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Abstract Robust estimates of tropical cyclone risk can be made using large sets of storm events

synthesized from historical data or from physics-based algorithms. While storm tracks can be

synthesized very rapidly from statistical algorithms or simple dynamical models (such as the

beta-and-advection model), estimation of storm intensity by using full-physics models is gen-

erally too expensive to be practical. Although purely statistical intensity algorithms are fast, they

may not be general enough to encompass the effects of natural or anthropogenic climate change.

Here we present a fast, physically motivated intensity algorithm consisting of two coupled

ordinary differential equations predicting the evolution of a wind speed and an inner core

moisture variable. The algorithm includes the effects of ocean coupling and environmental wind

shear but does not explicitly simulate spatial structure, which must be handled parametrically.

We evaluate this algorithm by using it to simulate several historical events and by comparing a

risk analysis based on it to an existing method for assessing long-term tropical cyclone risk. For

simulations based on the recent climate, the two techniques perform comparably well, though the

new technique does better with interannual variability in the Atlantic. Compared to the existing

method, the new method produces a smaller increase in global tropical cyclone frequency in

response to global warming, but a comparable increase in power dissipation.

Keywords Tropical cyclones � Risk modeling � Hurricanes �
Hurricane intensity

1 Introduction

Tropical cyclones are a leading cause of mortality and property loss worldwide (EM-DAT

2016); thus, quantitatively accurate assessment of tropical cyclone risk is of great interest

to governments and industries in affected regions. But historical cyclone records are
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generally too short and inaccurate for direct use in risk assessment and so contemporary

methods of risk assessment rely either on bootstrapping historical storm records or on

physics-based approaches. For example, the leading industry risk models are based on

large sets of synthetic storm tracks generated from the statistics of historical tracks

(Vickery et al. 2000; Yonekura and Hall 2011) and with intensity evolutions that are based

on observed intensities and their relationships to environmental predictors such as sea

surface temperature. Such models are heavily empirical and thus largely constrained to

tropical cyclone climatology over the period of the historical tropical cyclone record. Thus,

it is difficult to account for the effects of climate change, whether natural or anthropogenic,

on time scales too long to have been well sampled in the historical tropical cyclone record.

To circumvent these limitations of historically based risk assessment, efforts have been

made in recent years to simulate tropical cyclones using physics-based models driven by

the large-scale climate conditions provided by global reanalysis data and/or by global

climate models. For example, Emanuel et al. (2006) generated synthetic hurricane tracks

using a beta-and-advection model (Marks 1992) driven by large-scale environmental flow

synthesized from global climate reanalysis data, comparing the results to a Markov-chain

approach based on historical storm tracks. Genesis points in both cases were drawn from

probability density analyses based on historical genesis locations, and intensities were

calculated using a simple coupled ocean–atmosphere tropical cyclone model (CHIPS;

Emanuel et al. 2004). Likewise, Colbert et al. (2013) used a beta-and-advection model to

synthesize tropical cyclone tracks from large-scale flow statistics, though they did not try to

predict intensity. Emanuel et al. (2008) developed a synthetic event generator entirely free

from historical storm data. They generated storms by randomly seeding large-scale climate

states and then using the CHIPS intensity model to determine which seeds survive, tracking

the events using the beta-and-advection model driven by the large-scale environmental

flow, as before. Because such a method is based purely on physics applied to large-scale

environmental conditions, it can be driven by climate model output as well as by global

reanalysis data, allowing for quantification of the effects of climate variability and trends

on tropical cyclone genesis, tracks, and intensity.

Although the CHIPS model is far faster than full-physics tropical cyclone models of the

kind used in operational tropical cyclone forecasting, it is still the slowest component of

the aforementioned physics-based tropical cyclone event generator. Yet its generality and

applicability to different climate states make it an attractive alternative to purely statistical

approaches. Might it be possible to develop a physically based algorithm that is nearly as

accurate and general as CHIPS but with speeds approaching that of purely statistical

methods? We here present such an algorithm. We begin with a description of the method

and proceed to test its ability to simulate individual historical events and to replicate key

historical tropical cyclone statistics.

2 Tropical cyclone intensity simulator

The intensity simulator is motivated by experience with CHIPS and deductions from a

nonlinear analytical model. An earlier version that does not explicitly include the effects of

the pressure dependence of the surface saturation specific humidity or dissipative heating1

is described in Emanuel and Zhang (2017).

1 As air flows toward the storm center, the air pressure drops and this increases the amount of water that can
be evaporated into the air. Also, the friction that accompanies the strong turbulence in the inflow heats it;
this is known as ‘‘dissipative heating’’.
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Emanuel (2012) developed a nonlinear analytical model of the intensification of a

tropical cyclone whose inner core is fully water saturated and for which the effects of

environmental wind shear, the pressure dependence of the surface saturation specific

humidity, and dissipative heating in inflowing boundary layer air are ignored. An

approximation to the full equations of that model leads to an intensity equation that takes

the form

dV

dt
ffi CD

2h
V2
p0 � V2

� �
; ð1Þ

where Vp0 is the potential intensity2 defined without accounting for dissipative heating or

the pressure dependence of the saturation mixing ratio, V is the maximum circular (tan-

gential) wind speed, CD is the surface drag coefficient, h is a boundary layer depth, and Vp

is a base potential intensity (not including the pressure dependence of the saturation mixing

ratio or dissipative heating) modified by a function of the surface exchange coefficients of

enthalpy and momentum.

We first seek a set of equations that reduce to (1) in the limit of a fully water saturated

core3 free of wind shear but which incorporates the effects of an unsaturated inner core,

environmental wind shear, and ocean interaction and which behaves qualitatively like the

full CHIPS model. After much experimentation, we developed a pair of ordinary differ-

ential equations for the surface circular wind speed V and a nondimensional inner core

moisture variable m that varies from 0 to 1 and can be thought of as a kind of relative

humidity:

dV

dt
¼ 1

2

CD

h
abV2

pm
3 � 1 � cm3

� �
V2

h i
; ð2Þ

and

dm

dt
¼ 1

2

CD

h
1 � mð ÞV � 2:2Sm½ �; ð3Þ

where Vp is the full potential intensity, S is the magnitude of the 850–250 hPa environ-

mental wind shear, a is an ocean interaction parameter that varies from zero to one, and b
and c are dimensionless parameters to be discussed presently. [In (2) and (3), the units of V,

Vp, S, and h must be consistent.]

The ocean feedback parameter is modeled after the results of Schade and Emanuel

(1999) and is intended to account for the strong cooling of the sea surface induced by the

stirring up of cold, deep waters by the tropical cyclone’s surface winds. They coupled the

CHIPS model to a three-dimensional ocean model and performed a large set of experi-

ments with different upper ocean thermal structures, storm dimensions, and storm trans-

lations speeds and found a good curve fit that accurately predicts the final, steady intensity

of the simulated storms. We use an approximation to that curve fit here to define the

parameter a that appears in (2):

a ¼ 1 � 0:87e�z; ð4Þ

where

2 The potential intensity is the maximum storm-relative surface wind speed that is theoretically possible in a
tropical cyclone, given the ocean and atmospheric temperatures.
3 The humidity of the innermost 150 km of tropical cyclones, usually referred to as their ‘‘cores,’’ is known
to have an important effect on their rates of intensification.
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z � 0:01C�0:4hmuTVpV
�1: ð5Þ

Here C is the sub-mixed layer thermal stratification in K (100 m)-1, hm is the ocean

mixed layer depth in meters, and uT is the storm translation speed in ms-1. Inspection of (4)

and (5) shows that the effective potential will be larger (a closer to unity) when storms are

weaker or move faster, the mixed layer is deeper, or the thermal stratification below the

mixed layer is weaker.

The Schade and Emanuel (1999) formulation was developed to describe the steady-state

intensity of idealized storms translating at constant speed in a constant atmospheric and

oceanic thermal environment. While it seems reasonable to suppose that this is a good

‘‘target’’ intensity to use in (2), that is no guarantee that the effects of ocean feedback on

intensity change will be handled correctly.

Emanuel and Zhang (2017) show that the term 2.2Sm that appears in (3) is the

equivalent of the ventilation t introduced by Tang and Emanuel (2010) and that the system

consisting of the steady-state forms of (2) and (3) with no ocean interaction (a = 1) has the

same qualitative stability behavior as the steady-state model they developed.

There are at two possible ways to incorporate the effects of dissipative heating and the

pressure dependence of the saturation mixing ratio. The simplest way, employed by

Emanuel and Zhang (2017), is just to use in (2) the full form of the potential intensity that

incorporates isothermal expansion and dissipative heating. For storms that are near their

potential intensity, this should be adequate. But for much weaker storms, the isothermal

expansion and dissipative heating are correspondingly weaker and this is not accounted for

by using the full potential intensity in (2).

In ‘‘Appendix,’’ we show that dissipative heating and the pressure dependence of the

surface saturation mixing ratio can be accounted for by continuing to use the full potential

intensity in (2), as in Emanuel and Zhang (2017), and taking

b ¼ 1 � �� j; ð6Þ

and

c ¼2 þ aj; ð7Þ

where

� � Ts � To

Ts

ð8Þ

is the thermodynamic efficiency, and

j � �

2

Ck

CD

Lvq
�
0

RdTs

: ð9Þ

Here Ts is the surface temperature, To is the tropical cyclone outflow temperature, Ck is

the surface enthalpy exchange coefficient, Lv is the latent heat of vaporization, q0
* is the

surface saturation specific humidity at ambient environmental surface pressure, and Rd is

the gas constant for dry air.

Note that (2) and (3) reduce to the form of (1) when m = 1 and there is no ocean

interaction (a = 1) or environmental wind shear.

Thus, our system is comprised of (2) and (3) with the definitions (4)–(9). While the

development of the equations was guided by existing theory and models, they should be

regarded mostly as an empirical construct, lying somewhere between formal, deterministic
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models and purely statistical models. They were designed and tested to mimic the behavior

of CHIPS, both as it is used in real-time forecasting and as a component of a tropical

cyclone risk model.

To run this system, it is necessary to specify the potential intensity, magnitude of the

250–850 hPa environmental wind shear, ocean mixed layer depth, and ocean sub-mixed

layer thermal stratification along the track of the storm as well as the storm’s translation

speed. The sea surface temperature and outflow temperature along the track are also

needed for the specification of b and c according to (6)–(9), but we approximate these by

constants in the test results to be discussed presently. Initial conditions for the circular

surface wind speed V and moisture variable m also need to be specified.

We next present comparisons between CHIPS and the intensity simulator.

3 Comparison to CHIPS hindcasts

The CHIPS model has been used to make automated intensity forecasts every year for

about the past 15 years. The system completes nearly every 6-h forecast cycle beginning

when the observed event first attains a surface wind speed of 35 kts. (A few cycles are

missed owing to missing data or inoperative computers.) The system uses the National

Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) opera-

tional analyses and forecasts to calculate the environmental shear and potential intensity of

the initial state and along the forecast track. (Shear associated with the GFS-modeled

tropical cyclone is first removed from the analyses and forecasts before calculating the

environmental shear.) We record the modeled intensity and all the environmental inputs

every 2 h of the forecast.

After the end of the event, we can perform hindcasts that use the observed (rather than

forecast) storm positions and the 0-h environmental variables from each 6-h initialization

time. These hindcasts thus used the best reconstruction of the actual storm track and the

operationally analyzed wind shear and potential intensity bilinearly interpolated to the

storm position.

Ocean mixed layer depth and sub-mixed layer stratification are derived from monthly

mean climatology (Levitus 1982) and linearly interpolated to the storm date and time and

bilinearly to its position. (One could potentially improve on this by using operational

analyses or reanalyses of actual upper ocean conditions.) One-quarter degree bathymetry

and topography are used to determine when a storm makes landfall, at which time the

surface turbulent enthalpy flux is switched off and the surface drag coefficient is increased.

Also, when and where the ocean mixed layer depth exceeds the local ocean depth, it is

assumed that the ocean is well mixed to the bottom and sea surface cooling by mixing is

shut off.

For the CHIPS hindcasts presented here, we initialize the model’s wind and humidity

fields by setting the initial circular wind speed equal to the observed storm intensity and by

continuously adjusting the model’s middle tropospheric humidity variable during the first

24 h of integration so as to drive the model’s wind intensity toward the observed intensity.

Thereafter, the model is run freely. Since the initial rate of intensification is sensitive to

inner core middle tropospheric water vapor, this initialization procedure has the effect of

initializing both the intensity and the inner core moisture. It takes advantage of the fact that

wind intensity is generally much better observed than inner core moisture. The importance

of inner core moisture initialization is discussed in Emanuel and Zhang (2017).
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In initializing the wind speed, we first subtract a fraction of the storm translation speed

to estimate the storm-relative circular wind component we are actually integrating.

We apply the same environmental shear, potential intensity, ocean mixed layer prop-

erties, and bathymetry to the integration of the tropical cyclone intensity simulator pre-

sented here. The potential intensity in (2) is set to zero upon landfall as in the CHIPS

model, and likewise ocean mixing is turned off when the mixed layer depth equals or

exceeds the local ocean depth.

For the present purpose, we set � and j to constants but retain variable a in (2) and (7).

Specifically, we set CD = 1.2 9 10-3, h = 1400 m, � ¼ 0:33; and j = 0.1. Here again,

once might be able to improve the model by incorporating a more realistic formulation of

the surface drag as well as variable values of � and j.

As with CHIPS, we initialize V with the best track wind speed early in the storm’s life,

minus a fraction of the storm translation speed as a way of estimating the storm-relative

circular wind component. But we take a different approach to initializing the moisture

variable m: We simply invert (2) to find m given the change in the best track intensity over

the 6-h after initialization. This insures that the inner core moisture variable is initialized so

as to yield the observed initial rate of intensification. In effect, we are taking as initial

conditions the observed circular wind V and its rate of change, dV/dt. But note that the

CHIPS hindcasts have an advantage over the present tropical cyclone intensity simulator:

Its initialization procedure drives the modeled storm intensity toward the observed

intensity over the first 24 h.

We employ a conventional leap-frog time integration scheme with an Asselin filter

value of 0.1 and a time step of 240 s. An integration over a typical storm track takes about

0.002 s on a conventional laptop. Thus, it is feasible to simulate the intensities of very

large numbers of tropical cyclones, given their tracks and large-scale environments.

Figure 1 shows a representative example: Atlantic Hurricane Ivan of 2004. The overall

behavior of the hindcasts of the two models is rather similar, and the mean absolute errors

of the two are nearly the same. Figure 2 shows the mean absolute errors accumulated over

the lifetimes of each Atlantic hurricane of the 2004 season. Accumulated over the whole

season, the mean absolute error of the CHIPS hindcasts is 19.0 kts while that of the

intensity simulator is 17.8 kts; thus, judging from this single season, the two methods are

competitive. Our purpose here is merely to show that the simulator produces reasonable

results when run in hindcast mode; evaluating the actual forecast skill of the simulator is

deemed beyond the scope of the current study. We next turn to an evaluation of how well

the simulator performs as part of a tropical cyclone risk model.

4 Performance in a risk model

The main motivation for developing a fast intensity simulator is to provide a faster, simpler

way of simulating large numbers of events to assess tropical cyclone event risk. Here we

substitute the intensity simulator for the CHIPS model in the event risk model described in

detail in Emanuel et al. (2006, 2008). A summary of the technique is also provided in

Emanuel and Zhang (2016). Broadly, monthly mean winds and their variances and

covariances, all generated from reanalyses or global climate models, are used to generate

synthetic time series of winds that have the correct monthly means, variances, and

covariances and have power spectra that fall off as frequency cubed, similar to observed

flows at synoptic and planetary scales. Tropical cyclone tracks are generated by seeding
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randomly in space and time with weak protovortices which move with the synthesized

winds with an additional component owing to the earth’s sphericity and rotation. Then, the

intensity model is run along each track, using the monthly mean thermodynamic envi-

ronment (linearly interpolated in space and time) and climatological monthly mean upper

ocean thermal conditions from reanalyses or climate models. The same winds used to

Fig. 1 Hindcast simulations of the intensity of Atlantic Hurricane Ivan of 2004 by the CHIPS model (cyan)
and the intensity simulator (red), compared to the best track observed intensity (black). The dark blue
segment of the CHIPS simulation denotes the initialization period. Also shown are the along-track potential
intensity (dashed blue) and environmental 850–250 hPa shear (green)
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Fig. 2 Comparison of mean absolute error (kts) accumulated over the lifetimes of each Atlantic hurricane
of the 2004 season, showing CHIPS (blue) and the present intensity simulator (yellow)

Nat Hazards (2017) 88:779–796 785

123



generate the tracks provide the environmental shear that is an important component of the

intensity model. The large majority of storms thus generated fail to intensify and are

discarded. Only those cyclones that reach an intensity of at least 40 kt are retained. The

technique can therefore be regarded as working on the principle of natural selection.

The intensity simulator is driven using the same environmental variables that are used to

drive CHIPS in the risk model: potential intensity, the magnitude of the environmental

850–250 hPa wind shear, ocean mixed layer depth, and sub-mixed layer thermal stratifi-

cation. (In CHIPS, the ocean feedback is calculated interactively using a one-dimensional

ocean model in which mixing is the only physical process simulated.)

The initial circular wind speed is likewise specified exactly as in the original risk model.

However, the nondimensional moisture variable m in the intensity simulator differs from

the variable vm used in CHIPS. Here we set the initial value of m to the 600 hPa envi-

ronmental relative humidity multiplied by 1.2 (but capped at unity) so that the initial seed

disturbance has an inner core moisture that is elevated over that of the large-scale envi-

ronment. There is no simple relationship between m and the CHIPS variable vm.

As with the original version of the risk model, we add a fraction of the translation

velocity to the circular wind to determine the peak surface wind in each event at each time,

following the methodology of Emanuel and Jagger (2010).

None of the comparisons we present here requires knowledge of the cyclone’s structure

or central pressure, but general applications do often require one or both. CHIPS is an

axisymmetric model that does predict the evolution of the radial profile of wind and other

quantities, but in practice we record only the radius of maximum surface wind and later fit

canonical radial wind profiles to that radius and the maximum wind speed itself. To use the

present intensity simulator, on the other hand, we must parameterize both the radius of

maximum winds and the central pressure. We leave that to future work and focus here on

comparisons that rely only on the maximum wind speed.

We produce 100 North Atlantic tropical cyclones in each year from 1979 to 2015

inclusive (3700 events in total) downscaled from NCAR/NCEP reanalyses (Kalnay et al.

1996), both for the original risk model and the version using the intensity simulator

developed here. We shall hereafter refer to these as ‘‘CHIPS’’ and ‘‘FAST,’’ respectively.

The seeding rate is calibrated in both cases to yield the observed total number of tropical

cyclones with lifetime maximum surface winds in excess of 40 kts, over the 37-year

period.

4.1 Genesis

A comparison of historical, CHIPS, and FAST genesis densities, calculated on a 4 9 4

degree latitude grid, is shown in Fig. 3. On the whole, the CHIPS model is closer to the

observed distribution of genesis events. Both models have too few genesis events in the

main development region of the tropical Atlantic east of the Caribbean, and both under-

predict the rate of genesis to the east of Florida. This may be because the random seeding

technique does not account for disturbances, such as African easterly waves, that often

serve to initiate tropical cyclones in nature (Emanuel et al. 2008). CHIPS does a better job

simulating the genesis minimum in the central Caribbean to the north of Venezuela.

Although it here appears that CHIPS does a better job simulating the distribution of

genesis, the difference between CHIPS and FAST is not as great as the difference between

genesis fields downscaled from NCAR/NCEP reanalyses and fields downscaled from other

reanalyses (e.g., ERA Interim; not shown).
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Fig. 3 Genesis densities, in number of genesis events per 1� latitude square per year, from historical data
(top), the original CHIPS-based risk model (center) and the new intensity simulator (bottom)
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4.2 Track density

The number of track crossings per 2-degree latitude box is shown for historical data,

CHIPS, and FAST in Fig. 4. The best track density is noisier because it is based on about

430 tracks, versus 3700 synthetic tracks. It is difficult to assess the relative quality of

CHIPS and FAST, but they show clear differences.

4.3 Intensity distribution

The annual exceedance frequencies of storm lifetime maximum intensities from best track

data are compared to those derived from the CHIPS and FAST versions of the risk model

in Fig. 5. In general, there are slightly fewer FAST events than CHIPS events in a middle

range (50–80 kts) and at the very highest range ([130 kts) of lifetime maximum intensity,

but both fall within the 90% confidence intervals of being indistinguishable from the

intensity distribution based on historical data. All three distributions are highly signifi-

cantly different from each other according to two-sample Kolmogorov–Smirnov tests.

4.4 Seasonal cycle

The number of events in each month are shown for CHIPS and FAST and compared to

historical data in Fig. 6. In general, CHIPS performs a little better, but the only truly

significant difference is in the month of October, in which FAST overpredicts the fre-

quency of events.

4.5 Interannual variability

Year-to-year variations in North Atlantic tropical cyclone frequency and storm lifetime

maximum power dissipation are shown in Fig. 7. (The storm maximum power dissipation

is the sum over all storms of the cube of their lifetime maximum wind speeds.) Here the

FAST model outperforms CHIPS, especially in storm lifetime maximum power dissipa-

tion, where it accounts for about 68% of the best track variability compared to 37% with

CHIPS. Figure 7 does show strong co-variability between the CHIPS and FAST model

results.

4.6 Response to global warming

It is also of interest to compare the response of the new risk model to global warming.

Emanuel et al. (2008) and Emanuel (2013) examined the response of the CHIPS-based risk

model to warming produced under scenario A1B of the CMIP3 simulations and emission

concentration pathway 8.5 in the CMIP5 models, respectively. The second study used 6

CMIP5 models, generating 600 events globally each year from 1950 to 2100. Here we add

a 7th model, the L’Institut Pierre-Simon Laplace IPSL-CM5A-LR model, to the original 6

and repeat the analyses with the FAST version of the risk model, driven by all 7 CMIP5

model outputs. (Owing to an oversight, we ran 500 rather than 600 events per year for the

FAST simulations.) The 7 CMIP5 models are summarized in Table 1.

cFig. 4 Number of tracks per 1 degree latitude square per year, from historical data (top), downscaled using
CHIPS (center), and using FAST (bottom)
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The evolutions over time of the mean and standard deviations among the 7 models of

the global frequency of tropical cyclones and the power dissipation index are shown,

respectively, in Figs. 8 and 9. For each model, the seeding rate has been adjusted to yield

80 tropical cyclones per year averaged over the period 1950–2004.

The FAST version of the risk model produces only a minor and perhaps not significant

increase in the global frequency of tropical cyclones compared to the original CHIPS

version which, as noted in (Emanuel 2013), produces a robust increase of about 25% in the

global number of events. There is also somewhat more scatter among the 7 models in the

FAST case, indicating a greater sensitivity to the model used.

The power dissipation index increases by roughly the same percentage in the FAST

simulations as in the original CHIPS version, but here again there is more scatter among

the models downscaled.

Fig. 7 Interannual variations of North Atlantic tropical cyclone frequency (left) and storm lifetime
maximum power dissipation (right, in units of m3 s-3) from best track data (blue) and the CHIPS (green)
and FAST (red) versions of the risk model. The storm maximum power dissipation is the sum over all
storms of the cube of their lifetime maximum wind speeds. The square of the correlation coefficient between
the risk model results and the best track data are shown in the upper left of each panel

Table 1 Models used in this study

Modeling center Institute ID Model name Average horizontal resolution
(degrees longitude 9 degrees
latitude)

NOAA Geophysical Fluid Dynamics
Laboratory

GFDL CM3 2.5 9 2.0

UK Met Office Hadley Center HadGEM HadGEM2-ES 1.875 9 1.25

Institut Pierre-Simon Laplace IPSL CM5A-LR 3.75 9 1.89

Atmosphere and Ocean Research
Institute (The University of Tokyo),
National Institute for Environmental
Studies, and Japan Agency for Marine-
Earth Science and Technology

MIROC MIROC-5 1.4 9 1.4

Max Planck Institute for Meteorology MPI MPI-ESM-MR 1.88 9 1.86

Meteorological Research Institute MRI MRI-CGCM3 1.12 9 1.12

National Center for Atmospheric
Research

NCAR CCSM4 1.25 9 0.94
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Of course, in this case, we do not know what the ‘‘right’’ answer is, but note that the

FAST result is closer to the current consensus that global tropical cyclone frequency

should remain constant or decrease slightly as the planet warms. This consensus is based

mostly on tropical cyclones simulated explicitly but crudely in global climate models, but

scaling arguments and limited area cloud-resolving simulations also suggest a decrease in

frequency (Khairoutdinov and Emanuel 2013).

5 Summary

We developed a fast tropical cyclone intensity simulator that can be used to rapidly

estimate storm intensity along a specified tropical cyclone track, given estimates of the

potential intensity, 250–850 hPa environmental wind shear, and upper ocean properties

along the track. It is much faster than the CHIPS model but does not explicitly simulate any

facet of storm structure, which must be parameterized. The model consists of a pair of

ordinary differential equations that can be rapidly coded and solved. While motivated by

Fig. 8 Evolution of the global frequency of tropical cyclones according to the CHIPS (left) and FAST
(right) versions of the risk model. The blue corresponds to the CMIP5 historical period 1950–2005, while
the red denotes the years 2006–2100 under Representative Concentration Pathway (RCP) 8.5. The solid
curve shows the 7-model mean, while the shading represents one standard deviation up and down from the
mean

Fig. 9 Same as Fig. 8 but for the power dissipation index (in m3 s-2)
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theory and existing models, the new simulator should be considered an empirical construct,

developed to mimic the behavior of individual storms and of a risk model based on CHIPS,

driven by the same environmental parameters as the latter.

In a small number of hindcasts of Atlantic hurricanes, the performance of the intensity

simulator is comparable to that of the full CHIPS model (Fig. 2). When used to simulate

the climatology of tropical cyclones, there are notable differences between the intensity

simulator and CHIPS (Figs. 3, 4, 5, 6, 7) but it is difficult to judge which technique is

superior. Future work will examine the differences between the two techniques in other

ocean basins.

When forced by an evolving climate simulated by 7 CMIP5 models, the new simulator

shows less sensitivity of global tropical cyclone frequency to increasing temperature but

about the same increase in global tropical cyclone power dissipation (Figs. 8, 9).

We hope that this simple model will facilitate estimation of long-term tropical cyclone

risk and stimulate further work on reduced tropical cyclone intensity models.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Inclusion of dissipative heating and the pressure dependence of the saturation
specific humidity

We begin with the original formulation of Emanuel (2012), which did not include effects

of dissipative heating or the pressure dependence of the saturation mixing ratio in the

inflowing air:

dV

dt
ffi CD

2h
V2
p0 � V2

� �
; ð10Þ

where Vp0 is the potential intensity defined without including either isothermal expansion

or dissipative heating. According to Emanuel and Rotunno (2011) (see their equations 40

and 41), this unmodified potential intensity is given by

V2
p0 ¼ Ck

CD

F
Ck

CD

� �
� h�0e � h�e
� �

; ð11Þ

where Ck is the surface enthalpy coefficient, h0e
* is the saturation moist static energy of the

unperturbed sea surface, he
* is the saturation moist static energy of the unperturbed free

troposphere (which, in a moist adiabatic atmosphere, is independent of height), taken to be

equal to the actual moist static energy of the subcloud layer in a convectively equilibrated

atmosphere, and F is a function of the ratio of the surface exchange coefficients given in

Emanuel and Rotunno (2011).

If we multiply (10) by V and substitute (11), the result is

h
dV2

dt
¼ CkF�V h�0e � h�e

� �
� CDV

3: ð12Þ
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This is the kinetic energy equation of the system. The first term on the right is the

generation of mechanical energy by the hurricane’s Carnot cycle driven by surface

enthalpy fluxes, and F essentially converts the environmental thermodynamic disequilib-

rium, h0
* - he

*, into the local eyewall thermodynamic disequilibrium, h0
* - heyewall

* , where

heyewall
* is the tropospheric saturation moist static energy in the eyewall. The last term in

(12) is the dissipation of kinetic energy by boundary layer turbulence.

Dissipative heating adds to (12) the term �CDV
3 (Bister and Emanuel 1998), reflecting

that dissipative heating increases with the cube of the wind speed. Accounting for this and

the pressure dependence of the surface saturation moist static energy, (12) can be written

h
dV2

dt
¼ CkF�V h�0eyewall � h�e

� �
� CD 1 � �ð ÞV3; ð13Þ

where h0eyewall
* is the saturation moist static energy at the radius of maximum wind.

To account for the pressure dependence of the surface saturation moist static energy, we

write

h�0eyewall � h�0e ¼ Lvq
�
0e

p0

peyewall
� 1

� �
ffi Lvq

�
0e ln

p0

peyewall

� �
; ð14Þ

where Lv is the latent heat of vaporization, q0e
* is the saturation specific humidity of the

unperturbed sea surface, p0 is the unperturbed surface pressure, and peyewall is the surface

pressure under the eyewall. The term results from the approximation that the fractional

pressure drop to the eyewall is small, applied to the definitions of moist static energy and

saturation specific humidity

We next relate the pressure drop under the eyewall to the maximum circular wind speed,

V. There are quite a few published empirical relationships between central pressure and

maximum wind, but here we seek a relationship for the eyewall rather than the central

pressure.

We first point out that were the boundary layer flow steady and frictionless, the Ber-

noulli equation, integrated from the outer radius of vanishing wind to the radius of max-

imum winds, would have the form

Z eyewall

e

dp

q
¼
Z eyewall

e

RdTsd lnðpÞ ¼RdTs ln
peyewall

p0

� �
¼ � 1

2
V2; ð15Þ

where we have used the ideal gas law in substitution for the density q, and Rd is the gas

constant for dry air. This should be regarded as a lower bound on the magnitude of the

pressure drop, as frictional dissipation will increase the pressure drop relative to the

maximum wind speed. This suggests that the pressure drop scales as V2/RdTs. A curve fit to

the output of the full CHIPS model, in which the radial pressure distribution is calculated

from gradient wind balance, yields

ln
p0

peyewall

� �
ffi 1

2

V2

RdTs
: ð16Þ

While this is not a highly accurate predictor of eyewall pressure, it should suffice for the

present purpose, given the simplicity of the model.

Substituting (16) into (14) and the result into (13) yields
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h
dV2

dt
¼ CkF�V h�0e � h�e

� �
� CD 1 � e� jð ÞV3 ¼ CDV V2

p0 � 1 � e� jð ÞV2
h i

; ð17Þ

where Vp0
2 is given by (11) and

j � Ck

CD

F
Ck

CD

� �
�
Lvq

�
0

2RdTs
: ð18Þ

In the algorithm used to calculate potential intensity, we take F = 1, lacking good

quantitative estimates of the exchange coefficients at high wind speed.

Before taking the final step in this derivation, we pause to consider the effects of ocean

interaction. We will do that through the feedback factor a defined by (4) in the main text.

But note that this is a factor that multiplies the surface enthalpy flux, which we can

incorporate by multiplying the enthalpy exchange coefficient Ck by a in the derivation

(12)–(17). The result is that (17) is rewritten

dV

dt
¼ CD

2h
aV2

p0 � 1 � �� ajð ÞV2
h i

: ð19Þ

Clearly the actual potential intensity achieved when a = 1 in (19) is given by

V2
p ¼

V2
p0

1 � �� j
: ð20Þ

Since existing algorithms generate the full potential intensity, we prefer to use that

rather than the form that does not include dissipative heating or the pressure dependence of

the surface saturation specific humidity. Thus, we use (20) to rewrite (19) as

dV

dt
¼ CD

2h
a 1 � �� jð ÞV2

p � 1 � �� ajð ÞV2
h i

: ð21Þ

Finally, the enthalpy increase in the boundary layer cannot be communicated to the free

troposphere if the latter is dry. This includes the enthalpy increase from dissipative heating.

Thus, we multiply all the terms, except for the spin-down term—V2, in (21), by the cube of

the inner core moisture variable, m. This results in Eq. (2) in the main text. The choice of

the exponent 3 by which m is raised is empirical, giving a reasonably good fit to the

behavior of the full CHIPS model.
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