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We examine an M-dimensional mapping defined by a system of broken lincar cquations, whose Lyapunov numbers may be
prespecified, and whose directions of stretching and compression are the coordinate directions. With K positive and M — K
negative Lyapunov exponents, the attractor is locally the product of a K-dimensional continuum and an (M — K )-dimensional
Cantor set; the latter is found to be a pseudo-product of Cantor sets or continua or Cantor sets and continua. When scen with
finite resolution a pseudo-product may look like a true product, but its fractional dimension is less than the sum of the
dimensions of its projections on the coordinate axes. Transitions in the number of Cantor sets and continua involved in the
pseudo-product need not correspond to transitions in the integral part of the fractional dimension of the attractor. We

speculate as to whether the attractors of continuous mappings and flows have similar structures.

1. Introduction

The numerous transformations which map the
unit square or some other plane region into itself,
and which possess strange or chaotic attractors,
involve both stretchings and compressions. That
is, certain pairs of points are mapped into more
widely separated pairs, while other pairs become
more closely spaced. A typical example is the
Hénon mapping [1], which, after a linear transfor-
mation of Hénon’s original variables, may be writ-
ten

Xn+1 =DVu»

(1)

Voo =bx,—avi+1.
With |b| <1, horizontally separated points are
brought closer together, while vertically separated
points are almost always moved farther apart.
Hénon showed that with =03 and a=14 a
particular quadrilateral is mapped into itself.
Mappings in M dimensions may involve stretch-
ings or compressions in several directions. For a

flow, the Poincaré mapping defined by successive
crossings of a specified hypersurface may involve
similar stretchings and compressions.

Studies of the attractors of particular dynamical
systems have frequently been accompanied by pic-
tures of the attractor, or, if M > 2, of projections
of the attractor on a plane. The standard proce-
dure for producing such pictures consists of choos-
ing a point at random and computing and plotting
a long sequence of forward images. Often the
leading points in the sequence, which may repre-
sent transient effects, are omitted. Sometimes the
procedure is repeated with a second initial point to
see whether a similar picture is obtained.

The literature contains a number of definitions
of attractors, which are not all equivalent [2]. A
definition which would appear to justify the pic-
torial procedure begins by defining a point Q as an
attracting point (or limit point) for a point P if the
sequence of forward images of P possesses a subse-
quence converging to Q. If the set of points P for
which Q is an attracting point has Lebesgue mea-
sure exceeding zero, Q is a point of the attractor
set 4. Sometimes A is composed of a number of
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disjoint sets with separate basins of attraction;
each of these sets may then be called an attractor.

As pointed out by Ruelle [3], a computer-pro-
duced sequence of forward images is not a se-
quence of true images, because roundofl errors are
introduced at each iteration. Ruelle has presented
an alternative definition, which is aimed at repro-
ducing the limiting form of a computer-produced
attractor as the roundoff error approaches zero; he
attributes some of the ideas to Conley [4].

Following Ruelle, but with different terminol-
ogy, we define an e-sequence of forward images as
one where, before each iteration, the point to be
mapped is displaced by a distance not exceeding a
prechosen value e. We define Q as an e-attracting
point of P if an e-sequence originating at P pos-
sesses a subsequence converging to Q. We may
then redefine Q as an attracting point for P if it is
an e-attracting point for P for arbitrarily small .
We define A as before, but in terms of the rede-
fined attracting points. An important effect of the
new definition is to assure us, when it 18 not
already assured, that the unstable manifold of any
point Q of A4 - the set of points whose sequences
of backward images asymptotically approach the
sequence of backward images of Q—is contained
in A.

Attractors can exhibit a wide variety of shapes,
and it is to be expected that the complexity of
these shapes will be related in some way to the
relative amounts of stretching and compression.
We can examine such a relationship quantitatively
by invoking the familiar concepts of Lyapunov
numbers and fractional dimension.

An infinitesimal M-dimensional sphere will be
transformed by a mapping into an ellipsoid; con-
tinued iteration may produce a highly elongated
and flattened ellipsoid. The factor by which the
longest axis of the ellipsoid is multiplied during
one iteration, averaged over many successive itera-
tions, is the first Lyapunov number A;; for the
next to the longest axis it is the second Lyapunov
number X,, etc. The logarithms // = log X; are the
Lyapunov exponents. For chaotic mappings of a
region into itself, /{ > 0, while /{ + --- +/}, < 0.

Definitions of fractional dimension also involve
multiplicative factors during one iteration of an
operation, averaged over many iterations. Con-
sider the numoer N(e) of M-dimensional cubes of
side ¢ required to cover all points of a set. In
general N(g) will increase as ¢ is reduced. If, when
e is repeatedly divided by p, where p>1, the
average factor by which N(e) is multiplied is o7,
the Hausdorfl' dimension or capacity [5] of the set
is d. A set of real numbers for which0<d<1lisa
Cantor set. The converse is not true; for some
Cantor sets d=0 or 1.

We may likewise consider the number N'(¢e) of
cubes of side & required to cover a fixed fraction,
say one half, of the points of a set. If, on the
average, N’(e) is multiplied by p? when e is
divided by p, an alternatively defined fractional
dimension is d’. In order to say what constitutes
one half of the points of a set we must define some
measure on the set. When the set is an atiractor 4,
a natural measure of a subset is the fraction of the
forward iterates of a point of A falling within the
subset (the point chosen for iteration must avoid
special points such as those whose sequences of
iterates are periodic), and 4’ has been called the
dimension of the natural measure [S], or the natu-
ral dimension. A suggested formula [6] for d’,
which is sometimes treated as an alternative defini-
tion, is

: (2)

L
d'=L+ Y 1/l
i=1

where L is the largest integer making /{ + - -+ +/}
non-negative. In general d’ < d.

Particular systems where the complexity of A4
has been studied have tended to be confined to the
minimum value of M for which ¥// may be nega-
tive while /] is positive, i.e., M =2 for a mapping
or M =3 for a flow (since a flow must have one
vanishing Lyapunov exponent). This situation
might be expected; a picture of the local structure
of A should ideally show a cross section rather
than a projection, and finding points which are on
A and also on a given surface for a 3 dim-




E.N. Lorenz / Lyapunov numbers and the local structure of anractors

ensional mapping, or on A4 and also on each of
two given hypersurfaces for a 4-dimensional flow,
can be an involved process.

Recently we sought the attractor of a 4-dimen-
sional flow [7], whose equations are the four cyclic
permutations of

dx,/dt=c—x; +x,(x;—x,). (3)

To obtain a 2-dimensional cross section we first
determined a succession of points where an orbit
intersected a chosen hyperplane. We then dis-
placed each of these points slightly, along the
manifold formed by the hyperplane and the local
direction of maximum stretching, so that the orbit
emanating from a displaced point would, several
intersections later, simultaneously intersect the hy-
perplane and a second chosen hyperplane. Several
successive approximations were generally needed
to determine the proper displacement; conver-
gence occurred about half of the time.

Fig. 1 shows one cross section, with ¢ = 100. It
appears to contain a Cantor set of curves, and the
curves appear to be continua. We found that an
arbitrary straight line cutting across the curves

[\
20
—

intersected 4 in a Cantor set, and concluded that
locally the cross section was probably the product
of a continuum and a Cantor set.

The Lyapunov exponents of the flow are 3.34,
0.00, —1.79, and —35.55, making d’= 3.28. With
two negative exponents we had anticipated that
the cross section might be locally the product of
two Cantor sets, the sum of whose fractional di-
mensions would exceed unity.

For a 4-dimensional flow with /{ > 0, but with
I+ 15+ 15 <0, we would anticipate that a cross
section constructed in the manner of fig. 1 would
contain no continua, since 4’ < 3; it will certainly
possess no continua if 4 < 3. For more general
dynamical systems we would expect that if the
Lyapunov numbers vary more or less continuously
as some parameter varies, transitions in the struc-
ture of A4 should occur. The purpose of the present
study is to investigate such transitions for a suit-
able system, and to discover, if possible, what
combinations of Lyapunov numbers correspond to
these transitions.

In the following sections we shall first formulate
a rather general class of dynamical systems. We
shall then identify a subclass which is especially
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Fig. 1. A portion of the simultaneous intersection of the attractor of eq. (3). when ¢ =100, with the hyperplanes x; + x; = 29 and
*; + X4 = —29 The coordinates y; and y; are the orthogonal combinations ( Xpt Xy = xy = xy)/2 and (x) — Xy — X5+ x4)/2 of the
original coordinates.
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suitable for our particular investigation. We shall
see that there are indeed transitions in the struc-
ture of A, although they are not exactly like the
ones which we had anticipated, and our results
will suggest that the cross section in fig. 1 may be
neither the product of a continuum and a Cantor
set nor the product of two Cantor sets.

2. The equations

In our previous study [7] we noted that the
system defined by eq. (3) acquires chaotic behav-
jor, with X, > 1, when ¢ < —11.84. We have subse-
quently found that the product AN, (either
X,=1 or X, =1) increases more or less continu-
ously as c continues to decrease, passing unity
near ¢ = —30. Eq. (3) therefore appears to offer a
suitable system for investigating transitions, and
our original plan was to exploit this opportunity.
We became discouraged when we found that the
iterative procedure which converged about half of
the time with ¢ =100 converged much less fre-
quently with ¢ = —30, and we subsequently elec-
ted to save one or two orders of magnitude of
computation by investigating mappings instead of
flows.

A fairly general class of mappings of the unit

cube, where 0 < x, <1 for i=1,..., M, into itself
is given by

Xin+1 = Xitl,n ifi<M, ' (@)
Xprps1=CXp 0 T (1=c)F(xg - XM,n)’
where 0 < F(x,,..., %) <1 throughout the unit

cube, 0 <c<1, and x,, is the nth iterate of an
initial value x, o of x,. Egs. (4) were modeled after
the Hénon mapping of egs. (1), and like that
mapping may be rewritten as a uniquely invertible
Mth order equation in a single variable. In gen-
eral, points differing only in x, are brought closer
together, while those with the same value of x; are
carried farther apart. When M =2 and F is a
suitably chosen quadratic function, egs. (4) be-
come a special case of egs. (1).

We are principally interested in mappings where
M > 3, where it may be possible to choose F so
that variations of ¢, or of some parameter in the
expression for F, will produce changes in the
integral part of d’. Obvious candidates for F' are
polynomials and trigonometric functions. Fig. 2
shows the intersection of 4 with the plane x; =0,
obtained by a procedure analogous to the one used
to produce fig. 1, when M =3, F(x,, X4)=
cos?(max,), a=2.6, and ¢=0.75. The Lyapunov
exponents are approximately 0.15, —0.03, and
—0.41, making 4’ about 2.3. As in fig. 1, there
appears to be a Cantor set of curves, and the
curves appear to be continua. Lower values of a,
with ¢ = 0.75, can make d’ < 2.0.

The disadvantages of an investigation where ¢
or F is varied systematically are that it may be
hard to tell from inspecting a set of figures, or even
from studying numerical output, just where a tran-
sition in the structure of A has occurred, while an
exceedingly large number of iterations may be
needed to stabilize the numerical estimates of the
Lyapunov numbers. The results may therefore be
rather inconclusive. Our final choice of a function
F, which appears to circumvent these problems,
follows the observation that a Pomncaré mapping
determined by a continuous flow may possess dis-
continuities. Among several orbits intersecting a

0.8 T T T T T T
x3

i N |
0.6 4
0.4}F R i

A
0.2 Y, 1 . L ; L I
0.2 0.4 0.6 0.8 Xz

Fig. 2. The intersection of the attractor of eq. (4), when M =3,
F(xy, x3) = cos’ (max,), a=2.6, and ¢ = 0.75, with the plane
x; =0
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“specified hypersurface H at nearby points, one

may prove to be tangent to H at a point P upon its

‘next approach to H. Some neighboring orbits will
 then intersect H in points near P, while others will

curve back and miss H altogether eventually in-
tersectmg H much later at points’ far removed’
 fromP. : e
We shall therefore permit d1scontmu1t1es m F. :
' The simplest discontinuous functrons would seem

to be broken linear functions. Accordingly, we
shall let'

G(xann xM)_zax,, o

=2

4 and then let

, ‘F(xia xM) G(xz, s Xar) “J(xlzy’--‘-yx‘M)a

(6)

k where J is the largest 1nteger not exceedmg G In
~ matnx form eq (4) then becomes

X ) 0 1 0

, a el g g

. an+1 . | C} (1—0)02 G (1 ‘—'C)GM
e X} 0
e )

XM (1-6)1

n.

~or, w1th symbols for matnces

Xonm cx _r. e 8

f}g;Slnce C~ 1s:a~matr1xkokf constants, the Lyapunov
- numbers X;, ..., N, are simply the absolute values
~ of the eigenvalues Ay,..., A, of C. These satisfy
~ the charactenstrc equatron '

. KM—(I—c) E aN=c=0. (9
: g i= b : 5 i e .

- We may therefore prespec1fy Al, . and use

G,

eq. (9) to deterrmne ¢ and az, ;@ In. parti-

F cular

c-—--—-( 1) HA ‘, (o

i=1

~ Thus we may investigate the structure of 4 with

no uncertainty as. to the Lyapunov numbers We

~shall restr1ct our attention to cases where -

Ay, .5 A,y are real and distinct.
We may transform eq. (7) or (8) 80 that the

directions of stretching and compressron become

the coordmate directions. If we let ¥ = DBX and

= —DBJ’, where D is a non-singular d1agonal :
matrix, B is any matrix such that BCB~!= A, and
A is the diagonal matrix whose dragonal elements{ e
are }\1, s Ay g (8) becomes

v,.=AY,+s. (n)'

Evrdently Bis surtably chosen 1f the element in the -

ith row and jth column of B 1 _is N;'!, whence

the element in the ith row and ﬁna.l column of B 1s , i

where j runs over all values from 1 to M eXcepti :
Letting the ith diagonal element of D be ==
¢)/birs> We find that each element of J 1s srmply

, J and eq. (11) becomes

yi,n+1=kiyi,n+‘]n' . ?J : (13) Rk

Followmg some algebrarc mampulatlon we ﬁnd
that ~ -

i=1

. Xn(s*i—"j)“l’\iys,n)ah ok : (14)

~each product runmng over all values of I except z,'k P
while J,, which'is the largest mteger not exceedmg:’ S
; 1s 1ndependent of i. :

n
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From eq. (13) it follows that

yi,n=>\i—1(yi,n+1~‘]n)' (15)

If y, .1 —J, is substituted for A,y , in eq. (14),
the terms containing J, cancel, so that G, and
hence J, are completely determined by Y, . ;. Hence
eq. (13), like the Hénon equation, is uniquely
invertible.

Eq. (13) possesses certain advantages over eq.
(7). In graphical work the preferred directions
appearing in pictures of 4 or its projections should
be the coordinate directions, and any other finding
should alert us to some peculiarity. Fig. 3 shows a
portion of the intersection of A with the plane
y,=—3, when M=3, A\, =15, A,=—038, and
A, = —0.5. The values of A,, which make d’=
2.26, were selected because the corresponding
Lyapunov exponents are nearly proportional to
those of fig. 1. Negative values for A, and A, were
chosen because they produce smaller values of a,
and a,, and hence fewer discontinuities.

Again there appears to be a Cantor set of con-
tinua. The broken linearity has straightened out
the curves, but otherwise the qualitative resem-
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Fig. 3. A portion of the intersection of the attractor of eq.
(13), when M =3, A, =15, A, = —0.8, and A; = —0.5, with
the plane y, = —3.

blance between the figures is good. Eq. (13) thus
seems to define a suitable system for further study.

In analytical work eqgs. (13) and (15) have the
advantage of being solvable for y,,..., y,, in terms
of the sequence J={...,J_;,Jy, Jy,...} of in-
tegers. Assuming that no Lyapunov exponent
vanishes, and letting K be the number of positive
exponents, we find, since y, , remains bounded as
n — oo, that

o0
>\iyi,nz - Z >\i_jJn+j When l.—<:K9 (16)
j=0

while, for points on 4, y, , remains bounded as
n— — o0, and

Yini1= 2 MJ, , wheni>K. (17)
j=0

The first X variables may therefore be expressed
as power series with different arguments but with
the same set of coefficients; the same is true for the
remaining M — K variables.

Thus each point on 4 may be identified with a
unique sequence J. Under this identification the
mapping of eq. (13) becomes a subshift of finite
type; these shifts have been studied in consid-
erable detail, e.g. [8-11].

3. Some special sets

Before pursuing our primary task we shall ex-
amine some special sets of points whose coordi-
nates are expressible as power series with integers
as coefficients. Among these sets are the projec-
tions of the attractors of eq. (13) on the coordinate
axes and, when M >2, on certain coordinate
planes or hyperplanes.

We first let = {...,1_y, Iy, I;,...} be a two-
way infinite sequence of integers containing a
smallest and a largest integer. We shall call the
one-way infinite sequences {...,I_,, I,} and
(I,,1,,...) the past and the future halves of I.
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/ Lyap

For |a| <1, we then define

r(a,I)= ilkak. (18)
k=0

According to egs. (16) and (17),
Vio=—A1r(A71 ), whenixK, (19)

while, for points on A, if J* is the sequence
{....JJdps I qet ) obtained by reversing the
order of the integers in J,

y,._lzr(}\,-,J_*), when i > K. (20)

We next let S be the ensemble of all sequences
T satisfying a specified set of constraints on the
integers which occur and on the order in which
they occur. Different sequences in § may have
identical past or future halves, and the constraints

will specify what integers may immediately follow

a given past half. We require that S be a sta-
tionary process; in particular, if I is in S, the
sequences I’ and I”, with I)=1, and [/ =
I,,,, will be in S. Some of the consequences of
constraints of this sort have been examined by
Bowen and Lanford [12].

We then define R, (ay,...,a,,S), as the set of
all points (x,,...,x,) in L-dimensional space for
which x, = r(a;, Iyand I (independent of i) is in
S. From egs. (19) and (20) it follows that if S is
the ensemble of all sequences J corresponding to
points in A, and S* is the ensemble of the related
sequences J*, the projections of A4 on the
(V15+ -5 ¥k)- and (yg,1, ..., Vp)-hyperplanes,
aside from unequal linear compressions in the
coordinaie directions, are Rx(A7%,..., A % §) and
Ry x(Agipse-os Ay S*). More general sets R,
need not be associated with any attractor.

The simplest non-trivial allowable ensemble is
the ensemble S, containing all sequences com-
posed of 0’s and 1’s. Figs. 4, 5 and 6 show
R,(a, B, S,) for different choices of « and 8, as
represented by 4000 randomly chosen points. Each
set exhibits self-similarity; the lower and upper

halves of each .ﬁgure, corresponding respectively to
the subensembles of sequences whose future halves
begin with 0’s and 1’s, are superposable, and, aside
from unequal compressions in the x- and y-direc-
tions (we write x, y for x, x,), are copies of the
complete figure. Likewise, the lower and upper
halves of each half are copies of each half and of
the complete figure, etc. The projections on the x-
and y-axes are R,(«a, S,) and R{(B, S,).

If «<1/2, asin fig. 4, Ri(a, S,) is a Cantor
set. Each point of R, corresponds to exactly one

15 T T T ”
/'
b
—'/
1.0 —_ 4
05 e 4
0.0 k=" L L s
0.0 0.5 1.0 15 X

Fig. 4. The set R,(0.45,0.35, S,), where S, is the ensemble of
all sequences of 0’s and 1’s. See text for definition of R,.
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Fig. 5. Same as fig. 4, except set is R,(0.55,0.45, S,).
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Fig. 6. Same as fig. 4, except set is R,(0.65,0.55, 5,).

future half-sequence. If a=1/m and m is an
integer, the 0’s and 1’s in the future half of I are
the successive digits in the expression for r(a, I)
‘in base m, and R, is the set of numbers whose
expressions in base M contain only 0’s and 1’s. If
a=1/3, R, is the standard Cantor set obtained
by removing middle thirds.

If «a=1/2, R/(a,S,) is a continuum, and al-
most every point of R; corresponds to a single
future half-sequence. Exceptions are rational frac-
tions whose denominators are powers of 2, which
correspond to two half-sequences. If a >1/2, as
in figs. 5 and 6, R;(e, S;) is again a continuum,
but now an uncountable number of future half-
sequences I yield the same value of r(a, D). If
a <0, Ri(a, S,) and R(—a,S,) are identical ex-
cept for a translation.

Because of the self-similarity, 2" segments of
length a"/(1 — «) will just cover R\(«, S,), if a <
1/2. Hence d=1log2/|loga|. Obviously d=1
when a = 1/2, while d is unchanged by changing
the sign of «a.

Analogous statements hold for the ensembles S,
containing all sequences composed of the N in-
tegers O,..., N — 1. More generally, R,(a,S)is a
Cantor set if o is sufficiently small, and a con-
tinuum if « is sufficiently large. We shall let 6/(S)
be the smallest value of a for which r(a, I') can

d the local structure of attractors

assume the same value for two or more sequences
I in S with distinct future halves, while ¢”(S) is
the smallest value of a for which Ri(a,§) is a
continuum. We shall also let K,(S) be the number
of distinct sequences {Ig,...,J,_,} of length n
which can be subsequences of sequences Iin S,
while p(S) is the limiting value of K, .,/K, as
n— oo. Obviously p(Sy)=N, while o'(Sy)=
6”(Sy)=1/N. We shall call an ensemble S for
which ¢’/ =0¢" =1/p well-behaved, regardless of
whether § =S, for any N; otherwise it is ill-
behaved.

Some simple examples where S+ S, are the
ensembles of all sequences of 0’s and 1’s which do
not contain two 1’s in succession, and of all se-
quences of 0’s and 1’s which never contain fewer
than three 0’s in succession. Fig. 7 contains
branching diagrams for these ensembles, showing
all sequences of six terms or fewer which can be

I 2 3 4 5 6 n 1 2 3 4 5 6
l/l
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Fig. 7. A branching diagram showing all subsequences, with 6
terms or fewer, of sequences of 0’s and 1's where two or more
1’s in succession cannot occur. (b) Same as (a), for sequences of
0’s and 1’s where fewer than three 0’s in succession cannot
occur.
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subsequences of sequences in S. Values of n and
K, are tabulated.

In fig. 7a, which pertains to the first example,
each column is identical to the column which
would be formed by placing the column im-
mediately to the left below the next column to the
left. Hence K, =K,_,+ K,_,, and p(S) is the
Fibonacci ratio 1.618 satisfying the equation p> —
p—1=0. We observe also that all branchings in
fig. 7a are identical; the future half-sequence im-
mediately below each branching is 0,1,0,1,...,
while the one immediately above is 1,0,0,0,... .
These yield equal values of r(a, I) if a/(1—a?)
=1, or a=0.618=1/p. Hence o' =0" = 0.618,
and S is well-behaved.

In fig. 7b, pertaining to the second example, we
find that K, =K, ,+K, ,+(K,_ ,—K,_,), so
that p is again the Fibonacci ratio 1.618 satisfying
the factorable equation p*— 2p> + p? —1=0.
However, the branchings are not identical. The

‘sequences immediately below and above a 0-

branching are 0,1,1,1,... and 1,0,0,0,..., which
yield equal values of r(a, I) if a/(1 —a)=1, or
a=1/2, while the sequences immediately below
and above a 1-branching are 0,0,0,1,1,... and
1,0,0,0,0,... which yield equal values of r(a, I) if
a’/(1 —a)=1, or a =0.682. Thus ¢’ = 0.500, 1 /p
= 0.618, and ¢’ = 0.682, and S is ill-behaved.

Returning to fig. 4, where S is well-behaved and
B<a<1/p, we see that each value of x corre-
sponds to a single sequence /, which determines a
single value of y, and vice versa. The p" segments
of length a”/(1 — &) which cover R(a, S) can, if
replaced by squares of side a”/(1 ~ a), be dis-
placed vertically to cover R,(a, B, S), so that R,
and R, have the same capacity. It follows that R,
is not the product of its projections R,(a, S) and
R,(B, S), which would have a higher capacity, and
it is not obviously the product of any other Cantor
sets. It is more like a one-dimensional Cantor set
lying on a distorted line. We shall call the Cantor
set R,(a,B,S) a pseudo-product of the Cantor
sets R (a, §) and R,(B, S).

When #<1/p<a, as in fig. 5, each value of y
determines one value of x, but each value of x

determines a Cantor set of values of y. Since
R,(a,B8,S) may, if compressed to fit the unit
square, be covered by p"” rectangles of vertical
width 8", each of which may be covered by (a/8)"
squares of side B" d=1+ log(pa)/
|log B|. Again R, is not the product of its projec-
tions, since again its capacity is too small. It might
be called a continuum of Cantor sets, since a
one-dimensional Cantor set of capacity log(pa)/
[log B| lies above each point on the x-axis. It is
certainly not a Cantor set of continua, since it
contains no continua; the obvious gaps between
the halves, quarters, etc., of fig. 5 are accompanied
by unresolved gaps which separate any pair of
points. We shall call R,(a, 8, 5) a pseudo-product
of the continuum R,(a,S) and the Cantor set
Rl(ﬁv S)

When a8 <1/p <f8 <a, as in fig. 6, there are
again gaps between any two points, even though
both projections are continua. Here we shall call
R,(a, B8, S) a pseudo-product of the two continua.
Again d=1+log(pa)/|logB|. Only when aff =
1/p does R, become a true two-dimensional con-
tinuum, with d = 2.

The sets in figs. 4-6 are all concentrated near
the diagonal line (1 — a)x=(1—B)y, since a/f
is close to unity. We can avoid this outcome by
letting a and B have opposite signs. Fig. 8 shows
R,(0.55, —0.45, S,). Its projections are identical to
those in fig. 5, except for a translation, and it is
again a pseudo-product of a continuum and a
Cantor set, but it looks more like a true product of
diagonally oriented Cantor sets.

We can also let a/B be large. Fig. 9 shows the
left-hand half of R,(0.75,0.25, S,). Again it is a
pseudo-product of a continuum and a Cantor set,
but it could easily be mistaken for a true product.
Since 0.25 = (0.75)° approximately, points on the
same horizontal segment differing by 1 /4 unit in x
differ by only 1,/1000 units in y, which is visually
undetectable. Points differing by 10™* units in x
differ by only 102 units in y, which would not
be revealed by a typical double-precision numeri-
cal printout. The horizontal projection of an arbi-
trarily narrow horizontal strip which intersects the
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set is a continuum, and any vertical line passing
between the horizontal extremities of the set inter-
sects the set in a Cantor set. Only a knowledge of
how the set is defined reveals that a horizontal
strip of finite width passes between any two points
of the set.

Although figs. 5 and 8, when viewed globally, do
not appear vulnerable to a similar misinterpreta-
tion, it should be remembered that a sufficiently
small piece of either figure, when sufficiently mag-
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Fig. 8 Same as fig. 4, except set is R,(0.55, —0.45, 5,).
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Fig. 9. Same as fig. 4, except set is R,(0.75,0.25, S,), and only
the left-hand half is shown. The right-hand half may be ob-
tained by rotating the left-hand half through 180° about the
point (2,2/3).

nified, looks like the complete figure, except that it
is highly compressed in the vertical direction. On a
sufficiently local scale, then, the pseudo-products
in figs. 5 and 8 look much like fig. 9, and could be
mistaken for true products.

Similar considerations apply when S =S, for
N> 2, or when S+ S, for any N. Fig. 10 shows
R,(0.45,0.35, S;). It is a pseudo-product of two
continua, and looks much like fig. 6 except that
thirds instead of halves are superposable. Fig. 11
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Fig. 10. Same as fig. 4, except set is R,(0.45,0.35,S3), and S,
is the ensemble of all sequences of (s, 1’s and 2’s.
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Fig. 11. Same as fig. 4, except setis R,(0.65,0.55, 5), and S is
the ensemble of all sequences of 0’s and 1’s where two or more
1’s in succession cannot occur.
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shows R,(0.65, 0.55, §) for the well-behaved
ensemble S whose branching diagram appears in
fig. 7a. It is a subset of the set in fig. 6, but, since
p(8)=0.618, it is a pseudo-product of a con-
tinuum and a Cantor set, locally resembling fig. 5.

When § is ill-behaved, R, may acquire a more
complicated structure. Fig. 12 shows R,(0.65,
0.55, §) for the ensemble S whose branching di-
agram appears in fig. 7b. Since 6’ <f<1/p<a
< 0”, R, must be considered a pseudo-product of
Cantor sets, but it does not resemble the pseudo-
product shown in fig. 4; each value of y corre-
sponds to many values of x, and vice versa. In
particular, the projection R,(«a, S) is a Cantor set
of capacity 1, whose left-hand portion could easily
be mistaken for a continuum.

More generally, a Cantor set R, (ay,...,a;,S5)
may be a pseudo-product of K continua and L — K
one-dimensional Cantor sets. If |a,| <1/p(S), or,
for an ill-behaved ensemble, if |a,| < o’(S), the
value of x, uniquely determines the values of the
other coordinates of any point. When compressed
into the unit square, R, may be covered by p”
cubes of side af, or by p" boxes of thickness af,
each of which may be covered by («,/a,)" cubes
of side af, or by p” boxes of width af, each of
which may be covered by (e,a,/a?)" cubes of
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Fig. 12. Same as fig. 4, except set is R,(0.65,0.55, §), and S is
the ensemble of all sequences of 0's and 1's where fewer than
three (’s in succession cannot occur.
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diameter «f, etc. The capacity d is therefore the
minimum of d,,...,d,, where, if for conciseness
we set ay=p and «;,,; =0,
d,=k+log(ay - a)/|loga, . (21)
Evidently d,_,=d, =k when a; ---
otherwise d, is minimized when k is the largest
integer making a, - - - a, > 1.

Thus, if a;, ..., @, are continuously varied, while
§ remains well-behaved, the integral part of d
changes when a, --- a,=1/p for some k, while
the number of coordinate axes on which the pro-
Jections of R, are continua rather than Cantor
sets changes when a, =1/p for some k. If S is ill-
behaved, the latter changes occur when a, = 6”/(S).

a, =1;

4. Two-dimensional mappings

Mappings with M =2 share many properties
with higher-dimensional mappings, in which we
are mainly interested. With M =2, eq. (13) may be
written

Xps1 ™= Al’xn +J

ns

Y1 = A'.Zyn +J, . (2’2)

n°

where J, is the largest integer not exceeding G,
and

(>\l~>\2)Gn= _(>\1+>\2)(A1xu—.>\2yn)' (23)

Somewhat similar broken linear mappings include
the “skinny baker’s transformation” of Alexander
and Yorke [13]; this is a special case of the gener-
alized baker’s transformation analyzed in detail by
Farmer et al. [5].

Fig. 13 shows 4 when A; =4/3and A, = —-1/3.
It was constructed by plotting 4000 successive
iterates of a particular point, after discarding the
first 1000 iterates as possibly representing tran-
sient effects. We assume that A4 is defined in such

a way that the unstable manifold of each point in
A is contained in A.
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Fig. 13. The attractor of eq. (13), when M =2, A, =4/3 and
A, = —1/3. The line G is the line where G(x, y)=1. The line
G* is the forward image of G.

The sloping line labeled G is the line 4x +y + 5
= (, where G = 1, while the line G* is its forward
image 3x — 3y +5=0. The line G=2 does not
intersect A, so that values of J, are confined to 0’s
and 1’s. Points to the right or left of G, where
J =0 or 1 respectively, are mapped into points to
the right or left of G*.

Superficially the local structure in fig. 13 resem-
bles that in fig. 9, but actually the coordinates of a
point in fig. 9 are r(a, I)and r(B, I), for the same
sequence I, while in fig. 13 they are r(1/A,, J) and
r(X,, J*), for two different even though related
sequences J and J*. There is thus no need for a
value of y to determine a unique value of x, as it
does in fig. 9, and hence no need for 4 to be a
pseudo-product. Indeed, we would expect 4 to be
the true product of a continuum and a Cantor set
(8, 14].

To see what constraints have been placed on the
ensemble S of sequences J, we may examine a
long sequence of 1’s and 0’s. We shall represent
the sequence symbolically by a succession of pairs
of numbers; the members of a pair indicate a
number of successive 0’s and a subsequent number
of successive 1’s. For example, the subsequence
0,0,0,1,0,1,1,0,0,1,1,1, if preceded by 1 and fol-
lowed by 0, would be coded as 31 12 23.

Fig. 14a shows 400 successive pairs in a particu-
lar solution. The most obvious features are that
the second member of a pair is always 1, indicat-
ing that, as in fig. 7a, a sequence cannot contain
two successive 1’s, while the first member is always
1, 2, or 3, indicating that a sequence cannot have
more than three successive 0’s.

If these were the only constraints, a branching
diagram like fig. 7a or 7b would show that p = 1.47.
Actually there are further constraints; for exam-
ple, two “31” pairs do not occur in succession.
Hence p < 1.47. It would be difficult to identify all
of the constraints, some of which involve long
subsequences, but fortunately it is not necessary.

Consider the succession of backward or inverse
images of a horizontal segment of length e

1 21 21 2% 21 11 21 11 31 11 11 1121 11 11 31 21 21 21 11
121 21 11 11 21 11 2% 11 21 11 11 11 11 i 21 11 11 31 21
1021 41 11 #1 11 11 11 231 21 21 1t 21 11 31 11 11 11 31 24
10t1 31 11 11 311 11 11 31 1% 11 11 11 11 21 21 11 11 31 1t
D1 0210011 21011 31011 11 11 21 11 31 11 11 11 11 21 11 Bt 14
11 21 21 11 11 21 11 21 21 11 11 11 11 11 21 21 11 21 11 31
1 21 11 31 11 13 31 11 11 31 $£1 31 21 21 11 21 21 11 11 31
21 1t 21 11 31 11 11 .11 21 11 11 11 11 21 i1 31 11 11 11 11
11 31 011 11 21 11 i1 21 i1 21 11 24 2t i1 31 21 i1 31 11 21
11021 11 11 21 11 1t 11 21 11 11 31 21 21 21 11 21 11 11 31
21 21 21 21 21 2t 21 11 31 11 31 21 11 31 i1 11 31 11 21 14
21 21 11 11 31 21 21 21 21 21 21 21 11 21 21 21 11 11 31 21
11 31 11 11 11 11 24 £1 3t 11 11 11 11 11 31 11 21 21 21 21
21021 11 31 11 21 21 21 11 21 21 21 21 11 21 11 21 21 21 21
11 31 21 11 31 11 21 11 21 14 21 21 21 11 31 11 31 11 11 14
11 11 11 21 14 31 11 11 31 21 11 31 2% 11 31 1i 11 11 11 34
11 11 11 21 11 21 11 21 21 21 21 21 21 21 21 11 21 21 11 31
11 11 31 21 11 31 11 21 11 21 11 21 13 21 11 31 23 11 11 31
21 1t 21 21 21 21 24 11 21 21 11 31 11 131 21 11 21 21 2t 21
11 21 21 11 11 31 21 11 2t 21 11 21 21 11 21 11 21 31 i1 it

§1 11 51 11 11 14 St 11 11 31 11 31 31 11 11 11 71 11 11 1%
14 11 t4 91 11 11 1¢ 11 11 14 13 9% 1t 11 11 11 11 13 7i 11
11 11 11 11 91 11 L3 11 11 $£f 13 11 14 s 14 11 311 11 14 14
11 11 11 =1-11 11 13 13 1% 13 44 $£1 14 =1 11 11 112 11 14 14
11 41 914 11 11 1t $31 11 1f 71 11 11 11 11 5@ 11 i1 51 11 11
11 11 71 11 11 11 11 11 74 i1 11 11 11 131 71 1% 11 11 11 1
91 11 1% 11 t3 11 11 11 11 21 11 §1 114 14 1L 73 11 11 11 1%
11 74 11 11 11 11 11 71 11 11 1 1% 11 73 1t 13 11 11 74 11
11 11 11 11 $f 1 11 #3111 11 11 11 11 %91 11 11 11 11 1% 11
11 9% 11 11 11 11 11 $#1 71 11 11 11 211 51 11 11 St 11 11 11
11 71 11 11 11 1t 14 71 11 1% 11 11 11 71 11 11 11 1% 51 11
£1 51 11 t1 11 11 731 11 11 14 11 11 51 1t 31 11 31 11 31 11
21 11 51 11 11 11 11 %1 13 11 31 31 11 11 91 11 i1 11 11 7%
£1 11 t1 131 11 71 11 11 11 11 11 71 f1 3¢ 11 11 7% 131 11 11
11011 11 9t 11 11 11 11 11 11 41 91 11 41 11 11 11 11 11 91
11 11 131 1% 11 11 71 11 11 1t $4 5% 11 11 51 11 11 11 11 71
11 1% 11 13 11 St 11 21 11 3¢ 11 31 11 31 11 31 31 11 11 11
71 11 11 11 11 11 11 91 11 11 11 31 11 11 11 91 11 11 1L i
11 11 1t 91 11 ¢ 11 11 11 11 71 i1 11 11 11 St 11 11 31 11
51 011 11 t1 11 74 11 11 11 ¢ 31 74 11 11 11 1t i1i 74 11 i

b

Fig. 14. (a) Symbolic representation of a particular sequence
of 0's and 1’s generated by eq. (13), when M =2, A; =4/3 and
A, = —~1/3. See text for explanation of symbolic representa-
tion. (b) Same as (a), except A; = 1.0145 and A, = —0.9465.
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containing a randomly chosen point P in A. The
nth inverse image will be a segment of length
e/N}, unless one of the previous inverse images
intersects G*. It is to be expected that P will
possess inverse images arbitrarily close to G*, but,
since the images of the segment decrease exponen-
tially in length, there is a positive probability that
no image will intersect G *; this probability is high
if € is small. The inverse images of the segment
thus approach those of P asymptotically, i.e., the
discontinuity in the mapping does not prevent the
unstable manifold of P, and hence the set A, from
containing a segment which contains P.

Points on a horizontal segment correspond to
sequences in S with identical past halves and
different future halves. Since a point (x, y)
determines a sequence, two different sequences
yielding the same value of y cannot yield the same
value of x, i.e., r(1/A,, J)) cannot assume the same
value for two different future half-sequences J,
and 1/A; < 6'(S). Since the sequences yielding the
same value of y together yield a continbum of
points, 1/A; = ¢”(S). Since by definition ¢’ < 6",
it follows that o’ =0” =1/A,.

Consider next the succession of forward images
of a horizontal segment of length e containing P.
At each iteration those segments intersecting G
will split into two segments; these splits corre-
spond to branchings in a diagram like fig. 7a or
7b. The nth image will be a number of segments
whose combined length is Afe. As n— oo, the
number of segments will increase as p”, so that
the average length will vary as (A,/p)”. Certainly
the average length cannot exceed the diameter of
A; neither can it become too small, since then
most of the segments would not intersect G, and
the average length would increase upon the next
iteration. Hence the average length remains com-
parable to the diameter of 4, and p(S)=A,.
Combining our results, we see that g’ =g = 1/p,
and we conclude that § is well-behaved.

Although the sequences in S* need not be those
in S, the number K,(S*) of subsequences of
length n certainly equals K, (S), since the subse-
quences in S* are simply the reversed subse-

quences in S. Whether or not S* is well-behaved,
we conclude that p(S*)=A,.

Since |A,| < 1/A,, the projection R{(A,, S$*) of
A on the y-axis must be a Cantor set. Locally,
then, 4 may be considered the product of the
continuum R,(1/A,, S) and a Cantor set. We must
recognize, however, that among the horizontal seg-
ments contained in A4 and penetrating any small
square, a few will terminate inside the square. The
smaller the square, the larger the fraction of seg-
ments which pass completely through it.

Since p=A,, the capacity of R,(A,,S*) is
log X, /|log X,|, so that the capacity of 4 is 1+
log X, /|log X,|. Comparing eq. (2), we see that
d’=d. For fig. 13, d=1log;4 = 1.26.

Other choices of A; and A, may produce differ-
ently shaped attractors. Fig. 15 shows one half of
the attractor set when A, =1.0145 and A,=
—0.9465; the other half closely resembles the re-
flection of this half in the x-axis. Fig. 14b shows
symbolically the sequence of 0’s and 1’s in a
particular solution; the constraints evidently differ
considerably from those in fig. 14a. The Lyapunov
numbers are the 20th roots of those in the map-
ping of fig. 13, so that again d = 1.26. Despite the
striking differences in global appearance, the local

-24 -23 -22 X -2

Fig. 15. The upper half of the attractor of eq. (13), when
M =2, A\ = 1.0145, and A, = —0.9465. The lower half closely
resembles the reflection of the upper half in the y-axis.
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structures of the attractors, when viewed with
sufficient magnification, appear similar.

5. Multidimensional mappings

When M >3, we again expect 4 to be the
product of a continuum and a Cantor set [8, 14],
but the Cantor set may be a pseudo-product. Fig.
16 shows the projections of 4 on the three coordi-
nate planes, arranged as a perspective view of
faces of a cube, when M =3, X, =5/4 A, =
—4/5, and Ay,= 1/4. The projections on the
coordinate axes are similar to R,(4/5, S),
R,(4/5,5*),and R{(1/4, 5*).

Just as when M =2, and for the same reasons,
almost every point of A lies on a line segment
contained in A, parallel to the x-axis. Likewise,
the typical length of such a segment is comparable
to the diameter of 4, and S is again well-behaved,
with p(S)=A,.

In fig. 16 we have chosen |A,| =1/A,, which
makes |A,| =1/p. If $* like S, is well-behaved,
the y-projection of A4 is a continuum; if $* is

Fig. 16. The projections of the attractor of eq. (13), when
M=3 X =125 A,=—08, and A, = —0.25, on the coordi-
nate planes, arranged as a perspective view of faces of a cube.
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ill-behaved, it is a Cantor set of capacity 1. Like-
wise, if S* is well-behaved, the y-z-projection is a
pseudo-product of a continuum and a Cantor set,
while, if $* is ill-behaved, it is a pseudo-product
of two Cantor sets. In either case it has capacity 1.
Inspection of fig. 16 suggests that the y-projec-
tion is a continuum, implying that S§* is well-
behaved, but the evidence is not conclusive; there
is a suggestion of a gap near y = 0, which could be
accompanied by narrower unresolved gaps. Fig. 17
is similar to fig. 16, with A, = —7/10 instead of
—4/5, whence |A,| <1/p, and the y-projection is
a Cantor set. The x—y- and y-z-projections are
respectively a product of a continuum and a Cantor
set and a pseudo-product of two Cantor sets, and
in both projections the gaps in the y-values are
evident. The contrast between figs. 16 and 17 lends
support to the conjecture that S* is well-behaved.
Fig. 18, which is comparable in definition to the
cross section in fig. 1, shows the intersection of A
with the plane x = — 1.5, when A, A,, and A, are
as in fig. 16. To construct fig. 18, we chose a point
(x¢» Vo» Zp) and determined a long sequence of
forward images (x,, y,.z,); except for small

Fig. 17. Same as fig. 16, except A} =125, A, = —0.7, and
Ay= —0.25.
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Fig. 18. The intersection of the attractor of eq. (13), when
M =3, A =125 A,=-08, and A; = —0.25, with the plane
x= —1.5.

values of n we assumed these to lie on A4, within
the limits of the round-off error. Since J, is re-
stricted to 0’s and 1’s, a point (x’, y,, z,,) lies on A
if no inverse image of the segment joining it to
(x,» y,» z,) intersects the plane G=1. We as-
sumed that no image intersected this plane if no
tmage of length exceeding 1077 intersected the
plane; this proved to be the case about two-thirds
of the time. Thus the intersection of A with a
surface of constant x, and the projection on a
surface of constant x, have the same capacity.
Whether fig. 18 shows a pseudo-product of a con-
tinuum and a Cantor set, or a pseudo-product of
two Cantor sets, one with capacity 1, remains
undetermined. In any event, it is not a true prod-
uct of a continuum and a Cantor set; it is more
like fig. 9 than fig. 13.

For a cross section where J, is not restricted to
(’s and 1’s, we return to fig. 3. Again we have a
pseudo-product of a continuum (presumably) and
a Cantor set.

With K positive Lyapunov exponents, almost
every point in A4 lies on a K-dimensional con-
tinuum contained in 4. Thus A is the product of a
K-dimensional continuum and an (M — K)-
dimensional pseudo-product. The latter may be a

(3]
N3
(o)

pseudo-product of Cantor sets only, as in fig. 17,
continua and Cantor sets, as (presumably) in figs.
3 and 16, or continua only, as for example when
M=3 XA =15 A,=~09,and A\,= -0.7.

The nth forward image of a K-dimensional cube
of side ¢, extending in the first K directions, is a
number of polyhedra whose combined volume in
(Xq,..., xg)-spaceis [A, - - Ag|"eX. As when K =
1, the number of polyhedra increases as p"(S).
while the average volume approaches neither oo
nor 0. Hence p(S)= A, --- Akl

Setting ay=N| - -+ XNy and a, = X, ; in eq. (21),
recalling that logN,;=//, and noting that the
capacity of A4 exceeds that of the pseudo-product
by K, we find that

d(A)=K+k+ [+ -+l )/ Misils
(24)

where k is the largest integer making |/},
+ oAl S+ - . Setting L=K+k
in eq. (2), we find that d’(A4)=d(A).

Thus, if A,,..., A,, are contiruously varied, the
integral part of 4 changes when /+ --- +//=0
for some k. However, at least if $* is well-
behaved, the number of continua or Cantor sets
involved in the (M — K)-dimensional pseudo-
product changes when /{+ --- +/,+1/=0 for
some k. We conclude that transitions in the struc-
ture of the attractor need not correspond to transi-
tions in the integral part of d.

6. Concluding remarks

We cannot claim to have employed full
mathematical rigor. Our treatment of well-behaved
and ill-behaved ensembles has been confined to an
inspection of some simple examples; we have not
shown that in general ¢’ <1/p and 6”2 1/p. In
describing various alternative coverings of a set by
cubes, we have not eliminated the possibility of
some still more efficient coverings. We have used a
special definition of attractors in order to establish
that some of the apparent line segments are true
line segments, and we have not shown that this
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definition does not introduce some unwanted fea-
tures. In any event, our conclusions are based
upon a special system of equations.

The question arises as to whether the attractors
of more general mappings or flows have similar
local structures, or whether the present structures
have somehow been produced by the broken lin-
earity. Our original conclusion concerning fig. 1,
for example, was that it appeared to be locally the
product of a continuum and a Cantor set. The
present study suggests that it may be a pseudo-
product, since the two associated Lyapunov expo-
nents are both negative. Our former conclusion
was based largely on the discovery that, within the
limits of numerical precision, an arbitrary line
segment cutting across the apparent continua
would intersect these in an infinite complex of
points. We have seen that the same thing can
happen in a pseudo-product.

This situation illustrates the difficulties which
may be encountered in drawing conclusions from
numerical output, even with fairly high precision,
and the even greater difficulties in drawing conclu-
sions from graphical displays. In fig. 9, for exam-
ple, it might not be apparent from ordinary dou-
ble-precision computations that a horizontal line
can be drawn between any two points of the set.
In fig. 1, the analogues of these horizontal lines, if
they exist, would be difficult to identify, since the
procedures which we have so far discovered for
examining the system are numerical. However,
numerical and even graphical results may lead to
hypotheses which can subsequently be verified by
other means; they may also be effective in dispro-
ving some unverified conjectures.

A number of writers have viewed with disfavor
the term “strange attractor” to describe an attrac-
tor whose structure involves Cantor sets. Chirikov
and Izrailev [15] state that “[a strange] attractor
seems strange only for a stranger”. Their point is
that the presence of Cantor sets should have been

anticipated. The existence of mappings where the
coordinates of a point on an attractor are €x-
pressible as power series, whose coefficients are
bounded and whose arguments are Lyapunov
numbers, wouid appear to support their statement.
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