabatic lapse
rates, respectively. Then (19) may be written
as * I‘d an Fd .
—+—(1- — = Dgs + — Hpyq.
o 71, (1 T wagp = Dot g - Hra
As in RE, we use an eddy d‘iﬁ'uqion formulation for
D+ and Newtonian cooling for Hp.q:

(20)

1 9 Os*
Dy = —— — >
rbarb(rbyarb) (21)
and
T, .
T Haa = —rad(s* = sf), (22)

where rad is a Newtonian relaxation rate and s7 is the
saturation moist entropy of the basic state. The variable
ry is used throughout (21) rather than some vertically
interpolated value of r; this was found to be necessary
to prevent discontinuities from forming at the top of
the boundary layer. A cap is placed on H,4 in (22) so
that the cooling rate does not exceed about 2°C per
day, and as a crude means of incorporating the infrared

absorption by clouds, we turn off the radiative cooling

where the Ekman pumping is upward.

We also predict saturation moist entropy (s* ) in the
middle of the lower layer for the sole purpose of cal-
culating the shallow cumulus mass flux (see section
2g). We do not include a diffusion term here, and in-
terpolate the vertical velocity between the middle level
and the top of the boundary layer:

as; 1T, asd
Ty 42— o) (wa
o 12T, ap 1 7 D(wat v

= —rad(s% — sm). [(23)

Because the Ekman pumping

1 9y
Wao ( 1 3 ) s arb
is diagnosed rather than predicted, and because s% has
no direct dynamical feedback, it was found that s¥
calculated from (23) becomes absurdly large in regions
of Ekman suction. Therefore we impose the condition
that s¥ must be no larger than s*;

o

We also note that w, in (20) and (23) is evaluated
at the model’s middle level. From (5),

1y
r; 6r,-’

(25)

(1= 0)wg =~

where r; is the radius of R surfaces at the middle level.
" The value of r; may be obtained from a thermal wind
equation similar to (2):
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LS =—+ s dm) 755
ré  ry f2R3(T Tn) dR (26)

where T,, is a characteristic absolute temperature at
the middle level. ‘

f. Conservation of moist entropy (9.)

The conserved thermodynamic variable in moist at-
mospheres is moist entropy, which is the sum of the
entropies of dry air, water vapor, and condensed water
[an exact definition ‘valid in both saturated and un-
saturated air may be found in Emanuel (1988b)]. Total
entropy can be gained from the sea surface (the prin-
cipal energetic process in tropical cyclones) and lost
by radiation to space. Frictional dissipation can also
raise the entropy, but this is usually a small effect in
the atmosphere and is ignored here.

The conservation equation for moist entropy in the
boundary layer may be written

35 dR3s 1-o
or dt 4R 2

Sp— Sm
AP,

oF;
P’

where AP, is the pressure depth of the subcloud layer
and F; is the turbulent vertical flux of entropy along
R surfaces. The last term on the left-hand side of (27)
is the mean flux of entropy through the top of the sub-
cloud layer outside of clouds; it is nonzero only where
the motion is downward.

We approximate the right-hand side of (27) by the
difference between the sea surface flux of entropy and
the convective flux out of the subcloud layer. We
therefore write (27) as

(wa0 + |waol)

=g (27)

ds, dRO3s, 1—g¢ Sp— Sm
Rl k)] +
o Tdror T 2 (ot lewl) AP,
c Sp— Sm _ 8poCo| Vil (5T — 5p)
2 (e, + =
2 “." |wel) AP, AP, ’

(28)
where dR/dt is given by (10) and (14) and we have
once again used the aerodynamic flux formula for the
surface fluxes [with Cp given by (18)]. The term s¥ is
the saturation moist entropy at the ocean surface. The
last term on the left is the convective flux and is nonzero
only when convective downdrafts enter the subcloud
layer; these are assumed to transport entropy (s,,) from
the lower model layer. The sea surface saturation en-
tropy can be derived from the definition of moist en-
tropy and may be written in the form

ot ” (29)
(4 s

L
S_}" =s;,,-—Rdln£+——ur*(1—§—RHa),_
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where sp; is the initial mean boundary-layer entropy,
R, the gas constant, L, the latent heat of vaporization,
r* and RH, the ambient boundary-layer saturation
mixing ratio and relative humidity, and py is the am-
bient surface pressure. The above shows that as the
surface pressure decreases, the saturation entropy at
the ocean surface increases, as noted by Byers (1944)
and Riehl (1954). Emanuel (1986 ) demonstrated that
roughly half the heat input into mature hurricanes is
due to this effect, assuming that the inflow is approx-
imately isothermal. The derivation of (29) assumes
that the atmospheric temperature is always equal to
. the sea surface temperature.

The conservation equation for total entropy in the
lower model layer (s,,) involves mean fluxes through
the bottom and top of the layer, convective fluxes due
to clouds that detrain in the lower layer, and radiational
cooling:

s,,—sm+l—-a
AP 2

05, 1—o¢
a—T+ 5 (wa0 — Jwaol)

. Sm—S @
X (wg + |wa|)TP—£+§(wc_ |wel)

Sp— S T

X=ap =~ T rad(sh = s,
where §, is the total entropy of the top layer. As we do
not predict s,, we here assume that it is initially equal
to the total entropy that would be obtained by linearly
extrapolating the initial entropy distribution to the
middle level of the model, and that changes of s, track
changes in s*:

(30)

St = 28mi — Spi + 8% — s¥.

(31)

This is nearly equivalent to assuming that the relative
humidity of the upper layer remains fixed.

2. Representation of cumulus convection

In the formulation of this model, cumulus convec-
tion represents sources and sinks of mass [the G term
in (9) and (16)] and of entropy [ the w, terms of (28)
and (30)] to the explicitly predicted environment of
cumulus clouds. Momentum transport is automatically
accounted for in this model since the convection is
assumed to redistribute heat on angular momentum
(R) surfaces.

The general representation of convective clouds is
illustrated in the context of the model structure in Fig.
1. Each “cloud” is, in effect, a representation of the
effect of a cloud integrated over its lifetime. The clouds
each consist of an updraft-downdraft couplet. The sum
of the updraft and downdraft, multiplied by a fractional
area covered by the drafts, represents the net mass flux
which appears in the mass continuity equation. This
mass flux drives the circulation outside of the clouds
and induces temperature changes through the adiabatic
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warming by this forced circulation. The updrafis also
transport entropy out of the subcloud layer and into
either the lower or upper model layers, depending on
the depth of the cloud, while the downdrafts transport
low entropy air into the subcloud layer.

The updraft mass flux is calculated by integrating
the parcel equation for slantwise ascent, based on the
buoyancy of subcloud-layer air lifted upward along R
surfaces, to obtain a cloud vertical velocity; this is then
multiplied by an assumed fractional area to get the
mass flux. The downdraft mass flux is taken to be the
updraft flux multiplied by (1 — ¢), where ¢ is the total
precipitation efficiency of the cloud. That is, a non-
precipitating cloud (e = 0) has equal net vertically in-
tegrated updraft and downdraft mass fluxes and so
produces no net heating, while a cloud without any
evaporation (¢ = 1) produces no downdraft.

The precipitation efficiency of each cloud is specified
as a function of the cloud depth. In the case of this
simple model only two cloud types are represented:
deep clouds with a precipitation efficiency of 1, and
shallow, nonprecipitating clouds. While the latter have
no vertically integrated net mass flux (i.e., there is no
net heating over a cloud lifetime), they do exchange
total entropy between the subcloud and lower model
layers.

The deep and shallow clouds may, and in general
do, coexist. In this case, the shallow clouds may be
thought of as, to some extent, representing the effect
of precipitating downdrafts within the coarse vertical
resolution of this model. The two have the same effects
because if no evaporation occurs in the upper layer,
then there will be no net mass source due to precipi-
tating downdrafts below the model’s middle level.
There will, however, be an exchange of entropy between
the subcloud layer and the boundary layer due to cold
downdrafts penetrating the boundary layer and a com-
pensating mass flux into the lower model layer. Thus,
in the model, the effects of shallow clouds and of pre-
cipitating downdrafts are identical. In section 3d we
describe several experiments in which shallow clouds
are replaced by precipitation-induced downdrafts.

The vertical velocity in deep clouds is predicted by
first finding the velocity characterizing slantwise ascent.
This can be estimated by integrating the slantwise con-
vection parcel equations developed by Emanuel
(1983). In cylindrical coordinates, these are

“dw
—_— B’

dt
du v?—p,? 2
—=fv—v,)+—EF === (R*- R}
— =0 =) 5 (RY—RY),
where R, is the potential radius that would be obtained
if the flow were in gradient balance, and B is the buoy-
ancy of a parcel lifted adiabatically from the subcloud
layer:
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T, 1
B= g — — (5, — 5¥).

T (32)

The momentum equations can be combined into
an equation for the absolute velocity, U, of slantwise
ascent:

1d, ,, L, 1d_, 2
ol =—— = “—(R*-R*
2dt(u + w?) 2dtU wB+u4r3v( e )
or

tfi[tj Bs1n0+—-—f (R“—R‘)cosﬂ

where 6 is the angle a parcel trajectory makes with the
horizontal. This in turn may be rewritten

dU az 2 4 O

dt =B85 al 4r3 (R* = R) al
where / is a unit vector along the direction of parcel
motion.

Emanuel (1983) showed that the kinetic energy a
parcel gains in slantwise ascent is the same regardless
of the path the parcel follows, as long as the end-points
are the same. For the purposes of estimating this ve-
locity we force the parcel up its original R surface, so

that
dU - g % ’
dt ol /o
or in R coordinates,

8U dR oU

aU dz
dr aR+“’__B( )

oP ol

Here (8z/0dl)r is the slope of R surfaces. Making use
of the relations « ~ U(dp/dl), and also of (10) and
('14), the above may be integrated along an R surface
between the sea surface and the middle level to yield

2
9Us 18 Fos 9Us IU_g_f de“-
JRAPOR 24P AP

B

~ -

74

(33)
Here U, represents the slantwise velocity assumed to
be nearly constant and positive between the top of the
subcloud layer and the middle level. The reason for
using (33) instead of simply setting U,? = 2 Bz, is merely
that it results in a smoother numerical integration of
the model.

To obtain the vertical component, w,, it is necessary
to account for the slope of R surfaces:
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w, = ar 271/2 »
1+
(5,
where (9r/9z)r is the slope of R surfaces from the ver-

tical. From the thermal wind equation (Emanuel
1986), we have

(e _ 1 (ary ar
r*\oz/, f?R3\9z +dR

or

AYS U Y N |

BzR 2Ts_:rl rb2 rlz '
If the slope is evaluated at the top of the boundary
layer, then

(BB

Note that where r, = r, (R surfaces are vertical ), w,

(34)

" is just equal to the slantwise mass flux per unit area.

When r, > rj, however, and r, is not small, the vertical
velocity is considerably smaller than the slantwise ve-
locity. This effectively increases the time scale of con-
vective adjustment, which in the case of slantwise con-
vection is considerably larger than that for upright
convection.

In order to obtain the deep-cloud mass flux it is nec-
essary to multiply w, by ¢, the fractional convergence
of deep clouds. Here we must make an assumption
about the distribution of deep convection. Were we
using a fixed grid, it is quite likely that the model would
be insensitive to the choice of ¢ simply because, as
demonstrated in the next subsection, the time scale of
convection is so fast compared to the time scale of
evolution of the cyclone that slowing it down or speed-
ing it up even an order of magnitude will not affect the

- dynamics on the cyclone time scale.

In the model, however, the physical distance between
R surfaces can become comparable to the scale of con-
vection, especially around the eyewall of mature model
storms. With fixed ¢, the actual cumulus mass flux will
be made artificially small when this happens. To avoid
this, we make the simple assumption that there can be
at most one deep convective cloud per grid volume. The
fractional area covered by deep clouds is then simply
the dimension of the cloud divided by the dimension
of the grid box. In two dimensions, then, this may be
written
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Ar, Ar, <
Arb ’ Arb h
o, = (35)
t
1 Are S
3 Arb 2

where Ar . is a typical width of a deep convective cloud
(here taken to be the depth of the model atmosphere)
and Ar, is the distance between adjacent R surfaces,
measured at the top of the subcloud layer.

In the case of shallow convection, we assume that
the cloud field is always in equilibrium with the envi-
ronment and, as mentioned before, that each shallow
cloud consists of an updraft and downdraft of identical
magnitude. Thus

LWy = wy + wg,

with
wl = | 36)
1+ |7 1~
[2 I,-T, rb( 12)]
(for B; > 0), and
Wy = —wy.
Here the buoyancy is
I, 1
=g — (5 — s%). 7
B, £T, Py (55— s7) (37)

We assume that the shallow clouds are always subgrid
scale, and take the fractional area of the updrafts and
downdrafts to be equal, with the value o,.

At first glance, it might seem that (36) yields the
result that shallow clouds have no effect. Indeed, they
do not appear as mass sources and thus make no con-
tribution to the integrated mass flux given by (6) (i.e.,
they produce no net heating). However, when the up-
drafts and downdrafts are entered separately into the
entropy budget equations (28 and 30), their effect is
finite. All shallow clouds do in this model (and in the
real atmosphere ) is exchange entropy between the sub-
cloud layer and the free atmosphere at a rate dictated
by parcel buoyancy.

h. Scaling appropriate for air-sea interaction systems

It is both convenient and, in this case, very instruc-
tive to incorporate as much of the parameter depen-
dence as possible in scaling the dependent and inde-
pendent variables of the model. The natural scaling in
this system revolves around a measure of the ther-
modynamic disequilibrium between ocean and at-
mosphere. This measure is defined

Xs = (T — T)(s% — Sei)s (38)
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where 5% is the saturation entropy at the sea surface
at ambient pressure and s;; is the initial (ambient) sub-
cloud-layer entropy. The quantity X, has units of kinetic
energy per unit mass, and its square root provides a
natural velocity scale for hurricanes. We shall see that
virtually all the dependence of hurricane intensity on
sea surface temperature and tropopause temperature
is contained in (38), although some dependence re-
mains in the actual (pressure dependent) saturation
entropy of the sea surface.

It is natural to define an entropy variable X to replace
all the moist entropies and saturation moist entropies

in the model. Thus we replace all entropies by
X =(T;— T)(s — sui), (39)

where s here stands for all of the model moist entropy
variables [e.g., X = (Ts — T;) X (Sm — Spi)].
We next scale all the model variables as follows:

Xb_) x:[X]’
Xm = Xs[Xm],
X* = X [x*],

Xm = X[X7], §

VX,
r —»

[r1,
Vx,

R-’T[R],

¥ =2 CrongX, 2 21Y),

w > CpopsgXs'*[w],

Xs[P]
o8]

(40)
In all of the above, the bracketed quantities are di-
mensionless. Also, p; is the mean surface-air density,
Dois the ambient surface pressure, R,is the gas constant,
and g is the acceleration of gravity.

Before summarizing the nondimensional equations,
it is worth examining the scaling in more detail, as this
is one of the principal results of the present work.

Typical values of the scales for velocity, radius, time,
and pressure are given in Table 1. The azimuthal ve-
locity scale depends only on the thermodynamic dis-
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TABLE 1. Typical values of the scaling parameters
in the tropical atmosphere.

Typical
Quantity Scaile value*
Azimuthal velocity X172 60ms™!
. 1 Do =
.y o C . 1 —1
Radial velocity 3 AP RdT poXsf 10ms
Vertical velocity CpoX,'? 6cms™
Radius X2 1000 km
R, T AP
Time Cph = — x,7'2 16 hours
4 Po
. Xs
Pressure perturbation Do | exp| -1 45 mb
R,T
6, perturbation 6, [1 - exp( )] 13K
pe ' AT -T)
*The following parameter values have been used:
T, = 27°C Po = 1000 mb
T, = =70°C . AP = 400 mb
Ambient surface relative humidity = 80% Cm 1073
f=5 X105 57! (value at 20° latitude) 6: = 360 K

equilibrium parameter X;, as does the pressure scale:
This is consistent with the findings of Emanuel ( 1986),
except that the isothermal expansion effect on entropy
has not yet been accounted for. This will appear as an
additional dimensionless parameter in the nondimen-
sional equations.

The vertical velocity scale is simply the azimuthal
velocity scale multiplied by the surface exchange coef-
ficient. This is the same velocity scale that governs sur-
face fluxes (Betts 1983). The results of the numerical
integrations show that typical velocities outside of
clouds are about an order of magnitude smaller than
this, while cloud mass fluxes aré roughly an order of
magnitude larger.

The radial velocity scales as the vertical velocity
multiplied by the ratio of the radius scale to a depth
scale, as éxpected from continuity.

The radius scale defines an upper bound for the geo-
metric scale of the entire cyclone. This upper bound
was discussed by Emanuel (1986) and is determined
by the proportion of energy from the Carnot cycle used
to spin up the anticyclone aloft. If the outer scale of
the cyclone is too large, the frictional dissipation nec-
essary to move air out of the anticyclone is greater than
can be supplied by the Carnot cycle and no amplifi-

cation is possible. (The impossibility of steady-state -

hurricanes without sources of angular momentum in
the outflow was established by Anthes 1974, and is also
clear from the Carnot cycle argument of Emanuel
1986.) ,

As expected, the time scale varies inversely with the
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surface-exchange coefficient. This can be thought of as
an Ekman spindown time scale, i.e., the depth scale
divided by the surface-stress scale, Cpo| V| ~ CpoXs'/2.
Alternatively, it may be viewed as the time scale for
air to move vertically through the cyclone, i.e., the
depth scale divided by the vertical velocity scale. It is
also, of course, the spinup time scale for the cyclone
and indicates faster spinup for greater air-sea ther-
modynamic disequilibrium, as found for example by
RE (see their Fig. 7). '

All of the entropy values scale with X;. In the ambient
subcloud layer, X is zero by definition (39). As the
tropics are approximately conditionally neutral, X*
~ X = 0. The middle tropospheric entropy variable
X,, 1S negative since s,, < s, (that is, 8, decreases upward
in the lower troposphere). For fixed dimensionless X,,,,
the dimensional X,, (proportional to s,, — s5) becomes
more negative for increasing X,, implying that the dif-
ference between subcloud layer and middle-tropo-
spheric entropy scales with the air-sea thermodynamic
disequilibrium.

i. Summary of dimensionless model equations and pa-
rameters :

When the scalings (40) are applied to the model
equations (2, 9, 13, 16, 18, 20-24, 26, and 28-37)
the following dimensionless set results. All the variables
are dimensionless [ we have dropped the brackets that
appear in (40)]. The dimensionless coefficients that
appear are listed in Table 2 and will be discussed after
presentation of the equations.

Thermal wind:

1 1 2 ax*
r—b2 = r_,2 “RIGR (41)
Physical radius at top of model:
o2 .
ore _ v - G. (42)
or

Physical radius at top of subcloud layer:

ary’ 10,5 9 R?
=t - (=], @3
or ‘P ¢ RE)R[ ar,, rbz) ( )
with
ry? -
G=f o,wdr'’? (44)
(1]
3 (R?
y=1[? "’ar,, (—2) . ‘(45)
Streamfunction at top of boundary layer:
Vo= G +(1+ClVDIVsl == T2 (R? = 12) (46)
0= b 5! SR OR )
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TABLE 2. Nondimensional model parameters.

Parameter Name Definition Typical value
Cloud b 1 In AP RI: 10°
ud buoyancy paramete _—
* ouc duoyancy parameter Ty po (T, —T) ™
Fd _ d Ind 1 I‘d R.Ha
ic stabili L T = TIX, |~ ——|AP ~ = =2
18] Dry static stability T, o X ( ap ) 2T, 1 —RH, 2
R, T, AP*
2 Eddy mixing scale (squared) 1%, 73Cph % o —
0
B Isothermal expansion parameter Xs/RuTs 0.042
RH, Ambient relative humidity — 0.8
T, AP ok
rad Radiative relaxation rate (rad),Czd =2 . X, 12 3
0
% Boundary layer relative depth AP,/AP 0.1-0.2
C
C Wind dependence of surface exchange coefficient FDl VZ 2
DO
S TacfT—T)
i pu 0.017
A Aspect ratio VZ T, P
* The dimensional horizontal mixing length is /;.
** The dimensional radiative relaxation rate is (rad),.
with Subcloud-layer moist entropy:
1 R?—rj?
Vb=§——?“ (47) .ya_x=¢oa_xz_ M(X"Xm)
rp or ory 2

Saturation moist entropy at middle level:

ax* ) ax*
—_— = —_ 4+ —_— —_— = *
P Q(1 — o)w, o (rbv ) rad(x*),

arb
. (48)
with
(1= a)a,= - 2% (49)
and r,,” given by
1 T,—T,\ 1 T,—T,\ 1
2 (TR ) () o

[The latter has been formed by combining (26) with
(2).] We also impose the restrictions that rad(x*) < 0.2
(about 2°C day™') and that rad = O where there is
positive Ekman pumping.

Saturation moist entropy in lower layer:

IxXx e +
= Q(“’ “’°) —rad(x%) (1)
ar 2 ’
with
_ &
wy = ar 3 (52)

— owa(X — Xp) + (1 + CIVDIVI(XEF —X), (53)
with

T, T, 1
- P+
T, 1 - RH,

xX¥=1 [e# —1]. (54)

Lower-layer moist entropy:

_ _ (%0~ ol
2

X,

, )(x—xm)+(w,,+ |wal)
or

X (X~ Xn) = 0,0(X = Xp) = T2 1ad(Xp) (55)
d

with
X, = 2X,; + X*. (56)
Deep updraft mass flux:
b, _ , 9l N Qe
ar Yo arbz'*'a(x X*) > us, (57)
-0,
: (58)

w, = l rb2 211/2
1+ | — 2
[ [ZArb(l+’tz)]]
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with
A
Shallow updraft and downdraft mass fluxes:
a(X — X% 172
Wy = — f‘b 31, 2 = =W (60)
1+ [2A (1 + r—,i)]
with
o, = 0.5. (61)

The last relation needed to close the system is a di-
‘agnostic equation for the surface pressure variable P.
The dimensionless gradient wind relation is

It is instructive and numerically beneficial to transform
this relation into R coordinates. The above can be
shown to be equivalent to

d 1 R® R
— | P+=Vi]=————,
w(7+37)

' By using (41) to eliminate R3/r? on the right of the
above, and making use of (47), this can be wntten as
the following relation for surface- pressure

3 el R* 1
aR[P+x +8(r,, +rp )] 278
The advantage of this form is that in the limit of large
r (whrch characterizes the mature stage of the vortex)
this can be integrated exactly. Doing this results in an
expression for central pressure identical to that ob-
tained by Emanuel (1986).

The system (41)—(62) constitutes the complete set
of model equatlons The nondimensional parameters
that appear in this set are listed in Table 2 and w111 be
described presently.

~ Of the seven dimensionless parameters, only two are
ad hoc: the radiative relaxation rate, rad, and the hor-
izontal mixing scale, /. The motivation for incorpo-
rating radiation is the same as in RE, namely, to pro-
vide a heat sink to compensate the oceanic source.
There are two aspects Of the present treatment of ra-
diation that differ from RE. First, we place a cap on
the radiative coolmg so that it does not exceed about

2°C day !, asin RE’s Experrment J. Second, we turn
off the radiative cooling in regrons where the Ekman
pumping is upward, to mimic crudely the infrared ra-
diative effects of deep clouds over the ocean. As dem-
onstrated in section 4d, the model is somewhat sensitive
to the presence of radiative cooling. '

(62)
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The horizontal length scale / is chosen to be quite
small, to minimize the artificial diffusion. In order to
preserve the scale invariance of the model as much as
possible, we let / be proportional to the R spacing of
the coordinates. Thus in the control run,

I = 0.03AR.

In the control run, the dimensional equivalent of /
is about 1.5 km, half the value used in RE. As shown
in section 3b, the model is remarkably insensitive
to /.

The parameter o, whrch appears in (57) and (60),
determines the magnitude of the ¢onvective mass fluxes
for a given subcloud-layer parcel buoyancy X — x*. It
is the dimensionless multiplier relating vertical accel-
eration in clouds to cloud buoyancy and can be thought
of as the ratio of the large-scale dynamical time scale
to a convective time scale. The fact that it is large
(~10°) means that X can never exceed X* by very
much; i.e., the atmosphere is kept close to neutral
equilibrium, as postulated by Arakawa and Schubert
(1974). This is evident in all the model s1mulatlons
discussed in section 3.

The dry static stability parameter Q, appearing in
(48) and (51), governs how much warming occurs for
a given subsidence rate. The second relationship for Q
appearing in Table 2 comes from maklng the approx-
imation that 8 at the tropopause is nearly equal to 6,
in the boundary layer . :

_dIn6 Inf,, —Inf, L,r*RH,

ap 20P  2APG,T, °

where 8., and 6, are the equivalent and actual potentlal
temperatures in the ambient boundary layer, and r¥

. and RH, are the ambient saturation mixing ratio and

relative humidity. Also, ’Xs may be expressed
O T, T,
0€d TS

Substituting these two relations into the definition of
Q in Table 2 gives the second relation

1T, RH,

2T, 1—-RH,’

=c(T;,— T})In L,r#(1 — RH,).

Q~

The parameter (3 appears as a coefficient multiplying
pressure in the expression for the sea surface saturation
entropy (54). It is only nondimensiongl parameter with
a significant sea surface temperature dependence and
governs the rate of heat input due to isothermal ex-
pansion. All the rest of the dependence on sea surface
temperature is.contained in the scaling parameter X;.

Emanuel (1988b) showed that there is a critical 8
above which no steady solution for central pressure
exists. The minimum sustainable central pressure can
be, found here by integrating (62) from the center to
the radius where P = 0 under the assumption of large
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r, and then requiring that X* = X ¥ at the storm center.
Using (54), this results in the relation

1l
1 - RH,

where r, is the radius at which the pressure perturbation
vanishes. It is straightforward to show that this has no
solution for sufficiently large 8. For the control run to
be described in section 3, the critical 8 is about 0.08.
The parameter v is the ratio of the pressure depth
of the boundary layer to that of the lower main model
layer and appears in the boundary-layer entropy equa-
tion (53). The fact that it is small implies that the
boundary layer is not far from equilibrium, i.e., surface
fluxes balance horizontal advection and fluxes out of
the top of the boundary layer. As shown in section 3,
the model is not sensitive to v as long as it is small.
The parameter C, which appears in (46) and (53)
and which governs the wind dependence of the ex-
change coefficients, increases with VX_: Sensitivity to
C will be discussed in section 4c. Finally, 4, which
appears in (59) and (60), is a measure of the system’s
aspect ratio: the scale height divided by the radius scale.

1
P(l—e)=zr02— (e —1)—1,

j. Boundary and initial conditions and numerical
scheme

The numerical scheme integrates the time-dependent
dimensionless equations (42), (43), (48), (51), (53),
(55), and (57). The streamfunction is derived from a
diagnostic equation formed by eliminating the time
dependence of (42) and (43) using the thermal wind
relation (41 ) and the saturation moist entropy equation
(48). This diagnostic equation is

1 1 2Q a oy
4?*3) (
R36R

R3 4R 8r,~2
G
where the “D” terms are the diffusion terms in (43)
and (48). The Sawyer-Eliassen equation (63) is elliptic
provided Q > 0.

The diffusion and radial advection terms require two
boundary conditions each on r,, X*, X, w,, and ¥, and
a smgle boundary condition on P. At R=0, symmetry
requires that

axX* X Jdw,
3R 3R’ 3R

In order to minimize the effects of an artificial wall
placed at some outer radius Ry, we apply an open
boundary condition similar to that of Ooyama (1969).
To do so, we assume that the flow outside the boundary
layer is linear and nondissipative and that no convec-
tion occurs at or outside the boundary. Under these
approximations, (63) becomes, for R = Ry,

1
)=r—b4(%—D,,,)

(rad(Xx*) — Dx+), (63)

‘p’ Ybs =0 =0 at R=0. (64)
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Q 1 8y
‘b’ERaR(RaR)

Since dG/dr* = sw, = 0, the above may be written

_Qr20
V-G RaR(RaR

The solution for y — G from (65) may be expressed
in terms of Bessel functions. For the sake of simplicity,
we make the approximation that R is large, in which
case the solution is simply

- 1/2
V=G~ de" OV,

where A is a constant. This in turn implies that

W - G)) 0. (65)

3 2\
S (= G) = —(é) -6

or

1/2
LS —(3) - G), (66)

3R 0

since dG /AR = 0 when no convection is present. Ap-
plying (66) as a boundary condition on ¥ at R = Ry
matches the interior numerical solution to the exterior,
linear analytic solution and guarantees that y is well
behaved as R = 0.

The other boundary conditions at R = Ry demand
that the radial gradients of X* and X vanish and that
the vorticity itself vanishes at R = Ry. The latter is-not
entirely consistent with the condition on ¢, but it is
well posed and since it is only used in the diffusion
term of (43), which is very small near the boundary,
its effect is minimal. Finally, we demand that the pres-
sure perturbation P vanish at R = Ry. In summary,
the outer boundary conditions are (66) together with

ax* ox 9
6R ER; EE(RZ_rb) w,,P 0

on R=Ry. (67)

The numerical solution of (42)-(63) with the
boundary conditions (64) and (67) involves straight-
forward centered differencing and a leapfrog time
scheme. A weak time filter of the type employed by
Klemp and Wilhelmson (1978) is used to prevent
splitting of the solutions. To improve the accuracy of
the advection terms in (53) and (57), we calculate 7,,
r., and G on a staggered grid; i.e., one that is lagged
1AR from the grid points on which all the other vari-
ables are calculated. Note that the advection terms can
be written

oR\ 9
(% sz)ﬁ(& @) (68)

and that, from (46), ¥o(9R /3r;?) is exactly defined at
grid points intermediate between those on which X and
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w, are defined. As in RE, we use a conservative form
of the advection terms; e.g., for the advection of X,

1 y R 9x
"o¥0 5,2 3R

where the overbar denotes an average between the two
grid points at which r, is defined.

For purposes of numerical stability, the variables in
the diffusion and damping terms are all lagged one
time step. Moreover, since the vertical advection and
convective flux terms in (53) and (55) all have the
mathematical form of damping terms, it is necessary
to lag the X variables in these terms and in the calcu-
lation of shallow convection from (59). In the surface
entropy flux calculation [the last term in (53)], the
wind velocity itself is interpolated to the X grid points
before the flux is calculated.

Finally, the diagnostic streamfunction equation (63)
1s solved at each time step by a simple overrelaxation
technique. This generally converges to the specified ac-
curacy in 1 or 2 iterations, but more iterations are
sometimes required at times when new convection is
_ just erupting.

The model integrations begin with no flow in the
upper layer and a weak cyclone in the lower layer, sim-
ilar to the initial condition used by RE. The lower-
layer cyclone has the form

V,
ry=—", Iy <Tm
I'm
V=9 rmVm[ré— 1
m¥ m 0 b
. 2 5]y Im<Tp<rto
rp Yo" — I'm
0, ' ry> ro,

where V,, and r,, are the maximum wind speed and
radius of maximum wind, respectively, and r, is the
radius at which ¥ = 0. This represents solid body ro-
tation inside r,,, a Rankine vortex just outside r,,, and
a linear decay to zero near ro. The above may be in-
verted to find r, as a function of R using the dimen-
sionless equivalent of (1):

{ R2
L+ 2(Vn/ )’

Los  Vlm
(2R 1 _("m/"o)z)

rb2 = ﬁ (1 _ :/mrm 2)
2 ro" — I'm

R2<rm2(1+2zﬂ)

'm

(69)

vV,
rmz(l +2-=

'm

)<R2<r02=R02

R2 > Roz.

[ R
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When (69) is calculated on a finite-difference grid, the

actual maximum wind and radius of maximum wind
will differ slightly from V,,, and r,,, respectively.

Having specified the initial vortex, the thermal wind
equation (41) is then solved for x*. The other variables
are initialized as follows:

X=U[=O

Xm = Xomi at 7=0.
1

X’,",,=5X*

The diagnostic relations for ¥y, ¥, and P are solved
at the first time step to yield the initial distributions of
those variables.

3. Experiments with and without shallow clouds

In this section we describe the control experiment,
several experiments designed to test the sensitivity of
the model to various numerical and ad hoc parameters,
and an experiment starting from a weak initial vortex.
The central experiment described here is a model run
with only high-precipitation-efficiency (HPE) clouds;

this emphasizes the important role of low-precipitation-

efficiency (LPE) clouds in both the genesis and mature
phases of the model storms.

a. The control experiment

The parameter values in the control experiment are
listed in Table 3. All of the internal parameters have
the typical values listed in Table 2 except for the cloud
buoyancy parameter, «, which is reduced in order to

" allow a larger time step. The effects of this reduction

are examined in the section 3b.

The model is initialized with a weak warm-core cy-
clonic vortex in the lower layer, as given by (69), with
rm=0.1, V,, = 0.3, and ry = 0.5. This corresponds to
a dimensional radius of maximum winds of about 100
km, maximum wind speed of 18 m s™! and outer radius
of 500 km. Bear in mind that since it is not possible
to specify the radius of maximum winds and the max-
imum wind speed independently in an R-coordinate
model, those values are approximate. The actual initial
radius of maximum winds and maximum wind speed
are 0.078 (~78 km) and 0.22 (~13 m s™!), respec-
tively, for the control run. These can be compared to
the dimensional values for r,,, V,,, and o of 82.5 km,
12 ms™!; and 412.5 km, respectively, used in the con-
trol run of RE. The initial lower-tropospheric entropy,
—0.5, implies that the difference between the initial
entropies of the boundary layer and lower troposphere
is half that of the difference between the boundary-
layer and sea-surface saturation entropies. For condi-
tions typical of the tropics, this represents a lower-tro-
pospheric 8, about 6°C less than the boundary layer
6., rather less than the mean difference of about 12°C
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TABLE 3. Parameters used in the control experiment, A.

Parameter Name Value

Internal parameters

« Cloudy buoyancy parameter 2 X 10

[0) Dry static stability 2

) Eddy mixing scale _ 0.03AR

I¢] Isothermal expansion parameter 0.042

RH, Ambient relative humidity 0.8

rad Radiative relaxation rate 3

¥ Boundary layer relative depth 0.2

C Wind dependence of exchange 2

coefficient

A Aspect ratio 0.017
Initial conditions

Fm Radius of maximum winds 0.1

Vin _ Maximum lower-layer wind speed 0.3

To Radius of zero wind 0.5

Xpmi Lower tropospheric entropy -0.5
Numerical

parameters
NR Number of R surfaces, including 24
boundaries
dr Time step 0.004
R, Potential radius of outer wall 1.5

in Jordan’s (1958) sounding. As shown in section 4b,
this promotes earlier growth of the initial disturbance.

The development with time of the maximum wind
in the lower layer in the control run (A) is shown by
the solid line in Fig. 2. After an initial period of decline,
the vortex amplifies into a mature cyclone by 7 = 7.

Time

FIG. 2. The maximum dimensionless azimuthal velocity as a func-
tion of dimensionless time for the control experiment (solid) and
Experiments B,~B; (dashed). Here NR is the number of R-coordinate
surfaces in the model, 1 unit of ¥ corresponds to approximately 60
m s~ and 1 time unit is about 16 h (see Table 1).
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FIG. 3. Evolution with dimensionless time of the dimensionless
central pressure (solid) and radius of maximum winds (dashed) in
the control run. | pressure unit is equal to about 45 mb and 1 radius
unit is about 1000 km (see Table 1).

The period of growth starts at about 7 = 2, so that the
amplification lasts about 5 time units (~80 hours).
This is comparable to the development times in the
complete model of RE. The time evolutions of the ra-
dius of maximum wind and central pressure are shown
in Fig. 3. Initially, the radius of maximum wind ex-
pands as the vortex weakens. A new ring of maximum
winds develops at a larger radius (~0.16 or 160 km)
and moves inward to a nearly steady state value of
0.036. The pressure falls to a minimum of about —1.6
(=~ —72 mb) and the most rapid rate of fall is around
—0.4 (~27mb24 h™').

Figure 4 displays the structure of the mature model
cyclone in Expt. A at 7 = 12. The azimuthal velocity
in the lower layer exhibits the classical form, with the
velocity peaking at r = 0.036 and falling off as ~r~%7
to about » = 0.3 and with a higher negative power of
r beyond r = 0.3. The radial width of the zone of hur-
ricane force winds (¥ = 0.5) is about 0.12 (120 km).
At the tropopause, there is very weak cyclonic motion
out to r ~ 0.12 and anticyclonic circulation beyond.
The anticyclonic flow has a maximum amplitude of
about 0.32 (~19 m s™!) at r = 0.8 (~800 km). As
there is no frictional dissipation in the upper layer, a
front has formed at r = 0.8 with nearly infinite cyclonic
vorticity (but the circulation is everywhere anticy-
clonic). This represents the leading edge of the outflow.
Although the potential vorticity gradient does not
change sign across this front (since the saturated
equivalent potential vorticity is zero), the vorticity itself
is so large that this zone would likely be unstable to
nongeostrophic modes. This evidently happens natu-
rally in three-dimensional models (Anthes 1972b). In
any event, this feature is not observed and is almost.
certainly an artifact of the axisymmetry of the model.
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FIG. 4. Structure of the model vortex in the control run at r = 12. All fields except for ¥, are shown as a function of physical radius at
. the top of the subcloud layer; V; is plotted against r,, the physical radius at the top of the model. All variables are dimensionless. (a)

Azimuthal velocity at top of subcloud layer; (b) azimuthal velocity at top of model; (c) pressure; (d) negative radial velocity integrated
from the surface to the middle level (solid) and to the top of the subcloud layer (dashed); (e) negative omega outside of clouds, multiplied
by ten (solid) and deep cloud mass flux (M, = —o,w,, dashed); (f) subcloud-layer moist entropy (solid), vertically averaged saturation
moist entropy (dotted ), lower-tropospheric saturation moist entropy (pluses) and lower-tropospheric moist entropy (dashed). )
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The surface P distribution is relatively uninteresting.
The kinks in the distribution reveal the location of R
surfaces, which are sparsely spaced in regions of strong
anticyclonic relative vorticity. On a surface-pressure
map with 4 mb spacing (about 0.1 P units), the out-
ermost closed isobar would occur at 7 =~ 0.6 (600 km ).

Figure 4d shows the vertically integrated radial mass
flow (1) in the lower half of the model and the vertically
integrated frictional flow in the boundary layer ().
When the two are equal, all the mass inflow occurs in
the boundary layer. Inside = 0.2, u is ever so slightly
greater than uy, mostly to counter the radial momen-
tum diffusion in the near-steady state. Outside r = 0.2,
u > uy, implying that the vortex is still spinning up in
the outer region. :

The vertical velocity outside of clouds (Fig. 4e)
shows weak subsidence (about 0.15 vertical velocity
units, ~1 cm s~!) between r ~ 0.15 and r ~ 0.43,
decaying gradually to zero by r ~ 1.0. A sharp spike
of downward motion between clouds occurs near the
radius of maximum wind, though it is not strong
enough to make the net velocity positive. Very weak
net subsidence occurs in the eye at this time. The deep
cloud vertical mass flux (ow,) commences at about r
= 0.25 but does not become substantial until r < 0.14,
reaching a peak just inside the radius of maximum
winds (the azimuthal wind peaks at r = 0.036 while
the vertical mass flux peaks at r = 0.032). The maxi-
mum in-cloud vertical velocity multiplied by ¢ is about
21, corresponding to a dimensional ocw of about 1.3 in
s”!. As ¢ = 1 in this run at the location of maximum
ow, this represents the actual cloud vertical velocity
there.

All of the moist entropy and saturation moist en-
tropy variables are displayed in Fig. 4f. Outside of r
=~ 0.3, the atmosphere is slantwise neutral (X ~ Xx*)
and the lower-troposphere entropy (X,,,) has decreased
due to radiation and downward advection of lower X
values. This is consistent with the complete model re-
sults of RE, which show a distinct lower-tropospheric
6, minimum centered near 250 km. Between r ~ 0.05
and r = 0.3 there is small slantwise instability (X > x*).
Here the R surfaces have a particularly small slope with
respect to the horizontal, and the vertical component
of the slantwise convective velocity is thus quite small
with correspondingly large convective adjustment
times. Thus the deep convective cells are too slow to
perform a nearly perfect adjustment to neutrality. Even
s0, the maximum difference between X and x* is about
0.15, corresponding to a buoyancy on the order of 1°C.
Thus the model’s convection conforms almost exactly
to the quasi-equilibrium postulate of Arakawa and
Schubert (1974).

While the temperature (saturation moist entropy,
X*) peaks at the storm center, the boundary-layer and
lower-layer moist entropies actual fall slightly in the
eye, indicating subsaturation. This is due to subsidence
in the eye.
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b. Sensitivity to numerical and ad-hoc parameters

We performed a series of experiments in order to
examine the model’s sensitivity to numerical and ad
hoc parameters. All of the additional experiments are
listed in Table 4. Experiments B;-B; demonstrate the
model’s sensitivity to horizontal resolution (in poten-
tial-radius space), while C;—C; show how the model
behaves when the diffusion is varied. Although the
cloud buoyancy parameter, «, is not really an ad hoc
parameter (its definition Table 2 is based on strictly
physical parameters), we also examine the model’s
sensitivity to it, as we have elected to use an artificially
small «. This sensitivity is explored in experiments D,
and D2 .

The maximum azimuthal wind is shown as a func-
tion of time for experiments B,~B; in Fig. 2. In B, only
12 R surfaces are used and two of these are boundary
surfaces. Because of the interpolation onto R surfaces
of the initial vortex, B, begins with a somewhat weaker
vortex. When it does amplify, it does so more slowly
and reaches a maximum V¥ that is about 83% of that
of the control run. Experiment B,, with 18 R surfaces,
also begins with a slightly weaker vortex, but it amplifies
at almost the same rate as the control, achieving 94%
of the latter’s amplitude. When 30 R surfaces are used
(Bs), the initial vortex is slightly stronger and ampli-
fication begins sooner. The final amplitude is only 2%
larger than that of the control experiment. .

As mentioned earlier, some radial diffusion is nec-
essary to prevent frontal-like collapse in the eyewall of
the model storm. A crude deformation-based mixing

TABLE 4. Description of experiments.

Experiment Difference from control experiment
A —
B, NR =12
B, NR =18
B, NR =30
C| I=0.1AR
C, I=0.01AR
Cs No momentum diffusion
D, a=80
Dz a=0.5
E ‘ V= 0.05
F, No shallow convection
F, Same as F, but V,,, = 0.05 )
F; Rainy downdrafts replace shallow convection
F, Same as F; but V,,, = 0.05
G, rm = 0.05, ro=0.25
Gz Im = 02, To = 1.0
Gg Im = 04, To = 1.2
H| Xmi = -1.0
Hz Xmi = —0.25
I Cc=0
J rad =0
K vy =0.1
L, B8 =10.08
L, 8=0.12
L; B=0.16
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is added to the model to prevent this from happening,
but such a formulation is far from realistic. We would
therefore hope that the model is relatively insensitive
to the value of the assumed mixing length /. Experi-
ments C, and C, explore this sensitivity (Fig. 5).
In.C,, the mixing length is increased by V10, so that
the effective dissipation rate is an order of magnitude
larger. While the initial development is similar, the
vortex reaches about 93% of the amplitude of the con-
trol. When the dissipation is decreased by an order of
magnitude (C,), the development is almost identical
to the control up to 7 = 3, but, curiously, is slower
between 7 = 3 and 7 = 9, though the same amplitude
is ultimately achieved. '
To investigate further the effects of reduced diffusion,
we performed an additional experiment, Cs, that is
identical to the control run except that radial diffusion
of momentum only is turned off. This shows (Fig. 5)
that after 7 = 3, very little amplification occurs without
radial momentum diffusion. Inspection of the velocity
and entropy fields shows that the vorticity at the eyewall
becomes very large and the radial velocity drops rapidly
near the eyewall, presumably due to its inertial stiffness.
The inability of the model cyclone to form a realistic
eye when momentum diffusion is absent suggests that
the dynamics of eye formation are crucial in achieving
an intense vortex, as speculated by Malkus (1958).
According to the latter and to Kuo (1958; see also
. Anthes 1974), subsidence in the eye of mature storms
is driven by turbulent diffusion of momentum from
the eyewall. The subsidence is a dynamic consequence
of the differential spinup of the eye between the top
and bottom of the storm. Without diffusion, the eye

Time

FiG. 5. Evolution with time of maximum azimuthal velocity for
control run (solid), and Experiments C,~C;. In C, the radial diffusion
coefficient is increased by one order of magnitude, while in C; it is
reduced by an order of magnitude. In C; there is no radial momentum
diffusion.
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FIG. 6. As in Fig. 5 but for Experiments D, and D,, in which the
cloud buoyancy parameter « is increased to 8 and reduced to 0.5,
respectively.

remains nearly motionless and may even acquire very
weak anticyclonic rotation in the lower region as a re-
sult of inflow into the eyewall. Frontogenesis occurs at
the eyewall, which cannot contract due to the extreme
vorticity (inertial stiffness) of the region just inside the
eyewall.

We conclude, in accordance with Malkus (1958)
and Kuo (1958), that somie radial diffusion is crucial
to the development of intense vortices. Even so, the
evolution of the vortex is not particularly sensitive to
the magnitude of the diffusion, as long as it is not ex-
tremely small. :

The parameter « relates the convective mass flux to
the buoyancy of subcloud-layer air lifted along R sur-
faces through the depth of the model atmosphere. Al-
though'it is a physical parameter, we have reduced it
from the nominal value listed in Table 2 to allow a
larger integration time step. Experiments D, and D,
(Fig. 6) demonstrate the model’s sensitivity to a. In
these two experiments, « has been increased and de-
creased, respectively, by a factor of 4. Clearly, the mag-
nitude of « affects the rate of development of the vortex,
but does not seem to influence its ultimate amplitude.

¢. Evolution from a weak initial vortex

The main finding of RE, using a complete axisym-
metric model, was that weak cyclonic disturbances in
convectively adjusted atmospheres do not intensify,
implying that tropical cyclones do not arise as a linear
instability of the normal tropical atmosphere. This is
also the case for the present, simplified model, as il-
lustrated by Experiment E (Fig. 7), which is identical
to the control experiment except that the amplitude of
the initial vortex is 0.05. Inspection of the saturation
moist entropy and moist entropy fields reveals that the
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FIG. 7. As in Fig. S but for Experiments E, F,, and F,. In Exper-
iment E the maximum velocity of the initial vortex is 0.05. In Ex-
periments F, and F,, shallow clouds are turned off; F, starts with an
amplitude of 0.22, while F; begins with V,,,, = 0.05.

lower vortex core has become cold and the boundary-
layer moist entropy has decreased near the center. The
reasons for this behavior will be explored presently.

d. Experiments without shallow convection

The evolution of the maximum azimuthal velocity
is shown in Fig. 7 for two experiments in which shallow
convection is omitted. The convection that does occur
has a precipitation efficiency of unity and thus does
not account for precipitating downdrafts. Experiment
F, differs from the control only in this respect, while
F, is identical to F, except that the amplitude of the
initial vortex is 0.05,.as in Experiment E.

In both cases, intensification occurs immediately,
although it is initially very small in Experiment F,.
Note, however, that both the rate of intensification after
7 = 2 and the amplitude at + = 12 are smaller in F,
than in the control. This clearly shows the dual nature
of the effect of shallow convection on the model cy-
clone.

The influence of LPE convection, reflected in Fig.
7, lies at the heart of the thesis of this work. Exami-
nation of the various fields reveals the reason for the
finite-amplitude behavior of the model cyclones, which
may be described as follows.

When a weak vortex is placed in contact with the
sea surface, Ekman pumping ensues near the core. The
dynamics of the Ekman flow in a stratified fluid are
such that the upward velocity reaches a maximum at
the top of the boundary layer and decays upward at a
rate proportional to the Rossby depth fL/N, where L
is a measure of the horizontal dimensions of the vortex,
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f is the Coriolis parameter, and N is the buoyancy
frequency. Thus, the adiabatic cooling peaks near the
top of the boundary layer and decays upward on a
Rossby scale. The conditional instability generated by
this cooling very much favors the development of shal-
low clouds with low (in this case, zero) precipitation
efficiency near the core. The shallow, LPE clouds are
incapable of countering the adiabatic cooling, but they
keep the atmosphere very nearly conditionally neutral
by drying out the subcloud layer. Some deep, HPE
convection does occur, but peaks outside the radius of
maximum winds in a region where the surface fluxes
are destabilizing the atmospheric column but the

. Ekman pumping is weak or negative. The radial mo-

tions associated with such convection act to weaken
the vortex.

In the case of a stronger initial cyclone, such as in
the control run, the same process occurs initially, but
after some time the lower troposphere has been moist-
ened by both the Ekman pumping and the shallow,
LPE clouds to the extent that the downdrafts are no
longer sufficient to counter the moistening of the sub-
cloud layer by evaporation. When the lower troposphere
is sufficiently moist, the downdrafis can no longer coun-
ter the moistening of the subcloud layer by surface
Sluxes, deep, HPE convection breaks out in the core,
and intensification begins.

We emphasize that the important break on initial
development is the activity of low-precipitation-effi-
ciency convection, which imports low 8, air into the
boundary layer. This can be accomplished by deep,
precipitating convection in which some of the rain
evaporates as it falls, as well as by shallow convection.
To demonstrate this, we replaced the shallow cloud
mass flux given by (60) and (61) by

do,w,

= l0.0(Gtw, - O-SUSwu)’
or

and
OsWy = — OsWy.

The intent here is to crudely mimic the effect of
precipitation-induced downdrafts. According to this
formulation, downdrafts form as a result of deep con-
vective updrafts and decay back to zero on a time scale
of several hours. If the updraft were to reach a steady
state, the associated downdraft mass flux would be
somewhat stronger, in accordance with the observation
that thunderstorms produce net divergence at the sur-
face. Recall that in the crude structure of the present
model, precipitating downdrafts enter the equations
exactly as do shallow clouds so that we can represent
them in terms of w, and wy.

The evolution of the maximum azimuthal wind in
the experiments with precipitation-driven downdrafts
and without shallow clouds is shown in Fig. 8. Here,
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FIG. 8. Evolution of the maximum azimuthal velocity with time
for Experiments F; and F, which omit shallow convection but which
contain a crude representation of precipitation-driven downdrafts.
Here F; and F, differ only in their initial amplitudes.

again, the finite-amplitude nature of the instability is
apparent, although the simulation beginning with the

weaker vortex does not decay but rather fails to amplify

(as in RE). Examination of the model fields shows
that very weak, deep, LPE convection occurs more or
less randomly in space and time outside of the eyewall;
the resulting downdrafts keep the subcloud layer cool
and dry. Only in the vicinity of the eyewall of the am-
plifying cyclone, where the atmosphere is nearly sat-
urated, do these downdrafts fail to prevent the surface
fluxes from increasing 6, in the subcloud layer.

This limiting mechanism, which is transparent in
the present simplified model, is also consistent with
deductions made by RE in the course of examining
the complete model fields. Describing the failure of a
weak initial vortex to amplify, RE conclude that “owing
to the low velocity, latent-heat transfer is slow and cu-
mulus convection does not start until ~70 h. After
this time, there is convection, but the cool, dry down-
drafts extinguish the instability before the vortex can
build up enough speed to increase significantly the sea-
surface transfer.” The. 6, budget presented by RE shows
that time-mean surface fluxes are nearly balanced by
convective downdrafts qutside the eyewall; near the
latter, surface fluxes are more nearly balanced by hor-
izontal advection. Emanuel (1986) showed that steady-
state hurricanes would not be possible without a mech-
anism for keeping the outer subcloud-layer 6, relatively
small. .

It is interesting to contrast the results of RE and the
present work with CISK theory. As defined by Charney
and Eliassen (1964), CISK is a linear instability that
does not require the entropy of the boundary layer to
increase and as such must depend energetically on am-
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bient conditional instability. In the formulation em-
ployed by Charney and Eliassen (1964) and subse-
quently in many other analytical treatments, the rate
of heating is related to low-level or vertically integrated
moisture convergence. Since the vertical profile of the
heating is specified, the model’s temperature is not
constrained to relax back to a state of convective neu-
trality and is therefore inconsistent with observations
and convection-resolving nonhydrostatic models such
as that of RE. Moreover, the formulation of the entropy
budget does not permit downdrafts to actually lower
the subcloud-layer entropy beneath ambient values, as
observed in RE and in real thunderstorms. We do not
see any basis in complete numerical models, in the
present model, or in nature for regarding tropical cy-
clones as arising from the “cooperation of cumulus
clouds.”

We maintain that the direct effect of convective
overturning of less than 100% precipitation efficiency
is always to lower the subcloud-layer entropy, as is pa-
tently obvious in the case of convection over land. The
best that purely advective effects (such as moisture
convergence ) can do is to restore partially the subcloud
entropy to its ambient value. Without surface fluxes
or radiative effects, convection can do no more than
partially damp temperature perturbations arising from
other sources.

In view of the preceeding, it is clear that Ekman
pumping, by itself, has a damping effect on the cyclone.
Only when surface evaporation is sufficient to counter
the drying of the boundary layer by the Ekman pump-
ing-induced LPE clouds can the cyclone amplify. Even
without Ekman pumping, the cyclone will not intensify
until the middle troposphere becomes sufficiently hu-
mid that LPE clouds will not completely counter the
moistening of the boundary layer by surface fluxes.

e. Comparison with Qoyama'’s model

The main differences between the present model and
that of Ooyama (1969) are the coordinate system, the
representation of convection, and the initial condition.
The latter two, taken together, lead to an account of
hurricane dynamics quite different from Ooyama’s de-
scription.

The primary effect of the potential-radius coordinate
used here is to reduce gréatly the number of radial
coordinate surfaces necessary to accurately simulate
the balanced flow. Whereas Ooyama used 200 coor-
dinate surfaces over 1000 km, we use 24 over 1500
km. Nevertheless, this model’s maximum radial res-
olution, which occurs near the eyewall, is comparable
to the uniform 5-km resolution in Ooyama’s model.
On the other hand, our use of a uniform time step
requires about 7 times as many time steps over a
roughly 10-day period as required by Ooyama’s model,
which adjusts the time step during the integration. A
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secondary effect of the use of potential-radius coordi-
nates is that the convective adjustment occurs along
angular-momentum surfaces, thereby accounting for
the centrifugal as well as buoyant component of con-
vection, and for the vertical transport of angular mo-
mentum.

The representation of convection used by Ooyama
is quite similar to that suggested by Kuo (1965), which
is employed in many research and operational nu-
merical models. In simple terms, the rate of heating is
proportional to both the difference between the tem-
perature of a parcel lifted from the boundary layer and
that of the free atmosphere, and the rate of moisture
convergence in the boundary layer. (In Kuo’s scheme,
some of the moisture converged may be used to mois-
ten, rather than heat, the atmosphere.) This constraint
means that convection is forbidden in regions of mois-
ture divergence. Consequently, large conditional insta-
bility can and does occur outside the core in Ooyama’s
simulations.

We regard the constraint imposed by moisture con-
vergence as entirely artificial and counter to parcel the-
ory. Although moisture convergence and deep con-
vection are extremely well correlated in the tropics, the
former is an effect of convection, not its cause. Con-
vection is caused by instability. The effect of the mois-
ture convergence constraint in Ooyama’s model is to
concentrate high-precipitation-efficiency convection in
the core, for reasons very different from those in the
present model. In the latter case, the concentration of
heating in the core occurs because the precipitation
efficiency is very high there, whereas the convection
that can and does occur outside the eyewall has rela-
tively low precipitation efficiency.

In effect, the similarity of Ooyama’s results and those
presented here is due to the spatial near-coincidence
of moisture convergence and HPE convection. This
coincidence is at least partially accidental, however. In
the present model, for example, the moisture conver-
gence that occurs initially is used to moisten, rather
than heat the free atmosphere, and deep convection
occurs only where surface fluxes are strong enough to
generate parcel instability through a deep layer.

Finally, we note that the initial condition used in
Ooyama’s model is quite unstable to parcel displace-
ments from the boundary layer. (This is not an inherent
feature of the model but rather the particular choice
made by Ooyama 1969.) A parcel lifted to the middle
level acquires approximately 10°C of buoyancy. Con-
sequently, the model is linearly unstable to infinitesimal
perturbations. The relatively long incubation time for
disturbances was shown by Ooyama to be an artifact
of the eddy viscosity in the model. By contrast, the
initial state of the present model is conditionally neutral
(actually, slightly stable due to the imposition of a weak
warm-core vortex ) and the initial vortex decays due to
boundary friction in the absence of strong heating. As
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shown in Fig. 5, the present model is relatively insen-
sitive to the magnitude of the lateral eddy viscosity.

4. Other sensitivity experiments
a. Sensitivity to initial vortex dimensions

It is by now well known that tropical cyclones attain
a wide range of geometric sizes, and that their intensity
is not systematically related to their size (Merrill 1984).
The steady-state Carnot-cycle theory of Emanuel
(1986) shows that the minimum central pressure that
can be sustained in a tropical cyclone is not a strong
function of its size up to a large-scale limit, which,
using the present normalizations, is given by ry ~ 1.
In terms of the Carnot cycle, too much energy must
be used to restore the angular momentum of the out-
flow to ambient values in a steady-state flow to permit
such large sizes. In the model of RE, the cyclonic in-
tensity appeared to be unrelated to its size unless the
initial disturbance was too large, in which case it did
not amplify. Emanuel and Rotunno (1989) suggest
that when the initial disturbance is large, too much
energy is used to spin up the anticyclone aloft, which
has no feedback on the surface fluxes.

We have performed several experiments designed to
determine the sensitivity of the model cyclones to the
geometric size of the initial vortex. Figures 9a and 9b
show, respectively, the evolution of the maximum azi-
muthal wind velocity and radius of maximum winds
in Experiments G,-G; for which the initial vortex ge-
ometry is as listed in Table 4.

In Experiment G, the initial vortex geometries are
halved. As shown by Fig. 9b, the vortex amplifies by a
series of contracting eyewalls, with each successive
eyewall attaining an ultimate radius larger than that of
its predecessor. Ultimately, the vortex achieves the
same dimensions and intensity as in the control run.

Doubling the length scales of the initial vortex (Ex-
periment G, ) leads to a slower intensification (Fig. 9a)
but ultimately to a model cyclone that has roughly the
same maximum winds as in the control but with some-
what larger dimensions. Quadrupling the initial radius
of maximum winds (Experiment G3), however, greatly
slows the intensification rate, as shown in Fig. 9. Ex-
amination of the azimuthal velocity at the tropopause
(not shown) reveals that the anticyclone is almost as
strong as the low-level cyclone in this case, so that less
of the total energy feeds back to the surface fluxes.

b. Sensitivity to initial lower-tropospheric humidity

Experiments H, and H, are designed to test the sen-
sitivity of the model cyclone development to the initial
humidity of the lower troposphere above the boundary
layer. In the former, the initial entropy difference be-
tween the subcloud layer and the lower troposphere is
doubled, while in the latter case it is halved. Figure 10



3452

a T T T T T T T T T T T T
Vmox
o L L I 1 ] I 1 1 L L L 1
O 2 4 6 8 0 R
Time
b 45—
/ \, ]
40¢ N\ E
F s N — ~ b
35F >~ Exp. 63 3
3 N s

max

\

FiG. 9. (a) Evolution with time of maximum azimuthal velocity
for control run (solid) and Experiments G,-G;. In G, the radial
dimensions of the initial vortex are halved while in G, and G; they
are doubled and quadrupled, respectively. (b) As in Fig. 9a but show-
ing evolution of radii of maximum winds.

shows that once intensification has begun, the rate of

amplification does not vary much with initial lower- -

tropospheric entropy. The time of onset of .intensifi-
cation, however, is doubled in the first case and halved
in the second, suggesting a direct relationship between
the time of onset of amplification and the initial en-
tropy difference between the subcloud layer and lower
troposphere. This also suggests that the critical ampli-

tude necessary for growth increases with decreasing -

lower-tropospheric humidity, though no experiments
were carried out to test this idea directly. These results
are in good agreement with those from the complete
model study of RE and in accord with the observation
that a moist lower and middle troposphere is conducive
to tropical cyclogenesis.
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¢. Sensitivity to exchange coefficients

While it is generally conceded that the surface-ex-
change coefficients for heat, moisture, and momentum
increase with wind speed, due to increasing roughness
of the ocean surface, it is not known what form the
increase takes or whether the exchange coefficient for
entropy increases at the same rate as that for momen-
tum. Advances in this regard await better measure-
ments of surface fluxes in highly disturbed weather.
Sensitivity to this wind dependence is evident in Fig.
11, which compares the control run to Experiment |,
in which the wind dependence of the exchange coef-
ficients is eliminated. In the latter case the onset of
amplification is delayed, intensification is slower and
the amplitude achieved is about 10% smaller than that
of the control run vortex. We do not, however, find
the drastic increase in the time scale mentioned by RE.

d. Sensitivity to radiational cooling

Since the tropical oceans act as a heat source for
tropical cyclones, a heat sink is also necessary in a
closed system if a truly steady state is to be achieved.
This point was stressed by Riehl (1954 ) in his analysis
of the hurricane heat engine. In real tropical cyclones,
some of the heat may be exported by nonaxisymmetric
motions. Even in a closed system, however, the con-
centration of high winds and surface fluxes in a rela-
tively small region means that the rate of radiational
cooling need increase only a few percent over a 1000-
km domain to balance the excess transfer of heat from
the ocean. :

In the present model, and perhaps in nature, the
radiative cooling not only permits a balance in the en-

o i L L F 1 L 1 1 1 1 1 J
o} 2 4 6 8 i0 12
Time

FIG. 10. Evolution with time of maximum azimuthal velocity for
control run (solid) and Experiments H, and H,. Here H; begins with
a very dry middle troposphere while H; starts with a relatively moist
troposphere.
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FIG. 11. As in Fig. 10 but for Experiments I, J, and K. In Exper-
iment I the wind dependence of the surface exchange coefficients is
eliminated. Experiment J contains no radiative cooling. In Experiment
K the subcloud-layer thickness is halved.

ergy equation but also allows subsidence to occur in
the steady state. This is important in the moisture
budget, since the only way to balance the moistening
of the lower troposphere by LPE convection in the
hurricane’s outer region is by downward advection of
dry air.

Figure 11 shows the results of Experiment J, in which
radiative cooling is omitted. While the initial evolution
is similar to that of the control, the maximum winds
attained are only 85% of those of'the control, and the
vortex decays after about 7 = 8. Inspection of the vortex
structure reveals that HPE convection occurs in the
relatively moist atmosphere outside the eyewall after
about 7 = 6, and thereafter leads to an expansion and
weakening of the wind field. Clearly, the weakening is
not so much due to a general warming of the system
(which is hardly noticeable at 7 = 10) as to the mois-
tening of the lower troposphere outside the radius of
maximum winds in the absence of subsidence and the
concomitant eruption of HPE convection in the outer
region. In reality, this might be prevented by horizontal
eddy importation of dry air as well as by radiative cool-
ing. The inward advection of dry air in middle levels
is often seen on water vapor channel images from sat-
ellites.

e. Sensitivity to subcloud-layer depth

One experiment ( Experiment K) was performed in
which the depth of the subcloud layer is halved. The
results (Fig. 11) show hardly any effect on the evolution
of the system. This dramatically illustrates the point
that the subcloud layer is always near equilibrium, i.e.,
that the surface fluxes always balance the sum of hor-
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izontal advection and mean and turbulent (convective)
fluxes out of the top of the subcloud layer. From a
scaling perspective we could omit the time derivative
in the subcloud-layer entropy equation and the results
show that this would make virtually no difference to
the system. Because of horizontal advection, however,
it is numerically expedient to retain the time derivative,
as we have here.

f. Sensitivity to the isothermal expansion parameter

As mentioned previously, all of the dependence of
the model on sea-surface and tropopause temperature
is absorbed in the nondimensionalization, save the
former’s effect on the heat input from isothermal ex-
pansion of inflowing subcloud-layer air, as reflected in
the nondimensional parameter 8 (see Table 2).

The evolution of the central pressure with time is
illustrated in Fig. 12 for the control experiment and
for Experiments L;-L;, in which 8 is increased to 0.08,
0.12, and 0.16, respectively. (Recall that P is propor-
tional to the logarithm of the actual pressure.) As men-
tioned in section 2i, no steady-state analytic solution
exists for sufficiently high 8. Without internal dissi-
pation and neglecting the work done to spin up the
outflow, this critical value is about 0.08. In the two
cases presented here in which § is greater than this
value, the central pressure appears to continue falling
with time. The integration becomes unstable at about
7 = 11 in the case that 8 = 0.16, so the integration is
stopped at that time. As 3 increases, the radius of max-
imum winds in mature cyclones decreases, and in-
spection of the various fields indicates that radial res-
olution becomes an increasing problem in spite of the
use of potential-radius coordinates.

Variations of 8 up to about 0.08 cause relatively
modest changes in the model cyclone amplitude and
structure. Doubling 8 from 0.042 to 0.08 causes about
a 35% decrease in the central pressure and a 15% in-
crease in maximum winds. By contrast, the increase
in the scaling factors associated with such an increase
in 8 would double the dimensional pressure drop and
increase dimensional wind speeds by 40%.

5. Conclusions

The principal motivation for developing the simple
model presented here was to explain in simple terms
the finite-amplitude nature of the instability mecha-
nism responsible for tropical cyclones, as portrayed by
“complete” nonhydrostatic axisymmetric models such
as that of RE. The main difference between the simple
model discussed here an other simple models, such as
that of Ooyama (1969), is the use of a convective rep-
resentation that is consistent with parcel instability and
which allows for low-precipitation-efficiency (LPE)
clouds as well as for deep, high-precipitation-efficiency
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(HPE) convection. Other features include the use of
Schubert and Hack’s potential-radius coordinate, con-
vective adjustment along angular-momentum surfaces,
and initialization from a conditionally neutral state.
In the context of this simple model, there is a

straightforward explanation for the existence of the -

threshold amplitude for intensification reported by RE.
Ekman pumping first induces upward motion and adi-
abatic cooling. The initial response of the model to this
convective destabilization is to produce LPE clouds.
These are ineffective in opposing the adiabatic cooling
but maintain convective neutrality by drying out the
subcloud layer. The vortex core thus cools and 6, de-
creases (by about 2°C in Expt. E) in the subcloud layer.
Only when the lower-to-middle troposphere becomes
nearly saturated can anomalous surface fluxes counter
the drying effect of convective downdrafts to the extent
that subcloud-layer 8, actually increases. This increase
is associated with an increase in temperature aloft and
thus with an amplification of the cyclone.

FiG. 12. Evolution with time of (a) maximum azimuthal

- velocity, (b) central pressure, and (¢) radius of maximum.

winds for the control experiment (solid) and Experiments
L,-L;. Here 8 is the isothermal expansion parameter.

An alternative view of this process is illustrated in
Fig. 13. The cyclone can only spin up if there is inflow

. above the boundary layer in this model. But the in-

flowing air is, in the model and in nature, potentially
cold (i.e., it has low 6,). If this air were to simply flow
inward and upward, the vortex core would cool. What
happens instead is that the lower-tropospheric air fol-
lows an indirect route to the tropopause. Before as-
cending, air above the subcloud layer first descends in
convective downdrafts, is moistened by surface evap-
oration, and finally ascends in deep, HPE convective
clouds. Only if fluxes from the ocean succeed in raising
the entropy above that of the ambient subcloud layer
can the vortex core warm and the cyclone amplify.
This view is consistent with the findings of RE. The
important limitation on initial growth is the low 6, of
the middle troposphere. Even if the initial ascent is due
to processes other than Ekman pumping (e.g., ascent
associated with a large-scale wave disturbance) the ini-
tial convection will be of low precipitation efficiency
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and the argument presented here (see also Fig. 13)
pertains.

The LPE clouds are also crucial to the maintenance
of an intense vortex. By keeping the subcloud layer
relatively dry outside the core, conditional instability
to deep convection is reduced and the net upward con-
vective mass flux remains concentrated in the core. In
models employing Kuo-type convective representa-
tions, deep convection is artificially restrained outside
the core by the requirement of moisture convergence;
consequently, artificially large conditional instability
builds up there.

Other inferences drawn from this work follow:

1) The primary scaling parameter, which controls
the amplitude of the azimuthal velocity and pressure,
is a measure of the sea—air thermodynamic disequilib-
rium, X;, defined by (38). An upper bound on vor-
tex size is related to the length scale, VX_S /f. The time
scale of evolution and the secondary circulation are
controlled by the surface-exchange coefficient as well
as by X;. '

2) The model is not particularly sensitive to the
length scale used in the ad hoc eddy viscosity whose
thermal component is necessary to prevent frontal col-
lapse in the model. Omitting diffusion of momentum,
however, results in only weak development. It appears
that momentum diffusion is necessary to spin up the
eye, as originally postulated by Malkus (1958) and Kuo
(1958).

FIG. 13. Air flow in developing tropical cyclone. Dots show high
6, air. In order for the cyclone to-spinup, potentially cold air in the
lower troposphere must flow inward. Were it to ascend, the vortex
core would rapidly cool and the cyclone would decay. Instead, the
potentially cold air descends within shallow clouds, within precipi-
tating downdrafis, and outside of clouds due to Ekman suction. These
downdrafts reduce the entropy of the subcloud layer. Only if the
surface fluxes are large enough to offset the drying effect of the down-
drafts will the subcloud-layer entropy rise above ambient values, en-
abling the vortex core to become warmer than its environment. In
the developing storm, individual air parcels flow inward in the lower
troposphere, sink downward in downdrafts, receive entropy from the
ocean, and then ascend in deep convective clouds.
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3) Consistent with the findings of Emanuel (1986)
and RE, the intensity of the mature cyclone is not sen-
sitive to the geometry of the initial vortex, up to an
upper limit beyond which amplification is weak. This
upper limit is set by the increasing proportion of énergy
deposited in the upper-level flow as the disturbance
size increases. The geometric size of the mature cyclone
is strongly related to that of the initiating disturbance.

4) The “incubation period” of the incipient distur-
bance increases with decreasing relative humidity of
the lower troposphere above the subcloud layer. The
threshold amplitude for intensification presumably in-
creases as well.

5) Radiative cooling is necessary to maintain a
quasi-steady vortex. Its primary: function is to permit
the subsidence and associated downward advection of
dry air necessary to counter the moistening of the outer
region by LPE convection. Without radiative cooling,
the middle troposphere moistens, deep, HPE convec-
tion ultimately develops in the outer region and the
vortex expands and weakens.

6) The hurricane subcloud layer is very nearly in
equilibrium, even during rapid development.

7) Increasing the isothermal-expansion parameter
beyond a critical value appears to lead to runaway in-
tensification, as postulated by Emanuel (1988b).

We note, in closing, that tropical cyclones constitute
unique laboratories for probing the nature of cumulus
convection. While some of the conclusions presented
here are special to tropical cyclones, others may have
more general applications. In particular, parcel theory
suggests that convection generally exerts a damping
influence on temperature perturbations brought about
by large-scale processes and causes the subcloud-layer
entropy to track free tropospheric temperature changes.
Only when convection is coupled with boundary-layer
processes such as advection and surface fluxes can it
be expected to lead to amplifying large-scale distur-
bances.
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