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ABSTRACT

The process primarily responsible for the release of kinetic
energy in the atmosphere, a rising of warmer air and a simultaneous
sinking of colder air, also increases static stability. Gross static
stability, a weighted integral of static stability, may be defined in
such a way that reversible adiabatic processes have equal effects upon
kinetic energy and gross static stability.

Since there is a net dissipation of kinetic energy by friction,
there is a net generation of kinetic energy by adiabatic processes, and
hence a net increase of gross static stability by adiabatic processes,
and hence a net decrease of gross static stability by non-adiabatic
heating and cooling. Current estimates of frictional dissipation are
consistent with a net non-adiabatic cooling of about 0.30 C per day
near the tropopause.

The increase of étatic stability accompanying the development
of a disturbance causes an increase in dynamié stability, which tends
to inhibit further growth of the disturbance.

Simplified dynamic equations are developed, which properly
describe the relations between total potential energy, kinetic energy,
available potential energy, and gross static stability. These include
three dimensional systems with the equation of balance or the geo-
strophic equation, and n-layer models. The two-layer model may be the
simplest possible System with variable static stability. The simplifie

equations appear to be especially suitable for theoretical studies of

the general circulation and similar circulations.




TABLE OF CONTENTS

STATIC STABILITY AND ATMOSPHERIC ENERGY

1. Introduction
2. Gross static stability
3., Static stability and the general circulation
4. Simplified dynamic equations with an energy invariant
5. Energy-preserving n-layer models
6. Uses of the simplified egquations
REFERENCES

11

19

29

37

40




STATIC STABILITY AND ATMOSPHERIC ENERGY

1. Introduction

The rate at which the temperature varies with elevation has
long been recognized as an important local characteristic of the
atmosphere. According to the simplest theory of convection, a verti-
cally displaced parcel of air will become further displaced if the
temperature decreases rapidly with elevation, and will be restored if
the temperature decreases slowly or increases with elevation. The
critical lapse rate of temperature for stability is found to be the
dry-adiabatic, if the air is not saturated with water vapor. This
result is obtained when the undisturbed state of the atmosphere is

taken to be a state of rest; hence the term static stability is appro-

priate, and has been widely used, to describe stability of this kind.
Details of the theory are found in standard textbooks on meteorology
(cf. Petterssen [15]).

More recently, static stability has been recognized as an
important factor in the behavior of systems of somewhat larger dimen-
sioﬁs, such as cyclones. In the theory of baroclinic flow, a criterion
may be determined for the growth of a small perturbation superposed
upon a zonal current. This criterion has been found by several inves-
tigators (e.g., Charney {2]) to contain the lapse rate of temperature

as a factor, in such a way that high static stability opposes the

growth of the perturbation. The relation between static stability and




the stability of baroclinic flow has been described in physical terms
by Eady [6].

The importance of static stability in the dynamics of the
general circulation has not yet been fully appreciated; it will be
considered in this study.

One of the most enlightening ways of studying the behavior
of an atmospheric system consists of seeing what happens to the energy
involved. Any atmospheric circulation system, whether it be a small-
scale convection cell, a cyclone, or a large-scale zonal wind system,
represents a supply of kinetic energy, and the development of such
a system requires either a transformation of potential and internal
energy into kinetic energy, or a conversion of the kinetic energy of
some other system to that of the developing system. The greatly
improved understanding of the general circulation which has so recently
come about has been due in no small measure to studies of its ener-
getics.

The process which converts poténtial and internal energy
into kinetic energy consists of decrease in pressure of warmer air
and a simultaneous increase in pressure of colder air. In most cases
this means a rising of warmer air and a simul taneous sinking of colder
air, so that the center of gravity of the atmosphere is lowered.

Since this process places warm air above cold air it must inevitably
increase the over-all static stability. There is thus a close connec-

tion between static stability and atmospheric energy, in that they

are both affected in a regular fashion by one of the most important




atmospheric processes.

Some of the consequences of this connection are immediately
apparent. On the local scale we sce that as convection develops and
kinetic energy is released, the static stability increases, so that
further convection tends to be inhibited -— a result which is hardly
new to us. On the synoptic scale, as a cyclone develops through the
release of kinetic energy, the static stability increases, so that the
stability of the large-scale flow increases, and again further develop-
ment is inhibited. On the global scale, there is a net long-term con-
version of potential and internal energy into kinetic energy by isen-
tropic processes, and hence a net long-term increase in the over-all
static stability. This increase must be balanced by a net decrease in
static stability by nonadiabatic processes. Hence the over-all vertical
distribution of temperature cannot be in thermal equilibrium, but
would appear to be in some way more stable than one in thermal equi-
librium.

The purpose of this study is to investigate in detail the
relation between static stability and atmospheric energy, and its
consequences, and in particular to seek the role of static stability

in the energetics of the general circulation.

2. Gross static stability

In the ensuing discussion, the following familiar symbols

appear:




time

.

e

elevation

: pressure

: surface pressure

: temperature

: potential temperafure

specific volume

horizontal velocity vector
individual pressure change, Jp/clt

: acceleration of gravity

X3

Coriolis parameter

specific heat at constant volume

specific heat at constant pressure

ratio (CP-CV)/C,, , approximately 2/7

lapse rate of temperature, - QT/?‘Z

XHLL v LR QHdv TN
2177 X <

dry-adiabatic lapse rate, equal to 3/01’

It will be convenient to choose ’9 as the vertical coordi-
nate, so that Z becomes a dependent variable. A bar (——_) over a
quantity will denote an average with respect to the horizontal coor—
dinates, i.e., an average over an isobaric surface if the quantity
depends upon P , and an average over the entire atmosphere if the
quantity is independent of P - |

It is a familiar observation that the potential energy F>
within an entire vertical column of unit cross section is proportional
to the internal energy L , in the ratio (CP —<:€V C, . The sum

of the two, called total potential energy, may be given by

Po

P+I=%f* T dp , .

(o]




Likewise, the kinetic energy in such a column is given by
Po
: 4
K = L V-V odp . (2)
o
A further useful quantity having the same dimensions is

Yo

\c
E‘T;;Z‘; e dp . 3)

[

Evidently —E_ , and also the sum ? * I * K , are unaltered by any
reversible adiabatic process.

In order to compare static stability and energy, we first
need a suitable measure of static stability. Such a measure may be as
simple a quantity as — 99/9)7, which vanishes when the lapse rate

is critical. In establishing a relation between —1969/3f9 and f3+-]; R

we shall first neglect horizontal variations of surface pressure, and

assume that P, = Fgo , where rﬁ;o is a standard pressure, which may be

taken as 1000 mb. Since

o= T[EY

- 4
Poo ) €Y
we find from (1) and (3), after integrating by parts, that
P+I-E = -3
? (5
where
Po
— e VX
S . el o (ENT[-8)dp
I+X g9 Po \Po °P '
a

The integral in (6) is a weighted average value of the static




stability —DS/DP - The weighting function vanishes at the bottom
and the top of the atmosphere, and is relatively constant between 700 mb
and 200 mb. The quantity S is therefore a measure of the over-all

—

static stability of the atmosphere. We shall call S the gross static

stability per unit area; the gross static stability of the atmosphere
is simply S multiplied by the area of the earth. It follows from (5)

that under reversible adiabatic processes, variations of S must be

equal and opposite to those of ‘P + I

—

» and hence equal to those of
K . Our assumption that some sort of over-all static stability
increases when kinetic energy is released is therefore Justified.

It may be objected that -DB/BP is not a suitable measure
of static stability, since equal values of -—96/9P at different
pressures imply vastly different lapse-rates of temperature. An alter—

native measure is the dimensionless quantity

- \ 26
= » 7)
b T 2(F%) :

where T°° is a standard temperature, typical of the atmosphere. From
the hydrostatic equation and the equation of state, it follows that

o = __T_. _D - r_ (8)
T .

oo T4

Hence one unit of ¢ represents approximately the difference between

the dry-adiabatic and the isothermal lapse-ra‘cesJ and equal values of

0~ 1imply comparable, if not exactly equal, values of ,— - In terms

of J




_\_ - Po b - X
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- T - g d 9
S X g %a U" P (9
so that S; is also a weighted average value of (" . Here the

weighting function becomes infinite at the top of the atmosphere, but
its integral over the atmosphere is still finite.

Physically there is a close analogy between gross static
stability and available potential energy. The latter quantity has been
discussed in detail by the writer [13]. Available potential energy may
be defined as the excess of the existing total potential energy above
the amount of total potential energy which would exist if, with the
same statistical frequency distribution of potential temperature, the
isentropic surfaces were arranged horizontally, with stable strati-
fication. Likewise, gross static stability may be defined as the
deficit of total potential energy below the amount of total potential
energy which would exist if, with the same frequency distribution of
potential temperature, the isentropic surfaces were arranged vertically.

Under adiabatic processes,

2 o ‘E:fx .a‘ ( F\—K —_ }
— = - — w
>t ¢, Too 2p° . (10)
while
— -— —~— . Pb
53 N(PeTI) oK \ —
A T T EP I N e b

The quantity - WOl appearing in (10) and (11) represents the

process of simultaneous rising of warm air and sinking of cold air —




the process which maintains the kinetic energy of the atmosphere.

The conclusions which we have drawn are based upon equations
which were derived under the aésumption that P, = Ps, . These equations
are therefore really approximations. Equation (5) should, then, contain
a correction term. This term is presumably small compared to § + i_ s
but it may not be small compared to E. » Or, more important, its
variations may not be small compared to those of E: . In that case,
the conclusion that E. and Eg vary alike under adiabatic processes
would not be valid.

Let us therefore see how the equations must be modified to
allow for variations of P> . For this purpose, let F‘ and f’l be
the lowest and highest values of Po present. Let P\(P) be the fraction

of the earth's surface for which Po 2 P , so that h(P) =1 if PP,

and h(p)=0 if P > P,. Let
P
a(p) = g hpD)dp! (12)

so that a(p) > p if P2 P, , and a(p)= p, if p 2 Py . Let

P
X ,
bp)= (X (F) hir) dp' ) (13)
Kake e
so that bx?;: p if = F‘ , and b(P): A if PZ F. Then
X
diea el T e i,
AP | A (pa) b-(Pa) L‘*(F’:\ bir) ) (14}

It then follows that
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E-_E —
3 T h dp s

while

Pa

T - >~ Sl gnd (16)
EE I G \o © h P '

so that, in view of (14),

tX

- - _ _fii——- — N —
Pelos Po B2 =S a
where
Pa -
- \ Pso Cp F%‘+“ a.(ﬁ> _ b (RA - élg? 4

vk 9 p“‘*“ a(P) b U"Q opP P (18)

[~]

Equation (18) reduces to (6) if Fb = Poo . Since

—

x
1+ X —1*R Po—Po X (14X [Po-?ﬁ
A A ) ROt a . ot 9)

P .

equation (17) finally reduces to

—
P +‘I “E - -5 + X(H‘Q(F"‘Iﬁ"‘r

X F‘D . (20)

i

The correction term to be added to (5) therefore involves the variance
of surface pressure.

To assess the importance of the final term in (20), we shall
introduce typical values of the quantities involved. It is convenient

2
to measure the total energy of the atmosphere in units of 10 7 ergs

(= 1017 kilojoules ); the corresponding unit for energy per unit area




8 -2 . -2 .
is then about 2 x 10 ergs cm ( = 200 kilojoules m ). Typical values
of the total potential energy, the kinetic energy, and the gross static

. ) ) T-= o
stability of the entire atmosphere, corresponding to = 250 K B

-1 . 27
l\/\ =15 m sec 7, and ¢~ = 1 unit, are then about 12500 x 10°' ergs,
6 x 1027 ergs, and 1100 x 27 ergs, respectively. A typical value of the
correction term in (20), corresponding to a standard deviation of sur-
2
face pressure of 20 mb., is about 1 unit (or 10 7 ergs divided by the
earth's area).
Let us suppose, then, that a reversible adiabatic process
releases kinetic energy, so that the total potential energy decreases
27 - . . L
by 10 ergs, and the kinetic energy increases by a similar amount, say
27 27 . - .

from 6 x 10 to 7 x 10 ergs. According to the approximate relation

3 o . 27
(3), the gross static stability would also increase by 10 ergs.
According to equation (20), the increase in kinetic energy could instead
be accompanied by a decrease in the standard deviation of surface pres—
sure, say, from 20 mb to O mb, or from 28 mb to 20 mb. Such a change in
the surface pressure field seems less plausible than the proposed change
in the gross static stability, especially since one might expect that
the standard deviation of surface pressure would increase, rather than
decrease, when kinetic energy is released. The most plausible conclusion
is, therefore, that the gross static stability increases when kinetic

energy is released through reversible adiabatic processes.

- 10 -




3. Static stability and the general circulation

In attempting to account for the nature of the general cir-
culation and the secondary circulations, there are two reasons why
static stability must be considered. First, the vertical variation of
temperature is itself‘one of the features of the over-all state of
the atmosphere, and as such requires explanation. Second, as we have
mentioned, static stability is a factor in determining the growth of
disturbances superposed upon a flow of larger scale.

Let us first review briefly a possible explanation for some
of the principal features of the general circulation — a hypothesis
which the writer believes to be the most plausible so far presented.
This hypothesis was formulated in view of the results of recent studies
of two types. First there are the experimental studies of symmetrically
heated rotating fluids, particularly the "dishpan' studies of Fultz
[7], which show that for a given rate of rotation, symmetric flow will
occur if the heating contrést is strong, but eddies will appear if it
is somewhat weaker. Next, there are the extensive observational studies
of the large-scale transport of energy and angular momentum, partic-
ularly those of Starr and White [18].

According to our hypothesis, if a rotating fluid, whose

material environment is symmetric with respect to the axis of rotation,
is heated symmetrically, a steady symmetric baroclinic flow is mathe-
matically possible. If this flow is stable with respect to small per-

turbations, it is the flow which will occur. If it is unstable, small

- 11 -




perturbations will grow until they become significant features of the
total flow, which will then be asymmetric. Static stability is an
important factor in determining the stability of the symmetric flow,
and the transition from symmetric to asymmetric flow, as the heating
contrast becomes weaker, occurs because the meridional circulation
forced by weak heating cannot maintain a high static stability, in
the face of non-adiabatic processes which tend to decrease the static
stability.

Our hypothesis regards the presence of large~scale eddies
in the atmosphere as resulting because any symmetric flow in equilib-
rium with the existing heat sources and sinks would be unstable. The
lack of symmetry of the earth's geographical features, which makes
the heating distribution unsymmetric, is regarded as sufficient but
not necessary to explain the presence of eddies, and, although probably
necessary to explain the details of the eddies, perhaps insufficient
to explain their intensity.

It follows that if the hypothesis is correct, static stability
plays a crucial role in regulating the general circulation, and any
complete explanation of the general circulation must explain the field
of static stability.

Hypotheses of this sort have appeared frequently in the
recent literature; for example, the occurrence of eddies as a result
of the instability of the zonal flow has been suggested by Eady {5).

The present hypothesis has been discussed in more detail by the writer

[11, 12].

- 12 -




At this point we encounter a basic inadequacy in the present-
day theory of the stability of baroclinic flow. Most of the studies
which have yielded criteria for stability have been based upon simpli-
fied systems of equations -— frequently upon the two-layer models
used in dynamic forecasting. In most of these models the static stabil-
ity is treated as a constant, although the value of the constant may
be chosen at will. The flow is then found more likely to be stable when
the static stability is great.

It does not seem logical, however, that the growth of disturb-
ances should always depend upon a value of static stability averaged
throughout the whole atmosphere. For example, the growth of waves in
the troposphere may depend primarily upon the static stability in the
troposphere, and show little response to changes in the static stability
of an already stable stratosphere. Gross static stability may therefore
be a poor criterion for the growth of waves, since it is highly depen-
dent upon the static stability of the stratosphere. Likewise, the growth
of an individual storm, as opposed to the growth of all disturbances,
may depend upon the static stability in the immediate geographical
vicinity of the storm, but not upon the static stability at some distant
part of the globe.

These assumptions are presumably capable of verification,
with the use of suitable dynamic equations. Such studies, however, would
be much more complicated than the investigation of a simple baroclinic
flow specified by a few parameters. The question of the validity of

these assumptions is important enough, however, to merit a great deal
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of effort. Such procedures as the one used by Kuo [8] should prove
fruitful.

Let us see, then, what can be concluded at present about
the importance of static stability for the general circulation and the
secondary circulations, and let us see what further speculations may
be in order.

The general circulation is characterized by an energy cycle,
which involves a net generation of total potential energy by nonadia-
batic processes, a net conversion of total potential energy to kinetic
energy by adiabatic processes, and a net destruction of kinetic energy
by dissipative processes. As pointed out by the writer [14] , the
first two steps in this cycle may equally well be regarded as a net
generation of available potential energy and a net conversion of avail-
able potential energy into kinetic energy. It follows from our present
results that the second step of the cycle also involves a net increase
in the gross static stability by adiabatic processes. The first step
must therefore involve a net decrease in the gross static stability
by nonadiabatic processes.

In the long run each step of the energy cycle must proceed
at the same rate. This rate must also equal the rate at which the gross
static stability is increased by adiabatic processes, and decreased
by heating. Temporary differences in the rates lead to temporary changes
in the amount of one or another form of energy contained in the atmos-

phere, and also to temporary changes in the gross static stability.

A net decrease in the gross static stability by nonadiabatic




heating merely implies that the heating occurs by-and-large below the
cooling. This conclusion is already well-known. However, it is still
of interest to consider the numerical values involved.
The approximate rate at which kinetic energy is dissipated
has been known for a considerable time. It has been estimated by Brunt
[1] at two per cent of the rate at which the sun's energy, exclusive
of the amount reflected as short-wave radiation, is rece€ived by the
earth. A more recent estimate by Lettau [9] places this ratio at six-
tenths of one per cent.
We have seen that typical values of the total potential
energy, the kinetic energy, and the gross static stability of the
. 27 27
entire atmosphere are about 12500 x 10 ergs, 6 x 10 ergs, and
27 .
1100 x 10 ergs, respectively. The last value corresponds to an approx-
imately isothermal lapse rate. The amount of solar energy received
. . . 27
during one day at the extremity of the atmosphere is about 150 x 10
ergs. About one third of this energy is reflected as short-wave radi-

27
ation. Thus kinetic energy is dissipated at the rate of about 2 x 10

ergs per day, if Brunt's estimate 1is correct, or less than 1 x 1027
ergs per day, if Lettau's estimate is correct. Gross static stability
is increased by adiabatic processes, and decreased by heating, at the
same rate at which kinetic energy is dissipated. Thus the daily change
of E; by adiabatic processes alone, or by heating alone, may be
about 1/1000 of E; , but is probably a large fraction of FE

We cannot conclude from this result that the daily change of

the lapse-rate r— due to adiabatic processes alone, or to heating
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alone, is everywhere about 1/1000 of r; ; since the assumption of
a uniform change of l” is unrealistic, in that it places the maximum
cooling at the top of the atmosphere, rather than near the tropopause.

We can, however, estimate the rate at which | , or the static stabil-

ity ¢° , is altered by these processes, with suitable assumptions as

—

to the relative changes of f: or O at various levels. From the
additional condition that ig be unchanged, we can then compute the
rate at which the temperature at various levels is changed by non-
adiabatic processes, i.e., radiation, evaporation and condensation,
small-scale eddy processes, and frictional heating.

We have seen that the vertical distribution of the change
of 5: due to adiabatic processes is determined by the vertical distri-
bution of the process of simultaneous sinking of cold air and rising
of warm air. This process can occur only if horizontal temperature
differences are present. If F‘ < FQ , the temperature will rise at
a fixed point in the sinking air, and fall at a fixed point in the
rising air, because of vertical advection of potential temperature.
Hence the horizontal temperature differences will be decreased, or
even wiped out, after which the process cannot continue. Moreover, the
greater the static stability, the smaller the vertical displacements
needed to wipe out the horizontal temperature differences. Hence, un-
less superadiabatic lapse-rates are present, the available potential

energy must depend upon the horizontal temperature contrast and the

static stability.

It would therefore seem that the stratosphere can contain




very little available potential energy, in view of its high static
stability, and the process of sumultaneous sinking of cold air and
rising of warm air cannot continue there at a very rapid rate. Accord-
ingly, we shall introduce a hypothesis, which may be regarded as a
supplement to our earlier hypothesis concerning the general circulation.

According to this hypothesis, the growth of a small disturbance super-

posed upon a large-scale current depends largely upon the nature of
the portion of the current near the disturbance. The symmetric state
of the atmosphere which could be in equilibrium with the heat sources
and sinks has an unstable lapse rate in the troposphere, and a stable
lapse rate in the stratosphere. Hence disturbances will develop in
the troposphere, gaining their kinetic energy from the available po-
tential energy in the troposphere. Disturbances appearing in the
stratosphere will occur primarily through interaction with the tropo-
sphere, rather than through a release of kinetic energy within the
stratosphere.

For the sake of numerical computation, we shall assume that
the change of E; by adiabatic processes is a positive constant in the
troposphere, extending from 1000 mb to 250 mb, a negative constant in
the lower stratosphere, from 250 mb to 50 mb, and zero above the 50 mb
level. The corresponding values of —<:3_SC vanish above the 50 mb
level and are positive everywhere else, with a maximum in the upper

27
troposphere. If we assume a dissipation of kinetic energy of 1 x 10

e

ergs per day, we find that as a result of adiabatic processes, g~

increases by 0.0045 units per day in the troposphere, and decreases




by 0.0014 units per day on the stratosphere, while the temperature
decreases by 0.25O C per day near the ground, and increases by 0.3o C
per day near the tropopause,.

The somewhat greater adiabatic temperature increase at the
tropopause corresponding to Brunt's estimate of dissipation of kinetic
energy, and the somewhat smaller increase corresponding to Lettau's
estimate, both fall within the limits of being consistent with currently
accepted rates of radiative cooling. For example, London, Ohring, and
Ruff [10] have estimated that the stratosphere as a whole is cooled

0.5O C per day by radiation. These estimates also appear to be con-

sistent with the estimates of -G © made by White and Saltzman [19]
Consistent estimates could also be obtained by using more refined
assumptions concerning the relative changes of 5: at various levels.

If we accept this hypothesis, and assume in effect that the
energetically active processes in the atmosphere are confined largely
to the troposphere, we can restate our conclusions concerning the

importance of static stability for the general circulation and the

secondary circulations. Because of the steep lapse-rates in the tropo-
sphere imposed by nonadiabatic processes, disturbances will appear in
the troposphere, in spite of the high gross static stability resulting
from the contribution of the stratosphere. The release of kinetic
energy by these disturbances increases the gross static stability, but
the increase in stability is confined mainly to the troposphere, so
that further growth of the disturbances tends to be suppressed. Thus

the overall static~stability of the troposphere should be somewhat
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greater than that demanded by nonadiabatic processes alone, and may
even be regulated by the disturbances at a value near its critical
value for the growth of disturbances. In turn, the disturbances may

be regulated at the intensity necessary to maintain a critical static
stability, in the face of nonadiabatic processes which tend to decrease
the static stability.

Concerning an individual growing disturbance, we may assume
that as kinetic energy is released, the static stability increases in
the troposphere, geographically near the disturbance. Thus further
growth tends to be suppressed. It follows that if the disturbance is
studied by means of a simplified system of equations, in which the
static stability is assumed to be constant, the growth of the disturb-

ance, if predicted at all, is likely to be overpredicted.

4. Simplified dynamic equations with an energy invariant

During the past decade it has become evident that fairly
good short-range forecasts can be made by integrating highly simplified
forms of the dynamic equations. In the more immediate past, Phillips
[16] has obtained a fairly realistic picture of the general circulation
by integrating similar equations. If simplified equations are to be
used to their fullest advantage, it would appear desirable that the
relations involving energy should be suitably described by these equa-
tions. Accordingly, we shall seek simplified equations under which

reversible adiabatic processes have numerically equal effects upon
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total potential energy, kinetic energy, available potential energy,
and gross static stability. In this section we shall consider three-
dimensional equations, and in the following section we shall introduce
an "n-layer model’.

Equations of the type most commonly used in numerical fore-
casting may be established in the following manner (although the
historical development of these equations has proceeded somewhat
differently). For a dry atmosphere, the physical laws determine a set
of five scalar prognostic equations — the equations of motion, the
equation of continuity, and the thermal equation, and one diagnostic
equation or identity — the equation of state. These equations con-
tain six dependent variables; the prognostic equations may be expressed
in terms of five dependent variables with the aid of the one identity.

The equation of vertical motion is first discarded, and
replaced by the hydrostatic equation — an identity. The equation of

continuity and the thermal equation reduce to one prognostic equation

and one identity with the aid of the time derivative of the hydro-
static equation. Thus there remain three prognostic equations, which
may be expressed in terms of three dependent variables with the aid
of the three identities.

The new system is next expressed with pressure as an inde-
pendent variable, and height as a dependent variable. The horizontal
wind components are then expressed in terms of their vorticity and
divergence, and the equations of horizontal motion are expressed by

their equivalents — the vorticity equation and the divergence
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equation. The divergence equation is then discarded, and replaced by
the equation of balance, an equation obtained by dropping from the
divergence equation all the terms which contain divergence. The vor-
ticity equation and the thermal equation reduce to one prognostic
equation and one identity with the aid of the time derivative of the
equation of balance. Thus there remains one prognostic equation, which
may be expressed in terms of one dependent variable with the aid of
the five identities.

It is often more convenient to omit certain additional terms
from the equation of balance, reducing it to the geostrophic equation.
Certain terms in the vorticity equation are also often omitted. The
new system still contains but one prognostic equation.

Finally, the vertical dimension may be replaced by several
layers. Each function of time and three space dimensions is then re-
placed by several functions of time and two space dimensions.

With the original set of five prognostic equations as the
governing equations, total energy is conserved under reversible adia-
batic processes. After the equation of vertical motion is replaced by
the hydrostatic equation, total energy may still be said to be con-
served, but only if the kinetic energy contained in the vertical com-
ponent of the motion is not included in the total amount of kinetic
energy. Since the omitted kinetic energy is an insignificant fraction
of the total, this restriction is of little consequence.

Let us see what happens when further modifications are made.

Choosing pressure as the vertical coordinate, let the horizontal wind




V be written as

\\/ = \\/1 + \V3 s (21)

where \V& is nondivergent and \V3 is irrotational. We shall attach
a subscript "2" or "3" to any dependent variable related to \\/1 or
\\’3 through an identity. Thus we may introduce a stream function

and a velocity potential qu such. that

V, = Kx VY, (22)
where K is the vertical unit vector, and

Wy, = V¢, (23)

The vorticity 5 and the divergence S then satisfy the relations
LS 3

— &
51 2 V-V K = V.V, vK =V ¥, (24
and

1
5,2 TV = V-V, -V ¢, (25)

)

\

v

Likewise, we shall attach a subscript "1" to any dependent variable
related to Z through an identity. Thus the three diagnostic equa-
tions, in this case the equation of state, the hydrostatic equation,

and the equation of continuity, become

Fql '—'-KCPT\ , (26)
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22y L % . (27)
2P F '

W

oW, + Ss = O ) (28)
oP

while the formula for potential temperature becomes

-X
12
o () T (29)

We note, incidentally, that equations (22) through (29), each connec-

ting dependent variables with similar subscripts, are all linear in

these variables.

The three prognostic equations, namely the thermal equation,

the vorticity equation, and the divergence equation, may now be written

20,
o2t

'ai

— D8
= - J (\P;)a|) "w3vel w3 QP ) (30)

= =Ty, 5) - Tl $) - v (F )

W, V5, - 3G, - wy g‘{ "V \P 3(0:,28) )
and

ol gvlz, t V(FVH) - T(F, 8.) -v. (W, 7W,)
A A VA A L R A V“’s'aa\i‘

- - oW (32)
V- (V-0 W5y - YWy so

provided that nonadiabatic effects are omitted. Here 3- denotes a
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Jacobian, e.g.,
3-(%,9,5 = V\}/}xVG, K (33)

With the aid of the identities, any three variables with subscripts "1",
"2"  and "3" may be regarded as the dependent variables in the three
prognostic equations.

With P as the vertical coordinate, the lower boundary
conditions are that 2 =0 and cl?/alt =0, if the earth's surface
is assumed horizontal. It is convenient at this point to simplify the
system of equations by discarding these boundary conditions, and replacing
them by the conditions that p =P, = constant and (0 = O . With these
new boundary conditions, total energy will still be conserved, while,
since the statistical distribution of © will be conserved, the rela-
tions involving available potential energy and gross static stability
will still hold. The new boundary conditions do not assume a flat sea-
level pressure field, since & 1is no longer assumed constant at the
lower boundary.

We have seen that the total potential energy within a vertical

column, averaged horizontally, may be given by
Po

—_— CP P X —
P «TI = r c(—:) e, dp (34

The kinetic energy per unit mass (omitting the kinetic energy contained

in the vertical motion) is given by
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LWV = 3 0EY T (¥s,¢,) 596 Ve, | G

Hence the kinetic within a vertical column, averaged horizontally, is

given by
Po

o

— — \. ‘

K= Ky +Ky = 3%@ VY, -VY, dp * g % Vsde, @e
[} (-]

since the horizontal average of the Jacobian vanishes.

The terms in the divergence equation (32) may be grouped into
six classes, such that the different terms in any one class contain the
same set of numerical subscripts. Thus the six classes may be denoted

by (1), (2), (3), (2,2), (2,3), and (3,3). Likewise, the terms of the

vorticity equation (31) fall into the five classes (2),(3),(2,2),(2,3) and

(3,3), while those on the right of the thermal equation (30) fall into
the two classes (1,2) and (1,3).

From the prognostic equations we may determine the classes
into which the various terms fall, in the expressions for 2(64-‘1.)}})1: 5
BTZl/ ot , and 3_‘(—3/91: . In determihing these classes, we shall
make repeated use of integration by parts, and observe that the diver-
gence of any vector, the Jacobian of any two scalars, or the vertical
derivative of any quantity which vanishes at the bottom and the top of
the atmosphere, all vanish when averaged throughout the atmosphere.

We then find that the only nonvanishing terms of a(ﬁfi—s/at

fall into the class (1,3), while the nonvanishing terms of az ot
b 5 ;_

fall into the classes (2,3), (2,2,3), and (2,3,3), and those of ‘a[z;/;)t
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fall into the classes (1,3), (2,3), (2,2,3), and (2,3,3). In partic-

ular,
—~ — ?D \(_‘
+ 1, XCp p —
gt?g-t ,____) = 7 P){ B,Ws d © (37)

Since equations (30), (31), and (32) conserve total energy, the terms
of 9\_(-3 /at in class (1,3) must cancel the expression for 9“3‘1'.1.'.)/31-.
The remaining terms of Diz;/at must then cancel, class by class, the
terms of le/a't

Now consider what happens when the system of equations is
simplified by omitting certain terms from the divergence equation (32).
First, if the term P C‘;3/3t is omitted, (32) becomes replaced by a
diagnostic equation, and the statement that D(Efi. ‘fl—(;*k;)/'r)t vanishes
is replaced by the statement that D(E;,+]—:|+E)\/3t vanishes. Thus the new
system may still be said to preserve total energy, provided that Qf;
is not included in the total amount of kinetic energy. This restriction
is quite analogous to the exclusion of the kinetic energy contained in
the vertical motion when the hydrostatic equation is first introduced.

If the remaining terms in (32) which contain a subscript "3"
are omitted, (32) reduces to the equation of balance. This omission
results in the omission of the terms of class (2,3,3) from the expres-—
sion for 2 Eg/»t, . In order that total energy be still conserved, the
term of class (3,3) must be omitted from the vorticity equation (31).
In most previous studies these terms have been omitted as a matter of

course.
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Further simplifications result from omitting the terms of
class (2,2) from the divergence equation (32) (which has already been
reduced to the equation of balance). The equation then becomes a form
of the geostrophic equation. This omission results in the omission of
terms of class (2,2,3) from 9‘2-3/81: . In order that the new system
of equations may preserve total energy, it is thus necessary to omit
the terms of class (2,3) from the vorticity equation (31).

In previous studies the four terms of class (2,3) in (31)
have often, but by no means invariably, been omitted. Of these four
terms, the second and third, which represént the change of vorticity
due to concentration of contrasting currents, and the vertical advec-
tion of vorticity, have most frequently been included. The fourth
term, often called the twisting term, may be equally important, and,
as shown by Reed and Sanders [17], may be included with little addi-
tional difficulty. The first of these four terms, the advection of
vorticity by the divergent part of the wind, seems to have been gen-
erally neglected. To the writer this neglect seems somewhat illogical
when the other three terms are included; the presence of any vertical
flow, which may advect vorticity, implies by continuity the presence
of divergent horizontal flow, which may also advect vorticity.

It now appears that all four of these terms should be in-
cluded if the equation of balance is to be used, and all should be
omitted if the geostrophic equation is to be used, in any study where
the energetics are important. The inclusion of these terms, together

with the geostrophic equation, or the omission of these terms, to-

- 27 -




gether with the equation of balance, yields a system of equations
without a suitable energy invariant.

In order that the relation between gross static stability
and total potential energy be properly described by the simplified
equations, it is sufficient that the average value of &, be con-
served under reversible adiabatic processes. Furthermore, available
potential energy may be defined in the usual manner, if the entire
statistical distribution of 69\ is conserved. Since the thermal
equation (30) has not been tampered with, these conditions are satis-
fied.

Finally, we note that the term representing the advection
of potential temperature by VVS , the divergent part of the wind,
has not been omitted from the thermal equation (30). Like the advec-
tion of vorticity by VJE , this term has been neglected in many
studies. If the only modification of (30) is the omission of this
term, the equations will no longer possess an energy invariant.

Nevertheless, for some purposes it is permissible to omit
this term, provided that the vertical advection of potential tem-
perature is assumed to be independent of the existing lapse rate, so

that (30) is simplified to

26 _ _ -, 288
== - T(%,0) - s 55 (38)

where ©4 1is a standard value of ©

, dependent upon F’ alone.

In essence, the terms of class (1,3) have been omitted from (30). The
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available potential energy per unit area then simplifies to

Po -1 -
= 3 NCp P D6s *_z*\ 4
A*a?&? -3F)(er - e @2

since then, under equation (38),

A Y.C —
dA _ XCp P o, W, 4‘9 ' (40)

——

o F p;’*

[~]

Since the right side of (40) is identical to that of (37), which was
deduced from the unsimplified equation (30), it follows that the sum
:E\ + E is conserved when (30) is replaced by (38).

However, if the equations are to describe the stabilization of
the lapse rate accompanying the release of kinetic energy, and the

consequent tendency to suppress the further growth of disturbances,

the terms of class (1,3) must be retained in the thermal equation.

5. Energy-preserving n-layer models

In this section we shall establish a set of 'numerical pre-
diction equations", for a model atmosphere in which the vertical dimen-
sion is replaced by a finite number of layers. We shall do this in such
a way that the relationships between static stability and energy are
still valid. Accordingly, we may begin with one of the systems described
in the last section., We shall use the equation of balance in place of

the divergence equation, so that we must include the terms of class

(2,3) in the vorticity equation. The further simplifications to be made




if we wish to use the geostrophic equation, and omit the terms of class
(2,3) from the vorticity equation, will be obvious.

At this point it is convenient to introduce the variable

(ot ar

(41)
so that
b, = 2X (42)
3 gp ;
and, according to the continuity equation (28),
x
wL, = VX | (43)

If we omit the numerical subscripts, which are now superfluous, the

thermal equation and the vorticity equation may be written

o 59X )
2° . -3(e) v 7 (o0 E) - B(ev) |

2 — by > X
%V(P: —)(\{JJ{:+V PB—{-V'('FV
oX a
Vt{/V"‘ +V ax W - leth( (45)
while the equation of balance may be written

§v 2 =V'(fVﬂ+v-[vlw+—5v(ww)] o ae

The reason for the particular grouping of terms in (44), (45), and (46)

will soon be apparent.
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With the aid of the identities (26), (27), and (29), the
equation of balance may be converted into a generalized thermal wind
equation

Cp 2 _ .0 .2 [ _1 .
_I_Df{qs = -y 9(?“)(1&”)) VB(PR)[V&PVT’ S (vq»v%’)] |

47)

Equations (44), (45), and (47), together withvthe appropriate boundary
conditions, form a closed system of three equations in the three depen-
dent variables O R ‘F , and X

The corresponding system with the geostrophic equation, and
without the terms of class (2,3) in the vorticity equation, may be ob-
tained simply by omitting the terms containing square brackets from
(45), (46), and (47).

Let us now replace the three-dimensional atmosphere by W
layers, bounded by the N+ 1\ isobaric surfaces P. , Pa ,---, Pin »
numbered from the ground upward. Thus P, still represents surface
pressure, while P,, =0 . The isobaric surfaces need not be spaced at
equal intervals. Let odd subscripts from 1 to 2n -l denote the Y1 layers.

We must now replace the system of differential equations by a
modified system in which finite differences replace derivatives with
respect to P . Our problem is to do this in such a way that reversible
adiabatic processes still have numerically equal effects upon total
potential energy, kinetic energy, and gross static stability. To this
end, we define & and 99 within each layer. At this point we depart

from many of the currently used models in which the wind field is de-

fined at N levels and the temperature field at W-| 1levels (see
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Charney and Phillips [3]). We define X at the surfaces separating
the layers, so that in particular on Xlw=<3'
The total potential energy and the kinetic energy, per unit

area, are now given by

-—

5 .T - f;g F;-.-P;HB(—E\K%

! (48)
and
v L . - P Rl 49
K = -—L (P Bin) V-V , 49
*FF ¥
where 'E:‘ denotes a sum over ggg values of } , from 1 to an-1  un-

less otherwise specified. In order that (47) have meaning, however, we
must have some rule, such as linear interpolation, for defining p with-
in the layers.

The finite-difference forms of (44) and (45) may be obtained
by replacing each indicated vertical derivative by a difference across

a layer; thus

2

o8 X 6%, ~ G i
_ajt_d_-j(q/j)ej)+v GVP’ 3 —/"L’,(so)
J-1 T hin P;-I - Pity
209 - -T(f A+9E) + 0 *VX*—"'—X”L
a‘t ) \t/ ‘— _P)"')
+*—'—V \HW )(H X * v (¥..- X*')V ( W;, Xin ) S8

Pj~ Bjm

This explains our grouping of terms in (44) and (45); the vertical
derivatives have been arranged so that )( is referred to only at the

surfaces separating the layers. However, in order that (50) and (51)
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i

have meaning, we must have some rules, such as linear interpolation,
for defining © and 4/ at the surfaces separating the layers.

Upon integrating by parts, and again observing that the
divergence of any vector, and the Jacobian of any two scalars, vanishes

when integrated throughout the atmosphere, we find that

D(F+is = ~£ F F+; *
= Z DT, Ve 52)
while
KoL | ¢
S: 9 % X}“V 'FV(\{)) )+;3
1 N N
+%—- ;z X}ﬂ\f (V %V(‘; -ngﬂvﬁ%"‘ —T\}V(V‘{;V\{; -V‘{;’ﬂ.vf;‘nﬂ) (53)

provided that we let

|
kPJ o S 3 (%’ + )+;3 for odd } ) (54)

Comparing (52) and (53), we see that total energy is conserved provided

that
N ¢ -
Cp ) = -y .V ,JL___lﬁf;

Po\{ A Paﬂ")

N

\ L
- : (v tot- W “{’ 3— ;V(V\{;-w; -\77;.*5\7\@4 (55)
Fy - F3+> :
Since this relation is a logical finite difference approximation to the

generalized thermal wind equation (47), we have a set of equations with

an energy invariant.
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The desired relation between P + ] and S will hold if

1 N —
the sum 2' (P)--.- Fé‘n\ e'g is conserved. Equation (50) assures us that
this will happen. The concept of available potential energy may be used

a
if the average value of 6 is conserved. We find from (50) that

i -3 ——‘ 2 2 A
5% > (\’;-“ f’;u\ 9; = J,Z v X}:f\ :zgh‘(eé-ew) '(9}’ ‘ejw)] (56)

EY
so that the average value of © will be conserved if

S;., = 2 (e; 1—95,,;) for odd  j . (57)

There is still some freedom of choice, since the rule for determining

P within the layers has not been specified. For definiteness, let

\ -
P,' = 2 (Y’;-. + F}.ﬂ» for odd { ' (58)

The system of equations (50), (51), and (55), together with the auxiliary
definitions (54), (57), and (58), is now complete.
Of special interest is the case where W= X and P> = —i P,

We then obtain what may be the simplest possible numerical prediction

model with variable static stability. It is convenient to use the mean

potential temperature © and the static stability g~ , and the stream

functions \l/ and 7 for the mean wind and the wind shear, as depen- ‘

dent variables. Thus we shall let 63 = 9{-0"‘} 8, =6 AO*/ sz$ - (lbf‘Y;

and ‘*K = \P—T , wWhence it follows from (57) and (54) that e;: e i
|

and ‘4/9_ = ‘P . We shall also let )(; = ’fS.'P"-I' Equations (50), (51), and
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(55), which govern the system, then become

282 . _F(ye) -3 (1) +0- TV
ot

(59)

T L L) -T(r ) +76-V¥
P - ’ ’ (60)
S0y s =Ty o) =T (Y o)+ v [Proxarier]
E%VIT 3 _y(% Vlfr) -3 v¢tf) » 910K +V'[V ¢ ] 62>

and

b CPVIS =v-for -\-V'[Vl\{)gr-rvtyvk{’-V(V\P-V“r)] , (63)

where, because of (58),

b = _{i[(%\“-&,y(] = 0.\ 2Y (64)

The finite difference form of the system with the geostrophic
equation, and without the terms of class (2,3) in the vorticity equation,
is obtained by omitting the terms containing square brackets from (61),
(62), and (63). In problems where f may be treated as a constant,
further simplification of (63) is possible, and the term - 3-('7: e) in

(60) drops out.

The total potential energy per unit area is given by

. Co = -
P+I :_t..—f(a@-‘b?)

4 ! (65)

where
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: W
o = —;[(%)K‘\‘(T:B ] = 0.7497 , (66)

and b is given by (64). The kinetic energy per unit area is simply

K =3 %(v*{)-\?\l) cTT-0T) o1

The gross static stability per unit area should be a quantity depen-

dent on ¢~ , and obtainable by adding a multiple of é to -(FT+ I)

1t is therxefore given by

-~ Po CP ———
S =b ———% a (68)
the negative of the second term in (65).

Finally, the mean-square potential temperature,

2 2 ey a3

8> + ¢ = & +0T + © 07 (69)

- t ——
is conserved, where &' 2e-8 and g~ =0 -¢g- . Thus, under reversible

adiabatic processes, U has an absolute maximum 0_: , given by

—— _ py e >
O_,...‘,_ = J + 6 + o (70)

The minimum total potential energy, or unavailable potential energy,

is obtained by setting F in (65). The available potential

- Tf““?‘
energy per unit area, which is the excess of the total potential energy

above its minimum, is therefore
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N eC' oy —_ s C e '7:-;
Rebmt(a, ) bn Sl

We thus have a simple two-layer model which properly describes
the relations between total potential energy, kinetic energy, available
potential energy, and gross static stability.

Finally, we note that the model may be reduced to what is
essentially one of the familiar two-layer models simply by discarding
equation (60) for DCT];)t , replacing it by the relation’ ¢~ = constant.
The latter model will preserve the sum of kinetic energy and available
potential energy, but will not describe the relation between static sta-

bility and energy.

6. Uses of the simplified equations

During the past few years so many multi-layer models, and
particularly tﬁo—layer models, have been devised for numerical pre-
diction, that it might hardly seem worth while to add still another
model to the collection. Indeed, the two-layer model presented in the
previous section could probably not be justified on the grounds that it
should yield better short-range forecasts, since the lack of variable
static stability in other two-layer models is probably not the primary
reason for the errors in prediction. Such problems as improper side-
boundary conditions and inadequate representation of the initial three-

dimensional wind and pressure fields are still present.
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The chief value of the new model, then, is likely to be found
in theoretical studies of the general circulation or similar circula-

tions. For this purpose, additional terms should be appended to the

equations, to represent the affects of heating and friction.

Problems involving the tropopause or the stratosphere, for
example, might be studied with a model of three or more layers of dif-
ferent thicknesses, in which the effect of nonadiabatic heating alone
would be to drive the temperature in the bottom and the top layers,
but not the intermediate layers, toward some high value. At the same

time, the nonadiabatic heating must tend to establish a horizontal

temperature contrast within at least one layer, if circulation is to
continue at all. Such problems as the effect of anomalous solar heating
at very great heights might be studied by such a model, with the direct i
|
effect of the anomalous heating confined to a thin highest layer. !
The two-layer model, with heating and friction, should be 3
suitable for studying the flow in the '"'dishpan” experiments. Here it
is relatively easy to solve the nonlinear equations for the symmetric
steady flow in equilibrium with the heat sources and sinks. Attempts
to solve the Navier-Stokes equations for such a flow have been made by
Davies [4] and the writer [11]; great difficulties were encountered
except when the equations were linearized. Once the symmetric flow is
determined, it may be tested for stability by the usual perturbation
method. Presumably the flow will more likely be unstable when the

horizontal heating contrast is weak, since the resulting static sta-

bility should then be small.
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Incidentally, if the same problem were to be studied by
means of a simplified model with constant static stability, the steady
symmetric flow obtained would probably become unstable for a strong
heating contrast, since the vertical wind shear would then be large,
and the instability of the flow due to vertical shear would not be
offset by the stability of the flow due to stable stratification.

The two-layer model should also be suitable for studying
certain features of the general circulation -— particularly those
features which are also observed in the dishpan. For example, the model
might afford a relatively simple approach to a systematic theoretical
study of the jet étream. In particular, the model, with two or more
layers, should be of aid in testing the hypothesis that when large-
scale disturbances are present, the static stability tends to be regu-
lated by the disturbances at a value near its critical value for the
growth of disturbances, while the size of the disturbances tends to
be regulated at the size necessary to maintain a critical static sta-

bility.
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