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Fig. 5. An enlargement of a portion of Fig. 4, as represented
by 8000 successive intersections of a single orbit with the
included portion of the plane z = 0.

For our next example of chaos we proceed from one of the smallest
possible “global circulation models™ to one of the largest yet
constructed. This is the operational forecasting model of the European
Centre for Medium Range Weather Forecasts (ECMWF). The principal
dependent variables of the model are horizontal wind components,
temperature, and water—vapor mixing ratio; other variables are
determined from these by auxiliary diagnostic formulas. The variables
are independently defined at 15 elevations, and, in a recent version of
the model, each horizontal field is represented by more than 10000
spherical~harmonic coefficients. The model thus consists effectively of
more than 600000 ordinary differential equations in as many variables.,

The model contains such physical features as orography. The
effects of structures which are unresolved by the model, such as cumulus
clouds, are included via parameterization. The intent is to make the
model as good an approximation to the real atmosphere as is practical,
in view of today's observation and computation systems. Diagnostic
studies are regularly performed to determine how closely the climate
produced by the model resembles the real atmosphere's climate, and
significant differences generally lead to further research aimed at
eliminating the discrepancies.

As the name of the Centre might imply, the principal purpose of the
model is to produce weather forecasts at the "medium range” extending
from a few days to a week or two. The present operational routine
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Fig. 6. An enlargement of a portion of Fig. 5, as represented
by 6000 successive intersections of a single orbit with the
included portion of the plane z = 0.

involves preparing, every day, a ten—day forecast of the global
atmospheric state, using the present day's state as initial conditiomns.
Since the equations are solved by stepwise integration, forecasts for
intermediate ranges are automatically produced, and one-day, two—day,

. « +, ten-day forecasts are routinely archived and made available for
further research. However, forecasts more than ten days in advance are
not generally prepared, and anything like an 18-month time series,
comparable to Fig. 1 or 2, is unavailable.

Since the climate of the model differs from that of the real
atmosphere, initial states determined from the real atmosphere need not
lie on the model's attractor, and, since transient effects may well take
more than ten days to die out, not even one point on the model's
attractor set is known, let alone an entire attractor. That the model
behaves chaotically rather than periodically is best determined by
examining it for sensitive dependence on initial conditions.

We have performed a detailed examination of this sort. It would
have been computationally expensive to perform many additional rums, in
which the operationally used initial states were slightly modified.
Instead we have capitalized on the fact that the model produces rather
good one—day forecasts, so that the state predicted for a given day, one
day in advance, may be regarded as equal to the state subsequently
observed on the given day, plus a relatively small error. By comparing
the one-day and two-forecasts for the following day, the two-day and
three—-day forecasts for the day after that, etc., we can determine how
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rapidly the error grows. Moreover, there are no practical barriers to
averaging the results over a large sample of forecasts.

Fig. 7 presents the principal results. Points labeled i,j, where i
and j are integers, indicate the globally averaged root—-mean—square i
temperature difference at the 500-millibar level between i-day and j~day
forecasts for the same day, averaged over 100 consecutive days beginning i’
1 December 1984. A O-day forecast is simply an initial analysis.

The upper curve, connecting points labeled 0,3, for different
values of j, therefore measures the model's performance, and indicates
how rapidly the difference between two states, one governed by the model
and one by the real atmospheric equations, will amplify. The lower
curve, connecting points labeled i,j, with j — i = 1, indicates how
rapidly the difference between two states, both governed by the model,
will amplify.

The lower curve clearly indicates sensitive dependence on initial
conditions. Extrapolation of the curve to very small differences
suggests a doubling time of about 2.5 days. Detailed forecasting of
weather states at sufficiently long range is therefore impractical.
However, the difference between the slopes of the two curves indicates

4 3 i 1 1

l ¥ 1 T T

OK—

Q 1 1 | 1 I L I I L
o 5 days o]

Fig. 7. Root-mean-square differences between i~day and j-day
forecasts of the 500-millibar temperature for the same day,
made by the ECMWF operational model, averaged over 100 days
beginning 1 December 1984. Numbers i, j appear beside
selected difference values, which are plotted against values
of j.
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that there is still considerable room for improvement in forecasting,
and implies that we may, for example, some day produce one-week
forecasts as good as today's three—day forecasts. Fig. 7 closely
resembles a figure constructed from an earlier version of the ECMWF
model [11], and both studies tend to confirm the results of earlier
studies performed with less elaborate models [12].

Our final example of chaos is the weather itself. In contrast to
the case of large atmospheric models, our evidence for chaotic behavior
is mainly the absence of any tendency for exact repetitions, and the
accompanying presence of continua in the many available variance
spectra. We cannot perturb the atmosphere and observe what happens, and
at the same time know what would have happened if we had not introduced
the perturbation. In principle we could wait for an atmospheric state
which closely resembles a previous state, and regard the new state as
equal to the old state plus a small perturbation, but in practice we
would have to wait too long. We recently estimated that we would have
to wait 140 years to obtain one pair of states with a difference of one
half of the difference between randomly chosen states [13].

Frequently we observe atmospheric states which closely resemble one
another over limited regions; for example, two extratropical cyclones
may look very much alike. After a few days the local resemblance will
be much weaker, but it is not certain whether this is so because of
local amplification or because of the influence of more distant regions
where the states are quite different.

Probably our confidence in the chaotic nature of the atmosphere is
fortified by the fact that the various large global models exhibit
behavior resembling that of the real atmosphere fairly closely, and all
of these models show sensitive dependence on initial conditions and
agree fairly well as to the rate of error growth. We may also be
influenced by our familiarity with baroclinic instability, where
perturbed states will depart from unperturbed states.

6. CONCLUSIONS

We may now return to our question as to whether, in investigating
atmospheric dynamics, we ought to treat the atmosphere as a
deterministic or a chaotic system. The possibly surprising answer is
that for most investigations it does not matter. The system of
equations which we will be using to study the atmosphere will
necessarily involve some approximatioms, and it may be regarded as a
model. Provided that the model is realistic enough to produce a chaotic
atmosphere with essentially correct gross features, its behavior will be
about the same whether or not it contains some stochastic terms. Here
we are assuming that the magnitude of these terms is not completely out
of proportion with the actual randomness present in the laws governing
the atmosphere.

Our choice between a formally deterministic and a stochastic model
will therefore be one of convenience., If our reasoning can be
facilitated by the knowledge that our equations contain no randomness,
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we should use a deterministic formulation. If explicit randomness will
aid our investigation, we should introduce it.

As with most general conclusions, there are particular exceptions,
If we are studying the growth of the difference between two atmospheric¢
states, using a model in which the smaller scales have been i
parameterized, and if the initial difference is very small, it will groy
quasi-exponentially and require a number of days to become appreciable,.
if the parameterization is deterministic. With a stochastic
parameterization the difference, even if it is initially zero, will
quickly become appreciable, possibly during the first day. The latter
type of behavior seems more realistic, since it appears that if the :
small scales could be carried explicitly, uncertainties in these scales
would rapidly spread to the larger scales [14], [15]. Once the
differences in the resolved scales have become appreciable, it matters
little whether the parameterization is deterministic or stochastic.

We are not maintaining that a system of equations with no random
terms, and the same system with random terms added, can produce
quantitatively identical results. Qualitatively the results may be
nearly indistinguishable, or they may be quite different if some of the
constants in the system are close to their bifurcation values. In the
latter event, the addition of small random terms may still be nearly
equivalent to making small alterations in the numerical values of the -
constants.
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