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Coastlines across the globe are vulnerable to the joint occur-
rence of high sea levels and intense rainfall1–3, which can 
increase flooding beyond the level predicted by consider-

ing either hazard alone and result in compound floods4,5. Coastal 
compound floods are most often triggered by cyclonic storm events, 
either tropical cyclones (TCs) or extra-tropical cyclones (ETCs)3, 
which are both low-pressure systems that can generate hazardous 
storm surges and rainfall5. The future incidence of coastal rainfall 
and storm tides may be affected by the combination of sea-level 
rise (SLR) and changes in storm climatology. Recent projections 
of storm climatology change suggest an increase in the probabil-
ity of joint rainfall–surge events along much of the global coastline, 
mostly driven by an increase in rainfall hazard6,7. Previous studies  
of US compound flood potential have considered changes in the 
joint hazard resulting from changes in a subset of climate-induced 
variables, such as SLR8 and changes in river flow9 or rainfall10.

Along the US Atlantic and Gulf coasts, TCs are one of the larg-
est drivers of coastal flood losses11,12. Although less frequent than 
ETCs at mid–high latitudes, TCs typically dominate the upper tail 
distribution (>50 year return period) of both storm surges13,14 and 
rainfall-induced flooding15,16, and TCs have been responsible for 
many extreme compound floods1,17. However, few regional studies  
of compound flood hazards have explicitly accounted for TC 
events10 due to their sparse occurrence in the historical record 
and challenges in representing TCs within reanalysis datasets and 
typical global circulation models (GCMs)7. It is unclear how future 
changes in TC climatology and SLR will alter the severity and spatial 
variation of extreme rainfall–surge hazard across the US Atlantic 
and Gulf coasts, what will be the relative contribution of storm  
climatology change and SLR to changes in the joint hazard and  
how changes in TC characteristics are related to changes in rainfall 
hazard, storm surge hazard and their dependence.

To address these questions, we apply a full probabilistic joint  
hazard analysis framework to investigate the current and future 
joint rainfall–surge hazard from TC events impacting the US 
Atlantic and Gulf coasts under the combined influence of an end-of- 
twenty-first century high-emissions scenario SLR (representative 
concentration pathway (RCP) 8.5)18 and storm climatology change 

(shared socio-economic pathway (SSP) 5–8.5)19. We generate syn-
thetic TCs from a statistical-deterministic TC model20 forced with 
reanalysis or GCM output. We downscale 5,018 synthetic TCs 
consistent with the historical (1980–2005) climate (equivalent to 
1,500 simulation years) from National Centers for Environmental 
Prediction (NCEP) reanalysis data to represent the historical storm 
climatology. To represent the future storm climatology, 6,200 pro-
jected future (2070–2100) TCs are downscaled from each of eight 
Coupled Model Intercomparison Project phase 6 (CMIP6)19 GCMs, 
bias corrected and combined into a single weighted average com-
posite projection (for 800 simulation years; Methods). We simulate 
storm tides (storm surge plus astronomical tide) for each event with 
the advanced circulation (ADCIRC) hydrodynamic model21,22 using 
a high-resolution mesh that spans the entire North Atlantic basin 
and has been previously validated23 (Methods). We estimate rain-
fall fields using the physics-based Tropical Cyclone Rainfall (TCR) 
model, which has previously been used to assess historical rainfall 
climatology24,25, project changes in rainfall hazard26 and to simulate 
flood impacts27,28 (Methods). To evaluate the impact of SLR, we 
incorporate spatially varying, probabilistic SLR projections for 2100 
from Kopp et al.18, which are based on projections from a suite of 
CMIP5 GCMs (Methods).

To focus on a particular metric to measure the joint hazard, we 
define a joint extreme event as one that exceeds both the histori-
cal 100-year storm tide (relative to the historical sea level) and the 
historical 100-year 24-hour rainfall at a given coastal location. On 
the basis of the TC simulations and bivariate extreme value analy-
sis, we quantify the joint extreme event return period (JRP) in the 
historical and future climates (Methods) and show that SLR and TC 
climatology change cause drastic increases in the frequency of joint 
extreme events. We quantify the relative importance of the change 
of different climatological variables (that is, sea level, storm fre-
quency, rainfall, storm tides and hazard dependence) in driving the 
changes in JRP (Methods) and find that TC climatology changes 
drive larger increases in the joint hazard compared with SLR. We 
further investigate the effect of TC characteristic changes and  
find that increases in intensity and decreases in translation speed 
cause increases in rainfall and surge hazards and their dependence. 
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Our findings motivate explicit consideration of TC climatology 
changes in compound flood hazard analysis.

Spatial pattern of current and future joint hazard
For each location along the coastline, we calculate the peak storm 
tide and maximum 24-hour rainfall accumulation occurring any-
where in the upstream catchment for each storm event. On the basis 
of the NCEP simulations, we quantify the univariate 100-year storm 
tide (that is, the storm tide level that has a 1% annual probability to 
be exceeded) and univariate 100-year 24-hour rainfall for the his-
torical period (Supplementary Fig. 1). Using the thresholds of his-
torical 100-year storm tide and rainfall, we quantify the probability 
of joint extreme event occurrence through JRP in the historical cli-
mate (Fig. 1a) and in the future climate (Fig. 1b). We also show the 
most dominant driver of the JRP change in Fig. 1c. There are large 
variations in JRP across the US coastline under historical conditions 
(Fig. 1a). The coastlines of the Gulf of Mexico and southeast Atlantic 
(up to the Chesapeake Bay) have lower JRPs, typically ranging from 
200 to 500 years, signifying a higher probability of joint extreme 
occurrence compared with other regions. JRP increases along the 
northern Mid-Atlantic (up to Connecticut) due to a decrease in 
the statistical dependence between storm tide and rainfall. Along 
the New England coastline, JRP is much larger than other regions 
(>1,000 years) because in this region, the two hazards occur almost 
independently. The low correlation between rainfall and storm tides 
in New England is due to the large tidal constituents that dominate 
total extreme sea levels compared with TC-induced storm surges23.

Due to the combination of future storm climatology change and 
SLR, future JRPs may decrease to 3–30 years with higher JRP values 
along the Gulf of Mexico and southeast Atlantic (10–30 years) and 
lower JRP values along the Mid-Atlantic and New England regions 
(3–10 years; Fig. 1b). The reason for higher future JRP values along 
the southern coastline is because these regions are already prone to 
extreme rainfall and surges in the historical climate (Supplementary 
Fig. 1) and the percent increase in the hazard there is smaller than 
the percent increase for northern regions. Thus, across the entire 
coastline, JRP decreases drastically compared with its historical 
values. Also, the change in JRP generally increases moving from 
south (7-36-fold change) to north (30-195-fold change), with the 
largest decreases in JRP occurring in northern locations. However, 
even the locations with the smallest JRP changes still correspond 
to a 7-fold increase in the frequency of joint events. The southeast 
Florida coast (the Miami region) is an exception to the spatial trend 
of future JRP. There the historical JRP is 600 years and the future JRP 
is three years, resulting in a JRP change that is much greater than 
the JRP change for the rest of the southeast Atlantic. The reason for 
the large change in JRP in the Miami region is because modelled 
extreme storm tides and TC rainfall are not highly correlated in the 
historical period, but large increases in rainfall hazard and SLR in 
the future cause the joint extreme sea level and rainfall thresholds to 
be exceeded frequently.

The projection of JRP is associated with statistical and physical 
modelling uncertainties; Fig. 2 depicts the median JRP estimate 
(as discussed above) and 95% bootstrapped sampling uncertainty 
bounds under historical (grey) and composite future (blue) condi-
tions and the JRP estimates from individual GCMs for represen-
tative coastal locations. The sampling uncertainty ranges of the 
composite future JRP (blue boxes) are much smaller than the his-
torical uncertainties because joint exceedances are more frequent 
in the future period, and consequently, JRP can be estimated with 
less sampling uncertainty. The variations in JRP estimates among 
different models are primarily due to differences in the projected 
future TC frequency and intensity. The Max Planck Institute Earth 
System Model (MPI), Meteorological Research Institute Earth 
System Model (MRI) and Geophysical Fluid Dynamics Laboratory 
Climate Model (GFDL) consistently predict smaller decreases in 

JRP since these GCMs project low/no increase in storm frequency 
(Supplementary Fig. 2) and low–moderate increases in storm inten-
sity (Supplementary Fig. 3). Conversely, the EC-Earth Consortium 
Model (EC-Earth) and Institute Pierre Simon Laplace Climate 
Model (IPSL) consistently predict large decreases in JRP because 
both models project the highest increases in storm frequency and 
intensity. The variations among the GCMs are consistent for the 
entire coastline (Supplementary Fig. 4). Although there is a rela-
tively large intermodel range of future JRP estimates, especially for 
locations in the Gulf of Mexico, even the most conservative GCM 
(that is, MPI) projects large increases in future joint hazard.

Drivers of joint hazard change
The change in JRP can be driven by three mechanisms: (1) changes 
in storm frequency, (2) marginal changes in rainfall totals and/or 
extreme sea level driven by TC climatology changes and SLR and 
(3) changes in the statistical dependence between extreme rainfall 
and storm surges. To understand the relative contribution to changes 
in JRP from each mechanism, we calculate the isolated impact of 
changes in storm frequency, rainfall hazard, storm tide hazard, haz-
ard dependence and SLR (Methods). In Fig. 1c we plot the single 
variable that causes the largest decrease in JRP at each coastal loca-
tion. Across the Gulf of Mexico and Florida coastlines, the increase 
in rainfall is the largest driver of changes in JRP, while the increase in 
storm frequency has the largest impact on JRP changes for parts of 
the southeast and Mid-Atlantic. Along the upper Mid-Atlantic and 
New England coastlines, SLR causes the largest decrease in future JRP. 
For the select locations, we show the relative impact on JRP change 
of each variable and the combined impact of all storm climatology 
variables (Fig. 3). Across all locations in Fig. 3 the change in marginal 
rainfall distribution is among the largest contributor to the change 
in JRP because all GCMs project large increases in rainfall totals 
(Supplementary Fig. 5) due to both the increased saturation specific 
humidity of the warmed environment and the projected increase in 
TC intensity. In contrast to the large rainfall impact, the change in 
marginal storm tide distribution has a small impact on the change in 
JRP for northern locations and a small to moderate impact on JRP 
change for locations along the Gulf of Mexico. The relative impact of 
SLR on JRP change generally increases moving south to north, with 
the largest impact at Portland, ME. Importantly, the storm climatol-
ogy changes drive large increases in joint hazard across all locations. 
The combined impact of storm climatology changes on JRP is larger 
than the SLR impact for 96% of locations along the coastline.

The change in the dependence between hazards also causes a 
small to moderate decrease in JRP for most locations in Fig. 3, indi-
cating that the extremes of the two hazards are projected to become 
more dependent in the future climate. To further examine the change 
in hazard dependence, Fig. 4a shows the conditional probability of 
24-hour rainfall exceeding the 90th percentile given a storm tide 
that exceeds the 90th percentile, calculated for the historical period. 
The conditional probability is a representation of the tail depen-
dence between the hazards, as higher conditional probability cor-
responds to higher tail dependence. The eastern Gulf of Mexico and 
Chesapeake Bay exhibit the strongest dependence between hazards, 
the western Gulf of Mexico and southeast Atlantic have moderate 
hazard dependence, and the Mid-Atlantic and New England have 
relatively low dependence. Figure 4b shows the change in the con-
ditional probability from the historical to future climate, with areas 
of red (blue) indicating statistically significant increases (decreases) 
in dependence. With the exception of the eastern Gulf of Mexico, 
Chesapeake Bay and Maine coastlines, most regions are projected to 
have higher dependence between extreme rainfall and storm tides 
in the future. Specifically, the lower Texas, Georgia, North Carolina 
and New Jersey coastlines are projected to experience the largest 
strengthening of hazard dependence in the future, resulting in an 
increase of up to 0.2 in the conditional probability (Fig. 4b). Along the  
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eastern Gulf of Mexico, there is almost no change in the depen-
dence strength because the two hazards are already highly correlated  
in the historical climate (Fig. 4a) and will remain similarly corre-
lated in the future climate. Along the coast of Maine, there is a small  

projected increase in hazard dependence, although this increase is 
not statistically significant. The Chesapeake Bay stands as an outlier, 
and it is the only location where the dependence strength between 
hazards decreases in the future climate (discussed below).
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Fig. 1 | Joint rainfall–surge hazard in the current and future period and largest driver of joint hazard change. a,b, JRP of 100-year rainfall and 100-year 
sea level for the NCEP historical period (a) and GCM composite future projection (2070–2100) with 2100 SLR (b). Grey dots in a show representative 
locations that are analysed further in Figs. 2 and 3. Red tick marks in a show boundaries of the Gulf of Mexico, southeast Atlantic, Mid-Atlantic and New 
England regions. c, Largest single factor contributing to the overall increase in joint hazard or NA if no single hazard is larger than others. US state outlines 
were obtained from the US Census Bureau47.
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Changes in dominant TC storm characteristics
Since TC climatology change is the dominant contributor to JRP 
change, we investigate how projected changes in TC storm charac-
teristics drive changes in rainfall accumulations, peak storm surges 
and their dependence at the coast. After investigating correlations 
between each hazard and storm intensity, approach angle, transla-
tion speed and landfall location and quantifying projected changes 
in each storm characteristic, we find that storm intensity and 
translation speed are both projected to change greatly in the future  

(Fig. 5a,b, respectively) and are significantly correlated with rainfall 
and/or storm tide (Fig. 5c–f). For the vast majority of the coast-
line, both the peak storm tide and 24-hour rainfall are significantly 
correlated with TC intensity, although the strength of correla-
tion is higher for rainfall (Fig. 5c,d). The 24-hour rainfall is also 
strongly negatively correlated with storm translation speed (Fig. 5f) 
as slower-moving storms will drop more rainfall in a given coastal 
location than faster-moving storms. The peak storm tide is not 
strongly correlated with translation speed (Fig. 5e) because both 
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slow- and fast-moving storms can generate high surges, and the 
additional background wind contribution is generally small, even 
for fast-moving storms, compared with the cyclonic wind speed. 
Under future storm climatology, the 90th percentile of TC inten-
sity is projected to increase by 15–30% along the Gulf of Mexico 
and southeast Atlantic, 30–50% along the Mid-Atlantic and 20–30% 
along the New England coastlines (Fig. 5a). The vast majority of 
previous studies also project an increase in North Atlantic TC inten-
sity, and many predict an increase in the frequency of high-intensity 
(category 3–5) TCs29. We also find a large future reduction in the 
translation speed of storms that exceed the 90th percentile intensity 
(Fig. 5b). For all regions except New England, storms that exceed 
90th percentile intensity are projected to move 20–30% slower in 
the future than in the historical period. The decrease in transla-
tion speed found here is consistent with previous work examining 
changes in translation speed in the historical record30 and projec-
tions of TC translation speed under future climate conditions31–33. 
The increase in storm intensity coupled with the decrease in transla-
tion speed drives an increased likelihood to observe both extreme 
rainfall and extreme storm tide in the future and increases the upper 
tail dependence between the hazards. By comparing Fig. 4b with  
Fig. 5a,b, it is clear that most regions experiencing a signifi-
cant increase in the hazard dependence also experience large 

increases in storm intensity and decreases in translation speed. The 
Chesapeake Bay is a notable exception because the hazards are pro-
jected to become less dependent in the future even though there 
is an increase in TC intensity and decrease in translation speed. 
In the future, a larger number of intense storms are projected to  
approach the coast north of the Bay opening. These storms do not 
induce high storm surges within the Bay since the cyclonic winds 
are pointed away from the coast but they still induce extreme rain-
fall. Thus, the increase in the number of these types of storm causes 
a decrease in the hazard correlation at this location in the future 
climate.

Discussion
The results presented here demonstrate that TC climatology change 
and SLR may cause large increases in joint rainfall–surge haz-
ard across the US East and Gulf coasts. The projected increase in 
extreme rainfall hazard (considering the maximum 24-hour rainfall 
accumulation over the catchment in the above analysis) is often the 
largest driver of the increase in the extreme joint hazard. Our projec-
tions of extreme rainfall are consistent with the work of Emanuel26, 
who found a 100–120% increase in the 100-year storm total  
rainfall at a single point location in Houston, TX, while we project 
a 123% increase (Supplementary Table 2). Our projections are also 
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consistent with previous studies focusing on mean rainfall changes. 
Using the RCP 4.5 scenario and a suite of CMIP5 models, most 
previous studies found a 10–22% increase in mean end-of-century 

TC rain rates within 100 km of the storm centre34–36. A recent study 
using a high-resolution GCM projected a larger increase of 29%37. 
Here we project a slightly higher 32% increase in inner core mean 
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TC rain rate (Supplementary Table 1), which is reasonable given our 
use of the SSP5–8.5 high-emission scenario.

We also find that the overall impact of storm climatology change 
on the change in the extreme joint hazard is larger than the SLR 
impact for 96% of the coastline. The contribution of TC climatol-
ogy change is also dominant for lower joint TC hazard thresh-
olds, such as 25-year or 50-year levels (Supplementary Table 3 
and Supplementary Fig. 6). Although we find that TC climatology 
change is more dominant than SLR in driving changes in TC joint 
hazard, SLR also impacts other types of compound flooding arising 
from, for example, ETCs or two unrelated meteorological events, 
especially for return periods shorter than 50 years13–16. Moreover, 
2017 work by Kopp et al.38 that incorporated a physical model for 
ice sheet hydro-fracturing, a mechanism that is deeply uncertain, 
found significantly higher SLR by 2100 than Kopp et al. in 201418 
(which we use here). Therefore, the overall role of SLR on total 
compound flood hazard may still be dominant compared with TC 
climatology change.

The findings presented here are associated with inevitable uncer-
tainties. We use a single TC model to downscale all GCMs and 
reanalysis data, and the model predicts an increase in future TC fre-
quency for five of the eight GCMs. Although a few other studies39,40 
have also predicted increases in TC frequency, the majority of studies 
predict a decrease or no change in North Atlantic storm frequency29. 
However, the main findings of our study are unchanged even if we 
assume no change in future TC frequency. The future JRP change 
calculated by holding TC frequency constant at the historical level is 
only slightly lower at each coastal location (up to 149-fold decrease 
in JRP; Supplementary Fig. 7), and the spatial trends (that is, higher 
JRP change in the north compared with the south) are unchanged. 
The relative importance of TC climatology change compared with 
SLR also remains similar when assuming constant frequency, and 
TC climatology change still causes a larger JRP change than SLR for 
84% of the coastline. The reason our results are relatively unchanged 
if we neglect the projected frequency change is because the increase 
in TC hazards and their joint occurrence is largely driven by pro-
jected increases in TC intensity and decreases in translation speed.

This study cannot directly predict the overall compound flood 
hazard, which is driven by a combination of ETC events (espe-
cially at lower return periods) and TCs. Moreover, compound 
flood depths must be quantified using high-resolution inunda-
tion models. Nevertheless, we provide evidence that joint rain-
fall–surge extreme events could become an increasing threat to 
coastal communities in the future. We also find that the statistical 
dependence between extreme rainfall and storm tide increases in 
the future for portions of the coastline, resulting in a higher prob-
ability of multi-hazard extremes during future storm events. This 
finding is important because many previous studies of future com-
pound flooding have neglected potential increases in hazard depen-
dence8–10,41, which could underestimate compound flood risk. Our 
projections of joint TC rainfall–surge hazard can be combined with 
ETC hazard distributions42 to develop overall flood-mapping sce-
narios43 for regional-10,44 or local-scale17,45,46 flood models to assess 
the impact of joint rainfall–surge occurrence on coastal flooding in 
a changing climate.
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methods
To characterize the present and future joint rainfall–surge hazard, we implement a 
physics-based modelling framework that is driven by the large-scale atmospheric 
and ocean climatology of reanalysis (historical period) or GCM (future period) 
data. First, we construct monthly climatologies of relevant environmental 
variables48 based on the reanalysis/GCM data. Next, we generate thousands 
of synthetic TCs that are consistent with the large-scale environment using a 
statistical-deterministic TC model. These synthetic TCs represent around 1,000 
simulation years for each climate condition. For each TC we model the coastal 
storm tides using a high-resolution hydrodynamic model, and we model the 
rainfall fields using a computationally efficient physics-based rainfall model. On 
the basis of the modelled storm tides and rainfall accumulations for the thousands 
of synthetic TCs, we conduct bivariate statistical analysis to quantify the probability 
of joint extreme events.

Data. We generated 5,018 synthetic TC tracks for the historical time period 
(between 1980 and 2005) based on the NCEP reanalysis49. We then generated 4,400 
synthetic TCs for the historical period (1984–2005) and 6,200 TCs for the future 
period (2070 to 2100) under the SSP5–8.5 emissions scenario19 based on each of 
eight CMIP619 climate models: Canadian Earth System Model (CANESM), Centre 
National de Recherches Météorologiques (CNRM), EC-Earth Consortium Model 
(EC-Earth), Geophysical Fluid Dynamics Laboratory Climate Model (GFDL), The 
Institute Pierre Simon Laplace Climate Model (IPSL), Model for Interdisciplinary 
Research on Climate (MIROC), Max Planck Institute Earth System Model (MPI) 
and Meteorological Research Institute Earth System Model (MRI).

Synthetic TC model. The statistical-deterministic TC model20, which has been 
widely applied for TC hazard assessment27,50–53, generates synthetic events based 
on data about the large-scale environment and can be forced with either reanalysis 
data or projections from GCMs. Vortices are randomly seeded in space and time 
and are moved according to the large-scale environmental winds plus a beta-drift 
correction54. TC intensity is estimated at each time step based on the Coupled 
Hurricane Intensity Prediction System (CHIPS), which is an axisymmetric vortex 
model coupled to a 1D ocean model55. Storms are retained only if their intensity 
exceeds 21 m s−1 (40 knots). Thus, only seed vortices that encounter favourable 
large-scale environmental conditions will strengthen into TCs, and the timing of 
TC development is consistent with the environmental climatology. For each TC, 
the outer radius at which the cyclonic wind speed goes to zero (henceforth outer 
radius) is randomly drawn from an empirical lognormal distribution56. We neglect 
the variation in outer radius size over the TC lifetime57 because previous work has 
shown the outer radius variation to be relatively small58. We also assume no change 
in the distribution of TC outer size for the future climate because historical trend 
analysis for the North Atlantic basin found no statistically significant changes in 
TC size over time59. Moreover, an analysis of dynamically downscaled TCs based 
on RCP 4.5 end-of-century forcing found nearly constant outer radii compared 
with the historical period36. Using the CHIPS-estimated intensity and outer radius, 
we estimate the radius to maximum winds based on a theoretical wind model that 
links the outer descending region of the TC with the inner ascending region58. Each 
simulated storm is characterized by a time series of storm parameters (time, centre 
position, maximum wind speed, pressure deficit and radius to maximum wind) for 
every two hours.

Bias correction and model combination. The downscaled TCs from each GCM 
may be biased compared with the NCEP-downscaled TCs, and biases within the 
TC characteristics can propagate to become biases in the hazard estimation. TC 
intensity and annual frequency are both important drivers of coastal flood risk, 
and both variables may be biased due to biases in GCM projections. Therefore, we 
perform bias correction at the storm level based on the differences between the 
NCEP TC frequency and intensity distribution and the GCM-predicted frequency 
and intensity distribution for the historical period. Using our method of bias 
correction, we avoid multivariate bias correction on the modelled storm tides 
and rainfall, which often fail to preserve the entire dependence structure between 
hazards60. Additionally, bias correction at the storm level is computationally 
efficient, while bias correction at the hazard level requires performing intensive 
hydrodynamic simulations for additional thousands of GCM TCs for the  
historical period.

Specifically, at each location we bias correct the TC frequency by multiplying 
the GCM-predicted future frequency by the ratio of the NCEP-derived historical 
frequency and GCM-predicted historical frequency. To correct the GCM-projected 
TC intensity (Vmax) of each storm set, we first use the quantile delta mapping 
approach described by Cannon, Sobie and Murdock61 applied to each location 
along the coast. Essentially, the change between the GCM-projected future 
(2070–2100) and historical (1984–2005) downscaled Vmax quantiles is added 
to the NCEP-downscaled historical quantiles to create a corrected future Vmax 
distribution for each GCM model at each location. Then, by the principle of 
importance sampling62, the GCM-projected storms are weighted and re-sampled 
with weights corresponding to the ratio of the corrected Vmax probability density to 
the GCM-projected Vmax probability density. By doing weighted re-sampling of the 
storms at each location, we are able to match the corrected future Vmax distribution 

and consequently generate a storm set at each location that is unbiased with respect 
to the intensity distribution. Supplementary Fig. 8 shows the bias correction 
procedure applied at a sample location for a sample GCM, demonstrating that after 
weighting/re-sampling, the target Vmax distribution is matched accurately. We also 
create a composite projection for the future climate using a weighted average across 
all GCM storm sets, where the weights of each GCM are based on their Willmott 
skill63 in matching the NCEP TC intensity return level curve in the historical 
period (Supplementary Fig. 9).

Hydrodynamic modelling. We simulate TC storm tides using the 2D 
depth-integrated version of the ADCIRC model21,22. We use an unstructured 
computational mesh developed by Marsooli and Lin23 that spans the entire North 
Atlantic basin and has resolution varying from >50 km in the deep ocean to 
~1 km near the coastline. Eight tidal constituents are incorporated as periodic 
boundary conditions at the ocean boundaries of the mesh, and tidal data are 
obtained from the global model of ocean tides, TPXO8-ATLAS64. The timing of 
the tide is matched to the timing of the synthetic storm (simulated according to 
the climatology). Wind and pressure fields are developed based on the Vmax and 
radius to maximum wind (Rmax) of each synthetic TC and physics-based parametric 
models65,66. Further details regarding the mesh formulation, tidal forcing and wind/
pressure models are documented by Marsooli and Lin23. Simulated storm tides 
from the model configuration used in this study were compared against observed 
water levels for 191 historical TCs impacting the US East and Gulf coasts, and the 
model was found to satisfactorily reproduce peak storm tides (with an average root 
mean square error of 0.31 m and Willmott skill of 0.90)23. In this study we do not 
account for wave setup because the computational expense of coupled wave-surge 
model would prevent a large-scale Monte Carlo risk assessment. For each TC we 
extract peak storm tides at nodes along the coastline that are spaced roughly 25 km 
apart.

Rainfall modelling. We estimate rainfall fields from each synthetic TC using the 
TCR model described by Zhu, Quiring and Emanuel24. TCR is a physics-based 
model that simulates convective TC rainfall by relating the precipitation rate to 
the total upward velocity within the TC vortex. Vertical velocity is estimated by 
taking into account frictional convergence, topographic forcing, vortex stretching, 
baroclinic effects and radiative cooling. TCR has been previously used in risk 
assessment studies26,27 and was recently compared against observed TC rainfall 
across the United States25. Xi, Lin and Smith found25 that TCR simulates the 
rainfall climatology of coastal regions with relatively good accuracy, although 
it underperforms in inland and mountainous regions. The performance of the 
model for inland regions has been addressed and improved in subsequent work53. 
TCR does not simulate outer TC rain bands, which are 3D in nature and cannot 
be directly simulated with an axisymmetric model. Nevertheless, a recent study 
modelled compound flooding using TCR-predicted rainfall fields for several 
historical events and found that TCR rainfall produced similar flood depth/extent 
compared with using radar rainfall forcing27. In our study, we use TCR rainfall over 
each coastal catchment delineated according to US Geologic Survey hydrologic 
units67. We pair each coastline point with its upstream coastal catchment, and for 
the coastal point, we use the maximum 24-hour rainfall accumulation occurring 
anywhere in the upstream catchment as our rainfall metric for each storm event. 
The 24-hour storm duration is frequently used for rainfall risk assessment studies68, 
and rainfall occurring anywhere in the immediate upstream catchment will drain 
to the same coastal point and can impact compound hazard.

Validation of integrated modelling of TC surge–rainfall hazard. Previous studies 
have independently evaluated the TC model20,48, rainfall model2553 and storm 
tide model23 by comparing against historical observations. Here we additionally 
evaluate the ability of our models to reproduce observed dependence between TC 
rainfall and storm tides. We compare the Kendall rank correlation69 computed 
from modelled rainfall and storm tides (derived from reanalysis data) against  
the Kendall correlation computed from observed storm tides and observed  
daily rainfall at 31 gauge locations across the coastline (Supplementary Fig. 10). 
The Kendall correlation coefficient can capture nonlinear dependence between  
two variables by using the relative ranks of each observation rather than the 
magnitude, and Kendall correlation has been used extensively as a metric to  
assess dependence between rainfall and storm tides1,70,71. If the modelled rainfall 
and storm tides from the NCEP synthetic TCs produce a correlation coefficient 
similar to the observations, this suggests that the models produce joint high  
(and joint low) events with similar likelihood as the real observed TCs and thus 
increase our confidence in the use of our models to project current and future  
joint hazard.

On the basis of Supplementary Fig. 10, the model-based correlations match 
well with the observed correlations with an overall root mean square error of 0.09 
and bias of 0.02 (indicating slight overestimation of rainfall–surge dependence). 
For the majority of locations, the difference between modelled and observed 
correlations is within ± 0.1. The model overestimates the correlation for the 
region between Mississippi and the Florida panhandle. The discrepancy between 
modelled and observed correlation in this region is probably due to the occurrence 
of other observed rainfall mechanisms such as extra-tropical transition or 
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interaction with fronts that are not simulated by the TC model and cause lower 
correlation between observed rainfall and storm tides.

SLR projections. We incorporate probabilistic, localized SLR projections from 
Kopp et al.18 for 2100 considering the RCP 8.5 emissions scenario. In that study18, 
SLR probability distributions are developed for tide gauge locations across the 
globe by taking into account ice sheet components (Greenland, West Antarctic and 
East Antarctic), glacier and ice cap surface mass balance, thermal expansion and 
oceanographic processes, water storage on land and other non-climatic factors. 
Sea-level changes due to thermal expansion and oceanographic processes are based 
on ensemble mean projections from a suite of CMIP5 GCMs. For each point along 
the coastline, we select the nearest tide gauge and adopt the probability distribution 
specified by Kopp et al.18.

We calculate total sea level for each TC by randomly drawing from the SLR 
distributions and superimposing on the modelled storm tides for computational 
efficiency. The assumption of linearity between SLR and storm tides is a reasonable 
approximation of extreme sea levels, but nonlinear interactions between SLR 
and storm tides can be significant in complex local areas, particularly small bays 
and estuaries72,73. We also treat TC climatology change and SLR as independent, 
although they may be significantly correlated. Little et al.74 found a significant 
correlation between SLR and changes in the power-dissipation index (an integrated 
measure of TC intensity, frequency and duration) for the North Atlantic, 
suggesting that large increases in mean sea level are more likely to co-occur 
with large increases in TC hazard. By neglecting correlation between SLR and 
climatology changes, our results may underestimate the composite (weighted 
average) change in climatology and SLR and consequently represent a conservative 
estimate of joint hazard change.

Statistical analysis of joint hazard. We conduct statistical analysis on the pairs 
of maximum modelled storm tides (or storm tides plus SLR) and maximum 
24-hour rainfall accumulation at each location along the coastline to quantify their 
marginal and joint hazard.

The marginal distributions of both rainfall and storm tides are often 
characterized by a long tail representing the rare but extreme events50,51. The heavy 
tail can be modelled with a peaks-over-threshold approach, where the probability 
above a high threshold is estimated by a Generalized Pareto (GP) distribution75. We 
fit marginal GP distributions using the maximum likelihood method75 for the rainfall 
and storm tides at each location, and the threshold is set by numerically minimizing 
the root mean square error between the empirical quantiles and the theoretical 
quantiles. According to bivariate extreme value theory, a logistic model can be 
used to estimate the joint distribution of two GP variables such that their bivariate 
cumulative distribution function (CDF) represented as G(x,y) takes the form75,76:

G(x, y) = exp{−(x̃−1/α
+ ỹ−1/α

)

α
} (1)

where x̃ and ỹ are the Fréchet-transformed versions of the variables x and y, and  
α is a parameter that quantifies the strength of the dependence between the 
variables (α → 0 signifies complete dependence and α = 1 signifies complete 
independence). At each location we transform the rainfall and storm tide pairs 
based on their respective marginal distributions and GP thresholds to obtain 
Fréchet versions of the variables. Then we fit the bivariate distribution using 
a censored maximum likelihood approach76 that considers pairs that jointly 
exceed their GP thresholds (within the ‘evd’ R-package77). We additionally ensure 
that there are at least 20 pairs of joint exceedances to fit the bivariate model. 
The bivariate logistic model employed here has previously been used to model 
dependence between rainfall and storm surges2,76,78,79.

After characterizing the marginal and joint distributions of rainfall and storm 
tides at each coastal location, we quantify the return period (inverse of the annual 
exceedance probability) of joint extreme events. For each location, we model TC 
occurrence as a Poisson process with arrival rate λ per year. The basin arrival rate is 
a parameter of the TC model20 and is calibrated to match the observed occurrence 
rate in the North Atlantic basin for the historical period. The location-specific 
arrival rate (λ) is an adjustment of the basin arrival rate according to the 
proportion of storms passing within 200 km of each location. We define xT, yT as 
the marginal 100-year storm tide and 100-year rainfall defined in the historical 
period. Then the return period of an event that jointly exceeds xT and yT (JRP) is 
calculated as follows:

JRP =

1
1 − e−λP (2)

where P is the joint exceedance probability:

P = 1 − Pr(X ≤ xT) − Pr(Y ≤ yT) + G(xT, yT) (3)

Pr(.) is the probability operator and G is defined in equation (1).
We quantify JRP under the current and future storm climates by fitting 

marginal and joint distributions to storm tide and rainfall pairs from NCEP or each 
GCM-derived storm dataset. We estimate the sampling uncertainty bounds of the 
JRP estimates by implementing a bootstrapping approach with 500 iterations for 

each location and each GCM. For each iteration, we re-sample (with replacement) 
pairs of modelled storm tides and rainfall, fit the univariate and joint distributions 
and re-calculate JRP.

Attribution of changes in joint hazard. To quantify the isolated impact of various 
climate factors on changes in joint rainfall–surge hazard, we adjust a single factor 
at a time and then re-calculate JRP. To quantify the isolated impact of SLR on 
changes in JRP, we randomly draw SLR values from location-specific probability 
distributions18 and add them to the historical rainfall–storm tide pairs. The impact 
of changes in future storm frequency is quantified by simply changing the value 
of λ in equation (2) to reflect the future period frequency. Because storm tide and 
rainfall are dependent, we quantify the impact of changes in (1) marginal rainfall 
distribution, (2) marginal storm tide distribution and (3) dependence between 
hazards through quantile matching. Specifically, we calculate Fr,h and Fs,h, which 
are the historical rainfall (rh) and storm tide (sh) CDFs, and Fr,f and Fs,f, which 
are the future CDFs. Given historical pairs of rainfall and storm tide (rh, sh), we 
can evaluate the impact of changes in rainfall hazard by changing rh values to 
rh∗ = Fr,f−1

(Fr,h(rh)) so that the magnitude of rainfall is increased according to 
the future period rainfall distribution but the sh values and dependence between 
hazards are unchanged. We similarly calculate the storm tide values (sh∗) while 
keeping the rainfall values (rh) constant to evaluate the impact of increases in storm 
tide on the JRP change. The methodology above guarantees the rank correlation 
between TC rainfall and surge is unchanged. To measure the impact of changes 
in hazard dependence (α in equation (1)), we adjust the future rainfall and storm 
tide pairs (rf, sf) as follows: rf∗ = Fr,h−1

(Fr,f(rf)), sf∗ = Fs,h−1
(Fs,f(sf)). The 

adjusted values of rainfall and storm tide are reduced according to their historical 
distributions, but the dependence between hazards is based on the future period 
climatology.

Data availability
The hazard data generated from this study are deposited to the NSF DesignSafe-CI 
and can be accessed online (https://doi.org/10.17603/ds2-gv07-kf03)80. 
Downscaled TC track information can be obtained by contacting K.E. Source data 
are provided with this paper.

Code availability
The codes for marginal and bivariate extreme value analysis and for visualization 
are deposited to the NSF DesignSafe-CI and can be accessed online (https://doi.
org/10.17603/ds2-gv07-kf03)80.
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