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The problem of deducing the climate from the
governing equations
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(Manuscript received January 22, 1964)

ABSTRACT

The climate of a system is identified with the set of long-term statistical properties.
Methods of deducing the climate from the equations which govern the system are
enumerated. These methods are illustrated by choosing & first-order quadratic dif-
ference equation in one variable as a governing equation. The equation contains a
single parameter. Particular attention is given to the climatic mean of the single
variable.

Analytic methods yield the climate in some cases where the system varies periodi-
cally, but generally fail when the system varies nonperiodically. Numerical integration
yields a value of the climatic mean for any individual value of the parameter. Additional
analytic reasoning is needed to determine the nature of the climatic mean as a function
of the parameter.

The progression from steady-state to periodic to nonperiodic behavior, as the para-
meter increases, is compared to the progression from steady-state to periodic to ir-

regular flow in the rotating-basin experiments, as the rate of rotation increases.

1. Introduction

The continual variations of the state of the

arth’s atmosphere are presumably governed
by a set of physical laws. These laws are fre-
quently expressed as a system of partial dif-
ferential equations, accompanied by appro-
priate boundary conditions. It is often assumed
that the climate, i.e., the set of long-term
statistical properties of the atmosphere, is
determined by the same system of equations.
A fundamental problem in theoretical climato-
logy is that of deducing the climate from the
equations which determine it. This problem
may be viewed as a special case of the more
general problem of deducing the statistics of
solutions of closed systems of equations from
the equations themselves.

It should be observed that climate is not uni-
versally identified with averages over infinite
time intervals. The fact that such expressions as
“change of climate” are in common use indicates
that many investigators are concerned with
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averages over long but finite time intervals.
In this work, however, we shall be exclusively
concerned with averages (or other statistics)
over infinite intervals, i.e., with the limits of
averages over finite intervals, as the lengths
of the intervals approach infinity.

From the beginning there are certain compli-
cating factors which must be recognized. Ob-
viously there are some systems of equations
whose solutions become infinite as time in-
creases, and therefore possess no long-term
statistical properties. But even among those
systems of equations whose solutions remain
bounded for all time, there are some systems
whieh have the property that the average of a
solution, between two times ¢, and t;, fails to
approach any limit as ¢, becomes infinite while
¢y remains fixed. In other words, there is no «
priori reason why a climate need exist.

In the special case of the atmosphere, theory
alone does not tell us that a climate exists.
Recourse to observations is not much more
enlightening; the weather of the current century
does seem to resemble the weather of the past
century, but the weather of the past 12,000
years presumably does not resemble that of
the previous 12,000 years, when an ice age
flourished.

Next, even if a climate does exist, there is
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no a priori reason why this climate should be
unique. There are systems of equations which
have the property that different solutions,
originating from different initial conditions,
possess different long-period averages.

In some instances, however, if the initial
conditions are subjected to small but otherwise
random modifications, while the governing equa-
tions are not altered, there is a positive prob-
ability that the resulting climate will be un-
changed. In such cases the climate will be
called stable. In other instances, if the initial
conditions are similarly modified, there is zero
probability that the resulting climate will be
unchanged. In these cases the climate will be
called unstable.

Again, when a stable climate exists, there is
no a priori reason why this stable climate
should be unique. A system possessing a single
stable climate (and perhaps many unstable
climates) will be called transitive. A system pos-
sessing more than one stable climate will be
called ¢ntransitive.

In the case of the atmosphere, theory does
not tell us whether a stable climate, if one
exists, is unique. Observations also are of no
avail; the atmosphere is essentially a one-shot
experiment, and we cannot introduce new
initial conditions and perform the experiment
again.

Assuming, however, that we are dealing with
a transitive system, let us examine the methods
by which we may deduce the climate from a
knowledge of the governing equations. One of
the most natural approaches consists of deriving
from the original set of equations a new set of
equations in which the dependent variables are
the desired climatological statistics. If the new
equations can be solved, it is unnecessary to
obtain the superfluous time-dependent solu-
tions of the original equations.

When the original equations are linear, the
derived equations are in general linear also. In
such instances, this approach has often proved
highly fruitful. When the original equations are
nonlinear, however, the number of variables in
the new equations inevitably exceeds the num-
ber of equations, and a finite closed system
cannot be obtained. The derived equations may
determine important constraints upon the
statistics, but usually no complete solution is
possible.

At this point the method may be modified

by the introduction of additional hypothetical
relations connecting the statistics, in order to
render the new system closed. These new rela-
tions may be primarily statistical; for example,
a variable may be assumed to be normally
distributed, so that average values of higher
powers are expressible in terms of means and
variances. On other occasions the new relations
may be largely physical; for example, the con-
vective transport of momentum or heat across
a given surface may be assumed proportional
to the gradient of momentum or heat across
the same surface, the factor of proportionality
being the coefficient of eddy viscosity or eddy
conductivity.

On occasions this procedure may yield grati-
fying results. However, if the assumptions are
not well justified, the results may be entirely
unrealistic.

When it is impractical to derive closed
systems with statistics as variables, the alter-
native procedure consists of solving the original
equations, and then computing statistics from
the solutions. In the most favorable cases,
analytic time-dependent solutions may be found,
and the climate may be readily evaluated. A
familiar example of an analytic solution of a
highly simplified system is Rosspy’s (1939
solution of the vorticity equation; Rossby’s
well-known expression for the speed of a wave
is a special statistic of a climate determined by
his equation.

Equations whose general solutions oscillate
irregularly, however, often possess special
steady-state or periodic solutions which are
unstable. It is precisely these solutions which
are most readily found analytically. Thus there
is a very real danger of deducing an unstable
climate rather than the desired stable climate.
The failure of Rossby’s formula in actual day-
to-day weather forecasting (where Rossby did
not intend to apply it anyway) is easily ascribed
to the over-simplification of the equation, but
the formula may also be a statistic of an un-
stable climate. Real weather patterns never
contain waves of only one length, and any
solutions of the real atmospheric equations
exhibiting a single wave length would pre-
sumably be unstable.

In the remaining cases, which include those
where the stable climates are associated with
irregularly oscillating solutions, numerical pro-
cedures seem to be indicated. If the equations
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can be handled numerically at all, the solutions
may be treated as data, and the climate may be
estimated by processing the data. Nevertheless,
some dangers still remain. Although the
probability of encountering an unstable climate
is very small, if the initial conditions are chosen
randomly, the climate is necessarily computed
from a finite segment of a time-dependent solu-
tion. The poésibility that this segment will be
unrepresentative of the total solution is just as
real as it is when a climate is computed from
actual weather data.

In this work we shall illustrate these alter-
native approaches, using an extremely simple
governing equation. From the results we shall
draw further conclusions concerning the ap-
propriateness of the different approaches.

2. The governing equation

The usual procedure for solving a system of
partial differential equations numerically in-
volves first replacing the system by a system
of ordinary differential equations. The new
dependent variables, which are functions of
time alone, may, for example, be the values of
" “he original dependent variables at a chosen
" set of points. These equations must in turn be
approximated by a system of difference equa-
tions. Both these approximations can alter the
statistical properties of the solutions.

Wholly apart from these considerations,
however, the exact integration of a system of
differential equations over a chosen interval of
time determines a system of difference relations
which is exactly equivalent to the original
equations. When the original equations are
nonlinear, the equivalent difference equations
generally cannot be written in finite form in
terms of familiar analytic functions. The exi-
stence of the difference equations is assured,
however, by the existence of solutions of the
differential equations.

We therefore lose no generality, in choosing
an arbitrary system of equations to illustrate
the problem of deducing the climate, if we
choose a system of difference equations instead
of differential equations. The alternative meth-
ods of attack are still available, and they still
possess their distinctive characteristics.

In the interests of economy, we shall seek
the simplest possible system of nonlinear
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difference equations, among those systems
capable of generating a stable climate. The
simplest system is a system consisting of one
equation in one variable, say

Xn+1 =f(Xn) 1)

provided that any such equation can govern a
climate. We shall require that f(X) be single-
valued and continuous in X. If X, is an arbi-
trarily chosen initial value, equation (1) gene-
rates the series {X}={X,X,,X,,...}, and the
long-term statistics of this series, if they exist,
constitute a climate determined by equation (1).

We observe that if (1) possesses no steady-
state solution X,=X, =...,, then either X, <
X, <..or Xy,>X, >..., in view of the continuity
of f{(X). Hence X,~>o00 or X, - —co as n—>oo,
since any finite limit would be a steady-state so-
lution. The series {X } then possesses no climate.
We shall therefore require that f(X) =X for at
least one finite value of X.

The simplest continuous nonlinear function
HX) would appear to be a quadratic function.
Upon replacing the dependent variable X by an
appropriate linear function of X, we can reduce
the most general quadratic equation (1) with
at least one steady-state solution to

X, =aX, —Xn, (2)

where a > 0.

If a >4, the choiee X, = }a makes X, >a and
X,<0, after which X,— —ococ as n—>co. If
however 0<a<4, and if 0<X,<a, then
0 <X, <a for all n. We shall therefore choose,
as our governing equation, equation (2) with
0<a<4, and require in addition that 0<
X, <a. .

The parabola in Fig. 1 is a plot of X, .,
against X, constructed for the case a =3.75.
The coordinates of some of the points to which
we shall later refer are shown.

Equation (2) represents a transformation of
the interval [0,a] into a portion of itself. Alter-
native standard forms, which might be pre-
ferable for some purposes, would be

Xpo1=4b (X, -X3), (3)

transforming the interval [0,1] into a portion
of itself, and

Xni1=3Xn-C. (4)
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F1c. 1. Graph of the function X, =aX, —X?;, for
the case a=3.75, showing the coordinates of some
of the points of interest.

where the slope of the parabola equals the
abscissa.

In the following sections we shall illustrate
the alternative procedures for deducing the
climate, using equation (2) as the governing
equation. We shall pay particular attention to
the climatic mean

1 N-1
thm - ZXny (5)

Nooo n=o0

noting particularly how X varies with a.

For some values of a, equation (2) may be
shown to be transitive, i.e., to determine &
unique stable climate. For all other values of a
between 0 and 4 we shall hypothesize that
equation (2) is transitive, and speak of the
value of X corresponding to a. We offer no
proof of transitivity, but the many numerical
solutions of (2) which we have studied do not
offer the slightest suggestion of intransitivity.

3. Analytic methods

Consider first the procedure of deriving new
equations whose variables are statistics. Aver-
aging both sides of equation (2), we obtain the
relation

@-1)X-X*=0. (6)

This single equation contains two statistics
X and X3 Any attempt to obtain a closed
system by deriving further equations containing

X or X® inevitably introduces new statistics;

for example, if we square both sides of (2) and
average, we obtain the relation

@ ~1) X~ 2a X*+ X*~0. (7

The procedure is therefore not entirely satis-
factory.

Although not a closed system by itself, equa-
tion (6) does place an important constraint upon
X. With the identity

X=X o (8)

where o is the standard deviation of X, equa-
tion (6) becomes

(a-1HX -X2=02 (9

Since ¢ is non-negative, X must lie between 0
and a ~1. If 0 <a <1, X is then non-positive,
and since X, is non-negative for all n, the only
remaining possibility is X =0. For this range
of a, the problem is solved. If 1 <a <4, equation
(9) imposes the upper limit a —1 for X, but it
does not determine X.

Consider next the procedure of introducing
new hypothetical relations to yield a closed
system. We may, for example, assume that, a:
in a normal distribution, 4 =0 and x» =3, where
u and » are the skewness and the kurtosis
of the distribution of X,. With the identities

X3 =X3+3%0" +pc’, (10)

X4 =X 1+ 6X20% +4uX0® +xot, (11)
and the identity (8), equations (6) and (7) yield
the equation

XX -(a-1][2X2 -2 +1)X

+{a2-1)]=0, (12)

possessing the four roots

X-0,a-1,3a+1)+ia+1)¥iB-a)}. (13)

All of these roots are real when 0 <a <3. As
we shall see when. we consider the next method,
one of these roots correctly characterizes a
stable climate, but the present method does not
tell us which root this is. When 3 <a <4, only
the roots 0 and @ —1 are real; we shall see that
these are both characteristic of unstable
climates.

Tellus XVTI (1964), 1
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Let us now examine the possibility of solving
equation (2) analytically. We shall first look
for periodic solutions of period K, for which
Xg~=X, Among these are the steady-state
solutions, where K =1.

If {X,,X,,..} and {Y, Y,,...} are any two
solutions of (2), and if ¥, =X, +¢,, then

€ps1 =AnEy —En, (14)
where 1, =a ~2X, is the slope of the parabola
(2) at the point (X,,,,X,). If X=X, and
if & is sufficiently small, then approximately

£, = Aey, (15)

K-1

where A=TT 2, (16)
n=0

is the product of the slopes of the parabola (2)
at K points. A periodic solution is therefore
stable with respect to small perturbations if
[A] <1, and unstable if |A|>1. If |A|=1,
further considerations must be invoked to
determine the stability.

Considering first the case K =1, we observe
that X, =X, =... =0 is always a solution of (2).
The statistics of this solution, including the
salue X =0, therefore constitute a climate.

For this solution A =a, so that the climate is
stable if @ <1 (and also if @ =1), but unstable
if @>1. Thus the earlier result that X =0 if
0 <a <1 is again obtained.

When a>1, a second steady-state solution
Xo=X,=..=a~1 exists. For this solution
A =2 —a, s0 that the climate is stable if 1 <a <3
(and also if a =3), but unstable if a >3. Hence
X=a-1if 1<a<3.

When a >3, no stable steady-state solution
exists, and we consider the case K =2. Letting
X, =X,, we obtain the fourth degree equation

X5-2aX5+ (@ +a) Xs— (@* - 1) X,=0. (17)
Dividing out the steady state solutions 0 and
e —1, we find that X, and X, are the two roots
of the equation

Xi—(@+1)X,+(a+1)=0. (18)

For 0 <a <3 the roots of (18) are complex,

but for @ >3, they are real. For this solution

A= -a%+2a+4, (19)
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so that |A| <1if 3 <a <1 +V/6 =3.449. For this
range of a, the statistics of the periodic solution
of period 2 constitute a stable climate, with
X =Ha+1).

Periodic solutions of higher periodicity could
be treated similarly. However, X, is an eighth-
degree polynomial in X,; the equation X, =X,
reduces only to sixth degree when the steady
state solutions are divided out. Likewise
X, is of sixteenth degree in X,, and the equation
X, =X, reduces only to twelfth degree after the
solutions of periods 1 and 2 are divided out.
Numerical procedures for solving these equa-
tions would probably be needed to find X as a
function of a, and to determine the stability.

We therefore turn to the case a =4, the one
remaining case where equation (2) is readily
solved analytically. Here, if

X, =4 sin? (a0), (20)
we find by repeated application of (2) that
X, =4 sin? (2"n6). (21)

We see that only the residual of § modulo 1 is
effective in determining X,. In particular, if
0 is rational, 2" eventually differs from 6 by
an integer, and the solution is periodic. If 8 is
not rational, the solution is not periodic.
Moreover, for almost all the nonperiodic
solutions, the values of 270 modulo 1 have a
constant probability density. The correspond-
ing values of X, are symmetrically distributed
about X, =2, so that X =2. The properties
of this equation have been discussed by Uram
(1960, ch. 6), and in further detail by STEmN and
Uram (1963, appendix I).

Figure 2 is a graph of X, ., as a function
of X,, for 0<a<3.449, and for the single
value a =4. It will be left to numerical pro-
cedures to complete the graph, for the re-
maining values of a.

4. Numerical methods

It is a straightforward task to generate
numerical solutions of equation (2), whose
accuracy will be limited only by the necessity
for round-off. Table (1) presents particular
solutions, for the cases a@ =3.74, ¢ =3.75, and
@ =3.76. In performing these computations,
the value of 1X,, a number between 0 and 1,
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TaBLe 1. Numerically determined solutions of
the equation X, ., =aX, — X%, with initial values
X, =3%a, for the cases a=38.74, a=38.75, and

a=3.76.

n X, (3.74) X, (3.75) X, (3.76)
0 1.870 1.875 1.880
1 3.497 3.516 3.534
2 0.850 0.824 0.797
3 2.457 2.411 2.362
4 3.153 3.228 3.302
5 1.852 1.684 1.513
6 3.497 3.479 3.400
7 0.851 0.942 1.225
8 2.459 2.646 3.106
9 3.150 2.922 2.033

10 1.858 2.420 3.511

11 3.497 3.218 0.874

12 0.850 1.711 2.522

13 2.457 3.489 3.122

14 3.152 0.912 1.991

15 1.854 2.588 3.522

was rounded off at each step to 28 bits in the
memory of the computer.

In each case the initial value X, =3%a was
chosen. It can be shown that if & stable periodic
solution {Y}=1{Y,,Y,,...} of period K exists,
the particular solution {W}={W,, W,,...} with
W, =3%a, must approach the solution {Y}
asymptotically.t

x|

or
| 1 !
0 o 2 4

Fi1c. 2. Graph of X as a function of a, for the interval
0<a<1+})6, and for the single point a =4.

For the case a = 3.74, the solution is evidently
asymptotic to a stable periodic solution of
period 5. In general, when a stable periodic
solution is discovered, the appropriate value of
X may be obtained by averaging the values of
X, for a single period.

For the cases a = 3.75 and a = 3.76, no periodi-
city is evident. Here, and in general when the
solution is nonperiodic, & value of X may be
estimated by extending the solution to a high
value of n, and then averaging all the values
of X ,. This value of X is indeed an estimate and
not a precise value, since it is based upon a finite
sample of values of X,, which may not be
representative of a complete solution. This
procedure also affords an estimate of X when a
stable periodic solution does exist, provided
that the chosen solution approaches the periodic
solution asymptotically, which will be the case
if X,=1a.

For any particular value of a, then, the pro-
blem of determining the corresponding value
of X would appear to be solved. Figure 3

1 To prove this theorem, let U, and V, be re-
spectively the greatest lower bound of those X, < Y,
and the least upper bound of those X,>Y,, for
which {X} does not approach {Y} asymptotically.

If W, does not lie within one of the intervals (U,, V,).. -

v (Ug_1, Vig_y)s the mappings (U, Vo)s>(Uy, V)=
..Uy, V) are all one-to-one, and, for n=1,...,
K,U, and V,_, or V, and U,, are respectively the
greatest lower bound of those X, <Y, and the
least upper bound of those X, > Y, for which {X}
does not approach {Y}. But Yz=1Y,, so Ug=U,
and V=V, or Ug=Vyand Vi=U,, and {U} and
{V'} are periodic of period K, or 2K. Moreover {U}
and {V} are unstable solutions, since neighboring
solutions approach {Y}, not {U} or {V}. Thus
o ou,v, > 1,where u, =a —2U, and v, =a—2V, are
slopes of the parabola (2). Moreover u, and v, have
the same sign, so u,v, >0.

Since Yni1~Vni1= Hun + ¥n) (n —vn),

K1
(x—v)fo—vo) = T1 (u,+m)j2= %1,
n=0

whence

£ +v,\°
1= H (&1—2—‘)

n="0

E-1 —y 2 -1
=] [(&—n) + v | > [ pava>1,
n=0 n=0

2

which is a contradiction. Hence W, lies within some
interval (U, V,) and {W} approaches {Y } asympto-
tically.

Tellus XVI (1964), 1
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2.5+

2.0~

x|

i J
a 35 4.0

Fic. 3. Graph of X as a function of a, as estimated
for the interval 3.4 <a <4.

represents a completion of Fig. 2, with estimated
values of X. For values of o from 3.400 to
3.995, at intervals of 0.005, solutions of equa-
tion (2) were obtained numerically, in each case
with X, =4a. The first 1024 values of X, were
then averaged, yielding the indicated values
of X.
The most striking characteristic of the curve
-in Fig. 3 is its irregularity. It seems unlikely
that the curve can be represented or even closely
approximated by any simple combination of
familiar analytic functions. Indeed, we are
forced to conclude that while the problem of
determining X for any particular value of a
may in essence be solved, the problem of dis-
covering just how X varies with a is far from
solved.

5. Further considerations

Probably the most unexpected feature of
Fig. 3 is the fairly broad band of values of &
(from 3.830 to 3.855) in which the estimated
values of X fall far short of the values of X
for slightly lower or higher values of a. Although
some of the smaller irregularities in Fig. 3 might
be attributable to sampling errors, it is unreason-
able to expect that sampling would produce a
band of this sort.

Inspection of the successive values X, X, ...
for a =3.83 reveals the proper explanation for
the low values of X; there is a stable periodic
solution of period 3, and X is simply the
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average of the three values. Likewise, the less
conspicuous band at a =3.74 corresponds to
the stable solution of period 5, which is exhibited
in Table 1. If anything requires further ex-
plaining, it is not the low values of X in the
bands, but the higher values outside the bands.

We shall call a value of a for which a stable
periodic solution of period K exists a periodic
value of a, of order K. Values of @ which are not
periodic of any order will be called nonperiodic.
Evidently the irregularity of Fig. 3 depends
upon the arrangement of periodic and non-
periodic values of a. We shall first consider some
properties of periodic values.

For each value of a, let {W(a)} ={W,, W,,...}
be the particular solution with W,=3ia (see
Fig. 1). Then W, =a?/4, and in general W, is
a polynomial of degree 2" in a.

Suppose that for some value a, of a, Wy =
W, for some K. Then, since A, =a, —-2W,=0,
A =0, and the solution {W} is stable. Hence
a, is & periodic value. We shall call any periodic
value of @ for which W = W, a central value of
a, of order K. Since Wy is a polynomial, the set
of central values of order K is finite, and the
set of all central values is denumerable.

Next, if a, is a central value of order K, and
if a is sufficiently close to a, the equation
Xg(a) =Xy(a) will have a root Y, a) close to
Woae). Moreover, for the periodic solution
{Y(a)}, A will be small, and the solution will
be stable. Thus, about each central value of a,
of order K, there is a continuum of periodic
values of a, of order K. We shall call such a
continuum a periodic band. The K values
Yy, ..y Yy are roots of an algebraic equation
(equation (18) in the case K =2), and are
analytic functions of @ within the periodic band.

The converse of this result appears to be true
also, i.e., any periodic value of a of order K lies
within a periodic band, containing a single
central value a,, We offer no rigorous proof
for this assertion; it is merely indicated by the
study of many individual numerical solutions,
which have failed to reveal any exceptions.

Thus, setting W, = W,, we find that a, =2 is
a central value of a of order 1, while the analytic
solution X, =a —1 is stable within the band
1<a <3 surrounding «,. Likewise, setting
W, =W, we find that a,=1+}5=3.236 is a
central value of order 2. Surrounding a, is the
periodic band 3 <a <3.449.

We observe that a, and a, are the highest
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central values of orders 1 and 2 respectively.
If for some K > 2 there exists a highest central
value ay of order K, and if 2 <agx <4 then
Wiilag) = Wilag) > Wolag) (cf. Fig. 1), while
W g.1(4) =0. Therefore, by continuity of Wg.,,
there exists a greatest value ag,;, with ag <
Oy <4, for which Wri(ag.) = Welag.), ie.,
a greatest central value of order K +1. The
existence of a sequence of central values a, <
ay <ay <... <4 is thus established by induction.

Since X, ,, > X, if X, <W, (if a >2; cf. Fig. 1),
it follows that for K23, Wyag) <.. <
Wg_1(ag) <W, The increasing sequence a,
@y, ... must approach a limit a’; it follows by
continuity that W,(a’) < Wy(a’) for all values of
n > 2. This is clearly impossible if Wy(a') >0, i.e.,
if a’ <4; hence a’ =4.

For large K, Wy(ag) and, indeed, all but a
small number of the values We(ag), ..., Wg_1(ag),
will be close to zero. Hence X(ag) will be small;
in fact, as K—>oo, X(ag)—>0 (far lower than
anything suggested by Fig. 3).

The numerical values of ay and X(ag) are
readily estimated. Letting ax =4 —&g, where
eg is small, we find that to first-order terms in
ey Wo=2—1teg, Wy =426, and W, =4eg.
Working backward from Wy, and neglecting
terms in &g, we find in view of equation (21)
that Wg=2=4sin2 n/4, Wg_, =4sin®#/8 and
finally W, =4sin? n/2X. Equating the values
of W,, and replacing the sine of a small argu-
ment by the argument itself, we find that,
approximately,

ayx =4 —n?/4%. (22)

Again neglecting terms in &z, we find that
4 K
Rag) == []sin2n/2"=6.828/K. (23)
K

Thus there is a sequence of central values
@y, ay, ..., approaching 4 as a limit, for which the
corresponding values X(a,), X(a,), ... approach
zero as a limit. In the neighborhood of a =4,
then, the behavior of X as a function of a is
far more complicated than Fig. 3 is able to
represent.

Values of a, and X(ag) may also be deter-
mined numerically, using a trial and error
procedure. Table 2 shows the values so deter-
mined. Values of a; and X(ag) given by the
approximations (22) and (23) are presented
for comparison. Also shown are the lower and

TABLE 2. Numerically determined values of central
values ay, lower and upper bounds ax and af of
the periodic bands surrounding ag, and mean
values X(ay), and approximations ax and X’
to ay and X given by formulas (22) and (23)

respectively.
K 1 2 3 4 5
ax 1.00  3.000 3.8284 3.96010  3.990258
ax 2.00 3.236 3.8319  3.96027  3.990267
ax 3.00 3.449 3.8401 3.96047  3.990281
a;lz 1.53 3.383 3.8458 3.96145  3.990462
X 1.000 2.118 2.059 1.661 1.351
X’ 6.828 3.414 2.276 1.707 1.366

upper bounds ax and ax of the periodic band
surrounding ag, determined numerically by
trial and error. The extreme narrowness of the
bands for large values of K is apparent; indeed,
the approximations to ay, although very close,
fall outside the true periodic bands.

Next, since Wg_i(ag_4) >1 and Wi_i(ag) <1
if K >3, there exists a by, with ax_; <by <ag,
such that Wg _1(bg) =1. Then Wy =Wg,, =...=
bg —1. The steady state solution X, (bg)=
by —1 is unstable. Since a solution {W} is"
always asymptotic to a stable periodic solution,
when such a solution exists, it follows that there
is no stable periodic solution when a =byg,
whence by is a nonperiodic value. The long-term
statistics are therefore the statistics of a non-
periodic solution, just as in the case when a=4.

Now suppose that a =bk, where by ~bg is
very small (small even compared to 4 —bg).
Then by continuity, WK(b;{) is close to b}g -1.
Since the slope 1, of the parabola at (bx —1,
b’K —1) is about -2, the successive values
Wgs1s Wgass ... lie on alternate sides of by —1,
each about twice as far from by —1 as its prede-
cessor, until they are no longer close to bx —1.
By suitably adjusting the value of b, then, we
may assure ourselves that for any chosen integer
M >0, Wgopybx) =W, Let Cg, denote the
value of by so determined. Then U, is a periodic
value of a, of order K + M.

Thus there exists a sequence of values Cpg,,
Cgs, ... of a, approaching by as a limit, for
which Wg1(Cru)s Wigio(Cgu)s .. are very close
to by —1, while Wy, 1/(Cgy) =W, It follows
that for fixed K, the sequence X(Cg,),

Tellus XVI (1964), 1
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X(Cgy), ... approaches brg—1 as a limit as
M oo, even though X(by) is not equal to
bg—1.

The inadequacy of Fig. 3 is thus further
revealed. Surrounding each point of an infinite
sequence b,,b,,..., there is an infinite collection
of periodic bands of values of @, in which the
corresponding values of X approximate a —1.
In particular, the sequence Ckg, g approaches
4 as K — oo, while X(Cg, g:) >3 (far higher than
anything suggested by Fig. 3).

We have thus “explained” the irregularity
of Fig. 3; there are numerous bands of periodic
values of a for which X is very low, including
some where X is near zero. Separating these
bands are other bands where X is very high,
including some where X is near 3. The curve of
X against o must therefore undergo wild oseil-
lations.

‘We shall close this section with some specula.-
tions concerning the prevalence of nonperiodic
values of a. Again, our conclusions will be based
partly on hypotheses suggested by the study
of many numerical solutions.

In all cases investigated numerically, if o’
and a” are two distinet nonperiodic values of a,
the sequences {W(a’)} and {W(a")} diverge
-. from one another until, for some K, Wgla)ja <
{2 <Wgla”)]a”. It follows by continuity that
for some value of a, between o’ and a’, Wg(a) =
a/2 =W, i.e., a is a central value. Surrounding
@ there is then a periodic band, which must lie
entirely between a’ and a”.

In Table 1, for example, the solutions
{W(3.75)} and {W(3.76)} are fairly close
together for n <6, but have lost all resemblance
when n =11. There must exist a periodic value
of a, of order 11, somewhere between 3.75 and
3.76.

In short, every pair of nonperiodic values of a
is separated by a continuum of periodic values.
The periodic values therefore form an every-
where dense set, and moreover the nonperiodic
values form a nowhere dense set; i.e., arbitrarily
close to any value of a there can be found a
periodic value which itself lies within a con-
tinuum of periodic values. There are no con-
tinua of nonperiodic values.

One might suppose, then, that almost all
values of a are periodie, in the sense that there
is zero probability that a randomly selected
value of @ is nonperiodie. Such a conclusion
is by no means justified; it is easy to construct
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a nowhere dense set, analogous in some ways
to the set of nonperiodic values of @, which may
be shown to have positive measure.

Consider the unit interval 0 < « < 1. The points
of the form e, =(2m —1)/2" form a denumer-
able subset which is everywhere dense. About
each point a,, construct an interval of length
2-2" The sum of the lengths of all these intervals
is 4, and, since some of the intervals overlap,
the measure of the set of all points contained
in these intervals is less than }. The set of points
not contained in these intervals therefore has a
measure greater than }, and this set is nowhere
dense.

The crucial point is that the widths of the
intervals decrease very rapidly as n increases.
This feature seems to have its analogy in the
periodic bands. Certainly the widths of the
bands about the central points ay decrease very
rapidly as K increases, according to the data in
Table 2. Although the range 0 <a <3.449 con-
sists entirely of periodic values, it seems highly
likely that in the range 3.9 <a <4, for example,
a large majority of the values are nonperiodic.

However, the only individual values of «
which we have identified as being nonperiodic
are those for which Wy, , = W, for some K
and some M, while W,, = W,. There are only a
denumerable number of values of this sort,
since for a particular K and M the equation
W g1 1r = W has a finite number of roots.

6. Concluding remarks

We have presented several procedures by
which the climate, or the long-term statistical
properties of a system, might be deduced from
the equations governing the system. We have
illustrated these procedures by means of a
first-order quadratic difference equation in one
variable. By specifically choosing the simplest
possible nonlinear governing equation, we have
abandoned any direct effort to make the system
resemble the atmosphere, or any other real
physical system. It is noteworthy then that,
as far as its solutions are concerned, our equa-
tion resembles certain hydrodynamic systems
in spite of itself.

Consider, for example, the laboratory experi-
ments of Hipe (1958) and Furrz (1959), in
which a circularly symmetric vessel containing
water is rotated about its (vertical) axis, while
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being heated near its rim and cooled near its
center. If the apparatus rotates slowly enough,
the resulting flow is also symmetric about the
axis. At slightly higher rates of rotation, partic-
ularly when the vessel is annular in shape,
waves develop, and travel around the annulus
at a uniform rate, without changing their shape.
At still higher rotation rates the waves vacillate,
i.e., they alter their shape in a regular periodic
fashion. At even higher rotation rates, the waves
progress and alter their shape irregularly.

Let us agree to identify the parameter a in
our simple difference equation (2) with the rate
of rotation in the laboratory experiments, and
let us identify the variable X, with the kinetic
energy of the waves. We then find that for the
slowest rotation (0 <a <1), X, approaches zero,
i.e. there are no waves. For somewhat higher
rotation rates (1 <a<3), X, approaches a
positive constant a —1, i.e., the waves exist,
and their energy remains constant with time.
For still higher rotation rates (3 <a <3.449),
X, oscillates periodically between two values,
i.e., the waves vacillate. Finally, for at least
some of the highest rotation rates (3.449 <a <4),
X, oscillates nonperiodically, i.e., the waves
move irregularly.

Other analogies could also be drawn; for
example, the appearance of successively more
complicated forms of convection as a Rayleigh
number increases, or the progression from lami-
nar motion to complicated turbulence as a
Reynolds number increases.

The writer feels that this resemblance is no
mere accident, but that the difference equation
captures much of the mathematics, even if not
the physics, of the transitions from one regime
of flow to another, and, indeed, of the whole
phenomenon of instability. In the instances
just mentioned, a more complicated type of
flow sets in as soon as the simpler flow becomes
unstable with respect to perturbations of small
amplitude. In other instances, a more compli-
cated flow may set in when a simpler flow goes
out of existence altogether. Thus equation (2)
possesses a stable solution of period 3 when
3.828 <a <3.840. The solution still exists, but
is unstable, when a > 3.840, but no solution of
period 3 exists at all when a <3.828.

Having presented a case for a close mathe-
matical analogy between a simple difference
equation in one variable and a complicated
system of hydrodynamic equations, let us see

what is to be learned from our attempts to
deduce the climate governed by the difference
equation. Because the real atmosphere varies
in a somewhat irregular fashion, we must con-
cede that the difference equation is a better
analogue of the atmosphere for the higher
values of a (say between 3.449 and 4). Because
of the failure of purely analytic methods to
yield values of X for many of these values of a,
and because of the relative ease of determining
X, for any particular value of a, by solving the
equation numerically, we might conclude that
straightforward numerical integration affords
the best method of deducing climate.

However, we have found that for determining
the nature of X as a function of a, the numerical
procedure alone leaves much to be desired. The
graph of X against a (Fig. 3) reveals the rather
broad band near @ =3.84 where X is relatively
small; it does not suggest the existence of con-
siderably narrower bands where X is even
smaller. It is true that these bands would even-
tually be detected if X were computed for more
and more values of a, but the bands are so
narrow that it is questionable whether one
would continue the search to the point of
discovering them. The bands with very high
values of X are narrower still. ‘

Straightforward analytic reasoning, on thi
other hand, readily reveals the existence of
bands where X is very low, and also where X
is very high. Yet the reasoning necessary to
establish the existence of these bands might
never have been performed, had not the
numerical procedure revealed the first band.

Analytic reasoning also yields an interesting
result concerning the probability that a stable
periodic solution will exist if a is chosen at
random. Here, however, the result is not rigo-
rously proven; it merely follows if certain hypo-
theses are accepted. These very hypotheses
might never have been formed without previous
examination of the numerical solutions.

We thus see that a computing machine may
play an important role, in addition to simply
grinding out numerical answers. The machine
cannot prove a theorem, but it can suggest a
proposition to be proven. The proposition may
then be proven and established as a theorem
by analytic means, but the very existence of the
theorem might not have been suspected without
the aid of the machine.

Uram (1960, Ch. 8) has discussed the general
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problem of the computing machine as a heuristic
aid to mathematical reasoning, and has pre-
sented examples from a number of different
branches of mathematics.

As for the problem of deducing the climate,
this would appear to be best handled by numeri-
cal integration, preferably with the most power-
ful computing machine available, accompanied
by a large amount of careful mathematical
reasoning.
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