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ABSTRACT

Dynamical systems possessing regimes are identified with those where the state space possesses two or
more regions such that transitions of the state from either region to the other are rare. Systems with regimes
are compared to those where transitions are impossible.

A simple one-dimensional system where a variable is defined at N equally spaced points about a latitude
circle, once thought not to possess regimes, is found to exhibit them when the external forcing F slightly
exceeds its critical value F* for the appearance of chaos. Regimes are detected by examining extended time
series of quantities such as total energy. A chain of k* fairly regular waves develops if F � F*, and F* is
found to depend mainly upon the wavelength L* � N/k *, being greatest when L* is closest to a preferred
length L0. A display of time series demonstrates how the existence and general properties of the regimes
depend upon L*.

The barotropic vorticity equation, when applied to an elongated rectangular region, exhibits regimes
much like those occurring with the one-dimensional system. A first-order piecewise-linear difference equa-
tion produces time series closely resembling some produced by the differential equations, and it permits
explicit calculation of the expected duration time in either regime. Speculations as to the prevalence of
regimes in dynamical systems in general, and to the applicability of the findings to atmospheric problems,
are offered.

1. Introduction

The numerous quantities whose numerical values de-
pend upon the current state of the atmosphere–ocean–
earth system undergo fluctuations on many time scales.
The longer-period oscillations, where one type of be-
havior may persist for years or even decades before
giving way to another, are sometimes regarded as
changes in a regime of behavior or even changes of
climate. I am not sure that any distinction between re-
gime changes and climate changes is generally agreed
upon, but my preference is to regard a change as a
change of regime when we can expect, perhaps because
of our knowledge of what has happened in the past, that
in due time the system will reacquire its earlier type of
behavior, and will subsequently continue to oscillate
between the two types, or perhaps among several.
When the climate changes, history assures us that it also
will change again, but there is no reason to expect it to

revert to its former course; something entirely new may
develop, particularly if new external conditions prevail.
If one accepts this distinction, the oscillations to be
encountered in this work are best regarded as changes
of regime.

Among the most familiar regime changes in the
ocean and atmosphere are the well documented shifts
between El Niño and La Niña, the extreme phases of
the El Niño–Southern Oscillation (ENSO) phenom-
enon (for a review see Philander 1990). ENSO is an
example of an oscillation whose underlying mechanism
appears to be completely internal to the ocean and at-
mosphere (Zebiak and Cane 1987). With the distinction
that I have favored, its continued approximate repeti-
tions disqualify it as a climate-change phenomenon. If
at some future date a full cycle should find itself regu-
larly requiring several decades or only a few months
rather than the current several years to complete, the
climate could be said to have changed.

Claims for regimes in atmospheric behavior date
back at least to the work of Sir Gilbert Walker (Walker
1923, 1924), who identified a North Atlantic Oscilla-
tion, a North Pacific Oscillation, and a Southern Oscil-
lation. For a while much of the meteorological commu-
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nity tended to regard these oscillations as uninteresting
or even suspect, partly because the Southern Oscilla-
tion became less evident in the decades following Walk-
er’s studies, but the discovery of a connection between
the long-recognized and predominantly oceanic El
Niño and the ostensibly atmospheric Southern Oscilla-
tion has reversed this tendency (for a historical account
see Rasmusson and Carpenter 1982), and the North
Atlantic Oscillation is also receiving much current at-
tention (Wallace 2000). The latter oscillation involves
shifts in the latitude of the strongest zonally averaged
westerly winds, and similar shifts evidently take place in
the Southern Hemisphere (Kidson 1988). Interest in
these phenomena has led to the recent identification of
an Arctic Oscillation (Thompson and Wallace 1998).

Since regimes evidently do occur in the atmosphere,
one would expect that sufficiently realistic models
would be able to reproduce them, and this is indeed so.
Two-level models have been especially popular, and
these have included both primitive equation (PE) mod-
els (Hendon and Hartmann 1985; Robinson 1991) and
quasigeostrophic (QG) models (Kravtsov et al. 2003),
but the models used have ranged from the National
Center for Atmospheric Research (NCAR) Commu-
nity Climate Model (Branstator 1992), a multilevel PE
model with rather detailed representations of the physi-
cal processes, through a 20-level PE model (Akahori
and Yoden 1997), a 7-level PE model (Yu and Hart-
mann 1993), and a 5-level PE model (James and James
1992), each without moisture and with idealized moun-
tains or no mountains at all, to a 5-level QG model
(Itoh and Kimoto 1999) and a 3-level QG model (Kon-
drashov et al. 2004), and ultimately to barotropic (one
level) models (Legras and Ghil 1985; Crommelin 2003)
and some highly truncated barotropic systems (Rein-
hold and Pierrehumbert 1982; De Swart and Grasman
1987). The coupled ocean–atmosphere model of Ze-
biak and Cane (1987) likewise produces regimes. Ex-
cept in the simplest cases, these studies have sought to
duplicate specific real-world occurrences. The latitude
shifts of the strongest westerlies, readily captured with
the multilevel models, appear to be largely a barotropic
phenomenon occurring within a baroclinic system
(Wallace 1983; Kravtsov et al. 2005).

Some investigators prefer to regard the occurrence of
regimes as synonymous with low-frequency variability.
Others ask that the distribution of some key quantity be
bimodal. It appears easier to detect bimodality in the
output of a simple model than in that of a more elabo-
rate one, or in real atmospheric data. I shall return to
bimodality in the concluding section.

The purpose of this study is to demonstrate that re-
gimes occur in a variety of simple systems not restricted

to those that seek to model real physical systems where
regimes are known to occur. More generally, it is pro-
posed that the presence of regimes, like the presence of
chaos, is simply a property that some dynamical sys-
tems possess while others do not. At least in the present
work, every system found to possess regimes proves to
be chaotic, and, since there are plenty of chaotic sys-
tems where regimes do not occur, regimes are evidently
in a certain sense less common than chaos.

Many—perhaps most—familiar dynamical systems
contain one or more constants whose numerical values
must be specified. Strictly speaking, changing the values
of the constants produces a new dynamical system, and
the set of systems produced by such changes constitutes
a family of dynamical systems. A family is nevertheless
often referred to simply as a system.

The subsequent sections will examine two families
defined by equations that were originally formulated
with meteorological applications but not regimes in
mind, and a secondary purpose of this study is to add to
what is known about the first of these systems. A sim-
pler system where regimes have intentionally been built
in will then be introduced. The presence or absence of
regimes will be determined by performing extended nu-
merical runs and then examining the resulting time se-
ries of some fundamental quantity, such as total energy.
Series of this sort, suggesting regimes, appear in Fig. 10
of Legras and Ghil (1985), Fig. 5 of Crommelin (2003),
and Fig. 5 of Kravtsov et al. (2005). It will not be con-
cluded without reservation that regimes exist in any
particular instance unless the types of behavior during
separate long intervals are so obviously different that a
statistical test would be superfluous.

2. Regimes and related phenomena

Consider a dynamical system whose state space con-
tains two disjoint regions A and B, with successions of
states in B being recognizably different from those in
A. The types of behavior in A and B will be called
mode A and mode B, respectively. If certain conditions,
presently to be enumerated, are met, modes A and B
also qualify as regimes A and B.

The system necessarily satisfies the condition, to be
denoted by A0, that transitions of the state from A to B
do not occur, or else the condition denoted by A1 that
they do. Conditions B0 and B1 relating to transitions
from B to A are analogously defined. Combining the
condition A0 or A1 with B0 or B1, one can identify four
categories of dynamical system. Of special interest in
category A1B1 are the average duration DA of mode A;
that is, the average time between a transition to A and
the next transition from A, and an analogously defined
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average duration DB. If it is assumed that regardless of
the category the initial state may lie in either A or B,
the properties of the categories are, briefly:

A0B0: Two attractors, one in A, one in B.
A0B1: One attractor, in A. Long transient in B pos-

sible.
A1B0: One attractor, in B. Long transient in A pos-

sible.
A1B1: One attractor, partly in A, partly in B. Re-

gimes or events possible.

I have chosen not to regard transitions in category
A1B1 as regime changes unless DA and DB are both
long. If a series consisting mostly of states in A is punc-
tuated with brief visits to B, or vice versa, I find the
visits better described as events.

The relevance of the separate categories, when one is
interested mainly in regimes, is that category A1B1, if
regimes are present, can easily be mistaken for A0B1 or
A1B0 with long transient behavior, or even for A0B0,
if the length of the record or the numerical run is not
long enough. The danger of a misidentification can be
reduced by lengthening the record, but sometimes this
is not practical.

There remains the question of how long is “long.” In
the real atmosphere, “long” might mean a year, but one
can imagine a model atmosphere where all weather
phenomena have lifetimes of a year or more, and here
one would presumably not want to say that all phenom-
ena constitute regimes. Let us insist that anything that
we call a regime have a long duration compared to the
time scale of some other significant oscillation that the
system is undergoing. In addition, if we wish to avoid
any claim that regimes have simply been built into a
system, we should insist that the regime time scale be
long compared to any time constant in the equations,
such as a dissipation time, sometimes appearing as its
reciprocal, a coefficient of friction.

3. Regimes in a one-dimensional system

The first family of systems to be studied contains N
dependent variables X1, . . . , XN. The definition of Xn is
extended to all values of n by letting Xn�N � Xn, so that
the variables form a cyclic chain. The governing equa-
tions are

dXn�dt � �Xn�2Xn�1 � Xn�1Xn�1 � Xn � F, �1�

where t is time. The variations of Xn are intended to
simulate the behavior of some atmospheric quantity at
N equally spaced grid points about a latitude circle, but
to my knowledge, the system cannot be obtained by
truncating any realistic atmospheric model.

The quadratic terms are like the advective terms in
many atmospheric models in that together they do not
alter the value of some nonnegative quantity, in this
case the sum of the squares of the variables, to be re-
garded as proportional to the total energy. The linear
term represents thermal and mechanical damping, and
its coefficient has been eliminated by choosing the
damping time, assumed to be five days, as the time unit.
The constant term, representing external forcing, does
not vary with n or t.

The properties of the system have been documented
by Lorenz (1996) and Lorenz and Emanuel (1998), and
most recently and most thoroughly by Lorenz (2005,
hereafter L05). Certain functions of all N variables are
found to play a significant role in the system’s behavior.
These include the mean � � [xn], the mean square s2 �
[x2

n], the variance �2 � [x2
n � �2], and the j-lag auto-

correlation rj � [xnxn�j � �2]/�2, the square brackets
denoting an average over n. Since N is finite, the most
general state may be written

Xn � � � 	 Ak cos�kn� � �k�, �2a�

where 
 � 2�/N, in which case

rj � 	 Ak
2 cos� jk���	 Ak

2, �2b�

the summations over k running from 1 to N/2 or (N �
1)/2.

Solutions of Eq. (1) are best found by numerical in-
tegration. Here the “standard” fourth-order Runge–
Kutta scheme with a time increment of 0.05 units or 6 h
has invariably been used. For N � 3 the solutions prove
to be stably periodic if F is small enough and chaotic if
F is large enough.

For any chosen values of N and F, the presence or
absence of regimes will be determined mainly by visu-
ally examining time series of the energy s2. In L05 I
stated that Eq. (1) appears “not to produce significant
variations with periods of several months or longer, at
least when chaos is fully developed.” I have more re-
cently found that for many, but not all, values of N,
regimes do appear when F slightly exceeds its critical
value for the appearance of chaos.

A case that unequivocally exhibits regimes occurs
when N � 21 and F � 5.1. Figure 1a shows a 50-yr time
series of s2 for this case, displayed as two 25-yr seg-
ments. There are two distinct types of behavior—a less
active mode A where s2 generally remains between 6.0
and 7.0, and a more active mode B where the range of
s2 is several times as large. Each mode generally persists
for over a year, and sometimes more than five years.

Before accepting the modes as regimes, one needs to
confirm the presence of fluctuations that are too rapid
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for Fig. 1a to resolve. Figure 1b superposes two con-
secutive 1-yr segments, beginning 8 months into the
first and second years of Fig. 1a. The less active year is
dominated by weak oscillations with periods of about 4
days. The more active year also exhibits the 4-day os-
cillations, but week-to-week and month-to-month
variations now dominate. Periods much shorter than

those most conspicuous in Fig. 1a are indeed present,
and since the equations also have no long time con-
stants, the modes qualify as regimes A and B on all
counts.

Figures 2a and 2b contrast the states that characterize
the regimes. Each shows a sequence of cross-longitude
profiles of Xn, which are complete states, at 12-h inter-

FIG. 1. (a) Fifty-year time series of s2 produced by Eq. (1) with N � 21 and F � 5.1, displayed as two 25-yr segments. Horizontal scales
are time in years. Vertical scales are units of s2. (b) Two superposed 1-yr segments beginning 8 months into first and second years of
Fig. 1a. Horizontal scale is time in months from start of each segment. Vertical scale is units of s2.

FIG. 2. (a) Profiles of Xn at 12-h intervals beginning 4 months into lower curve of Fig. 1b. Horizontal scale is
gridpoint number. Vertical scales are units of Xn, for top and bottom profiles only. Numbers beside profiles are
time in days from initial profile. (b) The same, but beginning 4 months into upper curve of Fig. 1b.
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vals, beginning 4 months into one or the other series in
Fig. 1b, and extending over 5 days. In Fig. 2a there is a
clear 4-wave pattern. The waves modulate their shape,
but not greatly. In Fig. 2b things are more irregular.
One can most frequently count six distinct maxima and
minima, but it is hard to identify by eye a dominating
wavenumber.

Figure 3 presents 25-yr time series of s2, all for N �
21, but for a sequence of values of F. In the first two
series only mode A is present, and in the second the
irregular spacing of the small peaks suggests incipient
chaos. Mode B appears when F � 5.05 and becomes
more dominant as F becomes larger, until in the final
series the occurrences of mode A last only marginally
long enough to qualify as regimes.

It appears, in fact, at least in this case, that the weak
chaos typified by the behavior when F � 5.0 and the
strong chaos prevailing when F � 5.2 or 5.25 are quali-
tatively different. Moreover, regimes seem to show up
at the transition not from periodicity to weak chaos, but
from weak to strong chaos.

Of course the series shown are only samples, but I
have found no instances of regimes when N � 21 and
F � 4.95 or 5.0. Some samples with F � 5.05 or 5.15 are
hard to distinguish from the one shown for F � 5.1, but
the increasing preference for mode B as F increases is
obvious. The range of F for which regimes are clearly
present is only a small fraction of the value of F.

For general values of N the convention to be adopted
is that mode A is the one favored by smaller values of
F, while mode B is favored by larger values. Figure 4a
compares the first 25 yr of Fig. 1 when N � 21 and F �
5.1 with similar series for neighboring values of N and
appropriate accompanying values of F. The series for
N � 20 and N � 21 are a good deal alike, with some
differences in the details, but when N � 22 mode A
remains fairly active, while occurrences of mode B are
often of short enough duration to qualify as events. The
series with N � 19 looks unmistakably different. Quali-
tatively the series differ mainly in the nature of mode
A, and the differences become apparent in Fig. 4b,
where each series is a 1-yr mode-A segment of the cor-
responding series in Fig. 4a. Besides being distinguished
by different appearances, the series pictured in Fig. 4
occur with distinctly different values of F. These dis-
tinctions are not unrelated.

In each series the selected value of F slightly exceeds
the one needed to initiate chaos. When N � 4, chaos
occurs only when F � 11.96, and one might have sup-
posed that with successive increases in N successively
smaller values of F would suffice to produce chaos, but
clearly this is not the case. Figure 5a shows what actu-
ally happens.

The figure has been produced by first choosing, for
each value of N, a value of F so small that chaos is
patently not present, and then increasing F in incre-
ments of 0.01 and estimating, for each value of F, the
leading Lyapunov exponent 
1 from a 10-yr run. Before
chaos sets in 
1 should be zero, but, since the 10-yr runs
are samples, a small positive or negative value may
appear. What is shown in Fig. 5a is the value of F, to be
called F*(N), for which 
1 first exceeds 0.001.

The computations do not take into account the ad-
ditional possibility of periodic windows when F exceeds
F*; that is, continua of F where chaos is absent. Such a
window appears, for example, when N � 30 and 4.61 �
F � 4.77, even though F*(30) � 3.99. They also ignore

FIG. 3. Twenty-five-year time series of s2 produced by Eq. (1)
with N � 21, and with values of F indicated by numbers above
series. Horizontal scale is time in years. Vertical scales are units
of s2.
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the possibility that a chaotic solution with a separate
basin of attraction from that of the periodic solution
can exist even when F � F*, and hence that the cat-
egory is A0B0. This occurs, for example, when N � 27
and 5.51 � F � 5.64, and when N � 38 and 5.30 � F �
5.99. One might more properly call F* the smallest
value of F for which chaos must occur.

In Fig. 5a the vertical line at each value of N extends
to F*(N). In the upper panel, except at the far left, a
distinct peak appears in F* at every fifth or sixth value
of N up to 100, with decidedly smaller values between
the peaks. The lower panel, extending N to 200, shows
this behavior continuing nearly unabated.

Evidently the peak values of F* are highest when N
is closest to being a multiple of some fixed number L0,
which seems to be very close to 60/11, or 5.455; note the
especially high peaks when N � 60, 120, or 180. A
reasonable hypothesis is that just before chaos sets in,
and sometimes even afterward during mode A, the
cross-longitude profile of Xn consists of a whole num-
ber k*(N) of identifiable waves, like those in Fig. 2a,
with a wavelength of L*(N) � N/k*(N) grid points.
Successive peaks in F* correspond to unit increases in
k*. Evidently there is a preferred wavelength, namely

L0, such that waves of this length are the most stable, in
the sense that the highest values of F are needed to
destabilize them. When L* cannot be close to L0 be-
cause N is not an approximate multiple of L0, a smaller
value of F will suffice.

Figure 5b shows the values of F* that appear in Fig.
5a, for N � 36, plotted against L*(N) instead of N.
Most of them closely fit a piecewise-smooth curve with
a sharp peak where L* � L0. A cluster of 13 points to
the right of the curve fails to conform. When N is small,
the fit (not shown) is not so close; evidently the process
that favors wavelengths near L0 requires that a reason-
able number of waves be present.

To add further support to the hypothesis that F*
depends on L* we note first that, as established in L05,
the steady solution Xn � F is unstable with respect to
small-amplitude sinusoidal disturbances of wavelength
L if cos(2�/L) � cos(4�/L) � 1/F. It follows that if F �
1, for example, the steady state is unstable with respect
to waves where 4 � L � 6. If N is fairly large there will
be several wavenumbers k for which N/k lies in this
range; note that L0 lies in the range. Incipient waves
will grow to finite size, and perhaps become distorted
by overtones, but apparently when F becomes large

FIG. 4. (a) Twenty-five-year time series of s2 for values of N and F indicated by numbers above series at left and right, respectively.
Horizontal scale is time in years. Vertical scales are units of s2. (b) One-year segments of curves in (a). Horizontal scale is time in months
from start of each segment. Vertical scales are units of s2.
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enough they can become unstable with respect to ad-
ditional disturbances, and a new pattern will develop.
Sometimes this will consist of waves of a more favored
length.

For an illustration of this process, other than a sche-
matic one, it is desirable to have a measure K that can
be evaluated for any state, and will be an integer when
a distinct number of waves is apparent, as in Fig. 2a
where K should simply equal 4. If the profile of Xn were
a perfect sine curve with k waves, K should equal k, and
k could be found without actually counting the waves
by evaluating the autocorrelation r1, since then, accord-
ing to Eq. (2b), r1 � cos(k
). A typical profile is not a
pure sine curve, but it appears that, when F � F*, the
profile is often closely approximated by a sine wave
plus its first overtone. Prompted by this observation, I
have chosen for K a function of r1, r2, and r3 that will
reduce to l, the smaller of two integers l and m, when-
ever the state is the sum of two sine curves with wave-
numbers l and m, regardless of whether m � 2l.

To determine K, note that if Ak � 0 in Eq. (2a)
except when k � l or m, Eq. (2b) indicates that

�cos� jl�� � rj�Al
2 � �cos� jm�� � rj�Am

2 � 0, �3a�

for any integer j. Since cos(2l
) � 2c2
l � 1 and cos(3l
)

� 4c3
l � 3cl , where cl � cos(l
), with analogous expres-

sions for cos(2m
) and cos(3m
), it follows that

�c l
j � �j�Al

2 � �cm
j � �j�Am

2 � 0 �3b�

for j � 1, 2 or 3, where �1 � r1, �2 � (r2 � 1)/2, and
�3 � (r3 � 3r1)/4. Eliminating A2

l and A2
m and then cl or

cm, one finds that both cl and cm satisfy the quadratic
equation

��2 � �1
2�c2 � ��3 � �2�1�c � ��2

2 � �3�1� � 0, �4�

and, if cl is the larger root, cos(K
) � cl.
When the profile consists of more than two sine

curves, K so determined need not be an integer, and its
exact meaning is not obvious, but since, as indicated in
Eq. (2b), the autocorrelations are completely deter-
mined by the spectral amplitudes Ak, K must also be a
property of the spectrum. Extensive numerical tests
with prespecified wavenumbers and amplitudes indi-
cate that K is a weighted average of the prespecified
numbers, with the lower numbers weighted more heav-
ily; the other root of Eq. (4) would lead to a quantity
where the higher numbers are weighted more heavily.

In addition, one may construct time series of K from
runs where other quantities have already been exam-
ined. In Fig. 6 the upper curve is the top row of Fig. 1a,
inverted for comparison with the lower curve, which a
time series of K for the same 25 yr. There is nearly perfect
correspondence between the resolved features, and,
where regime A is least active, K correctly equals 4. Evi-
dently K can serve as well as s2 in detecting the presence
of regimes. The wild fluctuations of K during regime B
imply that the spectrum is likewise fluctuating wildly.

The illustrations whose desirability prompted the in-
troduction of K may now be produced by choosing N

FIG. 5. (a) Minimum values of F for which chaos must occur, indicated by tops of vertical lines, for values of N indicated by horizontal
scales. Vertical scales are units of F. (b) Minimum values of F for which chaos must occur, for values of wavelength L* indicated by
horizontal scale. Vertical scales are units of F.
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and then, starting with a low value of F, increasing F at
a fixed very slow rate during a run until instability is
encountered, constructing time series of K during the
process. In Fig. 7a, where N � 96, a run is initialized
with a wavenumber-23 profile, making L � 4.17, and F
increases from 1.5 to 6.5 at the rate of 0.01 units per
year. At first K � 23, but the pattern becomes unstable

before F reaches 2.0, and a stable 20-wave profile where
L is closer to L0 develops. The new pattern in turn
becomes unstable and gives way to a stable 19-wave
profile, which subsequently gives way to an 18-wave
profile, with L � 5.33. At F � 5.35 this pattern also
becomes unstable, and, there being no integer k that
makes L closer to L0, chaos sets in.

If rotated 90° counterclockwise, Fig. 7a may be in-
terpreted as a plot of F against L, with L increasing to
the right. The top point of the now-vertical line where
k � 18, with L � 5.33 and F � 5.35, lies on or close to
the curve in Fig. 5b, and the tops of the other now-
vertical lines lie on what seems to be a leftward exten-
sion of this curve. As a test of this assumption, Fig. 7b
has been constructed by superposing 45 runs, including
the one in Fig. 7a, using each value of N from 96 to 100
and, for each N, initializing successively with a 16-wave
to a 24-wave profile. The tops of the vertical segments
all fit the same piecewise-smooth curve, at least to the
left and somewhat to the right of the peak, and near the
peak the curve coincides with the curve of Fig. 5b, to
within the limits of the resolution. Evidently the defin-
ing property of the curve is instability rather than chaos
per se, but, at least when L � L0, this instability implies
chaos when there is no wavelength closer to L0 that can
develop. When L � L0, the smooth periodic behavior,
on becoming unstable, often gives way to more compli-
cated periodic behavior, and chaos sets in only after F
becomes considerably larger. A consequence is the
nonconforming cluster of points in Fig. 5b.

FIG. 6. Time series of (top) s2 and (bottom) K for first 25 yr of
Fig. 1a. Horizontal scale is time in years. Vertical scales are units
of s2 (top, increasing downward) and wavenumber (bottom).

FIG. 7. (a) Variations of K with N � 96, with F increasing from 1.5 to 6.5, initialized with 23-wave profile of Xn. Horizontal scale is
units of F. Vertical scale is wavenumber. Numbers above horizontal segments are wavelength L in grid intervals. (b) Superposition of
45 curves as in (a) with N � 96, . . . , 100, each initialized with 16-, . . . , 24-wave profiles of Xn, and with pattern rotated 90° from (a).
Horizontal scale is wavelength L in grid intervals. Vertical scale is units of F.
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The sharpness of the peak at L � L0, apparent in
both Fig. 5b and Fig. 7b, strongly suggests that it is
formed by the crossing of two separate smooth curves
whose definitions extend to values of F above the peak.
Such an occurrence would be expected if there are two
distinct types of behavior with respect to which of the
solutions where K is steady can become unstable. When
L � L0, these solutions first encounter instability with
respect to one type, as F increases; when L � L0, the
other type develops first. This conclusion is further sup-
ported by the abrupt change in slope near L � 4.5.
Presumably the left-hand smooth curve is only piece-
wise smooth, and consists of segments of separate
smooth curves, and a third type of behavior develops
first when L � 4.5.

Returning to regimes, one can conclude that differ-
ences in wavenumber, rather than differences in N per
se, are responsible for the differences in the values of F
needed to produce them, and for their differences in
appearance. Figure 8 has been constructed with this
conclusion in mind; it shows 20-yr time series of K, in
each case with F at or slightly above F* (N), for values
of N from 15 to 41, and it is intended to display the
regimes for those values of N where they occur.

Values of N increase to the right in each row, and
from row to row, as in reading a book. Each row con-
tains values of N with the same value of k*, ranging
from 3 to 7, so that within each row L* must increase to
the right. I have found no objective rule that invariably
locates the values of F producing regimes, and so,
somewhat arbitrarily, in preference to subjective selec-
tion, I have used the value where the leading Lyapunov
exponent 
1, evaluated in the same manner as when
determining F*, reaches 0.2. Where F had previously
been chosen subjectively, as in producing Fig. 4, there is
rather good agreement.

Ironically, it is precisely those values of F in which we
are most interested—those that produce regimes—for
which the procedure is most suspect. The computed
values of 
1, and hence the value of F where 
1 reaches
0.2, can depend very much on whether the 10-yr sample
consists primarily of less active or more active behavior.
One could increase the sample lengths, but, even with-
out doing so, attempts to find regimes by altering F, for
those values of N where regimes had not already ap-
peared, generally failed. The lone exception was the
leading series, with N � 15, where lowering F to 4.3
would greatly increase the typical duration of mode A,
and produce a series much like the one shown for N � 20.

The general similarities in the patterns as one moves
upward or downward in the figure, and the sometimes
abrupt changes as one moves horizontally, are inescap-
able. A chemistry student will probably note an analogy

with the periodic table of the elements, where, in the
early portion, increasing an atomic number by 8 leads
to an element with rather similar properties.

Especially noticeable are the pure wavenumbers that
characterize much of regime A in the left-hand portion,
where L* � L0. Also, the regime-B fluctuations of K
strongly favor values lower than k* there, as if emulat-
ing the final series of the previous rows. When N � 20
there is even a two-year interval when K falls back to 3.

When N � 27 or 38, L is close to L0 and regimes do
not appear; instead, as already noted, there are multiple
attractors. Closer to the center, where L slightly ex-
ceeds L0, K no longer stays so close to k* during mode
A. The mode-B fluctuations are more evenly centered
about k*, and, especially when N � 17, they tend to be
of short duration, often resembling events. The pres-
ence of regimes is at best marginal.

Farther right, and especially in the upper right, re-
gimes are in evidence again. There is now a tendency
for K to exceed k* during mode B, and, when N � 25,
K advances to a pure wavenumber 5 during the third
year.

Fascinating things can happen when N is very large,
and multiple basins of attraction become more preva-
lent, as do appearances of three or more regimes. How-
ever, consideration of these ramifications is beyond the
scope of this investigation.

4. The barotropic vorticity equation

The most famous prognostic equation in meteoro-
logical history may well be the barotropic vorticity
equation, expressing the constancy of absolute vorticity
� � � � f at a point moving with the flow. Here � is the
vorticity relative to the rotating earth, while f, the Co-
riolis parameter, is the additional vorticity due to the
earth’s rotation. The equation was proposed by Rossby
et al. (1939) as being relevant to the propagation of
waves in the middle-latitude westerly wind belt, and
was used by Charney et al. (1950) to produce the first
moderately successful numerical weather forecast from
real weather observations. The number of subsequent
studies in which it has played a major role is almost
uncountable.

To Rossby’s formulation one must add damping and
external forcing to prevent the new values of absolute
vorticity from simply being rearrangements of the old
ones. They will, of course, depend upon the chosen
field of forcing and the nature of the damping.

The velocity and the vorticity are commonly ex-
pressed in terms of a streamfunction �. If follow-
ing Rossby (1939) we replace the earth’s surface by a
plane with rectangular coordinates x and y increasing
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eastward and northward, and if subscripts t, x, and y
denote partial differentiation, the vorticity equation
may be written

�2�t � ��x�2�y � �y�2�x � ��x � ���2� � �2	�, �5�

where �2� � �xx � �yy � �, � is a damping coefficient,
� � df/dy, and the forcing field � is the field that �
would approach if the adiabatic terms were absent. In
the present formulation � will be defined over a rect-
angular region where x and y extend, respectively, from
0 to DN and 0 to DM, with DN � DM. Periodic boundary
conditions; that is, �(x � DN, y) � �(x, y) and �(x, y �
DM) � �(x, y), effectively extend the definition of � to
the infinite plane.

There is no need to demonstrate that the barotropic
vorticity equation can produce regimes. This has been
aptly accomplished by various investigators who have
used it to simulate real atmospheric regimes (e.g.,
Legras and Ghil 1985). Often these regimes consist of
shifts in the latitude of the strongest westerlies. In the
present formulation with periodic boundary conditions
there is nothing to distinguish one latitude from an-
other except, in some cases, the external forcing �.
When � does not vary with latitude, anything produc-
ing a slight cross-latitude displacement need not be im-
mediately compensated for, so that displacements can
be cumulative, and the resulting slow cross-latitude
drift may look locally like a regime change. Such a
change need not involve any variations in total energy
or prevailing wavenumber.

What is less obvious is whether the equation can pro-
duce regime changes resembling those produced by Eq.
(1), where wavenumber variations play a major role.
The purpose of this section is to show that some of the
findings of the previous section can indeed be extended
to a system [Eq. (5)] that bears a much closer resem-
blance to the atmosphere than Eq. (1).

For numerical computation, � and � will be repre-
sented by their values at the intersections of N longi-
tudes and M latitudes, numbered from 0 to N � 1 and
0 to M � 1. With the periodic boundary conditions,
�nM � �n0 and �Nm � �0m, the subscripts indicating
longitude and then latitude. Adjacent longitudes or lati-
tudes will be separated by the distance D, so that DN �
ND and DM � MD. The vorticity, at n � 2 and m � 2
for example, is taken to be


22 � ��12 � �32 � �21 � �23 � 4�22� �D2. �6�

Equation (6) is solved for � by Fourier-transforming
the M values of � at each longitude, performing a simple
matrix inversion for each Fourier component, and
transforming back again, while the sum of the adiabatic

terms in Eq. (5) is evaluated by the energy-and-
enstrophy-conserving scheme of Arakawa (1966).

Analogously to the cyclic conditions in Eq. (1), the
periodic boundary conditions allow one to express � as
a sum of components, namely,

�nm � 	 Akl cos�kn�N � lm�M � �kl �, �7�

where 
N � 2�/N and 
M � 2�/M, and k runs from 0 to
N/2 and l from �M/2 to M/2 (or from 1 to M/2 when
k � 0) in the summation. For each component, k is the
zonal wavenumber, while a measure of the scale is af-
forded by H2

kl � 4 � 2 cos(k
N) � 2 cos(l
M), which
approximates (k
N)2 � (l
M)2 when k and l are small.
The largest-scale components are those where Hkl is
smallest, and the contribution of a component to the
mean-square wind speed is H2

klA
2
kl /(2D2).

In the forthcoming examples D � 400 km and M �
20, so DM � 8000 km, while � � 1.2 � 10�11 m�1 s�1 and
� � 1.16 � 10�6 s�1 � (10 days)�1. The forcing field �
will contain the single component �nm � Fb cos(m
M),
independent of longitude, where b2 � 2D2/H2

01; this
makes F the equilibrium root-mean-square wind speed.
The values of N and F will vary from case to case.

Note that with D held fixed, changing N is not
equivalent to changing the horizontal resolution, as
might be done in updating an operational forecasting
model. It corresponds instead to changing the circum-
ference of the earth. It is therefore an exploratory pro-
cedure, and has no obvious counterpart in studies that
are strictly concerned with the earth as it is. It may well
have one in studies that compare several planets.

Since the adiabatic terms conserve both energy and
enstrophy, and the damping is not scale-selective, in-
creases in the energy of a small scale, if not externally
forced, must be accompanied by increases in a large
scale, at the expense of an intermediate one (Fjörtoft
1953). The scale of the chosen forcing, H01 or approxi-
mately 
M, is intermediate, since N � M, but the only
components with larger scales; that is, with Hkl � H01,
are those where l � 0, whence Hkl approximates k
N,
and where k
N � 
M, or N � kM. To produce a chain
of six waves (k � 6), for example, N must then exceed
120; from computations it appears that N must be near
200.

The total number of variables will therefore be two
orders of magnitude greater than in the previous sec-
tion. In addition, the amount of computation per vari-
able per time step is an order of magnitude greater, and
3 h seems to be the greatest allowable time increment.
It is thus beyond the scope of this study to treat the
barotropic vorticity equation with the detail that was
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given to Eq. (1). Instead, it will simply be demonstrated
that Eq. (5) can produce regimes resembling those pro-
duced by Eq. (1), for some values of N, and will pro-
duce no regimes at all for others.

Figure 9a shows a 25-yr time series of V, the global

root-mean-square wind speed, generated with N � 220
and F � 150 m s�1, and drawn with V increasing down-
ward. The extremely large equilibrium wind speed F is
evidently not accompanied by comparable values of V,
although V is rather large by real tropospheric stan-
dards. We see intervals sometimes longer than 4 yr when
V oscillates within a narrow range about 46 m s�1, inter-
spersed with intervals of comparable length when V var-
ies through a larger range about a slightly higher mean.

As previously, one may define a wavenumber index
K in terms of the 1-, 2-, and 3-lag autocorrelations,
again using Eq. (4), the lags being in the x direction.
Figure 9b shows the corresponding 25-yr series of K. As
in Fig. 6 there is nearly perfect agreement between the
resolved features.

A decision that the two modes of behavior constitute
regimes should again imply that significant shorter-
period fluctuations of V or K are present. These are
clearly revealed by Fig. 10, where the top panel shows
the second and third years of Fig. 9b, which are typical
of regimes A and B. The latter regime is dominated by
an approximate 11-day periodicity, where the frequent
double peaks imply superposed weaker fluctuations of
even shorter period. In regime A there is also much
very-short-period activity, although no single period
dominates.

The remaining panels show “weather maps”—fields
of �—for the day near month 8 of the top panel when
K attains its peak value of 6.94, and the one near month

FIG. 9. Time series of (top) V and (bottom) K for same 25 yr,
produced by Eq. (5) with M � 220 and F � 150 m s�1. Horizontal
scale is time in years. Vertical scales are m s�1 (top) and wave-
number (bottom).

FIG. 10. (top) Second and third years of lower curve in Fig. 9. Horizontal scale is time in
months. Vertical scale is wavenumber. (middle and bottom) Fields of � at month 8 and month
21 of (top). Low centers are labeled “L.” Horizontal scales are longitude numbers. Vertical
scales are latitude numbers.
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21 when K reaches its minimum of 5.89. The former
map reveals a chain of seven fairly regular highs and
lows. In the latter there are only six, but, in the central
longitudes, one high and one low have long extensions;
here a closed high and a closed low were dissipating a
few days before, and they are to regenerate a few days
afterward. During the frequent days of regime B when
K is fluctuating near 6.3, the maps generally display
distorted 7-wave patterns.

Figure 11a shows that, at least when N � 220, re-
gimes occur only through a fairly narrow range of F,

shortly after chaos sets in. The curves are 10-yr series of
K. When F � 135 or 140, only mode A appears; it is
weakly chaotic at 140. Mode B appears at F � 145, and
when F � 150 or 155, and probably 145 or 160, it quali-
fies as regime B. As F increases still more, the appear-
ances of mode B look more like events. The qualitative
similarity to Fig. 3, similarly produced for Eq. (1),
hardly needs to be pointed out.

The preferred wavelength seems to be somewhat
longer than 30 grid intervals. In Fig. 11b, N has been
lowered a fraction of a wavelength to 210. Unlike what

FIG. 11. (a) Ten-year time series of K produced by Eq. (5) with N � 220 and values of F (in m s�1) above series. Horizontal scale
is time in years. Vertical scales are wavenumber. (b) The same, but with N � 210.
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happens when N � 220, the mode with the lower value
of K prevails at the lower values of F. When F reaches
165, a considerably higher value than the one needed to
excite a second mode in Fig. 11a, the new mode ap-
pears, but its appearances qualify only as events. When
F reaches 175, neither mode has a duration exceeding a
few months. The effect of lowering N is somewhat like
that of moving N from the beginning of a row in Fig. 8
to near the middle of the previous row.

Thus, as with Eq. (1), not all values of N lead to
regimes. A comprehensive analysis of a wide range of
values of N would be further complicated by the fre-
quent appearance of more than two modes of behavior.

5. A model of the models

The regimes that are produced by the barotropic vor-
ticity equation and the simpler Eq. (1) occur when spe-
cific conditions are met. These conditions, and also
those that lead to an absence of regimes, can be mod-
eled by a simple family of first-order difference equa-
tions, say ym�1 � g(ym), where ym is the value of the
single variable y that follows an initial value y0 by m
iterations. A cubic function for g will suffice (Lorenz
1965), but a piecewise linear function makes the system
easier to analyze.

One such function is formed by joining a variant of
the well-studied tent map (Weisstein 2003) to an in-
verted tent map, yielding the system

ym�1 � �aym � 2 if ym � 1�a, �8a�

ym�1 � aym if 1�a � ym � 0, �8b�

ym�1 � bym if 0 � ym � � 1�b, �8c�

ym�1 � �bym � 2 if �1�b � ym, �8d�

where a and b are prechosen constants between 1 and 3.
The positive and negative portions of the y axis will
constitute the regions A and B. It is evident that 1 �

ym�1 � �1 if 1 � ym � �1.
Figure 12a is a graph of ym�1 against ym, drawn with

a � 2.5 and b � 1.8. One can see that with a and b so
chosen, ym�1 � 0 if ym � 0.8, whereupon a transition
from A to B occurs. It is likewise apparent that ym�1 �
0 if ym � 0, so that transitions from B to A are impos-
sible. The category is therefore A1B0. More generally,
in a–b space, the curves separating A1 from A0 and B1
from B0 are given simply by a � 2 and b � 2.

Figure 12b shows a 200-iteration series of y produced
by Eq. (8), with a and b as in Fig. 12a. A comparison of
the short-period fluctuations with those in Fig. 4b sug-
gests that one iteration of Eq. (8) could be the equiva-
lent of anything from two days to a week of the output
of Eq. (1). Not surprisingly, simulating a century with
Eqs. (8) is nearly three orders of magnitude faster than
with Eq. (1) and about six orders faster than with Eq.
(5), which in turn is many orders faster than an opera-
tional forecasting model.

With a � 2 and b � 2, permitting transitions in either
direction, the appearance of the short-period fluctua-
tions would not be greatly changed from Fig. 12b. The
closer a and b are to 2, the less frequent the transitions,
and hence the longer the durations DA and DB, defined
in section 2.

Of special interest is the case where there exist posi-
tive integers I and J such that

a � 2 � b�J, �9a�

b � 2 � a�I. �9b�

Given I and J, Eqs. (9) are readily solved numerically
for a and b, which will lie between 2 and 3. The range

FIG. 12. (a) Graph of ym�1 against ym given by Eqs. (8) with a � 2.5 and b � 1.8. Coordinates of ends of segments are shown. (b)
200-iteration time series of y for conditions of (a). Horizontal scale is iteration number. Vertical scale is units of y.
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of y from �1 to �1; that is, the intervals B and A, may
then be divided into I � J � 2 segments B0, . . . , BJ,
AI, . . . , A0, bounded by the values �1, �b�1, . . . ,
�b�J, 0, a��, . . . , a�1, 1 of y, as illustrated in Fig. 13 for
the case I � 3 and J � 2, with the property that the map
of each segment is another complete segment, or the
sum of several complete segments. For example, A1

maps onto A0 (if I � 1), while A0 maps onto the sum of
A0, . . . , �� and BJ. Hence, if in an ensemble of solu-
tions the probability density of y is uniform within each
segment, it will remain so. It also appears that for most
initial states the long-term probability density will ap-
proach uniformity in each segment as n → �, although
a proof, which would resemble a proof of an ergodic
theorem, will not be offered here. This uniformity al-
lows one to determine explicit expressions for DA and
DB, and hence for the probabilities P � DA/(DA � DB)
and Q � DB/(DA � DB) that for a randomly chosen
value of m, ym lies in A or B, and the probability R �
1/(DA � DB) that ym lies in A and ym�1 lies in B, which
must equal the probability that ym lies in B and ym�1

lies in A. Note that P � DAR and Q � DBR.
Let the probabilities that ym lies in B0, . . . , BJ,

AI, . . . , A0 be Q0, . . . , QJ, PI, . . . , P0, respectively.
Because of the uniform probability density in each seg-
ment Al or Bl, Pk is the sum over l of the product of
each probability Pl or Ql with the fraction of Al or Bl

that maps onto Ak. Equating these quantities yields

Pk � Pk�1 � a�k�1P0 if k � I � 1, �10a�

PI�1 � �1 � a�1�PI � a�IP0, �10b�

PI � a�1PI � a�IP0 ��a � 1� � �b � 2�Q0 ��b � 1�.

�10c�

The final term in Eq. (10c) is simply the probability R
of a transition from B to A. Analogous relations hold
for Q0, . . . , QL.

Direct addition of Eqs. (10) simply confirms that
(a � 2)P0/(a � 1) � R, since P1, . . . , PK cancel out.
Since P � P0 � . . . � PK, a suitable linear combination
of Eqs. (10a) and (10b) shows that (a � 1)P � [I(a � 2)
� a] P0 and, since P � DAR, it follows that

DA � a ��a � 2� � I. �11a�

Likewise

DB � b ��b � 2� � J, �11b�

and, as always, R � 1/(DA � DB).
With the convention that one iteration equals 4 days,

Fig. 14a presents a 25-yr time series produced by Eqs.
(8) with I � 6 and J � 5, making a � 2.0302 and b �
2.0143. The regimes are as apparent as in Fig. 4a. An
obvious dissimilarity is the lack of a noticeable differ-
ence between the amplitudes of the fluctuations in re-
gimes A and B. Producing an amplitude difference with
an equation like Eq. (8) could be accomplished by in-
cluding an additional constant in the formulation.

Meanwhile, such an inclusion is not always wanted.
Figure 14b has been constructed like the curves in Fig.
4a, with Eq. (1) but with N � 7 and F � 4.4. Despite
some systematic differences the resemblance between
the series in Fig. 14 is almost uncanny.

An extension of the run to 1 000 000 iterations has
yielded 4663 sign changes in each direction, with an
average duration of 72.4 iterations for regime A and
142.1 iterations for regime B. These sample results
compare well with the expected values R � 0.004 559,
DA � 73.3, and DB � 146.0 evaluated from Eqs. (11).

If a and b are specified instead of I and J, with a � 2
and b � 2, Eqs. (9) may be solved for I and J. In general
the resulting values will not be integers, and Eqs. (11)

FIG. 13. The segments B0, . . . , BJ, AI, . . . , A0 when I � 3 and
J � 2. Values of y at end points of segments are shown.

FIG. 14. (a) A 2250-iteration time series of y produced by Eqs.
(8) with I � 6 and J � 5. Horizontal scale is iteration number.
Vertical scale is units of y. (b) Twenty-five-year time series of s2

produced by Eq. (1) with N � 7 and F � 4.4. Horizontal scale is
time in years. Vertical scale is units of s2.

2070 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 63



will no longer be valid, but they appear to offer good
approximations, especially when a and b are close to 2.
One may then specify desired durations DA and DB and
solve Eqs. (11) for a and b. Regimes can indeed be
made to order.

6. Concluding remarks

The atmosphere–ocean–earth system is continually
undergoing changes of regime. Indeed, the system is so
intricate that different portions or features can simul-
taneously undergo their own regime changes—ENSO
and the North Atlantic Oscillation, to name just two.

Many regimes are reproducible by suitable math-
ematical models. Some of these have been formulated
and integrated for the express purpose of studying re-
gimes. As one might have suspected, however, more
general models, including some that were developed
without anticipated application to the regime problem,
often exhibit regimes. The present work has been con-
cerned mainly with models of this sort.

The search for regimes has disclosed some previously
unrecognized properties of the now often-used Eq. (1).
Perhaps most important is the seesawing behavior, as N
continually increases, of the minimum value of F for
which chaos must occur.

How common are regimes in more general systems?
They occur when the possible states fall into two or
more sets, and transitions from one set to another are
rare; this situation seems to be favored by the presence
of chaos, as seen in the following scenario.

Most familiar systems contain numerical values
somewhere in their formulation, and generally one can
alter these values at will. Consider the case where wild
chaotic fluctuations occur within either of two sets of
states, but transitions are absent; each set has its own
basin of attraction. An increase in a constant such as the
intensity of external forcing may render the chaotic
fluctuations still more intense, until one “rogue” fluc-
tuation breaks through to what had been the other ba-
sin; the two basins have now merged. If this happens in
both directions, regimes will result. Further increases in
the constant may further intensify the fluctuations, until
breakthroughs become so frequent that only events
rather than regimes remain. One may therefore antic-
ipate that regimes will be restricted to a rather narrow
range of the constant.

Is chaos required for this scenario? Even some very
simple systems possess stable periodic solutions that
undergo long complicated behavior before repeating,
but a sudden penetration into a new part of state space
appears more likely to happen when chaotic fluctua-
tions are occurring than when things are behaving more

regularly. Since chaos typically occurs for a wide range
of parameter values, the presence of regimes in a given
dynamical system should be much less likely than the
presence of chaos. Possibly regimes are only somewhat
less likely than chaos to appear somewhere within an
entire family of dynamical systems.

Although this study is largely concerned with regimes
for their own sake, it is relevant to compare the regimes
produced here with those encountered in the real at-
mosphere. Several nontrivial differences show up.

First, it is not clear that atmospheric regime changes,
particularly those consisting of latitudinal shifts of the
westerlies, involve significant changes in such global
quantities as total energy—especially the abrupt
changes often produced by the models. Next, atmo-
spheric regimes do not seem to be associated with in-
cipient chaos, or transitions from weak to strong chaos;
atmospheric chaos tends to remain well developed. Fi-
nally, the regimes found in the models tend to occur
within such narrow ranges of certain constants that it
would be a rather unlikely coincidence for the corre-
sponding atmospheric constants to lie in the necessary
ranges. Here one should note, however, that many so-
called atmospheric constants are not true constants;
their values are controlled by the atmosphere’s behav-
ior. Perhaps, in some cases, there is a process within the
atmosphere that forces a parameter to assume a value
that favors regimes. The process might, for example,
raise the value of the parameter whenever transitions
from one mode to another become too rare, and lower
it when they become too frequent. Such an idea seems
difficult to verify with observations, so it must remain
pure speculation until a model that produces the pro-
cess is established.

Is it then proper to use Eq. (1), or perhaps a simple
difference equation like Eqs. (8), as a tool in studying
atmospheric regimes? If the purpose is to study the
effect of regimes, as for example in seeing how the
presence of regimes influences predictability, and if the
equation is used with a single choice of parameter val-
ues, such use seems quite legitimate. A cubic difference
equation was in fact used to illustrate the process and
potential benefits of ensemble forecasting (Lorenz
1965), at a time when a demonstration with something
even as simple as the barotropic vorticity equation
could have been prohibitively expensive.

If instead the cause of the regimes is relevant, appli-
cation of Eq. (1) to the atmosphere is somewhat ques-
tionable. It is noteworthy that when one replaces Eq.
(1) by the more “atmospheric” barotropic vorticity
equation, one is apparently forced to use parameter
values well outside the atmospheric range to produce
regimes resembling those of Eq. (1).
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What about that often elusive property bimodality?
In the upper panel of Fig. 4b and the upper right of Fig.
8, for example, where N � 19, there are clearly two
types of extended-term behavior, but the distributions
of the displayed quantities s2 and K are not bimodal,
nor are those of the dependent variables Xn from which
s2 and K are derived. What appears to be bimodal is
something like the temporal standard deviation of s2

within one-month intervals, but an evaluation of the
probability density of this quantity from a 100-yr run
indicates that it is not. The standard deviation within
6-month intervals passes the test. Indeed, it seems that
in most systems one can discover something bimodal by
searching enough. For instance, if a quantity is Gauss-
ian with zero mean, its cube root is bimodal. Assuming
that the time scales are appropriate, bimodality may be
a sufficient condition for the existence of regimes, but
my preference is not to regard it as necessary.

Meanwhile, the conditions for regimes that I have
considered essential may be overly restrictive. They do
not appear to permit all cases of low-frequency vari-
ability, and they may well exclude those where there
are no abrupt transitions. It is even possible that I have
disqualified my leading example—ENSO—which, at
least in certain models, is characterized by long oceanic
time constants.
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