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ABSTRACT

The existence of analytical solutions for two-dimensional nonlinear semigeostrophic models of moist front-
ogenesis is investigated. Two different schemes for the modeling of stratiform cloud thermodynamics are taken
into account, one based on the assumption of an everywhere cloudy environment, while in the other the
atmosphere is considered to be exactly saturated and only condensation effects are relevant. In the first case,
an exact analytical solution is derived for arbitrary boundary conditions, which satisfies the requirements for
the validation of the semigeostrophic approximation even when the atmosphere is conditionally unstable with
respect to slantwise convection. The growth of symmetric instabilities with no short-wave cutoff is predicted
for this conditionally unstable atmosphere, even under the approximations of the semigeostrophic theory. An
analogous, but approximate, analytical solution is then proposed for the second case. The errors introduced by
the approximation are, however, not bigger than the terms neglected in the semigeostrophic approximation

itself.

1. Introduction

A major breakthrough in the study of frontogenesis
was the introduction of semigeostrophic theory by
Hoskins and Bretherton (1972). In an ideal dry-adi-
abatic atmosphere (linear problem for suitable initial
conditions) semigeostrophic theory explains many
fluid-dynamical aspects of front formation (Hoskins
1982). Some limits of the dry frontogenesis models
have nevertheless been highlighted during the years, in
particular those related to the thermodynamic aspects
of the problem (Emanuel 1985). As an example, one
of the major discrepancies, evident when the dry at-
mosphere solutions are compared with observed fronts,
is in the distribution of the vertical velocities ( Blumen
1980; Ogura and Portis 1982). Also, the role of the
diabatic heating due to cloud condensation becomes
crucial in the study of the interaction between frontal
circulation and conditional symmetric instabilities
(Bennets and Sharp 1982; Emanuel 1983; Xu 1989).
Because of the progressive scale contraction mechanism
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in the cross-front direction, a close interaction is ex-
pected between the frontal circulation and mesoscale
instabilities. Analytical approaches to the investigation
of such a problem, based on perturbation analyses of
the primitive equations, require the formulation of an
analytical solution for the undisturbed base-state cir-
culation.

If the inviscid primitive equations are expanded in
series of a small Rossby number in the cross-front di-
rection, the resulting zero-order approximation leads
to the formulation of the semigeostrophic theory of
frontogenesis. Higher-order approximations to the so-
lution of the frontal circulation may be then obtained
if a solution of the zero-order problem is known in
closed form. When the effects of heat release due to
cloud condensation are taken into account, even the
application of the semigeostrophic theory leads to a
nonlinear set of partial differential equations, which
have been solved numerically (Thorpe and Emanuel
1985; Joly and Thorpe 1989). The existence of possible
analytical solutions and the derivation techniques are
the main objects of the present work. This will provide
a better insight into the dynamics of moist frontogenesis
and also serve as a preliminary step toward the inves-
tigation of the interaction between frontal circulation
and symmetric instabilities.
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Two types of nonlinear behavior are evident in the
formulation of the model under investigation: the first
one, strictly connected with the eventual evolution of
symmetric instabilities, depends on the evolution of
the potential vorticity field, otherwise conserved in a
dry atmosphere; the second one, of threshold type, is
due to the different roles played by the water vapor
condensation and cloud evaporation processes. Two
different simplified schemes are studied in order to an-
alyze and compare the relevance of the two nonlin-
earities. The two schemes are based on different hy-
potheses about the distribution of the cloudy areas in
the domain. If a “moist-up-moist-down” assumption
is made and the atmosphere is considered to contain
suspended liquid water everywhere, with both conden-
sation and evaporation effects, an exact particular an-
alytical solution can be obtained. This solution satisfies
the requirements of the semigeostrophic approximation
also in an atmosphere that is conditionally unstable
with respect to slantwise convection. A similar, but
approximate, analytical solution is also proposed for
the “moist-up-dry-down” scheme first investigated
numerically in Thorpe and Emanuel (1985). The order
of approximation of such a particular solution is found
to be not bigger than the order of magnitude of the
semigeostrophic approximation itself.

2. A semigeostrophic model of moist frontogenesis

The semigeostrophic dynamics of frontogenesis, as
driven by a synoptic-scale horizontal deformation field,
can be described by the set of partial differential equa-
tions ( Hoskins and Bretherton 1972)
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defined in a cross-front symmetry plane in semigeo-
strophic coordinates (X, Z, T) = (x + ®&x/f2%, z, 1)
&€ (—o0,+0) X (0,H) X (—0, Ty), bounded by the
earth surface and the tropopause, both considered as
rigid plates.

The unknowns taken in the above system of equa-
tions are the geopotential ®, the ageostrophic stream-
function ¥, and the Ertel’s potential vorticity Q (de-
fined in terms of potential temperature). The constant
Coriolis parameter f, the reference potential temper-
ature 0, and a geostrophic deformation forcing 4(7T')
are considered as given parameters for the problem. A
pseudodensity of the air, r, may be considered constant
as well in a Boussinesq approximation.

The vertical component of the absolute vorticity =
and the diabatic heating source S are expressed as ex-
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plicit functions of the unknown fields ® and ¥. In par-
ticular Z can be written in the form:

—_ f
T = (/)

The time of front formation, T, may be defined as
the time when the vertical component of the absolute
vorticity becomes singular, that is, when ®xx( X', Z',
To) = f? at some point (X', Z').

Assuming that condensation is the only relevant
diabatic process at the spatial and temporal scales of
the given problem, and also that the major contribution
to the change of specific humidity following a fluid
particle is due to the vertical advection along X = const
surfaces in updraft regions (negative ¥y ), the heating
source can be expressed as (Thorpe and Emanuel
1985):

(4)

1

s:—(% Qe—Q)F(\IfX); (5)
d

S

Q. is a potential vorticity defined in terms of equiv-
alent potential temperature, which, by means of Ertel’s
theorem, is considered as a given constant throughout
all the domain of integration. In (5) I,,,/T';is the ratio
between the moist and the dry adiabatic lapse rates of
temperature. (This last term was mistakenly missed in
the original formulation of the model, and subsequently
introduced in Emanuel and Fantini (1987).]

To study the effect of the diabatic heat exchange on
the frontal circulation, two simplified schemes can be
adopted:

e a “moist-up—dry-down” (MUDD) scheme ( F(¥y)
= WyH(—Y¥y)), where an everywhere saturated at-
mosphere is considered, such that condensation of wa-
ter vapor is present wherever the updraft velocity is
positive; condensed water is assumed to precipitate
immediately, so that evaporation of clouds is com-
pletely neglected; H(-) is the Heaviside step function,
defined as H(x) = 0if x<0Oand H(x) =1 if x> 0;

® a ‘“‘moist-up-moist-down” (MUMD) scheme
(F(¥yx) = ¥y), where an everywhere cloudy atmo-
sphere is considered, with both condensation (updraft
velocity ) and evaporation (downdraft velocity).

Both schemes are very crude simplifications of the
moisture distribution in the real atmosphere. The first
one does not allow for the presence of any cloud. The
second one is not representative of the usually observed
difference in the average absolute humidity between
the cold descending and the warm ascending air masses.
Even if the MUMD scheme may be considered the
weakest approximation, it allows, due to its simpler
mathematical formulation, for a more complete in-
vestigation of some of the basic effects of the diabatic
heat exchange on the frontal circulation. The MUMD
case will also permit some preliminary conclusions of
the behavior of undisturbed semigeostrophic solutions
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in an atmosphere that is unstable with respect to moist
slantwise convection, and on their interaction with
growing symmetric instabilities.

The boundary conditions are null vertical velocity
and given potential temperature profiles (0/g)®z on
the horizontal boundaries. All the horizontal gradients
and ageostrophic velocities at infinite distance from
the center of the domain vanish (given no vertical ve-
locity on the horizontal boundaries, the potential tem-
perature profiles are fixed there at any time in the
stretched coordinate 8X, where 8 = exp f:o A(n)dn):

P,(X,0, T)=0,(8X), lim 0, x=0, (6)
X—=>+oo
rH
B, X, H, T) = 0,(8x) + E% (7)
Oof
) H grZ?Q,
lim &= (Z— 2 )|0,(8X) + £
ol ( 2) B+ e » )
¥(X,0,T)=¥X,H, T)=0, 9
lim = lim ¥y=:--
X—+to X—+too
= lim \Ifx...X:O, (10)
X—=+0

where (, is a reference potential vorticity correspond-
ing to the initial condition for an undisturbed atmo-
sphere back in the past:

lim Q(X,Z,T) = Qo.

T—>—cw0

(11)

To look for a suitable nondimensional form of the
problem, we choose the following nondimensional
variables (lowercase ), assuming a pseudo Brunt-Viis-
illd frequency N = [(grQo)/(00f)]1'/?, in the Boussi-
nesq approximation:

TABLE 1. Typical values of the various atmospheric parameters at
the midlatitude, and derived reference magnitude for the various
variables used in the model. U, V, and W are the horizontal cross-
front, horizontal longfront, and vertical components of the wind ve-
locity. The reference magnitude of some of the variables varies in
time according to the contraction parameter 3.

Parameter Variables (dimensional)
N 107257t X 10%Bm
Z 10°m
H 10*m T 10°s(27.78 hours)
Q0 2xX107m?s °K kg™
f 1074s7! Q. 4X107m?s! °K kg™
Z 1075
Ao 107° s S 2X10*°Ks™
¥ 10°kgm™s™
To lkgm™ ® 10°m?s?
0, 20°K
Q 2X 107" m?s™ °K kg™ U 10ms!
vV B100ms™
I,/Ts 0.5 w B10' ms™!
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Z=Hlz+:); X=—x; T=—;
(+3): x5 &
J - '
A = Aoa; 0 = Qog; T, Q. = Qo4e;
d
A NH?*A4
S=Q0H Ors; W = Or‘p; ¢=N2H2¢;
S S
— Hr
E=1& 0, = fQo 0.

In order to obtain a dimensional interpretation of the
results discussed later on, the values reported in Table
1 for the various parameters can be assumed. The ref-
erence magnitude for the various variables, derived us-
ing such typical values for the parameters, are also re-
ported in the same table.

Assuming that the potential and absolute vorticities
remain positive and finite, the following set of equations
in the unknowns (g, f, ¢) is obtained:

(1 - B2¢xx)qt + B(q - qe)\bxz(l - G("px))

- ﬁqz’ﬁl’xG("l/x)' = 0, (12)
¢ZZ + (qe + (1 - qe)G(¢x))Bz¢M
+ zaﬁd’xz: = 0, (13)
¢zz—(1 _62¢xx)q=0r (14)
where
H(y,), moistup/dry down
G(¥x) = . . (15)
0, moist up/moist down,
with boundary and initial conditions:
¢z(x, -3 z) = 0,(x), lim =0, (16)
¢z(x’%9t) =0b(x)+ 19 (17)
2
1
(Z + E)
lim ¢ = z0,(x) + 5> (18)
! = l =
ll/(x)_zﬁl)—w(xszat) 0: (19)
lim ¢ = lim yx=+--= lim Yx...x=0, (20)
lim g(x, z,t) = 1. (21)

t—>—0o0

The semigeostrophic approximation is valid if the
cross-front inertial terms are small relative to the long-
front geostrophic velocity multiplied by the Coriolis
parameter. The validity of the inviscid approximation
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depends on the magnitude of the Richardson number,
which must be >1/10. These two conditions can be
stated as (Hoskins and Bretherton 1972):

‘ut + Wuzl = ‘(62£¢xz¢x + \bz)t

- Bglpx(ﬁzg(blepx + "Pz)zl
2
<A_(2) |vg|
f2
=0 | Bxl, (22)
1
€] = lm < 10, (23)

where u and w are the horizontal and vertical com-
ponents of the nondimensional ageostrophic velocity,
v, is the long-front dimensional geostrophic velocity,
and the Rossby number Ro = 4,/ fis usually of the
order of 1071,

Two different sources of nonlinearity are present in
the set of Eqs. (12)-(14), namely, the dependence of
the ellipticity coefficient G on the sign of ¥, (in the
MUDD scheme) and the products between g and ¢,
and ¢,,. In a dry atmosphere, that is, g, = 1 and G
= 0, the potential vorticity field remains constant at
any time and the problem becomes linear.

3. Formulation of a particular analytical solution

If the moist frontogenesis is assumed to take place
in an atmosphere that is stable with respect to dry
slantwise convection, that is, the potential vorticity g
is positive everywhere, Eq. (14) can be inverted to ob-
tain the potential vorticity g itself. Substitution into
(12) reduces the problem to a set of two equations with
unknowns (¢, ¢¥):

{¢zzt - qe(l - G(\bx))ﬁ\bxz - G(‘Px)ﬁ&‘bzzz‘px}
X (1 - 182¢xx) + ¢zz{(:32¢xx)t + (1 - G(‘Px)):&//xz
- G(¢x)63g¢xxz‘l/x} =0, (24)

V. + (g, + (1- QE)G(\I/X))BZ‘//XX + 2aB¢,, = 0.
(25)

An exact particular solution to such a highly non-
linear problem can be obtained in the MUMD case if
it is assumed that the potential vorticity is uniform in
the initial condition.

In the MUDD case, it might be assumed that the
potential vorticity remains uniform in the downdraft
areas [according to the classical dry scheme, Eq. (12)
is “locally” homogeneous in g if ¥, = 0] and that
the potential vorticity evolves in the updraft areas ac-
cording to the moist scheme. In reality, the interface
between updraft and downdraft areas will tend to move
toward the warm (updraft) side (as shown later). The
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dry scheme is then to be applied, as the time integration
of the equations proceeds, also to areas where the po-
tential vorticity, having previously experienced the
moist evolution, is no longer uniform. In order to solve
the MUDD case we will assume that this last mentioned
effect is negligible, and will approximate the potential
vorticity to be uniform in the whole downdraft area at
any time. The validity of this approximation will be
shown later. Then a particular solution to both schemes
(exact in the MUMD case, approximated in the
MUDD one) can be obtained studying the reduced
system (whose derivation is given in appendix A):

Voo + (ge + (1 = @)G())Bax + 20865 = 0,
(26)

¢+ (g + (1 _qe)G("px))ﬁzqsxx: 1. (27)

The form of this reduced set of equations is very
similar to the one in the classical dry scheme proposed
in Hoskins and Bretherton ( 1972), the only difference
being the ellipticity coefficient that (in the updraft areas
for the MUDD scheme and in the whole domain for
the MUMD scheme) is reduced to ¢,. As the equivalent
potential vorticity is usually much smaller than the
potential vorticity, the moist evolution might be ex-
pected to be characterized either by smaller horizontal
scales or weaker vertical gradients, or a combination
of the two. The potential temperature boundary con-
dition, however, still plays a major role in controlling
the horizontal scales of the solution to such a boundary-
value problem. The relevance of the smallness of the
equivalent potential vorticity in contracting the hori-
zontal scales, with respect to the classical dry solution,
can be fully understood only after analyzing the solu-
tions derived below.

a. MUMD solution

In the MUMD case G is identically zero and Eqgs.
(26)~-(27) become linear. Assuming as an example that
the forcing boundary condition gradient 8’(x) is sym-
metric, the solution is obtained by means of Fourier
sine and cosine transforms:

2

z +%
#(x, z,t) = — 7 (2/m)'?
% J‘“’ sinh(whBz)¥ w)
o whf cosh(whB/2)
X sin(wx)dw, (28)
- 2 [T Hw)
W 2,0 = —aB2/m) ) osh(whB)2)
X (z sinh(whBz) — %}M cosh(whﬁz))
Xcos(wx)dw, (29)
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where
Hw) = (2/7)'/? J:o Op(x) sin(wx)dx. (30)
Such a solution is similar to the one of the dry prob-
lem (Hoskins and Bretherton 1972), the only difference

being the ellipticity coefficient 43. Frontogenesis is then
expected to evolve faster in the moist case as A

= g1/? approaches 0.
It is also straightforward to verify that
1\2
z+ E
lim ¢(x, z, t; g.) = z0,(x) + (31)
9.0 2

lim Y(x, 2, 13 ge) = —aﬁ(zz - })%m. (32)

Then, in the case of an everywhere cloudy atmo-
sphere that is neutral with respect to conditional slant-
wise convection, the potential field ¢ remains constant
in time, when it is observed in a semigeostrophic co-
ordinate system that is contracting in the horizontal
direction at the same rate of the boundary temperature
profile. In other words, the rate of frontogenesis, that
15, the growth speed of the absolute vorticity, is fully
determined by the temperature profile at the surface.
The same can be stated about the horizontal and ver-
tical scales of the resulting ageostrophic flow.

As an example, the resulting ageostrophic flow for
a forcing temperature profile 6,(x) = 2 tan ' (x)/« is
plotted in Fig. 1 for the dry case (g. = 1) and in Figs.
2 and 3 for the cases g, = 0.1 and g, = 0.01. The so-
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FiG. 1. Ageostrophic flow in nondimensional physical coordinates
for=3.33,[T=334h],q.=1.0,[Q.=4X 107" m?s™! °K kg'],
0,(x) =2 tan ' (x)/ 7, [Omax — Omin = 20 K]. Vertical velocity contours
(w) are solid, and horizontal velocity contours (%) are dashed. | Wmax|
= 0.227, [| Waax] =0.076 m $7']; | thmax| = 1.680, [| Umax| = 16.80
m s~!'] (MUMD). Dimensional values in square brackets are cal-
culated according to parameter values in Table 1.
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FIG. 2. Ageostrophic flow in nondimensional physical coordinates
for=2.25,[T=22.5h},4.=0.1,[Q.=4X 10" m?s~! °K kg~'],
05(x) = 2 1an""(x)/ 7, [Omax — Omin = 20 K]. Vertical velocity contours
(w) are solid, and horizontal velocity contours () are dashed. | Wiax|
=0.507, [| Winax| =0.114 m $7']; {thmax| = 1.647, [| Unax| = 16.47
m s~!] (MUMD). Dimensional values in square brackets are cal-
culated according to parameter values in Table 1.

lutions are plotted in a nondimensional physical space
(x', z2') = (x — BEdy, z). All the three solutions refer
to the time when the maximum absolute vorticity
reaches the value £, = 10. In this way the two solu-
tions may be considered to be at about the same “dis-
tance” from the time ¢4 of formation of the front. The
values of 7y are 1.20, 0.81, and 0.75 in the first, second,
and third cases, respectively. While the maximum up-
draft velocity increases about three times from the dry
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FIG. 3. Ageostrophic flow in nondimensional physical coordinates
forf=2.11,[T=20.7h],q.=001,[Q.=4X 10°m?*s™' °K kg™,
B5(x) = 2 tan "' (x)/ 7, [ Omax — Omin = 20 K]. Vertical velocity contours
(w) are solid, and horizontal velocity contours (u) are dashed. | Winax |
=0.618, [| Wax| = 0.131 m $7'1; | thmax| = 1.666, [| Umax| = 16.66
m s~'} (MUMD). Dimensional values in square brackets are cal-
culated according to parameter values in Table 1.
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case to the moist case with g, = 0.01, the maximum
horizontal ageostrophic velocity remains about the
same. The increasing maximum updraft velocity cor-
responds to decreasing characteristic horizontal scales,
which tend to be narrower for smaller equivalent po-
tential vorticities. There is however, no singular be-
havior as g, goes to 0, as also shown by the limits (31)
and (32). In particular, the horizontal scales of the
vertical velocity are bounded from below by the hor-
izontal scales of the function 6/(x)/(1 — B2z0%4(x)).
This tendency is evident in the Figs. 1, 2 and 3, where
the differences between the cases g. = 1 and g, = 0.1,
both in terms of magnitude and scales of the vertical
velocity, are much bigger than the ones between the
cases ¢, = 0.1 and g, = 0.01.

The magnitude of the horizontal ageostrophic ve-
locity and its time evolution are crucial for the vali-
dation of the semigeostrophic scheme [see (22)]. It
turns out that the MUMD scheme satisfies the semi-
geostrophic assumptions also for vanishing equivalent
potential vorticity g,. As an illustration, Figs. 4, 5, and
6 show the time evolution of vorticity, horizontal, and
vertical ageostrophic velocities, for values of g, in the
range [0, 1]. We observe from the maximum absolute
vorticity graph (Fig. 4) that the frontogenesis evolution
becomes faster and faster as the equivalent potential
vorticity decreases, but with no singular behavior as
that parameter vanishes. Each curve tends to a vertical
asymptote located at the time ¢y of the formation of
the front. The evolution of the maximum values of the
corresponding ageostrophic horizontal and vertical ve-
locities is shown in Figs. 5 and 6, respectively, up to
the time when £,,,, > 10 for each particular value of
equivalent potential vorticity. Only the vertical velocity
is sensitive, in its maximum values, to the variations
of the equivalent potential vorticity. Close to the time
of the front formation, the maximum vertical velocity

18

16 0.1 03

’ | ]

0

1 15 2 25 3 35
B

FIG. 4. Evolution of the maximum absolute vorticity, for 6,(x)
=2 tan"'(x)/= and various values of g, (labels on top of graphs),
as a function of the time parameter 8 = exp(¢): (MUMD).
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FIG. 5. Evolution of the maximum ageostrophic horizontal velocity,
for 6;(x) = 2 tan~'(x)/7 and various values of g, (labels on top of
graphs), as a function of the time parameter 8 = exp(¢) (MUMD).

in the conditionally neutral atmosphere (g, = 0) is
almost four times larger than the one in the dry case
(g.=1).

Because the MUMD solutions are “well behaved”
in the whole range ¢. € [0, 1], it is of some interest to
study the behavior of the same problem for negative
values of the equivalent potential vorticities. As men-
tioned in the Introduction, an analytical study of con-
ditional symmetric instabilities in the presence of
frontogenesis requires the formulation, in analytical
form, of the undisturbed base circulation for g, < 0.
In this case Egs. (26) and (27) are hyperbolic, but the
reduced problem is still linear given that G = 0 in the
MUMD scheme. Provided then that the boundary
conditions are not given along the characteristic lines
(whose slopes are +g!/?), the solution is still unique,

0.35

03 , 00
025 / o1
Wees 02 / 2
015 /
0.5
0.1 i 01
S ——
L 10
005
1 15 2 25 3 35

B

FIG. 6. Evolution of the maximum vertical velocity, for 8,(x)
=2 tan"'(x)/7 and various values of g, (labels on top of graphs),
as a function of the time parameter 8 = exp(¢): (MUMD).
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and it can be simply obtained by replacing ih (i
= imaginary unit) for 4 in (28) and (29). The inte-
gration of the solution Fourier transform, however, is
now more problematic. A simpler case results by re-
placing the lateral conditions for x = *co by period-
icity conditions. A simple sinusoidal profile is assumed
for the boundary potential temperature. It is generally
supposed that the semigeostrophic approximation
breaks down when ¢, < 0. This does not occur in the
MUMD scheme, however, when g, is uniform: the
geostrophic momentum approximation along the
cross-front direction is still valid in a range of forcing
conditions and time. While it is well known that such
a solution will be unstable to small perturbations, there
is nothing to prevent the solution from being obtained,
if for no other reason than to provide a slowly evolving
base state on which to examine the growth of unstable
perturbations. As shown in appendix C, even semi-
geostrophic perturbations to such solutions can be un-
stable. The time evolution of the maxima of the ab-
solute vorticity and of the ageostrophic velocities are
plotted in Figs. 7, 8, and 9 for ¢, € [—1, 1]. These plots
are equivalent to Figs. 4, 5, and 6, which corresponded
to an arctangent potential temperature profile and were
limited to g, € [0, 1]. Two different sinusoidal forcing
profiles with amplitude 0.3 (solid lines) and 0.6 (dashed
lines) and unitary wavelength have been assumed in
the examples shown. From a qualitative point of view,
the only relevant difference with respect to Figs. 4, 5,
and 6 is in the behavior of the horizontal velocity. It
is now much more sensitive to the variations in the
equivalent potential vorticity. This can be explained
observing the functional dependence of the periodic
solutions on 4 = gl/?: the horizontal scales remain
fully controlled by the boundary condition wavelength,
and only the vertical scales are affected by the decreas-
ing equivalent potential vorticity. The maximum hor-

B

FIG. 7. Evolution of the maximum absolute vorticity, for f({x)
= 0.3 sin(x) (solid lines) and 6,(x) = 0.6 sin(x) (dashed lines) and
various values of g, (labels on top of graphs), as a function of the
time parameter 8 = exp(¢): (MUMD).
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FIG. 8. Evolution of the maximum ageostrophic horizontal velocity,
for 8,(x) = 0.3 sin(x) (solid lines) and f( x) = 0.6 sin(x) (dashed
lines) and various values of g, (labels on top of graphs), as a function
of the time parameter 8 = exp(¢): (MUMD).

izontal velocity occurs on the horizontal boundaries,
where the vertical one is null, so it depends only on
the vertical derivative of the ageostrophic streamfunc-
tion (u(z = £1/2) = ¢,). The temporal growth of the
horizontal velocity, however, is still much slower than
that of the other variables, and the rate of growth be-
comes negative prior to the formation of the front for
certain ranges of equivalent potential vorticity. The
vertical velocity monotonically increases as the equiv-
alent potential vorticity decreases from positive values.
The horizontal velocity, on the other hand, achieves a
maximum value for g, = 0.

b. MUDD solution

The next step is to study the nonlinear behavior of
the moist frontogenesis dynamics when no evaporation
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FIG. 9. Evolution of the maximum vertical velocity, for 8,(x)
= 0.3 sin(x) (solid lines) and f( x) = 0.6 sin(x) (dashed lines) and
various values of g, (labels on top of graphs), as a function of the
time parameter 8 = exp(¢): (MUMD).
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is presumed in the downdraft. This is the more realistic
MUDD scheme.

The new set of Egs. (26)~(27) remains nonlinear
in the MUDD case, where the parameter G is a function
of one of the dependent variables. The proposed so-
lutions involve the assumption that the whole domain
can be subdivided in one updraft and one downdraft
area (Emanuel 1985), separated by an interface that
remains nearly vertical, in semigeostrophic coordinates,
at any time, even if moving in space. Equations (26)-
(27) can be then separated and a particular solution
obtained (appendix B).

Such a particular solution may be thought as a com-
bination of the “dry” and the MUMD ones, plus ad-
ditional terms that need to be introduced to maintain
the continuity of the various velocity and potential
temperature fields at the interface position x = /. Such
additional terms become singular in the limits (g, =
0; x = [); a singular perturbation method needs then
to be used to study the MUDD solution for vanishing
equivalent potential vorticity near the separation in-
terface. Only the case of finite positive values of g, will
be addressed here.

As an example of the solutions for the MUDD
scheme, the resulting ageostrophic flows for the same
forcing temperature profile adopted in the examples of
the MUDD solution, for g, = 0.25 and ¢, = 0.1 at the
times when £, = 10, are shown in Figs. 10 and 11.
Comparing the timing of the front formation in the
second one with the analogous MUMD case, we ob-
serve how the frontogenesis process is slightly retarded
by the presence of dry evolution in the downdraft area.
Because of this damping effect the updraft velocity is

0.5 T T __2_(_'&,(_-__.(_(_64_, Py e Ay ‘_—::4__'_

CECH - & & coC e e o

T S - -

Ta1s -1 0.5 0
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FI1G. 10. Ageostrophic flow in nondimensional physical coordinates
for 8 = 2.60, [T = 26.5 h], g. = 0.25, [Q, = 10" m?s™! °K kg™'],
05(x) = 2 tan "1 (x)/ 7, [Omax — Omin = 20 K. Vertical velocity contours
(w) are solid, and horizontal velocity contours (u) are dashed. Wiyax
= 0.370, [Wnax = 0.096 m s7']; wpin = —0.206, [Wmin = —0.054
m s7']; thmax| = 1.666, [| Umax| = 16.66 m s7'](MUDD). Dimen-
sional values in square brackets are calculated according to parameter
values in Table 1.
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FIG. 11. Ageostrophic flow in nondimensional physical coordinates
for=2.24,[T=224h),4.=0.1,[Q.=4 X 10"¥m? s~ °K kg~'],
0y(x) =2 tan"'(x)/ 7, [Omax — Omin = 20 K]. Vertical velocity contours
(w) are solid, and horizontal velocity contours (u) are dashed. Wimax
= 0.444, [Woax = 0.099 m 57']; wpin = —0.190, [Wpin = —0.043
m '] | Umax| = 1.461, [| Umax| = 14.61 m s~'] (MUDD). Dimen-
sional values in square brackets are calculated according to parameter
values in Table 1.

less intense than the one in the analogous MUMD case.
We can also observe that the asymmetric thermody-
namical behavior is reflected in the loss of symmetry
of the ageostrophic flow, mainly in its vertical com-
ponent. The updraft velocity is found to be much more
intense and more concentrated near the front than the
downdraft velocity. This is due to the scale contraction
in the streamfunction field and to the faster growth of
the absolute vorticity in the area with moist evolution.
Also, the front will tend to develop first at the ground
and later at the tropopause.

A clearer idea about the quantitative difference be-
tween the MUMD and MUDD solutions can be ob-
tained by referring again to the temporal evolution of
the maxima of the absolute vorticity and of the ageo-
strophic velocities, given the same arctangent boundary
temperature profile and display criteria previously
adopted (Figs. 12, 13, and 14). The time evolution of
the maximum value of the vertical component of the
absolute vorticity (Fig. 12), which is indicative of the
degree of frontogenesis reached by the system, seems

*to be somewhat slower in the MUDD cases, but only

for finite values of the equivalent potential vorticity.
On the other hand, when the equivalent potential vor-
ticity is very small the evolution of the front in the
MUDD cases is much faster, with a clear tendency
toward a singular “instantaneous” frontogenesis. No
significant difference is evident, among the two
schemes, in the maximum values of the horizontal
ageostrophic velocity (Fig. 13). They maintain about
the same value if the frontogenesis evolution is at the
same stage. Significant differences are nevertheless
present in the evolution of the extreme values of the
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FIG. 12. Evolution of the maximum absolute vorticity, for 6,(x)
= 2 tan~'(x)/= and various values of g, (labels on top of graphs),
as a function of the time parameter 8 = exp(z): (MUDD).

vertical velocity (Fig. 14, where the minima are also
plotted). For equivalent potential vorticities between
0.t and 0.5 the maximum updraft velocity is of the
same order of magnitude as that in the MUMD case,
although slightly smaller. The minimum downdraft
velocity is not very sensitive to the particular value of
g. and remains very similar to that of the dry case. But
when ¢, < 0.1 the fast growth of the absolute vorticity
does not allow for full development of the ageostrophic
flow, and the velocities are still relatively small at the
time of the front formation.

Two different and important approximations were
made to arrive at the proposed particular MUDD so-
lution. First was the assumption that the interface be-
tween updraft and downdraft areas, in semigeostrophic
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FI1G. 13. Evolution of the maximum ageostrophic horizontal ve-
locity, for 8,(x) = 2 tan™!(x)/# and various values of g, (labels on
top of graphs), as a function of the time parameter 8 = exp(?):
(MUDD).
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FIG. 14. Evolution of the maximum (solid lines) and minimum
(dashed lines) vertical velocity, for 6,(x) = 2 tan~!(x)/= and various
values of g. (labels on top of graphs), as a function of the time pa-
rameter 8 = exp(¢): (MUDD).

_space, remains vertical. Second was neglecting the po-

tential vorticity variations in the downdraft area, caused
by the progressive translation of the separation inter-
face.

The first assumption is found to be almost exact.
The vertical velocity, calculated at the position x = /,
is, for all the many different cases, an order of mag-
nitude smaller than the overall accuracy of the calcu-
lation of the solution. Figure 15 shows the resulting
ageostrophic flow in semigeostrophic coordinates for
g. = 0.0k when £« = 10, where the vertical position
of the separation boundary is evident.
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FIG. 15. Ageostrophic flow in nondimensional semigeostrophic
coordinates for § = 1.16, [T = 4.12 h], ¢. = 0.01, [Q. = 4 X 10°
m?s™! °Kkg™'], 65(x) = 2 tan"'(x)/7, [Omax — Omin = 20 K].
Vertical velocity contours (w) are solid, and horizontal velocity con-
tours (u) are dashed. Wpax = 0.149, [Wpa = 0.017 m s7'}; wain
= —0.080, [Wqin = —0.009 m $7']; | tnax | = 0.838, [| Unax| = 8.380
m s~!'] (MUDD). Dimensional values in square brackets are cal-
culated according to parameter values in Table 1.
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FiG. 16. Horizontal displacement, with respect to the center of the
domain, of the vertical separation boundary /(8 = exp(¢)), for §,(x)
= 2 tan~'(x)/ = and various values of g, (labels on top of graphs).

The progressive translation of the separation inter-
face between updraft and downdraft areas is by itself
not negligible, as shown in Fig. 16. Its position x = [(¢)
is depicted, calculated as described in appendix B, for
various values of the equivalent potential vorticity.
When g, approaches 0, the magnitude of the boundary
translation velocity is almost of order of magnitude
one. However, its effect on the potential vorticity evo-
lution can be measured by the term 8%, evaluated
atx = /[Eq. (A.9)]. Figures 17 and 18 show the values
of that term calculated at various times for g, = 0.25
and ¢, = 0.1 and the same arctangent forcing temper-
ature profile used in the previous examples. These val-
ues are to be compared with the magnitude of the other
terms in the assumed equations, which are of order of
magnitude one. We may then conclude that this ap-
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FIG. 17. Vertical profile of the neglected term 8% ¢, calculated
at the separation boundary x = (1), for 85(x) = 2 tan"'(x)/n, q.
= 0.25 and various values of 8 (labels near the graphs).

FIG. 18. Vertical profile of the neglected term 82Y,,¢.., calculated
at the separation boundary x = I(2), for 8,(x) = 2 tan"!(x)/, g.
= (.1 and various values of 3 (labels near the graphs).

proximation is of the same order as, or even smaller
than, that of the semigeostrophic approximation itself.
This may be explained considering that, even if the
translation velocity of the separation boundary is not
small, it is toward the warm (updraft) side. On the cold
(downdraft) side, in proximity of the boundary, the
vertical velocity is very small, such that the consequent
“dry” evolution of the potential vorticity is very slow.

4. Conclusions

A semigeostrophic model of moist frontogenesis has
been briefly reviewed in order to investigate the pos-
sibility of obtaining analytical solutions to the resulting
nonlinear problem. Such a task is needed in, among
other things, the study of the interaction between fron-
tal circulations and mesoscale instabilities, when
frontogenesis takes place in an environment that is un-
stable with respect to moist slantwise convection.

A method for obtaining a particular solution has
been proposed, based on the inversion of the geopo-
tential equation and on the dependence between the
resulting potential vorticity equation and the stream-
function equation.

In the case where condensation is retained as the
only diabatic process in a saturated atmosphere, this
approach leads to the formulation of separate linear
problems inside each region where the vertical velocity
does not change sign.

If a cloudy atmosphere is assumed and evaporation
is considered (MUMD), a reduced linear problem,
similar to the dry one, is obtained and solved using
Fourier transforms. The use of this first simplified
scheme leads to a better understanding of the basic
effects of the diabatic heat exchanges on the resulting
ageostrophic flow. Such effects include a faster con-
traction in both the temporal scales of the frontogenesis
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and the horizontal spatial scales of the vertical velocity.
The obtained particular solution is shown to be valid
also for negative equivalent potential vorticity. In this
last case, the growth of symmetric instabilities is ex-
pected, ultimately leading to a breakdown in the va-
lidity of the semigeostrophic approximation. Further-
more, the cross-front horizontal velocity becomes
weaker for negative equivalent potential vorticity,
slowing down prior to the front formation. Further in-
vestigations are needed to understand the physical rel-
evance of such behavior.

The reduced problem is still nonlinear in the case
where only condensation is considered (MUDD). The
position of the separation boundary between updraft
and downdraft areas is a function of the resulting ageo-
strophic flow. An approximate particular solution is
obtained. This solution is based on the assumptions
that the separation boundary is a vertical interface in
semigeostrophic coordinates, and that the effect of the
moving interface on the dynamics is small. Both as-
surnptions are verified a posteriori. The introduction
of an asymmetric scheme for the diabatic heating leads
to two main differences in the derived solutions relative
to the symmetric MUMD case. Namely, large differ-
ences are found among the characteristic scales and
intensities of the updraft and downdraft velocities, and
singular behavior of the frontogenetic process is ob-
served in the limit g, — 0.

The MUMD solution may be considered as a valid
unperturbed zero-order solution of the frontal circu-
lation in a moist unstable atmosphere, where evapo-
ration is also relevant. Higher-order approximations
to the frontal circulation, including ageostrophic ac-
celerations, may be then obtained and used to study
the growth of moist symmetric instabilities in a forcing
environment. Further investigations are needed to fully
assess the properties of the MUDD solutions for van-
ishing and negative values of the equivalent potential
vorticity.
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APPENDIX A

A Method for Obtaining a Particular Solution
to the Set of Egs. (22)-(23)

In this appendix a method for obtaining a particular
solution to the nonlinear set of Eqs. (24)—(25) with
uniform initial conditions for the potential vorticity is
discussed. The method is based on the reduction of
the original set of equations to a simpler system.
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Suppose that the following equalities hold:
(B%¢x): = —BY:,
Gz = (ge + (1 = g.)G(¥x)) Bx.
Cross deriving and subtracting leads to
\{/zz + (g + (1- qe)G("px)),Bz‘l/xx + 2aﬁ¢):z =0,
(A3)

where it is assumed that (6(-) being the Dirac func-
tion):

(A1)
(A2)

o(¥x)¥x = 0. (A4)

Hence, given the homogeneous lateral conditions
for all the horizontal gradients and the homogeneous
conditions for ¢, and ¥ on the top and bottom bound-
aries, relations (A1) and (A2) are proven to satisfy the
streamfunction equation (25).

Inverting the order of derivation, the following
equation for the geopotential is obtained:

b+ (ge + (1 = ) G(¥:))(B2h) = 0. (AS5)

After integration by parts with respect to time, this
is transformed to

¢.: + (qe + (1 - qe)G(¢x))ﬂz¢xx

= f B2G' (Yx)Y¥xbxxdt + const. (A6)

Substitution of relations (A1) and (A2) in the geo-
potential equation (24) leads to the following equation:

{(1 - Bz¢xx)6¢xz( I - Bzd)xx - ¢zz)
- .3¢x(¢zzz( I - ﬁzd’xx) + 62¢zz¢xxz)}
X Gy)=0. (A7)
Such an equation is identically satisfied in the
MUMD case (G = 0). In the MUDD case it is satisfied
only in an approximate manner, neglecting the effect
of the time dependence of the position of the interface
between updraft and downdraft areas. Equation (AS)

is then integrated with respect to time, given the initial
condition for the potential vorticity, to obtain

b2 + (Ge + (1 — g.)G(¥x))B20xx = 1. (AB)
This approximation corresponds to the assumption
(letting G'(+) = 6(+)):

[ 85000t = 0. (A9)

APPENDIX B
Approximate Solution to the MUDD Scheme

Consider the following system of partial differential
equations:

bz + Pbp = 1, (B1)
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Vor + @Y + 2080y, = 0 (B2)
with boundary conditions (16)-(20). In such a prob-
lem, time appears only as a coefficient, and will not be
considered here as an explicit independent variable.
Given a smooth boundary thermal profile with uni-
modal horizontal gradient (for example, the arctangent
function), we look for a solution such that the whole
spatial domain can be subdivided in two areas inside
of which the sign of the vertical velocity remains con-
stant (one updraft and one downdraft):

a’=B*(1 — (1 = g)H(x — 1)). (B3)

In general, it will be / = /(x), so that the above system
of equations is not separable. We then make the ap-

proximation / = const. (in space), such that we may
write

2+5

¢ = z0,(x) + —  * § én(x) sin(nwz), (B4)

¥ = % ¥u(x) cos(nwz), (B5)

and the following infinite set of coupled ordinary dif-
ferential equations for the unknown Fourier coefficients
is obtained:

a’pl — n’np, + a’Z,0% =0
n*n*y, + 2aBnre, + 2e8nnZ,0} = 0] °
n=1,3,5,... (B6)

where Z = [4(=1)""D2)/(n?x2), n=1,3,5, - - -,
0. Let (for a symmetric temperature profile)

a*y; -

, 00,

Nw) = (2/7)/? J:O 05(x) cos(wx)dx. (B7)

Then the general solution to the set of ordinary differ-
ential equations (B6) can be written as

© 2
O = _(Z/W)I/ZJ; M

D22 + n2n? sin(wx) dw
+B,,exp(’~,laI | x — 11) , (B8)

) 2,2
¢,,=a,3n(2/7r)”2 | n—wzlqgi

(@22 F w2y cos{wx)dw

B,
+ (C,, - aﬁ;’f

(x—l))

Xexp(% | x — ll), (B9)
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where
B,= B, — (B, — Bi)H(x—1), (B10)
C,=Cr,—(Cr,—CHH(x—1). (Bl1l)

The sets of coefficients { B, B, C», C, } is deter-
mined by requiring continuity of the velocity and tem-
perature fields; that is, ¢, ¢, ¥, ¥y, at x = [. The fol-
lowing results are then obtained:

_ (1 = g*)eB’nrZ9(w)

= 1/2
Bn (2/71') J; (w262qe + n27r2)(w262 + n21r2)
X (ql?Bw cos(wl) + nx sin(wl))dw, (B12)
(1 = g."*)wB*nmZHw)
zﬁzqe + n27l'2)(0)2,82 + n27r2)

R

X (qY%Bw cos(wl) — g} nw sin(wl)dw, (B13)
o 2.2
= 2ag?(2ym) 2 [ T @)
Cy = 2aB%(2/7) o (@287 nPn?)?
X sin(wl)dw + aB;, (Bl4)

wn’m?Z,9(w)
(wZBZQe + n27r2)2

Ct = —208%g12(2/m) " |
0

+

. Bn
X sin(wl)dw — Em .
qde

(B15)

The position / of the separation interface between
updraft and downdraft areas, according to the previ-
ously introduced approximation, is found by setting
Y1.x(x = [) = 0, that is, by approximating the vertical
velocity by its first Fourier coefficient only. This leads
to the condition:

f‘” G(w)¥(w)
0 (w262q8+ n21rz)2(w262+n27r2)2
where
G(w) = {272((0B2q, + 72)? — (0282 + 72)?)
+ (1 — g)w?B*(w?B%g, + 72) (w262 + 7))}
X cos(wl) + 2mBw{(w?B?q, + 72)2
+ q}*(w?B% + 72)?} sin(wl). (B17)

dw=0, (B16)

The calculation of the vertical velocity at such a
boundary using a less crude truncation of the Fourier
series will serve as an “a posteriori” verification on the
error introduced with the vertical separation boundary
approximation.

APPENDIX C

Linear Stability of the MUMD Solution to
Semigeostrophic Perturbations

Given that the MUDD solutions have been discussed
for positive values of the equivalent potential vorticity
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only, when the system of equations was strictly of an
elliptic type, the stability analysis of the proposed par-
ticular solutions will be confined to the case of the
MUMD scheme.
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For the sake of simplicity, we then consider the so-
lution (¢*, ¥*) to the case with periodic lateral con-
ditions, to which we add some infinitesimal pertur-
bations (8¢, o) that satisfy the homogeneous boundary
conditions. The perturbed solutions are then:

z+
2 .
. h(k
Bx, 2, 1) = $%(x, 2, 1) + 06(x, 2, 1) = | = b kh;‘:osil(’;i;)/z) sin(kx)
+ P(t) sin(mkx) sin(nwz), (Cl)
W(x, z, 1) = ¥yX(x, z, 1) + dY(x, z, 1)
_ a9, . __ tanh(khB/2)
= [——hﬁ cosh (khB)2) (z sinh(khfz) — cosh(khﬂz)) cos(kx)}
+ Y (¢) cos(mkx) cos(nrz), (C2)

where k is the wavelength of the potential temperature
forcing profile and the amplitude P of the geopotential
perturbation is supposed to be infinitesimal at some
arbitrary initial time ¢y (P < 1). The streamfunction
perturbation, of amplitude Y, is supposed to be bal-
anced by the geopotential perturbation. The undis-
turbed solution (¢*, ¥*) is simply obtained assuming
in expressions (28) and (29) a single-frequency spec-
trum for the forcing temperature profile.

The substitution of the perturbed solutions in equa-

dP/fit - beta=0.4 ;
: -
20 e
20 40
m
’ dP/dt - beta=12 _
40 r[ v 1
= -
20} —
==y W=
20 40
m

tions (24 ) and (25), with G = 0, leads to the following
set of equations:

{d% + 8¢t — qBYE: — GBSz}
X (1 — B2k — B%0¢x) + (% + 6422)
X {(B2 %) + (B20¢xx) + Y2 + BoYi:}
=0, (C3)

dP/dt - beta=0.8

7
40 , = A
. _
20} - 3
/
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m
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FIG. Al. Contours of the growth rate (in logarithmic scale) of periodic infinitesimal potential
perturbations in a conditionally unstable atmosphere (¢, = —0.1), as a function of the wave
numbers in the horizontal (m) and vertical (n) directions.
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VE + 0 + B+ 4870
+ 2aB¢%; + 2080¢x, = 0, (C4)
which, by using relations (A1) and (A2) and Eq. (24),

and after linearization with respect to the perturbations,
simplifies to

{6¢zzt - qeﬂalpxz}(l - ﬂz(b;x)
+ ¢%{(B%¢x) + BoYr} =0, (C5)
6\1/22 + Qeﬂzalpxx + 2aB0¢,; = 0. (C6)

Given the periodic form of the perturbations, the
second equation leads immediately to the resulit:

Y= 2afnmmk P

n27r2 + 62qek2m2 "

Hence, substituting in the linearized evolution

equation for the potential perturbation (C5), this is

reduced to the following ordinary differential equation
with space-time-dependent coefficients:

22 4P 2aB%g.n’nim’k?
dt  nPnr?+ B%qk*m?

(C7)

P}(l ~ B ¢r)

21,22 2,2 _2..2712
+¢zz[d(6ka)_ 2aB8°n*m*m*k ]

dt n’r? + B2q.k*m?
= 0,

(C8)

10-10
0

107
104 E
101

dP/dt

102

105

108

0 1 2 3 4
beta

CASTELLI ET AL.

1517
and rearranging the various terms:
dapr 2aB%q.m*k?
dr  n*nr?+ B%gk*m?
X {n*x?(1 — BP¢n) + B2K*m?¢,,} = 0. (C9)

Provided that the terms in the second parentheses
do not cancel each other, and given the initial condition
P(B = Bg) = Py, the following solution is finally ob-
tained:

_ 1
n2ﬂ,2 + 62

_ 2aBnwmk
(n27l’2 + BZQekz

qek2m2 (n27r2 + ﬁ(z)qekzmz)POa (C10)

my? (n*n? + B3qck’m?)Po.
’ (C11)

As was expected, the geopotential perturbation P
decays in time for positive values of the equivalent
potential vorticity g., while it grows for negative values
of the same parameter. It is observed (Fig. A1) that,
in the case of negative equivalent potential vorticity,
the growth rate of the potential perturbations increases
for increasing wavenumbers in the horizontal direction
(m) and for decreasing wave numbers in the vertical
direction (»). Furthermore, it reaches an infinite rate,
for a given pair of wavenumbers (m, n), at the time
when 8 = (np)/(|g.]'"*km). Such singular behavior
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FI1G. A2. Temporal evolution of the growth rate (in logarithmic scale) of periodic infinitesimal
potential perturbations in a conditionally unstable atmosphere (g, = —0.1), for various wave-
numbers in the horizontal (m) and vertical (») directions.
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may be due to the neglect of the inertial terms, in the
semigeostrophic approximation, connected to the
cross-front velocity. This consideration is supported
from the graphs shown in Fig. A2, where the cuspids
in the curves represent approximately, for given wave-
numbers, the times when the perturbation growth rate
goes to infinity. The perturbation “blowup” occurs,
before the time of the front formation, only for large
horizontal wavenumbers, which represent modes lying
far beyond the range of validity of the semigeostrophic
approximation. Finally, we note how no explicit in-
teraction is found between the growing instabilities and
the base frontal circulation, when the perturbations are
taken as periodic in the semigeostrophic space. Such
an interaction is implicit in the back-transformation
to physical coordinates, which depends on both the
base-state geopotential and its perturbations.
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