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1. INTRODUCTION- AND DEFINITIONS

Among the recent studies which have
furthered our understanding of atmospheric pre~
dictability, some, such as those based upon
numerical integrations of fairly realistic
atmospheric models, have been aimed specifically
at the atmosphere. Others, including some
purely theoretical treatments, have dealt with
more general physical or mathematical systems,
Regarding the latter it is often loosely stated
that periodically varying systems are perfectly

" predictable, while nonperiodic systems are
imperfectly predictable at any range and com-
pletely unpredictable at sufficiently long
range. The purpose of this review is to ex-
amine the basis for such a statement, and
to introduce a comprehensive proof. :

. Before deriving any mathematical
results we must have unambiguous definitions of
predictability and periodicity. Our definitions
will agree with the usual concepts, but in some
respects may differ from other definitions, and,
to this extent, our conclusions may not be ap-
plicable to predictability and periodicity
differently defined.

For convenience we shall consider
only time series x(t), y(t), etc. defined for
equally spaced discrete values of t, although
many of our remarks will apply equally well to
‘series with continuously varying arguments.
Whenever necessary we shall assume that long-
term means and other statistics exist,

In the absence of information regarding

antecedent conditions, a predictand y(ti) will
‘possess an a priori (or climatological) proba-
bility distribution. Following the specification
of antecedent conditions it will also possess an
a posteriori distribution.We shall call y(t;)
(completely) unpredictable if and only if these
distributions are identical, and (at least)
partially predictable if they differ; y(t;) will
be perfectly predictable if and only if the
a8 posteriori probability degenerates to a cer-
tainty, The time series y(t) will be considered
~partially predictable if y(t;) is partially
predictable for at least one value of t;.

- Often we wish to use an a posterori
mean as a predicted value, and, in this event,
we generally require the predictand to satisfy

stricter requirements before being considered
predictable. We shall call y(t:) mean-unpre-
dictable if the a posteriori and a priori
probaEiligy distributions have equal mean values,
and (at least) partially mean-predictable 1f

the mean values differ., Again y(t) will be
consitdered partially mean-predictable if y(t1)

is partially mean-predictable for at least one
value of t;.

: When a partially predictable series is
partially mean-predictable, but not when it ig
mean-unpredictable, there 15 a positive reduction
of variance; i.e., for the series as a whole (but
not for all individual times) the & posteriori
variance, which also equals the mean Bquare pre-
diction error, is less than the a priori var- °
lance. It is evident that .if y(t) is partially
predictable, some function of y(t) is partially
mean-predictable. A simple example of a series
y(t) which is partially predictable but mean-
unpredictable from its own past is a series con- .
sisting of +1's, 0's, and -1's, where a +1 or -1
is followed with equal probability by a +1, 0, or
=1, but a 0 1s followed with equal probability
by only a +1 or -1; here the time series y2(t) is

" partially mean-predictable.

Frequently we wish to predict tﬁe

occurrence or non-occurrence of some condition

or event, e.g., rain at Boston. It is then
convenient to introduce, as a predictand y(t),
the characteristic function for -the event, which
assumes the value 1 when the event is occurring
and 0 when it is not. In this case the mean
value of y is simply the probability of occur-~
rence of the event. Also,since the mean deter-
mines the probability distribution, the dis-
tinction between predictability and mean—
predictability disappears.

" Periodicity could be defined in terms
of recurrence properties, but we shall define
it in terms of the spectrum.. The (cumulative)
spectral function (the integral of the spectral
density function when the latter exists) of a
time series 1s a non-decreasing function. It
may therefore be resolved into the sum of three
non-decreasing functions with distinct properties,
thus resalving the series into the sum of three
series. One function is a step function; this
coxresponds to a line spectrum with a finite or
denumerable number of lines, and the corresponding
series is by definition periodic. At the other
extreme 18 an absolutely continuous function,



whose derivative is the spectral density
function. By definition the corresponding
series is nonperiodic. In between is the less
familiar non-absolutely continuous function,
whose increases occur at a nondenumerable but
mowhere dense set of points. For our purposes
Tie corresponding series will be considered
periodic, although it lacks some features often
associated with periodicity. In any particular
case one or two of the component series may be
absent. ' :

Equivalent definitions may be given
in terms of serial covariances. A periodic
component is one whose covariance fails to
approach zero as the lag approaches infinity;
a nonpericdic component is one whose ‘covariance
approaches zero. In the latter case it may be
shown that the covariance of the series with
any other time series also approaches zero at
infinite lag. In all cases the sgerial covari-
ances of the separate components of a series
are additive. :

Simple examples of series with dis-
continuous and absolutely continuous spectral
functions are respectively a series of 1's
and 0's occurring in alternate succession and
a series of 1's and 0's forming the succesgive
digits in the binary expression for m. A
series of 1's and 0's with a non-absolutely
continuous spectral function may be gener-
"ated by the relations y(0) = 0, y(2t) = y(t), -
y2t + 1) =1 - y(t)..

2. BACKGROUND THEORY

- _ In this section we enumerate a few
:stablished results which are generally well
~“known, but which will be useful as background
material for the following sections. Consider
first the general problem of linear prediction.
Let y(t) denote any time series to be pre-
dicted, and let x;(t),...,xy{t) denote separate
series to serve as predictors. We seek a
formula e

e+ = 2 a
- 1=1

where T is the range of prediction, § is the
predicted valué of y, and the coefficients a
are to be chosen to minimize the mean square
prediction error. These coefficients then
satisfy the linear equations

M .
; Zl xi(c)gjg_t) ag=x Oy +7) , |
- (2)
1=1,...M ,

where a bar denotes an average with respect to
t. Often we wish to include a constant term
in (1). 1In this case we may let x,(t) =1,
after which equations (1) and (2) still apply
"1f the lower limits of 1 and j are changed
from 1 to O. ) o

- In practical applications the means
must be estimated from samples; if N observa-
‘tions of y form the N X 1 matrix Y and the
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corresponding observations of xj (including
Xo) form the N X (M + 1) matrix’X, the (M + 1)
x 1 matrix A of coefficients aj is given by

A= 0%y . (3)

A case of speclal interest occurs
when the predictors xi(t) consist of all pre-
vious values of y(t) back to some remote time.
Solution (3) is then still valid, but not par-
ticularly convenient, and it fails_to capitalize
on the fact that the elemente of X X along any
diagonal are identical to each other and to one
element of X'Y, and except for a factor N and
an additive constant (y)* are in fact serial
covariances of y(t). An alternative solution in

" this case has been given independently by

Kolmogorov (1941) and Wiemer (1947). For the
nonperiodic case the solution involves the
spectral demsity function F(w), which is simply
the Fourier transform of the covariance functiom,
and is defined for -7 < w < 7. It.is found that
for predicting one step in advance the ratio of
the a posteriori variance to the a_priori
variance equals the ratio of the geometric mean
of F(w) to the arithmetic mean. In particular,
there is no prediction error if the geometric
mean of F(w) vanishes. In this event the series
is also perfectly predictable at all ranges. An
obvious instance occurs when F(w) vanishes -
throughout some continuum within the interval

-t < < mw, If, however, a nonperiodic series
is not perfectly. predictable one step ahead, it
becomes completely unpredictable by linear
formulas as the range approaches infinity. If
a series also possesses periodic components,
these are perfectly predictable at any range.

Investigations of nonlinear predicta-
bility have followed somewhat different paths.
A study by the writer (1963a) invokes the theory
of dynamical systems. It is assumed that the
system under consideration is describable by a
finite number of dependent variables, which
are governed by a formally deterministic dy-
namics. A state of the system may then be iden-
tified with a point in M~dimensional phase space,
and the evolution of the system may be repre-

‘sented by a moving point. .

Assuming that some error in observation
is inevitable, the true state of a nonperiodic

- pystem, and the predicted state originating

from the observed state, will diverge from one
another, even if the prediction scheme is op- .
timal. Perfect predictability is therefore

absent even at short range, and the predictability
diminishes as the range increases. These con-
siderations played a part in some of the early
planning for the Global Atmospheric Research
Program (Charney et al., 1966), ;

The preceding conclusions leave a
basic matter unsettled. The amplification of
small errors does not assure us that the pre-
dictability at long range decays all the way to
zero., The writer (1963b) has dealt with this
matter by noting that if small differences
between two states amplify but fail to become
as large as differences between randomly chosen
states, the two states although not remaining
close will remain correlated. Since a moving




point in phase space must continue to approach
some of its previous positions after arbitrarily
long time lapses, at least one variable of the
system must possess a covarilance which does not
approach zero at infinite lag, and the system
possesses a periodic component.

The results of linear prediction
theory and those derived from the theory of
dynamical systmes are alike in indicating the
general unpredictability of nonperiodic series,
but there are important distinctions. The latter
results pertain to a lack of predictability
whose presence and extnet depend upon the nature
of the errors in observation. The former per-
tain to an intrinsic lack of linear predicta-
bility which is present even if the obser-
vations are perfect.

: It is noteworthy that, in contrast .to
anything suggested by.the dynamical systems
approach, linear prediction theory acknowledges
perfect predictability of a nonperiodic series,
even at infinite range, if the geometric mean

of the spectrum F(w)is zero. Let us note what
happens, however, when random errors are added
to the observations. A white-noise spectrum

is added to F(w), and the geometric mean no
longer vanishes. The predictability at infinite
range then disappears completely, in agreement
with the dynamical systems approach.

It may seem paradoxical that formulas
which yield perfect predictions with perfect
observations give useless predictions when the
observations are almost but not quite perfect.
The paradox may be resolved by noting that the
formulas for successively longer lags contain
successively larger coefficients., Ultimately
the effect of multiplying one of these coef-
ficlents by even a very small error renders
the prediction worthless.

In general, however, the two approaches
appear to be complementary rather than equiva-
lent. They will appear more nearly equivalent
in the light of further tesults which we shall
presently discuss.

3. A RESULT OF WIENER'S

In this section we comment upon fur-
ther work by Wiener (1956) dealing with pre-~
diction of imperfectly observed systems. Wiener
treated a mathematical system, but he had the
atmosphere in mind as a model. Indeed, in a
thoroughly up-to-date assessment of the situa-
tion, he states, "Thus the data on which met-
eorological prediction is to be done represents
a very sketchy sampling of the true data which
include every local gust of wind and every cool
spot or warm spot in every area. Perhaps it
may be possible to maintain that these local
fluctuations are unimportant in the development
of the weather. It is quite conceivable that
the general outlines of the weather give us a
good, large picture of its course for hours or
possibly even for days. However, I am profoundly
skeptical of the unimportance of the unobserved
part of the weather for longer periods. To
assume that these factors ... will not in the
long run play their share in determining major

ginal predictors.

features of the weather, is to ignore the very
real possibility of the self-amplification of
small details in the weather map."

Wiener's principal result is to the
effect that if a predictand y(t) 1s partially
predictable by any scheme, it is equally pre-
dictable by a linear scheme. This result is
important in its own right, but it is the writer's
belief that its principal role in the development
of meteorology resulted from its being rather
generally misinterpreted. The incorrect inter-
pretation is to the effect that 1f y(t) is par-
tially predictable as a nonlinear function of .

a set of predictors, such as the dependent
variables in the govening dynamic equations, it

i1s equally predictable as a linear function of

the same predictors, in the manner of equation
(1).” Thanks to the simplicity of the solution
(3) of (1), this interpretation had the beneficial -
effect of stimulating considerable work in statis-
tical weather forecasting. Actually the required
predictors ip the proper linear scheme are
‘characteristic functions derived from the ori-

1

That the required predictors cannot

_be the.original_onés,is apparent from an example.

Wiener's result is purely mathematical. It is

- ‘easy to construct a mathematical system con-
‘sisting of a single dependent variable, governed

by a deterministic nonlinear equation, which
varies nonperiodically and even possesses a
vhite-noise spectrum, One such system is given
by the relations y(0) = 0.8, y(t +1) =

2y (t) - 1. If small enough "observational
errors are added, nearly perfect prediction at
short range is possible through the governing
equation, but the variable is mean—unpredictable
as a linear function of its past.

For the proper interpretation of
Wiener's result we specifically acknowledge that
our physical system must be imperfectly obser—

‘ved.  Only a finite number of dependent variables’

is observable, and each of these possesses a

’.finite range and is observed with but finite
resolution. It follows that there éxist - but

a finite number of differeﬁt observable states,
albeit a very large finite number. ©Let us denote
these by S15...5 Sy. : )

Now let xi1(t),..., xy(t) be the char-
acteristic functions for these states, so that
x4(t) = 1 whenever the observed state is Sy,
and x4(t) = O at other times. It is these func-
tions which are to serve as the predictors in
equation (1).

- To solve the corresponding equations

(2) ve note first that for any t, x4(t) =1
for exactly one value of i. Hence

2 x () =1 %)
1=1

whereupon a céns;ant term in (1) would be super—
fluous. Next, we recall that

Xompy . ()



where pj is the a priorl probability that the
state of the system is Sy. Since x4(t) and
x12(t) are always equal,

2-
xg Py . (6)

Moreover, since two distinct states cannot
occur simultaneously

XXy = 0 1if 143 . )
Finally, given a predictand y(t),
REIEF O =pFM ., (B

where yi(T) is the a posteriori mean of y for
those times following occurrences of state S1
by a time lag t. Introducing (6), (7), and ~(8)
into (2), we find that

a, =vm@ . ®

Now let the state of the system at
time t be Sy. Substituting xy e 1, and
%X = O when 1 ¥ I, into (1) yields the pre-
diction . .

CFe+ ) =3 . 10)

This 1s ‘indeed the best possible prediction. If
separate occurrences of Sy are always followed
after lag T by the same value of y, the pre- -
diction is perfect.  If different values of y
may occur, there is no sure procedure for choos-
ing among them, and (10) minimizes the mean
square error. In the event that y(t) is itself
a characteristic function for some event, y- (t)
1s the a_posterdori probability of occurrence

. of the event, and (10) constitutes an optimum
probability forecast. This formally linear
prediction scheme is 4in fact seen to be iden-
tical to the most nonlinear of schemes, namely,
the well known analogue method, with the
strictest conditions to be met by states pur-.
porting to be analogues. .

© We have tacitly assumed that all of
“the potentially useful information for pre-
dicting y is known when the observed state St
is known. It is conceivable that additional
predictive information may be available if the
present togéther with several past states are
known. If this is the case, we may introduce
characte;istic functions for distinct“sets
of successive states instead of distinct states.
The subsequent development remains unchanged.

It should be evident that the procedure

just described 1s not operationally practical

for weather forecasting, in view of the vast
number of distinct states Si. Indeed, experience
indlc;tes that we must be very liberal in
Tecognizing states as analogues if we are to
discover any analogues at all. The real im-
portance of Wiener's result 1s that it allows
certain established theorems regarding linear
prediction to be extended to nonlinear pre-—
diction. ' .

4. UNPREDICTABILITY OF NONPERIODIC SfSTEMS

We have by now completed most of the

work needed to formulate the proper relation
between predictability and perfodicity. We
suppose a physical system is imperfectly ob-
served, and that some variable y(t) repre-
senting a property of the system varies non-
periodically. The serial covariance of y(t)

then approaches zero at infinite lag. This
means that the covariance of y(t) with any other.
quantity whatever also approaches zero at infinite
lag. Hence, 1f Sy is any state of the system,
and xq(t) is its characteristic function,

lim (_xi(—t:) yE + 1) -:‘c?] -0 . (11)

T =+ ®

It follows from (5) and (8), upon dividing by
Pys that

lm ¥y =5 . S )

T+®

Thus at infinite range the a posteriori and a
priori means are equal, regardless of the state
S1 prevailing when the prediction is made, and
y(t) is mean-unpredictable.

The possibility remains that y(t) is
partially predictable. In this instance, how-
ever, some function of y(t), say z(t), which
must also repreésent a property of the system,
is partially mean-predictable. Reversing the
reasoning of equations (11) and (12) we see that
z(t) possesses a periodic component. If, then,
an entire physical system varies nonperiodically
and is imperfectly observed, it is not perfectly
predictable at any range and becomes completely
unpredictable as the range becomes infinite.
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