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ABSTRACT

A 28-variable model of the atmosphere is constructed by expanding the equations of a
two-level geostrophic model in truncated double-Fourier series. The model includes the
nonlinear interactions among disturbances of three different wave lengths. Nonperiodic
time-dependent solutions are determined by numerical integration.

By comparing separate solutions with slightly different initial conditions, the growth
rate of small initial errors is studied. The time required for errors comparable to ob-
servational errors in the atmosphere to grow to intolerable errors is strongly dependent
upon the current circulation pattern, and varies from a few days to a few weeks.

Some statistical predictability of certain quantities seems to be present even after
errors in the complete circulation pattern are no longer small.

The feasibility of performing similar studies with much larger atmospheric models is

considered.

1. Introduction

Among the many problems to which meteoro-
logists have devoted their efforts over the past
‘century, weather forecasting has continued to
occupy a prominent position. Yet despite fre-
quent improvements in the network of ob-
serving stations and advances in the technique
of forecasting, weather predictions still do not
enjoy the accuracy which many persons believe
they have a right to expect. Comparisons are
frequently made with predictions of such other
natural phenomena as ocean tides and solar
eclipses.

In contrast to the tides, which can be pre-
dicted about as accurately several years in
advance as several days in advance, the precision
with which we have thus far been able to predict
the weather is closely related to the range of
prediction—the amount of time in advance for
which the prediction is made. Failure to produce
perfect weather forecasts at any range of pre-
diction must be ascribable to one or more of
three general causes:

1. The atmospheric system is not determin-
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istic; the present and past states of the atmos-
phere and its environment do not uniquely
determine the state at all future times.

2. Observations are insufficient: regardless
of whether the atmospheric system is deter-
ministic, the observed present and past states
of those portions of the atmosphere and its
environment which are observed do not uni-
quely determine the future states.

3. Forecasting procedures are inadequate;
presently used techniques do not duplicate the

-behavior of the atmosphere and its environ-

ment.

Concerning the first possible cause, one can
easily present a case for the non-determinism
of weather. Among other things, the atmos-
phere is affected at least to some extent by
human activity, particularly when that activity
takes the form of building large artificial lakes
or removing vast forests. Any claim that the
atmosphere is deterministic is therefore tanta-
mount to a claim that human behavior is deter-
ministic. It appears quite likely, however, that
lack of determinism is not a significant contri-
buting cause to our present failures in fore-
casting, in view of the remaining possible
causes.

Concerning the second cause, it is evident
that, regardless of the accuracy of our observing
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instruments, many features remain unobserved
simply because observations cannot be made
everywhere. Even over populated land areas,
thunderstorms may be lost between observing
stations. Over parts of the ocean, entire tropical
hurricanes may go unnoticed. Some of the effects
of an incomplete knowledge of the present
state of the atmosphere have been examined by
TaoMpsoN (1957). More recently, the writer
(1963a) has shown that if a system is varying
nonperiodically, or with a nonperiodic compo-
nent, and if in addition the present state or the
present and past states are not known with
complete accuracy, any forecasting procedure
will lead to poorer and poorer forecasts as the
range of prediction increases, until ultimately
only the periodic component can be predicted
in the far distant future. Herein lies a crucial
difference between the tides, which are es-
sentially periodic, and the weather, which is
largely nonperiodic.

Concerning the third cause, it is obvious that
forecasting procedures have yet to reach their
ultimate state of perfection. It is common
experience that under subjective procedures dif-
ferent forecasters make considerably different
forecasts in the same situation. Obviously not
all of these forecasts can be correct. Objective
procedures include some which are primarily
empirical and some which are based largely
upon atmospheric dynamics. Empirical proce-
dures have been confined for the most part to
linear formulas, although the physical laws
indicate that the optimum formulas are non-
linear. Dynamical procedures currently in rou-
tine use generally neglect the thermodynamic
and radiative properties of water vapor and
clouds, and do not adequately represent the
effects of small-scale motions.

‘We do not really know whether improvements
in forecasting methods would significantly alter
the quality of forthcoming forecasts, in view of
the limitations imposed by the current inade-
quacy of the observations. Likewise, we cannot
state with certainty that improvement of our
observational network would measurably im-
prove our forecasts, in view of the deficiencies
in forecasting procedures. It does seem virtually
certain, however, that more refined forecasting
techniques together with more widespread
observations can lead to forecasts of a higher
quality.

In this study we shall be concerned with the
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limitations upon forecast accuracy imposed by
the second enumerated cause—the incomplete-
ness and inaccuracy of observations. We shall
be particularly interested in the minimum range
of prediction for which typical errors in ob-
serving the present state lead to unacceptably
poor forecasts. This range is not revealed by the
theoretical studies previously mentioned—
conceivably it could be a few days or a few years.

A currently popular method of studying the
general circulation of the atmosphere consists
of establishing closed systems of equations
which to a certain extent approximate the
equations governing the atmosphere and its
environment, and then determining explicit
time-dependent solutions of these equations
by numerical integration. The systems of equa-
tions are viewed as mathematical models of the
atmosphere, and the numerical solutions are
treated as samples of observational data for the
behavior of the models. Quantities which have
been evaluated from real atmospheric data,
e.g., horizontal fluxes of heat and momentum,
may also be computed from a model, and a
comparison of the values in the model with
those in the atmosphere may give some indica-
tion of the adequacy of the model. Quantities
which are not so readily evaluated from atmos- -
pheric data, e.g., vertical fluxes of heat and
momentum, may likewise be computed from a
model, and these computed values may serve
as estimates of the corresponding atmospheric
values. )

The original numerical model of the general
circulation was that of PaiLries (1956). In this
model the three-dimensional atmosphere was
replaced by two two-dimensional layers, and the
horizontal structure of each layer was repre-
sented by a network of 272 points. The governing
equations were those of a dry atmosphere in
approximate hydrostatic and geostrophic equi-
librium. Phillips obtained rates of generation,
conversion, and dissipation of various forms of
energy which were in qualitative and fair
quantitative agreement with the rates prevailing
in the real atmosphere.

More recent numerical models have departed
from the prototype in two directions. Some
investigators have attempted to make the
structure of their models more like that of the
atmosphere, by introducing more degrees of
freedom in the vertical and horizontal directions,
dropping the geostrophic constraint, and in-
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cluding some of the effects of water vapor.
Typical of the large models is a primitive-
equation model of SMacorINSKY (1963), where
there are effectively four dependent variables
at each of 1296 grid points.

Other investigators have attempted to reduce
the number of degrees of freedom as far as
possible, while still maintaining some resem-
blance between the behavior of the model and
that of the atmosphere. The writer (1962), for
example, has studied a twelve-variable model in
which cyclones and anticyclones can move and
change their configuration in a nonperiodic
fashion. To achieve this simplification, it was
necessary to restrict the fields of motion and
temperature to a sinusoidal variation in the
longitudinal direction, with a single prespecified
wave length.

In the real atmosphere the fields of motion
and temperature do not vary in a simple
sinusoidal fashion, but each field may be ex-
pressed through harmonic analysis as a sum of
sinusoidally varying component fields, plus a
residual field which is independent of longitude.
Among the interesting features of real atmos-
pheric behavior are the interactions between
different components; each component field of

" motion acts to distort each component field
of temperature or motion, thereby introducing
further components fields. These interactions
contribute to the complexity of atmospheric
behavior, and undoubtedly add to the difficulty
of practical foreacasting.

The twelve-variable model just mentioned
cannot picture the interactions between compo-
nent fields having different wave lengths in the
longitudinal direction, since it contains only
one wave length. However, interactions among
component fields having three different wave
lengths are readily represented by a 28-variable
model, which we shall presently introduce. In
this study we propose to make an estimate of
the range of practical predictability in the atmos-
phere, using the 28-variable model. The model
will be formulated deterministically, so that
two time-dependent solutions with identical
initial conditions will be identical for all time.
Thus the model will be perfectly predictable at
all ranges when the initial conditions are known
exactly. However, if the solutions are non-
periodic, two or more solutions with nearly
identical conditions should ultimately lose all
resemblance to one another, and the time re-
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quired for errors typical of observational errors
in the real atmosphere to grow to errors which
would be intolerable in the real atmosphere may
be determined. The danger of basing the results
upon unrepresentatively chosen initial con-
ditions will be minimized by repeating the ex-
periment many times.

2. The model

A simple model of the atmosphere which has
already proven useful in reproducing certain
features of thermally forced rotating flow is the
geostrophic form of the two-layer model pro-
posed by the writer (1960). In this model the
stream functions for the nondivergent part of
the flow in the two layers are denoted by
w+7 and p ~7, the potential temperatures in
these layers by 6 +¢ and 6 —o, and the indi-
vidual pressure change at the surface separating
the layers by w. The model is most simply
handled when horizontal variations of o are
excluded; it reduces essentially to one of the
more familiar two-layer models, such as that of
Puirries (1951), when o is treated as a pre-
assigned constant.

In a recent paper, hereafter denoted by V,
the writer (1963b) presented a general spectral
form for the two-layer model without horizontal
variations of ¢. Here we shall summarize its
principal features.

Let F,, F,, ... denote a sequence of dimen-
sionless functions of the horizontal space co-
ordinates, satisfying the relations

FiF;=5y, (1)
VF,= -L7%«; Fyy 2)

and the boundary conditions
oF,jos =0, (3)

where the bar denotes a horizontal average,
L is a constant with the dimensions of distance,
V2 denotes a horizontal Laplacian operator,
the quantities a; are dimensionless constants,
and 8/3s denotes a tangential derivative along
the boundary. The dimensionless quantities

cip =LPF,J(F;, Fp), (4)

where J denotes a Jacobian with respect to the
horizontal variables, then satisfy the relations
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Cijk =Cisk =Cktj = ~Cie = ~Cikj = ~Crjir (D)

It is convenient to choose F,=1, whence
a, =0, and ¢g;;, =0 for all § and k.

An arbitrary function G of space and time
may then be expanded in the series

G=8s> & F,, (6)

where the coefficients @; are functions of time
alone, and the scale factor S, has been chosen
to make G, dimensionless. Partial differential
equations governing G' may then be converted
into ordinary differential equations governing
G,;. In practice the sequence F,, F;, ... is trun-
cated, becoming the set F,, F,, ..., Fy, and all
references to F, and @;, for ¢ >N, are omitted
in equations where they would ordinarily occur.

If scale factors S, =8;=L%, Sg=S,= BL3,
and S, =f are chosen, where f is the Coriolis
parameter, assumed constant, the prognostic
equations of the spectral form of the model,
according to V, simplify to

N
%:ﬁlai (@} - a%) ey v+ 7T +wls ()

=} Z az >(a} ~ aR) Cige(; Y + ¥ W) — O 01+ i
7.
(8)

N
;=% Z C1jk ]'Pk w;ek)+0'ow1+6}’ (9)
G k=1

-

N
oy = — 2, 0;0;+ 0 (10)
i=1
while the thermal wind relation reduces to
7=0; if a;+0. (11)

Here B is a constant chosen to reduce to unity
the factor of proportionality which would
otherwise appear in (11), a dot denotes dif-
ferentiation with respect to the dimensionless
time ft, and v}, 77, 67, and o} denote the effects
of friction and diabatic heating. An appropriate
value for B is 8c;'f, where ¢, is the specific heat
of air at constant pressure.

In the present study, in the interests of
simplicity, o, is taken as a preassigned constant,
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whereupon equation 10 is suppressed, and,
according to equations (7)—(9), 6, is superfluous
for the behavior of the remaining variables. As
in V, the friction and heating are given by

vl = —k'y, +k7, (12)
=k, — (& +2K")7; (13)
69 = — ko, + 1oy, (14)

where k' and k” are dimensionless coefficients
of friction at the lower surface and the surface
separating the two layers, h is a coefficient of
heating, and 6; are constants defining a ‘‘ther-
mal-equilibrium’ temperature field, which would
ultimately prevail if there were no motion.

Since 7 is a stream function, the coefficient
7, is meaningless, while, in view of (11), r; may
be replaced by 6, for all other values of <. The
variables ©; may then be eliminated from
equations (8) and (9), reducing them to a single
prognostic equation (for each ¢).

Again as in V, the geometry is chosen to be
that of an infinite channel of width nL. With
z- and y-axes oriented along and across the
channel, the fourteen functions

~V2 cos my/L; m=1,2, (15)

b,m =2 sin my/L cos nx/L;
m=1,2; n»n=1,2,3, (16)

¢r’m =2 sin my/L sin nx/L;
m=1,2; n=1,2,3, (17)

are chosen as the set of orthogonal functions.

There are thus effectively 28 prognostic
equations, governing the 14 variables v, and the
14 variables 6;,. In addition to the 14 constant
terms and 56 linear terms representing heating
and friction, these 28 equations include a total
336 of nonlinear terms; 144 representing inter-
actions between the zonal flow and the waves,
and 192 representing interactions between waves
of differing lengths. As mentioned in V, the
number of waves about the circumference of
the earth to be identified with a given wave
length in a channel is not precisely defined,
but it will be convenient to think of those waves
for which n=1,2, and 3 as wave numbers
2, 4, and 6, respectively.
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3. Properties of the model

In the solutions studied in V, all but one of
the constants 6; were set equal to zero; the re-
maining constant, the coefficient of the function
¢o1 in the expansion of the thermal-equilibrium
temperature field, was denoted by 92, and served
as a measure of the intensity of the thermal
forcing. The coefficients &k and k&” were set equal
respectively to h and k/2; since » had been made
dimensionless through division by f, its reci-
procal h~! served as a measure of the speed of
rotation. In the present model the constants
have been similarly chosen.

It was found in V that different values of
6% and A led to different regimes of flow. These
included a Hadley regime, with no variations in
the z-direction, a steady Rossby regime, in
which waves moved uniformly without altering
their shape, a vacillating Rossby regime, in
which waves altered their shape in a regular
periodic fashion, and a nonperiodic Rossby
regime, in which the waves moved and altered
their shape irregularly. It is to be anticipated
that similar regimes will occur in the present
model. Indeed, if all the coefficients associated

~with wave numbers 2 and 6 are initially zero,
they will remain zero, and the equations govern-
ing the remaining variables, which represent
the zonal flow and wave number 4, will reduce
precisely to the equations appearing in V, Like-
wise, if wave numbers 2 and 4 are initially
absent, they will not develop, and the zonal
flow and wave number 6 will be governed by
the same equations appearing in V.

Since the purpose of this study is to investigate
atmospheric predictability, it is desirable that
the solutions to be studied exhibit as much
irregularity as that found in the atmosphere, if
this is indeed possible. In view of the complexity
of the present set of equations, suitable values of
6, and h, as well as o, which is preassigned,
are best found by trial and error. Accordingly,
we decided to choose values of 64, h, and o,
somewhat arbitrarily, and perform a sufficiently
long integration to reveal the type of oscillation
taking place. We planned to repeat this pro-
cedure, if necessary, until realistic oscillations
were encountered.

Our first choice of constants led to periodic
variations. Subsequent choices yielded irregular
variations, with, however, a strong superposed
two-day or three-day periodicity, which seemed
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unrealistic. When an apparently suitable be-
havior was found with the values 6 =3/32,
h=5/32, and o0,=5/128, these values were
chosen without further ado for detailed study.
If all waves are absent initially, these values
lead to the development of a Hadley circulation.
This circulation proves to be stable with respect
to wave number 2, but unstable with respect
to wave numbers 4 and 6.

As already noted, if a disturbance of wave
number 4 or 6 is now superposed upon this
circulation, it must grow, and alter the zonal
circulation, the ultimate result being a solution
resembling one of those presented in V. If
instead disturbances of both wave numbers 4
and 6 are superposed, it cannot be predicted in
advance what will occur. Conceivably they could
alter the zonal flow so that it would remain
unstable with respect to only one wave, and
the other wave would then dissapear. Alter-
natively, both waves could remain. Actually,
for the chosen values of 87, 4, and ¢, the latter
alternative occurs. Moreover, wave number 2
then develops. Evidently the ultimate main-
tenance of wave number 2, as well as the original
development, is due to the interaction of wave
numbers 4 and 6. These wave numbers are in
turn maintained by the zonal field, which in
turn is maintained by thermal forcing.

The first numerically obtained solution began
with an initial state (which we shall call state I)
consisting of the equilibrium Hadley circulation
plus superposed small-amplitude disturbances
of wave numbers 2 and 4. The reciprocal of the
Coriolis parameter, assumed equivalent to 3
hours, was chosen as a time increment. The
numerical integration was performed on the
Facit-EDB electronic computer of the Nor-
wegian Meteorological Institute in Oslo. The
integration was allowed to run for a total of 512
iterations, or 64 days. The final state (which we
shall call state 0) was assumed to be free of
transient effects associated with unrepresenta-
tive initial conditions. That is, although state 0
was obviously determined by state I, having
evolved from it, its features were assumed to be
no more usual or unusual than those of a final
state which would have evolved from some other
arbitrarily chosen initial state. State 0 was then
available as an initial state for further numerical
solutions, which could be assumed to be repre-
sentative throughout their history.

Figure 1 shows three consecutive maps of the
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Fic. 1. A sequence of stream function fields at the
500-millibar level, at intervals of one day, occurring
in the numerical solution of the 28-variable model.
The longitudinal extent shown is one complete wave
length of the longest wave present.

field of v, at intervals of one day, beginning
four days after state 0. The degree of resem-
blance to real atmospheric fields can readily be
assessed. Although there is no provision for fine
structure, the relative importance of wave
numbers 2, 4, and 6 can vary from day to day.
There is evidently a decrease in the dominant
wave number at high latitudes, not accompanied
by a similar decrease at low latitudes. Thus some
of the irregular and rather unpredictable fea-
tures of real atmospheric motion seem to have
been captured.

4. The growth of small errors

The present section contains the principal
results of this study. It concerns the growth-
rate of errors superposed upon a basic solution,
during such time as the errors may be regarded
as being small. The chosen basic solution covers
a time interval of D =64 days, or 512 iterations,
extending from an initial time ¢, to a final time
tp, and is obtained by choosing state 0 as the
state at time #,, and integrating the governing
equations up to time ¢5. It is convenient to
designate the 28 variables y; and 6; by the new
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names , ..., &, where M =28, the serial order
of the variables being immaterial. The governing
equations may then be written

x; = F (@, 0 2y); =1, .. (18)
and the basic solution, beginning with state 0 at

time t,, may be written

x; =Z () ty <t <tp. (19)
The basic solution is determined explicitly by

numerical integration.

It @y =Z(t) +y(t) (20)

represents an additional solution of equations
(18), and if the components y, of the error, or the
difference between this solution and the basic
solution, are small, the errors y; are approxi-
mately governed by the linear equations

M LF,

j=1 ax]-

Y =

Yy (21)

in which the coefficients aF;/ox; are time-
dependent. Equations (21) possess the solution

M
Yt = 2, ay(ts ) y;(t)s
=
or, in matrix form
(23)

Y@y =A@, )Y (),

where Y is a matrix of M rows and one column
and A is a matrix of M rows and M columns,
whose elements depend upon the basic solution
Z,(t) during the interval ¢’ <t <¢”. The matrix 4
controls the growth of small errors during this
interval, and will be called an error matriz. It is
evident that for any three times t’, t", ¢'"/,

A7, ¢y =A@, " VA", ¥'). (24)

For any two times #’,¢” the error matrix
A(t”, t') is most readily determined numerically.
Choosing & new state «; at time ¢ which differs
from the basic solution Z,(t') in only one com-
ponent, say

Y, () =edix» (25)
where ¢ is small, we find from (22) that
y,(t") =eax(t’, ). (26)

Tellus XVII (1965), 3
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Thus, when the basic solution is subtracted
from the new solution at time t”, the result is
¢ times the Kth column of A(¢”, t'). Repeating
this procedure M times, for the M different
values of K, we may obtain the matrix A(¢", ¢').

This entire procedure was performed 32 times,
with ¢ =12, t,, ..., tgs, and with ¢” in each case
exceeding ¢’ by 2 days, the subscripts denoting
the number of days, or one eight the number
of iterations, following state 0. This procedure
yielded the 32 error matrices A(f;,,,¢;), for
©=0,2, .., 62.

These matrices were then multiplied together
in pairs, yielding, in view of (24), the 16 error
matrices A(;.,,¢;), for 4=0, 4, ..., 60. Further
matrix multiplication yielded eight matrices
At s, t;), four matrices A(t;, 4, ¢;), two matrices
A(t;435,8;), and finally the single matrix
A(tess ty). Thus there were available sets of
error matrices controlling the growth of small
errors during 2-day, 4-day, 8-day, 16-day,
32-day, and 64-day periods.

It is convenient to treat an individual set of
errors y; as a point in a 28-dimensional phase
space whose coordinates are y,, ..., ¥ By the
amplitude of the error we shall mean the distance
of this point from the origin. An ensemble of
mitial errors, each of amplitude ¢, but random
in that no direction in 28-dimensional space is
preferred over any other direction, then oc-
cupies the surface of the 28-dimensional sphere

¥ 2 2
Zlyi(w =¢ (27)
P
or, in matrix form
YTy =¢2, (28)

where the superscript 7' denotes the transpose
of a matrix, If each error in the ensemble is
allowed to evolve according to equation (23),
the sphere will be deformed into the ellipsoid

YHA44T) Y =& (29)
at time 2”.

The matrix AA” possesses M real non-nega-
tive eigenvalues. If these are denoted by
A3, ...s A%, the lengths of the semiaxes of the
ellipsoid are &l,, ..., 1y, Since the sum of the
eigenvalues of a matrix equals the trace, or
diagonal sum,

M M
z 112 = z aizj.
i,j=1

i=1

(30)
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At time ¢” the squared-amplitude of an arbi-
trary error whose initial squared-amplitude
was &2 will be
M M
2. yi) = D ayany(t)ye(s).  (31)
i=1 i, k=1

If square brackets [ ] denote an ensemble

average, the ensemble mean-square error at
time ¢’ is obviously

(32)

M
[21 y?(t')] =&

in view of (27), while at time ¢” it will be
M M ]
[Z Z/tz(t”)] = > ayan(y) udt)l.  (33)
i=1 L k=1

Because of the randomness of the ensemble, the
factor in brackets on the right of (33) vanishes
if j+k, and reduces to &' /M if j=k. It follows
from (30) the that

(34)

M M
[Z y?(t")] =M 3 e
i=1 i=1

i.e., the mean-square amplitude at time ¢ is
the mean-square length of the axes of the ellip-
soid, and the amplification «(¢”, t') of the root-
mean-square error, between times ¢’ and ¢’ is

M
alt”, t) = (M"1 > z,-)‘%. (35)

i=1

Accordingly, for each of the 32 error matrices
At t), the amplification «(f;, £;) was
determined. These values, arranged in chrono-
logical order, give a history of the growth-rate
of small initially random errors during succes-
sive two-day periods.

Since an error which is random at time ¢; will
grow to a nonrandom error by the time ¢, ,, the
amplification of initially random errors during
a four-day period is not the product of the
amplifications of initially random errors during
two consecutive two-day periods. Accordingly,
amplifications w«(t;,4, ¢;) for the 16 four-day
periods were determined directly from the 16
matrices A(f;y, £;). Likewise, the eight ampli-
fications (s, t;), four amplifications «(t;14,%;),
two amplifications «(;,45, ¢;), and the single
amplification «(2s,, {,) were evaluated from the
corresponding matrices.

In Fig. 2, which presents the principal results
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Fig. 2. Amplifications of initially random errors.
Projection of segment on vertical scale at left indi-
cates total amplification during period indicated by
horizontal projection of segment. Scale marks on
vertical scale are separated by factors of ten.

of this section, each line segment depicts the
behavior, during a specific time interval, of
errors which were random at the beginning of the
interval. The projection of the segment on the
time scale at the base of the figure locates the
interval, while the length of the vertical pro-
jection indicates the amount of amplification.
The slope of the segment therefore indicates
the rate of amplification; the scales have been
chosen so that a forty-five-degree slope cor-
responds to a four-day doubling time. The use
of straight line segments is not intended to
imply that the growth rate within any interval
is uniform.

Perhaps the most striking feature is the great
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variability of the growth rates during the 64
days under study. There were four 2-day periods
during which random errors actually diminished,
while during others they increased by a factor
of three or more. During one 8-day period small
random errors grew less than threefold, while
during another they grew more than fortyfold.
The amplification is therefore not an atmos-
pheric constant, but depends strongly upon
the circulation pattern.

Three intervals occurred, one near the begin-
ning of the 64-day period, and two during the
latter half, when the growth-rate might be
considered explosive. The maps shown in Fig. 1
occurred during the first of these intervals. A
brief inspection failed to reveal any obvious
prominent feature which distinguished the circu-
lation patterns at these times from those during
the remainder of the 64 days. There must of
course have been some rather complicated
functions of the circulation pattern which were
abnormal at these times, since the amplification
itself is a function of the circulation.

‘What, then, can be said about the maximum
range of acceptable forecasts, if by forecasts
we mean forecasts of the complete state of the

atmosphere at specific times? Such a range .

depends upon the maximum allowable growth -
of initial errors. Over areas such as Europe and
North America, where observations are dense
and map analyses are fairly accurate, an initial
error might grow by a factor of ten or more
before becoming intolerable. Over regions of
scanty data, such as much of the Pacific Ocean,
it is questionable whether even & factor of two
can be tolerated. For the globe as a whole,
one might say that initial errors have grown to
intolerable errors when they have amplified
by a factor of five.

Fig. 2 reveals one 16-day period, out of a total
of four, when small errors grew only fivefold.
At the beginning of this period, an acceptable
two-week forecast could have been made. Fig. 2
also shows three four-day periods, out of a total
of sixteen, when small errors grew at least
sevenfold. At the beginning of these periods,
acceptable forecasts would have been limited
to three days.

On the strength of the 28-variable model, it
therefore appears that during a fair portion
of the time extended-range forecasts, or, speci-
fically, forecasts a week or more in advance, are
feasible. This range extends beyond the range
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at which successful forecasts of instantaneous
states of the atmosphere are now generally
made operationally. On the other hand, the
model offers little promise for forecasting in-
stantaneous states a month in advance.

Of course there is no assurance that the time-
scale in the model is realistic. There are various
reasons why developments requiring a certain
time in the model may require a different time in
the real atmosphere. For one thing, the chosen
value 6% =3/32 corresponds to an equator-to-
pole contrast of 155°C in the equilibrium tem-
perature field at 500 millibars, or an average
contrast of about 100°C in the existing tem-
perature field, which is time-variable. The cor-
responding average zonal wind speed at 500
millibars in middle latitudes is about 50 meters
per second. These values would be more realistic
if diminished by a factor of two.

If both 6 and A are diminished by the same
factor, and if the initial values of z;, ..., ¥, are
decreased by this factor, the development of
the system with time will likewise be slowed
down by this factor, but will otherwise be
unchanged. Thus it may be reasonable to
conclude that the time required for typical
~ errors to become intolerable ranges from about
* 3 week to about a month, rather than the smaller
values already cited.

On the other hand, the model is devoid of
small-scale features, which typically fluctuate
with short periods, and should contribute
toward a more rapid decay of predictability
than that occurring in the model. Despite these
considerations, it is hoped that the model will
afford a fair assessment of the ultimate possi-
bilities of extended-range prediction, until such
time as further experiments with more detailed
models may be performed.

5. The nonlinear phase of growth

The foregoing section has dealt with the
growth of errors during such time as they may
be considered small. Since the errors continue to
grow while they are still small, they must
eventually cease to be small, whereupon the
linearized equations governing them will no
longer hold. The errors have then entered the
nonlinear phase of growth. During this phase
the growth rate must eventually subside, since
ultimately the errors will become only as large
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as the difference between two randomly chosen
states of the system. Whether or not long-range
forecasting, or forecasting at any range beyond
the linear phase of growth, is a feasible task
depends upon the behavior of errors during the
nonlinear phase.

It is common experience that in the real
atmosphere the locations and intensities of
cyclones and anticyclones and features of larger
scale can be predicted with reasonable accuracy
at ranges at which the locations and intensities
of individual thunderstorms and other small-
scale features cannot be predicted. It would
seem, that errors in small-scale features enter
their own nonlinear phase of growth, and per-
haps reach their ultimate size, while errors in
the large-scale features are still in the linear
phase.

The question is frequently asked as to whether
there are certain large-scale features of the
atmosphere which can be predicted at a range
at which other large-scale or cyclone-scale
features are no longer predictable, just as
cyclones are predictable at a range at which
thunderstorms are no longer predictable. Many
currently practiced methods of long-range fore-
casting are based upon the assumption that this
question may be answered affirmatively; by
and large there is no attempt to forecast such
details as locations of individual cyclones
several weeks or longer in advance.

Models such as the 28 variable model might
seem to be suitable for answering questions like
the one just posed. Unfortunately, however,
treatment as systematic as our treatment of the
linear phase of growth does not appear feasible.
There is a virtually unlimited number of non-
linear functions of the 28 variables which con-
ceivably might have the property of long-range
predictability. The labor involved in testing a
large number of such functions would be prohibi-
tive, even with so simple a model.

Accordingly, we shall simply discuss the
behavior of one particular nonlinear function
of the variables, which has appeared upon
inspection to possess some predictability at
extended ranges. This quantity is the quadratic
function

Q@ =Yau¥Ps Y P, (36)

where ,;, ¥;,, 1,0.;1, and zp;a are four of the 28
variables , ..., Z;;, namely the coefficients of
the orthogonal functions ¢y, ¢, 95;1, ¢;2, as



330
. JAAAYON 0
APV AN v
N Y

Ewvrav= v

ANEC
T AN AT

. [
T A

AV A E
\’\’/WWV

Fig. 3. Behavior of @ during a 128-day period. The
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defined by expressions (16) and (17), in the
expansion (6) of the field of .

This quantity assumes positive values when
wave number 4 in the field of y possesses a
large amplitude in low latitudes and a small
amplitude in high latitudes, while it assumes
negative values when the opposite situation
occurs. In the maps in Fig. 1, @ is not far from
zero. Because of symmetries in the governing
equations (7)—(10), the long-term average value
of @ should be zero, unless the system is in-
transitive—i.e., unless there are two distinct
regimes, one characterized by a positive and one
by a negative average value of @, such that
whichever regime first becomes established as a
result of the chosen initial conditions will per-
sist forever.

Fig. 3 presents six curves for the behavior of
Q during a 128-day period. In curve 0, the initial
state is state 0, while in the remaining curves
the initial states are very small departures from
state 0. The initial errors were chosen so small
that the linear phase lasts about 48 days.
Beyond this time there is no single preferred
course of behavior. Thus the detailed behavior
of @ does not seem to be predictable at long
range.

E. N. LORENZ

By contrast, Fig. 4 shows the behavior of @
during a single 768-day period, beginning with
state 0. For convenience in presentation, the
period is divided into six consecutive segments.
Beyond the evident lack of periodicity, the
most outstanding feature is the occurrence of
extended intervals, sometimes as long as four
months, in which @ possesses the same sign.
Thus @ is a highly persistent quantity.

It follows that one can forecast the sign of @
a number of weeks in advance simply by pre-
dicting that the sign will be the same as at
present. Such a forecast is by no means certain
to succeed, but statistically it has a higher
probability of succeeding than of failing. In
contrast to the extreme accuracy of initial con-
ditions required for extended forecasts of the
detailed behavior of @, the errors in observing
the initial values of the 28 variables may be
fairly large without disturbing the forecast of
the sign of @, provided that they are not so
large as to yield the wrong initial sign for Q.
Hence the envisioned forecast should extend
well into the nonlinear phase.

These results seem to agree with experience
in predicting the behavior of the real atmos-
phere. Little success has been obtained in pre-
dicting detailed instantaneous states at long
range, but numerous statistical formulas, in
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Fic. 4. Behavior of @ during a 768-day period. The

six curves are successive segments of the same
numerical solution. Horizontal lines are zero lines.
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A, of seven largest eigenvalues of matrices A(t .4 t;) AT (21440 t;)s for

16 successive 4-day periods.

i A Ay I A 2 A 2y
0 6.3 4.2 2.9 1.3 1.3 0.9 0.4
4 93.8 2.5 1.5 0.9 0.6 0.4 0.1

8 25.1 5.3 3.9 2.3 1.1 0.7 0.5
12 10.0 7.0 4.9 2.6 1.6 1.3 0.8
16 7.1 3.1 1.8 1.3 0.8 1.0 0.2
20 7.2 4.9 3.7 2.4 1.3 0.7 0.6
24 8.5 4.5 3.9 3.0 2.0 1.2 0.5
28 3.7 2.5 2.1 1.8 1.2 1.0 0.6
32 10.8 7.6 6.5 3.3 1.6 1.2 0.7
36 7.1 3.7 2.1 1.8 1.6 1.3 0.6
40 38.5 7.4 5.1 2.0 1.0 0.6 0.5
44 6.7 4.3 0.2 1.2 1.0 0.8 0.4
48 126.3 2.5 2.2 0.9 0.6 0.4 0.1
52 5.4 2.9 2.4 1.8 1.3 1.0 0.6
56 16.4 11.0 9.1 6.1 3.7 0.9 0.7
60 8.0 5.6 3.8 2.5 1.2 1.1 0.7

some cages linear, have seemed to yield positive
reduetions of variance.

It should also be noted that the model allows
for no long-term interaction of the atmosphere
~with its environment. The persistence of @ arises
in this case entirely from internal dynamics.

In passing it is worth noting that the mean
value of @ in Fig. 4 is decidedly negative, sug-
gesting that the system may be intransitive.
However, continuation of the integration for an
additional year beyond the interval shown in
Fig. 4 yielded a preponderance of positive
values. Evidently even in so simple a model
two years of data form an insufficient sample for
reliable climatological estimates.

TaBre 2. Square roots 2,

6. Further considerations and conclusions

The foregoing sections have shown that if a
system is evolving with time in accordance
with the model equations, small random errors in
observation will grow until they become signi-
ficant features of the total field of motion.
Although the growth rate of these errors is
extremely variable, errors comparable to those
currently made in observing the real atmos-
phere always seem to grow to intolerable errors
in less than a month, and occasionally in less
than a week. Before any similar statement is
made concerning the behavior of the real
atmosphere, it would be highly desirable to

wis Ay Of seven largest eigenvalues of matrices A(t;ig t)AT(E1he ti)s for

8 successive 8-day periods.

i A 2y Ag A A A 2,
0 242.1 5.1 3.1 0.7 0.4 0.2 0.0
8 50.8 14.8 6.9 2.7 1.0 0.7 0.3

16 16.5 5.0 3.9 1.9 1.0 0.4 0.0

24 9.2 4.4 3.4 2.9 2.3 1.2 0.0

32 24.8 11.3 7.5 2.9 1.1 1.1 0.2

40 36.3 10.7 4.5 1.8 2.7 0.6 0.0

48 86.8 2.9 1.7 1.2 0.7 0.4 0.0

56 55.9 38.0 15.4 5.8 1.9 0.9 0.4
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perform similar studies, using systems of equa-
tions whose solutions afford much better simu-
lations of real atmospheric behavior.

The previously mentioned model of Smaco-
RINSKY (1963) possesses 5184 variables, as op-
posed to the 28 variables of our model. It is
immediately obvious that the procedure of this
study could not feasibly be repeated with a
model as large as Smagorinsky’s; the perfor-
mance of 5184 separate numerical integrations,
each with a set of initial conditions differing
from a basic set in only one variable, would be
absolutely prohibitive with current computers
and with any envisioned in the near future.

A possible modification would be to use not
5184 sets of initial conditions but some small
number, perhaps 10 or 20, chosen in some
random fashion. A study of the growth rate
of errors for these cases might yield much of the
desired information. The following considera-
tions, based upon the 28-variable model, are
in order.

In 28-dimensional phase space, a small sphere
representing an ensemble of initial states be-
comes deformed into an ellipsoid. The mean-
square distance from the center of the ellipsoid,
given by the mean eigenvalue of the matrix
£24A7, where A is the error matrix, eventually
becomes very large, but, as a result of the
dissipative terms in the governing equations, the
square of the volume of the ellipsoid, given by
the product of the eigenvalues of 2447,
shrinks toward zero. It follows that some of the
eigenvalues of 447 become much larger than
others, i.e., the ellipsoid becomes extremely
elongated in a few directions.

Table 1 lists the square roots of the largest
seven eigenvalues of the sixteen matrices
Alt;ia t) AT (¢, 40 t;). These quantities represent
the lengths of the seven longest semi-axes of the
ellipsoids, which, four days earlier, were spheres
of unit radius. There is considerable variation
from one four-day period to another; however,
there are invariably at least three, and never
more than six, semi-axes longer than the radius
of the original sphere. In some instances the
longest axis is far longer than the second-
longest.

E. N. LORENZ

Table 2 is similar to table 1, except that it
refers to the eight matrices 4(¢; s, ti)AT(t1+g, t).
The same features are evident, and the tendency
for the largest eigenvalue to dominate is even
stronger.

It follows that after eight days there will be a
strong tendency for a randomly chosen point
on the ellipsoid to be displaced from the
center in a direction nearly parallel to the longest
axis. In other words, even though the initial
error field may be completely unknown, the
general configuration of the error field after
eight days can be reasonably well estimated,
although the sign will of course be in doubt.
It need hardly be added that there are occasions
when such knowledge would be of practical
importance.

It also follows that after a few days the growth
rate of initially random errors is strongly in-
fluenced by the growth of the largest single
eigenvalue. This growth rate may be estimated
moderately well by considering a single initial
error field, and even more closely from studying
perhaps four or five initial error fields.

If more realistic models with many thousand
variables also have the property that a few of the
eigenvalues of the many-thousandth-order ma- .
trices 447 are much larger than the remaining =
eigenvalues, a study based upon a small en-
semble of initial errors should, as already sug-
gested, give a reasonable estimate of the growth
rate of random errors. Moreover, it may even
indicate, apart from sign, certain preferred
configurations of the error field. It would
appear, then, that best use could be made of
computation time by choosing only a small
number of error fields for superposition upon a
particular initial state, thus hopefully allowing
the study of perturbations upon a considerable
number of different initial states.
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