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C L I M AT O L O G Y

Navigating and attributing uncertainty in future 
tropical cyclone risk estimates
Simona Meiler1,2*, Chahan M. Kropf1,2, Jamie W. McCaughey1,2, Chia-Ying Lee3,  
Suzana J. Camargo3, Adam H. Sobel3,4, Nadia Bloemendaal5,6, Kerry Emanuel7, David N. Bresch1,2

Future tropical cyclone risks will evolve with climate change and socioeconomic development, entailing substan-
tial uncertainties. An uncertainty and sensitivity analysis of these risks is vital, yet the chosen model setup influ-
ences outcomes. This study investigates how much future tropical cyclone risks are driven by climate and 
socioeconomic changes, quantifies uncertainty from propagating alternate representations of these systems 
through the risk modeling chain, and evaluates how strongly each model input contributes to output uncertainty. 
By comparing these three elements—drivers, uncertainty, and sensitivity—across four distinct tropical cyclone 
models, we derive findings generalizable beyond individual model setups. We find that average tropical cyclone 
risk will increase 1 to 5% by 2050 globally, with maximum increases ranging from 10 to 400% by 2100, depending 
on tropical cyclone model choice, region, and risk model inputs, while the dominant source of uncertainty shifts 
with modeling choices. Last, we differentiate between aleatory, epistemic, and normative uncertainties, offering 
guidance to reduce them and inform better decision-making.

INTRODUCTION
In recent years, catastrophe modeling has expanded beyond its tradi-
tional realm in the (re-)insurance industry to serve the broader glob-
al financial market and has also found increasing applications to 
humanitarian and sustainable development efforts. As climate change 
is represented in the models used, we refer to them broadly as climate 
risk models, a category that includes, but is broader than, catastrophe 
models that have a longer history in (re-)insurance. Many consultan-
cies, financial technology firms, data providers, and investment advi-
sory groups now offer information about localized physical climate 
risks, entering a technology arms race among climate services pro-
viders (1, 2). However, the proprietary nature of their products inhib-
its both transparency and accessibility and makes it difficult to 
evaluate or compare them (1–3). Efforts to establish measurement 
and reporting standards are still evolving (4). Beyond insurance and 
finance, climate risk modeling is also being increasingly applied to 
inform adaptation decisions in development and humanitarian pro-
grams, where the potential for societal benefit is large (5, 6). Here too, 
there is a pressing need for a better understanding of the quality and 
reliability of climate risk assessments (7, 8).

Tropical cyclone (TC) risk provides a prime example of the chal-
lenges and complexities faced in the broader field of climate risk 
analysis. TCs are among the most destructive natural hazards, pos-
ing substantial threats to people (9) and assets (10) exposed to these 
events. In the future, TC risks are expected to increase further be-
cause of the warming climate and socioeconomic development 
(9, 11, 12). It is thus crucial to support at-risk communities with reli-
able and transparent TC risk assessments. However, providing reli-
able TC risk assessment is challenging because of uncertainties in 

the model input components and model structure (13). TC risks 
emerge from the interplay of TC hazards, the extent to which people 
and assets are exposed to these hazards, and the vulnerability of the 
exposed individuals and the (built) environment to these hazards 
(14). Climate risk models hinge on the interplay of these three com-
ponents: hazard, exposure, and vulnerability (15). Each of these risk 
elements is subject to numerous uncertainties, and additional un-
certainty emerges when they are combined. Meiler et al. (16) inves-
tigate uncertainties in the TC hazard model choice for present-day 
loss estimates. Assessing future TC risks requires additional model-
ing choices regarding the representation of future climate and socio-
economic systems. Each of those introduces its own uncertainties 
and is further confounded by the lack of verification data (17, 18).

This study distinguishes three types of uncertainty—epistemic, 
aleatory, and normative—that are relevant to climate risk assessment, 
extending beyond the scope of TCs. Epistemic uncertainty arises 
from limited knowledge about the systems being modeled and in-
volves the structural uncertainties in synthetic TC models, historical 
data quality, limitations in data availability, and understanding of en-
vironmental interactions (19). It includes scenario uncertainty, i.e., 
the unpredictability of future emissions scenarios (20–23), and model 
uncertainty (20–22), which here, for example, refers to the limitations 
of climate models, models used to generate synthetic TCs, or the ex-
posure model to derive a spatially explicit map of asset values. Alea-
tory uncertainty stems from the inherent randomness of natural 
processes, such as climate variability that is internal or unforced by 
human influence (19). This type of uncertainty can be quantified 
through statistical methods, like Monte Carlo simulations, to esti-
mate the probability distribution of outcomes. Normative uncertainty 
emerges from subjective decisions and ethical considerations in risk 
assessment processes, influencing the choice of valuation units and 
risk metrics (24–26). While not quantifiable like epistemic or aleatory 
uncertainties, normative uncertainty can be addressed through in-
creased transparency, stakeholder engagement, and the integration of 
diverse ethical perspectives (27). The consequences of normative 
choices can also be quantified to the degree that alternate choices lead 
to alternate model inputs and modeling approaches. Such analyses of 
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normative uncertainties, like the choice of output metric, may add a 
level of complexity, but they are possible and can provide valuable 
insights.

Given the complexities of epistemic, aleatory, and normative un-
certainties, a systematic approach to uncertainty quantification in cli-
mate risk assessment emerges as a critical need. In this study, we use 
the open-source, peer-reviewed, probabilistic climate risk modeling 
platform CLIMADA (15) to compute future TC risk estimates and 
quantify and attribute associated uncertainties. To achieve this, we use 
the uncertainty and sensitivity quantification (unsequa) module (13), 
a tool already integrated within CLIMADA, enabling comprehensive 
uncertainty and sensitivity analyses for all CLIMADA-based risk cal-
culations. Different methods for uncertainty and sensitivity analysis 
have been proposed in the scientific literature (13, 17, 28, 29). Typi-
cally, uncertainty analysis quantifies the overall uncertainty, while 
sensitivity analysis identifies how different input factors contribute to 
this uncertainty (28). Unlike commonly used local sensitivity meth-
ods that vary each input one at a time, our global sensitivity analysis 
varies input factors all at a time across their entire ranges (17). A key 
benefit of global sensitivity analysis is its ability to simultaneously vary 
all inputs, enabling us to attribute their relative contributions to over-
all uncertainty and understand input factor interactions. Given this 
function, we use the terms uncertainty attribution and sensitivity 
analysis interchangeably.

We systematically quantify uncertainties and sensitivities in fu-
ture TC risk change estimates in the middle and at the end of the 
century, encompassing uncertainties in all risk model components: 
hazard, exposure, and vulnerability. In other words, we approach 
this analysis from a climate risk modeler’s perspective, incorporat-
ing uncertainties in all essential risk assessment components and 
reflecting model choices any risk modeler is confronted with during 
such assessments. Linking open-source climate risk models like 
CLIMADA with uncertainty and sensitivity assessments is crucial 
for reducing or, at least, understanding these uncertainties (30, 31). 
Our perspective thus differs in scope and focus from other climate-
related studies that solely address the physical aspects of climate 
change without considering socioeconomic factors.

Contrasting results from two previous studies assessing uncer-
tainties and sensitivities in the quantification of future TC risks, 
each using a different TC hazard model, show that the results of 
such uncertainty and sensitivity quantification depend on the scope 
of the study, which is defined a priori by investigator choice—In 
other words, uncertainty assessment is itself uncertain (17, 30, 32). 
This type of uncertainty is increasingly recognized as a substantial 
issue in uncertainty analysis auditing [e.g., (33, 34)]. To address this 
issue, we perform a comprehensive comparison of uncertainty and 
sensitivity analyses across four distinct TC hazard models and risk 
model setups. As some scenarios are implemented in some models 
but not others, our comparison is not of all possible combinations in 
principle but of all combinations of these presently available to the 
risk modeler. This comparison allows us to evaluate and understand 
how uncertainties in model inputs, structures, and assumptions af-
fect the outcomes of the models. In addition, it enables us to derive 
generalizable implications beyond the scope of individual model 
setups, which is not achievable with a single model structure or set-
up alone.

This study operates on two distinct levels of investigation, pro-
viding a comprehensive analysis of uncertainties in future TC risk 
estimation. First, we investigate the uncertainty and sensitivity in 

estimated future TC risk that arises from a risk modeler’s choice of 
alternative representations of hazard, exposure, and vulnerability 
components. Second, we repeat this approach over four different, 
global-scale, academic models, differing in structure and approach, 
to generate different future TC event sets. These models are used to 
downscale multiple emission scenarios and global climate models 
(GCMs) for two future periods. Specifically, we contrast TC event 
sets from two statistical-dynamical TC models, the Massachusetts 
Institute of Technology (MIT) model (35, 36) and Columbia HAZ-
ard model (CHAZ) (37,  38), the fully statistical model STORM 
(39, 40) and a more simplistic, statistical model (IBTrACS_p) apply-
ing a random walk algorithm (12, 41) to historical TC observations 
from the International Best Track Archive for Climate Stewardship 
(IBTrACS) (42). In addition, we vary other factors in the hazard 
component that span all four TC models, such as the choice of para-
metric wind field or event subsampling.

Across all four models, we vary the same factors in the exposure 
and vulnerability components. In particular, we use economic growth 
factors from all five shared socioeconomic pathways (SSPs) (43) to 
approximate and analyze socioeconomic development, thereby ad-
dressing growth uncertainties in future asset value exposure. These 
SSP scenarios, which describe diverse future societal trajectories, are 
informed by gross domestic product (GDP) projections from three 
distinct research institutions [Organization for Economic Coopera-
tion and Development (OECD) (44), International Institute for Ap-
plied Systems Analysis (IIASA) (45), and Potsdam Institute for 
Climate Impact Research (PIK) (46)], each providing alternative in-
terpretations of economic development under the SSP framework. 
We do not speculate on future changes in the vulnerability function 
due to the current knowledge gap in this matter. Instead, we explore 
uncertainties by adjusting the slope parameter of regionally calibrat-
ed vulnerability functions based on historical data (47) within a wide 
range. Given the limited availability of openly available impact func-
tions, our approach relies on functional shapes based on established 
work, such as Emanuel (48), which are typical in TC risk assessments 
for direct economic impacts. Different fields interpret the vulnerabil-
ity concept differently, which can influence the choice of functional 
shapes used (49).

All these alternative representations of hazard, exposure, and vul-
nerability, including the choice of different TC models, reflect typical 
risk modeling choices and the current availability of globally consis-
tent, open-access risk model input data. We do not claim that this 
range of available input data and modeling setups represents the 
range of uncertainty of the underlying modeled systems; hence, in 
the analysis that follows, our attribution of uncertainty to specific as-
pects (hazard, exposure, and vulnerability) indicates those aspects as 
represented in typical risk modeling choices. We perform the uncer-
tainty and sensitivity analysis for future TC risk change estimates 
based on all possible combinations of input factors, relying on a nu-
merical Quasi-Monte Carlo scheme (50) to repeat the risk calculation 
many times (>20,000). Specifically, we assess the key drivers (Drivers 
of future TC risk change section), quantify uncertainties (Uncertain-
ty of future tropical cyclone risk change section), and analyze sensi-
tivities (Sensitivity of future tropical cyclone risk change section) in 
future TC risk estimates. A schematic overview of the uncertainty 
and sensitivity analysis conducted in this study is shown in Fig. 1.

While previous studies have examined how variations in hazard, 
exposure, and vulnerability translate into risk, this study includes 
four distinct hazard models (and their variations) alongside different 
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Fig. 1. Schematic overview of uncertainty and sensitivity analysis. The definition of input factors shows which risk model components are varied (top box). The char-
acterization of their variability space is detailed in Uncertainty and sensitivity analysis section in Materials and Methods. Input factors related to the hazard are defined 
separately for each TC model (MIT, CHAZ, STORM, and IBTrACS_p). TC model–related input factors (TC models section in Materials and Methods) are labeled as such. Cli-
mate change modulates the hazard, socioeconomic development exposure; input factors affected by either are hatched. Input factors representing primarily aleatory 
uncertainty are shown in rounded boxes; epistemic uncertainty in square boxes, of which rectangular boxes represent model uncertainty and hexagons scenario uncer-
tainty. The information in brackets indicates the parameter range (discrete or continuous) from which the input factors are sampled. Note that STORM is run only for 
SSP5-8.5, so SSP is present in the STORM model structure but not sampled in the analysis. The respective box is gray and marked (1). An illustration at the bottom of the 
box depicts the three risk model components. The risk calculation is repeated (>20000) times for all combinations of input factors. We first study risk drivers (middle box, 
Drivers of future TC risk change section) and then the uncertainty distribution for each TC model setup (lower left box, Uncertainty of future TC risk change section). 
Lastly, sensitivity indices are calculated from these distributions (lower right box, Sensitivity of future TC risk change section).
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representations of exposure and vulnerability in the assessment of 
future TC risks and associated uncertainties. Consequently, it pro-
vides valuable insights into the structural differences between TC 
models, their implications for risk assessment, and the interpretation 
of uncertainty and sensitivity analyses of future TC risks. We synthe-
size aspects of model choice, model complexity, and their implica-
tions for model development and decision-making.

RESULTS
Drivers of future TC risk change
Future TC risks change because of both the warming climate and 
socioeconomic development. Here, we first evaluate the individual 
contributions of these two key drivers to future TC risk estimates. 
To consider the influence of climate change on risk, we hold expo-
sure constant at a reference state while using varying future climate 
hazard representations. Conversely, to assess the impact of socio-
economic factors, we keep the hazard data fixed at the present-day 
baseline, allowing socioeconomic conditions, i.e., the exposure lay-
er, to vary. Then, we study future TC risk change estimates of both 
key drivers acting together. We conduct and contrast this analysis 
for the four TC models. TC risks are expressed by the common met-
ric of expected annual damage (EAD) and 100-year damage event 
(100-year event in short), reported as relative changes (in %) com-
pared to present-day baselines. The EAD is the integrated value of 
impacts across all probabilities and exposure points [cf. equation 5 
in Aznar-Siguan and Bresch (15)] and is commonly used as a proxy 
for risk-based insurance premiums in catastrophe modeling (51). 
The 100-year event is an extreme event expected to occur once every 
100 years on average, which translates to a 1% chance of occurring 
in any given year. We simulate direct economic damage in the form 
of impact on the built environment from a given TC hazard set. For 

this, we use a spatially explicit map of asset values as exposure (see 
section Asset exposure representations in Materials and Methods) 
and a regionally calibrated set of impact functions (47). Note that we 
only consider wind as the driving physical hazard for the resulting 
socioeconomic impact. However, the regionalized impact functions 
used in this study (47) implicitly capture damages from storm surg-
es and rainfall-induced freshwater flooding because they were cali-
brated to total damage values. We present results for four study 
regions: North Atlantic/Eastern Pacific, North Indian Ocean, South-
ern Hemisphere, and North Western Pacific (see section Study re-
gions in Materials and Methods). We limit the results’ description to 
the EAD in this section because the corresponding key findings for 
the 100-year event are comparable (cf. figs. S1 and S3).

Climate change generally affects the median TC risk changes 
comparably across hazard models, study regions, and periods (Fig. 
2, left boxplots in all panels). Specifically, the median change in EAD 
is usually on the order of 0 to −1%. However, the uncertainty in TC 
risk change estimates is notably higher for all MIT hazard results 
than the other hazard model outputs, as can be derived from the 
width of the interquartile range of the boxplots shown in Fig. 2. Fur-
thermore, maximum values for climate change–driven EAD in-
crease from the MIT hazard reach 20% (45%), 19% (28%), 6% (8%), 
and 14% (14%) in the North Atlantic/Eastern Pacific, North Indian 
Ocean, Southern Hemisphere, and Western Pacific in the middle (at 
the end) of the century (table S6). In contrast, maximum risk in-
creases from the other hazard models do not exceed the 5% mark 
except in the North Indian Ocean. There, climate change raises EAD 
values from CHAZ by 10% (9%) and IBTrACS_p by 23% (23%) in 
2050 (2090), respectively. Only the results from STORM remain low 
because of known high-intensity biases in the reference period haz-
ard set (16, 32). The North Indian Ocean is, furthermore, the region 
where uncertainties in climate-driven risk change are highest across 

Fig. 2. Drivers of future TC risk change. Relative change in EAD by 2050 (A, C, E, G) and 2090 (B, D, F, H) due to climate change (CC) and socioeconomic development 
(SOC) with respect to the historical baseline. The relative change EAD is reported for the four study regions [North Atlantic/Eastern Pacific (AP) (A) (B), North Indian Ocean 
(IO) (C) (D), Southern Hemisphere (SH) (E) (F), and North Western Pacific (WP) (G) (H)]. Boxplots are shown for the four models MIT (blue), CHAZ (green), STORM (orange), 
IBTrACS_p (red), and display the interquartile range (IQR) for the uncertainty over all input factors (see Materials and Methods), while the whiskers extend to 1.5 times the 
IQR. More extreme points (outliers) are not shown. Note that STORM results are only available for 2050.
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all hazard models. In addition, median TC risk changes are lowest in 
the Southern Hemisphere over all regions, including negative values 
for CHAZ and IBTrACS_p. In other words, climate-driven TC risk 
decreases in these cases. Indeed, we find negative minima of ~ 0 to 
−1% for all hazard models and regions (table S6). The effects of cli-
mate change on key variables important for TC risks, like intensity 
and frequency, are complex (38, 52), yielding a suite of results from 
slight risk decreases to risk increases, and trends modeled by mid-
century generally become more pronounced further into the future.

Socioeconomic development emerges as the predominant driver 
for TC risk increase, as can be seen from the greater increase in risk 
associated with socioeconomic development alone than with climate 
change alone (Fig. 2, right boxplots in all panels). This is consistent 
across all hazard models, using the same future socioeconomic rep-
resentation for each. Notably, any difference between the hazard 
models stems primarily from their distinct present-day baseline. 
Specifically, the median EAD changes driven by socioeconomic de-
velopment are around 1 to 2% by 2050. In regions like the North At-
lantic/Eastern Pacific and Western Pacific, this is roughly double the 
changes attributed to climate change. However, in the North Indian 
Ocean, median values are higher: 2.5 to 3% [and 6 to 7% by 2050 
(2090)], which is about four times the climate change contributions. 
Furthermore, the uncertainty tied to socioeconomic development is 
more pronounced in the Southern Hemisphere compared to the 
other three regions. Last, when considering the hazard sets CHAZ, 
STORM, and IBTrACS_p, socio-economic development presents 
more uncertainty than climate change. In contrast, for MIT-based 
calculations, climate change is the more uncertain risk driver.

Next, we assess the total TC risk increase, factoring in both cli-
mate change and socioeconomic development. Notably, the total TC 
risk increase, as depicted in fig. S2 (total; right boxplots in all pan-
els), are not simple sums or products of risk increases attributed 
only to climate change or only to socioeconomic development, sug-
gesting some further interdependencies between these drivers [fig. 
S2 (sum; left boxplots in all panels)].

Median EAD raises by 0.9% (CHAZ) to 2.3% (MIT), 2.1% 
(STORM) to 5.3% (MIT), 1.1% (IBTrACS_p) to 3.8% (MIT), and 
1.4% (CHAZ) to 3.8% (MIT) in the North Atlantic/Eastern Pacific, 
North Indian Ocean, Southern Hemisphere, and Western Pacific by 
2050. In all regions, the median risk increase is highest for the MIT 
hazard, while the other three models tend to cluster around similar 
values, with STORM producing slightly higher results in the South-
ern Hemisphere and Western Pacific than CHAZ and IBTrACS_p. 
By the end of the century, the median risk increases further, reach-
ing levels approximately two to three times the increase in EAD es-
timated for 2050. Furthermore, maximum total EAD increases by 
2090 span from 11% (CHAZ) to 264% (MIT), 134% (CHAZ) to 
393% (MIT), 22% (IBTrACS_p) to 159% (MIT), and 15% (CHAZ) 
to 96% (MIT) in the North Atlantic/Eastern Pacific, North Indian 
Ocean, Southern Hemisphere, and Western Pacific respectively, 
highlighting the notable uncertainty in these results (table S6). We 
focus on total risk increases for the remainder of the study as de-
scribed in this last paragraph.

Uncertainty of future TC risk change
To quantify uncertainty in future TC risk change estimates, we 
calculate a probability distribution of outcomes across all combina-
tions of risk model input factors. These factors represent variations 
in future climate and socioeconomic systems, including climate 

change projections, socioeconomic pathways, and alternative vul-
nerability functions. The resulting probability density plots repre-
sent the distribution of model outputs across the range of plausible 
input factor combinations, providing insight into the variability and 
relative frequency of outcomes rather than the likelihood of real-
world events or scenarios. We repeat this analysis for four distinct 
TC hazard models, each with slightly different input factors (Fig. 3). 
In this section, uncertainty refers to the range of outcomes resulting 
from all possible combinations of input factors. We evaluate and 
contrast these uncertainties across the four TC models. We present 
the main findings for uncertainties of future TC risk change, focus-
ing on changes in EAD, consistent with the preceding section. For 
results of the 100-year event, which are comparable, see fig. S4.

Figure 3 presents the probability density distributions of the total 
TC risk change, derived from the same data as the boxplots (total) in 
fig. S2. We identify density peaks of EAD change for CHAZ, STORM, 
and IBTrACS_p hazard sets in each region and both future periods 
around 1 to 3%. The density distributions from the MIT model, 
however, peak at higher values, consistent with the assessment of 
median total TC risk change from the previous section. When con-
sidering both risk metrics—EAD (Fig. 3) and the 100-year event (fig. 
S4)—we observe that their density distributions peak at very similar 
values for each combination of region, year, and hazard model (table 
S1). The consistency in peaks of density distributions for EAD and 
100-year event aligns with our finding that socioeconomic develop-
ment is the predominant driver for total TC risk change (Fig. 2). 
Socioeconomic development affects all events uniformly by chang-
ing exposure across the entire probability distribution, explaining 
the similar peak locations in both metrics. If climate change were the 
dominant driver, we would expect divergent patterns between EAD 
and 100-year event peaks, reflecting its potentially differential im-
pact on frequent versus rare events; the observed similarity instead 
points to the uniform influence of socioeconomic development 
across all event probabilities.

Conversely, when examining the entire probability density dis-
tribution, the MIT results display a notably broader distribution 
compared to the other three hazard sets, a finding consistent with 
results from Fig. 2. The width of a distribution can serve as an indi-
cation of its associated uncertainty. Drawing from insights in the 
previous section, the width of the MIT-based distribution can be 
interpreted as an imprint of the uncertainties associated with cli-
mate change as a more uncertain risk driver. In contrast, the similar 
shapes of distributions from CHAZ, STORM, and IBTrACS_p mod-
els indicate socioeconomic development as their main source of un-
certainty, as corroborated by Fig. 2. Furthermore, we observe wider 
distributions for results in 2090 compared to 2050 for all hazard 
models, related to increasing uncertainty in time. While this analy-
sis provides insights into the overarching uncertainty, a more de-
tailed examination of individual input factors is essential. In the 
following section, we explore these factors in detail through a sensi-
tivity analysis.

Sensitivity of future TC risk change
Sensitivity analysis helps identify and quantify the relative impor-
tance of individual input factors for the output uncertainty of future 
TC risk change estimates described in the last section. The model 
input factors and their parameter ranges are defined to capture the 
inherent uncertainties in the different components related to the rep-
resentation of future TC hazards, exposure, and vulnerability. This 
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sensitivity analysis complements our uncertainty quantification by 
providing insight into which input factors contribute most notably to 
the overall uncertainty in our TC risk change estimates. By perform-
ing this analysis across our four TC models, we can also assess how 
the importance of different factors varies between models. Here, we 
present first-order and total-order Sobol sensitivity indices (53, 54) 
to assess the impact of the input factors on our TC risk change calcu-
lations. First-order sensitivity indices measure the effect of variations 
in a single input factor. They are often used to rank the input factors 
according to their relative contribution to the output variability 
(ranking). Total-order indices evaluate the cumulative effect, consid-
ering all factors and their potential interactions. They are commonly 
used for screening, aiming to identify the input factors—if any—
with negligible influence on the output variability (28). We note that 
not all hazard models encompass all input factors (section Uncer-
tainty and sensitivity analysis in Materials and Methods).

The highest sensitivity indices describe the dominant source of 
uncertainty for future TC risk changes, which varies between the 
different hazard models. In the MIT model–based analyses, the 
highest sensitivity index stems from the choice of GCM used in 
downscaling TC events sets (GCM) (Fig. 4, A and E). Conversely, 
the SSP-based scaling of the exposure points (SSP exposure) gener-
ally exhibits the largest sensitivity for all other hazard models. Spe-
cifically, this holds for most results in the Southern Hemisphere and 
Western Pacific for the CHAZ, STORM, and IBTrACS_p and both 
future periods. In the North Indian Ocean, sensitivity indices are 
highest for input factors related to the hazard component [GCM, 
TC genesis index (TCGI) moisture variable, and event subsampling 
base/future], and results in the North Atlantic/Eastern Pacific follow 
no consistent trend beyond the primary observations mentioned. A 

detailed compilation of the most important sensitivity indices for 
future TC risk estimates can be found in table S2.

Moreover, the sensitivity analysis reveals several distinctive pat-
terns. First, the GCM choice (GCM) is more important in the North 
Atlantic/Eastern Pacific, North Indian Ocean, and Western Pacific 
than in the Southern Hemisphere for the three hazard models (MIT, 
CHAZ, and STORM), which encompass this input factor. This pat-
tern largely aligns with regions where uncertainties in climate change 
as a risk driver exceed uncertainties from socioeconomic develop-
ment (see Fig. 2). Furthermore, the GCM choice is more important 
for changes in EAD than in the 100-year event. Second, for CHAZ 
model–based sensitivity analyses, the moisture variable within the 
TCGI is mostly of equal importance for the TC risk change uncer-
tainty as the GCM choice (GCM) (Fig. 4, B and F). Third, the vari-
ability in event subsampling for baseline and future hazard sets (Event 
subsampling base/future) is most pronounced in the IBTrACS_p–
related result (Fig. 4, B and G), in contrast to the other hazard models.

Next, we evaluate the total-order sensitivity indices (total effects) 
across the four hazard models. Namely, total effects are notably in-
creased for CHAZ hazard–based results compared to their first-
order indices, meaning that this model setup encompasses many 
interactions between input factors (fig. S5). In contrast, total-order 
sensitivity indices broadly mirror the ranking and distribution of 
the first-order indices for MIT- and STORM-related results. More-
over, in the IBTrACS_p–based sensitivity analysis, total effects in-
clude influences from the wind model choice (wind model), a 
nearly irrelevant factor in all other hazard sets.

Last, we emphasize that sensitivity analysis is always specific to 
the choice of risk metric. To illustrate this, we show the implications 
of assessing TC risk in absolute terms versus changes relative to a 

Fig. 3. Uncertainty distribution of TC risk change. Kernel density estimation plots showcasing the uncertainty distribution of estimated relative change in EAD across 
study regions AP (A) and (E), IO (B) and (F), SH (C) and (G), and WP (D) and (H) for the years 2050 (A), (B), (C), and (D), and 2090 (E), (F), (G), and (H). Each subplot represents 
a specific region and year combination, with different models (MIT, CHAZ, STORM, and IBTrACS_p) depicted in distinct colors. Note that the model STORM only provides 
data for 2050. Each plot shows a normalized probability distribution with an integral sum of 1. The x axis is truncated in some figures, potentially influencing the interpre-
tation of distribution tails, particularly for the MIT hazard–based results.
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baseline. For absolute TC risk estimates, the primary source of un-
certainty across all hazard models is the input factor associated with 
the vulnerability function (Vulnerability function midpoint), as de-
picted in figs. S6 and S7 and first discussed by Meiler et al. (30). Thus 
while the choice of vulnerability function is highly influential on the 
total risk that we calculate, this influence is much less apparent 
when we compare changes in risk calculated with the same vulner-
ability function. The vulnerability function is a critical link between 
hazard intensity and exposure in our modeling setup representing 
the relative degree of damage for any given wind speed. In assess-
ments of absolute risk, it serves as an actual representation of this 
aspect of vulnerability. However, in assessments of relative risk 
change, it is fixed and acts as a mere translation tool, converting 
hazard intensities to risk changes.

DISCUSSION
Our results on the key TC risk change drivers show that while both 
climate change and socioeconomic development influence TC risk 
changes, socioeconomic factors are the predominant drivers of me-
dian increased risk across all hazard models. While studying these 
drivers in isolation provided distinct insights, their combined effects 
reveal nontrivial interactions. This suggests that simply summing or 

multiplying their individual effects may not fully capture the com-
plexity of their combined impact on TC risk or the nuances in the 
uncertainty and sensitivity analysis of these risk estimates. It under-
scores the importance of integrating both drivers from the onset in 
risk assessments to ensure a comprehensive understanding.

We report that median TC risk increases 1 to 5% by 2050 across 
all models and global study regions, perhaps a small enough change 
to be considered indistinguishable from zero for some purposes. 
However, the estimated maximum risk increases by the end of the 
century range from 10 to 400% depending on the hazard model 
choice and region. To the extent that we cannot rule out either any 
particular hazard model or any socioeconomic scenario, this sug-
gests a much less optimistic view, with the potential for large in-
creases in risk. Furthermore, we consider TC wind hazard only and 
do not explicitly include the potentially compounding effects of 
growing TC rainfall rates, storm surge heights, and sea level rise 
(52). While some water-related impacts are indirectly captured 
through the vulnerability functions, these factors likely exacerbate 
future TC risk increases further.

Hazard model–specific findings
Comparing the key risk drivers across hazard models (Drivers of 
future TC risk change section), we find that for TC risk estimates 

Fig. 4. Sensitivity indices of future TC risk change. First-order Sobol sensitivity indices for future [2050 (A, B, C, D) and 2090 (E, F, G)] TC risk change calculated with the 
four models MIT [(A) and (E)], CHAZ [(B) and (F)], STORM (C), and IBTrACS_p [(D) and (G)], expressed as % change in EAD (upper bar for each hazard model, time, and region) 
and 100-year event values (RP 100, lower bar for each hazard model, time, and region) over the four study regions (AP, IO, SH, and WP) and all input factors (different col-
ors). Input factors that primarily constitute aleatory uncertainty are shown in forward-slanting hatching; scenario uncertainty in backward-slanting hatching. Vulnerabil-
ity function midpoint describes the impact function; wind model, GCM, SSP hazard, TCGI moisture variable, event subsampling base, and event subsampling future 
pertain to the hazard component; GDP model, SSP exposure, and exposure urban/rural weighting relate to the exposure. Note that STORM results are only available for 
2050. Note that certain input factors apply to only one or a subset of models, c.f. Table 1 and Fig. 1.
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based on the MIT model, climate change emerges as a more signifi-
cant source of uncertainty than socioeconomic development. In 
contrast, for STORM, CHAZ, or IBTrACS_p–based results, socio-
economic development dominates the uncertainty (Fig. 2). Turning 
to the sensitivity analysis (Sensitivity of future TC risk change sec-
tion), we observe that for results from the MIT model, the choice of 
GCM contributes most to the output uncertainty (Fig. 4), while for 
risk change estimates using the other three hazard models, the SSP-
based exposure scaling (SSP exposure) has the highest sensitivity 
index. These findings highlight how the structural differences 
among the hazard models lead to varying sensitivities and responses 
to climate and socioeconomic drivers, shaping their respective con-
tributions to uncertainty in the risk estimates. For TC risk estimates 
based on the MIT model, climate change is the more uncertain risk 
driver than socioeconomic development (Fig. 2), and the choice of 
GCM dominates the output uncertainty (Fig. 4). Conversely, when 
using STORM, CHAZ, or IBTrACS_p, socioeconomic development 
is the more uncertain risk driver than climate change, and the SSP-
based exposure scaling (SSP exposure) has the highest sensitivity 
index. This difference is particularly notable when contrasting re-
sults from the two statistical-dynamical TC hazard models CHAZ 
and MIT. In a previous study solely based on MIT TC hazards, we 
found a positive relationship between the climate sensitivity of 
GCMs used to downscale TCs and the corresponding increase in 
TC risk (30). This increase is linked to the scaling of TC potential 
intensity with global warming (55), which in turn is a strong predic-
tor for TC genesis potential indices (56–58). These indices again in-
fluence TC hazard frequencies and intensities, which are critical 
characteristics for TC risk assessment. Given the similar TC model-
ing approach to the MIT model, we expected to find a comparable 
relationship in the CHAZ-based results. Both models are statistical-
dynamical models that downscale TCs from GCMs or reanalysis 
data and rely on three components: genesis, track, intensity. Al-
though the MIT and CHAZ TC models differ in their specific gen-
esis and intensity model, they are more similar to each other than to 
the purely statistical models STORM or IBTrACS_p. Unexpectedly, 
we found no notable relationship between transient climate re-
sponse (table S5) as a measure of climate sensitivity and changes in 
CHAZ-based TC risk estimates (figs. S8 and S9) and CHAZ fre-
quency (fig. S10) and intensity changes (fig. S11).

Building on this, we assert that the MIT model’s greater sensitiv-
ity to climate change should not be interpreted as increased uncer-
tainty in the negative sense. The observed difference in sensitivity 
stems from the differing model structures. The MIT model’s inten-
sity component solves dynamic equations, while the other models’ 
intensity components are statistical, with CHAZ using a statistical 
intensity model based on physical parameters. These differences 
suggest varying sensitivities to climate change across the models. 
We emphasize that our results do not attribute superiority or inferi-
ority to any model. Rather, they reflect the current state of the field, 
where multiple approaches to TC modeling coexist. Since these re-
sponses of TCs to climate change are indeed uncertain (52)—with 
the response of TC frequency uncertain even in sign (59)—this un-
certainty in our results may not be reducible given present science. 
It is not obvious, given the small size of our multimodel ensemble, 
that the real uncertainty might not be even larger, i.e., that some 
possible TC hazard models might show changes with climate either 
larger or smaller than those in our ensemble.

Implications for interpretation of results, model 
development, and decision-making
In a previous study, we interpreted the importance of the GCM 
choice for MIT-based TC risk change estimates as an indication of 
the relatively advanced state of modeling of TC hazard, and a conse-
quence of the greater complexity of the MIT model, compared to the 
exposure and vulnerability models (30). However, our current find-
ings suggest a more nuanced narrative about the relationship be-
tween model complexity and uncertainty in TC risk estimation. 
Although CHAZ incorporates an additional hazard-related input 
factor (TCGI moisture variable; a detailed discussion of the role of 
TGCI for TC risk change estimates is provided in the Supplemen-
tary Materials) compared to the MIT model, its range of outputs in 
our risk estimation framework is narrower. This finding aligns with 
Puy et  al.’s (60) suggestion that increased model complexity does 
not inevitably lead to higher uncertainty. In contrast, the influence 
of additional parameters on overall uncertainty depends on their 
specific roles and interactions within the model structure.

In our specific case, we observed that the relative magnitude and 
uncertainty associated with each input component of the risk model 
also play a crucial role in interpreting uncertainty analysis results. 
Specifically, we found that socioeconomic development is the domi-
nant risk driver in the STORM, CHAZ, and IBTrACS_p models, 
while the MIT model shows climate change as equally important 
(Fig. 2). This results in a narrower uncertainty distribution in TC 
risk change estimates from STORM, CHAZ, and IBTrACS_p com-
pared to the MIT model (Fig. 3). Therefore, we hypothesize that in 
cases where socioeconomic development is the notably stronger risk 
driver, the uncertainty in the climate change components dimin-
ishes in relevance simply because of the substantial impact of socio-
economic development. Understanding the magnitude and relative 
roles of these risk drivers is thus essential for interpreting the results 
of the uncertainty analysis and for reflecting on model complexities 
and effective dimensions, providing valuable insights for further 
model development.

While the mathematical concepts are straightforward—where 
magnitude often corresponds to the mode (peak) of probability den-
sity distributions and uncertainty affects the distribution’s width 
(spread or variance) (13, 17, 28)—grasping their practical implica-
tions is important. For risk analysts and decision-makers, the balance 
between considering the full range of possible outcomes, including 
allegedly improbable tails, and focusing on the peaks of distributions 
hinges on their level of risk aversion and the stakes involved. Low-
risk aversion allows for prioritizing the most probable outcomes, 
streamlining decision-making toward the dominant risk drivers 
(magnitude), while uncertainties become secondary. For instance, an 
insurance underwriter may decide to focus on the central tendencies 
of the TC model output in a low-activity TC season for a low-stakes 
underwriting decision. In contrast, high-risk aversion necessitates a 
comprehensive analysis of all eventualities, in which case the signifi-
cance of the central peak diminishes relative to uncertainty. A nucle-
ar power plant operator, for example, needs to implement extensive 
safety measures against low-likelihood, high-impact TCs, prioritiz-
ing protection. Such a decision-maker would likely consider the up-
per bounds of our uncertainty ranges across all models to account for 
worst-case scenarios. This nuanced approach enables tailored risk 
management strategies that align with both the decision-maker’s 
level of cautiousness and the specific context of the decision (61).

D
ow

nloaded from
 https://w

w
w

.science.org on A
pril 18, 2025



Meiler et al., Sci. Adv. 11, eadn4607 (2025)     18 April 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

9 of 17

These conclusions extend beyond the specific context of TC risks 
and are relevant for many types of hazards and climate risk informa-
tion in general. Our study provides valuable insights for risk model-
ers, model developers, and global stakeholders such as the (re-)
insurance industry and humanitarian organizations, which often re-
quire aggregated climate risk outputs to inform broad-scale strategies 
(62, 63). Our comprehensive and structured uncertainty assessment 
enhances the transparency and richness of climate risk information, 
offering a blueprint for creating more actionable outputs for these ap-
plications. While this study does not approach many uncertainties 
related to how risk plays out differently in diverse local contexts, it can 
help inform such local studies by making uncertainties in larger-scale 
modeling more transparent.

Classification of uncertainties and their implications
The outcomes of our uncertainty and sensitivity analyses reveal a 
strong dependency on the chosen risk model components, under-
scoring the necessity for careful interpretation and caution when 
extrapolating findings beyond the model boundaries. Our findings 
demonstrate not only that uncertainties vary with the TC model 
used but also that the relative sensitivities to different input factors 
shift as well. By mapping these outcomes to the aleatory, epistemic, 
and normative types of uncertainty considering their quantifiability 
and potential for reduction, we aim to illustrate how these analyses 
can be extended to generate actionable insights that extend beyond 
the immediate model setup. While the results presented in this 
study provide a comprehensive framework for understanding the 
combined effects of multiple sources of uncertainty, additional pro-
cessing and tailored visualizations are required to translate these 
insights into practical applications. Here, we discuss how these 
classes of uncertainty serve as a first point of orientation for further 
exploration, visualization, and communication of the uncertainty 
analysis to support decision-making. Although our study primarily 
uses a variance-based approach to characterize output uncertainty, 
we acknowledge its limitations in capturing skewed distributions 
and suggest that future research could benefit from density-based 
approaches for a more nuanced understanding of risk (cf. Uncer-
tainty and sensitivity analysis section in Materials and Methods) (17).

In our study, most input factors for uncertainty and sensitivity 
analysis represent forms of epistemic uncertainty. Within the con-
text of climate-related assessments, we discuss between two primary 
types of epistemic uncertainty: scenario uncertainty and model un-
certainty. Scenario uncertainty pertains to the unpredictability of 
future pathways, such as greenhouse gas emissions, stemming from 
various potential trajectories of human activities (20–23). Model 
uncertainty, conversely, reflects the limitations in our ability to rep-
resent complex systems, including discrepancies between models 
and the actual climate system they aim to simulate (20–22). While 
these two types of epistemic uncertainty differ fundamentally in 
their characteristics and origins, our framework allows for their 
evaluation within the same quantitative analysis.

Model uncertainty plays a substantial role in our analysis and can 
be examined at multiple levels. At the overall risk model level, the 
selection among different TC models (MIT, CHAZ, STORM, and 
IBTrACS_p) represents a source of model uncertainty, stemming 
from the varied approaches and assumptions inherent in each TC 
model. When considering individual risk model components, we ob-
serve varying degrees of model uncertainty. In the hazard compo-
nent, model uncertainty is substantial, particularly for hazard-related 

input factors like the GCM choice (GCM) and TCGI formulation 
(TCGI moisture variable). For the exposure component, model un-
certainty related to the GDP model choice (GDP model) is compara-
tively small (20–22). Scenario uncertainty is evident in varying 
hazard emission scenarios (SSP hazard), showing minor influence on 
the output uncertainty of TC risk change estimates across models. 
Conversely, scenario uncertainty of exposure, indicated by the SSP-
based scaling factors for GDP growth (SSP exposure), is a key source 
of uncertainty in a wide range of outputs (Sensitivity of future TC risk 
change section).

The reducibility of these uncertainties varies. Model uncertainty, 
particularly in the hazard component, is theoretically reducible 
through model refinement, enhanced data collection, and focused 
research (19, 22, 25, 64). In contrast, scenario uncertainty, which is 
inherently tied to future human choices, cannot be reduced in the 
same way. In the context of hazard modeling, scenario uncertainty 
may hold secondary importance due to its observed low sensitivity. 
However, exposure-related scenario uncertainty is high and thus be-
comes critically relevant from a decision-making standpoint. Al-
though scenario uncertainty cannot be reduced, it can motivate 
decision-makers to favor scenarios of minimal risk. Specifically, the 
importance of scenario uncertainty in the exposure component (SSP 
exposure) may motivate decision-makers to choose policy options 
that accommodate anticipated population and economic growth in 
areas and timescales less exposed to TC hazards. For instance, Geiger 
et al. (65) found that limiting global warming to 2°C by 2100, as op-
posed to reaching the same temperature by 2050, can substantially 
reduce the population exposed to TC risks, demonstrating how sce-
nario choices in socioeconomic and climate mitigation strategies 
critically affect future TC exposure. While Geiger et al. (65) focused 
on exposed populations, the same conclusions apply to exposed asset 
values, as shown in the present study or any other type of exposure. 
As an illustration, fig. S12 separates the uncertainty output of this 
study by scenarios and visually distinguishes between matched and 
mismatched combinations of socioeconomic and emission path-
ways, offering a clearer orientation for interpreting how scenario-
specific choices influence risk outcomes. Therefore, policy decisions 
that strategically manage the exposure of people or assets to TCs and 
other hazards can effectively reduce future risks, thereby guiding de-
cisions subject to scenario uncertainty.

Beven et al. (66) reviewed the treatment of epistemic uncertainty 
across various natural hazards and found that there is no consistent 
approach to dealing with epistemic uncertainty. They emphasized 
that epistemic uncertainties are often treated as aleatory ones, using 
specified distributional forms, which can lead to an underestima-
tion of potential uncertainty in risk assessments and, consequently, 
a lack of robustness in decision-making and preparedness for future 
surprises. In the context of our study and climate risk assessment 
more broadly, recognizing and properly accounting for epistemic 
uncertainties is crucial. We thus represent different input factors 
that constitute forms of epistemic uncertainty by selecting from a 
list of scientifically justified inputs based on alternative representa-
tions of future climate and socioeconomic systems rather than de-
fining a set of additive or multiplicative perturbation factors for each 
input factor whenever possible, mirroring previous studies by 
Dawkins et al. (31) and Meiler et al. (30). However, we also proac-
tively communicate the potential for blind spots in epistemic uncer-
tainty assessment. This acknowledgment and transparency are vital 
for understanding the limitations of current epistemic uncertainty 
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assessments, better managing these inherent limitations, and im-
proving the robustness and reliability of climate risk model output. 
This approach ensures that risk assessments remain relevant and 
actionable, even in the face of substantial uncertainty.

Aleatory uncertainty is represented in the present study in the 
event subsampling of the hazard sets. Through sensitivity analysis, 
we observe divergent responses to subsampling (Event subsampling 
base/future) across different hazard models (Fig. 4 and table S2). 
Specifically, the statistical-dynamical models MIT and CHAZ show 
no sensitivity to event subsampling, suggesting that they may inher-
ently capture natural variability through their physics-based meth-
odologies and the generation of new event sets for future climates. 
In contrast, the purely statistical models, IBTrACS_p and STORM, 
exhibited sensitivity to subsampling. This indicates that these mod-
els, which have the historical track sets at their foundation, may re-
quire the inclusion of a subsampling step to represent aleatory 
uncertainty adequately. Further validation is needed to strengthen 
this conclusion, however.

Despite its nonreducible nature (67), quantifying aleatory uncer-
tainty is crucial, as demonstrated by the event subsampling in this 
study. Moreover, and perhaps counterintuitively, while aleatory un-
certainty is nonreducible (e.g., it is not even in principle possible to 
forecast the weather in 20 years due to the chaotic nature of the 
Earth system), it can be accurately represented in the form of a 
probability distribution. This differentiates it from epistemic uncer-
tainty, which often is inherently indeterminate or not readily quan-
tifiable (66). Accurately quantifying aleatory uncertainty thus helps 
differentiate it from epistemic uncertainty, guiding research efforts 
more effectively toward understanding and modeling the complex 
behaviors of natural systems.

Normative uncertainty is often interrelated with the other cate-
gories but also extends beyond the focus of this paper into implications 
for how modeling results are used for societal decisions. Considering 
normative aspects in the context of scenario uncertainty in TC 
risk assessment, it is crucial to consider a wide range of scenarios to 
avoid blind spots in risk assessment. Unlike in policymaking, where 
particular scenarios or targets often represent a (normatively) favored 
developmental path (such as the Paris Agreement), excluding 
specific scenarios a priori in a risk setting could result in either 
under- or overestimation of risk. Furthermore, caution is also ad-
vised when considering whether to weight some scenarios as more 
likely than others, or to weight all scenarios equally, as improper 
weighting could exacerbate the risk of over- or underestimation.

Concerning normative facets in model uncertainty, the concept 
of “fitness for purpose” is vital (21). As a simple example, specifying 
risk only as EAD based on property values would tend to divert at-
tention toward luxury coastal villas in Florida and away from infor-
mal coastal settlements in Bangladesh, although TC impacts on 
the latter would have a much more negative effect on people’s well-
being. EAD would be an appropriate risk metric for estimating 
potential insurance payouts, whereas for humanitarian goals, risk 
metrics such as the number of people in poverty affected would be 
more appropriate for the modeling purpose. Hence, different stake-
holders and sectors require varied outputs from TC hazard models 
and different calculations of risk. Given practical constraints, select-
ing specific models early in the risk assessment process is often nec-
essary, but this choice substantially influences the results. Indeed, as 
highlighted in our findings (Sensitivity of future TC risk change 
section), looking at the relative change or absolute impacts of TCs 

completely changes the narrative, not only in terms of the output 
values themselves (e.g., a few percent versus several billion USD) 
but also in the sensitivity to input uncertainties (e.g., the dominance 
of hazard- or exposures. Impact function-related factors in Fig. 4 
versus fig. S6). Hence, a bottom-up approach, incorporating stake-
holder needs, goals and values to guide model selection, is recom-
mended for tailoring risk assessments effectively (16).

Understanding the different types of uncertainties—aleatory, 
epistemic, and normative—is vital for risk modeling and informed 
decision-making. Linking these types of uncertainty to systematic 
uncertainty and sensitivity quantification across different TC hazard 
models, this study offers a nuanced view of TC risk assessment, 
which can guide future research and provide decision-critical in-
sights. In particular, key findings here are that the range of uncer-
tainty in TC risk change is strongly model dependent, and further 
that which components of the modeling chain introduce the 
greatest sources of uncertainty also varies depending on choices 
in other components of that chain. This indicates that not only is 
the uncertainty itself uncertain but so are which factors are most 
responsible for that uncertainty. Since our multimodel ensemble 
is small—with only four hazard models, for example—this raises 
the possibility that adding more models could change the conclu-
sions quantitatively or perhaps even qualitatively. We suspect that 
this situation is not unique to TCs but may also apply to other 
aspects of climate risk. This suggests that humility in the use and 
interpretation of quantitative climate risk models is warranted, 
and that adaptation decisions should be based on multiple lines 
of evidence.

We also advocate for increased research on exposure and vulner-
ability modeling. While our uncertainty and sensitivity analysis 
might not explicitly highlight this need, we assert that this could be 
in part because these components are represented in a simple and 
reduced way in available datasets and the current modeling setup 
and fewer options are available to bracket the possibilities and define 
the uncertainties. The fact that exposure and vulnerability have been 
much less studied in forms that can readily be input into such mod-
eling approaches (at least in the public domain) than the hazard of-
fers immediate opportunities for impactful research, as these areas 
have a pronounced influence on results. While there have been 
some initial efforts to develop gridded population (68) and GDP 
projections (69), these efforts are still in their early stages. In this 
study, exposure projections are based on uniform SSP-derived GDP 
growth factors. These were not designed to be used in a spatially 
explicit fashion (43) and fail to capture the spatial nuances of socio-
economic development, such as urbanization patterns. We note that 
the risk values reported in this study may be dominated by high-
GDP areas because the risk metrics are aggregated over the four, 
large-scale regions (see Study regions section in Materials and 
Methods). For local studies, higher resolution and the best available 
local data would be required.

Furthermore, our approach of decoupling socioeconomic path-
ways from their associated climate projections deviates from the 
original intent of the SSP framework, potentially leading to results 
that are challenging to interpret within individual SSP contexts. 
However, this decoupling is crucial for comprehensive risk assess-
ment. It allows us to assess uncertainty within the SSP framework 
itself, considering scenarios where socioeconomic pathways might 
lead to unexpected climate outcomes (e.g., an SSP2 pathway result-
ing in an SSP3-7.0 climate). While this approach may not be directly 

D
ow

nloaded from
 https://w

w
w

.science.org on A
pril 18, 2025



Meiler et al., Sci. Adv. 11, eadn4607 (2025)     18 April 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

11 of 17

applicable in policy contexts requiring scenario consistency, it pro-
vides valuable insights for risk management by capturing a broader 
spectrum of uncertainties and avoiding blind spots that could arise 
from rigid adherence to predefined pathway-climate combinations.

For vulnerability, no viable options exist for simulating changes 
in future vulnerabilities at scale. Hence, achieving projections of 
exposures and vulnerabilities projections of exposures and vul-
nerabilities in spatially explicit forms that match the complexity 
of climate hazards demands an effort comparable to that of global 
climate modeling, encompassing both social development and ad-
aptation strategies.

Providing reliable TC risk assessment, including uncertainty and 
sensitivity analysis, is important for emerging fields like physical cli-
mate risk disclosure (3, 4) or changing traditional sectors like insur-
ance. In both cases, rules by which climate risk science can be used 
appropriately to inform climate risk assessment have not yet been 
developed or are changing. As we move forward, it is essential to 
refine our models continually, choose models according to their ap-
plication, and be critically aware of the normative assumptions 
that underlie our assessments. The type of uncertainty quantification 
and attribution we performed in our study is based on open models, 
which we believe is an important prerequisite for transparent and 
reliable TC risk assessment. The academic realm has seen a shift to-
ward more open models and data, a trend that is much needed and 
that we hope the industry will follow. Ultimately, we aim to balance 
risk assessments that are both accurate and actionable.

MATERIALS AND METHODS
In this study, we use the open-source, probabilistic climate risk 
modeling framework CLIMADA (15) to assess future TC risk 
changes and quantify and attribute related uncertainties across four 
main regions. Several key components underpin this methodology. 
Specifically, TC models (section TC models) generate synthetic TC 
track or event sets (section TC track sets). These track sets are con-
verted to two-dimensional wind fields by parametric wind models, 
representing the TC hazard sets (section TC hazard). These hazard 
sets, along with asset exposure layers (section Asset exposure 
representations) and impact functions (section Impact functions), 

serve as inputs into CLIMADA (section Risk model CLIMADA). 
CLIMADA is then used to estimate TC risks and perform uncer-
tainty and sensitivity analyses (section Uncertainty and sensitivity 
analysis). We describe these key components in more detail in the 
subsequent sections.

Study regions
In this study, we assess future TC risk increases across four main 
regions, as shown in Fig. 5 and established in Meiler et  al. (16). 
These regions are chosen to broadly reflect distinct TC areas, focus-
ing on the impact on land. Hence, we combine TCs originating in the 
North Atlantic and Eastern Pacific (AP) into one region to evaluate 
the socioeconomic impact on national GDPs, accounting for coun-
tries with coastlines in multiple basins, such as the United States, 
Mexico, and Central American nations. Similarly, the Southern 
Hemisphere (SH) is treated as a unified region, with the North 
Indian Ocean (IO) and Western Pacific (WP) completing the geo-
graphical split.

Risk model CLIMADA
The open-source, probabilistic climate risk model CLIMADA inte-
grates climate and weather-related hazards with the exposure and 
vulnerability of assets, populations, and infrastructure on a global 
scale (15). Developed as a community initiative, its Python 3 source 
code is freely accessible under the GNU General Public License Ver-
sion 3. In this study, we use the Python (3.9+) version of CLIMADA 
release v4.1.1 (70) to evaluate the projected increase in direct eco-
nomic losses from TCs in the mid- and late-21st century, relative to 
a contemporary baseline. Damage estimates are calculated at a spa-
tial resolution of 300 arc sec (approximately 10 km at the equator).

TC hazard
In CLIMADA, the TC hazard is represented by a two-dimensional 
wind field created by integrating TC track sets with a parametric 
wind model. This study uses two distinct wind models based on the 
parameterizations from Holland (71) and Emanuel and Rotunno 
(72), applied to all TC track sets described in TC track sets section. 
These wind models calculate the gridded 1-min average sustained 
winds at 10 m above ground, comprising both a circular wind field 

Fig. 5. Global study regions. AP (blue), IO (orange), SH (green), and WP (red).
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component and the translational wind speed generated by the TC’s 
movement. A key difference between the models lies in how they 
compute the (absolute) angular velocity from the wind profile. In 
both models, an attenuation factor, as suggested by Geiger et al. (9), 
is used to model the reduction of the translational wind component 
with distance from the cyclone center. For this study, wind fields are 
computed at a resolution of 300 arc sec. CLIMADA uses the peak 
lifetime wind speed at each location as the hazard variable, disre-
garding values below 34 knots (17.5 m/s).

TC models
Different synthetic TC models exist, each with their unique model-
ing approach that influences the resulting TC event sets. Prominent 
methods commonly used for TC risk assessment are either purely 
statistical (39, 40) or coupled statistical-dynamical (35–38). Here, 
we briefly review the key similarities and differences of the global, 
academically available TC models used in this study.

Statistical-dynamical TC models like the MIT (35,  36) and 
CHAZ (37, 38) both use dynamical downscaling of TC tracks from 
reanalyses or climate model output. These models follow the three-
step process of genesis, track, and intensity modeling. The main 
genesis mechanism of the MIT model is random seeding and natu-
ral selection (35, 36), while CHAZ uses a TCGI (37, 38), which sta-
tistically links the occurrence of TCs to large-scale environmental 
conditions favorable for TC development. TC tracks are propagated 
via synthetic local winds from a beta-and-advection model (73) in 
both models. Intensity changes along the tracks are simulated using 
a dynamical model (MIT) (35, 36) or an autoregressive model using 
physics-based drivers (CHAZ) (37, 38).

In contrast, the fully statistical, global, open-source model 
STORM (39, 40) uses autoregressive formulas to simulate both the 
track and intensity of a TC. STORM run for present-day TC activity 
uses data from IBTrACS (42) and ECMWF’s ERA-5 reanalysis (74) 
for input, generating synthetic TCs with characteristics consistent 
with observed statistics. For future climate simulations, Bloemendaal 
et  al. (40) derived changes in key TC variables from four high-
resolution GCM simulations (1979–2014 versus 2015–2050) and 
applied these to TC variables from historical data. On this basis, 
they ran STORM to simulate future TC activity under climate change.

The fourth TC modeling approach featured in this study is the 
generation of probabilistic TC tracks from the IBTrACS records 
(42). This approach, embedded in the CLIMADA platform (15) uses 
a simple interpolation method based on a random-walk process 
(12,  41). The method generates a probabilistic track distribution 
from historical observations without explicitly incorporating de-
tailed physical, climate, or basin-specific characteristics. A more de-
tailed description can be found in the Supplementary Materials of 
Gettelman et  al. (12), and the handling of observations from the 
IBTrACS record (42) is detailed in Meiler et  al. (16). Similar to 
STORM, the probabilistic IBTrACS obtained from the CLIMADA 
platform can be climate conditioned by changing their frequency 
and intensity according to scaling factors derived by Knutson et al. 
(75) for the CMIP5 generation of climate models. This approach is 
simpler than the future climate STORM modeling approach (40). 
Instead of rerunning a TC model based on several scaled key TC 
variables, it just applies scaling factors to hazard intensity and fre-
quency. We note that, to date, climate-conditioned IBTrACS are not 
available for the newest generation of climate models (CMIP6). Fur-
thermore, the resulting future TC event sets from the STORM 

model and probabilistic, climate-conditioned IBTrACS do not con-
tain spatial variations compared to their present-day counterparts. 
In comparison, future MIT and CHAZ hazard sets are completely 
new event sets, including spatial variations of the tracks.

TC track sets
In this study, the MIT TC model (35, 36) was used to generate TC 
track sets from input of nine distinct GCMs (detailed in table S4) 
under three emission scenarios: SSP245, SSP370, and SSP585, which 
are part of the CMIP6 generation. The model simulations cover 
three time frames: the present-day reference period (1995–2014), a 
mid-century period (2041–2060), and a late-century period (2081–
2100). The model generated 500 TCs each year within these periods 
using the three-step process of genesis, track, and intensity model-
ing described in the previous section. The annual variation in the 
number of TCs is influenced by the specific boundary conditions set 
by the GCMs, such as potential intensity and wind shear, affecting 
how many of the initial seeds develop into full TCs. The model uses 
a three-step process of genesis, track, and intensity modeling to gen-
erate 500 TCs each year. The development of initial seeds into full 
TCs is influenced by specific boundary conditions set by the GCMs, 
such as potential intensity and wind shear. To determine the final 
yearly TC frequency, a bias correction process is applied. This pro-
cess compares the number of seeds that develop into full TCs under 
the specific boundary conditions to the calibrated total of 500 events 
per year. The ratio of developed TCs to total seeds is then used to 
adjust the final TC count, ensuring that it reflects the expected fre-
quency given the climate conditions represented in each simulation.

CHAZ (37, 38) was used to generate TC event sets for three emis-
sion scenarios (SSP245, SSP370, and SSP585) drawing from six 
(CESM2, CNRM-CM6-1, EC-Earth3, IPSL-CM6A-LR, MIROC6, 
and UKESM1-0-LL) of the nine CMIP6 GCMs also used by the 
MIT model (cf. table S4) and two distinctly different choices of 
moisture variable used in the TCGI component of CHAZ (38). 
CHAZ is downscaled for every combination of emission scenario, 
GCM, and TCGI with 10 different realizations of the genesis model 
and resulting tracks. For each genesis realization, 40 ensembles of 
the intensity model are produced. In this study, we use all 10 genesis 
ensembles but randomly select 8 of the 40 intensity ensembles. This 
results in 80 ensemble members, reducing computational costs 
while maintaining a sufficiently large track set for robust TC risk 
assessments (16).

Analogous to the MIT hazard sets, we contrast TC event sets for 
a present climate reference state (1995–2014) with two future peri-
ods: mid-century (2041–2060) and end of the century (2081–2100). 
In addition, CHAZ hazard sets require a frequency bias correction 
(16, 37, 76). We adjust the hazard frequency of all reference state 
hazard sets using the observed frequencies in each basin. This ad-
justment is done by comparing the model-generated TC frequencies 
with observed frequencies and applying a correction factor based on 
the difference. Numbers for the observed IBTrACS genesis events 
are derived from Bloemendaal et al. (table 3) (39) and are combined 
to values relevant to the study regions of this manuscript (Fig. 5). 
Each TC in the baseline hazard set is adjusted to ensure that the 
overall frequency aligns with the observed average. This adjusted 
frequency is then applied to the TCs in the future climate hazard 
sets. In our approach, each future TC is assigned the same probabil-
ity of occurrence as its present-day counterpart. However, the over-
all frequency of the event set (expressed as the number of TCs per 
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year) may change because of variations in the total storm count, 
thereby reflecting potential changes in TC frequency under future 
climate conditions.

TC track sets from the statistical model STORM were used as re-
leased by Bloemendaal et  al. (39,  40) representing 10,000 years of 
present-day (1980–2018) (39) and future (SSP585; 2015–2050) syn-
thetic TCs from an ensemble of four high-resolution climate models. 
Note that future STORM TC tracks are only available for a single emis-
sion scenario (SSP585) and the middle-of-the-century time period.

Finally, using the random walk algorithm of the CLIMADA plat-
form as described in the previous section, we generated a set of 24 
probabilistic tracks for each observed TC between 1990 and 2010 
for this study. Upon generating wind fields from these tracks (cf. TC 
hazard section) using two different parametric wind models (71, 72), 
the hazard sets are climate-conditioned by applying constant, basin-
specific factors to the tracks’ intensity and frequency. These factors 
were derived from the meta-analysis by Knutson et al. (75) summa-
rizing the effects of climate change on TCs by CMIP5 climate mod-
els under RCP4.5 projections for the late-21st century. A linear 
scaling approach is used to estimate parameters for different future 
periods and the other three RCP scenarios (2.6, 6.0, and 8.5) accord-
ing to the RCP database (77). Note that we did not generate climate-
conditioned hazard sets for the RCP8.5 scenario at the end of the 
century as the current implementation of the respective module on 
the CLIMADA platform produces erroneous negative frequencies. 
In the remainder of this study, we refer to hazard sets generated via 
this approach as IBTrACS_p.

Asset exposure representations
We generated a spatially explicit, gridded dataset of asset exposure 
values using the LitPop method. This approach disaggregates na-
tional asset value totals to grid cells based on a combination of 
nightlight intensity (Lit) and population density (Pop), as proposed 
by Eberenz et al. (78). The reference exposure layer for the present 
day is computed at a resolution of 300 arc sec using the GDP values 
(in USD) from 2005, approximately centered on the present-day TC 
track set periods. For future exposure representations—identical to 
Meiler et  al. (30, 32)—we use economic growth factors from the 
SSPs to approximate socioeconomic development, drawing from 
the SSP database that documents quantitative projections of SSPs 
and related scenarios (43). SSPs outline five potential trajectories for 
global changes in population, economic growth, technology, gover-
nance, and social norms over the next century, with a focus here on 
GDP projections as a measure of economic development. Three al-
ternative GDP interpretations by the OECD (44), the IIASA (45), 
and the PIK (46) are considered, which, despite being based on the 
same SSP assumptions for economic growth determinants, vary in 
methods and results. We specifically query GDP growth factors for 
2050 and 2090 for each country across all five SSPs from these mod-
els, scaling the reference asset values accordingly for the two future 
time periods across all scenarios. In this approach, the spatial distri-
bution of assets remains static, not accounting for potential spatial 
shifts in socioeconomic factors.

Impact functions
In risk assessment, impact functions represent vulnerability, de-
scribing how hazard intensity translates to damage on assets. In this 
study, we use regionally calibrated impact functions as developed 
by Eberenz et al. (47). These functions are fitted to nine different 

global regions, reflecting the diverse vulnerability levels across the 
world. For this study, we applied the same impact functions to all 
four synthetic TC track sets. In contrast to the well-developed 
methodologies for exposure and particularly hazard modeling, no 
viable options exist for simulating changes in future vulnerabilities. 
Therefore, we do not hypothesize about changes to the vulnerability 
function in the future but test uncertainties by varying the vulner-
ability function’s slope parameter of regionally calibrated vulnera-
bility functions (47) across a wide range. This ensures that the 
calibration reflects the specific socioeconomic and vulnerability 
characteristics of each region.

Uncertainty and sensitivity analysis
For this study’s uncertainty and sensitivity quantification, we use 
the unsequa module on the CLIMADA platform (13). We extended 
the unsequa module to compute uncertainties for changes in risk 
directly. These functionalities are now also publicly available as 
“CalcDeltaImpact” in CLIMADA v.4.1.1 or higher. The module seam-
lessly integrates the SALib Python package (79) and allows for 
uncertainty and sensitivity analyses of all CLIMADA-based risk cal-
culations. A central aspect of uncertainty and sensitivity analysis is 
determining input factors and characterizing their variability space 
(13, 17, 29). This section delineates our approach to address uncer-
tainties in inputs related to (future) TC hazards, exposure, and vul-
nerability within the context of our study (Fig. 1).

We choose from a discrete list of scientifically justified alternative 
versions of future climate and socioeconomic systems. We prioritize 
this approach over defining additive or multiplicative perturbations 
for each input factor because it avoids the challenges of defining per-
turbations without relevant information, directly relates the output 
to chosen input combinations, and circumvents assumptions about 
the likelihood of specific input scenarios. Specifically, we define five 
input factors characterizing the hazard components, three for the 
exposure and one for the impact function (see Table 1). For event 
subsampling, targeting the aleatory uncertainty of the hazard set, we 
favor continuous sampling to better represent its inherent variabili-
ty. Continuous sampling is also used for the parameters describing 
the impact function due to the absence of a scientifically supported 
discrete alternative.

We generate a set of N = 210 (1024) samples using the Sobol 
sampling algorithm (53, 54). Each sample represents a unique set 
of values for the input factors listed in Table 1 and shown in Fig. 
1. The Sobol method requires a specific number of input factor 
combinations, calculated as N ·(k + 2), where k is the number of 
input factors. The total number of input factor combinations 
varies from 18,432 to 22,528, depending on whether 8, 9, or 10 
input factors are considered in each specific analysis. This varia-
tion is due to differences in factor availability across the TC 
models. On average, this results in approximately 20,000 input 
factor combinations per analysis. This number of combinations 
provides sufficient coverage for the uncertainty analysis to con-
verge, meaning that additional samples would not notably change 
the results.

For each sample, we perform a risk calculation. This process 
yields a distribution of risk values rather than a single deterministic 
result. In our study, we focus on two risk metrics: the change in 
EAD and the change in the 100-year event damage. By repeating 
this calculation across all samples, we generate distributions for 
both of these risk metrics. These output distributions underpin the 
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uncertainty analysis and initiate the sensitivity analysis. Using the 
Sobol quasi-Monte Carlo sequence (53), we present first- and total-
order sensitivity indices to estimate each input factor’s contribution 
to output variance. Specifically, the first-order sensitivity index 
measures the direct impact of a single input factor on the output 
uncertainty, independent of other factors. The total-order sensitiv-
ity index, on the other hand, captures both the direct effects and any 
potential interactions with other input parameters. Together, these 
indices provide a comprehensive view of how changes in input vari-
ables influence the uncertainty in our results.

While our study primarily uses a variance-based approach to 
characterize the uncertainty in our output distributions, we recog-
nize that variance alone may not fully capture the nature of skewed 
distributions, which are common in hazard contexts. Variance pro-
vides a measure of spread but does not convey information about 
the asymmetry or tails of the distribution, which are crucial in un-
derstanding the full extent of risk. Although this approach is suit-
able for addressing the specific questions in this study, future 
research could benefit from exploring density-based approaches 
(17). These methods examine the entire probability density function 
of the output, providing a more nuanced view of output uncertainty 
by capturing skewness and the presence of long tails. Incorporating 
density-based approaches could enhance the robustness of uncer-
tainty characterization, offering deeper insights into the nature of 
the distributions and potentially leading to more informed decision-
making in hazard risk assessments.
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clients worldwide. Because of proprietary restrictions, these datasets are not publicly archived. 
However, researchers interested in accessing the data for scientific purposes can contact 
WindRiskTech L.L.C. at info@​windrisktech.​com, subject to a nonredistribution agreement. 
CHAZ is an open-source model, and the model code can be downloaded at https://github.
com/cl3225/CHAZ. The specific CHAZ data used in this study are not currently hosted in a 
permanent repository due to the large size of the dataset. For more information regarding 
data access, researchers may contact the CHAZ development team at Columbia University 
(cl3225@​columbia.​edu). The statistical model STORM is fully open: The model code can be 
obtained from GitHub (https://github.com/NBloemendaal) under the terms of the GNU 
General Public License Version 3, and datasets are available from the 4TU.ResearchData data 
repository (80, 81), licensed as public domain (CC0). The IBTrACS_p TCs are obtained from the 

random-walk process directly executed in CLIMADA (12, 15, 41). All of the TC track sets can be 
fed into CLIMADA to calculate TC impacts, independent from their respective licenses. For this 
study, we used the Python (3.9+) version of CLIMADA release v4.1.1 (70). Source code is openly 
and freely available under the terms of the GNU General Public License Version 3 (15). Code to 
reproduce the results of this paper is available at a GitHub repository with the identifier 
https://doi.org/10.5281/zenodo.10715403 (82).
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