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Summary: Since 1981 we have evaluated root-mean—square differences Ei, between k-
day and ¢-day ECMWF forecasts made for the same day. A curve connecting values of
Ey¢ measures the over-all performance, while one connecting values of E,_; ¢ measures
the performance that would occur if the model could be made perfect after the first
day. For forecasts of the global 500-mb height, the Eq, curve drops from 1981 to 1987,
indicating improvement, but the E,_; ¢ curve drops by an equal amount, implying as
much room for improvement as before.

- We suggest that this apparent paradox may be resolved by assuming that while
1mp;‘ovements in the model move the curves closer together, improvements in the anal-
ys1smay move them farther apart. To test this suggestion we perform two simulations
of the ECMWTF study, one with a single difference equation as the exact equation, and
one with a system of three ordinary differential equations, and with solutions of these
equations as the exact data. We add analysis and model errors, and then construct
etif\}'es”eonnecting values of Es. We construct similar curves after reducing the analysis
error alone the model error alone and both errors together The results are consistent

W1th our suggestxon 7 ' : L

1. INTRODUCTION

The atmosphere is continually evolving from one state to another accordlng to a set
of physical laws. Routine weather forecasting consists of attempting to extrapolate
from a known present state to presently unknown future states according to these laws.
In reality we cannot know the present state perfectly; even if our measurements were
perfect, they would not completely determine the weather between observing sites.
Likewise, we cannot make perfect forward extrapolations; even if we knew the physical
laws perfectly, we could not formulate them to apply perfectly to the smoothed fields
with which we must work. Thus a typical weather forecast is subject to analysis

e'f‘i‘drs—errors that are introduced in analyzing the observations before any forward



procedure used for extrapolation. Presumably one cannot express the total error in
a particular forecast as the sum of an analysis error and a model error; one can, for
example, visualize instances where the model errors that accumulate during the first

day will add to the analysis error and other instances where they will almost cancel it.

Identification of the way in which analysis and model errors contribute to the
total prediction error has, in fact, been a problem of major concern at the European
Centre for Medium Range Weather Forecasts (see Arpe et al., 1985). A solution to
this problem would aid in determining where to concentrate the efforts toward further
improvement. In what follows, for consistency with our definitions of analysis and
model errors, we shall refer to what is sometimes called the ECMWF model as the
ECMWF system, reserving the term model to refer only to the part of the system used
in forward extrapolation. By the ECMWF analysis we shall mean everything that
routinely precedes the extrapolation, including data assimilation, data quality control,
and initialization.

With a good analysis and a good model we might be able to make fairly good
forecasts far into the future, if it were not for another factor—the sensitive dependence
of the variations of the atmosphere upon the precise state. That is, if at some time
the state of the atmosphere should be perturbed by a small amount, the subsequent
development would diverge from the development that would have occurred if there had
been no perturbation, and the divergence might even continue until little resemblance
remained between the states that would evolve from the perturbed and unperturbed
fearher states. In recent years this sensitive dependence has been popularly called
“chaos.” In particular, the unperturbed and perturbed states may be the exact state
and the state as it has been analyzed or predicted to be. The total error at any time
will thus be due not only to the introduction of ana.l};sis and model errors but also to
the contmual growth of whatever error has already accumulated : -

- In most studies of the rate at which initial errors will amplify, pairs or larger sets
of numencal solutions of an atmospheric model, originating from rather similar but not
identical states, have been obtained and compared. Recent studxes have tended to yield
an average doubling time of between two and three days for small root—mean-—square
errors in the temperature and wind fields. As the errors become larger their growth
rate subsides, and finally vanishes as “saturation” is reached. Ideally one should work
with as large and realistic a model as is available, and apply perturbations to each of
a representative sample of initial states, but this inevitably requires vast amounts of
computation. | |

By 1981 we were able to circumvent the problem of excessive computation by
noting that the then recently formulated ECMWF operational system, in contrast to

many earlier-generation systems, was performing well enough for a one-day forecast,



say for day 1, to be treated as the analysis for day 1 plus a reasonably small and readily
evaluated error. The growth of this error during the following day could be found by
evaluating the difference between the two-day and the one-day forecasts for day 2.
More generally, the average growth, during k days, of errors having various initial sizes
could be obtained by comparing the average difference between k-day and (m + k)-day
forecasts for the same day with the average difference between analyses and m-day
forecasts for the same day, for various values of k and m. These comparisons could all
be made by performing a few additional computations with already archived analysis
and forecast data produced during routine operations. The study that we performed

(Lorenz, 1982) will serve as a starting point for this presentation.

Fig. 1a summarizes the principal findings of that study. It is based on the global
analyses and forecasts of the 500-mb height field for each day of the “1981 winter,”
defined here as the 100-day period beginning 1 December 1980. It shows root-mean-
square differences Fj; between k-day and {-day forecasts for the same day, for £ =
1,...,10 and k = 0,...,£ — 1, the averaging being performed over the globe and over
the 100 days. Here a 0-day forecast means an analysis. The top curve connects values of
Ey, and represents the mean performance of the model. The thin curves connect values
of E¢—m,¢ for fixed values of m, and represent the growth of differences between separate
solutions of the model equations. Leftward extrapolation of these curves suggests that
small errors will double in about 2.4 days. The bottom curve may also be interpreted
as the manner in which the system would perform if the model could be made perfect
after the first day. The difference between this curve and the heavy curve therefore

appears to be some sort of measure of the room for further improvement in the model.

In 1987 we examined data that did not exist when the original study was performed,
and constructed diagrams similar to Fig. la; Fig. 1b is for the 1987 winter. The
downward displacement of the top curve indicates definite improvement during the
intervening years, but an equally large downward displacement of the bottom curve
leads to the paradoxical conclusion that there is still as much room for improvement

as before.

Soon after the oral presentation of this work, we acquired access to two more
years of data. Curves similar to those in Fig. 1, not shown here, suggest continuing
improvement, and reveal that half of the gap between the top and bottom curves
has been eliminated. Nevertheless, the paradox presented by Fig. 1 remains. In this
presentation we shall suggest that the paradox may be resolved by recognizing that the
observed improvement in forecasting between 1981 and 1987 has resulted partly from
improvement in the analysis. There is no obvious reason why reducing the analysis

errors cannot push the top and bottom curves farther apart.
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Fig. 1. a) Curves connecting values of the root-mean-square difference Ey¢ between
k-day and ¢-day forecasts for the same day, by the ECMWF system, for the global 500-
mb height field, averaged over the 100-day period beginning 1 December 1980. The
scale at the left indicates the value of Ey;, while the scale at the base indicates the
value of £. For the top curve k = 0, while for the bottom curve k = £ — 1, for the next
curve upward k = £ — 2, etc. b) The same, but for the 100-day period beginning 1
December 1986.

2. THE FIRST SIMULATION

To test our suggestion we shall perform some simulations of the ECMWF study, using
models which are much simpler than the ECMWF model. In each simulation we shall
choose a system of equations to be the “exact” equations, and let a time-dependent
solution of the exact equations be the “exact” data, but then we shall add analysis
errors to the data and model errors to the equations, and seek to construct curves
similar to those in Fig. 1.

The rationale for a simulation is that we can alter the magnitude of the analysis or
model errors at will, and then repeat the computations. We can thus determine how,
at least in the simulations, the curves should respond to improvements in the analysis
alone or the model alone or both. We shall not attempt to make the simulation models
look much like an operational weather forecasting model, but an essential feature will
be that they behave chaotically, whence the data sequences that they produce will be

aperiodic.
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Fig. 2. Consecutive values of X,, up to n = 100 in a computed solution of eq. (1),
with Xy = 3/4. Because of the amplification of round-off errors the computed values
presumably do not even approximate the true values beyond n = 50, but they are very
close to the true values for another solution with Xy very near 3/4. The straight lines
connecting the values have been introduced to make the chronological order easier to
observe, and do not imply linear or any other type of variation of X between integral

values of n.

In the first simulation we shall use what is probably the simplest and also the most
thoroughly studied of all dynamical systems that behave chaotically. It is also one of
the relatively few chaotic systems whose general solution can be expressed analytically,

so that numerical solutions are not needed. It consists of the single difference equation
Xnp1 =2X,2~1 (1)

in the single dependent variable X, the iteration subscript denoting the number of time
units since some “initial” time. We shall take eq. (1) to be the exact equation.

To solve eq. (1) we let X,, = cos8,, and observe that to satisfy (1) it is sufficient
to let

9n+1 = 29“‘) (2)
whence, by iteration
6n = 2780, (3)
so that
Xn = cos(2" Fos"1 Xo)- (4)

Fig. 2 shows a typical solution of eq. (1), extending over 100 iterations. Short
segments of the solution seem to fall into a few preferred patterns, but these do not
follow one another in any regular order. The attractor of the system is the entire

interval from —1 to +1.



We now let the analyzed value of X, with an analysis error, be X, o = cosé,,

where

9n,0 = an + 5n, (5)

f,, is the exact value at time n, and the successive values of §,, are chosen independently
and randomly from a Gaussian distribution with mean 0 and standard deviation a.
Likewise, we tentatively let the k-day prediction for X, by the model, with a model

error, be Xy = cos, i, where

Ons1,k+1 =200k + ¢, (3)
and ¢ is a constant. From (6), (5), and (3) it follows that
Onk = 0n + 2561 + (2F — D)e. (7)

For £ > k, we define the mean—square difference between k-day and ¢-day predictions

as
Epe? = ((Xne — Xnk)?) = {(cos by, — cos On,)%) 5 (8)

where pointed brackets denote an average over n.

One might object that choosing the analysis error § in 8 to be symmetrically dis-
tributed produces decidedly asymmetric distributions for the error in the basic variable
X, except when X = 0, aha, indeed, the distributions are entirely one sided when
X =1 or —1. Our choice greatly simplifies the mathematics, but we can also defend it
fairly well, if it needs justification, by the following scenario.

Consider a situation where a forecaster notes that observed values of a variable
X are symmetrically distributed between 1.1 and -1.1, and where he is aware that
there is an observational error, presumably independent of the true value of X and
symmetrically distributed, that may reach 0.1 or -0.1. He will conclude that the true
values of X lie between 1.0 and -1.0, since otherwise an error close to 0.1 (or -0.1) would
sometimes accompany a true value surpassing 1.0 (or -1.0), producing an observed
value not actually encountered. Before performing a forward extrapolation, he may
then “initialize” the observed values of X by moving them closer to 0. Errors will still
remain, but they will tend to be smaller, and for most values of X their distribution
will be asymmetric.

The model as it stands has a more serious drawback. The accumulated model error
(2%¥~1)e in 6, x will become large as n increases, but for some values of k it may be close
to a multiple of 27, so that the accompanying error in X,  will be small. To eliminate
this possibility we replace the tentative model by an ensemble of models, each the same
as the original one, with a constant value of ¢, but with different values of € for different

models in the ensemble; we let the values of ¢ have a Gaussian distribution with mean



0 and standard deviation 3. The pointed brackets in (8) will now denote averages
over the ensemble and over n. Substituting (7) into (8), and noting in performing the
averaging that averages of sines vanish, we find that

Ei® = 1.0 —exp —-;-(2" +2%%)a? — %(2‘ —2k)2?%| . (9)

A further problem is that, as with any difference equation, the variables are defined
only at discrete times. This would-be of little consequence if the times were close
together, but, in this system, small errors double on the average in one iteration, so
that the time unit is one doubling time, which corresponds to 2 or 3 days for the
ECMWF model. We shall assume that the successive values of X, occur at 3-day
intervals.

We cannot interpolate values of X between iterations uniquely; eq. (4) might seem
capable of defining X, for nonintegral values of n, but a particular value of X; has
many inverse cosines differing by multiples of 27, and hence producing different values
of X, except when 2" is an integer. This difficulty does not, however, enter the derived
equation (9), which defines Ey, as a smooth function of k and ¢, and therefore offers a
logical means of interpolating to fractional values of k£ and £. In constructing diagrams
like Fig. 1, we shall therefore evaluate E}, for values of k£ and £ that are multiples of
1/3, up to 10/3. :

Suitable values of a and 3 are best found by trial and error; we need values that
produce top and bottom curves separated somewhat as those in Fig. 1. We have chosen
a =1/8 and 8 = 1/4 for our basic simulation.

Fig. 3a shows the resulting curves. There is a fair resemblance to Fig. la, with
some obvious differences. Saturation occurs at E = 1.0. The failure of Ey, to approach
zero as £ — 0 may be attributed to the implicit assumption that all analysis errors are
independent.

Fig. 3b has been constructed with the same analysis error, but with the model
error cut in half, i.e., = 1/8, § = 1/8. The top and bottom curves now come closer
to coinciding, and, in fact, the Fq, curve is on the bottom. Qualitatively this is what
we had anticipated would result from a noticeably improved model. In Fig. 3¢, on the
other hand, we have cut the analysis error in half while keeping the model error as in
Fig. la; thus a = 1/16 and § = 1/4. The separation between the top and bottom
curves has now decidely increased. Finally, in Fig. 3d, we let « = 1/16 and 8 = 1/8.
The separation is again more like that in Fig. 3a, although somewhat greater.

It thus appears that improvements in the analysis and the model have opposite
effects on the separation between the curves. A lowering of both curves with little
change in the separation, such as occurred with the ECMWF system between 1981 and

1987, would therefore seem to imply some improvement in both the analysis and the



1.0 L I e S S B S A S B S B S DR e MRS ERR 1.0 LA SN I DN S BN B RN A S S SRS AR RNSNL A R R B
S r 9 .
(@ 1 (b)
8 r - 8 -
7F g 7F -
8 F - .8 F -
5F b S .
4t . 4t .
3F E 3F -
2t . 2+ .
1+ . 1r -
0 4 1 3 ] L 1 L 1 L 0 1 L L i L 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 o] 1 2 3 4 S 6 7 8 g 10
10 T T T T T ] 1 ] L 10 [ T ] L] ] T 1 L] T
st 9 .
©) ()
8 .8 F -
7F 7F
6} 6|
5k b S F -
4t - 4t -
3+ . 3t .
p
2+ . 2 F .
ir - 1F -
0 PUR N W N VRN NEUH SHN WU SRS SUNEE SIS W SUNNE S N SR S 1 0 PN SN WU NN NN SN U NN SN N SO NN T S SV N T R ¥
s} 1 2 3 4 5 B 7 8 g 10 o] 1 2 3 4 5 6 7 8 g9 10

Fig. 3. The same as Fig. 1, but for the first simulation, with mean analysis error « and
mean model error 3. a) The basic simulation; a =1/8, §=1/4. b)a=1/8, §=1/8.
c)a=1/16,8=1/4. d) a =1/16, = 1/8.



model. A reduction of the separation, such as occurred from 1987 to 1989, might imply
that the principal improvements were in the model.

We observe also, by examining the top curves in Figs. 3¢ and 3d and the bottom
curve in Fig. 3b, that improving the analysis is much more effective than improving
the model for reducing the prediction error Ey ; at 1 day, while the opposite is true for
reducing the error Ey ;0 at 10 days. In addition, the improvement at 10 days that results
from reducing the analysis and model errors together is decidedly greater than the sum
of the the improvements that result from reducing these errors separately. This would
remain true if we had used the mean-square error instead of the root—-mean-square

€ITOr as a Imneasure.

3. THE SECOND SIMULATION

In order to achieve the foregoing results from a simulation based on an equation as
simple as eq. (1), we were forced to replace the tentative model, with its model error,
by an ensemble of models, and afterward to interpolate between computed values of
Ey¢. In the next simulation we avoid these drawbacks by using differential instead
of difference equations, and letting these equations govern several dependent variables

instead of one. We let the exact equations be

dX/dt = -Y?* ~ Z? —aX + aF, (10a)
dY/dt = XY —-bXZ -Y + G, (100)
dZ/dt = bXY + XZ - Z, (10¢)

governing the exact values X, Y, Z.
These equations were originally designed as a minimal general-circulation model
(Lorenz, 1984). The variable X represents the strength of a circumpolar westerly wind |
current, while Y and Z are cosine and sine phases of a superposed large-scale wave.
The variables have been scaled so that the time unit is the dissipation time for ¥ and
Z, which we shall take to be 4 days. For certain values of the parameters the general
solution is chaotic. With a = 1/4; b =6, F =16, and G = 3, typical variations
of X are like those shown in Fig. 4, which was produced by numerically integrating
egs. (10), using a fourth-order Taylor-series scheme with a time step of 0.025 units,
or 2.4 hours. There is a noticeable tendency for successive maxima, or minima, to be
about 10 days apart, but there are also stretches, sometimes lasting several months,
where the oscillations between maxima and minima have a large amplitude; these
are separated by generally shorter stretches where the oscillations are much weaker.
Transitions between large-amplitude and small-amplitude oscillation regimes do not

appear to occur at regularly spaced intervals.
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Fig. 4. Values of X in a numerical solution of egs. (10), with a = 1/4 b = 4, F = 16,
and G = 3 extending over two years. The lower curve is a continuation of the upper

curve. The scale at the base indicates time in months.

Fig. 5 shows a cross-section of the attractor of eqgs. (10). It was constructed by
plotting (X,Y) at 8000 consecutive zero-crossings of Z, occurring during 45 years.
The Cantor-set structure typical of strange attractors is apparent, while the marked
variations in shading reveal that some regions are visited far more often than others.

To simulate the analyzed values, with their errors, we first make a 10-year run with
egs. (10), and denote the values of X, Y, Z at the end of the nth day by Xn, Ya, Zn.
For each day n, we then choose three numbers randomly from a uniform distribution
between —1 and +1, and let z,, yn, 2, be the ratios of these numbers to the square

root of the sum of their squares. We then let the analyzed values of the variables be

Xno = X, + azy, (11a)
Yn,O = Yn + ayn, (11b)
Zno = Zn + azn, (ilc)

where « is a constant, independent of n.
To simulate the model error we simply replace F* in (10a) by F' — 3, where 3 is
a constant. We then obtain the k-day predictions X, g, Y £, Znk for Xn, Ya, Z, by
numerically integrating eqs. (10), starting from X,_x.0, Yn—k,0, Zn—k,0- ;
For the basic simulation we let a = 0.224 (1/40 times the root-mean-quare dis-
tance from the centroid of the attractor) and 8 = —3. Fig. 6a, analogous to Fig. 3a,
shows the curves. There is a decidedly closer resemblance to Figs. la and 1b than with

the first simulation, suggesting that the second simulation may be generally superior.



Fig. 5. A cross-section.of the attractor of egs. (10), with a = 1/4, b = 6, F' = 16, and
G = 3, as represented by values of X and Y at 8000 successive zero-crossings of Z, in

a numerical solution extending over 45 years.

Figs. 6b, 6¢, and 6d result from multiplying just 8, just «, and both « and g,
respectively, by 1/2; they are analogous to Figs. 3b—3d. Again the top and bottom
curves move closer together when the model alone is improved, and farther apart when
the analysis alone is improved. Again, the shorter-range predictions are improved more
by reducing the analysis error, while the more extended-range predictions respond more
to reductions in the model error. Again the improvement at the ten-day range realized
by reducing a and 3 together is greater than the sum of the improvements made by
reducing a and [ separately. . »

The more-than-superficial resemblance between Figs. 6c and 6a, and between
Figs. 6d and 6b, suggests that we have been working in a range of @ and § where
prediction errors are more sensitive to model changes than analysis changes. Whatever
the shortcomings of any simulation with a simple system may be, the findings of the
second simulation suggest that replacing the model by an ensemble of models in the
first simulation, and interpolating between computations, did not seriously harm the

qualitative results.
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Fig. 6. The same as Fig. 1, but for the second simulation, with mean analysis error
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4. CONCLUSIONS

Since 1981 we have been constructing diagrams showing root—-mean-square differ-
ences Ey, between k-day and ¢-day forecasts produced for the same day by the ECMWF
operational system, for k =0,...,9and £ = k+1,...,10. The curve connecting values
of Ey, indicates the performance of the system, while curves connecting values of Ej,
for constant values of £ — k indicate the growth rate of differences between solutions of
the model equations, which, it is hoped, approximates the growth rate of differences
between solutions of the exact equations. In the present study we have formally re-
peated the computations of Ex, and the construction of the curves, using two very
simple models in place of the ECMWF model, and including analysis errors and model
errors. We have then repeated the procedure, using reduced values of the model error,
the analysis error, or both.

The basic finding is that the curves respond quite differently to improvements in
the analysis and improvements in the model. The former tend to move the Ey, and
Ei r+1 curves farther apart, while the latter move them closer together. In addition,
at short range, improvements in the analysis are likely to be most effective, while,
at more-extended range, improvements in the model play a greater role. It appears,
moreover, that the benefit to be gained by improving the analysis, or the model, by a
given amount, will be greater if the model, or the analysis, has already been subjected
to some improvement. |

It would be of obvious value to know whether the results of the simulations are
qualitatively valid for the ECMWF system. Wholly apart from the fact that the equa-
tions in the simulations cannot describe real atmospheric behavior, there are some
assumptions that affect the results but may be unrealistic. For example, the analysis
errors on successive days may not be independent of each other, or of the states on
which they are superposed. .

The ideal way to determine the response of the curves to improvements in the
system would be to introduce the improvements and see what happens. This is of
course impossible; the system is a state-of-the-art system, and specific alterations are
continually being made as soon as they are deemed to be beneficial. Great over-all
improvement has resulted, but one can not generally tell, even after the fact, whether
a particular alteration has yielded a greater improvement than some other alteration,
or any improvement at all.

In principle there is a straightforward method for comparing the effects of anal-
ysis and model changes, although computationally it would probably be judged pro-
hibitively expensive. It should not be difficult to make both the analyses and the model
systematically worse. Having done so, we may repeat the routine forecasting procedure,

perhaps for one winter season, and construct curves like those in Fig. 1. We may then



introduce improvements, and evaluate their effects, simply by returning part way or all

the way to the present state of the art.
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