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ABSTRACT

This article presents an azimuthally asymmetric gradient hurricane wind field model that can be coupled

with hurricane-trackmodels for engineering wind risk assessments. Themodel incorporates low-wavenumber

asymmetries into the maximum wind intensity parameter of the Holland et al. wind field model. The am-

plitudes and phases of the asymmetries are parametric functions of the storm-translation speed and wind

shear.Model parameters are estimated by solving a constrained, nonlinear least squares (CNLS) problem that

minimizes the sum of squared residuals between wind field intensities of historical storms and model-

estimated winds. There are statistically significant wavenumber-1 asymmetries in the wind field resulting from

both storm translation and wind shear. Adding the translation vector to the wind field model with

wavenumber-1 asymmetries further improves the model’s estimation performance. In addition, inclusion of

the wavenumber-1 asymmetry resulting from translation results in a greater decrease in modeling error than

does inclusion of the wavenumber-1 shear-induced asymmetry. Overall, the CNLS estimation method can

handle the inherently nonlinear wind field model in a flexible manner; thus, it is well suited to capture the

radial variability in the hurricane wind field’s asymmetry. The article concludes with brief remarks on how the

CNLS-estimated model can be applied for simulating wind fields in a statistically generated ensemble.

1. Introduction

Hurricanes are a major natural hazard to built infra-

structure such as buildings, transportation systems, and

electric power networks (Campbell and Lowry 2012;

Ouyang 2014) and often lead to large socioeconomic

losses. A standardized risk assessment procedure is

needed to assess the vulnerability of infrastructure sys-

tems to hurricanes. Such a procedure becomes espe-

cially important in light of projected changes in the

frequency of high-intensity hurricanes (Bender et al. 2010).

Hurricane risk assessment typically involves modeling

of storm tracks, wind fields, and occurrence frequency

(Watson and Johnson 2004). Outputs of these models

are used toward quantifying the probability distribu-

tions of damage to various infrastructures.

A common approach to risk assessment is to simulate

an ensemble of storms, in order to capture the stochastic

nature of hurricane arrival, landfall location, and in-

tensity. This simulation-based approach relies on cap-

turing two aspects of hurricane structure: 1) track, or

trajectory of the storm from its formation over the ocean

to dissipation over land; and 2)wind velocities at various

points along the track, modeled by either a single in-

tensity measurement (e.g., maximum sustained 10m

wind speed) or a surface wind field. Well-known syn-

thetic-track-generation models combine both physical

and statistical modeling approaches (Casson and Coles

2000; Vickery et al. 2000b; Emanuel et al. 2006) and

use historical hurricane ‘‘best track’’ data as input.

Maximum wind intensity estimates along the tracks are

provided by models such as the Coupled Hurricane

Intensity Prediction System (CHIPS) (Emanuel et al.

2004) or FAST intensity simulator (Emanuel 2017).Corresponding author: Derek Chang, changd@mit.edu
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Wind field models include those proposed by Vickery

et al. (2000a), Emanuel (2004), Willoughby et al. (2006),

Holland et al. (2010), and Chavas et al. (2015). For risk

assessment of large-scale infrastructure systems, the

impact of spatially heterogeneous wind velocities must

be suitably captured. Thus, a reliablemodel of the whole

surface wind field is desirable.

This article focuses on constructing a physically in-

formed model of the hurricane gradient wind field; one

can then use a boundary layer model for the gradient-to-

surface wind conversion. Well-known gradient wind

field models are estimated from deterministic axisym-

metric models, which we refer to as mean field (MF)

models. In reality, however, hurricane wind fields tend

to be asymmetric. Not accounting for this inherent

asymmetry can negatively affect hurricane risk assess-

ment of aboveground infrastructure components such as

electric distribution lines, whose failure probabilities

depend on local surface wind intensities (Zhou et al.

2006; Alvehag and Soder 2011). The relationships of

asymmetries to environmental inputs were studied in

Xie et al. (2006), Uhlhorn et al. (2014), Vukicevic et al.

(2014), and Klotz and Jiang (2017). This article extends

on the previous work by modeling wind field asymme-

tries as a function of environmental inputs, specifically,

by parametric incorporation of asymmetries into es-

tablished models for mean field estimation.

In particular, our asymmetric wind field model is an

extension of the mean field model of Holland et al.

(2010) in that themodel’s maximum intensity parameter

is set to be a harmonic function of the azimuthal angle.

The asymmetries are quantified in terms of amplitudes

and phases of the harmonic function to produce velocity

estimates that are both radially and azimuthally varying.

This asymmetry correction to the maximum intensity is

general in that the amplitudes and phases are modeled

as parametric functions of one or more environmental

input(s). We use storm translation and environmental

shear as inputs; see section 2 for a full model description.

The parameters that model the amplitudes and phases

in the asymmetry correction are estimated by solving a

constrained, nonlinear least squares (CNLS) problem.

Solving this problem entails minimizing the sum of

squared errors between velocity estimates and historical

storm data for the region between the storm center and a

predecided ‘‘cutoff’’ radius in the storm’s outer region.

The method, as discussed in section 3, can jointly esti-

mate the amplitude and phase parameters while ac-

counting for the nonlinearity of the asymmetric wind

field model and parameter constraints. While we con-

sider the Holland mean field model here due to its rel-

ative simplicity, the proposed CNLS formulation can be

adapted to other mean field models.

The proposed approach captures the asymmetric wind

field for the purpose of simulation, rather than for only

hindcasting or nowcasting. Some previous works have

also introduced asymmetries into an existing mean field

model by considering that the mean field parameter(s)

vary with azimuth. In particular, Xie et al. (2006) in-

troduce a real-time nowcasting asymmetric model, but

that model cannot be readily used to simulate a wind

field ensemble. Uhlhorn et al. (2014) and Vukicevic

et al. (2014) quantify asymmetries in storms using the

semispectral approach, but their focus is on hindcasting

and they do not explicitly parameterize asymmetries in

wind field models.

In section 4, we present the setup for estimation and

evaluation of the asymmetric wind field model, using

multiple sources of hurricane wind data. In section 5, we

discuss the performance of this model and highlight

some observations about the relationship between

asymmetries and environmental inputs. In section 6, we

briefly discuss how the model can be useful in wind field

simulation along tracks in a statistically generated en-

semble. Section 7 summarizes the results and proposes

future directions of study.

2. Hurricane wind field model

a. Mean field model

Given a simulated track produced from a track-

generation model, the Holland et al. (2010) model can

be used to estimate the mean tangential wind at points

along the track (see Fig. 1):
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The model relates the gradient wind velocity V (m s21)

to the radial distance from the storm center r (km).

Model parameters are maximum velocity Vm, radius of

maximum wind Rm, shape parameter B governing wind

decay rate from the storm center, and scaling parameter

S to adjust the profile shape. The parameter S is fixed to

0.5 at radius r#Rm and varies linearly with r for r.Rm.

In the function for radius r . Rm, Sn is taken to be the

value of S at which the estimated Holland velocity V(r)

is equal to a wind velocity observation in the storm pe-

riphery at radius rn.
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The Holland et al. (2010) model reduces to the orig-

inal Holland (1980) model, when S is fixed as 0.5 at all

values of radius r. Willoughby and Rahn (2004) con-

cluded that the original model tends to overestimate the

wind’s decay with radial distance; thus, it underesti-

mates the wind velocities in the storm’s outer regions.

The revised 2010 model uses the radially varying scal-

ing parameter S in order to partially rectify these

limitations.

For the purpose of modeling asymmetry in the wind

field, we empirically estimate the mean field parameters

for each snapshot. A snapshot is a depiction of the

hurricane wind field at a point in time. We estimate the

maximum wind intensity Vm by averaging the velocity

data points in the vicinity of the radius of maximum

winds Rm (i.e., 0.9Rm–1.2Rm). Consequently, Vm is ef-

fectively the azimuthally averaged maximum intensity.

The parameter Rm for each snapshot is taken to be the

value of radius r at which the maximum velocity in the

snapshot occurs. Then, the remaining parameters B and

S in Eq. (1) are chosen for each snapshot to best fit the

data. In particular, we search over discrete values ofB in

the range 0.5–4; for each value of B, we take rn to be the

maximum r in the snapshot and obtain S as a function of

r using Eq. (2). The B and S that minimize the absolute

difference between the snapshot wind data and the

Holland model estimates are chosen as the empirical

model parameters for that snapshot. We note that while

Holland (1980) suggests that B be selected from the

range of 1–2.5, we consider a wider range of B to en-

sure that the estimated mean field best fits the data.

Hereafter, the empirically estimatedmaximum intensity

parameter for the mean field is referred to as Vm,

whereas Vm refers to the maximum intensity as a func-

tion of azimuth, that is, the asymmetry model discussed

in section 2b.

b. Asymmetry model

Before presenting our asymmetry model based on

the Holland mean field model, we first summarize some

of the previous approaches to model asymmetry in

wind fields.

Xie et al. (2006) account for the asymmetry by setting

Rm in the Hollandmodel to be a polynomial function of

the azimuthal angle. This approach is shown to produce

more accurate real-time forecasts than mean field

models. Estimation of the function parameters requires

forecasted values of storm wind velocities [radial extent

of 34-, 50-, and 64-kt winds (1 kt ’ 0.51ms21)], which

can be obtained from the National Hurricane Center

tropical cyclone forecasts. However, such detailed in-

formation on wind velocities is not available as input in

simulation applications; thus the approach by Xie et al.

(2006) is not applicable for simulation of a representa-

tive wind field ensemble. A more closely related work is

by Uhlhorn et al. (2014, hereinafter U14) who model

asymmetry by representing Vm as an azimuthally vary-

ing harmonic function. Specifically, in U14, Vm is pa-

rameterized by the wavenumber-0 mean field maximum

velocity, and the wavenumber-1 asymmetric amplitude

and phase. Then, the linear relationships between the

wavenumber-1 parameters (amplitude and phase) and

environmental inputs (storm-translation speed and wind

shear) at Rm are estimated. It is well recognized that the

main environmental inputs contributing to asymmetry

are storm translation and wind shear (Shapiro 1983).

FIG. 1. Holland tangential velocity curves as a function of different (left)Rm and (right)B; (Vm,Rm)5 (50, 30) for

the dashed curve on the left plot and for all curves on the right plot, and the parameter S is set to be 1/2 at all values
of radius r. The black dots on the x axis mark the boundaries of the radius ranges used for binning in local

averaging (section 4).
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We represent Vm as a harmonic function in which the

amplitude(s) and phase(s) are parameterized by storm

translation Vtr and shear Vsh, which are available, time-

dependent inputs. Hereinafter, we add subscripts tr for

translation and sh for wind shear to azimuth l, ampli-

tude A, and phase f. Specifically, ltr and lsh are the

azimuth defined clockwise from the translation and

shear directions, respectively, whereasAtr and ftr define

the asymmetry induced by translation and Ash and fsh

define the asymmetry induced by shear. We model

the maximum intensity Vm as the following harmonic

function:
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to express the maximum intensity as a function of

the variables (azimuths ltr and lsh) and model inputs

(Vm, Vtr, and Vsh). The parameter Vm, which is the es-

timated maximum intensity in the mean field model, is

the wavenumber-0 component in the formulation.

In Eq. (3), the amplitudes and phases of the asym-

metries are modeled as affine functions of translation

and shear:
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The values of the estimated amplitudes are constrained

to be strictly nonnegative:

A
tr
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)$ 0; A

sh
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sh
)$ 0, (5)

whereAtr(Vtr) is given by Eq. (4a) andAsh(Vsh) is given

by Eq. (4c). Furthermore, the values of the esti-

mated phases are constrained to be within a range that

spans 2p:

b
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where ftr(Vtr) is given by Eq. (4b) and fsh(Vsh) is given

by Eq. (4d). The parameters bf,tr and bf,sh are the lower

bounds of the ranges for translation and shear, respec-

tively; thus, the respective ranges for the phases are

[bf,tr, bf,tr 1 2p] and [bf,sh, bf,sh 1 2p].

In summary, the complete wind field model is de-

fined by the mean field model [Eqs. (1) and (2)], the

asymmetry model [Eqs. (3) and (4)], and the constraints

[Eqs. (5) and (6)]. The asymmetry model involves a total

of eight unknowns (parameters)—four to capture trans-

lation effects and four to capture shear effects.

Another way to account for the effect of translation

would be to add the storm-translation vector to the wind

field (Schwerdt et al. 1979; Vickery et al. 2009). The

maximum velocity under equal radius when the storm-

translation vector is added to the mean field occurs at

exactly 908 clockwise of the translation direction, where

the storm motion and cyclostrophic wind direction

are aligned. However, U14 found that if the translation-

induced asymmetry is modeled as a wavenumber-1

component, the azimuth corresponding to the maxi-

mum velocity (i.e., phase ftr) varies linearly with translation

speed. To ensure that the model-estimated and observa-

tionally based asymmetries are aligned, we model the

asymmetry resulting from translation as a wavenumber-1

component with tunable parameters xtr. In section 2c, we

discuss howour asymmetrymodel is extended to include the

translationvector in addition towavenumber-1 asymmetries.

c. Combined wind field model

To present the combined mean field and asymmetry

model, we denote the eight unknowns (parameters)

in section 2b as xtr 5 [x
(0)
tr,A, x

(1)
tr,A, x

(0)
tr,f, x

(1)
tr,f] and xsh 5

[x
(0)
sh,A, x

(1)
sh,A, x

(0)
sh,f, x

(1)
sh,f]. The full vector of unknowns is

denoted as x 5 (xtr, xsh).

We can rewrite the combined wind field model as a

function of the unknowns x, variables (radial distance r

as well as azimuthal angles ltr and lsh), and input pa-

rameters to the mean field and asymmetry models. In

the mean field model, velocity V was expressed as a

function of the radius r [Eqs. (1) and (2)] and parame-

terized by empirically estimated Holland parameters

Vm, Rm, B, and S(r). Furthermore, in the asymmetry

model, the maximum intensity parameter Vm in Eq. (1)

was expressed as a function of azimuths ltr and lsh, and

parameterized by translation Vtr, wind shear Vsh, and the

input parameterVm [Eqs. (3) and (4)]. To summarize, the

mean field is affected by the radius r and Holland pa-

rameters s(r)5 [Rm,B, S(r)], and the asymmetrymodel is

affected by the azimuthal angles l 5 (ltr, lsh), Holland

parameter Vm, and environmental inputs u 5 (Vtr, Vsh).

With a slight abuse of notation, we use V[r, l; s(r),

Vm, u; x] to refer to the velocity function. We use this

notation to emphasize that the velocity is a function of

variables r and l; model inputs s(r), Vm, and u; and

unknown parameters x. Then, we can write

V[r,l; s(r),V
m
,u; x]5V

m
(l;V

m
,u; x)Y[r; s(r)] , (7)

where
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Here, xtr,A 5 [x
(0)
tr,A, x

(1)
tr,A], xtr,f 5 [x

(0)
tr,f, x

(1)
tr,f], xsh,A 5 [x

(0)
sh,A,

x
(1)
sh,A], and xsh,f 5 [x

(0)
sh,f, x

(1)
sh,f]. Equation (7) can be re-

written as follows, to express the wind field model as the

sum of the mean field winds and the asymmetries

resulting from translation and shear:
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Here, VMF denotes the mean field, Vm,tr(ltr; Vtr; xtr)

denotes the asymmetry resulting from translation, and

Vm,sh(lsh; Vsh; xsh) denotes the asymmetry resulting

from shear. The estimated wind field velocities are 1-min

sustained winds.

To obtain a simpler wind field model that considers

only asymmetry resulting from the translation vector,

one can just perform vector addition of the mean field

and translation vector. The resultant asymmetric winds

are referred to as VMF1TV.
1 To obtain a model that

considers both the translation vector and wavenumber-1

asymmetries, the terms Vm,tr(ltr; Vtr; xtr)Y[r; s(r)] and

Vm,sh(lsh; Vsh; xsh)Y[r; s(r)] are added to VMF1TV. In

section 5, we evaluate the effects of wavenumber-1

asymmetries and the translation vector on the model

performance.

d. Data

We use data on hurricane tracks and wind field

snapshots for parameter estimation (see Fig. 2 for plots

of example tracks and snapshots). The National

Hurricane Centers hurricane databases (HURDAT-2)

is used for track locations of past storms (Landsea and

Franklin 2013), which provide data every six hours

on the storm’s location and maximum sustained wind

speed. The wind field data include 1) the Hurricane

Research Division hurricane surface wind analysis sys-

tem [H*Wind, now Risk Management Solutions, Inc.,

(RMS) HWind] radial structure database (Powell et al.

1998) and 2) output from the Pennsylvania State

University Weather Research and Forecasting (WRF)

Model–based ensemble Kalman filter (EnKF) data as-

similation system (Weng and Zhang 2012). These data-

sets contain surface (;10m) wind velocity estimates

obtained by processing direct observations through sta-

tistical models, data assimilation, and objective analyses.

Although we use surface wind field data to estimate

FIG. 2. (left) Examples of hurricane tracks, interpolated using HURDAT data. (right) An example of HWind

velocity data (blue) from one snapshot and a best-fit Holland mean field estimate (red) as a function of radius.

1 The velocities VMF1TV are dependent on the storm-translation

magnitude Vtr and direction utr, in addition to Vm, r, s(r), and the

azimuthal angle.
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parameters of a gradient wind field model, Rousseau-

Rizzi and Emanuel (2019) showed that the speed of

surface winds is the same as that of the gradient wind in

an axisymmetric, steady-state storm over the sea.

A subset of the wind field data is used for estimation

of the asymmetric wind field model parameters, and

the resulting model is evaluated by comparing to the

remaining data. Only HWind snapshots were used for

estimating model parameters. HWind snapshots are

1-min sustained winds, derived by assimilation and

processing of in situ and remotely sensed observations.

The snapshots are given at a typical interval of 3 h and

horizontal grid spacing of 6 km. Naturally, one would

expect that the estimated parameters and asymmetry

model are affected by the HWind data’s inherent biases

and variability. Total variability among observations at a

particular radius ranges from 7% near the eyewall to

about 15% in storm outer regions. There is a roughly

10% positive bias in wind speeds around the eyewall,

and this bias decreases with r (DiNapoli et al. 2012).

BothHWind andWRFdata are used for evaluation of

the estimated wind field model, mainly because WRF

data are only available for two of the storms studied here

(Katrina and Sandy) and thus not sufficient for param-

eter estimation. The WRF snapshots are instantaneous

wind estimates produced by assimilating observations

(e.g., airborne Doppler radar velocity data) into the

convection-permitting WRF EnKF analysis. These

snapshots are more fine-grained than HWind snapshots,

occur at an interval of 30min (Sandy) or 1 h (Katrina)

and have horizontal grid spacing of around 3km over an

approximately 1700km 3 1700km region (Katrina) or

900 km 3 900 km region (Sandy). The intensity of sim-

ulated WRF storms is sensitive to the model’s air–sea

surface flux parameterization scheme (Green and

Zhang 2013). In addition, WRF data for an ensemble

of storms display large forecast track divergence due

to uncertainties in environmental flow (Munsell and

Zhang 2014). These sensitivities affect the comparative

model performance of WRF and HWind data, which is

reported in section 5c. We converted the WRF data to

1-min sustained winds following Eq. (1) from Klotz and

Nolan (2019).

3. Parameter estimation

This section details the CNLS optimization problem

for parameter estimation of the asymmetric wind field

model. The goal of a standard CNLS problem is to select

unknown parameters x that minimize an objective

function f(x) while also satisfying predefined constraints

that capture allowable bounds on the parameters.

Specifically, f (x)5 1/2�N

i51e
2
i (x) for N data points, where

ei(x) is the residual at data point i. Commonly used op-

timization solvers rely on the gradient and Hessian of

the objective function to iteratively obtain estimates of

the parameters until the objective function is minimized

or the number of iterations is exceeded. The objective,

gradient, and Hessian for a CNLS problem with un-

known vector x of length M are expressed as

f (x)5
1

2
�
N

i51

e2i (x)

=f (x)5 J(x)Te(x)

=2f (x)5 J(x)TJ(x)1�
N

i51

e
i
(x)=2e

i
(x) , (11)

where the N 3 M matrix J(x) is the Jacobian whose

terms are derivatives of the residuals with respect to x. In

general, one can express the equality and inequality

constraints as follows:

g
k
(x)5 c

k
, k5 f1, . . . ,Kg,

h
l
(x)$ d

l
, l5 f1, . . . ,Lg, (12)

where gk() and hl() are linear functions of x and ck and

dl are constants.

We now specify the objective of the CNLS problem

for the purpose of estimating the wind field model in-

troduced in section 2. Recall that the unknowns in CNLS

are the eight parameters in Eqs. (3) and (4). The ob-

jective is to minimize the sum of squared residuals.

For the ith data point, the residual between the ob-

served velocity Vi and model-estimated velocity V̂i is

ei(x)5Vi 2 V̂i, in which V̂i is assigned the value of the

velocity function [Eq. (7) or Eq. (9)] evaluated for

the ith data point. Note that we replace VMF with

VMF1TV if the translation vector is included in the

model. Henceforth, t denotes a snapshot, and t(i) is the

snapshot index corresponding to data point i. Consider

that there areT snapshots andNt velocitymeasurements

per snapshot t. Thus, the total number of data pointsN is

given by �tNt. The CNLS problem for estimating the

optimal parameter vector is written as

Minimize
x

f (x)5
1

2
�
N

i51

e2i (x)5
1

2
�
N

i51

fV
i
2 V̂

i
[r

i
,l

i
; s

i
(r

i
),

V
m,t(i)

, u
t(i)
; x]g2 (13)

subject to the constraints given by Eqs. (5) and (6) for

each snapshot t, which restrict the range of allowable

values that the unknown parameters x may take. The

indices of data points are dropped hereinafter for no-

tational simplicity.
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Parameter estimates are obtained using theMATLAB

interior-point constrained nonlinear solver, which takes

an initial parameter vector x and iteratively updates it to

minimize the objective. We use the following fmincon

options: interior-point algorithm, user-supplied gradient

and Hessian, and maximum number of iterations set

to 100.2 (See appendix A for the gradient and Hessian

derivations that are supplied to the solver.)

4. Experimental design

This section covers data preparation, CNLS parame-

ter estimation, and model evaluation.

a. Preparation of data

Storm track and wind field data are required for es-

timation of the wind field model (see section 2d). This

study uses HURDAT tracks from Hurricanes Andrew

(1992), Isabel (2003), Dennis (2005), Katrina (2005),

Wilma (2005), Irene (2011), Isaac (2012), Sandy (2012),

and Ingrid (2013). HWind data are obtained for all

stormsandWRFdata forKatrinaandSandy to represent the

wind field. The SandyWRF data used here are 10 members

of the 60-member ensemble forecast (Munsell and Zhang

2014). All 10 ensemble members had relatively accurate

landfall locations (track error of 233.8km averaged over a

time window of 6h before and after landing). The Katrina

WRF data used are from a single ensemblemember (Green

and Zhang 2013), as other WRF simulations of Katrina

were run on different air–sea flux parameterization schemes.

In total, two Katrina ‘‘storms’’ (one HWind and one WRF)

and 11 Sandy storms (one HWind and 10WRF) are used in

this study. As a proxy for excluding times at which storms

have undergone extratropical transition, snapshots at a lati-

tude greater than 358N are not included in the dataset.

The wind shear for all snapshots is calculated using

Global Forecast System (GFS) operational analyses,

which are given at ;18 resolution. The first step in cal-

culating the wind shear is to subtract an estimate of the

hurricane vortex streamfunction (Galarneau and Davis

2013) from the GFS wind field, in order to isolate the

environmental winds. Then, the mean environmental

winds at heights of 850 and 250 hPa are calculated by

averaging over a 200-km radius around the storm center,

and the 850–250-hPa-wind shear vector (magnitude Vsh

and direction ush) is obtained by vector subtraction of

the two means. We use the GFS analyses because these

data provide a more fine-grained estimation of the wind

shear.However, for comparison purposes, wediscussmodel

performance using wind shear from both the GFS analyses

and Statistical Hurricane Intensity Prediction Scheme

(SHIPS) database (DeMaria et al. 2005) in section 5.

Next, we interpolate the HURDAT track positions to

half-hour intervals using a piecewise cubic Hermite in-

terpolating polynomial (PCHIP) (Chavas et al. 2015).

The storm-translation vector (magnitude Vtr and direc-

tion utr) is calculated using the interpolated storm center

positions. Then, the wind shear vector is interpolated

to half-hour intervals using PCHIP. The interpolatedVtr

and Vsh are used as inputs to the CNLS problem.

Then, velocity data are locally averaged, because there

are more data points at larger values of radius r in both

HWind and WRF snapshots. To prepare for local aver-

aging, the azimuths ltr and lsh are calculated for all data

points as angles clockwise from utr and ush, respectively.

Then, velocity data from each snapshot are binned in

r 2 ltr space, and the velocity data in each bin are aver-

aged (see Fig. 1 for details regarding bins). These locally

averaged velocitiesV (;800–900 per snapshot), as well as

the radii r and azimuths ltr and lsh corresponding to the

bins, are used as inputs to CNLS. As a result of local

averaging, the velocity inputs to CNLS are equally dis-

tributed across the entire range of r. The final step is to

estimate the Holland parameters s(r) and Vm.

A remaining issue to address is that the asymmetry

varies radially, but the amplitudes and phases in Eq. (3)

are not parameterized by radius r. It is difficult to model

amplitudes and phases as a function of r using simple

parametric forms. Instead, we only use velocities corre-

sponding to radii less than a cutoff radiusRcut as input for

parameter estimation and evaluation, removing the need

to parameterize asymmetry as a function of r. The radius

Rcut is defined as max[min(r15, 300), min(r0:75Vm
, 300)]

where r15 denotes the radius at which the mean field ve-

locity is 15m s21 and r0:75Vm
denotes the radius at

which the mean field velocity is 0:75Vm. The radius r15 is a

conservative practical cutoff for hurricane risk analysis of

above-ground infrastructure components, such as overhead

electricity lines and poles.3 However, for snapshots with low

maximum intensity parameterVm, a cutoff of r15wouldomit

most of the data points in the snapshot. Thus, we also ensure

that radial regions of the storm with mean field velocity

greater than 0:75Vm are included, regardless of whether or

not r0:75Vm
is greater than r15. Last,Rcut is less than 300km to

ensure that peripheral storm regions are not included.

2 Further details about the interior-point algorithm can be found

in Nocedal and Wright (2006).

3 Specifically, according to a model estimated using historical

storm data that include wind data from hurricanes, tropical de-

pressions, and tropical storms (Zhang et al. 2014), electricity dis-

tribution lines are expected to fail at a frequency that increases

quadratically with wind speed above 20m s21 and are much less

likely to fail below 20m s21. Another cutoff value might be ap-

propriate in other contexts, such as thunderstorms or storm surge.
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b. Parameter estimation

Four CNLS-estimated asymmetric models with

wavenumber-1 asymmetries are estimated. These asym-

metric models are compared to the two benchmark

models: mean field and mean field plus translation vector

(seeTable 1 for the complete list of sixmodels considered).

Parameter initializations for solving the CNLS prob-

lem are obtained following a two-step approach. First,

we empirically estimate the translation- and shear-

relative wavenumber-1 amplitude and phase at the ra-

dius of maximum winds for each snapshot. Then we

simply use the unconstrained least squares method to

estimate x, in which the estimated amplitudes and pha-

ses are the inputs. The resulting value of x is taken as the

initial parameter vector for the CNLS problem.

Snapshots from Hurricanes Andrew, Dennis, Ingrid,

Isaac, Sandy, and Wilma (all HWind data) are used to

train the models. In addition, a few storms are set aside

as held-out test data for evaluation of the models: Irene

(HWind), Isabel (HWind), Katrina (HWind, WRF), and

Sandy (HWind, WRF). The training-test split of the data

is made (Table 2) so that the selected training storms are

heterogeneous in: geographical track coverage (including

land coverage), time of occurrence (month and year), and

maximum intensity.4

c. Evaluation of model performance

We report three performance metrics as a measure

of model performance: cross-validation error (CVE),

Bayesian information criterion (BIC), and mean-square

error (MSE) on the test data.

The cross-validation error is obtained from a k-fold

cross-validation procedure. To perform k-fold cross

validation, we partition the set of training snapshots into

k5 5 subsets (folds). Then, five sets of data are formed,

in which each set consists of the training data with one

fold of snapshots omitted. For each set of data, we ob-

tain the MSE on the omitted fold using the model esti-

mated with the entire training set. The cross-validation

error of a model is equal to the MSE averaged over the

five folds. This process of parameter estimation followed

by evaluation on the held-out fold is conducted for each

of the six models.

The Bayesian information criterion is a metric that

rewards a model’s goodness of fit, but also includes an

TABLE 1. List of six wind fieldmodels evaluated. The asymmetricmodels are classified asVtr models (consider only translation) orVtr1
Vsh models (consider both translation and shear). Furthermore, the model names containing the terms TV denote inclusion of the

translation vector and those containing WVN-1 denote inclusion of the wavenumber-1 component(s) resulting from translation and/or

shear. The mean field and Vtr (TV) models serve as benchmark models; all other models have unknown parameters to be estimated using

the CNLS method.

Model Translation effects Shear effects

1) Mean field — —

Vtr models

2) Vtr (TV) Translation vector —

3) Vtr (WVN-1) Wavenumber 1 —

4) Vtr (TV 1 WVN-1) Translation vector and wavenumber 1 —

Vtr 1 Vsh models

5) Vtr (TV) 1 Vsh (WVN-1) Translation vector Wavenumber 1

6) Vtr (TV 1 WVN-1) 1 Vsh (WVN-1) Translation vector and wavenumber 1 Wavenumber 1

TABLE 2. Key characteristics of storms used for training and

testing. The latitude range is the range covered by the snapshots

and is not the actual range traveled by the storm. Maximum in-

tensity metrics are obtained from HURDAT data and are given in

knots. All storms use HWind, except for two test storms labeled

as WRF.

Max

intensity

Lat

range (8N) Time

No.

snapshots

Training set

Andrew 150 25.38–25.64 Aug 1992 4

Dennis 130 15.77–31.15 Jul 2005 28

Ingrid 75 19.11–23.79 Sep 2013 12

Isaac 70 14.70–29.91 Aug–Sep

2012

41

Sandy 100 13.58–39.76 Oct–Nov

2012

21

Wilma 160 15.68–28.51 Oct 2005 30

Test set

Irene 105 15.08–41.80 Aug 2011 27

Isabel 145 21.30–33.95 Sep 2003 27

Katrina 175 24.30–25.99 Aug 2005 16

Katrina (WRF) 175 24.40–38.34 Aug 2005 120

Sandy 100 13.58–37.02 Oct–Nov

2012

20

Sandy (WRF) 100 24.6–41.86 Oct–Nov

2012

256

4 Note that HWind snapshots of Hurricane Sandy have been split

across the training and test sets. The radial extent of Sandy

(HWind) is unusually large at northerly latitudes relative to the

other HWind storms studied here, so HWind snapshots of Sandy

are split among training and testing data to account for this feature

of storm structure in parameter estimation.
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overfitting penalty that is an increasing function of the

number of parameters (Burnham and Anderson 2004).

One can assess the relative likelihoods of two models by

using their BIC (see appendix B). Then, the models’

MSEs evaluated on the held-out test data are intended

to validate the expected model performance suggested

by the CVE and BIC.

5. Results

This section discusses the CNLS-estimated parame-

ters of the asymmetric wind field models, then compares

the performance of the models. See Table 3 for the

CNLS parameter estimates.

a. Parameter estimates of Vtr models

Here, we discuss the parameter estimates of two CNLS-

estimated models that incorporate asymmetry resulting

from translation: the Vtr (WVN-1) model—asymmetry

modeled as the wavenumber-1 (WVN-1) component; and

theVtr (TV1WVN-1)model—asymmetrymodeled as the

translation vector (TV) and the wavenumber-1 component.

We compare these models with the Vtr (TV) benchmark

model—asymmetry modeled as only the translation vector

added to the mean field.

The parameters x̂tr of the Vtr (WVN-1) model dem-

onstrate a statistically significant (.95% confidence)

linear relationship between translation speed Vtr and

both amplitude Atr and phase ftr. The key difference

between theVtr (TV)model and theVtr (WVN-1)model

is the azimuth corresponding to the maximum intensity.

In the Vtr (TV) model, the maximum velocity under

equal radius occurs at 908 clockwise of the translation

direction, as was discussed in section 2. In theVtr (WVN-

1 model), the maximum velocity under equal radius

occurs slightly clockwise of 908 because of the hurricane
inflow component.

The key difference between our result and U14’s re-

sult is that we find a significant downwind storm-motion-

relative phase rotation with increasing translation speed

[i.e., the slope parameter x̂
(1)
tr,f , 0]. In contrast, U14 find

an upwind phase rotation [x̂
(1)
tr,f . 0]. This discrepancy

can be attributed to different parameter estimation

methods. U14 use unconstrained least squares to esti-

mate xtr, in which the inputs are empirically estimated

wavenumber-1 amplitudes and phases at the radius of

maximum winds. In contrast, the inputs for CNLS are

observed velocities that lie within the cutoff radius Rcut.

Indeed, we find a significant upwind storm-motion-relative

phase rotation with translation speed [x̂
(1)
tr,f 5 3:48] when

applying U14’s procedure.

The parameters of the Vtr (TV 1 WVN-1) model also

demonstrate a significant relationship between translation T
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speed and both amplitude and phase. In this model,

the wavenumber-1 parameters x̂tr estimate the residual

asymmetry resulting from translation that remains after

the translation vector has been added to the mean field.

The phase associated with this residual asymmetry is more

than 908 counterclockwise from the translation direc-

tion [x̂
(0)
tr,f 52126:88] and rotates upwind with increasing

translation speed [x̂
(1)
tr,f . 0].

b. Parameter estimates of Vtr 1 Vsh models

Two CNLS-estimated models with translation- and

shear-induced asymmetries (Vtr 1 Vsh models) are dis-

cussed here:Vtr (TV)1Vsh (WVN-1)model—asymmetry

modeled as the translation vector (TV) andwavenumber-1

component resulting from shear; andVtr (TV1WVN-1)1
Vsh (WVN-1) model—asymmetry modeled as the transla-

tion vector and wavenumber-1 component resulting

from both translation and shear. The parameters x̂sh of

both models demonstrate a significant linear relation-

ship between shear magnitude and both amplitude Ash

and phase fsh.

The phase parameters x̂sh,f estimated using SHIPS

data demonstrate that the phase rotates downwind from

downshear to left of shear with increasing shear mag-

nitude [x̂
(1)
sh,f , 0 for both models]. This result is in

agreement with that of U14, who also used SHIPS data.

TABLE 4. Performance of models measured in terms of CVE and MSE on test storms. The CVE and MSE of models including

asymmetry resulting from shear are given for GFS (label G) and SHIPS (label S). The best-performing model under each metric is in

boldface type. MSE results for Sandy WRF are given as averaged MSE across 10 ensemble members.

MSE (test storms) HWind

MSE

(test storms) WRF

Model CVE Irene Isabel Katrina Sandy Katrina Sandy

Mean field 33.2 33.6 32.9 8.9 31.4 64.7 65.4

Vtr (WVN-1) 29.5 24.0 29.4 10.8 28.7 74.3 54.2

Vtr (TV) 25.9 23.7 28.4 16.7 32.9 75.3 126.9

Vtr (TV 1 WVN-1) 20.0 25.7 26.2 11.6 25.3 72.1 77.7

Vtr (TV) 1 Vsh (WVN-1) G 25.7 23.6 28.0 18.5 33.2 77.4 124.0

S 21.4 15.7 28.9 17.1 23.6 95.2 92.2

Vtr (TV 1 WVN-1) 1 Vsh (WVN-1) G 19.9 26.2 26.1 11.6 24.9 71.0 77.4

S 17.2 16.7 25.9 11.4 16.8 95.2 90.7

FIG. 3. Performance of the mean field and Vtr models on HWind testing storms, in terms of MSE.
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However, in contrast to our approach, U14 subtract only

the estimated wavenumber-1 asymmetry resulting from

translation from the storm winds, before estimating the

wavenumber-1 asymmetry resulting from shear. They

did not consider the translation vector because the wind

data they used did not provide the wind direction.

The parameters of the Vtr (TV 1 WVN-1) 1 Vsh

(WVN-1) model using GFS also indicate a downwind

rotation of the phase from downshear to left of shear.

However, the parameters of theVtr (TV)1Vsh (WVN-1)

model instead indicate that the phase rotates upwind

[x̂
(1)
sh,f . 0], from upshear left [21808,f

(j)
sh ,2908] to

downshear left [2908,f
(j)
sh , 08]. Klotz and Jiang (2017)

also found that the asymmetry resulting from shear tends

to be downshear left or upshear left, but they used SHIPS

data rather than GFS data.

The final key observation is that the wavenumber-1

asymmetry resulting from shear is smaller in the Vtr

(TV 1 WVN-1) 1 Vsh (WVN-1) model than in the

Vtr (TV) 1 Vsh (WVN-1) model. In particular, in the

Vtr (TV1WVN-1)1Vsh (WVN-1)model, the intercept

term x̂
(0)
sh,A is not statistically significant, and the slope

term x̂
(1)
sh,A , 0:2. This result indicates that when both the

wavenumber-1 component and translation vector are

used to model asymmetry resulting from translation,

the resultant wavenumber-1 asymmetry resulting from

shear becomes smaller.

c. Model performance and selection

Now, we compare the performance of the wind field

models listed in Table 1. The first performance metric

discussed is the CVE of the models (see Table 4). The

models ordered from lowest to highest CVE are

Vtr (TV1WVN-1)1Vsh (WVN-1),Vtr (TV1WVN-1),

Vtr (TV) 1 Vsh (WVN-1), Vtr (TV), Vtr (WVN-1), and

mean field. Thus, the model with the lowest CVE is the

Vtr (TV1WVN-1)1Vsh (WVN-1) model—asymmetry

modeled as the translation vector and wavenumber-1

asymmetries resulting from both translation and shear.

Three key observations are evident from the cross-

validation results. First, addition of wavenumber-1

asymmetries to the wind field model predictably lowers

the cross-validation error by decreasing the variance of

the residuals. Second, the benchmark Vtr (TV) model

has a lower cross-validation error than the Vtr (WVN-1)

model. The main reason why the Vtr (TV) model is

better-performing is that its mean residual is 0.9 lower

than that of the mean field (indicating a smaller model

bias). Third, for the GFS data, the difference in cross-

validation error is small when comparing theVtr (TV)1
Vsh (WVN-1) model to the Vtr (TV) model, or the Vtr

(TV1WVN-1)1Vsh (WVN-1) model to theVtr (TV1
WVN-1) model. Thus, adding shear-induced asymmetry

only marginally decreases the cross-validation error

when using the GFS data.

FIG. 4. Performance of the Vtr (TV) model and Vtr 1 Vsh models on HWind testing storms and using GFS data for

shear, in terms of MSE.

APRIL 2020 CHANG ET AL . 697

Brought to you by MIT LIBRARIES | Unauthenticated | Downloaded 01/28/21 08:41 PM UTC



The second metric discussed is the BIC. A lower

BIC indicates a better model. TheVtr (TV1WVN-1)1
Vsh (WVN-1) model has the lowest BIC, followed by the

Vtr (TV1WVN-1) model. Wind field models with more

parameters have lower BIC values: as the number of

parameters increases, the penalty term for overfitting in

the BIC grows at a slower rate compared to the decrease

in the objective (see appendix B). The penalty term

grows relatively slowly because the number of velocity

data points N is much larger than the number of pa-

rameters M in our model.5

Next, we discuss the performance of themodels on the

HWind test data as measured by mean-squared error

(see Table 4). The models with the lowest MSE under

both GFS and SHIPS are Vtr (TV) 1 Vsh (WVN-1) for

Irene,Vtr (TV1WVN-1)1Vsh (WVN-1) for Isabel and

Sandy, and the mean field for Katrina. Thus, the best-

performing models on all storms except Katrina include

asymmetry resulting from both translation and shear.

Specifically, the Vtr (TV 1 WVN-1) 1 Vsh (WVN-1)

model has the lowest mean-squared error averaged over

the four HWind test storms. Figures 3 and 4 demon-

strate how the mean-squared error varies over time for

each storm.

Figures 5–8 compare the CNLS- and empirically es-

timated amplitudes and phases at the radius of maxi-

mumwinds. The figures demonstrate that the mean field

is the best for Katrina, because the estimated rela-

tionships between the phases and environmental

inputs did not accurately estimate the phases of the

Katrina snapshots. In addition, the CNLS-estimated

amplitudes tend to be smaller than the empirical

amplitudes. This is because wavenumber-1 asym-

metries at the radius of maximum winds and other

radii can differ; thus CNLS-estimated amplitudes

are smaller in order to decrease inaccuracies in ve-

locity estimates introduced by radial variations in

asymmetry.

Last, we discuss the MSE of the models on the WRF

test data. Because the wind field models are trained

using HWind data, test performance on WRF storms is

worse than on HWind storms. Models estimated using

HWind velocity data are not able to capture the greater

azimuthal variability in wind velocities present in the

FIG. 5. Wavenumber-1 amplitudes and phases resulting from translation (Atr and ftr, respectively) for HWind testing storms, as es-

timated by the Vtr (WVN-1) model. Empirically estimated amplitudes and phases at the radius of maximum winds are also plotted for

comparison purposes.

5 As a result of spatial smoothing, the wind field estimation error

among physically neighboring locations may be correlated, which

results in the ‘‘effective’’ number of data points being smaller

than N.
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WRFdata. Converting theWRF data to 1-min sustained

winds, as was discussed in section 2d, did not noticeably

change the velocities. The azimuthal variability is re-

flected in the empirical asymmetric amplitudes Atr and

Ash estimated at the radius of maximum winds. The

HWind amplitudes for Katrina (and Sandy, in paren-

theses) using GFS data are Atr 5 3.13 (4.20) and Ash 5
2.65 (2.12). In contrast, theWRF amplitudes for Katrina

and Sandy using GFS data are Atr 5 7.08 (5.10) and

Ash 5 4.44 (10.73).

The results suggest that the best model is the Vtr

(TV 1 WVN-1) 1 Vsh (WVN-1) model. However, the

CVEs of the models including wavenumber-1 resulting

from shear are only marginally better than those of

models that do not include shear. For this reason, we

perform one-way analysis of variance (ANOVA) as a

measure of whether the differences in performance be-

tween twomodels are significant.6 According to the one-

way ANOVA, there is not a significant difference in

performance between the Vtr (TV 1 WVN-1) 1 Vsh

(WVN-1) and Vtr (TV 1 WVN-1) models, which is ev-

ident in the very similar wind fields estimated by these

two models in Fig. 9. Similarly, there is not a signifi-

cant performance difference between the Vtr (TV) 1
Vsh (WVN-1) and Vtr (TV) models. Parameter esti-

mation using a larger training set and/or evaluating

the parameters on more test storms would permit a

more definitive conclusion on the effect of shear on

asymmetry.

6. Application of model to wind field simulation

Given an ensemble consisting of a large number

(typically .103) of synthetic storm tracks, the asym-

metric surface wind field can be simulated at points

along each track using the model proposed in this paper.

Storm tracks can be generated using the method pro-

posed in Emanuel et al. (2006). After gradient wind

fields are simulated along the tracks using our model, a

suitable boundary layer model such as the model pro-

posed by Vickery et al. (2009) may be used to convert

the gradient winds to surface winds.

To simulate the mean field winds along each track

would require estimation of the Holland parameters.

The parameters Vm and Rm can be estimated using

coupled intensity models (Emanuel et al. 2004; Emanuel

2017). The parameter B can be estimated as a function

of the central pressure difference and Vm, as suggested

by Holland et al. (2010). The parameter S(r) can be

FIG. 6. As in Fig. 5, but as estimated by the Vtr (TV 1 WVN-1) model.

6 Here, the one-way ANOVA tests whether there is a statis-

tically significant difference between the mean residuals of two

different models.
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estimated as a function of r0, the outer radius at which

wind velocity is zero. Finally, a lognormal distribution is

recommended for drawing the radius r0 (Emanuel 1989;

Dean et al. 2009).

To simulate the asymmetries in the wind field along the

track, one canuse the estimatedVtr (TV1WVN-1)1Vsh

(WVN-1) model in Table 3.7 Then, the asymmetries

can be simulated provided that the inputs from storm

translation and wind shear are available. To further

improve estimation of asymmetries, one can set the

amplitudes and phases to be a function of the asymme-

tries at a previous time step, as well as the shear and

translation at the current time. Our model can be suit-

ably extended to account for the dependence of asym-

metry on the wind field at previous times.

7. Conclusions and future work

In this article, we proposed an asymmetric wind field

model for the purpose of wind field estimation along

hurricane tracks. Our model incorporates wavenumber-1

asymmetries as a function of storm-translation speed

and wind shear, modulating maximum intensity Vm

in the Holland equation. To obtain parameter esti-

mates for our model, we formulate a constrained,

nonlinear least squares optimization problem in which

the objective function is the sum of squared errors

between model-estimated and observationally based

velocity values.

The main contribution of our work is a systematic

approach to asymmetric hurricane wind field estima-

tion for the purpose of simulating the wind field along

statistically generated tracks in an ensemble. We fit a

parametric model to past hurricane velocity wind

fields and use environmental variables to estimate

asymmetry. Specifically, our asymmetry model cap-

tures the wavenumber-1 asymmetric structure with or

without inclusion of the translation vector in the

model. Below we summarize our key findings:

d Inclusion of the translation vector in the wind field

affects the wavenumber-1 asymmetry resulting from

translation. If the translation vector is not added to

the winds, the wavenumber-1 phase occurs slightly

more than 908 clockwise of the translation direction

and rotates downwind with increasing translation speed.

If the translation vector is added, the wavenumber-1

FIG. 7. Wavenumber-1 amplitudes and phases resulting from shear (Ash and fsh, respectively) for HWind testing storms and GFS

data, as estimated by the Vtr (TV)1 Vsh (WVN-1) model. Empirically estimated amplitudes and phases at the radius of maximum winds

are also plotted for comparison purposes.

7 This is the best-performing model, as discussed in section 5c.

We elect to use the model that was estimated using GFS because

the wind shear obtained using GFS analyses with vortex inversion

is a more accurate estimate than using SHIPS.
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component estimates the residual asymmetry that re-

mains in the wind field. The phase of this residual

asymmetry occurs slightly more than 908 counter-

clockwise of the translation direction and rotates up-

wind with increasing translation speed.
d When using SHIPS data, the wavenumber-1 shear-

relative phase rotates downwind from downshear

to left of shear with increasing shear magnitude.

When using GFS data, the phase rotates from

downshear to left of shear with increasing shear

magnitude if the wavenumber-1 component re-

sulting from translation is included, but it rotates

upwind from upshear left to downshear left with

increasing shear magnitude otherwise. The asym-

metry resulting from shear is substantially smaller

when the wavenumber-1 asymmetry resulting from

translation is included.
d To determine the best model, we evaluate models

using the cross-validation error, Bayesian information

criterion, and mean-squared error on test storms

as metrics. The procedure suggests that the best-

performing model is the Vtr (TV 1 WVN-1) 1 Vsh

(WVN-1) model, which accounts for the translation

vector as well as wavenumber-1 asymmetries resulting

from translation and shear. However, omission of the

wavenumber-1 component resulting from shear from

this model only marginally decreases the model per-

formance. Additional data for estimation would permit

us to generate more conclusive results on asymmetry

resulting from shear.
d Model performance is relatively weak onWRF data,

because all the models are trained using HWind

data. Since WRF velocity data are instantaneous

winds, WRF snapshots have greater azimuthal var-

iability that is not captured by models estimated

using HWind data. Additional WRF storms would

allow us to draw more decisive conclusions on the

effect of using HWind versus WRF snapshots in

parameter estimation.

Future work on modeling asymmetry should account

for the dependence of the amplitudes and phases

on previous time steps, as discussed in section 6.

Furthermore, stochastic methods can be introduced

for modeling the radial variability in the translation

and shear-induced phase with increasing radius. In

particular, shear is likely to have a substantial effect on

storm asymmetry outside of the radius of maximum

winds (Klotz and Jiang 2017). Also, modeling sec-

ondary eyewalls in storms might bring additional im-

provements to wind field estimation as compared to

asymmetry. By improving asymmetry modeling tech-

niques and/or incorporating additional physical fea-

tures into the wind field model, we hope to further

increase the accuracy of hurricane wind field estima-

tion for engineering risk assessment.

FIG. 8. As in Fig. 7, but as estimated by the Vtr (TV 1 WVN-1) 1 Vsh (WVN-1) model.
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FIG. 9. Visualization of 2D gradient wind field estimation. The plots show the estimated wind field of

Hurricane Sandy at 1630 25 Oct using the following models: (top left) mean field, (top right) Vtr (WVN-1)

model, (middle left) Vtr (TV) model, (middle right) Vtr (TV 1 WVN-1) model, (bottom left) Vtr (TV) 1
Vsh (WVN-1) model, and (bottom right) Vtr (TV 1 WVN-1) 1 Vsh (WVN-1) model. The plots show the

translation vector (white) and shear vector (red), with the length of the vectors indicating their relative

magnitudes.
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APPENDIX A

Objective Function—Jacobian and Hessian

Recall in section 3 that to minimize the CNLS ob-

jective f(x), we supply the gradient =f(x) and Hessian

=2f(x) to the solver [see Eq. (11)]. These derivatives

require the residual vector e(x), Jacobian J(x), and sec-

ond derivative of the residuals =2e(x). The residual

vector e(x) was defined for the wind field model in

section 3. The Jacobian for velocity data point i, =ei(x),

is one row of J(x) and is given as [Ji(xtr)
T, Ji(xsh)

T]T,

where Ji(xtr) 5 [Ji(xtr,A)
T, Ji(xtr,f)

T]T and Ji(xsh) 5
[Ji(xsh,A)

T, Ji(xsh,f)
T]T. Furthermore,

J
i
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)52Y
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; x
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2f
sh
[V

sh,t(i)
; x

sh,f
]gd
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, (A1)

wheredtr,t(i)5 [1,Vtr,t(i)]
T,dsh,t(i)5 [1,Vsh,t(i)]

T, andYi is used

to denoteYi[ri, si(ri)], or the mean field component for data

point i. The second derivatives of the residuals are given as

=2e
i
(x)5

2
66664
›2e

i
(x)
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0

0
›2e
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(x)
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Furthermore,
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APPENDIX B

Bayesian Information Criterion

The BIC is defined as

BIC522 ln(L̂)1 ln(N)M , (B1)

where L̂ is the maximum likelihood of the model, N is

the number of data points, andM is the number ofmodel

parameters. A lower value of the BIC corresponds to a

higher-quality model.

The sum of squared residuals is the metric minimized

using the CNLS method [Eq. (11)], but computing the

BIC requires the model’s maximum likelihood. Thus we
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estimate ln(L̂) to be the maximum log-likelihood of a

Gaussian model, for which the estimation error at each

data point i is independently distributed with mean ei(x)

and variance ŝ2:

ln(L̂)52
N

2
ln(2pŝ2)2

1

2ŝ2 �
N

i51

e2i (x̂) . (B2)

The parameter ŝ is the empirical standard deviation of

the residuals. The BIC is computed for each model, and

the minimum BIC is denoted as BIC. Then, the final

metric reported is the probability of each model m di-

vided by the probability of the best-performing model,

given by exp[20:5(BICm 2BIC)]. See Burnham and

Anderson (2004) for further details.
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