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Abstract
The field of tropical cyclone (TC) hazard modeling is in the midst of a rapid transition away from
purely statistical techniques based on historical events to more physics-based approaches that can
better account for the climate change that has already occurred and that will continue into the
future. As such models proliferate, it is important to test them against TC observations and
compare them to each other. Here a framework is proposed for comparing hazard model
predictions to metrics derived strictly from historical (‘best-track’) observations, though in the
future metrics more directly related to damage should be incorporated. While a specific set of
metrics and statistical tests is presented here for illustrative purposes, it is hoped that the TC hazard
community along with industry and government interests will convene to agree on a set that will
serve as a benchmark for testing and intercomparing TC hazard models. This should allow for
more rapid refinement and improvement of such models.

1. Introduction

Much of the damage from weather hazards arises from events that are frequent enough to matter but not so
frequent that societies are well adapted to them. These events lie in the tails of the weather hazard probability
distributions, but not so far out in the tail that their low frequency makes them largely irrelevant. Hazard
modelers are faced with the paradox that the most damaging events are poorly represented in the historical
record but of great importance to risk assessment. To make matters worse (and arguablymuch worse), these
events are often disproportionately affected by climate change, rendering the sparse historical record of them
largely irrelevant to today’s weather hazard risk.

It would be difficult to overstate the deleterious effects this circumstance has already had on civilization.
Because weather hazards like storms, droughts, heatwaves, and wildfires are not correctly represented in
today’s risk models, there is little incentive to adapt to the changed risk landscape. Insurance, which in a
well-functioning society should communicate risk through pricing, is in most states1 prevented from doing
so by premium rate restrictions imposed by regulators, who were put in place to ensure solvency but are now
having the opposite effect, and by the provision of federal flood insurance and disaster relief, which strongly
subsidize risk in more dangerous places. These and other policies have arguably caused or exacerbated a
strong migration away from less risky locations and into the riskiest places (e.g. Peralta and Scott 2019),
leading to a well-documented increase in weather-related damages (Muller et al 2025). The collision between
this policy-driven migration and the climate change-induced increase in hazardous weather is a recipe for
disaster.

To break this cycle, the climate and weather communities must do a better job quantifying weather
hazards, both in today’s climate (as opposed to the climate of the last∼100 years) and in future climates. The
research community has been stepping up to this challenge and there are now several publicly available
weather hazard models for such diverse phenomena as tropical cyclones (TCs) and wildfires (Lee et al 2018,
Bloemendaal et al 2020, Jing and Lin 2020, Oliveira et al 2021, Lin et al 2023).

1 Among all the rate filings by reasonably large, U.S. multi-state insurers, fewer than 10% received the rate increases they requested and
there is poor correlation between rates and risk in states with the strongest restrictions (Oh et al 2021).
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As such models develop and proliferate, it is important to be able to compare them to each other and
evaluate them against recent historical records of the hazard. There have been a few attempts to do this so far
(e.g. Meiler et al 2022, 2023) and one hopes there will be further such comparisons. The purpose of this
paper is to catalyze a movement toward an agreed-upon set of metrics and statistical tests that TC model
developers might routinely use to gauge the performance of their models in comparison to historical records
and to other models. This follows one of the recommendations from the 2023 report of the President’s
Council of Advisors on Science and Technology (PCAST 2023). A preliminary set of metrics and statistical
tests is here proposed but should be regarded as ‘for instance’ and not as a proposal for a final set of tests. We
apply it to the output of a single dynamical-statistical TC downscaling for illustrative purposes; in principle,
it could be run with any set of TC tracks developed as part of a hazard model.

We confine ourselves to strictly meteorological comparisons of output from a TC hazard model to
historical TC observations; we do not undertake to estimate damages. This is a crucial first step in testing a
hazard model; it is not plausible that a model that performs poorly against TC observations can predict
damage with any fidelity. On the other hand, estimating damage requires knowledge of the vulnerability of
the built environment to wind and water, and to the value of the property affected; this adds additional
uncertainty to damage prediction. For statistical and statistical-dynamical downscalings, one must also
unpack the limited information about size and intensity (e.g. radius and intensity of maximum surface
winds) into a fully two-dimensional and time-evolving wind field, adding yet more uncertainty to damage
estimates. We therefore postpone consideration of damage metrics to a future paper and here focus on
strictly meteorological metrics.

In the following sections we describe the observational and model data sets, the proposed metrics, and a
set of statistical tests of goodness-of-fit between model predictions and observations. This is followed by a
presentation of the results and a summary with recommendations for further progress.

2. Observational and hazard model data

Historical TC data are provided by the International Best Track Archive for Climate Stewardship (IBTrACS;
Knapp et al 2010). Here we use data curated by the National Hurricane Center for the North Atlantic, eastern
North Pacific and central North Pacific, and data from the Joint Typhoon Warning Center for the rest of the
world. We confine our attention to the period 1979–2023, during which satellites are thought to have
detected almost all TCs globally.

We use the MIT TC hazard model (Emanuel et al 2006, 2008) to generate a large, global set of synthetic
TCs. This statistical-dynamical model downscales TCs from global, time-evolving climate states represented
by both reanalyses and CMIP6 climate models. In this technique, TCs are initiated by seeding randomly, in
time and space, the time-evolving large-scale environment provided by global climate models or reanalyses.
The large-scale environment is represented by Fourier series in time with random phase, constrained so that
the monthly means of all variables and the monthly mean variances and covariances (based on daily data)
among the wind components are identical to those of the gridded data. The kinetic energy spectrum of the
synthesized large-scale winds is also constrained to obey geostrophic turbulence scaling. The synthetic time
series are then bilinearly interpolated to the storm positions and linearly interpolated to the date and time.
We use this procedure, rather than the reanalysis or climate model winds directly, to provide a potentially
unlimited number of realizations of the wind.

A TC intensity model (CHIPS; Emanuel and Rappaport 2000) is then run along each of the randomly
generated tracks. Owing to the use of an angular momentum radial coordinate, the intensity model has very
high spatial resolution in the storm core. It has been shown to produce skillful real-time intensity forecasts
(Emanuel and Rappaport 2000). Over 99% of the seeded tracks dissipate and are discarded; the survivors are
regarded as constituting the TC climatology of the original reanalysis or climate model. When applied to
global reanalysis data, this technique has been shown to simulate with reasonable fidelity most the salient
features of the current climatology of TCs (Emanuel et al 2008).

The ratio of the number of initial seeds that develop into TCs to the total number of seeds deployed is a
measure of the overall frequency of the synthetic TCs. To calibrate these event sets, we multiply this ratio by a
single scalar so that the annual, global rate of synthetic TCs averaged over the period 1979–2023 is 85, close
to that derived from historical TC data over this period.

This technique has several advantages over conventional downscaling using regional models. The use of
angular momentum coordinates allows for increasing spatial resolution of the storm core as its intensity
increases; consequently, each storm’s intensity is limited by the physical properties of its environment rather
than by numerical resolution. Because the TC model is driven by the statistics of the global model or
reanalysis, an arbitrarily large number of events can be simulated in a given climate.
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Table 1. reanalyses and CMIP6 models downscaled.

Model/reanalysis Institution Type
Designation in
this paper

ERA5 European Center for Medium-Range
Forecasts

Reanalysis ERA5

MERRA2 National Aeronautics and Space
Administration

Reanalysis MERRA2

NCEP NOAA National Centers for
Environmental Prediction

Reanalysis NCEP

CanESM5 Canadian Center for Climate
Modeling and Analysis

CMIP6 GCM CANESM

CESM-2 National Center for Atmospheric
Research

CMIP6 GCM CESM2

CNRM-CM3 Centre National de Recherches
Météorologiques, Météo-France

CMIP6 GCM CNRM

EC-Earth3 EC-Earth consortium CMIP6 GCM ECEARTH
FGOALS-g3 Chinese Academy of Sciences CMIP6 GCM FGOALS
IPSL-CM6A-LR Institute Pierre Simon Laplace CMIP6 GCM IPSL
MIROC6 Center for Climate System Research,

University of Tokyo;
CMIP6 GCM MIROC

Japan Agency for Marine-Earth
Science and Technology;
National Institute for Environmental
Studies

MPI-ESM1–2-HR Max Planck Institute CMIP6 GCM MPI
MRI CGCM 2.3.2a Meteorological Research Institute,

Japan
CMIP6 GCM MRI

UKESM1–0-LL United KingdomMeteorological
Office

CMIP6 GCM UKMO

For the present purpose, we generate 45 000 synthetic TCs downscaled from each of three global
reanalyses and ten CMIP6 global climate models over the period 1979–20232. This works out to a total of
585 000 synthetic TC events. The reanalyses and CMIP6 models used are summarized in table 1. In the case
of the CMIP6 models, we use output from the historical simulations for the period 1979–2014 and from the
SSP3-7.0 simulations for 2015–2023. The choice of SSP3-7.0 is arbitrary because the emissions pathways of
all the SSPs are nearly identical during the years 2015–2023. Casual examination of TC hazard model times
series shows no sign of discontinuity between 2014 and 2015.

3. Metrics

Decisions about what metrics to use for testing TC Hazard model datasets are here guided by four key
considerations:

1. Robustness in the historical data sets
2. Meteorological fidelity
3. Eventual utility
4. Amenability to standard statistical goodness-of-fit tests

Probably the most robustly observed variable, at least since around 1979, is the number of TCs. While it
is possible that some ‘midget TCs’ escaped detection, the requirement imposed on the synthetic tracks—that
wind speeds remain at or above 35 knots for at least two days—probably filters out any midget TCs that
might form. A more serious source of error is that the operational determination that a TC exists depends on
the criteria used, which vary from place to place, and over time, and always have some subjective component.
In the comparisons that follow, we consider only those observed and synthetic TCs whose lifetime maximum
intensity exceeds 40 knots. Some of the uncertainty in observational counts arises from inaccuracies in
whether this or any intensity threshold has been exceeded.

In assessing the robustness of the observed hurricane record, a large factor in many of the comparisons is
the low sample size. For metrics that stem from counts, we assume that the sampling error obeys a Poisson

2 The MERRA2 reanalysis begins in 1980, thus we use 1980–2023 for thatreanalysis.
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Figure 1. Basin definitions used in this study: Eastern North Pacific (EP), North Atlantic (ATL), southwest Indian Ocean (SWIO),
North Indian Ocean (NIO), Australian region (AUS), western North Pacific (WP), southwestern South Pacific (SWP). TCs are
assigned basins based on where their intensity first reaches 40 knots.

Figure 2. Annual average basin TC counts over the period 1979–2023 from historical (‘best-track’) observations (blue) and from
MIT TC Hazard model synthetic events downscaled from ERA5 (red). The latter have been normalized so that the global total
synthetic count matches the corresponding historical count. The green confidence intervals show estimated observational
sampling error defined as the 5th and 95th quantiles of a Poisson distribution based on the synthetic basin frequency (see text for
details).

distribution. We can use this estimate of sampling error in statistical tests that assume some prior knowledge
of the magnitude of such errors. For this reason, we stick to metrics that involve TC counts in this paper.

Global TC annual frequency is not a candidate metric for the MIT downscaling, as we have calibrated the
model to yield the correct average over the period 1979–2023 and the year-to-year variability in this number
is no greater than what would be expected from a pure Poisson process, thus we cannot reject the hypothesis
that the interannual variability of global TC counts is a random process. Therefore, we do not use either
time-mean or annual global frequency as a metric.

One metric that a good TC hazard model ought to simulate well is the global spatial distribution of TCs.
A simple measure of this is the total number of storms during the years 1979–2023 in each of a set of TC
basins. For this purpose, we use the TC basin definitions shown in figure 1. Therefore, our first metric is the
set of basin total TC counts; we shall refer to this metric as NBi, the number of storms in basin i.

An example comparing the synthetic to the historical basin counts is presented in figure 2. Here the
45 000 global synthetic events have been downscaled from the ERA5 reanalysis; recall that the global total
count has been constrained to equal that of the historical record. There are far too few events in the eastern
North Pacific, and too many in the southwest South Pacific, but the historical and synthetic counts agree well
elsewhere.

4
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Figure 3.Monthly frequencies of TCs in each of the 7 basins (ATL, EP, WP, NIO, SWIO, AUS, and SWP shown in figure 1)
averaged over the period 1979–2023. Counts based on historical observations and MIT downscaling of ERA5 shown by blue and
red curves respectively. The blue shading shows an estimate of historical sampling error based on the 5th and 95th percentiles of a
Poisson distribution centered on the MIT monthly counts.

The confidence intervals shown in figure 2 were calculated by finding the 5th and 95th quantiles of a
Poisson distribution based on the estimated total number of observations in each basin (the synthetic count
shown in the graph multiplied by the number of years (45) in the record), and the result was then divided by
the number of years in the record. This procedure tests the hypothesis that the observed count was drawn
from the same distribution as the (much larger) synthetic count. This same procedure was used to estimate
sampling error in all but one of the metrics presented in this paper.

The annual cycle of TCs is a strong signal in all seven of the basins shown in figure 1. A good TC hazard
model should be able to replicate these annual cycles and these therefore constitute our next seven metrics.
To keep this metric separate from the basin totals metric, the synthetic annual cycle in each basin was
normalized so that its sum over the 12 months equals the observed basin total over those months. We refer to

5
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this metric as NMij, the number of storms in basin i and month j. While this metric is a good test of the
meteorological fidelity of a hazard model, it is not clear how useful it is in actual applications. An example of
this metric, again using events downscaled from ERA5, is shown in figure 3. While the correspondence
between historical observations and synthetic events is generally good, some biases are evident that are nearly
ubiquitous across the reanalyses and CMIP6 models downscaled here. In the eastern North Pacific region,
the synthetic events peak in September while observed events peak in August. (Recall that the EP basin totals
are greatly unpredicted.) And while the hazard model successfully captures the seasonal bimodality of events
in the North Indian Ocean, the mid-summer lull is underpredicted while the autumn maximum occurs in
October rather than November. These differences would not appear to be due to sampling error.

To be useful, TC hazard models must be able to simulate with good fidelity the frequency and intensity of
storms at landfall along populous coastlines. Here we must balance the desire to emphasize the most
destructive events against the need to have sufficient historical data to make the comparison meaningful. For
this reason, we consider two metrics: Coastal crossings of all events in the dataset, e.g. events whose lifetime
maximum wind speed exceeds 40 kts, and events that cross the coastlines as hurricanes, with maximum
sustained surface winds of at least 64 kts at the time of coastline crossing. For TCs that cross a coastline from
sea to land more than once, we here consider only the first crossing and we do not consider crossings from
land to sea.

To capture the all-important distribution of events along coastlines, we divide the coast into a set of
connected line segments often referred to as coastal gates; these are widely used in industry catastrophe
models. Balancing the desire to include populous coastlines against the need to have accurate and plentiful
historical observations, we consider the coastlines and coastal gates displayed in figure 4.

For each of the five sets of coastal gates we consider two metrics: first, the distribution of events among
the gates of each set, with the synthetic track total normalized to be equal to that of the historical events. This
metric can be expressed as NGkl, where k is the coastline index (1–5) and l is the gate number on that
coastline. In what follows, we smooth NGkl with a 7-point running mean along the dimension l. The second
metric is designed to measure whether the proportion of TCs in a particular basin that pass through any of
the set of coastal gates is consistent with historical records. Unlike the other indices, this is not an integer but
rather the ratio of two integers:

Rk ≡

Nl∑
l=1

NGkl

NBi
, (1)

where the basin count that appears in the denominator is understood to be that basin that is relevant to the
coastline in question. For example, for the Lesser Antilles, we would use the North Atlantic basin. When
evaluating (1) for the synthetic tracks, we do not normalize either the gate counts or the basin count. The
intent here is to separately measure the distribution of storms along coastlines and the proportion of basin
storms that cross anywhere over that coastline.

Figure 5 shows an example of the first type of coastal impact metric.
The last two metrics proposed here relate to storm intensity. In keeping with the decision to stick with

counts, we compare synthetic and historical histograms of intensity. Specifically, we compare the exceedance
histograms of lifetime maximum intensities and exceedance histograms of the 6 h intensity change histogram
of all points along each track. We labels these NVn and NDVm, where n is the index of wind intensity andm
is the index of 6 h intensity changes.

For these two intensity metrics, we confine ourselves to the North Atlantic because intensity estimates
elsewhere are somewhat less reliable as they are based entirely on satellite data (except for the western North
Pacific from 1979 to 1987). Figure 6 shows an example of each of these two metrics.

The set of proposed metrics is summarized in table 2.

4. Goodness-of-fit tests

With the exception of the coastline-to basin ratio, Rk, all of the metrics in table 2 are integer counts. In
comparing synthetic to observed counts, it is important to account for sampling error in the observations.
(There are enough synthetic events to make their sampling error very small.) We assume that the observed
counts are samples of a Poisson distribution centered at the predicted value, and wish to measure how close
the observations are to the synthetic values. We do this, rather than the other way around, because the
historical sampling error will be much larger than the synthetic sampling error. In essence, we wish to test the
hypothesis that the observed counts are drawn from the same Poisson distribution as the synthetic event
counts.

6
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Figure 4. Definitions of 5 sets of coastal gates: (a) U.S. Gulf and East coasts, (b) Lesser Antilles, (c) China and Japan, (d) Australia,
and (e) North Indian coastal.

To quantify the magnitude of Poisson random noise, for a given count, λ, we estimate the pth quantile of
the inverse of the Poisson cumulative distribution function as

yp = F−1 (p;λ) , (2)

where F(x;λ) is the CDF of the Poisson distribution with rate parameter λ and F−1(p;λ) gives the smallest x
such that F(x;λ)⩾ p.

Here we chose to characterize the sampling error on the high side of the prediction as

yupper ≡ F−1 (0.95;λ) , (3)

and sampling error on the low side as

ylower ≡ F−1 (0.05;λ) , (4)

and further define the range of sampling error as

yspread ≡ yupper − ylower. (5)

7
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Figure 5. Comparison between number of TC crossings for each coastal gate of the China-Japan coastline shown in figure 4(c).
Synthetic track count downscaled from ERA5 shown in red while historical tracks are in blue. The blue shading shows the span
between the 5th and 95th quantiles of a Poisson distribution based on the synthetic track count scaled to the historical track
count. Both distributions have been smoothed with a 7-gate running mean.

Figure 6. Annual exceedance frequency by lifetime maximum intensity (a) and the natural logarithm of the double-sided
cumulative frequency of intensity change (b). The latter accumulates the bin frequency going from left to right starting at the
frequency peak, and separately from right to left starting at the peak. ERA5 downscaling shown in red, results based on historical
records by blue dots. The blue shading shows the span between the 5th and 95th quantiles of a Poisson distribution based on the
synthetic track count scaled to the historical track count.

a. Poisson log-likelihood test
One measure of goodness-of fit appropriate to counts with Poisson sampling error is the Poisson
log-likelihood, or deviance, defined

D=
∑
i

2

[
y(i)obs ln

(
y(i)obs
y(i)syn

)
−
(
y(i)obs − y(i)syn

)]
, (6)

where yobs is the observed count, ysyn is the synthetic count, and the index i represents the dimension over
which y is varying; for example, the basin index for basin counts, or the month of the year for the annual

8
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Table 2. Summary of TC metrics.

Short Name Description Symbol

Basin counts Number of TCs in each ocean basin i = 1 : 7 NBi

Annual cycle Number of storms in each month, j = 1 : 12,
performed in each ocean basin, i. Synthetic
counts normalized so that the annual total equals
the observed annual total.

NMij

Gate crossings Number of storms crossing each gate l= 1 : NCk

performed for each coastline, k. NCk is the total
number of gates in coastline k. Synthetic counts
normalized so that the coastline total equals the
observed coastline total.

NGkl

Coastal crossing-to-basin
ratio

The ratio of the total number of gate crossings in

coastline k,
NCk∑
l=1

NGkl, to the basin count NBi

relevant to that coastline. No normalizations
applied.

Rk

Intensity histogram Histogram counts of North Atlantic lifetime
maximum intensity. Total annual frequency of
synthetic events set at 12

NVn

Intensity change histogram Natural logarithm of 1 plus the histogram of
North Atlantic 6 h intensity changes over whole
lifetime of each event. Peak synthetic frequency
set equal to peak observed frequency.

NDVm

cycle metric. Because D is dimensional, having the same units as y, we normalize it by the same quantity
calculated using the mean rather than individual values of yobs :

Dmean =
∑
i

2

[
y(i)obs ln

(
y(i)obs
ysyn

)
−
(
y(i)obs − ysyn

)]
, (7)

where the overbar denotes the mean of ysyn over the index i.
One drawback of the Poisson log-likelihood is that it blows up if either y(i)obs or y(i)syn vanishes. In

applying this metric here, we sum only over those index values for which y(i)obs > 5 and y(i)syn > 5. Note
also that D is positive definite. Larger differences indicate less agreement between the synthetic and observed
counts. To convert this into something that looks more like a skill metric, we transform it by

D ′ ≡max

(
1− 0.4

D

Dmean
, 0

)
. (8)

The factor of 0.4 in (8) is designed to bring this test roughly in line with the tests described in the
following section.

This test will produce smaller skill if the synthetic counts differ from the observed by a multiplicative
factor. (This is also an issue with the K-test and χ 2 tests described in the next subsections.) This problem is
largely addressed by normalizing the synthetic counts as described in the previous section.

b. K-test

This test, presented here for the first time, assigns a skill of unity when the observed count falls within the
sampling error spread of the synthetic count. Specifically, we first define an error measure K :

K≡

∑
i

max(y(i)obs−y(i)upper,0)
y(i)syn

y(i)obs ⩾ y(i)syn∑
i

max(y(i)lower−y(i)obs,0)
y(i)syn

y(i)obs < y(i)syn

. (9)

This measure of error accrues only when the observed count lies outside the sampling error envelope and
is proportional to how far outside the envelope it is. The K-test is non-dimensional, but like the D test is

9
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singular when the synthetic count vanishes. Therefore, as with the D test, we sum only over those indices for
which y(i)obs > 5 and y(i)syn > 5. We also divide the result by the number of bins that meet these criteria.

To turn this into something more like a skill metric, we transform K by

K ′ ≡max(1−K,0) . (10)

The K-test effectively gives the benefit of the doubt to the synthetic TCs, where in this case the ‘doubt’ is
due to the often-large sampling error of the observations.

c. Coefficient of determination
We also calculate the conventional coefficient of determination, or r2. This has the advantage of being
invariant to both multiplicative and additive errors.

d. χ 2

The final goodness-of-fit test we apply is the standard χ 2 calculation, measuring the root-mean-square
difference between the observed and synthetic data normalized by the square of the predicted values:

χ 2 =
∑
i

(
y(i)obs − y(i)syn

)2
y(i)2syn

. (11)

In performing the sum, we apply the same exclusions as described in the sections on the Poisson
log-likelihood and K tests and divide the result by the number of bins that meet these criteria. To convert to a
skill metric, we apply

χ 2 ′ =max
(
1− 0.5χ 2,0

)
. (12)

The coefficient 0.5 is designed to bring this skill metric more or less into the same range of numerical
values as the previously described skill measures.

e. A note on the coastline to basin ratio, Rk

There are enough historical events summed over basins and over the coastal gates used here that the
sampling error is small. For this reason, we present the raw ratio of synthetic to observed values of Rk for
each coastline, k:

Rk
′ ≡

Rksyn

Rkobs
. (13)

5. Results

We present the results of these tests, applied to the three reanalyses and ten CMIP6 climate models listed in
table 1, all for the period 1979–2023, in figures 7–11. In each case, the samples and their sizes can be inferred
from table 2.

The first four of these figures show the skill scores D ′, K ′, r2, and χ 2 ′, respectively. In all cases, a score of
unity denotes perfect skill while zero is regarded as very low or no skill. The bottom row of these figures
shows the arithmetic mean over all the metrics. For ease of comparison, the cells in the tables are color-coded
for each skill test S as follows: S< 0.25, red; 0.25⩽ S< 0.5, orange; 0.5⩽ S< 0.75, yellow, S⩾ 0.75, green.

Figure 11 shows the ratio given by (12) for all TCs and for hurricane-strength TCs. The bottom row
shows the average skill, defined as

Rk
′ ≡max(1− |1−Rk

′|, 0), (14)

where the overbar signifies the average over all the other rows in this table. This penalizes departures from
unity in either direction. The color coding is the same as in figures 7–10 but since Rk

′ can be greater than
unity, we add the following: 1⩽ Rk

′ < 1.25, green; 1.25⩽ Rk
′ < 1.5, yellow, 1.5⩽ Rk

′ < 1.75, orange; and
Rk

′ ⩾ 1.75, red.
As one may have anticipated, the skill with which the synthetic events mimic observed events depends on

both the metric and the statistical test. Nevertheless, there is some commonality among the skill scores. Some
general observations include
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Figure 7. The skill score D’ for three reanalyses and ten CMIP6 climate models (columns), across 20 metrics and the arithmetic
mean of them (rows), color-coded for each skill test S as follows: S< 0.25, red; 0.25 ⩽ S< 0.5, orange; 0.5 ⩽ S< 0.75, yellow,
S ⩾ 0.75, green.

Figure 8. The skill score K′ for three reanalyses and ten CMIP6 climate models (columns), across 20 metrics and the arithmetic
mean of them (rows), color-coded for each skill test S as follows: S< 0.25, red; 0.25 ⩽ S< 0.5, orange; 0.5 ⩽ S< 0.75, yellow,
S ⩾ 0.75, green.

Figure 9. The coefficient of determination, r2, for three reanalyses and ten CMIP6 climate models (columns), across 20 metrics
and the arithmetic mean of them (rows), color-coded for each skill test S as follows: S< 0.25, red; 0.25 ⩽ S< 0.5, orange;
0.5 ⩽ S< 0.75, yellow, S ⩾ 0.75, green.
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Figure 10. The quantity χ ′2 for three reanalyses and ten CMIP6 climate models (columns), across 20 metrics and the arithmetic
mean of them (rows), color-coded for each skill test S as follows: S< 0.25, red; 0.25 ⩽ S< 0.5, orange; 0.5 ⩽ S< 0.75, yellow,
S ⩾ 0.75, green.

Figure 11. The ratio of the total number of synthetic tracks passing through the indicated coastal gates to the total number of
synthetic tracks in the relevant basin, normalized by the equivalent ratio for observed TCs. These are color coded according to
Rk

′ < 0.25, red; 0.25 ⩽ Rk
′ < 0.5, orange; 0.5 ⩽ Rk

′ < 0.75, yellow, 0.75 ⩽ Rk
′ < 1.25, green; 1.25 ⩽ Rk

′ < 1.5, yellow,
1.5 ⩽ Rk

′ < 1.75, orange; and Rk
′ ≥ 1.75, red.

1. The scores or generally higher for the three downscaled reanalyses than for the ten downscaled CMIP6
models. This is unsurprising, given that the reanalyses are constrained by observations.

2. The skill scores vary substantially among the metrics used here.
3. There is considerable variation from one climate model to the next. Some of this is owing to the

different resolutions, numerics, and physics of each model, and some may be owing to different phases
of oscillations such as ENSO and the Pacific Decadal Oscillation.

4. The basin counts are generally fair to good, though in the case of four CMIP6 models (ECEARTH,
FGOALS, IPSL, and MIROC) the correlations are not strong.

5. The Poisson log-likelihood scores are quite good for the basin accounts and the annual cycles, except for
the North Indian and southwest South Pacific basins. The U.S hurricane gates and the Lesser Antilles
gates score relatively poorly in this test. Recall that these metrics measure the skill of variation along the
coastlines; the ratio of coastline total crossings to basin events is shown separately in figure 11.

6. The K-test scores (figure 8) are generally higher, as they do not penalize predictions that are within the
sampling error of the historical data. Somewhat surprisingly, the scores using this test are quite small for
the intensity and intensification metrics for quite a few of the CMIP6 downscalings. Examination of the
intensity histograms for some of the lowest scores shows that they greatly underestimate the frequencies
of storms of mid-range intensity (roughly 70–120 kts). This is likely because many of the CMIP6
model-simulated potential intensities in the North Atlantic are too small. This is a common problem in
GCMs, perhaps related to insufficient ocean heat transport into the North Atlantic.

7. The coefficient of determination, r2 (figure 9), show good correlations between predicted and observed
basin counts, except in the case of a few CMIP6 models, but tend to be low for variations along coastal
gates. The correlations are high for the cumulative intensity and intensification histograms simply
because they are dominated by a monotonic downward slope toward high intensities/intensification
rates. This demonstrates a weakness of this skill measure.
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8. In the χ 2 skill test (figure 10), the downscaled reanalyses score quite well for the most part, but the
CMIP6 downscaling show weakness in the annual cycle tests and intensity and intensification
cumulative histograms. This is probably for the same reason discussed in Point 6 above. There is some
similarity with the results of the K-test discussed in Point 6, but the latter, being proportional to linear
differences rather than differences in squares, is less sensitive to outliers and does not penalize
downscaled results that lie within the envelope of historical sampling error.

9. Of particular interest are the skills of the ratios of coastal gate totals to basin totals, shown in figure 11.
Downscalings from the three reanalyses show reasonable results for all U.S. Gulf and East coast
downscalings, compared to Atlantic basin totals, but somewhat surprisingly, show too many hurricane
crossings relative to basin TCs. It is possible that some of this has to do with fact that the raw data for the
synthetic tracks is stored in two-hour intervals, compared to the six-hour intervals in the historical data,
as it affects records of TCs of marginal hurricane strength near the time of landfall. For purposes of
comparison, the six-hour historical wind speeds are linearly interpolated to two-hour time resolution.
Both synthetic and linearly interpolated historical winds are then linearly interpolated to the time of
gate crossing. By these means, the historical winds at gate crossing can be more severely contaminated
by peaks winds after landfall than can the synthetic TCs. This effect should be further investigated.

10. The ratio of gate-crossing Australian hurricanes to basin counts is much too large across the whole sets
of reanalyses and models (figure 11), even though the synthetic counts for Australian basin storms (not
shown here except for ERA5 in figure 2) are reasonable. Some of the storms that cross the Australian east
coast originate not in the Australian basin but in the southwest South Pacific, according to the basin
definitions shown in figure 1. There tends to be a high bias in South Pacific synthetic storms, and this is
evident in figure 2 in the case of the ERA5 downscalings. This could explain the excess Australian gate
crossings. It is possible that some historical storms that would have been identified as having developed
in the southwest South Pacific with better observations end up being classified as originating in the
Australian basin.

11. The number of synthetic TCs passing through the Lesser Antilles, downscaled from the three reanalyses,
is too small relative to the Atlantic basin counts, when compared to historical data. Yet the number of
hurricanes passing through this region, in these three reanalysis downscalings, is about right (figure 11).
On the other hand, both the number of TCs and the number of hurricanes passing through the Lesser
Antilles are too small compared to basin counts for all of the CMIP6 downscalings. There is a strong
north-south gradient of TC track density across these islands, and small biases in the track directions
and/or genesis latitudes could greatly change the total number of tracks in this region.

6. Summary

As more TC hazard models are developed, it is important to create a uniform framework for comparing their
performance to each other and to historical TC records. Here we have proposed both a set of metrics and a
group of statistical goodness-of-fit tests to evaluate the performance of hazard models against historical TC
records, accounting as much as possible for the low sample size of the latter. These metrics and statistical tests
should be regarded as provisional and are meant to catalyze a discussion in the TC hazard community aimed
toward the establishment of a uniform set of metrics and tests.

To illustrate these provisional metrics and tests, we applied them to large sets of synthetic TCs generated
by the MIT TC hazard model applied to three reanalyses and ten CMIP6 models. One can anticipate that the
application of these tests and metrics to TC hazard models more closely based on historical TC records (e.g.
Vickery et al 2000, Bloemendaal et al 2020) will lead to better scores. This must be weighed against the fact
that such methods will be pertinent to an historical period that may no longer accurately reflect today’s
current TC climatology, let alone that of the future, given the pace of climate change. By contrast, the TC
hazard model tested here is completely independent of any historical TC data except insofar as it has been
used to test the model. The biases revealed by tests such as these must be accounted for in applications of the
hazard model and can also be used to drive improvements in the model. One interesting and large challenge
is to account for biases in the climate models used to drive downscalings.

Of necessity, the tests presented here were performed by the author, who is an advocate for the hazard
model being tested. This is far from ideal, and it would better for unbiased, independent groups to apply
community-developed tests to a range of TC hazard models.
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