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Abstract

Since the study of energy transformations and the numerical integration of simplifiied equa-
tions are sometimes used as alternative approaches to the same physical problem, it is often
desirable that the simplified equations conserve total energy under reversible adiabatic pro-
cesses. Preferably, the equations should also conserve the sum of kinetic energy and available
potential energy, and they should describe the tendency for static stability to increase as kinetic
energy is released.

It is found that if the equation of balance is used as a filtering approximation, all the terms in
the vorticity equation which involve both the rotational and the divergent part of the wind
field should be retained, while, if the geostrophic equation is used, all of these terms in the
vorticity equation should be omitted, if the equations are to possess suitable energy invariants.

An n-layer model with the appropriate energy invariants is developed. The two-layer model
may be the simplest possible model with variable static stability. The model appears to be
suitable for theoretical studies of the general circulation. ‘

1. Introduction

One enlightening method of studying the
behavior of the atmosphere, or a portion of it,
consists of examining the behavior of the
energy involved. Any atmospheric circulation
system, whether it be a small-scale convection
cell, a cyclone, or a large-scale zonal-wind
system, 15 marked by a supply of kinetic
energy, and the development of such a system
requires cither a transformation of some
other form of cnergy into kinetic energy, or a
conversion of the kinetic energy of some other
system into that of the developing system.
The classical paper adopting this method is
that of MaRGULES (1903); more recently nu-
merous papers concerning energy transforma-
tions in the atmosphere have greatly increased

1 The research reported in this work has been sponsored
by the Geophysics Research Directorate of the Air
Force Cambridge Research Center, under Contract No.
AF 19(604)-1000.

our understanding of the general circula-
tion.

Another method which is currently finding
much favor consists of generating sequences of
“weather maps”, through numericﬁ integra-
tion of a simplified set of dynamic equations—
ordinarily a set which has been developed for
use in numerical weather prediction. A paper
of Pumues (1956), which aptly demonstrates

the power of this method, has already become

a classic.

There are a number of problems to which
both of these methods are applicable. If the
methods are to yield compatible results, it
would appear desirable that the simp]iﬁcd
equations should not violate any of the energy
principles which the exact equations express.
Hence even the simplified equations should
conserve total energy under reversible adiabatic

processes, and they should lead to approriate
expressions for the conversion of one form of "

energy into another.
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,. Energy, available potential energy, and
gross static stability

Of the various forms of energy present in
the atmosphere, kinetic energy has often
received the most attention. Often the total
kinetic energy of a weather system is regarded
as a measure of its intensity. The only other
forms of atmospheric energy which appear
to play a major role in the kinetic energy
budget of the troposhere and lower stratosphere
are potential energy, internal energy, and the
Jatent encrgy of water vapor. Potential and
internal energy may be transformed directly
into kinetic energy, while latent energy may
be transformed directly into internal energy,
which is then transformed into kinetic energy.

It is casily shown by means of the hydro-
static approximation that the changes of the
potential energy P and the internal energy [ of
the whole atmosphere are approximately pro-
portional, so that it is convenient to regard
potential and internal energy as constituting
a single form of energy. This form has been
called total potential energy by MARGULES (1903).

In terms of potential temperature @, the
total potential energy of the whole atmosphere
may be given by

Pt I=cppgy ™ [p*OdM, (1)

where p = pressure, pg is a standard pressure
(1,000 mb), #% is the ratio (¢, - ¢,)/c, ¢, and
¢ are the specific heats of air, and dM is an
element of mass of the atmosphere.

In the long run, there must be a net depletion
of kinetic energy by dissipative processes. It
follows that there must be an equal net
generation of kinetic energy by reversible
adiabatic processes; this generation must occur
at_the expense of total potential energy. It
follows in turn that there must be an equal net
gencration of total potential energy by heating
of all kinds. These three steps comprise the
basic energy cycle of the atmosphere. The
rate at which these steps proceed is a fundamen-
tal characteristic of the general circulation.

The writer (1955, 1960) has shown that a
partial explanation of the intensity of the
energy cycle can be obtained by considering
available potential energy. Available potential
energy does not represent a supply of energy
additional to the forms already mentioned,
but instead represents a portion of the total
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potential energy which may be available for
conversion into kinetic energy. It is equal to
the excess of total potential energy, above the
total potential energy which would be present
if the mass of the atmosphere were to be re-
arranged, under isentropic changes of state,
to possess horizontal isentropic surfaces, with
stable stratification.

Under this hypothetical rearrangement of
mass, @ and p completely determine each
other. Since this rearrangement would conserve
the total mass lying above a given isentropic
surface, it would conserve the average value p
of p on cach isentropic surface, and the resuldng
value of P+ I would be obtained by replacing
p by p in (4). Hence the available potential
energy is given by

A=copiy [(p~p) OdM. (2)

The writer (1955) has derived from (2) the
approximate expression

1 IO\ 1 —
A~5xcppo'o"fp”“1<%> (O - 0)2dM, (3)

where a bar () denotes an average over an
isobaric surface. Thus 4 is approximated by a
weighted average of the variance of @ within
isobaric surfaces.

It would appear desirable, then, that in any
numerical study of the energetics of the
atmosphere, the equations used should conserve
the sum of kinetic energy and available
potential energy, under reversible adiabatic
processes.

Another quantity which plays a part in the
energetics of the atmosphere is static stability.
As its name might imply, static stability has
long been regarded as indicating the tendency
for convective overturning to develop in an
atmosphere at rest. More recently, it has been
recognized as a factor in determining the
dynamic stability of a baroclinic flow.

The generation of kinetic energy appears
to be accompanied by a sinking of colder air
and a simultaneous rising of warmer air across
the same levels. (It must be accompanied by a
pressure increase of the colder air and a pressure
decrease of the warmer air.) This process
should, by lifting the warmer air above the
colder air, increase the static stability in some
over-all sense.
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In a manner analogous to the definition of
available potential energy, we can define a
quantity, which we shall call gross static stability,
whose variations under reversible adiabatic
processes arc equal to those of kinetic energy.
Gross static stability is equal to the deficit of
total potential energy, below the total poten-
tial energy which would be present if the
mass of the atmosphere were to be rearranged,
under isentropic changes of state, to possess
vertical isentropic surfaces.

Under this hypothetical rearrangement of
mass, @ and p are completely independent. The
resulting value of P + [/ after this rearrange-
ment would therefore be obtained by re-
placing p* in (1) by its average value over the
mass of a vertical column, i.e., by (1 -+ %)~ p7
where p, is the surface pressure. Hence the
gross static stability is given by

S=cpp53‘f<—1i —p"> @dM. . (4)

I+%

Integration by parts yields

S=(r+%)"teps
9@)
- (-5 )M,
f(pup P )< o (s)

so that S is expressible as a weighted average
of —20/dp, which may be taken as a measure
of static stability.

It would thus also appear desirable that in a
numerical study of the energetics of the at-
mosphere, the equations used should conserve
the difference between kinetic energy and
gross static stability, under reversible adiabatic
processes. Equations which allow the release
of kinetic energy without static stabilization
could conceivably overpredict the growth of
disturbances.

3. Energy and the filtering approximations

In order to assess the suitability of the equa-
tions of numerical weather prediction for
studying the energetics of the atmosphere, we
shall first outline a procedure for obtaining
these cquations from the equations which
directly express the laws governing the atmos-
sphere. It might be noted that historically
the development of the simplified equations
has reached its present position by a somewhat
different route.
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For a dry atmosphere, the physical laws
determine a set of five scalar prognostic equa-
tions—three equations of motion, the equation
of continuity, and the thermal equation—and
one nonprognostic equation or identity—the
equation of state. These equations contain six
dependent variables; the prognostic equations
may be expressed in terms of five dependent
variables with the aid of the one identity.

The equation of vertical motion is first
discarded, and replaced by the hydrostatic
equation—and identity. The equation of con-
tinuity and the thermal equation reduce to one
prognostic equation and one identity with the
aid of the time derivative of the hydrostatic
equation. Thus there remain three prognostic
equations, which may be expressed in terms
of three dependent variables with the aid of
the three identities. This system of equations
is the one generally called the primitive equa-
tions.

The new system is next expressed with

_ pressuré as an independent variable, and height

as a dependent variable. The horizontal wind
components are then expressed in terms of
vorticity and divergence, and the equations
of horizontal motion are expressed by their
equivalents—the vorticity cquation and the
divergence equation.

The divergence equation is then discarded,
and replaced by the equation of balance, an
identity, obtained by dropping from the diver-
gence equation all the terms which contain
divergence. The vorticity equation and the
thermal equation reduce to one prognostic
equation and one identity with the aid of the
time derivative of the equation of balance.
Thus there remains one prognostic equation,
which may be expressed in terms of one de-
pendent variable with the aid of the five
identities.

It is often more convenient to omit certain
additional terms from the equation of balance,
reducing it to the geostrophic equation. Cer-
tain terms in the vorticity equation are also
often omitted. The new system still contains
but one prognostic equation.

The equation of balance and the geostrophic
equation are often called filtering approxima-
tions, since they eliminate the occurrence o
certain waves which are often considered
irrelevant and which can occur in systems
governed by the primitive equations.
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Finally, the vertical dimension may be
replaced by several layers. Each function of
ime and three space dimensions is then re-
laced by several functions of time and two

~ space dimensions.
With the original set of five prognostic-

equations as the governing equations, total
energy is conserved under reversible adiabatic
rocesses. After the equation of vertical motion

~is replaced by the hydrostatic equation, total

energy miay still be said to be conserved, but
only if the kinetic energy contained in the
vertical component of the motion is not in-
cuded in the total amount of kinetic energy.
Since the omitted kinetic energy is an insig-
nificant fraction of the total (provided that
we are dealing with large-scale systems), this
restriction is of little consequence.

Let us see what happens when further modi-
fications are made. Choosing pressure as the
vertical coordinate, let the horizontal wind V
be written as

V=V,+V,; (6)

where V,is nondivergent and Vg is irrotational.
We shall attach a subscript “2” or “3” to any
dependent variable related to V, or V3 through
an identity. Thus we may introduce a stream
function v, and a velocity potential x5 such
y Yo Yy P X3

that

Vy=k x vy, (7)
Vi=vys (8)

where k is the vertical unit vector.
The vorticity ¢, and the divergence d, then
satisfy the relations

=7 - Vxk=9-V,xk=v2, (9)
0= V=v-Vy=v2  (10)

while the individual pressure change w, is
related to J, through the equation of conti-

O3 + dwg[dp =0 (11)

Likewise we shall attach a subscript “1”" to
the temperature T, and to any dependent
variable related to it through an identity. Thus
specific volume o, and elevation z; appear in
the equation of state

poy =xcy Ty (12)
Tellus XI1 (1960), 4
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and the hydrostatic equation

9z1/9p + aafg = o, (13)

where g is the acceleration of gravity, while
potential temperature, @y, is defined by the
relation

O,=ps,p"T1 (14)

Equations (7) through (r4) enable us to
express any variable with a numerical sub-
script as a linear function of any other variable
with the same subscript. Hence any three
variables with three different subscripts may
be regarded as the dependent variables in the
prognostic equations.

The three prognostic equations, namely the
thermal equation, the vorticity equation, and
the divergence equation, may now be written

20 6
"9?}= = J (s, ©y1) - V3 vO, - wa‘gj’ (15)
?,CE

o —J (e, Co) = J(9a /) = 7+ f Vg~
_V3‘VC2_‘C253~0‘)3[Z7—C2_VCU3‘
a Y3
25, .
o - &Y 2+ V- (foye) = J(f xs) =
—v-(Vy7Vy) —v-(Vy-7Vy) -

IV
-V <V3 sz)—VCO3' 49?2—

A%
—V'(Vs'ﬁvs)—vws'“(j (17)

provided that nonadiabatic effects are omitted.
Here ] denotes a Jacobian, e.g.,

J (¥, @1) = vy vO, x k (18)

and fis the Coriolis parameter.

The proper lower boundary conditions are
z =0 and dz/dt = o, if the carth’s surface is
assumed horizontal. It is convenient at this
point to simplify the system of equations by
discarding these boundary conditions, and
replacing them by the conditions p = p o = con-
stant and  =o0. With these new boundary
conditions, total energy will still be conserved,
while, since the statistical distribution of @ will
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be conserved, the relations involving available
potential energy and gross static stability will
still hold. The new boundary conditions do
not assume a flat sea-level pressure field, since
z is no longer assumed constant at the lower
boundary.

From identities (6), (7), and (8), it follows
that the kinetic energy per unit mass is

I I
SV V=2 oyy vy, + ] (v ) +

(19)

1
+: VXs* V¥3-

Since the average value of a Jacobian through-
out the atmosphere vanishes, the kinetic
energy of the whole atmosphere is given by

K=K2+K3=§fvzp2- Ty dM +

+§fvl3-vx3a’M‘ (20)

We have already seen that the total potential
energy of the whole atmosphere may be given

by
(21)

The terms in the divergence equation (17)
may be grouped into six classes, such that the
different terms in any one class contain the
same set of numerical subscripts. Thus the six
classes may be denoted by (1), (2), (3), (2,2),
(2,3) and (3,3). Likewisc, the terms of the
vorticity equation (16) fall into the five
classes (2), (3), (2,2), (2,3) and (3,3), while
those on the right of the thermal cquation (15)
fall into the two classes (1, 2) and (1,3).

From the prognostic equations we mniay

P+ L=cp;; [p0.dM.

determine the classes into which the various

terms fall, in the expressions for J(P, +1,)/dt,
IK,/at, and JK,/dr. In determining these
classes, we shall make repeated use of integra-
tion by parts, and observe that the divergence
of any vector, the Jacobian of any two scalars,
and the vertical derivative of any quantity
which vanishes at the bottom and the top of
the atmosphere, all vanish when averaged
throughout the atmosphere.

We then find that the only nonvanishing
terms of J(P,+1I,)/0t fall into the class (1,3),
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while the nonvanishing terms of JK,/dt fall
into the classes (2,3), (2,2,3), and (2,3,3), and
those of JK,/o¢ fall into the classes (1,3), (2,3),
(2,2,3), and (2,3,3). In particular,

J
;)_t(Pl + 1) =wc,psr [~ 1O wgdp.  (22)

Since equations (15), (16), and (17) conserve
total energy, the terms of 9K,/dt in class (1,3)
must cancel the expression for J(P,+I,)/dt.
The remaining terms of 9K,/ must then
cancel, class by class, the terms of JK,/dt.

Now consider what happens when the
system of equations is simplified by omitting
certain terms from the divergence equation
(17). First, if the term 28,4/t is omitted, (17)
becomes an identity, and the statement that
(P, +I, + Ky+K;)dt vanishes must be re-
placed by the statement that 9(Py +1; +K,)/ot
vanishes. Thus the new system may stll be
said to preserve total energy, but only if K,
is not included in the total amount of kinetic
energy. This restriction is quite analogous to
the exclusion of the kinetic energy contained
in the vertical motion, when the hydrostatic
equation is first introduced.

If the remaining terms in (17) which contain
a subscript ‘3" are omitted, (17) reduces to
the equation of balance. This omission results
in the omission of the terms of class (2,3,3)
from the expression for dK;/dt. In order that
total energy be still conserved, the terms of
class (2,3,3) must be omitted from the equa-
tion for dK,/Jt, which is accomplished by
omitting the terms of class (3,3) from the
vorticity equation (16). In most previous
studics these terms have been omitted as a
matter of course.

Further simplifications result from omitting
the terms of class (2,2) from the divergence
equation (17) (which has already been reduced
to the equation of balance). The equation then
becomes a form of the gceostrophic equation
This omission results in the omission of terms
of class (2,2,3) from JK,/dt. In order that the
new system of equations may preserve total
energy, it is thus necessary to omit the terms
of class (2,2,3) from the cquation for JK,/ot,
which is accomplished by omitting the terms
of class (2,3) from the vorticity equation (16).

In previous studies the four terms of class
(2,3) in (16) have often, but by no means
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igvariably, been omitted. Of these four terms
the second and third, which represent the
change of vorticity due to concentration of
contrasting currents, and the vertical advection

~ of vorticity, have most frequently been in-
Jduded. The fourth term, often called the.

gwisting term, may be equally important, and,
a5 shown by Reep and SaNDERs (17), may be
included with little additional difficulty. The
first of these four terms, the advection of
vorticity by the divergent part of the wind,
seems to have been generally neglected. To the
writer this neglect seems somewhat illogical
when the other three terms are included; the
resence of any vertical flow, which may
advect vorticity, implies by continuity the
resence of divergent horizontal flow, which
may also advect vorticity.

It now appears that all four of these terms
should be included if the equation of balance
is to be used, and all should be omirtted if the
geostrophic equation is to be used, in any
study where the energetics are important.
The inclusion of these terms, together with
the geostrophic equation, or the omission of
these terms, together with the equation of
balance, yields a system of equations without a
suitable energy invariant.

According to equations (2) and (3), the
sum of P+I and S will be conserved by any
equations which conserve the average value
of @, while the difference of P+ I and A will
also be conserved if the entire statistical distri-
bution of O is conserved. The difference of S
and K, and the sum of A and K, will then be
conserved if the sum of P+I and K is con-
served. Since we have not yet tampered with
the thermal equation (1s), these conditions
are still satisfied.

We must note that the term -V, VO,
representing advection by the divergent part
of the wind, has not been omitted from (15).
Like the advection of vorticity by V,, this
term has been neglected in many studies. If
the only modification of (15) is the omission of
this term, the equations will no longer possess
suitable energy invariants.

However, in other studies, the thermal
equation has been ‘further simplified to be-
come

20 760
'(71 =~ J (2 ©1) — wy a_ps, (23)
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where O is a standard value of ©, dependent
upon p alone. Equation (23) contains no terms
of class (1,3). If the expression for A is also
simplified to become

~1 —_
A=§-%cpp;o"fp”‘1<(%> (0,-06,)dM,
‘ (24)

a form resembling (4;), it will follow from (23)
that

A
of =iy [P OrogdM. (25)

The rate of change of A is then identical
with expression (22), the rate of change of
P+I as determined from the unsimplified
equation (15), so that the sum of kinetic
energy and available potential energy will be
conserved. For the purposes of many studies,
this sum forms a sufficient energy invariant.

However, equation (23) allows no variations
of P41, and hence no variations of S. If we
wish to describe the static stabilization accom-
panying the release of kinetic energy, and any
consequent tendency to suppress the further
growth of disturbances, we should retain
all the terms of class (1,3) in the thermal
equation (I5).

4. Energy-preserving n-layer models

In this section we shall establish a set of nu-
merical prediction equations, for a model
atmosphere in which the vertical dimension
is replaced by a finite number of layers. We
shall do this in such a way as to retain the
various energy invariants. Accordingly, we
may begin with one of the systems described
in the last section. We shall use the equation
of balance as a filtering approximation, and
include the terms of class (2,3) in the vorticity
equation. The further simplifications to be
made if we wish to use the geostrophic equa-
tion will be obvious.

It will be convenient to introduce the
variable

D

X= = [1(p)dy' (26)

0

so that y3=JX/Jp and wy= vV 2X. If we omit
the numerical subscripts, which are now super-
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fluous, the thermal equation and the vorticity
equation may be written.

20 IX\ 9
5 = -J(w, ©)-v- <@v %> —%(@VZX)

(27)

g;vzw= - J(y, f+7%) ~v- <fv %f)
X

X d
. 2 2 _ % (o2
+v [v wv 7 +v 79 vy 7 (v_Xvw):I

while the equation of balance may be written

gviz=v-fyp+v- [vzzpvyz —iv(wp- vzp)J.
(29)

The reason for the particular grouping of
terms in (27), (28), and (29) will soon be
apparent. '

With the aid of (12), (13), and (14), the
equation of balance may be converted into a
generalized thermal wind equation

2 2
PO = -v-— (fyvy) - v- .
pPo 2(p%) (f ) PITR)

- [V2¢V1P - 2 v(vy- Vw)]- (30)

Equations (27), (28), and (30), together with
the appropriate boundary conditions, form a
closed system of three dependent variables 6,
p, and «x.

The corresponding system with the geo-
strophic equation, and without the terms of
class (2, 3) in the vorticity equation, may be
obtained simply by omitting the terms con-
taining square brackets from (28) and (30).

Let us now replace the three-dimensional
atmosphere by n layers, bounded by the n+1
isobaric surfaces poy, ps, — — —, pas, DuUM-
bered from the ground upward. Thus p,
still represents surface pressure, while py, = o.
The isobaric surfaces need not be spaced at
equal intervals. Let odd subscripts from 1 to
2n~1 denote the n layers. The mass of the
atmosphere is now given by

JAM =g 2t (pi-1 —pj+1) SdH, (31)

where T denotes a sum over all odd values of ,
and dH is an element of horizontal area.

We must now replace the system of di-
fferential equations by a modified system in
which finite differences replace derivatives
with respect to p. Our problem is to do this
in such a way that reversible adiabatic proc-
esses still have numerically equal effects upon
kinetic energy, total potential energy, available
potential energy, and gross static stability. To
this end, we define ® and y within each layer.
At this point we depart from many of the
currently used models in which the wind
field is defined at n levels and the temperature
field at n ~ 1 levels (see CHARNEY and PHrrLIps,
1953). We define X at the surfaces separating
the layers, so that in particular Xy=X,,=O.

The total potential energy and the kinetic
energy are now given by

PiI=cop;=g 1T (p-a —Pf+1)Pj”_f@jdH
(32)

and

1 ,
K="¢"'Y2 (pi-1 —pisn) SV vydH (33)

In order that (32) have meaning, however,
we must have some rule, such as linear inter-
polation, for defining p within the layers.
The finite-difference forms of (27) and (28)
may be obtained by replacing each indicated
vertical derivative by a difference across a

layer; thus

D5, 0) + v @y Xz Kira
Jt Pi-1— Pin1
_@j—lvaXj—l_@jﬂ.szju (34)

Pi-1=Pi+1

J
5 V= = J(w, [+ vy) +

+(piex = Pie) VSV ( Ko = Xa) +
+(prer = pie ) T [PV (Ko - Xar) +
+ V(X = X)) vy -
(VX I~ 2 X vy)] (35)

This explains our grouping of terms in (27)
and (28); the vertical derivatives have been
arranged so that X is referred to only at
the surfaces separating the layers. However,
in order that (34) and (35) have meaning,
Tellus XI1 (1960), 4




we must have some rule, such as linear inter-
olation, for defining @ and v at the surfaces
separating the layers.

Upon integrating by parts, and again ob-
serving that the divergence of any vector, and
the Jacobian of any two scalars, vanish when
integrated throughout the atmosphere, we

fnd that

(2*(1-)(%—1) =g p T (p — piee)
- [ Xj+1 92041 dH, (36)
while
JK

ot =g T [ X1V SV (9~ e o) dH +
+g 1T [ XV

) I:(VZ'P;" VP - Vgt TYas)
I .
-3V (Vi 99— YPjra- ‘7sz+2)] (37)
provided that we let

1/)j+1=§(%'+1/)j+2) for odd j. (38)

Comparing (36) and (37), we see that total
energy is conserved provided that

CpPJ“V2@j+1 = - (ij _Pf+2“)—1v :
9 (= pian) = (P — piaa) MV

: [ (V25 v~ V2 a0 Vjira) =
1
3 (VY VY~ IYjaa- Vwi+2)] (39)

Since this relation is a logical finite difference
approximation to the generalized thermal wind
equation (30), we have a set of equations with
an energy 1nvariant.

From equation (34) it follows that,

9 ’
5 Z (P —pisa) [OdH =0, (40)

so that the equations conserve the average
value of O, and hence conserve the difference
between gross static stability and kineticenergy.

In general, the equations cannot conserve the
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entire statistical distribution of @. Neverthe-
less, since it follows from (34) that

J ., .
5= (pi-1—pi+1) fOF dH=

=¥ X;:1(260;41 - O; - 0;.2)
-(0;~ Oy.5)dH, (41)

the average value of 62 will be conserved if
we let
0,41 =§ (0;+0;.5) for odd j. (42)

Thus, although the sum of kinetic energy and
available potential energy, as originally de-
fined, is not conserved, the sum of K and
2 modified form of A is conserved. This modi-
fied form of A is the excess of P+I above the
minimum value of P-+I which could accom-
pany any mass distribution with the same
average values of @ and 62

We still have some freedom of choice, since
the rule for determining p within the layers has
not been specified. For definiteness, let

pf=§(pf-1+pf+1) for odd j.  (43)

The system of equations (34), (35), and (39),
together with the auxiliary definitions (38),
(42) and (43), is now complete.

Of special interest is the case where n=2 and
Py =po/2, which may be the simplest possible
numerical prediction model with variable
static stability. It is convenient to use as
dependent variables the mean potential tem-
perature @ and the static stability o, the stream
functions v and 7 for the mean wind and the

. wind shear, and the velocity potential y of the

lower layer, so that @3=0 +0, 0;=0 -0,
ve=vp+71, =9 -7, and Xy=poy/2. The
governing equations (34), (35), and (39) then
become

%? - —J(%, o) ~J(z, 6) + V- 07y, (44)
%i; = ~J(p.0) -]z, 0) + 7O -7y, (45)
7

= 75 = —J(p vy +f) - J(T i)+
+ v [vEiroy + Vi) (46)
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gtv% = —J(y, v27) - J(z, Py +f) +

+v-fuy+ v [vipvi] (47)
be,v?@ =v - fvr+ -
Aviyvr + virvy - v (vy- v7)l, (48)

where, because of (43),

h=1 [<§> - <£> ]=o.124. (49)
21 \s 4
The corresponding system with the geo-
strophic equation, and without the terms of
class (2, 3) in the vorticity equation, is ob-
tained by omitting the terms containing square
brackets from (46), (47), and (48). In problems
where f may be treated as a constant, (48)
then simplifies to bc,@ =fr, so that the term
-J(z, ) in (60) drops out.
The total potential energy is given by

P+I=pyc,gt [(aO —bo)dH,
where

(o
21 \4 4) 1 T
The kinetic energy is simply

K::épog"lj(vwvzp+vr»v1)dH. (52)

The gross static stability should be a quantity
dependent on g, and obtainable by adding a
muldple of @ to — (P +1I), where again a bar
denotes a horizontal average. It is therefore
given by

S =bpyc,gt [odH, (53)
the negative of the second term in (50).
Finally, the mean-square potential tempera-
ture, given by
GrFo G+ 1 T T (54)
is conserved, where @ =@ -0 and ¢ = — 0.

Since @ is also conserved, o has an absolute
maximum o,, given by

on=0"+ 0%+

" (s5)

EDWARD N. LORENZ

The available pot;cntial energy is then the
excess of P+1I, above the value of P+T ob-
tained by substituting @, for ¢ in (50), i,

(56)

A=bpycpgt [ (G —0)dH.
It then follows from (s55) that

@2+ o

A=bpyc,g~? = dH.

(57)

+ O

Hence, as in expression (3), A is given by a
weighted average of the variance of potential
temperature within isobaric surfaces.

We thus have a simple two-layer model
which properly describes the relations between
total potential energy, kinetic energy, available
potential energy, and gross static stability.

Finally, we note that the model may be
reduced to what is essentially one of the fami-
liar two-layer models simply by discarding
equation (45) for do/dt, replacing it by the
relation o= constant. The latter model will
preserve the sum of kinetic energy and
available potential energy, but will not
describe the relation between static stability
and encrgy.

6. Uses of the simplified- equations

During the past few years so many multi-
layer models, and particularly two-layer mod-
els, have been devised for numerical prediction
that it might hardly seem worth while to add
still another model to- the collection. Indeed,
the two-layer model presented in the previous
section could probably not be justified on the
grounds that it should yield better short-range
forecasts, since the lack of wvariable static
stability in other two-layer models is proba-
bly not the primary reason for the errors in
prediction. ‘Such problems as improper side-
boundary conditions and inadequate represen-
tation of the initial three-dimensional wind
and pressure fields are still present.

The chief value of the model, then, is likely
to be found in theoretical studies of the general
circulation or similar circulations. For this
purpose, additional terms should be appended
to the equations, to represent the affects of
heating and friction.

The two-layer model, with heating and
friction, should be suitable for studying the
flow in the “dishpan” experiments (cf. Furrz

Tellus XIT (1960), 4
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1953). Here it would be relatively easy to
solve the nonlinear equations for the steady
symmetric flow in equilibrium with symmetric
heat sources and sinks. Attempts to solve the
Navier-Stokes equations for such a flow have
been made by Davies (1953) and others; great
difficulties were encountered except when the
equations were linearized. Once the symmetric
flow is determined, it can presumably be
tested for stability by the usual perturbation
procedure.

The two-layer model should also be suitable
for studying various features of the general

circulation, particularly those features which
are also found in the dishpan. A special form
of this model has already been used by Bryan
(1959) to investigate some characteristics of
the energy cycle.

Problems involving the connection between
the troposphere and the stratosphere might be
studied with a three-layer model. The extent
of the linkage between the troposphere and
very high levels might be investigated with a
model of several layers, which successively
decrease in mass from a thick lowest layer to a

thin highest layer.
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