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ABSTRACT

Velocity, buoyancy, and fractional area scales for moist convection in statistical equilibrium with large-scale
forcing are derived using the constraints of global energy and entropy conservation, and subcloud-layer ther-
modynamic equilibrium. The magnitudes of the velocity and buoyancy in moist convective clouds are shown
to depend on cloud microphysical properties and on the vertical distribution, but not the magnitude, of the large-
scale forcing. Comparisons of the theoretically derived scales with velocity and buoyancy values observed in a
numerical ensemble cloud model and in a one-column radiative-convective model show good agreement.

1. Introduction

Velocity and buoyancy scales for dry convection in
statistical equilibrium with an imposed atmospheric
cooling and a fixed surface temperature were derived
long ago by Prandtl (1925; see also the review by
Emanuel et al. 1994). This scaling shows that both the
velocity and buoyancy scales increase with the mag-
nitude of the forcing, But, to our knowledge, in the 70
ycars since Prandti’s work, no theory for moist con-
vective scales has been developed.

The net upward mass flux by convective clouds in
statistical equilibrium with large-scale forcing is
strongly constrained by the thermodynamic balance be-
twecn subsidence and radiative cooling in the clear air
between clouds, In the absence of large-scale vertical
motion, this constraint may be written

T 866 .
cpoang Qrad: (1)
where ¢, is the heat capacity of air, 7 and 6 are the
actual and potential temperatures, M, represents the ith
vertical draft in an ensemble of convective updrafts and
downdrafts, and Q. is the radiative heating rate in the
clear air. When (1) is coupled with a cloud model that
determines the partitioning among up- and downdrafts
and the effect of entrainment and detrainment on mass
flux, the mass fluxes M; are determined, though perhaps
not uniquely. But while the net upward mass flux is
strongly constrained by (1), the partitioning of the

Corresponding author address: Dr. Kerry A. Emanuel, Center for
Meteorology and Physical Oceanography, Massachusetts Institute of
Technology, Room 54-1620, 77 Massachusetts Ave., Cambridge,
MA 01239.

E-mail: emanuel @texmex.mit.edu

© 1996 American Meteorological Society

mass flux between the fractional area covered by the
drafts and their vertical velocity remains undetermined.
We can write

M; = o,(pw);, (2)

where (pw); is the mass flux inside the draft and o; is
the fractional area covered by the draft. Knowledge of
M; does not yield individual scales for o; and (pw);.

The lack of knowledge of the correct scaling for ve-
locity and buoyancy in moist convective clouds is a
major impediment to progress in understanding the re-
sponse of convective ensembles to changes in large-
scale forcing and in formulating advanced representa-
tions of convection in large-scale models. Renné and
Ingersoll (1996) recently proposed an energy method
for deducing these scales. Their method predicts that
velocity and buoyancy scales increase with the mag-
nitude of the imposed forcing. Robe and Emanuel
(1996) performed numerical integrations using a non-
hydrostatic cloud model to simulate a field of convec-
tive clouds in statistical equilibrium with imposed ra-
diative cooling and surface fluxes. They showed that
the buoyancy and velocity scales in the simulated
clouds actually remain constant or slightly decrease
with increasing radiative cooling.

To explain this behavior, we have developed a the-
ory of velocity and buoyancy scales similar to that of
Renné and Ingersoll, but differing in several respects,
which we shall discuss.

The theory is presented in section 2 of this report.
In section 3 we describe a series of experiments with
a one-dimensional radiative—convective equilibrium
model and compare the results of these and the nu-
merical experiments of Robe and Emanuel (1996) to
the theoretical predictions. These results are discussed
and summarized in section 4, which also provides a
physical interpretation of the theoretical scales.
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2. Convective velocity scales from global energy and
subcloud-layer thermoedynamic balances

Consider a horizontally homogeneous system in a
state of radiative—convective equilibrium. The net ra-
diative cooling of the troposphere is balanced by sur-
face sensible and latent heat fluxes, which are redis-
tributed aloft by dry convection in the subcloud layer
and by moist convection in the remainder of the tro-
posphere. We define Q, as the net absorption of radi-
ation by the surface:

Qs = SV\Itop - ASW ~ LWO, (3)

where SW,,, is the net incoming shortwave radiation at
the top of the atmosphere (i.e., the solar flux minus
shortwave radiation reflected by the earth, atmosphere,
and clouds), ASW is the reduction of solar radiation
owing to absorption by the atmosphere and by clouds,
and LW, is the net upward longwave flux at the surface.

The mass-integrated radiative heating of the atmo-
sphere is given by

Q4 = LWy — LW, + ASW, 4

where LW, is the net upward Jongwave flux at the top
of the atmosphere. In general, Q, is negative. Summing
(3) and (4) gives

Q_s + Q—A = Swtop - Lwtop = 0. (5)

In equilibrium there is no net radiative flux at the top
of the atmosphere, and thus Q; = —Q,.

We shall assume that the absorption and emission of
radiation are thermodynamically reversible processes.
Then the net change of entropy in the system owing to
reversible processes is given by

1[(9s _0 0 _5(1 1
gf(at)mdp_ = & —QA<T Ts), 6)

where s is the specific entropy of the system (the en-
tropy of soil or ocean water beneath the surface and the
entropy of moist air and cloud in the atmosphere), T,
is the surface temperature, 1/7 is the mean inverse tem-
perature at which radiation is emitted by the atmo-
sphere (including shortwave absorption), the integral
is taken over the mass (pressure) of the atmosphere,
and g is the acceleration of gravity. Clearly, if T, > T,
the net production of entropy by absorption and emis-
sion of radiation is negative, since Q, > 0, Q4 < 0. In
equilibrium, however, the net entropy tendency must
be zero since entropy is a state variable:

J(5)

implying that there exists an irreversible entropy

source,
lf Os _Aa(1 1
J(5) w=a(z-7)

dp =0,

net

(7)

(8)
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Since O, < 0 in the atmosphere and 7, > T, this will
be a positive quantity. This is simply a statement of the
second law of thermodynamics.

Many irreversible processes contribute to the en-
tropy source given by (8). These include convective
turbulence in the atmospheric and oceanic boundary
layers, moist convective turbulence, dissipation owing
to falling precipitation, and irreversible sensible and
latent heat fluxes from the surface. For the purposes of
this scale analysis, we shall neglect all irreversible pro-
cesses except dissipation of kinetic energy, and shall
assume that the majority of dissipation in the system is
associated with dry and moist atmospheric convective
turbulence. We shall check the validity of this assump-
tion a posteriori (see appendix B). We shali further
assume that the convective turbulence is all in the form
of dry convection in the subcloud layer and moist con-
vection above the subcloud layer. We shall also neglect
dissipation resulting from breaking internal waves.

We next associate irreversible entropy production
with dissipation and with buoyancy fluxes. The kinetic
energy equation for the atmosphere may be written

91 > 1 2
at<2p|Vl)+V 2pVIVI

€))

where p is the air density, V the velocity, w the vertical
component of velocity, p the pressure, and F the net
frictional force. Integrating over the radiative-convec-
tive system in statistical equilibrium gives

=—-V-Vp—pgw+ pF-V,

f [-V:Vp+ pF-V]=0, (10)

where the notation fv indicates an integral over the
volume of the system, and the term involving pw van-
ishes because there is no net vertical mass flux in equi-
librium. This states simply that in equilibrium, pressure
work balances dissipation.

We are assuming that frictional dissipation accounts
for the entire irreversible entropy source:

fv Tp(%>m = T fﬂ(%) = —fva'V, (11)

irr

where T, is the mean temperature at which entropy is
produced by irreversible processes. This just states that
in a steady system in equilibrium, the irreversible heat-
ing equals the dissipation and, from (10), the pressure
work, which is the rate at which potential energy is
converted to kinetic energy.

In appendix A we show that to a very good approx-
imation, the pressure work integral in (10) may be ex-
pressed in terms of the net vertical buoyancy flux:

—f V-vpszB, (12)
v v
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so that (11) and (10) may be combined to give

— Os .
Tmf — | = f MB, 13
Vp( 5t>m B (13)
where B is the buoyancy:
B=g PP
p
Finally, making use of (8), we get
fMB~QT LI (14)
v ~ XALir T_v 7—-, .

Note that three temperatures appear in (14): the mean
temperatures at which radiation is absorbed and emit-
ted, and the mean temperature at which kinetic energy
is dissipated into heat. The expression (14) departs
from Renné and Ingersoll (1996) in two important re-
spects: First, the integral on the left is the sum over all
the turbulent elements of the buoyancy flux, but was
approximated by Renné and Ingersoll as the flux of
undilute buoyancy by an undilute updraft; second, the
quantity T;, appearing in (14) was approximated by 7
in Rennd and Ingersoll (1996). This second approxi-
mation produces an error of the order of 10%, and we
show presently that the first approximation is only ap-
proximately valid in moist convective clouds.

In applying (14) to moist convective velocity scales,
it must be recognized that the integral on the left side
of (14) includes both moist convective fluxes and dry
convective turbulence in the subcloud layer. Symboli-
cally, we write

fMB=fMB+fMB,
\4 sC cl

where ‘‘sc’” and ‘‘cl’’ denote ‘‘subcloud layer’” and
“‘cloud layer,’” respectively. We first estimate the first
integral on the right side of (15). For this purpose, we
suppose that turbulence in a purely convective sub-
cloud layer is generated by radiative cooling of the sub-
cloud layer and by surface fluxes of sensible heat. We
also suppose that the turbulent sensible heat flux van-
ishes at or near the top of the subcloud layer; that is,
we neglect the moist convective flux of sensible heat
at cloud base. Following through arguments similar to
the proceeding, we get

R — 1 1
~ nn - x|
‘[c MB QAsc sc ( TS nc)

Thus, the irreversible entropy production in the sub-
cloud layer is approximately balanced by the turbulent
buoyancy flux by dry convection. Using this in (15)
and (14) gives

(15)

. (16)
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MB ~ T’in’ _—— ==
£l 2 (Tx T)
~ = 1 1
~ O T 77— =) -
QAsc sc(TS Tsc> (17)

If the subcloud layer‘is relatively shallow, the last term
in (17) will be relatively small, and in this case

~=/1
MB ~ QATirr<— - ‘1—-‘> .

777 (18)

cl

This may not be a good approximation, however, when
the subcloud layer is deep, as occurs, for example, over
dry land.

We now show that in spite of large variations of the
moist convective mass flux and buoyancy with height,
the integral on the left side of (17) may not be too
different from the product of the cloud base mass flux
and an undilute buoyancy. Start with a hypothetical un-
dilute updraft of mass flux M, (by definition, constant
with height) and undilute buoyancy B,. Now consider
the effect of turbulent entrainment alone on the buoy-
ancy flux:

§(MB) = MSB + BSM. (19)

In a dry convective plume, buoyancy is linearly mixing,
o)

(20)

Thus, in this case, entrainment does not affect the buoy-
ancy flux, and at every altitude X, M; B, = M,B,.

But in a moist convective plume, buoyancy is rot
linearly mixing and can even change sign owing to en-
trainment. Moreover, entrainment can actually cause M
to change sign locally. In addition to this problem,
evaporation and melting of precipitation and conden-
sate loading can cause downdrafts with negative mass
flux and negative buoyancy. Thus, in general,

2 Mi Bi * MuBuv

where the sum is taken over each individual turbulent
element.

To understand how entrainment might affect the
buoyancy flux in moist convective clouds, refer to Fig.
1. Here, for reference, the buoyancy and buoyancy flux
of a dry plume are shown as a function of the amount
of entrained air (Fig. 1a). As more environmental air
is added to the plume, the buoyancy decreases but the
buoyancy flux remains constant. Figure 1b shows what
happens in a moist plume. Owing to evaporation, the
buoyancy of the mixture is less than what would result
from linearly mixing virtual temperature, and conse-
quently, the buoyancy flux decreases with the amount
of entrained air, until all the condensed water has evap-
orated. Further mixing does not change the buoyancy
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flux. Unless substantial cloud water has been lost by
precipitation, the buoyancy can actually change sign
(Fig. 1c). If the buoyancy does change sign, its mini-
mum value is reached when just enough environmental
air has been entrained to evaporate all of the condensed
water (e.g., see Emanuel 1994). Further entrainment
diminishes the magnitude of the negative buoyancy
but, as before, does not further alter the buoyancy flux.

On this basis, we make a few qualitative deductions
about the relationship between the buoyancy flux in actual
clouds and the buoyancy flux of undilute air. First, in
situations in which much of the condensed water precip-
itates, entrainment will diminish the buoyancy flux but
may not lead to actual buoyancy reversal or, if it does, to
small buoyancy reversal. In this case, we may expect that
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FiG. 1. Effects of entrainment on buoyancy flux. Each graph
shows the dependence of buoyancy and buoyancy flux on the
amount of entrained mass. (a) Dry convective plume. As the
amount of entrained mass increases, the buoyancy becomes
more diluted, but the product of buoyancy and mass remains
constant. (b) Saturated plume with some cloud water. As more
mass is mixed in, condensed water evaporates and both the
buoyancy and the buoyancy flux diminish. Once all the con-
densed water has evaporated, further entrainment does not
alter the buoyancy flux, as in (a). In (c) enough cloud water
is present so that entrainment eventually leads to buoyancy
reversal. Here it is assumed that the sign of the mass flux
changes when the buoyancy changes sign. The magnitude of
the buoyancy flux, once all the condensed water has evapo-
rated, may be greater than that of the undiluted plume, de-
pending on the cloud and environment thermodynamic prop-
erties.

2 M;B; < M,B,. In circumstances in which little water
precipitates, buoyancy reversal may happen more com-
monly and penetrative downdrafts may form. As the mass
flux in these downdrafts is also negative, it is possible that
2 M;B; > M,B, in this case.

Let us take, as a particular case, an example in which
2 M;B; = M,B,. Then (18) may be written

f M,B, = M,,f B.,dz = M,(CAPE)
cl <l

— - (1 1
~ QATirr(i - —]:—v> ’ (21)

where CAPE is the convective available potential energy.
The undilute mass flux, M,, is not a function of
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height, by conservation of mass, up to the detrainment
level. Given an estimate of M,,, which is also the updraft
mass flux through cloud base, (21) can be used to predict
CAPE. Here we depart substantially from the method
used by Renné and Ingersoll (1996). We close on M, by
using the observation by Raymond (1995) that, in equi-
librium, the subcloud layer moist enthalpy budget repre-
sents a balance between surface fluxes, radiative cooling,
and fluxes out the top of the subcloud layer:

Q_s + Q'Asc + Mu(hm - hb) = 09 (22)

where k,, and h, represent the average moist static en-
ergy of downdraft air and of the subcloud layer, re-
spectively. Using (5), this can be written

_ QAC]

Mu= k]
hb— hm

(23)
where Q_Acl is the radiative heating of the cloud layer.
Substituting (23) for M, into (21) gives

~ (1 1
T'irr I
077 -7 )

CAPE ~ (hy — hy, -
(hy ) O

(24)

Note that if the integrated radiative cooling of the sub-
cloud layer is a small fraction of the total integrated
radiative cooling, we can approximate CAPE by

1 1

CAPE ~ (h, — km)Tm<:F T

) = CAPE,, (25)

where CAPE, is the “‘predicted’’ value of CAPE. Also
note that we have not really closed the problem, since
h, — h,, must be regarded as part of the solution of the
radiative-convective equilibrium problem and cannot
be specified as part of the external conditions. As we
shall demonstrate, the quantity h, — h, can take on
different equilibrium values for exactly the same radi-
ative cooling distribution, depending on the values of
cloud microphysical parameters, which must be con-
sidered at least partially as external parameters (de-
pending, e.g., on cloud condensation nuclei composi-
tion and size distribution). Thus, we regard (k, — h,,)
as, to some extent, a surrogate for specification of cloud
microphysical parameters. By the aforementioned ar-
guments, we expect the actual CAPE to exceed CAPE,
when entrainment results in little or no buoyancy re-
versal, and to fall short of CAPE, when entrainment
results in strong buoyancy reversal.

Having derived a moist convective buoyancy scale
(25), the vertical velocity scale VCAPE follows imme-
diately. A fractional area scale then follows from (2):

1 172
7))

Qa

(26)

g =~

N~

p(hb - hm)gl2 [ T;rr(
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We are also now in a position to make an a posteriori
estimate of the contribution to irreversible entropy pro-
duction from sources other than dissipation. Such an
estimate is described in appendix B and justifies our
neglect of these sources.

In the next section, we test (25) against the results
of integrations using a radiative-convective equilibrium
model.

3. Experiments with a radiative—convective
equilibrium model

We employ the single-column model of Renné et al.
(1994), but replace the calculated radiative cooling
with a specified cooling rate. This single-column model
uses the convective representation of Emanuel (1991),
which is an extension of the buoyancy-sorting algo-
rithm of Raymond and Blyth (1986). The cloud base
upward mass flux in the model is calculated by a re-
laxation toward quasi-equilibrium, and the undilute
buoyancy is calculated as part of the solution. The
model is integrated with 50-mb vertical resolution.

In the first set of experiments, we attempt to repro-
duce the experimental conditions used by Robe and
Emanuel (1996) by specifying a constant radiative
cooling rate from the surface to 175 mb and a constant
sea surface temperature of 27.2°C at 1025 mb. The
model is integrated until a steady state is achieved.

s Column Model

= Theory

= = Ensemble Model
3000 ~
2500
2000

CAPE(J/Kg) 1500

1000
]
]
500-_]
]
1
0 T T T T T T T
()} 1 2 3 4 §

Radiative Cooling Rate (K/day)

Fic. 2. CAPE as a function of prescribed radiative cooling rate.
The dashed curve shows the arithmetic average of reversibly and
pseudoadiabatically defined CAPE, averaged over the domain of the
ensemble model described by Robe and Emanuel (1996). The
hatched line is the CAPE of the equilibrium sounding in a single-
column model with parameterized convection. The solid line is the
theoretical value of CAPE from Eq. (25), using data from the single-
column model.
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TaBLE 1. Experiments with linearly varying radiative cooling.

CAPE, (J kg)™!

Experiment Cooling profile CAPE (J kg)™! [from (25)}
Case I Increasing with altitude from 1 K day™" to 4 K day™' 3205 3062
Case IT Decreasing with altitude from 4 K day~' to 1 K day™" 680 1259

Nominal (default) values of the microphysical param-
eters are used in these experiments.

Figure 2 shows the CAPE calculated from the
steady-state thermodynamic profiles of the single-col-
umn model, as a function of the radiative cooling rate.
CAPE is defined for a parcel lifted from the lowest
model level. Also shown is the corresponding result
from integrating an explicit nonhydrostatic cloud
model over a domain large enough to contain many
clouds, as reported in this issue by Robe and Emanuel
(1996). The curve shown in Fig. 2 represents the ar-
ithmetic average of CAPE calculated from reversible
and from pseudoadiabatic ascent from the lowest model
level. In the single-column model, CAPE is calculated
from the actual undilute buoyancy of air lifted from the
lowest model level. The single-column model and the
full ensemble model produce similar values of CAPE,
and variations of CAPE over the range of imposed ra-
diative cooling are of order 10%.

The quantity CAPE, defined by (25) is calculated
from the single-column model data as follows: A, and
h., are taken to be the moist static energy in the sub-
cloud layer (constant with height in this model) and
the moist static energy at 650 mb, respectively. This
level is usually near that of the minimum moist static
energy. In the cloud layer, we recognize that the mean
temperature at which dissipation occurs is a function

=== Column Model
—— Theory
== (hy- h N0

2800

2600

2400 1

2200

CAPE(J/Kg)
2000
1800 hEN
1 e,
~aa
1600 -+ T T T T T 1
0.08 0.08 04 0.12 0.14 0.16
o)

S

FIG. 3. Actual (hatched) and predicted (solid) values of CAPE from

the single-column model, as a function of the prescribed fraction of
precipitation falling through unsaturated air, o,. The dashed line at
the bottom shows 0.1 times the value of h, — h,,.

of the degree of mixing and the draft velocities. For
simplicity, we take

T =T, (27)

where T is the inverse of the vertically averaged inverse
temperature, weighted by the radiative cooling rate, as
defined previously.

CAPE, calculated from (25) using the approximations
just described is also plotted in Fig. 2. The correspon-
dence with CAPE from the single-column model is strik-
ing, considering the approximations used. Correspon-
dence with the results of the ensemble model is not as
good, but it must be remembered that the theoretical curve
is derived using moist static energies from the single-
column model, not from the ensemble model. Even so,
the magnitude of CAPE is correctly predicted.

To explore the effects of entrainment, we perform two
additional experiments with the goal of encouraging large
entrainment but weak or absent buoyancy reversal in one
case and strong buoyancy reversal in the other. In the first
experiment (case [), the radiative cooling increases lin-
early with height, from 1 K day ! at the surface to 4 K
day~" at 175 mb. This necessitates, through (1), an in-
creasing upward mass flux with height (since the stability
decreases with height along a moist adiabat), thus en-
couraging entrainment into updrafts. The convection is
deep, so the precipitation efficiency is high, discouraging
buoyancy reversal. In the second experiment (case II),
the radiative cooling decreases linearly from 4 K day '
at the surface to 1 K day ' at 175 mb, resulting in a large
population of shallow clouds for which buoyancy reversal
is prominent. The results of these experiments are sum-
marized in Table 1.

In the case I experiment CAPE is greater than CAPE,
by 143 J kg~', while in case II CAPE is less than
CAPE, by 579 J kg~!, supporting the arguments pre-
sented in section 2. This clearly shows the nonlinearity
of buoyancy mixing and the inaccuracy of using
CAPE, to predict CAPE when mixing effects are
strong. In percentage terms, the theoretical value of
CAPE is especially poor when the cumulus population
inated by shallow clouds, which have strong penetra-
tive downdrafts and buoyancy reversal.

We have argued that the appearance of the quantity
h, — h,, in (25) is a consequence of the sensitivity of
the equilibrium state to cloud microphysical processes.
To test this idea, we performed a number of experi-
ments in which the microphysical parameters in the
convective scheme were varied. Figure 3 shows the
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variation of CAPE and CAPE,, as well as &, — ki, with
the parameter o,, which is the fraction of rain assumed
to fall outside of cloud in the convective scheme (see
Emanuel 1991). The radiative cooling rate is fixed at
2 K day ~'. When o, is small, little rain evaporates and
the equilibrium state is comparatively dry. This should
lead to a larger value of h, — h, and, thus, through
(25), to a larger value of CAPE. This is borne out by
the experiments. Clearly, CAPE and A, — A, both de-
pend on assumptions about cloud microphysics, not
just the large-scale forcing. Drier atmospheres are more
unstable, all other things being equal.

4. Discussion

When moist convection and large-scale processes
such as radiation and surface fluxes are in a state of
statistical equilibrium, the reversible entropy sink owing
to absorption and emission of radiation must be balanced
by an irreversible source of entropy, if the radiation is
absorbed at a higher temperature than it is emitted. In
equilibrium, this irreversible entropy source is equal to
the integrated dissipation divided by the temperature at
which dissipation occurs, neglecting entropy production
by mixing and other sources. The dissipation must also
equal the rate of conversion of potential to kinetic energy
in the system; this in turn is nearly proportional to the
integrated buoyancy flux. Thus, we can estimate the ver-
tically integrated buoyancy flux if we know the rate of
radiative heating, the mean temperatures at which radi-
ation is absorbed and emitted, and the mean temperature
at which dissipation occurs.

Knowledge of the vertically integrated buoyancy flux
is not sufficient to determine velocity and buoyancy scales
individually. Nor can it be assumed, without some careful
reasoning, that the buoyancy flux is equivalent to that
carried by an undilute updraft. Indeed, there can be im-
portant contributions to energy conversion in convective
systems by saturated and unsaturated downdrafts, among
other things. We have shown that if downdrafts can be
neglected and buoyancy can be assumed to be linearly
mixing, then the buoyancy flux by an undilute updraft is
the same as that by an entraining plume extending to the
same altitude. But in clouds, buoyancy mixing is far from
linear, and downdrafts are important. We have shown that
entrainment into a saturated updraft reduces the buoyancy
flux from that of a nonentraining updraft, while the pro-
duction of downdrafts of all kinds increases the buoyancy
flux. For an undilute updraft, the integrated buoyancy flux
is just the cloud base mass flux multiplied by CAPE.

Given a scale for the vertical buoyancy flux, a second
relation is needed to find individual scales for buoyancy
and mass flux. Here we determine the cloud base mass
flux as that required for thermodynamic equilibrium of
the subcloud layer. This closure is entirely different
from that proposed by Renné and Ingersoll (1996).
When this relation is combined with the energy con-
straint described above, we arrive at (24). If the sub-
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cloud layer is shallow, (24) reduces approximately to
(25). We interpret (25) as follows.

As found by Renné and Ingersoli (1996), the greater
the thermodynamic efficiency of the system, as mea-
sured by the difference between the temperatures at
which radiation is absorbed and emitted, the greater the
buoyancy flux must be, and this will in general be as-
sociated with higher values of CAPE. But we do not
find, as they did, that the buoyancy depends on the rate
of heat input per se. We regard this discrepancy as ow-
ing to the different closure on the fractional area used
by Renné and Ingersoll. Experiments with a full non-
hydrostatic model (Robe and Emanuel 1996) and with
a single-column radiation—convection model show lit-
tle dependence of buoyancy on the rate of heat input.

We interpret the predicted value of CAPE given by
(25) as follows. If the middle troposphere is relatively
humid, then the moist static energy gradient is small. If
this is the case, then the static energy deficit of air in
downdrafts (including those in clear air outside of clouds)
will be small, and to balance the surface entropy flux
(which is constrained by the need to balance solar heating
of the surface), the downdraft mass flux will have to be
relatively large. This implies a relatively large convective
updraft mass flux. For the same buoyancy flux, this means
that the buoyancy itself must be relatively small.

Aside from comparison with the model results pre-
sented here, there is some additional evidence that the
buoyancy of convective clouds is correlated with the
dryness of the middle troposphere. Ramage (1971)
mentions that strong convective events in the Tropics
usually occur when the middle troposphere is dry,
while heavy but less convective rain is associated with
high humidity throughout the troposphere. Radiative-
convective equilibrium calculations by Raymond
(1994), using a very simple relaxation scheme for con-
vection, also show a strong correlation between cloud
buoyancy and middle tropospheric dryness.

5. Summary

We have developed a theory for the buoyancy scales
of moist convection in statistical equilibrium with ra-
diation and surface fluxes, based on global energy and
entropy conservation and subcloud-layer thermody-
namic equilibrium. The theory uses an energy con-
straint similar to that employed by Renné and Ingersoll
(1996), but constrains the mass fluxes in a very dif-
ferent way. The predictions of our theory differ con-
siderably from those of Renné and Ingersoll; for ex-
ample, the buoyancy and velocity scales are indepen-
dent of the magnitude of the radiative forcing. These
predictions compare well with the results of radiative—
convective equilibrium calculations using an explicit
ensemble cloud model as well as a single-column
model. The amount of buoyancy in moist convective
clouds depends on the vertical distribution of the forc-
ing, but not on its magnitude, and is also sensitive to
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cloud microphysical processes. All other things being
equal, relatively humid atmospheres will have rela-
tively small buoyancy in clouds. The theory overpre-
dicts CAPE when downdrafts are relatively important
(as in nonprecipitating convection) and underpredicts
it when there is much entrainment into cloudy precip-
itating updrafts. Mass conservation demands that for
the same vertical mass flux, smaller cloud buoyancy
{and thus vertical velocity) be associated with greater
fractional areal coverage of updrafts.

We leave to future work the dependence of moist con-
vective buoyancy scales on other forms of large-scale
forcing, such as mean ascent. The finding that CAPE can
fluctuate depending on the dryness of the middle tropo-
sphere implies that strict statistical equilibrium of the kind
discussed by Emanuel et al. (1994) may not imply a one-
to-one relationship between surface-layer entropy and tro-
pospheric temperature. This might permit non-WISHE
(wind-induced surface heat exchange)-type instabilities
of the horizontally homogeneous tropical atmosphere.
This will be the subject of future work.

APPENDIX A

Near Equivalence of Pressure Work
and Buoyancy Flux

The pressure work integral in (10) may be approx-
imated by an integral of the turbulent buoyancy flux,
as follows. Divide p into hydrostatic and nonhydro-
static parts,

P = Diy + Dins (AD)
where by definition

dp_ hy -
dz

and p is the time- and horizontal-average density. The
pressure work term in (10) can then be expanded:

-—f V-Vp = —f V -V —f V-Vpi. (A3)
1% v \%
Using (A2), this becomes

~f V-Vp =f wpg — f V:Vpi
14 v v

= f w (e=p) pgdz + f wpgdz — f V-Vpin.
v 14 v 14

(A4)
The second integral on the right vanishes because, in
equilibrium, there is no net vertical mass flux. Thus the
pressure work can be expressed

_f V.V,,=fMB—f V-Vph, (AS)
v v v

where M = pw and

—ps (A2)

is the buoyancy.
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Using integration by parts and recognizing that the
system is closed, the last term in (A5) can be reex-
pressed so that (AS5) may be written

' —fv-vp=fMB+fp;hv-v. (A6)
4 \’4 v

The last term on the right of (A6) is difficult to eval-
uate. It represents a correlation between nonhydrostatic
pressure fluctuations and three-dimensional velocity di-
vergence, both of which are usually small. This term
vanishes in an anelastic system. For the purposes of
deriving appropriate scales, we neglect this contribu-
tion and approximate (A6) as

—fV-prfMB.

APPENDIX B

(AT)

Estimates of the Magnitude of Neglected Irreversible
Entropy Seources

Many processes contribute to irreversible entropy
production in moist convective systems, in addition to
the mechanical dissipation that was assumed to domi-
nate the other sources. Here we perform an a posteriori
check on the magnitude of some of the more important
among these other sources. Four of them will be con-
sidered: entropy production by evaporation of precip-
itation in subsaturated air, frictional dissipation asso-
ciated with falling precipitation, evaporation from the
sea surface, and turbulent mixing of air with differing
thermodynamic characteristics.

Consider first the entropy production by frictional
dissipation associated with falling precipitation. As-
suming that all condensed water falls at terminal ve-
locity Vr, the work done by falling precipitation is

w, = p.g8lVr, (B1)

where p, is the air density and [ is the precipitation
mixing ratio. This can be compared to the work done
by buoyant convection, =; M; B;, which from the scal-
ing perspective, can be approximated by M, B, (see sec-
tion 2). On the other hand, the mass balance of total
water content in statistical equilibrium requires that
there be no net flux of water through any level:

2 Mi(q, —q) ~MJ(q* - q) = pdVr, (B2)

where g, is the net water content (excluding precipi-
tation) of convective drafts and ¢* is the saturation
specific humidity. This simply states that in equilib-
rium, the net flux of water vapor and cloud water by
convection is balanced by the net flux of precipitation.
If we now define a nondimensional ratio of w, to the
work performed by buoyant convection, we get

Wo W 8(g* —q)
SM,B, M.B. B,

(B3)
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where we have made use of (B1) and (B2). We now
define R, as the ratio of the vertical integrals of the
numerator and denominator of (B3):

R <8 (a* —a)
» _ CAPE

where H, is a scale height for water vapor, and
q* — q is a mean difference between g* and g over the
depth H,,. For H,, ~ 3kmand g* — g~ 2gkg™ ', R,
~ 60 J kg ~'/CAPE. For typical values of CAPE pre-
dicted by (25), R, works out to be about 0.05. Thus,
from a scaling perspective, neglecting the frictional dis-
sipation of falling precipitation is justified under most
circumstances. '

Entropy is also produced irreversibly by evaporation
under subsaturated conditions. Since air just above the
sea surface is subsaturated, evaporation from the ocean
will cause an irreversible increase in entropy. The def-
inition of entropy of moist air (Emanuel 1994) is

(B4)

s = (cpa + r,c;)) InT — Ry Inp, + L% — rR, In(¥),

(B5)

where c,, is the heat capacity of dry air, ¢, is the heat
capacity of liquid water, R, is the gas constant for dry
air, L, is the latent heat of vaporization, R, is the gas
constant for water vapor, r is the mixing ratio, r, is the
total water mixing ratio, p, is the partial pressure of dry
air, and ¥ is the relative humidity.

Now consider a system at constant pressure consisting
of liquid water and subsaturated air. Some of the liquid
water evaporates. Enthalpy, k, is conserved in this pro-
cess. The definition of enthalpy is (Emanuel 1994)

k= (cpg +rc)T + Lyr. (B6)
Since enthalpy and total water are both conserved,
dk =0 = (cpg + r;c)dT + d(L,r). (B7)

If we differentiate (B5) and make use of (B7), the
definition of r(=(R,/R,)(e/py)) and the Clausius—
Clapeyron equation, we arrive at

ds = —R, In(J)dr.
It follows from (B8) that .
1 Js

gf <E) dp = —RIn(F)E,  (B9)

(B8)

where E is the rate of evaporation from the ocean and
¥ is the near surface relative humidity. On the other
hand, the integrated radiative cooling of the atmo-
sphere, Q,, is balanced by the surface heat flux, which
is of the same order as the latent heat flux:

LE~ —0Q,. (B10)

Thus, if we compare the irreversible entropy produc-
tion by evaporation from the sea to the total irreversible
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entropy production given by (8) and make use of
(B10), we arrive at

~R, In(9)

Ry = ~ .
: Js 1 1
@)@ (7-%)

For % = 0.75, T, = 300 K, and T = 250 K, R; ~ 0.1.
Thus, the irreversible entropy production by evapora-
tion from the sea surface, while not entirely negligible,
is about 10% of the total for deep convective equilib-
rium conditions. There will also be irreversible entropy
production owing to sensible heat flux from the sea
surface, but this will be small compared to the entropy
production by evaporation because, in the first place,
the sensible heat flux is usually small compared to the
latent flux and, in the second place, the air.~- sea tem-
perature difference is usually small, in radiative—con-
vective equilibrium.

By extension, we may surmise that the irreversible en-
tropy production by evaporation of precipitation is also
small. In the first place, the net evaporation of precipita-
tion must be smaller than the sea surface evaporation, in
equilibrium. If the average relative humidity at which pre-
cipitation evaporates is not too small, then it follows that
(B11) will also serve to compare the magnitude of en-
tropy production by evaporation of precipitation to net
entropy production by irreversible processes.

Finally, we consider irreversible entropy production
by mixing. We consider the mixing of a cloudy, satu-
rated sample with a clear unsaturated one, but assume
that the mixing proceeds slowly enough that the con-
densed water droplets are always in thermodynamic
equilibrium with their environment, unlike the case of
evaporating precipitation. Consider two masses of air,
m, and m,, that are mixed. Conservation of enthalpy
and total water content demand that

mlAkl = _mzAkz

(B11)

(B12)
and

mAr, = —mAr,, (B13)

where k is the enthalpy, given by (B6), and r, is the
total water mixing ratio. On the other hand, infinitesi-
mal changes in enthalpy and entropy are related, in this
case, by (see, e.g., Emanuel 1994)
ok
bs = T + ¢[In(T) — 116r, — R, m(FH)or. (Bl4)
Since K = 1 when any condensed water is present,

under the assumption stated above, we can replace ér
by ér, in the last term in (B14), giving

gs = QT'—‘ + ¢fIn(T) — 116, — R, In(H)6r,.  (B15)

Integrating (B15) over finite changes of enthalpy and
entropy gives
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Ak
As = Ed + (¢, (InT — 1) — R, In&) Ar,, (B16)
where the overbar denotes an average during the
change. Using (B16), (B12), and (B13) we can write

1 1
mAs, + myAs, = mlAkl('Y_—,; _ 5"__2)

+ m,Ar,l<cl ln% — R, In gﬁ—;) , (B17)
where ( ); and (), represent averages experienced
by the respective parcels during mixing. As a scaling
estimate for Ak, we use h, — h,,, the difference be-
tween the moist static energy of updrafts and down-
drafts, appearing in (23). Similarly, for Ar, we use a
characteristic value of r, ~ r,. Using this and (B17),
and integrating over the whole system, we obtain an
estimate for irreversible entropy production by mixing,

1 J’ Os 11
- A, ~ My, hy — hm =
g ( 8t >mixingdp M ( ’ )<T1 Tz)

T Z,
+ M(r, — r,,,)(c, In i —R,In —2) . (B18)

Using (8) and (23), the ratio of the irreversible entropy
production by mixing to the total irreversible entropy
production is

Os
[(5)
mixing
Os
J (E)m @
A

T,
(rp — rm)<C, In i —R,In %>

[e—

R,=

alE el

T,
L
T

s

(B19)
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Reasonable estimates of the quantities appearing in
(B19) yield a value of R,, of about 0.05. Most of this
arises from the irreversibility of mixing two parcels
with different water contents. The entropy of mixing is
comparable in magnitude to the other irreversible pro-
cesses discussed in this appendix.

While all the processes considered here are at least
an order of magnitude less than the total irreversible
entropy production, they are strictly additive, so we
may expect our approximation that mechanical dissi-
pation accounts for all irreversible entropy production
to be off by up to a factor of 2 or so.
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