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Tropical cyclones (TCs) expose 150 million people annually1, 
cause tremendous damage and interrupt economies in the 
long run2. TC impacts (or risks) emerge through the inter-

play of the TC hazard, the exposure of goods or people to this haz-
ard, and the specific vulnerability of exposed people, infrastructure 
and environment3. Historically, climate change4, socio-economic 
development1 and respective changes in vulnerability5,6 have con-
tributed to the rise in TC impacts. In the future, TC impacts are 
expected to worsen further through the harmful interference of 
the climate-change-driven increase in TCs of the highest category7 
and socio-economic development8 in exposed coastal urban areas9. 
Further compounding may occur through increasing co-hazards 
such as extreme precipitation10, stalling events11 and stronger 
surges due to sea level rise12, as well as through general malad-
aptation practices6 and poleward-shifted landfalls to previously 
non-disaster-prone and therefore less prepared regions13. So far, a 
rigorous quantification of future TC exposure is missing. Research 
has mostly focused on projected changes in physical TC properties 
(for example, changes in the TC power dissipation index14) or on 
single-country15 or global but general impact assessments16,17.

Here we conduct a globally consistent, regionally calibrated, 
country-specific assessment of population exposed to TC winds 
under socio-economic development and climate change, which 
presently available TC models are not designed for or are compu-
tationally incapable of conducting. The quantification of the popu-
lation exposed to severe winds additionally provides an essential 
contribution to understanding and estimating related future direct 
impacts (for example, fatalities or damages) and indirect impacts 
(for example, on economic development18). Our present assess-
ment is based on novel TC simulations from the latest round of the 
Inter-sectoral Impact Model Intercomparison Project (ISIMIP2b)19, 
using a well-established TC model14 and the impact model 
CLIMADA20. The TC simulations comprise 642,000 tracks for 2,140 
modelling years driven by the output from four general circulation 

models (GCMs), available for the historical and future periods 
for two different representative concentration pathways (RCPs): 
RCP2.6 and RCP6.0 (see Methods for the details). The available TC 
simulations are post-processed by a probabilistic tool that first anal-
yses how TC frequency (defined as the number of TC landfalls per 
year) and TC intensity vary with global mean surface temperature 
(GMST) change and large-scale patterns of internal variability such 
as the El Niño/Southern Oscillation (ENSO). Second, large num-
bers of random TC samples are created that mimic the number of 
TC landfalls and mean landfall intensity in a given region and year 
(see Methods for details on the tool). The tool is thus able to com-
prehensively sample the uncertainty in exposure that arises through 
the stochastic process of actual landfall location, which greatly var-
ies (in terms of socio-economic consequences) for landfalls in rural 
areas or densely populated megacities. This tool further allows one 
to study TC impacts under socio-economic development and vari-
ous global warming pathways that are not captured by the GCMs—
for example, the warming pathway according to the Nationally 
Determined Contributions (NDCs)21 considered later.

Results
We first fix population patterns at 2015 values and analyse trends in 
population exposure as a function of GMST only (Fig. 1). We define 
a person to be exposed to TC winds if this person experiences 
one-minute sustained hurricane-force winds (≥64 knots), regard-
less of the actual landfall of the TC’s centre. To quantify exposure, 
we overlay population maps for the historical22 and future23 peri-
ods with the same spatial resolution of 0.1 degree (approximately 
11 km at the Equator). We observe large fluctuations in observed 
and modelled exposure. Interannually, the number of exposed 
people can vary by more than 100 million due to TCs affecting 
densely or sparsely populated areas and uncertainty considerations 
of the probabilistic tool (see Methods for the details). Although 
the probabilistic tool is uncalibrated with respect to exposure, we 
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Fig. 1 | Increase in annual population exposure with GMST. a, Region definitions. b–j, Modelled GCM-specific (colours) and RCP-specific (dashed lines for 
RCP2.6; solid lines for RCP6.0) global (b) and regional (c–j) population exposed to TC wind speeds of at least 64 knots for fixed 2015 population patterns 
as a function of GMST change with respect to the observed 1850–1900 pre-industrial GMST mean. The colour shading (for RCP6.0 only) indicates the 
66.7% confidence intervals around the 11-year running GCM-specific mean values; the grey solid line is the GCM mean under RCP6.0 binned at 0.2 °C 
intervals. Historical exposure (black dots, 1980–2015 mean) with 66.7% percentile interannual variability is positioned at the 1980–2015 mean warming 
level (0.7 °C). Note that GCM-specific scaling of exposure is almost identical for different RCPs such that RCP2.6 and RCP6.0 lines might coincide. The 
uncertainty assessment for modelled exposure is based on 1,712,000 TC samples, obtained by drawing 100 artificial TC seasons for each basin, GCM, 
warming scenario and year.
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find good agreement between observations and the model. On the 
global scale, simulated annual mean exposure is underestimated 
with respect to observations but lies well within uncertainty ranges 
(Fig. 1b). In addition to the annual mean values, we verified that the 
simulated distribution of the annually exposed population agrees 
well with observations (Extended Data Fig. 1). In absolute terms, 
about three-quarters of the globally exposed population reside 
around the western Pacific (Fig. 1e,f). The western Pacific is also the 
region where observed exposure is higher than modelled exposure, 
while the opposite is true in the southeastern Indian Ocean (Fig. 
1i). In all other world regions, the multi-GCM mean agrees very 
well with observed exposure. When comparing observed and simu-
lated exposure, one has to be cautious of the statistical subtleties 
involved. While our tool allows for the creation of hundreds of sim-
ulated samples (100 artificial TC seasons per GCM, basin and year), 
there is only a single and random realization of observed exposure 
to compare with. Given the large interannual variability of observed 

exposure caused by seasonal activity and the stochastic process of 
landfall location (Fig. 1), the validation of our tool in terms of expo-
sure is limited (see Methods for further details).

Irrespective of the underlying GCM driving the TC simulation, 
we observe an increase in modelled population exposed to TCs due 
to global warming. The multi-GCM long-term mean between 1 °C 
and 2 °C GMST change projects an increase in population exposure 
by more than 30 million people at fixed 2015 population patterns. 
This trend is almost independent of the underlying RCP scenario 
associated with different rates of warming (solid and dashed lines 
in Fig. 1). The trends in TC exposure under global warming are 
GCM-specific and region-specific and are caused by varying 
changes in TC frequency and intensity (Supplementary Tables 1 
and 2). When artificially fixing simulated TC frequency at the cur-
rent levels (1 °C of warming), we observe a slowdown in population 
exposure to about 8 million people per degree of warming, driven by 
a diverse response across basins and GCMs (Extended Data Fig. 2). 
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Fig. 2 | Population exposure for different base years of socio-economic development and 2 °C of warming. a–c, Maps displaying the mean relative change 
in country-specific population exposure between the baseline (2015, 1 °C) and 2 °C of warming for different base years (2050, a; 2080, b; and 2100, c) under 
socio-economic development according to SSP2. Hatching indicates countries where fewer than three model realizations agree on the sign of the change. 
The map insets show modelled absolute population exposure (in millions of people) for eight different regions separated by drivers of change (base, 1 °C 
warming with 2015 population patterns; cc, 2 °C warming with 2015 population patterns; soc, 1 °C warming with SSP2-based population patterns; cc + soc, 
2 °C warming with SSP2-based population patterns). d, Globally aggregated absolute exposure and exposure change with respect to the baseline separated 
into the drivers of change for different base years (2050, red; 2080, orange; and 2100, yellow). The whiskers indicate the exposure range due to the different 
model realizations.
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This purely intensity-driven increase is caused by intensifying TCs 
that exceed the threshold wind speed of 64 knots more often. Note 
that our definition of exposure does not reflect projected trends in 
impact severity, as intensity increases of TCs already stronger than 

the 64-knot threshold are not recorded explicitly, and TC impacts 
usually scale super-linearly with wind speed17.

To analyse the temporal evolution of TC exposure under the 
joint forcing of climate change and socio-economic development, 
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we combine TC impacts at specific warming levels, extracted from 
the RCP6.0 scenarios, with population patterns from the Shared 
Socioeconomic Pathways (SSPs) for various base years according 
to SSP2. SSP2 represents a middle-of-the-road scenario in terms of 
economic and demographic development and in terms of climate 
change mitigation, and it is consistent with the current NDCs24. In 
terms of population growth, all SSPs (except SSP3) show a qualita-
tively similar development path with a peaking world population 
around mid-century and a decline thereafter (Supplementary Fig. 
1), albeit with local differences related to urban sprawl. When ana-
lysing joint impacts of climate change and socio-economic develop-
ment, the timing when certain warming levels are reached becomes 
crucial (Fig. 2). A 2 °C world in 2050 increases the baseline expo-
sure (1 °C world with fixed 2015 population patterns) by 52 mil-
lion people (+41%). Reaching 2 °C of global warming in 2080 or 
2100 limits this number of people exposed to 40 million (+31%) 
and 25 million (+20%), respectively. While the effects of popula-
tion growth and climate change would seriously amplify TC expo-
sure in 2050, the opposite would be true in 2100, when a declining 
population in TC-prone areas would partially compensate for the 
additional exposure caused by warming (Fig. 2d). These findings 
are even more pronounced at the country level. In 2050 and at 2 °C 
of warming, all TC-prone countries are projected to see a rise in 
TC exposure with respect to their current baseline, with exposure 
changes of nearly 300% in some East African countries (Fig. 2a). 
Under less rapid warming scenarios, this picture changes: delay-
ing 2 °C of warming to 2080 or 2100 would result in a reduction of 
exposed population in the Caribbean and in East Asia, in particular 
in Japan, China and the Korean peninsula. The reduced exposure in 
East Asia, causing most of the absolute projected decrease globally, 
overshadows the continuously growing exposure in other parts of 
the world. In particular, the United States, Oceania and East African 
countries are projected to see strong (by at least 100%) increases in 
TC exposure towards the end of this century, most likely also result-
ing in strong increases in TC damages in the United States as well 
as in poverty and (internal) migration in the other strongly affected 
regions. In agreement with a recent study, our tool also projects 
strong increases in TC exposure for the Arabian peninsula25.

Finally, we demonstrate how the tool can be applied to derive 
exposure estimates for global warming pathways not originally cov-
ered by expensive GCM simulations. Our probabilistic TC tool is 
applied to study TC exposure for three alternate warming scenarios, 
again on the basis of population development according to SSP2: 
(1) an extended warming scenario according to current NDCs, 
(2) a scenario with GMST likely to be below 2 °C at the end of the 
century and (3) a scenario with a median GMST of 1.5 °C at the 
end of the century. These scenarios are chosen because they rep-
resent the spread between current best efforts and the ambitious 
targets of the Paris Agreement. To construct these temperature sce-
narios, we use the complexity-reduced Model for the Assessment 
of Greenhouse Gas Induced Climate Change (MAGICC 6.8) in 
the historically constrained probabilistic setup with 600 param-
eterizations26 that requires emission scenarios as input. To obtain 
the temperature pathways for the 1.5 °C and 2 °C targets, we use 
readily available multi-gas scenarios, while the NDC pathway is a 
custom-mode scenario that extends current NDCs until 2100. We 
here rely on a medium-NDC case as the average between low and 
high 2030 emissions that were constructed for the Climate Action 
Tracker (CAT)27. The NDC scenario is then extended to 2100 using 
the constant quantile extension method28 and translated to a tem-
perature pathway using MAGICC. The extended NDC scenario 
reaches 2 °C of warming around mid-century, while the scenarios 
in line with the Paris Agreement (termed Paris scenarios in the fol-
lowing) never exceed 2 °C until the end of this century (Fig. 3a). The 
Paris scenarios project a peak in TC-exposed population of about 
150 million people at mid-century (Fig. 3b), thereafter declining 

to exposure levels slightly higher than present-day values. In other 
words, the worst impacts will be over after 2050. In contrast, expo-
sure according to the NDC scenario rises throughout the century, 
reaching annual TC exposure of about 180 million people at the end 
of the century. According to our tool, the annual difference in expo-
sure between the NDC and Paris scenarios starts to diverge around 
2030, already reaching an annual difference of 10 million exposed 
people by mid-century. This difference becomes even more pro-
nounced when looking at the cumulative number of people exposed. 
Following a warming pathway that limits warming to 1.5 °C could 
reduce cumulative exposure by as much as 1.88 billion people by 
the end of this century compared with a pathway determined by 
the current NDCs. This global pattern is similarly observed for the 
various world regions (Fig. 3c–j). The northwestern Pacific (Fig. 3e) 
is the only region where all warming scenarios show a decline in 
exposure after mid-century (albeit with strongly differing trends), 
while in the southern Pacific (Fig. 3j), all warming scenarios display 
rather similar exposure patterns over time.

Discussion
TCs are among the costliest natural disasters worldwide, and 
their future impacts under the co-evolution of climate change and 
socio-economic development represent a societal challenge. The 
present analysis informs about future TC exposure at the country 
level and at different levels of warming. It quantifies TC exposure 
in terms of the (one-minute sustained) TC wind footprint reach-
ing hurricane-force winds, thereby accounting for maximum wind 
speed and TC size but neglecting more turbulent wind properties 
such as gustiness and directional changes, as well as exposure dura-
tion. While the present exposure measure provides a very good 
first-order proxy of TC impacts in many situations, it might show 
limitations in others. TC properties might change with warming 
climate—for example, resulting in even longer exposure duration 
due to slower-moving or stalling TCs11. Also, TC damages derived 
from exposure in conjunction with vulnerability might be misrep-
resented. In this case, all wind-related components listed above have 
been shown to be important drivers of TC damages29,30. Interestingly, 
directional changes and duration have been shown to become less 
important for strong TC events31, which cause most of the impact. 
Finally, wind exposure might be an improper proxy of exposure to 
TC co-hazards such as extreme precipitation or storm surges, which 
are not quantified here due to the computational challenges involved 
for a global study like ours. Water-related impacts through coastal 
and pluvial flooding can only be indirectly assessed via the TC wind 
footprint. Projected increases in heavier precipitation events10 and 
stronger surges due to sea level rise12 remain outside the scope of 
this assessment. Taken together, the impacts avoided in terms of 
wind exposure defined here very probably result in an even stron-
ger benefit due to avoided water-related exposure and economic 
damages, which scale super-linearly with wind speed17. Moreover, 
relevant socio-economic impacts do occur below the hurricane 
strength threshold of 64 knots assumed here. The present assess-
ment is therefore conservative, and the benefit of avoided exposure 
and damages might be much higher when including impacts from 
tropical storms (sustained wind speed above 33 knots).

In general, TC impacts caused by global warming in conjunction 
with socio-economic development show a strong and nonlinear path 
dependence. Path-dependent impacts are most likely universal and 
relevant for various climate extremes, such that the overall benefits 
of stringent climate action are expected to be much bigger. However, 
one question remains: how large is the negative feedback of climate 
extremes on socio-economic development pathways? Recent work 
suggests that slow-onset events may alter socio-economic develop-
ment32, but evidence from TC-related studies in the United States 
shows that the picture is more complex for rare and unanticipated 
extreme events. Here, long-term TC experience, the severity of TC 
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impacts and various socio-economic variables (for example, income 
perspectives) impede the prediction of future socio-economic 
development33.
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Methods
Climate data. GMST and ENSO time series are extracted from the GCMs 
(HadGEM2-ES, MIROC5, IPSL-CM5A-LR and GFDL-ESM2M) that drive the 
dynamic TC model. The construction of synthetic future GMST series not covered 
by the RCPs and used for Fig. 3 is described below.

We extract annual absolute GMST on the basis of mean monthly temperature 
data (variable ‘tas’) from the respective GCMs for the piControl, historical 
(1861–2005), RCP2.6 (2006–2100 (2299 where required)) and RCP6.0 (2006–2100) 
runs from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive. 
We merge historical data with the respective RCP time series and apply a 21-year 
running mean for smoothing. Then, the smoothed absolute GMST time series 
are normalized such that relative GMST changes with respect to the average 
piControl GMST are equal to observed changes relative to the observed 1850–1900 
GMST (in accordance with the Fifth Assessment Report (AR5) of the IPCC34). 
This corresponds to a shift in the relative GMST changes by the following values: 
−0.06 °C for HadGEM2-ES, 0.76 °C for MIROC5, 0.02 °C for GFDL-ESM2M and 
−1.73 °C for IPSL-CM5A-LR. This ensures that potential differences in TC activity 
between observations and simulations due to different relative warming levels are 
minimized.

The extracted ENSO time series is based on the Equatorial Southern 
Oscillation Index. Being a relative index based on sea level pressure differences at 
the Equator, it is independent of trends in the climate data and better represents the 
ENSO influence on both hemispheres. To obtain the ENSO time series, we extract 
mean monthly sea level pressure (variable ‘psl’) from the CMIP5 sources referred to 
above and calculate the normalized difference between the standardized anomalies 
averaged between 5° N–5° S, 80° W–130° W and 5° N–5° S, 90° E–140° E, following 
the definition used by the National Oceanic and Atmospheric Administration35. 
Finally, we smooth the monthly ENSO time series with a three-month running 
mean and determine the region-specific mean annual ENSO index on the basis of 
the seasonal TC activity in each ocean basin, noting that the annual ENSO index 
for regions in the southern hemisphere is based on monthly values from adjacent 
years.

Note that independence between GMST and ENSO time series is ensured by 
smoothing the time series at very different timescales, thereby erasing correlations 
between GMST and ENSO.

Hazard data. Historically observed TC tracks between 1950 and 2015 are based 
on the International Best Track Archive for Climate Stewardship (v.03r10)36, while 
the simulated TC tracks for the historical and future periods are taken from the 
archive provided by ISIMIP19. Note that ISIMIP provides the TC simulations only 
for research purposes and upon reasonable request. The ISIMIP archive contains 
simulated TC tracks that are generated using a dynamical downscaling model14, 
which has been shown to reproduce the observed spatial and seasonal variability 
of TCs and trends in storm frequency around the globe37. The TC model is driven 
by climate input data from four different GCMs (HadGEM2-ES, MIROC5, 
IPSL-CM5A-LR and GFDL-ESM2M) provided by ISIMIP for the historical period 
(until 2005) and two RCP scenarios (RCP2.6 and RCP6.0) from 2006 onwards. The 
number of simulated years varies depending on the GCM due to available climate 
variables in the CMIP5 archive and constraints of the ISIMIP simulation protocol 
(1950–2100 (RCP2.6 and RCP6.0) for HadGEM2-ES, 1861–2299 (RCP2.6) and 
1861–2100 (RCP6.0) for MIROC5, 1861–2299 (RCP2.6) and 1861–2100 (RCP6.0) 
IPSL-CM5A-LR, and 1861–2100 (RCP2.6 and RCP6.0) for GFDL-ESM2M). 
The corresponding RCP scenarios extend the historical scenario after 2005 and 
are jointly referred to as warming scenarios below. For each simulated year, 300 
TCs are generated by randomly seeding a very large number of potential TC 
seeds. According to the boundary conditions prescribed by the driving GCM 
(for example, water temperatures and wind shear), only a very small fraction of 
the initial seeds intensify to become TCs, which are propagated forwards using a 
beta-and-advection model driven by winds derived from the GCMs14. The annual 
TC frequency for each simulated year is then determined by the fraction of initial 
seeds and the actually generated number of 300 annual events, upon multiplying 
with a single constant so that the global number of events since 1950 matches 
observations.

Processing hazard data. The TC track data (observations and simulations) 
are processed with a windfield model38 to produce TCs with realistic size and 
intensity distributions according to the methodology used to produce the Tropical 
Cyclone Exposure Database1 on a global spatial grid with 0.1° × 0.1° resolution. 
The windfield model accounts for individual TC sizes via the TC’s radius of 
maximum winds, its intensity (via the minimum central pressure), its path (via 
latitude) and its translation speed (TC asymmetry) (see the following link for a 
visualization of an exemplary track: https://vimeo.com/352796694). Applying 
the same methodology for observations and simulations allows for a globally 
and historically consistent comparison of TC exposure. Next, the full sample of 
observed and simulated TC windfield data is reduced to contain landfalling events 
only, where we define landfall in terms of exposure—that is, given a minimum 
wind speed of more than 33 knots above land. For each of the eight world regions 
considered (East Pacific, North Atlantic, North Indian, South Indian East, South 
Indian West, West Pacific North, West Pacific South and South Pacific) (Fig. 1a), 

we then produce annual landfall time series for TC frequency (that is, the annual 
number of landfalls) and intensity (that is, the mean annual maximum wind speed 
at landfall). For the southern hemisphere, where TC seasons range across two 
years, effective annual time series are created by shifting the time stamp to cover a 
complete season and dropping incomplete seasons from the analysis. TC landfalls 
are recorded only once per region where wind speed at landfall is at its maximum. 
The observational landfall time series are used to calibrate the simulated landfall 
time series, as the provided TC simulations are not calibrated for this purpose. To 
do so, the total number of simulated landfalls and the mean annual wind speed at 
landfall per region between 1950 and 2015 (1980–2015 for North Indian, South 
Indian East, South Indian West and South Pacific due to the limited reliability of 
observations before the satellite era) are matched with observations. This provides 
a long-term average calibration of the hazard in physical terms (not in terms 
of exposure) that conserves fluctuations around the long-term mean caused by 
natural variability and stochasticity of landfall occurrence.

To analyse how the frequency and intensity of the simulated regional TC 
landfall time series (for each GCM–RCP combination) vary with GMST change 
and ENSO variability, we regress the respective time series with extracted GMST 
and ENSO data (‘Climate data’). Correlations between GMST and ENSO time 
series are avoided by using a 21-year running mean for GMST and a three-month 
running mean for ENSO. Frequency is regressed using Poisson regression, which 
is better suited for count data than linear regression39; intensity is regressed using 
ordinary least squares. We use a hierarchy of regressions to eliminate insignificant 
contributions, whose presence might alter the significance of the remaining climate 
indices. Depending on the region–GCM combination, a substantial fraction of 
landfall variability can be explained by GMST and ENSO, in particular for landfall 
frequency (see Supplementary Tables 1 and 2 for lists of regression statistics for 
frequency and intensity, respectively). The remaining residual (or unexplained) 
variance is explicitly accounted for in the development of the probabilistic TC tool 
in the following step.

Emulating impact time series. On the basis of the functional dependence of 
the simulated TC landfall time series and GMST and ENSO retrieved above, we 
now construct a probabilistic tool. This tool allows us to draw a large number of 
random TC samples that mimic the number of TC landfalls and mean landfall 
intensity in a given region and year (with a given GMST and ENSO state). We refer 
to a TC sample as a full set of TCs with landfall that could potentially occur in a 
given region and year. These samples are drawn from all available simulated TCs 
with landfall for a given GCM and warming scenario in two steps. First, a random 
sample without replacement of TCs by region is drawn according to a Poisson 
distribution with the expected number of landfalls prescribed by the functional 
GMST and ENSO dependence. Second, the mean landfall intensity of this sample 
is compared to the expected mean landfall intensity. If the mean landfall intensity 
does not fall into the interval given by the expected mean landfall intensity and 
the residual variation obtained from the intensity regression mentioned above, the 
random sample is rejected, and a new sample is drawn in step 1. If repeatedly no 
representative sample can be drawn, the set of all landfalling TCs is iteratively and 
randomly reduced by an increasing fraction of events with landfall speeds above 
(below) the expected mean landfall speed until the desired number of random 
TC samples for a given year (with a given GMST and ENSO state) are obtained. 
For the present work, we generated 100 TC samples (that is, 100 full artificial TC 
seasons) for each year, basin, GCM and warming scenario. This results in a total 
of 1,712,000 random TC samples that were analysed for Fig. 1. When applying the 
probabilistic tool to produce Figs. 2 and 3, only the warming scenario according 
to RCP6.0 was used due to almost identical scaling of the two warming scenarios 
(RCP2.6 and RCP6.0; Fig. 1).

Note that Figs. 1–3 and Extended Data Figs. 1 and 2 show results irrespective 
of ENSO states—that is, the results presented in the manuscript are a superposition 
of negative, positive and neutral ENSO phases. This is due to the fact that ENSO 
is not very consistently represented across the GCMs used in our analysis, and we 
were thus unable to identify a relevant ENSO signal in our multi-model results.

To disentangle future hazard trends into respective intensity and frequency 
contributions, we additionally create random TC samples where the frequency 
change with GMST is fixed at 1 °C of warming (Extended Data Fig. 2). We use the 
median annual frequency determined from the GMST interval 0.5 °C–1.5 °C for 
each basin, GCM and warming scenario to obtain the expected number of landfalls 
drawn from a Poisson distribution for all years where the GMST change is larger 
1 °C (see step 1 above).

Socio-economic data. We use gridded population data available through the 
ISIMIP project19 with a spatial resolution of 0.1° × 0.1° (360 arcsec) from 1950 to 
2100. The historical data are based on the HYDE population data22 and upscaled 
from the original 300-arcsec resolution. Future gridded population data that are 
both quantitatively and qualitatively consistent with SSP2 (ref. 23) are downscaled 
from their original 450-arcsec resolution. After 2005, the historical data are linearly 
merged to match the SSP2 data in 2010.

Impact assessment. In this study, a population is defined as exposed once the 
grid cell hosting the population experiences a minimum wind speed of 64 knots. 
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Additional exposure due to multiple TCs affecting the same grid cell in the same 
year is counted additionally (double counting). The exposed population is then 
aggregated to the country, regional or global level. This procedure is conducted 
for observed exposure and each of the 100 random TC samples for each year. As 
output, we analyse the statistical mean as well as the 66.7% confidence interval.

Population values can be fixed to desired reference years (for example, 
2015) to analyse the differential impacts of climate change and socio-economic 
development separately. The differential impact of one degree of additional 
warming (±0.2 °C interval) with respect to the baseline (2015 at 1 °C) for different 
future years X is calculated as the mean change for identical warming levels 
in different years (that is, soc = 0.5 × (socX at 1 °C − soc2015 at 1 °C + socX at 
2 °C − soc2015 at 2 °C) and for different warming levels in identical years (that is, 
cc = 0.5 × (ccX at 2 °C − ccX at 1 °C + cc2015 at 2 °C − cc2015 at 1 °C) (Fig. 2). The 
baseline and the joint effect of climate change and socio-economic development 
(cc + soc) are respectively determined as the exposure in 2015 at 1 °C and in year 
X at 2 °C. The difference between cc + soc and the baseline also determines the 
relative change at the country level (Fig. 2).

Using synthetic GMST time series not covered by the RCPs (for example, as 
determined by the NDCs) in conjunction with the SSP2 development pathway 
allows us to capture arbitrary TC exposure trajectories (Fig. 3 and the discussion 
below).

Note that the impacts at different GMST levels cannot be generalized to GMST 
or sea-surface temperature changes caused by other processes such as natural 
climate variations or aerosol-induced climate change, as these may be unrelated to 
GMST trends caused by GHGs.

Calibration, validation and uncertainty assessment. Here, physical properties of 
TCs at landfall are used to calibrate simulated TC exposure with observations. We 
refrain from using population exposure for calibration and are also reluctant to 
use population exposure for validation, as historical exposure represents just one 
realization of potential TC exposure and is therefore intrinsically uncertain. The 
calibration method using physically based long-term regional TC landfall statistics, 
as discussed above, represents the least limiting way. We verified that despite these 
modest constraints, the simulated distribution of annually exposed population 
agrees very well with observations (Extended Data Fig. 1). Uncertainty in exposure 
is assessed by analysing the GCM-specific 100-sample mean exposure and its 
66.7% confidence interval for each simulated GMST value (Fig. 1). Globally and 
for all regions except South Indian East, we find that the observed long-term mean 
(and the 66.7% range of interannual variability) of observed population exposure 
agrees very well with the estimates of the probabilistic tool. The differences in 
observed and simulated exposure, in particular for South Indian East, are most 
likely caused by simulated TCs that reach very close to the Equator and therefore 
affect some regions that are less affected in observations. Similarly, we observe 
that some simulated TCs reach too far north (south) in the northern (southern) 
hemisphere. Restricting TC exposure to wind speeds of at least 64 knots, as we do 
here, reduces such artefacts to a minimum.

For Fig. 2, we consider multi-GCM mean exposure, on the basis of the GCM 
mean conducted across all years (with 100 random TC samples per year) that 
coincide with the considered warming level ±0.2 °C. Country-specific trends in 
exposure (Fig. 2a–c) are considered to be significant if at least three out of four 
models agree on the sign of the change (non-hatched); the ranges for GCM-specific 
model realizations are displayed in Fig. 2d in addition to the multi-GCM mean.

The 66.7% confidence interval of the temperature projections stems from the 
climate system simulation only and does not include the uncertainty of the NDC 
quantification or the pathway extension (Fig. 3a). Similarly, the uncertainty of 
the corresponding population exposure trajectories (Fig. 3b–j) is based on the 
uncertainty of the climate system simulation only.

NDC quantification. The analysis in Fig. 3 is based on a medium-NDC case as 
the average between low and high 2030 emissions. The high and low cases are 
both constructed as the mean of the CAT’s27 and NDC factsheet’s40 high and low 
values. Averaging is done on aggregate values for the IPCC’s RC5 regions41 (page 
1287) and emissions including land use, land use change and forestry (LULUCF). 
Emissions from international shipping and aviation (bunkers) are not covered by 
the NDCs and have to be added to the NDC emissions levels. We take the global 
2030 values from CAT and distribute them over the five regions using the 2014 
regional shares of CO2 bunker emissions from the CDIAC 2017 release42. Our NDC 
quantification amounts to 2030 emissions of 55.6 GtCO2e (including emissions 
from international transport and land use).

Extending the NDC scenarios to 2100. The NDC scenarios are extended to 2100 
using the constant quantile extension method28. This method is based on the idea 
that after the end of the NDC period, climate policy is continued at a similar level 
of effort relative to scenarios in a scenario database. Here, we use the scenario 
database of the IPCC’s AR5 (ref. 43), which is harmonized to historical emissions 
from PRIMAP-hist v.1.2 (refs. 44,45). The database is filtered to remove scenarios 
not fitting the assumption of a continued level of effort in climate policy. We 
filter out the IPCC AR5 policy classes P3 and P4, which describe scenarios where 
serious climate action only starts after 2030, as well as the negative emissions class 

N2 scenarios (which have negative emissions exceeding 20 Gt per year). We also 
remove the GCAM EMF27 mitigation scenarios and the GCAM LIMITS 450 ppm 
and 500 ppm scenarios, as they show negative total emissions for R5LAM and/or 
R5MAF before 2040 with emissions rising afterwards, which is problematic for the 
pathway extension methods and contrary to the idea of continuation of climate 
policy at a similar level of ambition. After the filtering process, the scenarios are 
binned according to the ‘climate’, ‘technology’ and ‘model’ parameters from the 
AR5DB such that all models that share the same values for the three parameters 
are grouped. The models are then weighted such that each group collectively has 
a unit weight of one. These weighted pathways are used to calculate a scenario 
distribution. The NDC pathway is compared to this distribution, and its quantile 
within the distribution in the NDC target year (2030) is determined. The extended 
pathway is constructed by following this quantile through the scenario distribution 
until 2100. This method is preferred because it conserves the level of climate 
policy in the NDCs for the extension of the scenario, while other approaches (for 
example, using a fixed scenario or constant emissions for the extension) use a 
prescribed future level of climate policy. The continuation of climate policy at a 
similar level of effort thus provides a reasonable middle-of-the-road option that 
assumes neither a reversal of climate policies nor a sudden increase in ambition. 
For more details on the method and the comparison of different methods to extend 
NDC pathways, see refs. 28,46.

Calculating corresponding GMST pathways. We use MAGICC v.6.8 in the 
historically constrained probabilistic setup with 600 parameterizations26. The 
period for the historical constraint is 1986–2005. To obtain the GMST anomaly 
towards the historical period of 1850–1900, we add 0.61 °C to the result relative 
to 1986–2005 (ref. 34, page 193). The climate sensitivity distribution is taken from 
ref. 47. As this method needs a separate LULUCF time series, we subtract the CAT 
LULUCF NDC time series from the output of the pathway extension methodology 
and use the LULUCF time series together with the obtained pathway excluding 
LULUCF as input.

To obtain GMST pathways for the 1.5 °C and 2 °C targets, we use readily 
available multi-gas scenarios. The 2 °C pathway is RCP2.6 and remains below 2 °C 
with 66% probability, while the 1.5 °C pathway is a scenario that has a median 
warming of below 1.5 °C. The median temperature of these pathways differs by 
less than 0.2 °C because 2 °C is avoided with at least 66% probability, while 1.5 °C is 
avoided with at least 50% probability (Fig. 3a).

Data availability
The historical48 and future49 population data are freely available online. The 
historical TC exposure data are available from the Tropical Cyclone Exposure 
Database archive50. The TC track simulations are available for scientific purposes 
only and upon request from WindRiskTech (info@windrisktech.com). Requests 
regarding the CLIMADA impact model should be addressed to D.N.B. (dbresch@
ethz.ch). The data to display country outlines and coastlines are based on the 
Generic Mapping Tools51. All remaining data that support the findings of this study 
are available from the corresponding author upon request.

Code availability
The simulations to quantify the TC impact were conducted using the Python 
tool CLIMADA, available at https://github.com/CLIMADA-project/climada_
python/releases/tag/v2.2.0. In particular, the tool to generate the artificial TC 
exposure time series is freely available at https://github.com/CLIMADA-project/
climada_petals/blob/main/doc/tutorial/climada_hazard_emulator.ipynb. The 
model to generate the TC tracks, the model to construct the temperature scenarios 
(MAGICC 6.8 and the climate module of the Potsdam Real-Time Integrated Model 
for the probabilistic assessment of emission paths (PRIMAP)) and the PRIMAP 
emissions module used for the creation and extension of the NDC pathways are 
proprietary and cannot be shared publicly. All remaining code that was used to 
analyse the data and produce the figures is available from the corresponding author 
upon request.
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Extended Data Fig. 1 | Normalized distribution of global annually exposed population from tropical cyclones. The distributions are shown for two GMST 
levels (1 °C and 2 °C) and two fixed population patterns (2015 (observed) and 2050 (SSP2)) for modeled exposure (colored lines) based on RCP6.0 
simulations compared to 1980–2015 observed exposure (black line). The logarithm of annual exposed population is binned for the observations (36 years, 
12 bins) and for the simulations for all years falling in a 0.5 °C temperature interval around the desired GMST value (50 bins).
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Extended Data Fig. 2 | Annual population exposure with global mean surface temperature (GMST) for constant tropical cyclone frequency. Same as Fig. 
1 but with fixed TC frequency at 1 °C of warming compared to the pre-industrial level.
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