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ABSTRACT

This study investigates relationships between observed tropical cyclone (TC) maximum intensities and

potential intensity (PI) over the seasonal cycle. To directly compare observed and potential intensities, one

must account for month-to-month variability in TC tracks and frequencies. Historical TC best track data and

reanalysis PI calculations are combined to develop an along-track record of observedmaximum and potential

intensities for each storm in the satellite-era (1980–2015) across four ocean basins. Overall, observed maxi-

mum intensity seasonal cycles agree well with those of along-track PI. An extreme value theory application

shows that at least 25 storms must be observed in a givenmonth to have high confidence that the most intense

wind speeds of historical TCs follow along-track PI seasonality. In the North Atlantic and Southern Hemi-

sphere regions, there are too few observed storms outside their traditional TC seasons, limiting PI applica-

bility across the seasonal cycle. Small intraseasonal along-track PI variabilities in these regions are driven by

TC thermodynamic disequilibrium and sea surface temperatures. Thermodynamic disequilibrium drives

seasonal cycles of eastern North Pacific along-track PI and observed maximum intensity, which minimize in

August and maximize in June and October. Western North Pacific along-track PI and observed maximum

intensity seasonal cycles are relatively flat, and have a local minimum in August because of reduced ther-

modynamic efficiency, which is linked to anomalously warm near-tropopause outflow temperatures. Powerful

(.65m s21) western Pacific TCs historically occur in every month except January, due to a combination of

tropopause region and SST seasonal influences.

1. Introduction

The development and refinement of potential in-

tensity (PI; Emanuel 1986) has provided the scientific

community with a useful theory for understanding how

environmental conditions affect upper limits on tropical

cyclone (TC) intensity. But the relevance of these the-

oretical limits for the intensities of real-world tropical

cyclones is an active area of research. Relationships

between observed and potential intensities have been

studied in multiple contexts, including climatology,

trends, interannual variability, and ‘‘superintensity’’

(e.g., Emanuel 2000; Persing and Montgomery 2003;

Wing et al. 2007; Zeng et al. 2007; Holland and

Bruyère 2014; Kossin 2015; Sobel et al. 2016).

A recent study by the authors (Gilford et al. 2017,

hereafter GSE17) showed that the seasonal cycle of

western North Pacific (WNP) TC PI is relatively flat

(seasonally damped) compared to the TC PI season-

alities of the North Atlantic (NA), eastern North Pacific

(ENP), and Southern Hemisphere (SH) main develop-

ment regions. Climatological WNP sea surface temper-

atures (SSTs) were shown by GSE17 to be perennially

warm (.288C), permitting TC outflow in the WNP to

reach the tropopause level in every month of the sea-

sonal cycle. As a result, WNP outflow temperatures

follow tropopause seasonality: they are cold in the

boreal winter and warm in the boreal summer (Yulaeva

et al. 1994), which damps PI seasonality by 30%–40%

Denotes content that is immediately available upon publica-

tion as open access.

Supplemental information related to this paper is available at

the Journals Online website: https://doi.org/10.1175/MWR-D-19-

0021.s1.

Corresponding author: Daniel Gilford, daniel.gilford@rutgers.edu

JULY 2019 G I L FORD ET AL . 2417

DOI: 10.1175/MWR-D-19-0021.1

� 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

https://doi.org/10.1175/MWR-D-19-0021.s1.
https://doi.org/10.1175/MWR-D-19-0021.s1.
mailto:daniel.gilford@rutgers.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


through thermodynamic efficiency (see Table 4.2

and Fig. 4.5 in GSE17). In contrast, SST seasonality

dominates the NA TC PI seasonal cycle largely

through thermodynamic disequilibrium between the

atmosphere and ocean—accounting for nearly three-

quarters of the region’s seasonal PI range—and to a

lesser extent through thermodynamic efficiency. SSTs

also exert strong control on the TC PI seasonal cycles

in the ENP and SH regions (driving .75% of their

seasonal ranges). But how relevant are these PI sea-

sonal cycles for TC intensities observed in the real

world?

Emanuel (2000) was the first to empirically show that

every observed TC of at least hurricane strength had an

equal probability of attaining any lifetime maximum

intensity (LMI) up to its along-track climatological-

mean potential intensity (i.e., the multidecadal monthly

mean PI analyzed at the storm’s location). This result

implies that changes in climatological PI—such as a

long-term trend associated with climate change (Sobel

et al. 2016)—should be accompanied by like-changes

in observed intensity, and the highest percentiles of

observed LMI distributions should consistently scale

with PI.

The relationships between observed and potential

intensity on interannual time scales were assessed by

Wing et al. (2007). Their study showed that there are

significant correlations between interannual observed

LMIs and potential intensities in the NA and WNP re-

gions over 1950–2005. This result indicated that PI the-

ory is an important predictor for actual tropical cyclone

intensities not only climatologically, but also year-upon-

year. The goal of our study is to extend the findings and

methodologies of Emanuel (2000) andWing et al. (2007)

to the seasonal cycle context, to learn whether there

are historically observed manifestations of the intensity

seasonal cycles assessed in GSE17.

GSE17 examined PI seasonal cycles averaged over

each ocean basin’s main development region (MDR; see

Table S1 in the online supplemental material), which

have been traditionally used in TC studies. Monthly

MDR averages in this context implicitly assume that

intermonthly excursions in TC tracks are small relative

to the intermonthly variability of environmental condi-

tions that influence PI. MDR-averaging further as-

sumes that TCs develop and strengthen within the

confines of the defined regions. Observations show, in

contrast, that there can be substantial month-to-month

differences in tropical cyclone tracks. As tracks mi-

grate, storms will sample different regions of PI (Wing

et al. 2007; Kossin and Vimont 2007), which could bias

comparisons with actual intensity. Wing et al. (2007),

for instance, found that accounting for track variability

improved correlations between observed maximum

intensities and PI. Kossin et al. (2010) showed that the

magnitudes and interpretation of PI trends and vari-

ability depend on whether or not track differences are

considered. To account for monthly track migrations

and compare with observed TC intensities, we develop

an along-track dataset of tropical cyclone PI for each

storm in the satellite era (1980–2015). The resulting

dataset is also compared to MDR-averaged PI from

GSE17, to assess the usefulness MDR-averaging in the

seasonal cycle context.

Another challenge that must be addressed when in-

vestigatingmaximum intensity seasonal cycles is the well-

known seasonality in TC frequencies (e.g., Landsea 1993;

NHC 2017, cf. Fig. 1). In this study we use a property of

TC along-track observed and potential intensity distri-

butions—namely the uniformity of normalized wind

(observed maximum intensity divided by potential in-

tensity) distributions described in Emanuel (2000)—to

determine which individual months in each basin have

enough historical storms to permit an assessment of

PI theory’s veracity. Although several studies have

corroborated the Emanuel (2000) result that observed

TC intensities should scale with PI (Zeng et al. 2007;

Swanson 2008), to our knowledge none have yet ex-

amined this question in the seasonal cycle context.

The study is organized as follows. Section 2 considers

the seasonality of observed TC frequencies and tracks,

and details our development of an along-track dataset of

tropical cyclone observed and potential intensities. This

FIG. 1. Seasonal cycles of tropical cyclone frequencies in each TC

development region, for storms in the best track data archive that

reach a lifetime maximum intensity of more than 32m s21 (hurri-

cane strength). Each storm’s month of occurrence is assigned as the

date of its Vmax (see text). Regions are the North Atlantic (red),

eastern North Pacific (green), western North Pacific (blue), and

Southern Hemisphere (black).
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section also highlights the importance of normalized

wind distributions for comparisons between actual and

potential intensities (cf. the appendix). The seasonal

cycles of along-track observed and potential intensities

in each ocean basin are presented and analyzed in

section 3. We summarize study results in section 4 and

discuss their implications.

2. Data and methods

a. Best track observations

We use a best track archive (available at ftp://

texmex.mit.edu/pub/emanuel/HURR/tracks/) to deter-

mine the seasonal cycles of observed TC intensity and

develop an along-track potential intensity and observed

lifetime maximum intensity dataset (section 2b). Best

tracks from the NA and ENP TC regions are from the

National Oceanic and Atmospheric Administration’s

National Hurricane Center/Tropical Prediction Center,

and best tracks from the WNP and SH regions are

provided by the U.S. Navy’s Joint Typhoon Warning

Center. For consistency with GSE17, observed TC data

over the 1980–2015 period is used for this study. An

advantage of limiting our study to the satellite era is that

best track quality is improved compared with earlier

periods (though there are still sources of uncertainty up

to 5m s21, Torn and Snyder 2012; Landsea and Franklin

2013). We neglect the north Indian region in our study

because there are very few (40 total) hurricane-strength

storms in the satellite-era record, and they have large

track uncertainties (Kossin et al. 2013).

Best track data are reported every 6 h and include

latitude–longitude storm center positions and the max-

imum 1-min averaged sustained winds at 10m (with a

precision of 5 kt’ 2.57m s21). Storm track observations

are occasionally provided at intra 6-hourly periods, but

we restrict our analyses to the 6-hourly observations to

maintain consistent analysis/interpretation across all

storms in the dataset (following Wing et al. 2007). We

refer to lifetimemaximum intensity (LMI) of each storm

as the first time a storm achieves its maximum intensity

(as some storms may have multiple reported same-

valued lifetime maxima; Emanuel 2000). We neglect

tropical storms and depressions (LMI# 32ms21) in our

analyses, focusing instead on hurricane-strength storms

for which PI is most relevant.

Investigating the seasonal cycles of paired lifetime

maximum and along-track potential intensities re-

quires us to account for seasonal cycles in TC fre-

quencies and tracks. Figure 1 shows the seasonal

frequency of TCs of hurricane strength or greater in

each region (LMI . 32m s21) and that have a valid

‘‘observed maximum intensity’’ (defined below, see

section 2b). The intraseasonal variation of TC fre-

quency is well known, generally showing a peak in a

basin’s late summer/early fall and a minimum in the

winter and spring (e.g., Landsea 1993; Nuemann 1993).

Seasonal frequencies are strongly influenced by ver-

tical wind shear, which can limit both the development

and strengthening of TCs in the winter months (e.g.,

Merrill 1988; DeMaria and Kaplan 1994; Aiyyer and

Thorncroft 2006; Hendricks et al. 2010; Tippett et al.

2011; Wang et al. 2015).

We implement a statistical framework in the appendix

to determine how the seasonality of storm frequencies

constrains the ability to observe storms with maximum

intensities near the potential intensity. We find that at

least 25 storms must be observed in a given month to

have 99% confidence that the most intense historically

observed wind speeds will fall within 10% of potential

intensity (cf. with each month’s storm counts in Fig. 1).

The months that do not meet this threshold, how-

ever, are not disqualified from exhibiting very intense

observed storms. We will show in section 3 that months

with fewer observations than this ‘‘storm count thresh-

old’’ may historically still have observed intensities very

close to potential intensity [the probability of such an

event, given a month’s frequency, is given by Eq. (A2)

in the appendix].

Tropical cyclone tracks and observed maximum lo-

cations also show month-to-month variability (Fig 2).

WNP TC tracks are more equatorward in the boreal

winter months and more poleward in the boreal sum-

mer months (e.g., Wang et al. 2015). Figure 3 shows

that the monthly average latitudes of each storm’s

observedmaximum intensity (i.e., filled circles in Fig. 2,

see section 2b) exhibit this systematic seasonal migra-

tion in WNP tracks. ENP tracks follow a similar north–

south month-to-month shift (Fig. 3). A seasonal signal

in the NA and SH tracks is less obvious, in part be-

cause there are far fewer storms in the winter months

(cf. Fig. 1), but there are still some seasonal migrations.

For instance, storms maximize farther west in the NA

basin during the very early or very late months of the

hurricane season (e.g., McAdie et al. 2009). Seasonal

track migrations imply that storms may sample re-

gions of stronger or weaker PI at different times in the

seasonal cycle (Kossin and Vimont 2007; Kossin and

Camargo 2009). As implied by the seasonal differences

between the average latitudes of along-track TC

maximum intensities and the average latitude of each

MDR region (Fig. 3), MDR definitions (Table S1,

overlaid boxes in Fig. 2) are clearly inadequate to de-

scribe the environmental conditions many storms ex-

perience during their lifetimes. In the next section, we
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develop an along-track dataset of paired observed and

potential intensities designed to address seasonal track

differences.

b. Along-track intensity dataset

An along-track dataset of tropical cyclone potential

intensities is constructed using a climatology calcu-

lated with the Bister and Emanuel (2002, hereafter

BE02) algorithm and MERRA2 environmental con-

ditions (Gelaro et al. 2017); the full methodology used

to produce the PI climatology is described in GSE17.

Potential intensities computed with ERA-Interim are

similar to those of MERRA2 and have consistent

seasonalities (see GSE17’s Fig. S1).

The MERRA2 PI climatology—37-yr means (over

1980–2016) at each month/latitude/longitude on a 2.58 3
2.58 grid—is bilinearly interpolated to every TC storm

center position in the best track dataset. A cubic spline-

fit is used to temporally interpolate the monthly PI cli-

matology to the best track 6-hourly grid, where monthly

means are assumed to represent the central day of each

month.

We show the time evolution of the along-track ob-

served intensity and potential intensity over the lifetime

of Hurricane Jeanne (2004) in Fig. 4 as an example of

the temporal and spatial interpolation. Along-track PI

values (filled circles) are nearly indistinguishable from

the background September-mean PI (contours), indicat-

ing that the temporal spline fitting is much less important

than the PI spatial variations sampled over the lifetime

of Hurricane Jeanne (though these are also small along

Hurricane Jeanne’s track). As it made landfall in the

Caribbean ;175 h before its LMI, Hurricane Jeanne’s

along-track PI briefly dropped to zero (by definition at

landfall). Jeanne next traveled back over open water

and looped once, then reached its LMI (at 71% of its

concurrent PI) just before a final landfall in Florida in

late September.

Climatological potential intensities clearly may differ

from the operational potential intensity that a storm

experiences (such as the daily potential intensities re-

ported by the Center for Ocean–Land-–Atmosphere

studies at http://wxmaps.org/pix/hurpot.html).We chose

to use monthly climatologies of PI for three reasons.

FIG. 2. Locations of each storm’s observed maximum intensity (defined in section 2b) from the best track data

archive over 1980–2015 for each TC region. Storms are color-coded by the month in which their maximum intensity

occurs, with cooler colors representing boreal winter and spring months and warmer colors representing boreal

summer and fall months (see legend). Colored boxes indicate themain development regions, as defined in Table S1.
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First, PI calculations are roughly linear, so that the

average PI calculated with a series of environmental

conditions is very similar to the PI calculated with an

average of those environmental conditions (not shown,

see also Swanson 2008). While individual storms may

sample variable PI values, long-term averages of along-

track PI should be robust if TC track distributions are

representative. Second, our goal is to develop an along-

track dataset useful for exploring the seasonal cycles of

potential intensities that a ‘‘typical’’ TC would expe-

rience. For this purpose the operational environments

of individual historical storms (which will be sparse

in space/time when considered along-track, and will

be drawn from a range of internal climate variability)

should be less relevant than seasonal climatologies of PI,

which provides a good null hypothesis for PI season-

ality in a given hurricane season. Finally, along-track

values of climatological PI may be directly compared to

the MDR averages in GSE17 (e.g., their Fig. 4.1) to

determine the influence of intraseasonal track migra-

tions and the usefulness of MDR averages in the sea-

sonal cycle context.

For every storm in the best track dataset, we extract

pairs of the along-track climatological potential in-

tensity and a quantity we term the ‘‘observed maximum

intensity’’ (Vmax), which is identical to the LMIwhen the

TC intensity is not limited by landfall or by moving

into a region of low PI. Using the criteria of Emanuel

(2000), if a storm’s LMI occurs over land (where PI5 0,

11.4% of all hurricane-strength storms since 1979) or if a

storm’s LMI temporarily exceeds PI as it moves from

regions of higher to lower PI (4.1%of storms, most often

due to passage over cold waters), then we define Vmax at

the location 6 h prior to exceeding PI/making landfall.

Storms that 1) had missing data within 24 h of their

maximum, 2) were limited by passage over cold water,

3) never emerged over open water during their lifetime,

or 4) formed partially over land and had their LMI be-

fore emerging over open water, are removed from the

dataset. In cases where a storm makes landfall within

FIG. 3. Seasonal cycles (solid lines) in the average latitudes of

each basin’s observed maximum intensity (Vmax, as defined in

section 2b); shown for every month with at least five observed

storms over 1980–2015. Regions are the North Atlantic (red),

eastern North Pacific (green), western North Pacific (blue), and

Southern Hemisphere (black). The average latitude of each main

development region (which does not vary over the seasonal cycle)

is shown for comparison (dashed lines).

FIG. 4. (a) The North Atlantic climatological potential intensity

in September (contoured) and the interpolated along-track po-

tential intensity of Hurricane Jeanne (13–29 Sep 2004, filled cir-

cles). Contours are every 2.5m s21 and saturate at the color bar’s

extent. White filled circles indicate where the track made landfall

(Vp 5 0). Mismatched intensities between the track and contours

illustrate the minor effects of the temporal spline fitting (see text).

(b) The along-track observed wind speeds from the best track ar-

chive (blue curve) and potential intensity (red curve) of Hurricane

Jeanne before and after its lifetime maximum intensity.
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24 h of its LMI and LMI. PI (,1% of all storms), Vmax

is retained with the LMI value and location, because

it is a relevant maximum intensity for possible coastal

impacts. In all other cases Vmax is either equal to or less

than PI. There are 1464 total pairs ofVmax and PI (at the

Vmax locations) used in our analyses of normalized wind

distributions (the appendix) and the seasonal cycles of

tropical cyclone maximum intensity (section 3).

We note some limitations that could affect our results.

Relevant physical processes may not be appropriately

represented in the PI metric (e.g., Bryan and Rotunno

2009; Frisius and Schonemann 2012), for example, the

Ck/CD ratio directly scales the PI magnitude, and has a

broad possible range (e.g., Emanuel 2003, and refer-

ences therein), and operational PI for any given storm

could be appreciably higher or lower than the climato-

logical values used to create our dataset (these uncer-

tainties may contribute to a limited subset of the 4.1% of

storms that we observe with LMI. PI). Another source

of uncertainty may be found in the contributions of

TC translation velocity to best track ground-relative

wind speeds. Although some studies have shown that

accounting for storm translation velocity can improve

comparisons between best track and potential intensi-

ties (DeMaria and Kaplan 1994; Zeng et al. 2007), the

relationship between PI and translation velocity is

unclear, in part because ground-relative winds may be

more relevant for air–sea interactions than rotational

winds (Emanuel 2000). We performed sensitivity ana-

lyses and found that when translational velocity is ac-

counted for, best track intensities are reprocessed,

and the seasonal cycles of TC maximum intensity are

recomputed, our results are qualitatively similar to

those presented below (not shown).

c. Decomposition

In months where high-percentile observed intensities

follow potential intensity seasonality, it is important to

quantify how climatological environmental conditions

drive along-track potential intensity and bound the most

intense real-world storms.We apply a log-additive model

to along-track PI seasonal cycles:

23 ln(V
p
)5 ln

�
T
S
2T

0

T
0

�
1 ln(h*

o 2 h*)1C , (1)

whereTs is the sea surface temperature,To is the outflow

temperature, h*
o is the saturation moist static energy at

the sea surface, and h* is the saturation moist static en-

ergy of the free troposphere. The first decomposed term

on the rhs is the contribution to PI from thermodynamic

efficiency. The second term on the rhs is the contribution

to PI from the disequilibrium between the sea surface

and the free troposphere; C is a constant equal to the

natural logarithm of the ratio of enthalpy and momen-

tum surface exchange coefficients [fixed at ln(0.9) herein

and in GSE17 calculations].

In each region, we decompose the along-track po-

tential intensity in anymonths that have$10 storms.We

compute the average of each term in Eq. (1) over the

set of all included months and remove this from each

month’s individual average value to derive seasonal

anomalies in along-track PI, thermodynamic efficiency,

and thermodynamic disequilibrium. The efficiency term

is computed directly with reanalysis SSTs and outflow

temperatures derived from the BE02 algorithm. Fol-

lowing GSE17 and Wing et al. (2015), the thermody-

namic disequilibrium is evaluated as a residual, and its

variability is strongly associated with SSTs when eval-

uated over a long climatological period (e.g., Emanuel

2007; Wing et al. 2015). Calculating thermodynamic

disequilibrium directly produces a qualitatively simi-

lar result over the seasonal cycle. PI decomposition is

shown for each region in Fig. 5, and discussed further

below (section 3).

A particular advantage of along-track decomposition

is that it illuminates the seasonal role of outflow tem-

peratures. Recent studies have shown that tropical

cyclone outflow temperatures found at or near the

tropopause can affect potential intensity (Emanuel et al.

2013; Ramsay 2013; Wang et al. 2014; Wing et al. 2015;

Vecchi et al. 2014; Sobel et al. 2016; Walsh et al. 2016;

Polvani et al. 2016; GSE17; Ge et al. 2018). Whenever

SSTs are seasonally warm they allow deep penetration

of TC outflow to the tropopause level, so that temper-

atures at that level directly influence PI. We note that

outflow temperatures are distinct from near-tropopause

temperatures when SSTs are relatively cool and the

corresponding outflow is not high enough to penetrate

the tropopause (i.e., in the months outside the tradi-

tional TC season, see discussion in GSE17 and their

Fig. 4). During the traditional TC season months in

each basin, however, the average outflow level is deep

enough that near-tropopause temperatures dictate

outflow temperatures. For instance, in the WNP the

average outflow level is perennially above the average

lapse-rate tropopause height (GSE17, their Fig. 3),

and hence the WNP outflow temperature seasonal

cycle strongly reflects the seasonality of the tropical

lowermost stratosphere.

GSE17 showed the importance of near-tropopause

temperature seasonality for PI seasonal cycles. In the

months and basins where outflow level lies above the

tropopause, the seasonal cycle of near-tropopause

temperatures—anomalously warm in the boreal summer

and cold in the boreal winter with a seasonal amplitude
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of;8K (e.g., Yulaeva et al. 1994; Reid 1994; Fueglistaler

et al. 2011; Folkins et al. 2006; Chae and Sherwood 2007;

Gilford and Solomon 2017)—imprints itself on the sea-

sonal cycle of TC outflow temperatures. Near-tropopause

outflow temperatures in turn directly influence ther-

modynamic efficiency and PI. In the NH regions, when

efficiency is seasonally in phase with disequilibrium, the

variability in the efficiency term is largely dominated by

SST variability (because NH SSTs seasonally maximize

in the boreal summer), whereas when efficiency is out of

phase with disequilibrium (or the anomalous disequi-

librium is close to zero across the seasonal cycle), then

outflow temperatures are driving efficiency seasonal

variability. In the SH the efficiency phase-relationship is

opposite that of the NH: both warm SSTs and cold

outflow temperatures increase PI in the austral summer

(and likewise combine to decrease SH PI in the austral

winter, cf. GSE17, their Fig. 5). Ultimately, determining

the seasonality of along-track efficiency with the de-

composition method enables us to consider the seasonal

influences of near-tropopause outflow temperatures on

the upper bounds of real-world TC intensities.

3. Results

The mean of along-track potential intensities (eval-

uated at each storm’s Vmax location) and the MDR-

averaged potential intensities for each TC region are

shown in Figs. 6–9. Figures also show the monthly

distributions of observed Vmax with box-and-whisker

plots: boxes show the interquartile range (IQR) of

Vmax, whiskers show the full Vmax range, red ticks show

the distribution medians, and outliers (Vmax . 1.5 3
IQR) are shown as red ‘1’ symbols. If potential in-

tensity theory holds over the seasonal cycle, then the

seasonality of the most intense monthly observed in-

tensities (i.e., upper percentiles of the Vmax distribu-

tions) should fall close to mean along-track PI seasonal

cycles. For reference, we have included the Vmax 95th

percentiles in each month (P95) as a solid black dot.

FIG. 5. Along-track seasonal anomalies of 2 times the logarithm of TC PI [solid curves; left-hand-side of Eq. (1)],

the logarithm of thermodynamic efficiency [dashed curves; first term on right-hand-side of Eq. (1)], and the log-

arithm of thermodynamic disequilibrium [circles; second term on right-hand-side of Eq. (1)], for the (a) North

Atlantic, (b) eastern North Pacific, (c) western North Pacific, and (d) Southern Hemisphere regions.
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Because no individual Vmax is tied directly to the mean

along-track PI, we illustrate the intramonthly vari-

ability of along-track PI with its IQR. Integers above

each figure’s horizontal axis indicate monthly storm

frequencies (reproduced from Fig. 1). Months with at

least 25 observed historical storms (i.e., those months

that meet the ‘‘storm count threshold’’) have color-

shaded along-track PI IQRs, whereas those with less

than 25 historical storms have gray-shaded along-track

PI IQRs. We present results from each region indi-

vidually in sections 3a–d.

a. North Atlantic

Maximum intensity seasonal cycles in the NA re-

gion (Fig. 6) are marked by a strong dependence on

storm frequency (cf. Fig. 1). Only 3 months (August–

October) exceed the storm count threshold, and only

6 months have more than a single historical storm that

reaches hurricane intensity during 1980–2015. The

sharp seasonal gradient in NA frequency is strongly

related to seasonal cycles in vertical wind shear (Aiyyer

and Thorncroft 2006; Tippett et al. 2011), making

historical comparisons between PI and observed

maximum intensity useful in only a few months of

the year.

From June to November the NA average along-track

PI is similar to, but smaller than, NA MDR-averages.

In the months where the storm count threshold is met

(August–October), the along-track IQR encompasses

MDR-average PI, so that MDR-averages are a reason-

able estimate for some storms in the region. The sea-

sonal cycle of averaged along-track PI has a very limited

range over August–November (2.9m s21). Consistent

with GSE17, the decomposed disequilibrium term,

which is driven by warm boreal summer SSTs on these

climatological time scales, closely aligns with the mi-

nor changes in decomposed average along-track po-

tential intensity (Fig. 5a). While decomposed efficiency

is slightly depressed in August and September when

outflow temperatures are warm, NA efficiency overall

follows SST seasonality.

Comparing NA observed maximum intensities (Vmax)

to along-track potential intensity, four storms between

July and September are landfalling storms that have

Vmax . Vp; these storms do not exceed their along-track

PI if we account for translation velocity (not shown).

Beyond these outliers, along-track PI performs well as

a predictor of the high percentiles of Vmax, acting as a

consistent limit on climatological tropical cyclone wind

speeds during theNA hurricane season. In both July and

November, when the NA storm counts remain small

(,15), upper percentiles of historical observed maxi-

mum intensity still fall near the along-track PI. Meeting

the storm count threshold is therefore not a necessary

condition for potential intensity to bound climatological

maximum intensities in a givenmonth [although it is less

probable when observed storm counts are low, with

probability given by Eq. (A2)]. Overall, along-track PI

is a reasonable estimate of the most intense historical

NA storms over its limited seasonal cycle.

b. Eastern North Pacific

In the ENP region (Fig. 7), like the NA, there are

very few storms that occur outside the months of the

traditional hurricane season (May–November). But in

contrast to the NA region, the average along-track PI

seasonal cycle exhibits a starkly different shape than

that of the MDR-average PI (which increases steadily

from a minima in January to a peak in September). The

FIG. 6. Seasonal cycles of NorthAtlantic climatological potential

intensity averaged over the main development region (solid curve,

Table S1, reproduced from GSE17), and averaged over all clima-

tological potential intensities at the times and locations of the ob-

served tropical cyclonemaximum intensities (dashed curve) during

the satellite era (1980–2015). Box and whiskers show the monthly

distributions of North Atlantic observed maximum intensities

(Vmax). Black dots show the observed distributions’ 95th percen-

tiles. Along-track potential and observed intensities are for storms

that achieve at least hurricane strength. Numbers below each dis-

tribution indicate storm frequency in each month (cf. Fig. 1).

Shaded boxes show the interquartile range of each month’s along-

track PI distribution; boxes are colored if the month’s storm fre-

quency is at least 25 storms, and are gray otherwise.

FIG. 7. As in Fig. 6, but for the eastern North Pacific region.
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along-track PI seasonal cycle minimizes in the central

months of the hurricane season and maximizes near

the edge months of June and October. The contrasting

shapes between along-track and MDR-average PI sea-

sonal cycles arise from two key differences. First, the

average latitude of boreal summer Vmax locations is

more poleward (Fig. 3) than the extent of the MDR and

has colder SSTs (whereas the edgemonthVmax locations

are closer to the MDR region, especially in May, June,

and November). Second, there is a significant mismatch

between ENP Vmax locations and the MDR, and the

discrete monthly Vmax locations sample a wider variety

of environmental conditions than the MDR (Figs. 2

and 3). The difference emphasizes the usefulness of

developing an along-track database rather than relying

exclusively on MDR-averages.

The ENP region shows the largest average along-

track PI seasonal range (12.9m s21 over May–October)

among the basins studied herein (Fig. 5b), with maxi-

mum values in the edge months of May and October,

and aminimum in the central hurricane seasonmonth of

August. Consistent with results from GSE17, the sea-

sonality of ENP outflow temperatures is much less in-

fluential than seasonal SST variability; a depression in

efficiency in the boreal summer months indicates a mi-

nor role for seasonally warm outflow (Fig. 5b). The

disequilibrium term controls the overall shape of the

average along-PI seasonal cycle. This negative disequi-

librium anomaly is related to tracks maximizing over

colder (higher latitude/farther west) SSTs in the central

months of the hurricane season. In June and October

average Vmax locations are closer to the MDR where

SSTs are warmer on average than those in the central

months of the hurricane season (Fig. 3). This in-

creases the seasonal disequilibrium anomalies in these

edge months.

High percentiles of the ENP observed maximum

intensity distributions are within the IQRs of along-

track PI, and some of the most intense observed storms

are found in the edge months of June and October.

August is anomalous in that its range spans several

m s21 above the along-track PI IQR; the responsible

storm, Hurricane Ioke (2006), had a Vmax of 72m s21,

but was still below its climatological PI value at its

Vmax location. Intramonthly track variance allows the

highest percentile PI values to commonly reach above

the mean over all storms, which increases the upper

bound on observed intensities. So although each of the

95th percentiles of Vmax between July and October fall

within the IQR of along-track PI, they are all found

above the mean over all storms. A key result, there-

fore, is that although in a typical season the seasonal

cycle of PI will tend to limit observed maximum in-

tensities, year-to-year track variability plays an im-

portant role in whether a hurricane season’s observed

maximum intensities will follow the seasonally aver-

aged PI pattern. Track variability permitted the his-

torical storms that became most intense (e.g., the 95th

percentile of Vmax) to sample from potential intensi-

ties that were higher than the historical mean of along-

track PI. This is a result that would not be apparent

from MDR-averaged PI.

A final note on the ENP region is the extreme outlier

in October: record-breaking Hurricane Patricia (2015,

Vmax 5 94m s21). Patricia was the most intense storm

(if defined by central pressure, or tied if defined by

maximum wind speeds) ever observed in the Western

Hemisphere (WMO Weather and Climate Extremes

Archive, online at https://wmo.asu.edu). The ‘‘extraor-

dinary’’ storm (Rogers et al. 2017) rapidly intensified

under very anomalous local environmental conditions

(Huang et al. 2017), and it is therefore unsurprising that

climatological PI values are not a viable speed limit for

Patricia. Incredibly cold outflow temperatures were

observed during its lifetime (Doyle et al. 2017), which

may have significantly raised the in situ PI (e.g., Wing

et al. 2015). An operational along-track PI dataset

would be needed to investigate further. In this work,

Patricia demonstrates that although climatological PI

is useful for aggregated historical analyses, it is not a

FIG. 8. As in Fig. 6, but for the western North Pacific region. FIG. 9. As in Fig. 6, but for the Southern Hemisphere region.
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sufficient representation of the intensity limits on any

individual storm.

c. Western North Pacific

WNP monthly frequencies exceed the storm count

threshold in 8 months (May–December), and 3 of the

remaining months (January, March, April) have along-

track PI IQRs that encompass theMDR averages.WNP

seasonal cycles of along-track PI and MDR-average PI

are somewhat similar in shape, but along-track PI has

depressions in both the boreal winter and summer

months (Fig. 8). While it is not surprising that low-

latitude observed maxima in the boreal winter/spring

months (often found within the MDR, Figs. 2 and 3)

result in similarly high values (.65ms21) of average

along-track and MDR-average PI, it is remarkable that

there are sufficient historical storms to show this feature.

Average WNP along-track PI (Fig. 5c) remains

relatively flat (range of 4.9m s21) over the 9 months

where the storm threshold is exceeded (April through

December), but there are physical nuances in the

month-to-month differences that distinguish this be-

havior from the other regions. April and May have the

largest disequilibrium term values on either side of zero,

resulting from a sharp monthly gradient from cooler to

warmer SSTs across those months (not shown). In the

boreal summer months, however, the anomalous dis-

equilibrium term is close to zero and PI term variability

is driven by the efficiency term. The negative efficiency

anomalies (June–September, with a local minimum in

August) are driven by warm along-track outflow tem-

peratures (cf. GSE17, their Fig. 1b), which are found

in the tropopause region, and overwhelms the small

anomalous disequilibrium term in these months. Al-

though along-track PI seasonality shares a similar mid-

summer efficiency depression as the MDR-averaged PI,

it is overall a deeper minimum. Furthermore, the largest

along-track PIs (and also Vmax, see below) are found

in May, November, and December, when outflow tem-

peratures are cooler and anomalous efficiencies are

strongly positive relative to the rest of the year.

Distributions of WNP Vmax are this study’s clearest

example of the applicability of potential intensity theory

in the seasonal cycle context. The highest Vmax percen-

tiles scale consistently with the along-track PI (cf. P95

values with PI IQRs) in every month except January.

Vmax distributions in February,March, andApril remain

consistent with along-track PI, even though their fre-

quencies fall below the storm count threshold. The his-

torical probability of this occurrence in February (with

only two observed storms, and having a maximum nor-

malized intensity of 0.97, see the appendix) was only

;12%, so it is fortunate that the historical applicability

of PI in February is demonstrable. The consistent match

between WNP PI and Vmax is evidence that the envi-

ronmental conditions that set the seasonal cycles of

WNP potential intensity are also relevant for the sea-

sonality of typical real-world Typhoon intensities. Fur-

thermore, historical maximum intensities illustrate that

powerful WNP Typhoons (.65ms21) can occur (and

have occurred) throughout the year, confirming a key

conclusion (based on PI theory) made in GSE17. Con-

sistency between Vmax and average along-track PI sea-

sonal cycles also implies that warm near-tropopause

temperatures act to climatologically limit the intensities

of the most powerful historical WNP storms in the bo-

real summer months. Likewise, cool near-tropopause

temperatures act to increase the climatological limits of

real-world intensities in the boreal winter months.

d. Southern Hemisphere

The comparison between SH along-track PI seasonal

cycles and MDR-averages is qualitatively similar to

that in the NA region (Fig. 9). Average along-track PI

falls below the MDR-averages in the months where the

storm count threshold is exceeded, and storm frequen-

cies strongly limit the applicability of potential intensity

in the seasonal cycle context. In the months where there

are sufficient SH storms (November through April)

there is a very small range (5.2m s21) in average along-

track PI.

SH along-track PI is slightly increased toward the

end of the austral summer in April (consistent with

MDR-averages in these months), but beyond this fea-

ture intensity seasonality is small. What small monthly

variance does exist is strongly coupled to the anoma-

lous disequilibrium term (and thus largely SST vari-

ability), and efficiency anomalies are perennially close

to zero (Fig. 5d).

The SHVmax distribution in May is a notable example

of a month with insufficient observed storms for poten-

tial intensity theory to hold. Between November and

April, the upper percentiles of the observed maximum

intensities are found near along-track PI. Consistent with

the other basins, along-track PI is a reasonable approxi-

mation of the upper bound on SH observed maximum

intensities in each month where the number of observa-

tions exceeds the storm count.

4. Discussion and summary

This study combined historical tropical cyclone (TC)

best track data with MERRA2 climatologies of TC po-

tential intensity to develop a new along-track dataset of

paired TC observed maximum intensities and potential

intensities over 1980–2015. The along-track dataset was
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used to examine the observed and potential intensity

seasonal cycles in the North Atlantic, eastern North

Pacific, western North Pacific, and Southern Hemi-

sphere TC development regions. Considering TC po-

tential intensity (PI) along the track of TCs rather than

averaging over main development regions (MDRs) ac-

counts for seasonal track differences, which are espe-

cially relevant in the Pacific regions. Use of historical TC

frequencies, and a simple application of extreme value

theory, enabled the identification of months where ob-

served maximum intensities should be consistent with

potential intensity theory. Applying a linear decompo-

sition method revealed the roles of thermodynamic ef-

ficiency and disequilibrium in the along-track estimates

of potential intensity, which upper bound real-world

observed tropical cyclone intensities in months where

potential intensity theory holds.

The observed maximum intensity of each storm was

normalized by its collocated climatological potential

intensity. When best-fit linear curves are applied to the

empirical cumulative distribution functions of these

normalized intensities, the distributions appear uniform,

in agreement with previous literature (Emanuel 2000;

Zeng et al. 2007; Swanson 2008). A novel contribution of

this work is the use of these uniform distributions to

constrain the applicability of potential intensity theory.

Through extreme value theory, each region’s uniform

distributions imply that at least 25 storms must be ob-

served in a given month to have 99% confidence that at

least one of those storms will exhibit a maximum in-

tensity within 10% of its potential intensity. Results

show that in each region and month with at least 25

historical storms, the highest percentiles (.90%) of

observed maximum intensities are always close to

climatological along-track potential intensities. This

highlights the value of our statistical methodology,

and confirms that the observed seasonal cycle of the

most intense TC wind speeds routinely follows the

climatological potential intensities dictated by envi-

ronmental conditions.

Seasonal cycles of along-track observed and potential

intensities in the North Atlantic and Southern Hemi-

sphere regions are primarily constrained by TC seasonal

frequencies. There is very little month-to-month vari-

ability in average along-track potential intensity in these

regions (except a small increase in the late boreal winter/

early boreal spring months of the Southern Hemi-

sphere), and what variability exists is dominated by SSTs

through thermodynamic disequilibrium between the

ocean and atmosphere.

Average along-track potential intensities in the eastern

North Pacific exhibit a seasonality that maximizes in the

edgemonths of hurricane season (June andOctober) and

minimizes in the central month of the hurricane season

(August). This is in contrast with the main development

region monthly averages, which predict a steady increase

in potential intensity from June to September. The result

shows that in some contexts it is important to account for

intraseasonal tropical cyclone tracks in potential in-

tensity calculations, as opposed to relying on simple

main development region seasonal averages. Potential

intensity decomposition shows that the monthly vari-

ability is tied to thermodynamic disequilibrium, with

SSTs being on average colder (and found at higher lat-

itudes/farther west longitudes) in the central months of

the hurricane season, and warmer in the edge months of

the season. Eastern Pacific outflow temperatures (which

are warm in the boreal summer) play a very minor role

in this seasonality through thermodynamic efficiency.

Western North Pacific tropical cyclones have an

along-track potential intensity seasonal cycle that is

muted throughout the year. In the months with at least

25 historical storms (May–December) the potential in-

tensity range is 4.9m s21, and there is a local minimum in

August. Decomposition shows that this minimum is as-

sociated with warm outflow temperatures found in the

tropical tropopause region, which reduces the tropical

cyclone efficiency and depresses the potential intensity

in the boreal summer months. The limited number of

storms in the boreal winter months (January through

April) reduces confidence in the precise average along-

track potential intensity in thosemonths. However, each

month across the seasonal cycle (except January) shows

good agreement between along-track PI and the highest

percentiles of observed maximum intensities. The tight

agreement between observed maximum intensities and

along-track potential intensities is strong evidence that

the most intense real-world western Pacific tropical cy-

clones have reduced wind speeds in the boreal summer

because of anomalously warm near-tropopause tem-

peratures and have increased wind speeds in the boreal

winter because of anomalously cool near-tropopause

temperatures.

Several key differences emerge between the MDR-

average potential intensities explored in GSE17 and the

along-track intensities analyzed herein. Although along-

track results are similar in shape to MDR-averaged

PI seasonal cycles in the North Atlantic and Southern

Hemisphere regions, there are clear distinctions in the

Pacific basins, as discussed above. Average along-track

potential intensities are weaker than those averaged

across the MDRs, primarily because storms consis-

tently reach their maximum intensity at higher latitudes

(regions of lower average-PI values) than the MDR

bounds. There are also subtleties with physical origins in

along-track PI seasonality that are not captured with
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MDR-averages (e.g., the highest average-PI values are

found in the edge months of the eastern North Pacific

hurricane season). Furthermore, the inclusion of track

information allows significantly more variance in po-

tential intensity estimates, giving a more complete and

complex picture of the seasonal cycles of tropical cy-

clone maximum intensities. In the absence of predicted

or observed tracks, there is still some value in using the

GSE17 averages across main development regions as a

first approximation of potential intensity limits on real-

world tropical cyclone intensity in each ocean basin.

Furthermore, there is substantial utility in the MDR-

average approach of GSE17 for physical interpretations

of intraseasonal PI changes, which are more challenging

to study comprehensively along the tracks of observed

tropical cyclones.

The methodologies presented here do not explicitly

consider the importance of vertical wind shear in max-

imum intensity seasonality. To the extent that wind

shear influences are implicit in historical intraseasonal

TC frequencies, they do constrain the applicability of

TC PI theory through the statistical storm count

threshold in the appendix. Furthermore, although wind

shear is an important component in limiting tropical

cyclone genesis, in periods of quiescent shear (when a

tropical cyclone is more likely to develop) the potential

intensity metric in this study should be relevant for

both genesis and actual TC intensity (e.g., Nolan and

McGauley 2012).

The aggregated historical seasonal cycles of maximum

intensity presented here are not directly applicable to any

given specific storm. Extremely intense storms such as

Hurricane Patricia (2015), in particular, will be subject to

in situ environmental conditions that may significantly

alter both their operational potential intensities and their

actual intensities (Rogers et al. 2017) beyond that pre-

dicted by climatologies. Additionally, only very recently

are high-resolution measurements of very intense storms

yielding observational perspectives of how outflow can

impact TC intensity and intensification (Doyle et al.

2017). With future improved TC observations, a fuller

picture of the operational seasonal cycles of TC intensity

and outflow temperature influences may emerge.

Although potential intensity is frequently invoked for

estimates of climate change impacts on tropical cyclone

intensity, only a handful of studies have compared ob-

served and potential intensities to date (Emanuel 2000;

Wing et al. 2007). Our work has expanded on this ex-

ercise in a new context, increasing understanding of the

seasonal cycles of tropical cyclone maximum intensities,

and developing a framework to determine how many

observed storms are needed to have confidence that

potential intensity theory should hold. Considering the

inherent uncertainties in both historically observed and

potential intensities, it is reassuring to see the persistent

usefulness of the potential intensity metric.
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APPENDIX

Normalized Wind Distributions

The normalized maximum wind speed of a tropical

cyclone (e.g., Emanuel 2000) is

y5
V

max

V
p

, (A1)

whereVmax is defined in section 2b, andVp is the potential

intensity at the same location. For example, the normal-

ized wind for Hurricane Jeanne is 54/76 (ms21) 5 0.71

(Fig. 4).

Over all storms in each TC development regionwe find

an empirical cumulative distribution function (CDF),

Fe(y), by binning y values into intervals of 0.01. Consis-

tent with Emanuel (2000), the historical probability dis-

tributions of y appear uniform. Although the physical

reasons for this uniformity are not well known, it is found

consistently in studies of TC intensity, even when po-

tential intensity is subjected to different physical as-

sumptions (e.g., Zeng et al. 2007; Swanson 2008).

In each basin we find a ‘‘best-fit’’ linear function to

Fe(y) using least squares regression. Then, we assume

empirical y values are drawn from a theoretical uni-

form distribution—with CDF F(y)—which is bounded

below by the best-fit line intercept with cumulative

probability 5 0.0 and above by 1.0 (i.e., we assume

following PI theory that Vmax # Vp). The empirical

and theoretical cumulative distributions of each basin’s

normalized wind speeds are shown in Fig. A1. For

comparison we also include best-fit lines, which dif-

fer from theoretical cumulative distributions at their y5
1.0 intercept.

The NA CDF is very close to linear across its range

(Fig. A1a). WNP and ENP empirical distributions have

probabilities below F(y) in the central portions of the

distribution (Fig. A1b–c). In contrast, empirical y values
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in the SH are more frequent than F(y) in the central and

upper portions of the distribution (Fig. A1d). Differ-

ences between basins may arise from variations in data

quality. Fe(y) and F(y)/best fits are strongly correlated in

every region, as computed and shown for each basin in

Table A1. These results are similiar to the strongly

correlated linear fits (R2 $ 0.98) to empirical NA and

WNP y distributions calculated by Emanuel (2000).

While these correlations are a not strict test for uni-

formity, they are strongly indicative that observed

normalized tropical cyclone winds are drawn from a

near-uniform distribution.

Using F(y), we determine the number of TCs that

must be observed to encounter a storm with a y value

above a specific threshold. From univariate extreme

value theory,

P(y.Z)5 12 [F(Z)]n , (A2)

where Z is some threshold y value, P is the success

probability of at least one occurrence of y . Z, and n is

FIG. A1. The empirical (symbols) and theoretical (purple dashed curve) cumulative probability distributions

functions of normalized wind speeds [defined by Eq. (A1)] in the (a) North Atlantic, (b) eastern North Pacific,

(c) western North Pacific, and (d) Southern Hemisphere regions. Included are the best-fit lines to the empirical

distributions (black dashed curves); goodness-of-fit metrics are reported in Table A1.
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the number of Bernoulli trials performed with proba-

bility of occurrenceF(Z) (Wilks 1995).With someminor

manipulation,

n5
ln(12P)

ln[F(Z)]
(A3)

so that the number of Bernoulli trials that must be

performed to encounter at least one y value larger than

Z follows a geometric distribution. In the context of

historical TCs, this property shows how many storms

drawn from F(y) must be observed to find at least one

TC with y . Z, with a given confidence level (P). We

refer to n as the ‘‘storm count threshold.’’

If we seek to observe at least one hurricane-strength

storm with an observed maximum wind speed within

10% of its along-track PI (y . 0.9) at a 99% confidence

level (P5 0.99), thenwemay apply Eq. (A3) across each

region. F(y 5 0.9) ranges across the basins between 0.81

(WNP/NA) and 0.83 (SH/ENP), so that ;22–25 storms

must be observed. Assuming that F(y) holds over every

month, any givenmonth with at least 25 observed storms

of hurricane strength is therefore extremely likely have

at least one observed storm with Vmax within 10% of Vp.

Referring back to Fig. 1, we now have a constraint on

how storm frequency affects the applicability of poten-

tial intensity theory, which be applied over every month

and region. Note that in principle any given month with

fewer than 25 storms may still exhibit one or more Vmax

values close to Vp; the probability of this is given by

Eq. (A2), with n being the total number of observed

storms in that month. Our choice to seek storms with

Vmax within 10% of PI is arbitrary, but results show

(section 3) it is useful minimum, because the highest

Vmax percentiles ($90%) consistently fall near along-

track PI in months with .25 storms.

Note that the assumption of drawing each y from F(y)

is not strictly necessary for the application of Eq. (A2).

By replacing F(y) with the historical Fe(y) one recovers

an ideal historic predictor for the number of storms

needed to observe a maximum intensity within some

percentage of the climatological potential intensity. But

because monthly dependency of y distributions may not

historically resemble Fe(y) from the full set of storms in

each basin (unknown a priori), we proceed with a storm

count threshold from regional F(y) distributions that is

grounded, in part, in theory rather than pure empiricism.

In all regions except the SH, a theoretical storm count

threshold of 25 is conservative, because empirical dis-

tributions fall below or align with the theoretical distri-

butions at y . 0.9. In the SH, Fe(y 5 0.9) is larger than

F(y 5 0.9), resulting in an empirical estimate of n ’ 45.

But the seasonal frequency distribution in the SH is

sharp enough that only a single month (November) is

between the theoretical and empirical estimates for the

storm count threshold. The mismatch, by chance, has no

bearing on the historical efficacy of potential intensity

theory in that month (see Fig. 9).
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