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Abstract

Pluvial floods generated by tropical cyclones (TCs) are one of the major concerns for coastal
communities. Choosing Houston as an example, we demonstrate that there will be significantly
elevated risk of TC rainfall and flood in the future warming world by coupling downscaled TCs
from Model Intercomparison Project Phase 6 models with physical hydrological models. We find
that slower TC translation speed, more frequent stalling, greater TC frequency, and increased rain
rate are major contributors to increased TC rainfall risk and flood risk. The TC flood risk increases
more than the rainfall. Smaller watersheds with a high degree of urbanization are particularly
vulnerable to future changes in TC floods in a warming world.

1. Introduction

Tropical Cyclones (TCs) are one of the major haz-
ards to coastal communities around the world. In
the United States, TCs comprise 53.4% percent of
the total cost of billion-dollar weather events from
1920 to 2020 making them one of the most expens-
ive weather disasters in the US (NOAA 2021) Mul-
tiple Earth System Models (ESMs) and different
downscaling models (Wehner et al 2014, Emanuel
2017, 2021, Patricola and Wehner 2018, Irvine et al
2019, Michaelis and Lackmann 2019, Knutson et al
2020) predict that anthropogenic climate change may
increase the probability of the most intense TCs and
their rain rate. Pluvial flood risk is further exacerbated
by rapid urbanization in coastal areas (Zhu et al 2015,
Zhang et al 2018).

Mismatches exist between the spatial resolution
of most current ESMs and the scale of TCs (Davis
2018, Knutson et al 2020, Emanuel 2021). Most cur-
rent ESMs have greater than 50 km spatial resolution
(Emanuel 2021) while a much more granular spatial
resolution is needed to capture the realistic structure
of TCs and represent the most intense TCs (categories
4 and 5) (Davis 2018, Knutson et al 2020). Although
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different downscaling approaches have been intro-
duced (Emanuel 2013, Knutson et al 2013, Patricola
and Wehner 2018), there are many debates on how TC
will change under future climate, particularly their
frequencies (Knutson et al 2020). Extreme precipit-
ation is characterized by rate, frequency, and dura-
tion and they all control the magnitude of pluvial
floods (Trenberth et al 2003). The future projection
of tropical cyclone precipitation (TCP) is complicated
by the possible changes in TC rain rate, frequency,
translation speed, size, etc (Knutson et al 2020). Yet
there is medium-to-high confidence that TC rain rate
will increase in the future, based on multiple ESM
model studies (Villarini et al 2014, Knutson et al 2015,
Yoshida et al 2017, Gutmann et al 2018). Uncertain-
ties still exist on how this change will vary spatially
and how the most extreme TCP will change (Knutson
et al 2020). In addition, the historical record provides
less than 100 years of reliable rainfall data from TCs
in the continental US and even shorter periods in
other countries. High-resolution ESMs can only sim-
ulate TC climatology for relatively short periods for
decades to 100 years due to limitations in computing
resources. Both the lack of historical records and lim-
itations in ESM-based TC predictions challenge the
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robust evaluation of possible changes in the risk of
extreme TCP caused by greenhouse gas emissions.
Houston is prone to all kinds of TC-related haz-
ards but particularly pluvial flooding, because of its
low elevation and rapid urbanization (Zhu et al 2015,
van Oldenborgh et al 2017). In recent years, Houston
has experienced significant flooding from extreme
precipitation generated by Tropical Storm Allison in
2001, Hurricane Ike in 2008, and Hurricane Harvey
in 2017. The rapidly growing population and urb-
anization in this area are increasing the number of
people and properties that are at risk (Salas and Obey-
sekera 2014). Therefore, we choose Houston as our
focus and apply the newest version of synthetic down-
scaling technique (SDT) and tropical cyclone rain-
fall (TCR) algorithms to estimate TCP climatology
from eight Coupled Model Intercomparison Project
Phase 6 (CMIP6) models. We compare how TCP
risk changes from the 1981-2010 historical runs to
the 2071-2100 worst-case scenario Shared Socioeco-
nomic Pathway Representative Concentration Path-
way 8.5 (SSP5-8.5) runs. A large sample of synthetic
storms is coupled with a physics-based hydrological
model to predict how TCP flood risk is projected to
change in two watersheds in downtown Houston.

2. Methods

2.1. SDT and TCR algorithm

The SDT was first developed in 2006 (Emanuel et al
2006) and it has evolved and been improved since
then (Emanuel et al 2006, 2008, Emanuel 2013, 2021).
A strength of SDT is that it can simulate a very
large sample of TCs events (i.e. tens of thousands)
based on either the historical climate reanalysis data
or prescribed climate conditions from Global Cir-
culation Model simulations. This provides a more
robust estimation of extreme events. The SDT starts
with randomly seeding nascent cyclones across the
Atlantic Ocean. These disturbances evolve according
to a physical TC model controlled by the large-scale
atmospheric and oceanic environment from coarse-
resolution reanalysis or climate models. TC tracks are
calculated from a beta-and-advection model applied
to the large-scale winds, and their intensity is based on
avery simple axisymmetric model coupled to a simple
upper-ocean model that accounts for the mixing of
cold ocean water to the surface (Emanuel et al 2006,
Emanuel 2021). Compared with global and regional
models based on fluid dynamics, the SDT is (a) com-
putational efficient, (b) based on physics of the TCs,
(c) has a very high spatial resolution, and (d) can gen-
erate a very large sample for robust risk assessment
of extreme events. The SDT has been rigorously eval-
uated with historical observations of TCs (Emanuel
et al 2006, Emanuel 2021) and it demonstrates very
good agreement with the long term statistical distri-
butions of TC occurrence and maximum wind speed
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in the Atlantic Ocean recorded in the National Hur-
ricane Center’s Hurricane Databases.

The TCR algorithm was first developed in 2012 as
an integral part of the SDT and routinely updated and
validated. The TCR algorithm calculates the rain rate
of TCs along the synthetic tracks by multiplying a pre-
cipitation efficiency with the net vertical vapor flux
(Lu et al 2018, Feldmann et al 2019). It is particularly
effective in simulating precipitation near the eyewall
region and broad precipitation just outside the TC
core (Emanuel 2017). The SDT and TCR algorithms
have 2 h simulation intervals and can provide TC
wind intensity and rain rate estimates at any point
along the swath of generated synthetic TCs. Substan-
tial improvements have been recently made to the
TCR algorithm in recent years, including more accur-
ate wind fields, topographical effects, more accurate
representation of the surface drag and other relevant
factors (Lu et al 2018, Feldmann et al 2019, Xi et al
2020). The TCR algorithm has been evaluated with
rain gauge observations, WRF simulations, and radar
observations (Zhu et al 2013, Lu et al 2018, Feldmann
etal 2019) and its predictions agree well TCP probab-
ility distributions generated from historical observa-
tions at different locations across the US (Feldmann
etal 2019).

We are using the most recent version of the SDT
and the TCR algorithm to generate 4500 storms
within 500 km of the city of Houston based on the
historical climate from 1981 to 2010 and the SSP5-
8.5 climate from 2071 to 2100. We select eight CMIP6
models based on the availability of specific output
needed to drive the SDT and because TCs downscaled
from them demonstrate good agreement with obser-
vations during the historical period. The SSP5-8.5 is a
worst-case scenario, with enough emissions of green-
house gas to produce 8.5 W m~? of radiative forcing
by 2100. Rain rates at 2 h intervals are estimated by the
TCR and aggregated into daily and storm total rain-
fall for the Buffalo Bayou and Whiteoak Bayou near
Houston metropolitan area. The daily TCP is used to
drive our hydrological model for all 4500 storms in
each of the eight models to obtain daily streamflow
produced by the synthetic TCs.

2.2. GR4J hydrological model and model coupling

GR4J is a physics-based hydrological model that sim-
ulates the rainfall-runoff at daily time scales (Perrin
et al 2003). GR4] is simple in structure, with only
three climate variables as input to the model at every
time step (Perrin et al 2003). Of these, the most
important are rainfall depth and potential evapotran-
spiration. Four parameters are calibrated for each
GR4]J model: x1, the maximum capacity of the pro-
duction store (mm); %2, the groundwater exchange
coefficient (mm); %3, the 1 d ahead maximum capa-
city of the routing store (mm); and x4, the time base
of the unit hydrograph (days). More technical details
about the GR4J] model development and rationale
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Figure 1. Calibration results of GR4J] model for daily stream flows at the Whiteoak Bayou (a), (b) and Buffalo Bayou (c), (d). Red
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can be found in Perrin et al (2003) and the open R
project repository airGR (https://cran.r-project.org/
web/packages/airGR/index.html). The GR4] model
has been widely applied to hydrological modeling and
operational flood forecasting for drainages at differ-
ent scales (Oudin et al 2018, Ficchi et al 2019).

We calculated the daily areal precipitation for
both watersheds from the daily Parameter-elevation
Relationships on Independent Slopes Model product
(Di Luzio et al 2008) at a resolution of 0.1° from
2001 to 2020 and use the basin averaged daily pre-
cipitation to drive the GR4J model. Daily stream-
flow records from the same period are obtained
from the USGS Water Data for the Nation (https:/
/waterdata.usgs.gov/nwis). The USGS 0874500
Whiteoak Bayou at Houston and the USGS 08073500
Buffalo Bayou near Addricks are the two most
important drainages for floods in downtown Hou-
ston and have the most complete records for model
calibration. As shown in supplementary information
1 (SI' 1 (available online at stacks.iop.org/ERL/16/
094030/mmedia)), Whiteoak Bayou is a highly urb-
anized drainage with an area of 246.31 km?. Buffalo
Bayou is a watershed with an area of 717.43 km? and
is partially controlled by two flood-control reservoirs
Addicks and Baker, which were constructed in 1938
and modified subsequently. We choose 2001-2020
for model calibration because we assume the hydrolo-
gical responses to extreme precipitation are stationary
among our streamflow simulations. Nonstationarity
does exist in the longer-term time series of streamflow
records. For example, rapid urbanization in Houston
has increased the likelihood of extreme floods by

introducing more impervious ground surfaces and
reducing the infiltration of soil (Olivera and Defee
2007, Zhu et al 2015, Zhang et al 2018). We use the
most recent hydrological record and assume that the
relationship between precipitation and streamflow
does not change for our risk assessment. For each
model calibration, we use the 1st 500 d as the spin-
up period and run the model with the remaining
days. We tested different versions of AirGR (GR4]
and GR6J) and different error criteria, including the
root mean square error, the Nash—Sutcliffe model
efficiency coefficient (NSE), King—Gupta efficiency
criterion (KGE), and modified King—Gupta efficiency
criterion (KGE2). The GR4J with the KGE2 criteria
gives the best agreement between model predictions
and observations for both watersheds. As shown by
figure 1, models for both watersheds show decent
agreement in both time series and the cumulative
probability distributions of stream flows.

The Whiteoak Bayou has better agreement than
the Buffalo Bayou because the Buffalo Bayou has
flood control reservoirs upstream that makes model
parameter estimation more difficult. In particular,
both models capture most of the extreme values in
the time series. This allows us to model the probabil-
ities of extreme stream flows generated by thousands
of synthetic TCs.

The GR4] has three climatic input variables: tem-
perature, potential evaporation (calculated from tem-
perature and radiation), and precipitation, besides
the physical characteristics of the watershed (e.g.
area and topography). For each set of synthetic TC
events, we generate streamflow simulations initialized
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by climate conditions prescribed by corresponding
CMIP6 models. For each storm, the prior year of
CMIP6 climate (precipitation and temperature) is
chosen for spinning up each streamflow simulation.
This initial condition is random in the CMIP6 set of
simulations because every synthetic storm starts at a
different time. It is designed to test how the TCP flood
risk changed with the background climate.

2.3. Statistical estimation of risk

We estimate the return periods for both the TCP
properties (rain rate and storm total TCP) and TC
associated stream flows at Whiteoak Bayou and Buf-
falo Bayou. The very large sample (4500) for each
set provides a more robust risk assessment of the
very rare extreme events, which may never have been
recorded in the past. Here we define the return period
as the inverse of the annual exceedance probability.
The return periods are estimated for maximum event
TCP, maximum TCP rain ratio, and maximum daily
streamflow in each set of storms. We use the Pois-
son distribution to quantify the uncertainties in the
estimation of storm frequencies given by the syn-
thetic model at the 90% confidence interval. Here
the assumption is that the frequency within each ker-
nel follows a Poisson distribution with the empir-
ical kernel frequency as the mean. The 5% and 95%
quantiles of the Poisson distribution are then derived
as lower and upper boundaries and 90% of the events
would fall between them. The boundary frequen-
cies are remapped into return periods for the 90%
confidence interval shadings for individual models.
We also collected all empirical frequency/magnitude
curves from eight different CMIP6 models and cal-
culate their ensemble mean curves for both histor-
ical and SSP5-8.5 scenarios, using linear interpola-
tions. Here we calculated the 1 standard deviation
from frequencies of eight models transform them into
the uncertainty shading for the ensemble mean estim-
ates of return periods. Both the uncertainty shad-
ings for the individual models and the ensemble
mean may reach the value of infinity when the estim-
ated frequency is approaching zero. We compared the
ensemble mean risk profiles of TCP and floods from
both historical and SSP5-8.5, as well as their vari-
ations in different CMIP6 models.

3. Results

3.1. Change in TCP risk at Houston

We estimate the frequencies of maximum storm total
rainfall for all sets of synthetic TCs from eight CMIP6
models and average their frequencies to produce the
probability curves based on historical and SSP5-8.5
ensembles (figure 2). At Buffalo Bayou, the SSP5-8.5
scenarios have a substantial increase of risk in storm
total rainfall as compared with the historical scen-
arios. The maximum value is only 450 mm in the his-
torical ensemble because there are too few synthetic
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events above that threshold to make robust estim-
ates of the mean return period for all eight models.
Based on estimates from precipitation observations
(Di Luzio et al 2008), Hurricane Harvey produced
~780 mm of precipitation within the Buffalo Bayou
watershed in 5 d. Here we conservatively define
450 mm as precipitation of ‘Harvey magnitude’ Buf-
falo Bayou’s return period of storm total rainfall
at this magnitude changes from >2000 years in the
historical ensembles to <100 years in the SSP5-8.5
ensembles. There is variability among different model
predictions as shown by the uncertainty envelope in
figure 2(a) as well as separate comparisons for dif-
ferent models in SI 2. All models show increases in
TCP in the SSP5-8.5 scenario as compared to the his-
torical simulations. The largest change of TCP risk
is obtained by the IPSL-CM6A, which estimates the
return period for the ‘Harvey magnitude’ precipita-
tion will change from >5000 years in the historical
simulation to <20 years in the SSP5-8.5 simulation
(ST 2(e)). The MPI-ESM1 (SI 2(g)) has the smallest
change in the return period for the ‘Harvey mag-
nitude’ precipitation, it decreases from 800 years to
300 years.

The increases in TCP risk in Whiteoak Bayou
(figure 2(b)) are similar to Buffalo Bayou, but with
a slightly shorter return period for the same mag-
nitude of TCP. For example, the mean return period
of 200 mm historical TCP is 50 years for Whiteoak
Bayou and 80 years for Buffalo Bayou. The mean
return period of 800 mm SSP5-8.5 TCP is 500 years
for Whiteoak Bayou and >100 years for Buffalo
Bayou. Elevated TCP risk from historical to SSP5-8.5
in Whiteoak Bayou is consistent across all eight cli-
mate models (SIs 2 and 3).

Extreme TCs cause substantial property dam-
age and generate catastrophes to society (Lin and
Emanuel 2016, Emanuel 2021), so we selected a ‘black
swan’ event for each set and compared their spatial
patterns (SIs 4 and 5). One case is shown in figure 3
for the most extreme TCP event generated from the
historical (figure 3(a)) and SSP5-8.5 (figure 3(b))
scenarios of the GFDL-ESM4.

A drastic increase in precipitation intensity is
evident from figure 3(a) to figure 3(b). The historical
event has maxima of 1000 mm over the northwestern
portion of its rain swath, while the SSP5-8.5 event has
maxima of >1500 mm with a more widespread spa-
tial pattern, mostly located over the eastern portion.
This difference is related to the different track charac-
teristics of the two extreme TC events. The SSP5-8.5
event (figure 3(b)) has a more curved track, particu-
larly after it makes landfall. More lingering time gen-
erates more precipitation over the Houston area. Sim-
ilar variations are also evident in the most extreme
TCP cases generated from the other seven models.
Most models have increased precipitation from the
historical to the SSP5-8.5 case, with the only excep-
tion being MIROCS (SIs 5(b) and (f)). The maximum
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Figure 2. Comparison of historical- (blue) and SSP5-8.5-based (red) frequencies of maximum TC total rainfall at: (a) Buffalo
Bayou, and (b) Whiteoak Bayou. The historical and SSP5-8.5 simulations are based on an eight-model ensemble mean using
CanESM5, CNRM-CM6, GFDL-ESM4, HadGEM3, IPSL-CM6A, MIROC6, MPI-ESM1, and UKESM1. Solid lines represent the
ensemble mean and the shading represents 1 standard deviation in frequency among the eight CMIP6 model predictions.
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rainfall case for the MIROG6 historical run (SI 5(b))
is a stalled TC like Hurricane Harvey; it has slightly
more precipitation than the maximum case for the
CMPI6 run (SI5(f)), which results from its more reg-
ular movement. Two storms demonstrate TCP with
magnitude >5000 mm from SSP5-8.5 runs: IPSL-6A
and the UKESM1 (SIs 5(e) and (h)). This magnitude
of TCP has only been reported in TC Gamede at the
island of La Réunion over the Indian ocean in Feb-
ruary 2007 (Quetelard ef al 2009). It would be cata-
strophic if a TC with that amount of precipitation
(about six times more than Harvey) impacted densely
populated coastal cities like Houston.

Another important feature for those wettest
storms is the curvature of their tracks. Historically,
many storms that produced massive precipitation in
TX are ‘stalled’ systems like Tropical Storm Allison
in 2001 and Hurricane Harvey in 2017. Stalled TCs

are likely to generate more precipitation because they
linger at one location or affect the same location twice
(Hall and Kossin 2019). Many storm tracks (figure 3,
SIs 4 and 5) resemble Harvey’s track, which heads
towards the northwest first, slows down as it makes
landfall and moves very slowly, and finally heads out
in the opposite direction (east).

3.2. Factors contributing to change in TCP risk

Part of the elevated risk of storm total rainfall arises
from changes in storm tracks. We already showed that
many of the wettest storms have very slow transla-
tion speed and curved tracks when approaching Hou-
ston. Here we compare how the translation speed of
all simulated storms changes in this region in the
SSP5-8.5 runs. Figure 4(a) shows that the frequency
distribution of the translation speed systematically
shifts toward smaller values in the SSP5-8.5 runs. The
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median translation speed (red) is 8.42 knots for SSP5-
8.5 storms as compared to 9.86 knots (blue) for his-
torical storms, a 17% reduction. SSP5-8.5 also indic-
ates more frequent landfall of TCs within 500 km
of Houston. Figure 4(b) shows the frequency differ-
ence rose of storm translation directions and speed
for both scenarios. The SSP5-8.5 sets have higher fre-
quencies of slower moving storms (<11 knots) and
lower frequencies of faster storms (>11 knots) as
compared with the historical sets. In particular, SSP5-
8.5 shows an increase in the frequencies of storms
that move towards the south at slower translation
speeds. Our results indicate that storms in this region
are more likely to move slower and to stall, which
has been observed both globally (Kossin 2018) and
regionally (Hall and Kossin 2019, Hassanzadeh et al
2020). Changes in storm translation angle and speed
in different models (SI 6) are generally consistent
with the patterns in figure 4(b). Many demonstrate a
slowing down of SSP5-8.5 storms and more frequent
southward movement. The MPI-ESM1 is the excep-
tion and it shows increased northward movement and
reduced southward movement of storms in SSP5-8.5.
This may result from MPI-ESM1’s different repres-
entation of general circulation patterns from other
models.

Higher rain ratios constitute another physical
mechanism for elevated risk in storm total rain-
fall in SSP5-8.5 runs. Based on the Caucasus—
Clapeyron equation, higher air temperatures enable
the atmosphere to contain more moisture, which
may intensify precipitation extremes in a warm-
ing world (Trenberth et al 2003, O’Gorman and
Schneider 2009). Ensemble means (figure 5) of the
hourly rain rate show that TCs in the SSP5-8.5 climate
scenario have higher probabilities of extreme hourly
rain rates than the historical scenario. According to
NOAA (Blake and Zelinsky 2017), the most extreme

hourly rain rate observed in Harvey was 173 mm h™!
and many areas near Houston observed a maximum
hourly rain ratio of 50-75 mm h~!.

It is the maximum magnitude that our histor-
ical ensemble mean can yield a robust estimate for
a 1500 year return period for both Buffalo Bayou
(SI 7) and Whiteoak Bayou (SI 8). The return peri-
ods for the same magnitude of TC rain rate reduce
to only ~150 years in the SSP5-8.5 ensemble means.
Different models also demonstrate variations in TC
rain rate probability, but all show an elevated prob-
ability in a warmer climate (SIs 7 and 8). Whiteoak
Bayou has a slightly higher probability of rain rate
than Buffalo Bayou. For example, the return period of
110 mm h™! SSP5-8.5 rain rate is >700 years for Buf-
falo Bayou, but only 500 years for Whiteoak Bayou.

3.3. Change in TC pluvial flood risk

To understand how flood risk changes with TCP mag-
nitude, we calibrate the AirGR GR4J hydrological
model (Perrin et al 2003) for both Buffalo Bayou
and Whiteoak Bayou and coupled our synthetic TCP
events with them (see section 2 for details). Figure 6
displays comparisons between historical and SSP5-
8.5 TCP-driven daily maximum daily stream flows.
Both watersheds have significantly elevated TCP flood
probability from the historical ensemble to the SSP5-
8.5 ensemble, but they have quite different patterns.
Observed maximum daily streamflow is ~390 m> s~}
for the Buffalo Bayou and ~1160 m’ s~! for the
Whiteoak Bayou from the USGS record (figure 1),
both maxima were associated with Hurricane
Harvey.

The historical ensemble means (blue curves) give
more conservative estimates of return periods for the
maximum streamflow at ~170 m> s~! for Buffalo
Bayou (figure 6(a)) and ~430 m® s~! for Whiteoak
Bayou (figure 6(b)). Buffalo Bayou’s ~170 m? s~}
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Figure 5. Comparison of historical- (blue) and SSP5-8.5-based (red) frequencies of storm lifetime peak TC rainfall rate for

(a) Buffalo Bayou and (b) Whiteoak Bayou. The historical and SSP5-8.5 simulations are based on an eight-model ensemble mean
using CanESM5, CNRM-CM6, GFDL-ESM4, HadGEM3, IPSL-CM6A, MIROC6, MPI-ESM1, and UKESM1. Solid lines represent
the ensemble mean and the shadings represent £1 standard deviation in frequency among the eight CMIP6 model predictions.
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Figure 6. Comparison of historical (blue) and SSP5-8.5-based (red) frequencies of maximum daily streamflow at (a) Buffalo
Bayou and (b) Whiteoak Bayou. The historical and SSP5-8.5 simulations are based on an eight-model ensemble mean using
CanESM5, CNRM-CM6, GFDL-ESM4, HadGEM3, IPSL-CM6A, MIROC6, MPI-ESM1, and UKESMI. Solid lines represent the
ensemble mean and the shading represents &1 standard deviation in frequency among the eight CMIP6 model predictions. The
hydrological models are initialized with 1 year SSP5-8.5 model-prescribed climate conditions before each synthetic storm event.
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return period reduces from 2000 years in the histor-
ical ensemble to 60 years in the SSP5-8.5 ensemble.
There are even larger changes in Whiteoak Bayou.
The return period of the most extreme TCP flood
(~430 m® s~ 1) changes from 2000 years in the histor-
ical ensemble to <50 years in the SSP5-8.5 ensemble.
The Buffalo Bayou flood probability increases rap-
idly at a lower magnitude (<250 m? s™!) but starts to
flatten at higher magnitudes (figure 6(a)), while the
flood probability in Whiteoak Bayou increases more
consistently across all magnitudes (figure 6(b)). The
CMIP6 models all agree that there will be an elev-
ated TCP flood risk from the historical scenario to
the SSP5-8.5 scenario, but they differ in their patterns
(SIs 9 and 10). The IPSL-CM6A (SIs 9(e) and 10(e))
has the largest difference in probability between the

historical and SSP5-8.5, while the MPI-ESM1 has the
smallest difference.

4. Conclusions

In conclusion, we discover a substantial (1900%)
increase in the risk of ‘Harvey Magnitude’ (450 mm)
storm rainfall in Houston from the historical
ensemble to the SSP5-8.5 ensemble based on large
samples of downscaled events from eight CMIP6
models. Different CMIP6 models all agree on the
shortening of return periods under climate warming,
but variations exist in their magnitudes. This agrees
with the previous estimate based on CMIP5 models
(Emanuel 2017). Globally, the TC rain rate will has
an average of increase of 14% with a range between
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6% to 22%, based on 16 different CMIP5 downscaled
models and high resolution global models (Knut-
son et al 2020). Previous studies based on multiple
models (Risser and Wehner 2017, van Oldenborgh
et al 2017, Wang et al 2018) suggested that Hurricane
Harvey’s precipitation has likely increased by 8%-—
38% (most likely 20%) from the historical baseline.
Precipitation from the most extreme TCs increases by
more than 50% in the majority of our models. Many
future TCs will be able to produce >1500 mm pre-
cipitation in most downscaled CMIP6 models and
can even exceed 5000 mm in rare events. Our res-
ults indicate much larger values than the theoretical
limit of a 7% increase in saturation specific humidity
from a 1 °C increase in the ocean temperature (Stone
et al 2019, Wehner and Sampson 2021). In addition
to the projected significant increases in TC rain rate,
our results also indicate that the elevated storm total
rainfall is also caused by reduced storm translation
speed (17% reduction in the median) and more fre-
quent stalled events in the future. A general decrease
in TC translation speed has been observed globally
(Kossin 2018) and North Atlantic TCs are more likely
to stall in recent years (Hall and Kossin 2019), how
they might change in the future and how their rainfall
will change needs more investigations.

We observe an even more drastic increase (by a
factor of 4000%) in TCP flood risk of Harvey’s mag-
nitude from the historical ensemble to the SSP5-8.5
ensemble. The amount of TCP directly determines
the risk of flood magnitude, as shown by the ensemble
mean and individual CMIP6 models. Buffalo Bayou
is a larger watershed with several control structures
(Addicks and Baker reservoirs) and more vegetation,
while Whiteoak Bayou is a highly urbanized water-
shed with a smaller size. Therefore, Whiteoak Bayou’s
hydrological response is much faster and results in a
larger magnitude of floods than Buffalo Bayou when
they experience similar extreme TCP events because
urbanization increases the amount of impervious sur-
faces and generates faster surface runoff (Zhu et al
2015). The TCP flood magnitude also varied based on
the antecedent precipitation amount, soil type, water-
shed size, land use/cover, and engineering flood con-
trols (Sebastian et al 2019, Li et al 2020). Our ana-
lysis based on two watersheds shows that smaller and
more intensely urbanized watersheds are at higher
risk in future TCP-driven fluvial floods. This agrees
with the historical simulation results of Sebastian
et al (2019), which showed that human development
has increased Houston region’s peak discharge by
54%, with climate change responsible for 20% of this
increase. Population growth and development in this
region may exacerbate future TCP flood risk.

Our work strongly suggests that the risk of
extreme TCP and resulting flood in Houston will
increase substantially in a warming world with no
serious attempts to curtail greenhouse gas emissions.
Governments and local stakeholders need to come up
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with serious mitigation and adaptation to reduce the
risk of catastrophes like Hurricane Harvey, which are
likely to increase as the planet continues to warm.
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