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a b s t r a c t

We discuss a simplified mathematical description of internally cooled convection that
includes a constant adiabatic lapse rate and an internal energy sink. The latter provides
a representation of radiative cooling and, in combination, these two effects break the up-
down symmetry of the vertical motions by making the convection penetrative in the upper
portion of the fluid layer. At large enough turbulent intensity of the motion, the dynamics
is dominated by intense convective updrafts that generate a strongly skewed distribution
of vertical velocities. The numerical exploration of this model system exhibits a qualita-
tively useful description of atmospheric convection.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The full physical description of atmospheric convection requires the use of a set of complex partial differential equations
which include fluid dynamical, thermodynamical and microphysical effects [9,14,31]. Even the numerical solution of such
equations is quite demanding, and the complications associated with their treatment could hamper basic understanding
of issues related to linear stability, weakly nonlinear saturation, pattern formation and turbulent transport.

In the belief that simpler approaches to atmospheric convection can be used to gain some insight into its general
behavior, we propose here a version of the equations that is amenable to modest numerical approaches and analytical
study.

Our point of departure is a layer of incompressible fluid enclosed between two rigid parallel plates and heated from
below, the standard known as Rayleigh–Benard (RB) convection. For this case there is available a range of analyses from
linear stability theory [4], to nonlinear pattern formation studies [5], through the consideration of plume dynamics
[33,19] and of turbulent transport [27]. The RB problem has become a paradigm of nonlinear science and much has been
understood of its workings, though a complete picture of the fully turbulent regime is still lacking (as for most other
turbulent flows).

Convection as observed in planetary atmospheres and in stars, on the other hand, is characterized by additional compli-
cations such as compressibility, rotation, phase transitions, magnetic fields and radiative effects. A full quantitative treat-
ment of these systems requires careful detailed consideration of the additional effects. To begin to bridge the wide gap
between the two manifestations of convection, it is useful to start from the base state of RB convection and add various spe-
cial effects individually to ascertain what each may contribute to the general behavior. This approach has been well recog-
nized for the case of many of the key effects. Here we consider the inclusion of a stand-in, a metaphor really, for radiative
cooling in the form of a simple additional term in the heat equation. The resulting extension of RB convection produces flows
that qualitatively resemble those of atmospheric convection.
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The constant heat loss term representing radiative losses that we include in our equations would not make a great dif-
ference to the problem if we did not also include the adiabatic lapse rate (or gradient) in the heat equation. This is an effect
that arises from even a slight compressibility of the fluid even though the motion may be treated as incompressible [16]. This
is a subtle point over which much ink has been spilled and we shall not attempt to rehash that discussion. Suffice it to say
that the adiabatic lapse rate has often been omitted from studies of RB convection. However, it is crucial to our study since
the combined workings of the cooling term and the adiabatic lapse rate give rise to a layer in the fluid which is locally stable
in the sense of linear theory. This effect is central in shaping the qualitative nature of the convective motions to be discussed
below.

Of course, we are omitting most of the complicating effects; the Earth atmosphere is turbulent, radiatively active, non-
Bousinessq, moist and precipitating, affected by large-scale shear flows, and subject to inhomogeneous boundary conditions,
requiring the use of full non-hydrostatic moist convection models for a realistic description [9,22,31]. Of these omissions, the
one most related to our present study is that this formulation does not contain any explicit moisture dynamics, a crucially
important aspect of the real atmosphere which is overlooked here. Thus, the model we discuss is appropriate for a layer of
moist air (as most of the radiative cooling comes from water vapor) which never gives rise to water condensation and
precipitation.

The dynamics of a fluid layer with constant internal cooling has been recently addressed in other studies [12], albeit with
a different perspective. Moreover, the model discussed here has an interesting dual formulation for a layer with constant
internal heating, which is an approximate description of the dynamics of the Earth mantle where radioactive decay provides
continuous internal heating [25].

The rest of this paper proceeds as follows. Section 2 gives a description of the mechanisms included in the model. In Sec-
tion 3 we write the equations of motion. Section 4 is devoted to the properties of the static solution and its linear stability. In
Section 5 we discuss the properties of the convection generated by the model in the fully nonlinear regime; in Section 6 we
give conclusions and perspectives.

2. Ingredients of the model

A central ingredient of atmospheric convection is the forcing associated with the heat flux from the lower boundary
due to warming of the Earth’s surface by solar radiation. The heat flux from the lower boundary is usually carried by
small-scale turbulent eddies. At the lower boundary we use a bulk formula relating the heat flux to the turbulent veloc-
ity, namely

�Ke
@T
@z
¼ cðT � TgroundÞ; ð1Þ

where z points vertically upwards, T is temperature, Ke is eddy diffusivity, c is a turbulent velocity scale and Tground is the
temperature at the Earth’s surface as determined by the incoming solar radiation and the surface albedo [9,22]. We shall fur-
ther simplify this specification by assuming a fixed heat flux from the lower boundary, @T=@z ¼ Const. The fixed-flux bound-
ary conditions lead to different linear stability properties of the stationary state than the more usual fixed-temperature
boundary conditions [13].

The study of radiative-convective systems has a long history in atmospheric dynamics and astrophysics [23,10,
11,29,3,17,1], see also [30] and references therein for a recent review with a focus on geophysics. Here, however, we take
an extremely simplified approach and represent the radiative loss from the atmosphere into space by including a con-
stant loss term in the heat equation. The main effect of this constant cooling term is to provide an internal sink for
mechanical and thermal energy, part of which is transformed into radiation which is assumed to escape from the system.
(For previous explorations of atmospheric convection with prescribed internal radiative cooling see [6,15,24,18].) As
mentioned above, this problem is formally equivalent, after the transformation z! �z and T ! �T , to the case of a fluid
layer which is heated internally and cooled at the surface. A similar description has been used in the study of mantle
convection [25].

The assumption of constant radiative cooling is drastic, and it does not do justice to the details of radiative convection. On
the other hand, experimental data in strongly convective regions suggest that radiative cooling is approximately constant in
extended regions of the troposphere; see [28] for a discussion of the results obtained during the GATE experiment. We adopt
this view and include a constant radiative cooling in the model formulation. The constant radiative cooling changes the static
profile of the convective fluid, but does not alter the structure of the temperature perturbations.

The constant thermal energy sink in concert with the adiabatic lapse rate breaks the up-down symmetry inherent in the
Rayleigh–Benard problem. The latter is an additional aspect to be taken into account because of the thermal effects of work
done by pressure forces in the convective process. Since the atmosphere is compressible, we need to introduce a dry
adiabatic lapse rate generated by the compressibility of the static stratification. Despite this effect of compressibility, the
Boussinesq approximation may be used for the density perturbations and incompressibility of the fluid velocity field may
be assumed [16]. As we shall see below, the presence of this term leads to the convection being of penetrative type, and
it naturally allows for the existence of a stably-stratified upper layer.
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3. Equations of motion

The model considered here describes the motions taking place in a layer of air which is bounded above and below by two
horizontal surfaces and is internally cooled by a constant radiative sink. Heat enters the system from the lower boundary,
and it is transferred in the interior of the layer mainly by convection. Heat is lost from the system by radiation to outer space,
and the upper boundary is assumed to be transparent to radiation. Molecular viscosity and heat conduction are neglected
since the Rayleigh number is very large and the flow may be assumed to be fully turbulent.

Since we do not resolve the full spectrum of scales of motion, we include two terms parameterizing turbulent diffusion of
momentum and heat. To this end, we use an elementary description of the unresolved dynamics and rely upon a simple eddy
diffusion approach.

The equations of motion can then be expressed in non-dimensional form as:

Du
Dt
¼ �rpþ T ẑþ sc

se
r2u; ð2Þ

r � u ¼ 0; ð3Þ
DT
Dt
þ cw ¼ � sc

srad
þ sc

se
r2T: ð4Þ

Here u = (u,v,w) is the fluid velocity, x = (x,y,z) is the spatial coordinate with z pointing upwards, ẑ is the unit vector in the
vertical direction, t is time, p is pressure, T is temperature and D=Dt ¼ @=@t þ u � r is the material derivative. We have non-
dimensionalized the spatial coordinate by the depth of the fluid layer, H, and time by the characteristic time
sc ¼ ðaT0g=HÞ�1=2 where T0 is a temperature scale to be chosen below, a is the coefficient of thermal expansion and g is
the acceleration of gravity. The density perturbation is determined entirely by the temperature perturbation (i.e., pressure
affects only the density profile of the hydrostatic solution). The term cw is owing to the pressure dependence of the hydro-
static profile. Here c = CH/T0 where C is the dimensionful adiabatic lapse rate, equal to g/cp for unsaturated air, where cp is
the specific heat at constant pressure, and lower for saturated air.

In the above equations we have represented viscous and thermal diffusion by turbulence at unresolved scales by a simple
eddy diffusion closure. We have assumed the same timescale, se ¼ H2=Ke where Ke is the eddy diffusivity, for the turbulent
diffusion of momentum and heat (that is, we assumed an effective Prandtl number r = 1). On the scales of interest, turbulent
diffusion is paramount and molecular diffusion is negligible. From the different time scales we can define an effective Rey-
nolds number, Re ¼ se=sc , and an effective Rayleigh number, Ra ¼ s2

e=s2
c ¼ Re2.

The first term on the right-hand-side of the thermodynamic equation is the non-dimensional representation of a constant
radiative cooling. The dimensionful formulation of radiative cooling includes the negative of the divergence of the dimen-
sionful radiation flux, J0 ¼ ~r � F. That is

eDeT=eD~t þ C ~w ¼ �J0=ðqcpÞ þ Ke
~r2eT : ð5Þ

The tildes on T, u and their derivatives indicate that these are dimensionful variables. The radiative flux, F, should in principle
be determined by an equation describing radiative effects. We have assumed that the radiative flux responsible for cooling
the air is a linear function of height, a choice which gives a constant value of J0. The quantity srad = qcpT0/J0 is the time scale
of radiative cooling. We can also define a radiative Rayleigh number, Rarad ¼ sesrad=s2

c , which is the appropriate control
parameter when the principal heat sink is radiative cooling.

For the application of the boundary conditions, we assume that the fluid layer is bounded above and below by the planes
at z = 0,1, where either no-stress or no-slip conditions on velocity are imposed. As stated, heat enters the system from below
at a prescribed, constant heat flux at the lower surface: �@T=@z ¼ f0 at z = 0 (f0 > 0). The heat entering from below is partly
lost inside the fluid layer through radiative losses into space. The heat that is not lost through radiation is assumed to escape
from the upper boundary with a constant heat flux: �@T=@z ¼ f1 6 f0 at z = 1.

The requirement of (statistical) radiative-convective equilibrium implies a balance between input and output heat fluxes.
Averaging the equations in space and time leads to the requirement f0 ¼ f1 þ se=srad. If radiative effects are unimportant,
srad ?1 and the system becomes a standard fixed-flux RB setting (with or without an adiabatic lapse rate term). Another
case of interest, which will be considered in detail in the following, is when all heat is lost to radiation from inside the fluid
layer, and the upper boundary is transparent to radiation but thermally insulating. In this case one has f1 = 0 and f0 ¼ se=srad.

At this point, we still have the freedom of choosing the temperature perturbation scale, T0. In standard fixed-temperature
Rayleigh–Benard convection, the temperature scale is dictated by the temperature difference between the two plates. Here,

we define the temperature scale T0 by requiring that sc = srad, which gives T0 ¼ HJ2
0=ðgaq2c2

pÞ
h i1=3

and defines the velocity

scale as U ¼ H=sc ¼ ðgJ0H2=qcpT0�1=3. In this way, Rarad = se/sc = Re, and the lower boundary condition becomes f0 = Rarad.
With this formulation, the system has two free parameters, namely the radiative Rayleigh number (or equivalently, the effec-
tive Reynolds number) and the adiabatic lapse rate, c. The choice of T0 adopted here does not allow for taking the limit
srad ?1 so that this is not a good scaling for studying the transition to convection without radiative cooling.
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4. Static solution

With the radiative cooling associated to a finite value of srad, system (1–3) has a static solution with u = 0 and temper-
ature depending quadratically on height, TsðzÞ ¼ �Raradzð1� z=2Þ where we have set Ts(0) = 0, without loss of generality.
The quadratic form of the static solution is independent of the value of the adiabatic lapse rate c. (Without the cooling term
and with boundary conditions f0 = f1, the static state has a linear profile in z). The cooling term also breaks the up-down sym-
metry of RB convection, namely invariance of the equations under the transformation T ! �T; w! �w and z! �z.

The presence of the adiabatic lapse rate adds a further element to the dynamics since the stability of the static state de-
pends on the value of c. When the adiabatic lapse rate term is absent, one gets the equivalent of the standard fixed-flux, long-
wavelength instability encountered in Rayleigh–Benard convection with fixed-flux boundary conditions. In that case the
critical horizontal wavenumber of the convection is zero. When c – 0, however, the first instability is encountered at finite
wavenumber, similarly to what is observed in compressible convection [7] and in weakly non-Boussinesq convection [8]. The
critical (effective) radiative Rayleigh number for instability and the critical wavenumber both grow with c. See [17,1] for fur-
ther details on the linear stability of the static state in radiative-convective fluid layers, and [26] for a study of the linear
stability of mildly penetrative convection.

5. Strongly nonlinear dynamics

5.1. Procedure

At values of the radiative Rayleigh number well above critical, the convective motion becomes irregular. Also in this
regime, wherever dTs=dz P �c, the static state is hydrostatically stable locally. For any finite value of c, the quadratic
form of Ts ensures the existence of a stable upper layer for z0 6 z 6 1, where z0 ¼ 1� c=Rarad. In such conditions, con-
vection becomes penetrative, and it is characterized by overturning motions below a stable upper layer where internal
waves are continuously excited by the convection below. The presence of the adiabatic lapse rate alone is not enough to
generate penetrative convection since the static profile is linear when there is no radiative cooling. For a linear static
profile and a constant adiabatic lapse rate, the layer is either all stable or all unstable with no variation in local stability.
These are known effects, which the simplicity of our model allows us to elucidate. This we do with a numerical explo-
ration of the system’s behavior.

For the numerical simulation of the model (1–3) we adopt a code that is a modification of a pre-existing 3D spectral-finite
difference Navier–Stokes solver, see [21,19] and references therein for a description of the numerical code and its validation
on known conditions. The code is spectral in the horizontal, with 4/5 dealiasing, finite differencing in the vertical, and res-
olution of 1922 grid points in the horizontal and 129 (unequally-spaced) points along the vertical. Time advancement is by a
third-order fractional step method. The simulations considered here have periodic boundary conditions in the horizontal and
the simulation box has non-dimensional size (2p,2p). Here we report on simulations for the case Re ¼ Rarad ¼ 300. That is,
Ra ¼ 9� 104 and c = 100, which gives z0 = 2/3 so that the upper third of the fluid layer is statically stable (locally).

For the initial conditions we use a random perturbation of the static state Ts(z). After an initial transient, which is excluded
from the results reported below, the system settles to a state of statistical radiative-convective equilibrium. In dimensionful

Fig. 1. Temperature profiles as a function of height, z. Solid curve: temperature profile for the (unstable) static state. Dotted curve: horizontally and
temporally averaged temperature profile for Rarad = 300, c = 100. Dashed curve: horizontally and temporally averaged temperature profile for Rarad = 300,
c = 0.
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variables, this configuration corresponds to simulating a layer of atmosphere with thickness of about 1000–3000 m, depend-
ing on the values assumed for the adiabatic lapse rate and the cooling rate.

5.2. Results

Fig. 1 shows the temperature profile of the static state, Ts(z), compared with the horizontally and temporally averaged
temperature profiles, TðzÞ, obtained at Rarad = 300 with and without the adiabatic lapse rate. In convective equilibrium, these
profiles show that the convective mixing above the diffusion-dominated bottom boundary layer pushes the average temper-
ature profile towards a state of neutral hydrostatic stability. When c = 0, the fluid interior above the bottom boundary layer
becomes isothermal. When c – 0, the convective mixing brings the temperature profile to the linear, neutrally stable profile
with dT=dz ¼ �c. As discussed above, for c – 0 the convecting system displays a hydrostatically stable upper layer where the
profile remains close to that of the static state. Moreover, the stable layer appears slightly above z0 = 2/3 as the penetrating
convective motions erode its lower portion.

The mixing of the fluid core between the bottom boundary layer and the stable layer above is caused by the action of an
ensemble of coherent convective plumes. However, when internal cooling and a non-zero adiabatic lapse rate are present,
only strong ascending coherent plumes are observed, in qualitative agreement with what is observed in atmospheric
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Fig. 2. Vertical slices of the instantaneous temperature perturbation field at t = 40, after statistical equilibrium has been reached, for Rarad = 300 and c = 100
(upper panel), and for Rarad = 300 and c = 0 (lower panel).
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Fig. 3. Vertical slices of the instantaneous vertical velocity field at t = 40, after statistical equilibrium has been reached, for Rarad = 300 and c = 100 (upper
panel), and for Rarad = 300 and c = 0 (lower panel).
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Fig. 4. Vertical slices of the instantaneous convective heat flux field at t = 40, after statistical equilibrium has been reached, for Rarad = 300 and c = 100
(upper panel), and for Rarad = 300 and c = 0 (lower panel).

Fig. 5. Vertical profiles of the temporally averaged fraction of horizontal area occupied by upward velocities (upper panel) and skewness of the vertical
velocities (lower panel). Solid curves correspond to Rarad = 300, c = 100, dashed curves correspond to Rarad = 300, c = 0.

M. Berlengiero et al. / Commun Nonlinear Sci Numer Simulat 17 (2012) 1998–2007 2003



Author's personal copy

convection [9]. Figs. 2–4 show slices of the temperature perturbation, of the vertical velocity and of the convective heat flux,
defined as w½T � TðzÞ�, after the statistical convective equilibrium has been attained, for Rarad = 300 and c = 100 (upper pan-
els) and for c = 0 (lower panels). The plumes originate in the lower boundary layer and bring warm fluid to the top of the
convecting layer. The local temperature perturbations and the vertical velocities are intense in the plumes, which are effec-
tive transporters of heat. When c – 0, we observe the additional effect of a stable layer above the convectively unstable fluid,
where temperature perturbations propagate horizontally without giving rise to convection.

The asymmetry between updrafts and downdrafts is reflected in the statistics of vertical velocities. Fig. 5a shows the ver-
tical profile of the temporally averaged fraction of horizontal area characterized by upward velocities, for the case c = 100
(solid line) and for c = 0 (dashed line). With the adiabatic lapse rate, about 40% of the horizontal area is occupied by positive
vertical velocities, in agreement with the observed behavior of atmospheric convection in the planetary boundary layer [32].
Without the adiabatic lapse rate term, the convection ceases to be penetrative and the asymmetry between updrafts and
downdrafts is reduced.

Fig. 5b shows the vertical profile of the skewness of the distribution of vertical velocities. For c = 100, the skewness is po-
sitive and it grows with height, again in agreement with atmospheric observations [32]. By contrast, vertical velocities have
zero skewness in RB convection and they are much less skewed when the adiabatic lapse rate term is absent. When there is
no adiabatic lapse rate term, the plumes impinging on the upper plate generate strong return downward flows, which are
absent when the adiabatic lapse rate is included. When c – 0, the fluid descends downwards with a slow and extended
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Fig. 6. Horizontal slices of the vertical velocity at z = 0.68 (at the top of the convecting layer) and time t = 40, well into the statistical stationary regime after
the initial transient, for Rarad = 300 and c = 100 (upper panel) and c = 0 (lower panel).
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motion. These results indicate that even a simple physical model like that discussed here can reproduce some of the basic
properties of the convective atmosphere.

5.3. A remark

In Rayleigh–Benard convection with boundary conditions periodic in the horizontal directions, numerical simulations
show that plumes undergo a clustering process as a result of which plumes form aggregates on scales containing many
plumes (see [19,20] and references therein). We may then ask whether such a process is active also in the internally-cooled
convective fluid studied here.

We observed a similar clustering effect when the adiabatic lapse rate is omitted (c = 0). When an adiabatic lapse rate term
is included, however, no plume clustering is observed. Fig. 6 shows two horizontal slices of the vertical velocity at z = 0.68 (at
the top of the convecting layer) for the cases c = 100 (upper) and c = 0 (lower), at t = 40, after the initial transient has died out
and the system entered a statistically-stationary regime. Fig. 7 shows the temperature perturbation close to the layer bottom
at z = 0.14, where the plume roots are located, for the case c = 100 (upper) and c = 0 (lower) at t = 40. Plume clustering for
c = 0 is evident. For c = 100, the individual plumes display an approximately homogeneous distribution.

This result is consistent with the conjecture offered in [19] that plume clustering is a result of the interaction of strong
updrafts and downdrafts impinging on the boundary layer opposed to that where they were generated. In this picture, the
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Fig. 7. Horizontal slices of the temperature perturbation at z = 0.14 (close to the layer bottom) and time t = 40, well into the statistical stationary regime
after the initial transient, for Rarad = 300 and c = 100 (upper panel) and c = 0 (lower panel).
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impinging plumes generate horizontally divergent flows in the boundary layer that they hit, pushing the roots of newly
forming plumes close to each other and eventually leading to plume clustering.

A similar process occurs here for the case c = 0. Even though in this case there are no bonafide descending coherent
plumes, the downdrafts are nevertheless quite intense, as shown by the small skewness of the vertical velocity distribution.
On the other hand, when an adiabatic lapse rate is included, the plumes are prevented from reaching the opposite boundary,
and no interaction between hot plumes and the upper boundary layer takes place. In this case, the return flow is very weak,
and the clustering of plumes is not observed. Two spatial scales are then present, namely, the size of the individual plumes,
and the mean inter-plume distance.

Fig. 8 shows the power spectra as functions of the horizontal wavenumber for the two cases with and without the adi-
abatic lapse rate, at a late time well after statistical radiative-convective equilibrium has been reached. When c = 0, the spec-
trum is maximum at low wavenumbers, consistent with the presence of plume clustering and indicating that the system is
dominated by a large-scale flow at the scale of the simulation box adopted here. Conversely, when c – 0 the spectrum is
peaked at intermediate wavenumbers, consistently with the absence of plume clustering. The spectral peak measures, in this
case, the size of the mean inter-plume distance.

6. Summary and conclusions

In this work we have discussed a simple mathematical description of internally cooled convection. The description in-
cludes a constant heat flux from the lower boundary, an internal constant energy sink meant to represent radiative cooling,
and an adiabatic lapse rate. It is meant as a prelude to a more extensive study of atmospheric convection when the thermo-
dynamic effects of water vapor condensation are not essential to the description, as in the case of sub-saturated air or for
non-precipitating moist air when evaporation and condensation balance.

In the fully nonlinear regime, we observed that the flow is characterized by the presence of intense updrafts and a weak
downward return flow, consistent with the behavior of atmospheric convection. Such non-Boussinesq asymmetry is also ob-
served in the study of fully compressible convection [2]. We have also confronted the dynamics that are obtained with and
without an adiabatic lapse rate, showing that different large-scale properties emerge in the two cases.

The picture introduced here is not meant to provide a detailed representation of atmospheric convection, for which much
more complex models need to be adopted [9,31]. The virtue of our simplified approach is that it can capture salient features
of atmospheric convection while including only some of the basic physical ingredients of the system and remaining analyt-
ically tractable (at least at the linear and weakly nonlinear level). We hope that our birthday celebrant enjoys the pictures.
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