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A simple system of four ordinary differential equations exhibiting chaotic behavior is introduced. The Lyapunov exponents
are approximately 3.34, 0.00, —1.79, and — 5.55. Points on the attractor where two variables simultaneously assume prechosen
values are located by a numerical integration procedure in which suitable antecedent conditions are obtained by successive
approximations. The points are organized into curves, which appear more numerous under higher resolution. A backward
integration procedure indicates that a line transverse to the curves intersects each curve rather than passing through gaps, while
the set of intersections forms a Cantor set. Thus the attractor appears to be locally the product of three continua and one
Cantor set. The continua are found to extend in the expanding, neutral, and less rapidly contracting local directions, while the

Cantor set extends in the more rapidly contracting direction.

1. Introduction

~ Some time ago we introduced the dynamical
“-ssystem

x=—ox+oy,
y=-—-xz+rx—y,
i =xy— bz, 1)

where g, b and r are positive constants and a dot
denotes differentiation with respect to time ¢. These
equations were derived as a model of forced dis-
sipative fluid convection, although they do not
describe intense convection very realistically.
Wholly apart from their physical meaning, they
define a steady flow in (x, y, z)-space, with each
point moving along its orbit. We found that with
0=10, b=8/3, and r =128, the numerically de-
termined solutions were generally aperiodic, while
the attractor appeared to be the product of two
continua and a Cantor set [1].

In the same paper we identified a class of dy-
namical systems, some of which were existing
models of forced dissipative processes, defined by
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the N equations

N N
X;= Z jjpX;Xp — Z bjx;+ ¢, (2)
Jok=1 Jj=1

with the constants chosen so that Xa, ;x,;x;x,
vanishes identically and Lb, x,x; is positive de-
finite. For such systems

N

N {
xi=— X byxx+ L ex; (3)
1 i,j=1 i=1

™M=

dr ;

(ST

d
i

“~

Because of the restrictions on b, ;, the right-hand
side of eq. (3) vanishes on the surface of an
ellipsoid E in (x,,..., x5 )-space, and is negative
throughout the region exterior to E. As a conse-
quence, if S(0) is any sphere centered at the origin
and enclosing a region R(0) containing E, every
orbit either is contained in R(0) in its entirety or
else penetrates S(0) and remains in R(0) afterward.
The attractor A is therefore contained in R(0).
Under the flow, S(0) is carried after any time
interval 8¢ into a surface S(68¢), completely con-
tained in R(0) and enclosing a region R(8¢) which
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also contains the attractor. Likewise S(26¢) is com-
pletely contained in R(8¢), etc., so that the attrac-
tor is contained in R(o0) = R(8) "NR281)N ...

Of special interest is the subclass of systems
where, in addition to the restrictions already im-
posed on the constants, a,; vanishes if j=1i or
k=i. In this event an infinitesimal volume v is
governed by

N
0/U=*Zbii<0’ (4)
i=1
so that v diminishes exponentially. Because Lb;; is
constant, eq. (4) holds even when v is not infinites-
imal, and, in particular, when v is the volume of
R(0). Hence R(né¢) shrinks exponentially with n,
and R(o0) and therefore A have zero volume.

We extend the definitions of the class and the
subclass to include any system which satisfies the
specified conditions after a linear transformation
of the variables. The subclass thus includes egs.
(1), which acquire the proper form after z’=z ~r
— o is substituted for z.

The purpose of this study is to examine the
nature of the attractor for a system of more than
three equations which belongs to the subclass and
possesses an aperiodic general solution. We are
particularly interested in whether the attractor is
locally the product of identifiable continua and
Cantor sets, and, if so, how many continua and
how many Cantor sets. We shall confine our atten-
tion to the local structure of A, leaving un-
answered such involved questions as the manner in
which separate sheets or hypersheets of the attrac-
tor are joined together.

2. Lyapunov exponents and fractal dimension

We shall restrict our attention to the subclass
defined above. Let us rewrite eqgs. (2) as
X=F(X), (5)
where X and F are matrices of N rows and one
column, or vectors, with elements x; and f,. An

infinitesimal departure Z(¢) from X(¢) is then
governed by

Z=¢Gz, (6)

where the elements g;; of the square matrix G are
the partial derivatives df,/dx;. Integrating eq. (6)
between times ¢, and #; we obtain

Z(1)=HZ (1), (7)

where the square matrix H depends upon the
values of X between f, and ¢;. An easy way to
evaluate H is to perturb X separately in each
coordinate direction, and subtract the unperturbed
numerical solution of eq. (5) from each perturbed
solution to obtain each column.

An infinitesimal sphere S’, given by Z TZ = ¢* at
time f;, where T denotes a transpose, will be
carried at time 7, into an ellipsoid E’ given by
ZT(HH™) 'Z =¢> The semi-axes of E’ are
Y18, - .-, Yy € Where y; are the singular values of H,
or the square roots of the eigenvalues of HHT,
arranged so that y; > --- > vy,. If the limits

Aj:tli—frio IOng/(tl_to) ®)

exist, they are the characteristic exponents or
Lyapunov exponents of the orbit passing through
X(tp). If these limits are the same for almost all
orbits, they are the Lyapunov exponents of the
system.

If X(t,) and hence X(¢,) are on A, the limits in
eq. (8) may be replaced by limits as ¢, —> —
while #; remains fixed. Unit vectors U; parallel to
the axes of E’ may also approach limits as ¢, —
— o0, in which case these limits will be called the
Lyapunov vectors at X(¢,).

To evaluate A; and U; we choose #, —t, suffi-
ciently large, and factor H as

H=UTV, (9)

where U and V are orthogonal and I’ is diagonal.
The equation for E’ becomes (UTZ)'T"*(U"Z)
=¢?, so that the diagonal elements of I' are v,
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while the vectors U, are the rows of U T je., the
columns of U.

To determine U, at a prechosen point X(#) we
can perturb X(r;) separately in each coordinate
direction and integrate backward to ¢, obtaining
the separate columns of H~!. We then factor H !,
noting that

H'=yTr-1yT, (10)
It is algebraically simpler to factor H as
H=UTW, (11)

where U’ is orthonormal, I'” is diagonal, and W
has elements w,; which vanish if j<i and equal
unity if j=1i. Although U’ and I" differ from U
and I, they ordinarily lead to the same Lyapunov
vectors and exponents as f, = 0. If #; — ¢, is not
large, U and I’ appear to yield better approxima-
tions.

For a chaotic system, evaluations of H or H™!
are subject to sampling variations. In practice, if
t; — t, is made large enough to render these varia-
tions unimportant, the diagonal elements of I" (or
I'’) are likely to differ by many orders of magni-
tude, and the roundoff errors may completely
falsify all except the largest one. This difficulty
may be circumvented by using special algorithms
which factor H at frequent intervals between i,
and ¢,.

The sum XA; is the exponential damping rate
—Xb,;. If the orbit through X(¢,) approaches a
fixed point asymptotically, A; <0; otherwise the
points where this orbit intersects S’ will remain
separated by a distance comparable to 2¢, and one
exponent will vanish (see [2]). If A; =0 and A, <0,
the orbit is tangent to Up; if Ax=0and Ag, ; <0
for some K, the orbit is tangent to the manifold
formed by Uj,...,Ux. If A >0, the system be-
haves chaotically.

A number of recent studies [3, 4, 5] have related
the fractal dimension of A to A ; a detailed review
and bibliography appear in [5]. A formula sug-

gested by Kaplan and Yorke [3] is

L
d=L+ Zl}\j/|>\L+1" (12)
j=
where L is the largest number of exponents which
can be added to yield a non-negative sum. The
various definitions of dimension are not equiva-
lent; in particular, if the number of spheres of
radius p needed to cover all points of A increases
as p~9 as p — 0, the HausdorfT dimension of A is
d’. We shall treat d as simply another definition of
dimension. For many systems 4 and 4’ are not far
apart, but, if some points of A are visited much
less frequently than others, d is generally smaller
[5].

When N =3 and the system is chaotic, A; >0,
A, =0, and A; <0, so that d=2+A;/|A;}. Our
original computations with egs. (1) indicated that
the sheets of the attractor formed two clusters, and
that, along a line cutting across the sheets, the
maximum distance between sheets in the same
cluster was about 0.00007 times the distance be-
tween clusters. Thus d’ would be about 2+
1/ log, (1,/0.00007) = 2.073. Our most recent
estimates of d, with H factored as in eq. (11) and
with ¢, — ¢, large, yield values of 0.92, 0.00, and
—14.59, so that d=2.063 (compare [4, 6]). The
agreement is remarkable in view of the crudeness
in estimating d’. Our intent in the present study is
to treat a system where d> 3, and where the
fractional part of d is considerably greater than
0.063.

3. The equations

Our choice of a dynamical system has been
influenced by our desire to determine a very sim-
ple system of four equations, if possible the sim-
plest one, capable of exhibiting chaotic behavior,
belonging to the class and the subclass previously
defined, and satisfying the additional condition
that the equations be unaltered by a cyclic permu-
tation of the variables. The last condition was
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introduced with the hope of obtaining four points
on the attractor for the price of one, but its chief
effect has been to limit the choice so greatly as to
lead almost immediately to the system

=n(r=y)-ntec
h=y(ya=n)—n+ec
7=ys(n - =yt
Ja=n(n—y)—ytec (13)

Other arrangements of the quadratic terms are
possible, but none appears to be simpler. Egs. (13)
have some obvious similarities to egs. (1), but we
have not succeeded in associating them with any
particular physical system.

Through the transformation

x1=(y+nm+y:+3)/2
X, =(n=2+y—)/2,
X3 =y +2 =y =2)/2,
xg=(r—n—y+3)/2 (14)

the equations become

X = —x3+x3/2+x2/2—x + 2c,

Xy =X1Xy— X3/24 X3/2 — X3X%4 — Xy,

X3=(x; = x) (x5 +x4)/2 — x5,

Xq= (x4 %) (x5 = x4)/2 = x4 (15)

The matrix of the transformation is self-inverse.
The system retains four-way symmetry, since, if
(X1, X5, X3, x4) is a time-dependent solution, so
are (Xxq, = X,, X4, —X3), (X1, X, —X3, —X,), and
(x1, — X4, — X4, X5). We shall study the attractor A
of egs. (15). However, since eqs. (13) are much
simpler to integrate numerically, we shall use them
in our computations, transforming between x; and
y; whenever input or output is required.

The ellipsoid E becomes the sphere of radius ¢
centered at (¢, 0,0,0). For the sphere S(0) centered
at the origin we choose a radius infinitesimally
greater than 2c.

Eqs. (15) always possess the steady solution
(2¢,0,0,0); this is stable when ¢ is small enough,
but becomes unstable when ¢>1/2. Two more
stable steady solutions (1, + v2¢ — 1,0, 0) then ap-
pear; these become unstable when ¢ > 3. Four
more stable steady solutions then appear; numeri-
cal integration indicates that these become unsta-
ble when c¢>3.85 and give way to periodic
behavior, which in turn gives way to chaotic be-
havior when ¢ > 60.7. We shall study the supercrit-
ical case ¢ = 100.

For negative ¢ the first solution becomes unsta-
ble when ¢ < —1. Chaotic behavior sets in when
¢ < —11.84. Detailed consideration of this range
of ¢ is beyond the scope of this study.

In our numerical integrations with ¢ =100 we
have chosen a time increment A= 0.005. At the
beginning ¢, of each time step, we compute the
first four derivatives of X(7,), and evaluate
the truncated Taylor series

4
X(to+4t)= Y (d*X/dt*)At*/k! (16)
k=0

To evaluate X between time steps we substitute a
fraction of At for At in eq. (16). Successive ap-
proximations allow us to determine X at some
special time, such as a zero-crossing of one vari-
able.

Fig. 1 shows 400 points at intervals of A¢ along
the projection of a typical orbit on the (x, x,)-
plane. Fig. 2 shows the projection of the same
orbital segment on the (x, x,)-plane. Evidently,
each variable undergoes several oscillations during
the two time units. Although the system is chaotic,
each variable exhibits a distinctive behavior; figs. 1
and 2 could not possibly be mistaken for one
another.

The sum of the Lyapunov exponents must be
—4. To determine the individual exponents we
have factored H according to eq. (11). We have
made two estimates of A; with ¢, — 7, =25.0. The
average values are 3.34, 0.00, —1.79, and —5.55,
so that d = 3.28. The separate estimates of d are
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Fig. 1. Projection of particular numerical solution of egs. (15),
with ¢ = 100, on (x;, x,)-plane, as represented by 400 points at
time intervals Az = 0.005. Arrows show direction of flow. Large
-dot at (0,30) indicates value of (x{, x,) chosen for detailed
study.
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Fig. 2. Same as fig. 1, except projection of solution is on
(x5, x4)-plane.

3.26 and 3.30, suggesting that the sampling varia-
tions are under control. We can therefore expect
the Cantor-set structure of A to be easily visible,
in contrast to egs. (1).

4. The attractor

The attractor of egs. (1) consists of a Cantor set
of surfaces, but, because d is only slightly greater
than 2.0, it is closely approximated by a pair of
surfaces. From the numerically determined solu-
tion we were able to construct contours of x, on a
diagram with y and z as coordinates.

In the four-dimensional space of egs. (15) we
cannot immediately use the same technique, but
we can first eliminate one dimension by consid-
ering only the intersection A’ of A with a precho-
sen hypersurface, say the hyperplane Q* where x;
assumed a fixed value xf. An orbit in A will cross
Q* at frequent intervals, and the values of the
remaining variables at these crossings may be de-
termined with high accuracy. If d were only slightly
greater than 3.0, A’ might be approximated by just
a few surfaces, and we might be able to draw
contours of x, for each surface, with x, and x, as
coordinates.

Because d is nearly 3.3, the Cantor set of surfaces
comprising A’ requires too many surfaces to ap-
proximate it closely, and drawing contours is not
feasible. We therefore attempt to display the struc-
ture of A through two-dimensional cross sections.

Fig. 3 shows such a section for eqs. (1). The
curve is the intersection of the attractor with the
plane x = 4, and is identical to the single contour
x =4 in the contour representation. The two ap-
parent branches are actually Cantor sets of curves
which have not been resolved.

For egs. (15) we choose for our cross section the
intersection A” of A with the plane P* where x;
and x, assume fixed values xJ and x¥. We choose
a point X,, on Q*, with x; <0, and let X, X,,...
be the subsequent downward (%, < 0) intersections
of the orbit through X, with Q*. We choose an
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Fig. 3. Intersection of attractor of egs. (1), for 6 =10, 6=38/3,
and r =28, with plane x =4.

95

initial perturbation Z; of magnitude &, parallel to
Q* For m=1,2,3,..., we let X,, + «,Z,, be the
next downward intersection of the orbit through
X, 1t+Z,_, with Q* where Z,, is of magnitude
¢ and a,, is an amplification factor. We anticipate
that, except for small m, Z,, will be parallel to the
manifold formed by U, and the orbit, which is the
manifold formed by U; and U,, and hence will be
parallel to A’

If X, is reasonably close to the hyperplane
x,=x% (or x,= —x¥, in view of the symmetry),
we estimate, for n=1,2,..., on the basis of X,
X,,_, and the amplification factors a,,,a,,_,...,
the factor 8, which will make the nth subsequent
downward intersection of the orbit through X, _,
+ BnZ,—, With Q* lie on P*. Presumably the
intersection will prove not to lie on P*, but its
proximity will allow us to make further estimates
of B,,,. We continue until the intersection is within
a distance ¢ of P*, and record the corresponding
values of x, and x,, except that, if the procedure
has not converged after a few estimates, we quit

and go to the next value of m.
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Fig. 4. Intersection of attractor of egs. (15), for ¢ = 100, with plane x, = 0, x, = 30. Square indicates region to be enlarged in fig. 5.
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Fig. 5. Portion of intersection of attractor of egs. (15) with plane x, =0, x, =28 (left), and plane x; =0, x, =30 (right). Right
portion is enlargement of region contained in square in fig. 4. Small square indicates region to be enlarged in fig. 6.

With x}¥ =0, x¥ =30, and ¢ = 107>, we obtain
convergence for about half of the values of m.
Finding a point on A” requires about 50 times the
computations needed to find one on A’. We have
proceeded to determine 4000 points on A”, with
x3 > 0. All of these project onto the large dot in
fig. 1.

Fig. 4 is the central result of this study, toward
which the remainder of the study is addressed. It
shows the first 1500 computed points on A”, to-
gether with their reflections in the origin; many are
indistinguishable with this resolution. The points
are organized into a number of curves, which
appear to be continua. Locally they tend to be
more or less parallel. In places they bend sharply
and reverse their direction. If we had attempted to
represent A’ by contours of x,, every curve in fig.
4 would be an x, = 30 contour.

Fig. 5 contains an enlargement of the square
region in fig. 4, and compares it with a similar
cross section where x¥ = 28 instead of 30, whose
implications we shall consider later. Fig. 6 is a
further enlargement of the small square in fig. 5.
What looked like a few curves are now revealed as

I,?S'l'I’I'l'.I'lfltlll,l

Xa | - I

1,25

1.0 —
0.75 ] A BT S ST S S R
45 4,75 5.0 5.26 X3 5.5

Fig. 6. Enlargement of region contained in small square in fig.
5. Rectangle indicates region to be examined in fig. 11. Hori-
zontal line indicates segment studied with backward integration
procedure (see text).

a great many. Reversals of direction are abundant.

The appearance of additional curves under
higher resolution is consistent with the presence of
a Cantor set of curves; thus A” seems to be the
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product of a continuum and a Cantor set. Pending
further results, we hypothesize that A is the prod-
uct of three continua and one Cantor set.

5. Continua or Cantor sets?

Despite their apparent continuity, the curves as
shown in figs. 4 and 5 possess prominent gaps, as
they must when they are represented by a finite
number of points. We therefore cannot rule out
the possibility that the curves are Cantor sets. If
they are indeed continua, further computation will
eventually discover points in any present gap, but
the required amount of computation may be pro-
hibitively large. We therefore turn to another pro-
cedure.

If the curves are continua, any line or other
smooth curve cutting across them will intersect
each of them. If instead they are Cantor sets, a

. . .
ey gv** . . .
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typical transverse line will pass through a gap in
almost every curve. Possibly such a line will inter-
sect the curves in a Cantor set of smaller fractal
dimension than that of the Cantor set of curves,
but there should be identifiable curves which it
does not intersect.

Our new computations are designed to de-
termine whether a chosen point X lies on the
attractor, or, if R(o0) is larger than the attractor,
whether it lies on R(o). If X is in R(0) but not in
R(o0), it lies on S(7) for some . In principle we
can determine 7 by integrating backwards from
X, and finding the time required for the orbit to
intersect S(0). Large values of 7 presumably imply
proximity to R(e0).

Accordingly, we choose a line segment cutting
across a collection of curves, and seek 7 at each of

" a set of points along the segment. If the curves are

continua, the maximum values of 7 should in-

4.5

5.0

X3 5.5

Fig. 7. Values of 7/ (see text) at intervals 8x = 0.005 along horizontal line in fig. 5.
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crease without limit with increased resolution along
the segment.

Our initial computations of 7 yielded values
which varied rather erratically, even with very high
resolution. This may have occurred because points
which are further from the origin tend to move
much faster along their orbits (note the spacing of
points in fig. 1), and, with a fixed A¢, the computa-
tions become less stable as S(0) is approached.
Decreasing At sufficiently would increase the com-
putation prohibitively. Examination of earlier
computations revealed no instances when the dis-
tance r’ from the origin of a point moving in A
reached 100 units (the radius of S(0) is 200), and
only brief intervals when r’ exceeded 50. If there
are close approaches of orbits in A to S(0), these
are very rare events. Accordingly, we terminate

each backward integration when ’ reaches 100,
and define 7’ as the time when r’ last equals 50.
We then adopt 7’ in place of r as a measure of
proximity to R(c0).

Backward integration cannot be the exact re-
verse of forward integration, nor can either one
duplicate the exact behavior of the differential
equations. We assume that the principal effect of
the numerical approximations is to displace the

‘values of the variables or of ¢ at which key fea-

tures of A occur, rather than destroying key fea-
tures or creating new ones.

We have chosen the horizontal segment shown
in fig. 6, where x, =1 and x; extends from 4.5 to
5.5. Fig. 7 shows the behavior of 7’ along the
segment, as revealed with a resolution éx = 0.005.
There are intervals where 7° is small and varies

4

T
sl .
2t ' :
| -

O 1 1 i 1 [ [ 1 [ 1 4
48 (upper values) 4.85 X 4.9
5.35 (lower values ) 5.4 3 5.45

Fig. 8. Values of 7’ at intervals 8x = 0.0005 along segments of horizontal line in fig. 5, extending from x3 = 5.35 to x3=5.45 (lower

values), and from 4.7 to 4.8 (upper values).
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i 1 i i 1

2 1 1 1 i
4.7139268125740 (upper values)

47139265 (lower values)

745 750
270

X
3 275

Fig. 9. Values of 7/ at intervals dx=0.5x10"% along segment of horizontal line in fig. 5 extending from x;=4.7139265 to
x5 =4.7139275 (lower values), and at intervals 8x — 0.5 X 1071* along segment from 4.713926812574 to 4.713926812575 (upper
values). Lower dots have been replaced by circles where they would otherwise be confused with upper dots.

smoothly; these correspond to locations in fig. 6
where no curves are evident, and presumably lie
between curves. There are other intervals where 7’
is generally larger and varies erratically. The clus-
ters of high values showing peaks at x;=4.53,
4.715, 4.78, 4.87, and 5.015 correspond to recog-
nizable curves in fig. 6; the weaker peak at 5.285
presumably corresponds to a downward and left-
ward extension of a line of points just to the right
of the square in fig. 5.

In fig. 8, we decrease 8x to 0.0005 in the inter-
val from 5.35 to 5.45, where the behavior is smooth,
and from 4.7 to 4.8, where it is erratic. The smooth
interval remains smooth, and shows no evidence of
finer structure. The erratic interval proves to

possess smooth and erratic subintervals, and, in
fact, the upper curve in fig. 8 shows no qualitative

difference from fig. 7, except for a general upward

displacement. There is no suggestion that maxi-
mum values of 7/ have been encountered.

With greater resolution, say with 6z a million
times smaller, we would expect nearly all intervals
of length 200 8x to be smooth, with only a small
fraction of them resembling fig. 7. Resolving the
whole segment to this degree would require exces-
sive computation, but we can obtain similar results
by choosing intervals at random, or in any other
manner not guided by the values of /. We have
examined the ten intervals of length 10~° begin-
ning at 4.55,4.65,...,5.45, with 6x=0.5x10"8
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Only the interval beginning at 4.75 shows any
erratic behavior, and this occupies less than five
percent of the interval.

The situation is different when we decrease 6x
stepwise by factors of ten, subjectively choosing at
each step an interval which exhibited erratic be-
havior during the previous step. The lower curve in
fig. 9 shows the behavior of 7’ in an erratic
interval of length 107¢ with 8x=0.5x10"%
Again, the curve is much like fig. 7, although the
smooth subintervals are somewhat more promi-
nent. In the upper curve in fig. 9 the interval has
been decreased stepwise to 1072, and 8x = 0.5 X
104, The qualitative behavior is still unchanged.

Upon nearly exhausting the “double precision”
employed, we find no sign that 7’ possess an
upper limit. Moreover, we have not found any
smooth local maxima of 7/, which we would ex-
pect if the segment passed through gaps in some of
the curves, whereas smooth local minima abound.

Whenever we have noted an exceptionally high
value of 7/, we have succeeded in finding a still
higher value nearby, by increasing the resolution.
There is therefore a strong suggestion that the
curves are continua, and that A” is locally the
product of a continuum and a Cantor set.

We can, in fact, estimate the Hausdorff dimen-
sion of the Cantor set by noting what fraction of
the segment remains unresolved into smooth inter-
vals as 8x is successively decreased. Since the end
points of a smooth interval may be hard to iden-
tify, we choose the simpler procedure of asking
what fraction of pairs of points on the segment
with horizontal separation dx have values of 7’
differing by 2 At or more. We assume that as dx
varies, this fraction is proportional to the fraction
which remains unresolved into smooth intervals
under some other definition.

We choose the 200 values of x; used in fig. 7
(omitting the last value) as reasonably representa-
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Fig. 10. Number r of unresolved pairs of points (see text), out of a total of 200 points, along horizontal line in fig. 5, with resolutions
dx from 1072 to 10 ® (upper curve), and along segment of horizontal line extending from x, = 4.7139265 to x, = 4.7139275, with
resolutions 8x from 102 to 10~4 (lower curve).
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tive first members of a pair, and determine the
number n of “unresolved” pairs as 0x decreases
by factors of ten from 1072 to 10~%. The results
are given by. the upper curve in fig. 10; 6x and n
are plotted logarithmically. The dimension should
be 1+ s, where s is the slope of the curve. For
good measure we have also chosen the values of x;
used in the lower curve in fig. 9, letting 6x de-
crease from 1078 to 10~ . The lower curve in fig.
10, which shows the results, is generally similar in
slope to the upper curve.

Although the slopes of the curves are not uni-
form, they seem to be no steeper than —0.3,
implying that the dimension is at least 0.7, and
thus suggesting that 4’ is at least 3.7. This esti-
mate is considerably higher than d. Possible R(0)
has a higher dimension than A, but perhaps the
difference occurs simply because d is ordinarily
less that d” when different points of A are visited
with different frequencies [5].

6. The directions of the curves

Whether or not the curves in figs. 4 and 6 are
continua, it seems evident that locally they possess
definite directions of orientation. These directions
are among the most noticeable features of A”. To
interpret them we note that the curves will retain
their identity if we alter x, or x,. If we should
make fig. 4 three-dimensional by adding x, as a
vertical coordinate, the curves would become
surfaces. We return to fig. 5, which effectively
shows the intersections of these surfaces with two
horizontal planes. Evidently the surfaces are nearly
vertical in the upper and left portions of the
region, but in the central portion some surfaces
intersecting x, =28 fail to reach x,=30, and
perhaps are dome shaped.

If we could make fig. 4 four-dimensional by
adding x; also, the curves would become hyper-
surfaces. We hypothesize that these hypersurfaces
are tangent to the manifold formed by U, U,, and
U,. The directions of the curves should therefore

s s — ]
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[ 1
4.75 50 5,25 Xz 5.5
Fig. 11. Vectors parallel to intersection of manifold formed by
first three Lyapunov vectors with plane x; =0, x,=30, in
region covered by fig. 6.
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Fig. 12. Same as fig. 11, in region contained in rectangle in fig.
6. Dots indicating computed points on attractor are also in-
cluded.
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be the directions of the intersection of this mani-
fold with P*. '

Since U,, U,, and Uj are the first three columns
of the orthonormal matrix U in eq. (9), any vector
in the hyperplane is orthogonal to the fourth col-
umn of U. If such a vector is also parallel to P*,
its first two components vanish, and, aside from a
scalar factor, it must be (0,0, w4, —u34).

To evaluate U at a given point X(#,), we in-
tegrate backward to some time #,, obtaining H ',
which we then factor according to eq. (10). The
procedure may be carried out even when X(t,) is
not on the attractor, in which case it will appear to
converge before finally diverging. We prefer this
procedure to the computationally simpler factori-
zation of H~! because it appears to give a better
approximation when ¢, — ¢, is small.

In fig. 11 we show tangent vectors at a grid of
points, in the region covered by fig. 6. We ob-
tained convergence with ¢, = ¢, — 2.0 at each point,
with one exception, where one more time unit
sufficed. The general positive slope, which is gener-
ally steeper in the lower portion of the figure,
agrees well with the curves. Some odd directions
appear where the curves are turning sharply, but
the resolution is not sufficient to determine whether
the vectors follow the turns. To see whether they
do, we have, in fig. 12, enlarged the region indi-
cated by the rectangle in fig. 6, where the curves
are turning rapidly. We have superposed com-
puted vectors on the available computed points,
which include some points not appearing in fig. 6.
It is evident that the vectors turn with the curves.
The one odd direction, in the lower right portion
where there are no available points, suggests that
some structure of still finer scale may be present.

7. Concluding remarks

We have chosen a dynamical system where N is
greater than in eq. (1) and 4 is closer to N than in
egs. (1). We have obtained numerical evidence that
the attractor is the product of continua and

Cantor sets. Locally, the continua extend in the
directions of U;, U,, and Uj, while the Cantor set
extends in the direction of U,. Because A; and A,
are both negative, we might have anticipated two
Cantor sets, the sum of whose fractal dimensions
could exceed unity.

The added variable merely complicates the com-
putational procedure. The more complex ap-
pearance of the two-dimensional cross section, with
many curves and direction reversals, is due entirely
to the higher fractional part of d. The same fea-
tures will appear with suitably chosen three-
dimensional flows or two-dimensional mappings.
An example of such a mapping is

Xpi1=3(1+(ax,—y,)/(a+1))cos(max,),
Yn+1 =%(1 +(ax,—y,)/(a+ 1)) sin (7ax, ),

defined for @ > 0 and x?2 + y2 < 1. Egs. (17) resem-
ble the simpler Hénon mapping [7]; they compress
the unit circle vertically, stretch it horizontally,
and then roll it up. Figs. 13 and 14 show portions
of the attractor, for a = 2.0, when d is about 1.15,
and a = 2.1, when d is about 1.35. The qualitative
resemblance of fig. 3 to fig. 13, and fig. 4 to fig. 14,
is apparent.

The Cantor sets of egs. (15), and more generally
of egs. (2), seem to be associated with the same
circumstances which are present under egs. (1).
Because A is bounded and the flow within it is
aperiodic, any point moving along its orbit must
eventually be approached asymptotically by a point
moving in from some other portion of A. Each
point carries with it, in A, a surface or hyper-
surface, extending in the direction of each
Lyapunov vector with a non-negative exponent;
there are at least two such directions. These
surfaces or hypersurfaces must also approach each
other asymptotically, and what appears to become
a sheet or hypersheet must remain at least a pair.
This pair is subsequently approached by another
pair, after which the resulting pair of pairs is
approached by another pair of pairs, etc., and the
inevitable consequence is a Cantor set.
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