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ABSTRACT

A generalized vorticity equation for a two-dimensional spherical earth is obtained by eliminating pressure
from the equations of horizontal motion including friction. The generalized vorticity equation is satisfied by
formal infinite series representing the density and wind fields. The first few terms of a particular series solu-
tion are obtained explicitly. The series appear to converge near the north pole, and determine a model of a
polar air mass. Within the air mass, the coldest winds are northeasterly and the warmest are southwesterly,
while the coldest air of all is at the north pole. Heating occurs in the northwesterly winds and cooling in the
southeasterlies, while aside from the effect of friction the air mass as a whole is cooled. The energy balance of
the air mass is investigated. It is suggested that an analogous distribution of heating and cooling may be in-
strumental in maintaining the general circulation of the atmosphere.

¢

1. Introduction

Among the many phenomena of meteorology not
vet understood, perhaps none has defied a sound
physical explanation more than the nature of the
general circulation of the atmosphere. Some of the
laws upon which such an explanation must be based,
such as the laws governing friction in the atmosphere,
are not precisely known. But the problem of the
general circulation appears to remain unsolved pri-
marily because of the complexity of the system of
hydrodynamic and thermodynamic equations express-
ing the laws as they are known.

Some success in explaining certain features of the
general circulation has been attained through the use
of analytic models. In such models the wind, density,
pressure, and temperature are expressed as analytic
functions of space and time. These functions must
satisfy simultaneously an equation of continuity,
three equations of motion, a physical equation, and
an equation of state. Additional equations are neces-
sary if the water in the atmosphere is considered.

The equations become simpler when applied to two-
dimensional models, in which the atmosphere is
assumed to occupy a single horizontal stratum. One
may then eliminate the pressure from the equations of
horizontal motion by cross-differentiation, obtaining
an equation which will be called the generalized vor-
ticity equation. Any wind and density fields satisfying
the equation of continuity and the generalized vor-
ticity equation determine a model. The pressure and
temperature fields, as well as the distribution of heat-
ing and cooling, may be obtained by substituting the
density and wind fields into the remaining equations.
The determination of pressure and temperature is

! This research was performed under contract with the Air
Force Cambridge Research Laboratories.

often omitted when the primary interest is in the wind
field.

Among the two-dimensional models which have
been used to study certain features of the general
circulation is one obtained by Rossby [4] which de-
scribes the motion of long waves in the zonal wester-
lies. Rossby considers a homogeneous atmosphere
in which density is constant and friction is absent.
For such an atmosphere the generalized vorticity
equation reduces to the more familiar simple vorticity
equation, which states that the absolute vorticity of
each air particle remains constant. The equation of
continuity allows the introduction of a stream func-
tion to represent the wind field. Any stream function
satisfying this vorticity equation determines a model.

One method of solving nonlinear partial differential
equations, such as the simple vorticity equation, con-
sists of linearizing the equations. Using this method,
Rossby obtained a solution of the vorticity equation
for a flat earth with a variable Coriolis parameter.
Rossby’s model leads to a well-known formuig ex-
pressing the speed of troughs in the zonal westerlies
in terms of the wave length of the troughs and the
speed of the westerlies.

Rossby’s solution of the vorticity equation was ex-
tended by Haurwitz [2] to cover the entire (two-
dimensional) atmosphere of a spherical earth. Sub-
sequently, Craig [1] obtained solutions of the vor-
ticity equation without resorting to linearization.
Craig’s solutions were augmented by Neamtan [3].

Although Neamtan’s models appear to have been
devised for studying the motion of waves in the wester-
lies, they may be treated as models of the entire gen-
eral circulation. Fig. 1 illustrates a particular solution
obtained by both Craig and Neamtan. The out-
standing f{eatures are the presence of westerly winds
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at high latitudes and easterlies at low latitudes, with a
quasi-elliptical polar cyclone and two subtropical
anticyclones. The balance between westerly and
easterly winds is typical of the circulation at low
levels. Some of Neamtan's wind fields differ from the
above wind field by a constant angular velocity to-
ward the east, and resemble more closely the circula-
tion at upper levels.

Although the models discussed above may be ap-
plicable to a number of phenomena, they cannot be
used to investigate any features of the general circula-
tion which depend either upon heat exchanges (since
the density is not allowed to vary) or upon friction.
In particular, they cannot be used to study the energy
balance of the atmosphere or the balance of absolute
angular momentum about the earth’s axis. It is
worth noting that the wind field of fig. 1 would
satisfy the vorticity equation if its direction were
reversed. It is thus suggested that the presence of
middle-latitude westerliesand tropical easterlies instead
of middle-latitude easterlies and tropical westerlies may
be a result of heat exchange or friction or both.

It is easily shown that in a dry, homogeneous
atmosphere the ratio of the total potential energy to
the total internal heat energy is constant. Generation
of kinetic energy to replace that destroyed by friction
is therefore associated with vertical motion, since it is
accomplished at the expense of both internal and
potential energy. However, the vertical motions may
be confined to those necessary to reestablish the hydro-
static equilibrium upset by horizontal motions.

A study by Widger [6] indicates that the angular
momentum balance of the atmosphere involves large
vertical transports of angular momentum, and large
horizontal transports at high levels. However, some
of the angular momentum of the lower layers, which
is removed from middle latitudes and added to low
latitudes by friction, is transported horizontally
within the lower layers themselves.

Thus there mayexist two-dimensional models of
the general circulation involving density variations
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and surface friction. The possibility of obtaining such
models has been suggested by Starr [5]. One method
of constructing models is presented here. No models
of the entire general circulation have yet been ob-
tained, but models of the circulation in the north
polar region have been constructed, and they suggest
a mechanism for the energy balance of the atmosphere.

2. The generalized vorticity equation

If the frictional force per unit mass is assumed to be
directly proportional and directly opposed to the
wind velocity, the equations of continuity and motion
for a spherical two-dimensional earth may be written :

a(1/a)/dt + (R cos ¢)™?
X[aU/oN + d(V cos ¢)/d¢] = 0,

U/dt + (R cos ¢)! .
X[a(alU?)/oN + 9(aUYV cos ¢)/d¢ ]
— R'aUVtan ¢ — 2wV sin ¢ + kU
+ (R cos ¢)~1ap/on = 0,

(1)

(2)
aV/ot + (Rcos ¢)!
X [3(aUV)/N + 3(aV?cos ¢)/d¢ ]
+ R'qU%tan ¢ + 20Usin¢ + kV
+ R79p/d¢ = 0, (3)

where R = radius of earth, w = angular speed of
earth’s rotation, £ = coefficient of friction, A = longi-
tude, measured eastward, ¢ = latitude, measured
northward from equator, { = time, « = specific vol-
ume, U = Ra™'cos ¢ d\/dt = eastward momentum
per unit volume, V = Ra~td¢/dt = northward mo-
mentum per unit volume, and p = pressure.

Although the assumed frictional force is admittedly
a crude approximation to reality, it has the important
property that it must act to destroy kinetic energy
‘rather than to create it. A frictional force which
always opposes the velocity seems more typical of the
lower levels of the atmosphere than of the higher
levels.

Elimination of p from (2) and (3) yields the gen-
eralized vorticity equation

(Ra U0 vl 2 aaU+26aV+kR)Z
o cos¢aN . dg | cos N 39
alV o 9 2 da da .
+ — — aU— + ——V—2~——U—}-2szm¢)A
cos ¢ A d¢p  cos ¢ O d¢ @
1 1 %%« sin ¢ da [
+2RaAZ+———( ] A)(Vz_ U?)
R \ cos ¢ N3¢ =~ cos? ¢ O
1 ( 1 3a 9« sin ¢ 0« UV + 20V 0
R \cos’¢paN d¢® cos¢ 6¢> + 20V cos g =0,

where A = (Rcos ¢)[U/IN + a(V cos ¢)/d¢ ] is
the horizontal divergence of momentum, and

Z = (Rcos ¢)"'[dV/IN — (U cos ¢)/d¢]

is the vorticity of momentum relative to the earth. If «
is constant, A vanishes, and Z becomes proportional
to the more familiar vorticity of velocity ¢. 1f &
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vanishes also, (4) reduces to the simple vorticity equa-
tion.

If the field of any function F rotates about the
earth’s axis without change of shape with a constant
angular velocity y,

dF/ot = — y dF/o\. 5

A case of special interest occurs when the wind and
specific volume fields satisfy (5). Equation (1) then
becomes

(U — yRo™ cos ¢)/ON + d(V cos ¢)/d¢p = 0,
whence there exists a function y such that
U~ ya'Rcos ¢ = — R dy/ds, (6)
Vcos¢ = R IY/aN. (7

It is evident that for individual particles dy/dt = 0,
so that as the curves ¢ = comstant rotate about the
earth’s axis they are always composed of the same
particles, and represent streamlines of the motion
relative to the rotating systems.

In terms of Y and «, A = ¥y 3(1/a)/3\, and

] 1
Z=Zo+y(2sin¢-cos¢£)(;),

where
Y  sin ¢ oy
d¢*  cos ¢ I
is the vorticity of momentum relative to the rotating

systems. The generalized vorticity equation thus
becomes

o (&p 3Zy, oY 6Zo)

1
* 7 cos? ¢ IN?

cos ¢\ ON d¢ d¢p oA
2 (e _winy,
cos ¢ \ 9\ 3¢ d¢ oA
1 &  sing da\

+ (cos ¢ INdp cos’ o g):)
(o) - Go)

cos? ¢ \ 9\ i)

da  sin ¢ da 1 o 1 oy dy
+ (a¢2 + cos ¢£ B cos? ¢673)[cos ¢ 6—)\5;]

+kZ 2 id
o+ 2{(w + ) Py

9
2 in ¢ —
+y[( @ + ) sin ¢ Py

+k(2 sin ¢ — cos¢£;)](—2) =0. (8

When y = 0, the flow is steady. Cyclones, anti-
cyclones, and cols in the wind field then occur when
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F16. 1. Northern hemisphere streamlines for the stream func-
tion ¢ = — P3(cos 8) + 1/15P2(cos 8) cos 2\, which satisfies the
simple vorticity equation for the spherical earth. In this model
6 = colatitude, N = longitude, P; and P;? are Legendre functions
and associated Legendre functions respectively. The outer circle
is the equator.

dY/ON = 8¢y/d¢ = 0. In general, the second deriva-
tives 0% /0N%, 0%/0N0¢p, dW/A¢4* do not all vanish,
and Z, which has the same sign as { where the wind
vanishes, is positive at cyclones and negative at anti-
cyclones, and may be positive, zero, or negative at
cols. From (8) it follows that wherever the wind
vanishes, Z also vanishes and there is a col. A more
involved argument, which will not be presented here,
shows that in any neighborhood of a point where
¢ = ¢, there are points where ¢ > ¢, and points
where ¥ < ¢, provided that ¢ is analytic and not
identically constant. Therefore wind fields satisfying
the generalized vorticity equation for steady flow
with linear friction can possess no cyclones or anti-
cyclones. In view of this result, only those models
where ¥ # 0 will be considered here.

3. Solutions of the generalized vorticity equation

Since equation (8) is nonlinear in ¥ and in «, it may
be difficult or impossible to discover nontrivial solu-
tions without using infinite series. Series methods will
therefore be used to investigate solutions ¢ and «
of (8). '

If » = cos ¢, any function F, which is analytic at
the north pole and is symmetric to the extent that it
is unaltered by a rotation through 180° about the
pole, may be expressed as a combined power series in
r and Fourier series in \ of the form

-,

F = (Fij cos 258 + FU sin 2jA)7% O]

Ms

0 7=0

[

%

The coefficients F;; are not defined when j = 0.
For simplicity, attention will be confined to solutions
¢ and « of the form (9). The coefficients pi; and ps;
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in the expansion of the density p are obtained in
terms of a;; and &;; by equating the product of the
series for a and p to unity. In particular,

1 ato a1
Poo=—"y P10= """, Pu= T,

oo age’ ago’

pu=———- (10)

The expansions

sing = (1 —r)d=1—12— Lt — ...

cscp =1 -t =1+ +%t4 -

are of frequent occurrence.
In terms of 7, (8) becomes

a(é)yb 8Zy oY azo) +2 (a¢ da Y 8a>

r\dr 0N O\ Or r\dr N O\ Or
0% 10a 1 dallaydy
ar2 7 dr 2 ONE]L7r ON Or

+[1 o 16a][(1 2)(6¢)2 1 6_1!/ 2
7 OrdN 72 AN r ar 7'2<6)\> ]

o
+[kzo+2<w+y>5i]<1—r2>—%

+y[(zw+y)%+k(2+r§;)](i) 0.

When the expansions of ¢ and « are substituted into
(11), the coefficients of #%* cos 2\ and #2¢ sin 24\ in the
resulting equations are algebraic equations, which
may be solved for the coefficients «;; and &;; in terms
of ¥;; and ¥, or vice versa.

The constant term in the resulting equation is

k(4\b10 -+ 23’/?00) = 0.

Since k #= 0, a0 =
= —y/2 Oop.

From (12) and previous equations it follows that
the leading terms of the wind and pressure fields are

U= ZR(IPN COs 2)\“}‘\7/11 sin 2)\)7"‘}‘ s,
V=2R({11 cos 2N —1; sin 2\)r+- - -,

- 2a00(‘[’112+‘l_’112) _
p=poo+R? +[2(w+y)¢11+ktl/_u:| cos 2A [r 4 -
+[—kYu+2(w+y)u] sin 21

7%

(11)

(12)
— v/2¢10, and conversely 1o

~
o

o
@

LATITUDE
g

S8
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FiG. 2. Model of a polar air mass determined by the relative
stream function ¢y = — A(1 4 3 cos 2\)72. The boundary is the
relative streamline ¢ = — A/4. Solid lines are isobars, and
dashed lines are isosteres. Highest values of pressure and specific
volume occur near the southernmost portion of the air mass. The
outer circle is at latitude 45° north. In this model y = Fw,
k= jw, 4 = 3.246 X 107° gm cm™3 sec™!

In the general case, where ¥11 and ¢1; are not both
zero, there is a col in the wind field at the north pole,
and the streamlines form rectangular hyperbolas. The
pressure at the pole is higher than the average pressure
on surrounding latitudes circles, but the pressure
field has a col rather than a high at the pole, provided
that

405002@0112 + 17/112) < 4(“’ + 3’)2 + k2.

Failure of this inequality would imply wind speeds ¢
near the pole exceeding twice the speed of the earth’s
rotation, since

& = (U2 + V?) = dap?(Y1a® + $1 )R> 4+ - - -.

Differentiation of the pressure shows that if 1,2 + ¥1.2
is not excessively large, the winds resemble the
geostrophic winds, but generally are somewhat weaker,
with components toward low pressure.

A more involved argument, not presented here,
shows that even if ¢1; = ¥1; = 0, the wind field has a
col at the north pole. If the symmetry condition
leading to the expansion (9) is suppressed, the wind

i
60 20 12

0
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|
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F1G. 3. A portion of fig. 2 mapped on a Mercator projection.
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may or may not vanish at the pole, but cyclones and
anticyclones at the pole are still impossible.

Wind fields satisfying the generalized vorticity
equation without friction, such as the field of fig. 1,
may have pronounced cyclones or anticyclones at the
pole. There is therefore little resemblance between
the general frictionless solution of (4) and the general

2Ky1® Y10y 11
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solution of (4) with friction. Only special solutions of
(4) with & = 0 are also limits as £ — 0 of solutions
with & £ 0.

The coefficients of 72, 72 cos 2\, and 72 sin 2\ in the
equation resulting from substitution of the expansions
into (11) are three equations which may be written,
with the aid of (10) and (12), in matrix form,?

1 — 61011 ao
d10¢n1 2Ky + b (L — 401e® — Wn? — ¥1d) au
—4in — (L — D — @i — durd) 2Ky1* — 2y a1
—2kY10  —3Wn 3y Y20 k1o
+—1 =4 —§kYy 3o Yo )+ kY — e +yWu J=0, (13)
10 4 =3 — k¥ ¥a 3w + V¥n + kP

where K = k/y and L = 2w/y, or symbolically,

arg 2
wi|l an |+ M, %21 + my = 0.
a1 Yo

Similarly, the coefficients of 2, #2* cos 2\, #*" sin 2A,
-+, r¥cos 2n\, #*sin 2un\ are 2»m + 1 equations
which may be written symbolically

(22741} tpn+l,0
Uny ¢n+1,1
8n1 L1
o | I o, [P e =0, (19)
Ann ll/n—{-l,n
&nn ¢n+1,n

where u, and M, are square matrices of order 2n + 1
and m, is a matrix with 2%z + 1 rows and one column.
The elements of u,, M,, and m, are functions of
coefficients «;; and &;; with ¢ < # and y;; and ¥;;
with 2 < # 4+ 1. The solutions of (14) are given by

&no 1//n+1,0
Qnl ‘pn+1, 1
&ny - Yar1,1 _
= = MUp an . — Ma lmny
Qnn ‘pn+1, n
&nn l//n+1,n
and conversely,

YntLo ang
Yai1 Q1

L1 _ A1 _
L I N il R 7 ey
"l/n'i-l» n (2272
¢n+l, n ann

provided that the determinants of the matrices u» -

and M, do not vanish. For # > 1, the determination
of u,~' and M, ! is an extremely tedious process.
Numerical values could perhaps be readily obtained
with the aid of high-speed computing machines.

Substitution of an expression for either ¢ or « into
(11) vyields a nonlinear partial differential equation
with one dependent variable. Such an equation might
be expected to possess a multitude of solutions.
Evidently many solutions ¢ correspond to a given
function «, since in determining the coefficients ¢;
and §:; by (14), each coefficient ., and ¢¥,, may be
chosen arbitrarily. On the other hand, for a given
value of ¢ all the coefficients «;; and &;; are deter-
mined by (14). Therefore, corresponding to a given
function ¢ of the form (9), at most one function « of
the form (9) satisfies (11). If the series for ¢ and «
converge for sufficiently small values of 7, exactly
one function « corresponds to a given function .
Equations (6), (7), and (3) show that the wind field
is also uniquely determined by ¢, and that the pres-
sure field is determined except for an additive con-
stant Poo.

4. Models of polar air masses

In establishing particular models it is convenient
to choose ¢ and solve for «. Such a procedure has been
used by Starr [57]. The restriction of a« to positive
quantities restricts y;p to non-vanishing quantities
having the same sign as —4. The choice of the remain-
ing coefficients ¥;; and ¥;; is arbitrary.

The simplest permissible relative stream function is
therefore ¥ = y,or2. The corresponding unique wind
field evidently vanishes, and the corresponding value
of «, obtainable from (6), is

a=—3%csc ¢ y/Y=—31+3"+3'+- )y /Y. (15)
This trivial solution of (11) is of no value as a model

2 1f A, Bij, Ci; are the elements in the 7't row and the jt®
column of the matrices 4, B, C respectively, and if C = 4B, then

Ci = i AqiBsj, where 7 is the number of columns in 4, which
k=1

must equal the number of rows in B. See, for example, Bacher,
M., 1907: Iniroduction to higher algebra. New York, Macmillan,
321 pp.
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of the general circulation. Any relative stream function
¥ = ZO "y o7

determines a similarly trivial solution.
In a nontrivial model ¢ must therefore vary with
longitude. The simplest function is

¥ = (Y10 + Y11 cos 2\ + P11 sin 2072

Without loss of generality, the origin for longitude
may be chosen so that y;; = 0 and

v = — A1 + e cos 2\)r2. (16)

The quantities 4 and y have the same sign. Equation
(13) then becomes

2K 0 —6e 10/ @oo
0 2K L—'4—-(32 Olu/otoo
—4e —(L—4)—e? 2K @11/ ago

—-K

+( —2eK =0.
—%e(L+2)

The solution is

a10/ Qoo %
a11/ oo = %e
@11/ aoo 0

5L43e? / i
L—aytaxi—zae—ef 1oL —i=e)
O A U

Further coefficients in the expansion for « depend
upon the solution of (14) for n = 2.

The model defined by (16) reduces to the trivial
model previously discussed if e=0, and the series for
a reduces to (15). Evidently (15) converges rapidly
to the value o = 1.155a4 when 7 = %, or ¢ = 60°,
but converges slowly to unreasonably large values of
a when 7 is near unity. A similar behavior is suggested,
though not established, for the series for a correspond-
ing to (16). It therefore seems desirable to restrict
the model to small values of 7.

If |e] <1, the relative streamlines are quasi-
elliptical closed concentric curves. As these curves
rotate, particles inside a given curve remain inside,
and particles outside remain outside. It is thus possible
to treat some particular relative streamline as a polar
front, and to let (16) determine a model of the polar
air mass bounded by the front.

It may be possible to define the portion of the model
south of the front by a second set of functions ¢, «,
U, V, p. The front must be a relative streamline for
both stream functions, and the two pressure functions
must be equal along the front. Otherwise the two sets
of functions are independent. The functions south of
the front need not have analytic extensions over the
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north pole, and so are not necessarily of the form (9).
No attempt will be made to determine the portion of

* any model south of the front.

A typical set of numerical values e = %, K = 8,
L =32, P = po/yAR? = 166, for the dimensionless
quantities yields the numerical solution

. 0.5583
— =14 | — 0.1643 cos 2\ | 7?
o0 + 0.3110 sin 2\
0.4653
— 0.2070 cos 2\
+ | + 0.4363 sin 2\ | 7t 4 - - -,
+ 0.0504 cos 41
— 0.1014 sin 4
A—UI; = — (cos 2\)r
0.1166
+ | — 0.8286cos 2\ | 73 + -,
4+ 0.6219 sin 2)
A—I;— = (sin 2\)r,
P - 0.25
AR 166 + | — 17.00 cos 2A | 72
3 4+ 4.00 sin 2\

[ — 0.895
+ 6.649 cos 2\ ]
+ | —4.092sin 2x | rt 4 - .-
<+ 0.010 cos 4\ J

— 0.078 sin 4A

within the polar air mass. The coefficient of #¢ in the
expansion for a was determined with some labor by
solving (14) with » = 2 for the numerical case. The
expressions for U, V, and p were determined from (6),
(7), and (3). The series for a appears to converge
fairly rapidly for small values of 7.

I R=16.371 X 10% cm, w = 7.292 X 10~ sec™!,
and ag = 0.702 X 10* cm® g, it follows that
y = 0.456 X 1075 sec™!, k = 3.646 X 10~ % sec™, 4 =
3.246 X 107°% g cm™® sec™!, AR = 2.068 g cm™? sec™!
= poo X 1.452 X 10° cm sec™!, and y4R? = 6.005
X 10% g ecm™! sec™? = 6.005 mb.

Fig. 2 shows the fields of » and «, accompanied by a
few winds, as given by the above numerical expres-
sions, for a polar air mass bounded by the curve
(1 4 % cos 20)r* = 1. Some of the details are brought
out more clearly by fig. 3, which shows a portion of
the same fields on a Mercator projection. Coefficients
of power of 7 higher than the fourth were neglected in
the computations. The isobars are drawn for unit
intervals of y4AR?, or at six millibar intervals. The
pressure ranges from 980 to 1044 mb. The isosteres are
drawn at intervals of 0.08¢aq,, beginning with 1.004cq,
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and closely resemble isotherms drawn at intervals of
20C. The temperature at the north pole is 244A.

Favorable qualitative features of the model include
the northerly temperature gradient, the cold northerly
winds and warm southerly winds, the conformity of
the winds and the isobars, and the presence of cyclones
near the northernmost points of the front. Quantita-
tively the fields of «, U, V, and p are reasonable,
except in the southernmost portions of the air mass,
where «, and hence the temperature, are excessively
large. This difficulty could be overcome by choosing
for the front a curve nearer the pole, or presumably
by choosing a more complicated relative stream func-
tion ¢ to determine the model.

5. The energy balance

In two-dimensional models the concept of potential
(gravitational) energy is meaningless, and the energy
consists of kinetic energy and internal (heat) energy.
If ¢ is the magnitude of the velocity vector ¢ the
kinetic energy per unit mass is 3¢?, and its variation
is described by the equation

(—02) —dlv(pc)-l—pdlvc—k—, a7
adt

which follows from the equations of motion. The first
law of thermodynamics combined with the equation
of state shows that the rate of addition of heat to a
unit volume of atmosphere is

N pda 1 dp

adt A—lad A—1d

18
N—1ladt (18)

The internal energy per unit massis ¢,T = pa/(A — 1),
and equation (18) shows that its variation is given by

1d pa) 1dQ  pda
adt\A—1/

19
a dt a dt (19)

In these equations T is the temperature, ¢, and ¢, are
the specific heats of air at constant pressure and con-
stant volume respectively, and N\ = ¢,/c, = 1.405.
Equation (19) shows that the energy balance of the
atmosphere is closely related to the distribution of
heating and cooling.

Equations (17), (18), (19) will first be applied to
the most general model of an air mass in which ¥ and
a satisfy (5). The equation of continuity and the
divergence theorem show that if F is any function

satisfying (5),
a (F Fe
S f f [_(__) +div—]dS=0, (20)
I\ « @ ‘

f fl dF

adt
when the integration extends over the air mass, since
there is no flow across the boundary. Application of

VOLUME 7

(20) and the divergence theorem to (17) shows that

fpc,gls-l—ffpdivcdS—kffgdS=0. (21)

In the first term of (21), the integration extends around
the boundary of the air mass, and ¢, is the component
of ¢ normal to the boundary. An alternative equation,
identical term by term with (21), is

ap b da & '
ff—dS—i—ff——dS—kff—dS:O. (22)
ot o dt «a

Application of (20) to (19) shows that

[ 195~ [ [ paveas o

It cannot, of course, be concluded from (20) that
ffl/a dQ/dt d.S vanishes, since Q does not represent

a function satisfying (5). From (21) and (23) it
follows that

ff(;%“ki)¢9+fp%ﬁ=a(m)

Equations (21), (23), and (24) express respectively the
balance of kinetic energy, internal energy, and total
energy of the air mass.

The third term in (21) represents a destruction of
kinetic energy by friction. This destruction occurs at
the gain of internal energy, since frictional heating is
included in the first term of (23). It may be assumed
that friction causes no change in the total (kinetic
plus internal) energy of any given particle. The first
term in (21), which represents the work done by the
pressure forces on the boundary of the air mass,
shows that these forces transfer kinetic energy across
the boundary. The second term in (21), which is the
negative of the second term in (23), therefore repre-
sents a generation (or destruction) of kinetic energy
by the pressure forces within the air mass, at the
expense (or gain) of internal energy.

Equation (23) shows that the total heating of the
air mass equals the total kinetic energy generated
within the air mass, while equation (24) shows that
the total nonfrictional heating equals the total kinetic
energy 'transferred from the air mass across the
boundary.

In some models, the circulation within the air mass
is maintained against friction entirely by a transfer
of kinetic energy across the boundary. Such models
are of no value for investigating the mechanism of
kinetic energy generation. Among such models are
those where a is constant within the air mass, since
then the second term in (22) obviously vanishes.

In other models, some of the kinetic energy de-
stroyed by f{riction is replaced by kinetic energy

(23)
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generated within the air mass. Such models may sug-
gest a mechanism by which heating and cooling can
maintain circulation against friction.

It is also possible that the pressure forces within
the air mass may destroy kinetic energy. The kinetic
energy transferred across the boundary must then be
more than enough to offset the frictional loss. On the
other hand, it is conceivable that the pressure forces
within the air mass generate more kinetic energy than
is destroyed by friction. Kinetic energy is then trans-
ferred from the air mass across the boundary.

In the particular model illustrated by figs. 2 and 3,
particles move westward along the front and other
relative streamlines, and fixed points of the earth
move westward along latitude circles, with respect
to the moving systems. The figures therefore demon-
strate the variation with time of «, U, V, and p at
individual particles and at fixed points.

Inspection of figs. 2 and 3 shows that kinetic energy
is transferred to the polar air mass from outside,
since at a given latitude the pressure is higher on the
western boundary of the air mass than on the eastern

boundary, and ff dp/dt dS = 0. Kinetic energy

is also generated within the air mass, since, as
a particle traverses a relative streamline, p is
greater when a is increasing than when « is decreasing,

and ffp/a da/dtdS > 0. It follows that the total

heating of the air mass is positive, and the total non-
frictional heating of the air mass is negative. Applica-
tion of (18) shows that within the air mass heating
occurs primarily in the northwesterly winds, and
cooling occurs primarily in the southerly and easterly
winds. Since kinetic energy is generated within the
air mass, the model may suggest a mechanism for the
energy balance of the atmosphere.

More generally, if (Y12 + 12102 = et < 1, the
equation

(‘p” cos 2j\ - Py sin 27072 = agye  (25)

il

%

Ms
M-

defines a closed relative streamline surrounding the
north pole for every sufficiently small positive value of
a. The integral of any function over the area bounded
by a relative streamline may be expressed as a power
series in a. The following discussion will be limited to
-the first nonvanishing term of any such series.

The value 7y of 7 on the curve (25) is given by the
series

Z flO‘)a )

=1

where fi(\) = ¥10(¥10 + Y11 cos 2\ + Py sin 20)7L An
element of area is given by dS = R¥(1 — 7*)~¥dr dA,
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so that the area bounded by (25) is

S= f f Rr(14-3r14+

=R2f [3av10(¥10+¥11 cos 2h
0

< )dr d\

+¢usin 20) 14 - JdA=7RX(1 —e)~da+- - -.

If Fand G are of the form (9), and if Foo = 0,
rR?
f f ds = -
2 (1 — e?)t
>< ‘!IIOFIO - 'l/llFll - \LIIFII a2 + (26)
‘010
From (5), (6), and (7), it follows that
1dF (1 — )t (aq,aF a¢aF>
adt 7 ar ON O\ or
‘!,110 \Illl Jll
= 4| Fy Fyuy F11 e RN
1 — cos 2\ — sin 2\

From (20) it fOllOWS that if G1(>\) = Gm + G11 cos 2\
+ G4, sin 2\, then

GdF
ff o dt
o Y1 (2% Yu
f félFm Fy Fiy

Gy —Gyicos 2\ —Gysin 2\

1’2"}‘"‘

2 R \;10 ’y;ll ;11 3+ (27)
T e — a e
3 (1_82)5 10 11 _11
GIO Gll Gll

Application of (26) and (27) to the terms of (22)
shows that

c? 1 7R* Ey’R%?
_kff_ds____.____ att e,
24 2 (1—62)% a0
d 1 R?  ky*R%?
ff—’ids:— T e,
ot 2 (1“62)'} Qo0 ®
pda R Yo Yu ¥u
ffa a™" 3(1_e2)g oo eu Buja
P Pu Pu

To a first approximation, the frictional destruction of
kinetic energy and the transfer of kinetic energy across
the boundary vary as the square of the area of the air
mass, while the generation of kinetic energy within
the air mass varies as the cube of the area. In air
masses of small area, the generation of kinetic energy
is therefore insignificant. In a large air mass, the
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generation of kinetic energy may play an important
part in the energy balance. It should be noted that
these statements apply to models in which the total
density contrast is very small in small air masses, but
may be large in large air masses.

In the numerical case of fig. 2, where ¢ = £,

oo
—_— = ——aa LIS
o (1 — e’}

d 3R
ffg_a = 0_579__7Iy__a3+
a dt (1 — et}

Neglecting terms of higher order, it appears that
about one seventh of the amount of kinetic energy
destroyed by friction is generated by pressure forces
within the air mass.

If the integration is extended over the entire globe
instead of over an air mass, the first term in (21)
vanishes. Hence over the entire globe the total heating

(frictional plus nonfrictional) balances the total fric-

tion, and the total nonfrictional heating is zero. It
follows that if the model of fig. 2 can be extended over
the entire globe, aside from friction there is cooling in
the polar air mass and heating south of the polar
front.

The general circulation of the atmosphere is pre-
sumably maintained by an appropriate horizontal and
vertical distribution of heating and cooling. The model
of fig. 2 cannot picture the vertical distribution but it
suggests that the following horizontal distribution
may be instrumental in maintaining the general
circulation. If the warmest air masses lie in low
latitudes and the coldest in high latitudes, the non-
frictional heating, which must be zero for the whole
atmosphere, is positive in the former air masses and
negative in the latter. If within the polar air mass the
coldest winds are northeasterly and the warmest
winds are southwesterly, the heating is positive in the
northwesterly winds and negative in the south-
easterlies.

6. Conclusion

Elimination of pressure from the equations of
motion for a two-dimensional spherical atmosphere
yields the generalized vorticity equation, which
simplifies to the simple vorticity equation when den-
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sity variations and friction are absent. The generalized
vorticity equation may be satisfied by formal infinite
series representing density and wind fields which
rotate without change in shape about the earth’s
axis. The series appear to converge near the north
pole, and may be used to define models of polar air
masses. It is conceivable that some solutions converge
everywhere on the sphere, and may define models of
the general circulation. Except in special cases, there
is little resemblance in the polar regions between
models with friction and models without friction.

Among the simplest models of polar air masses are
some in which the coldest winds are northeasterly and
the warmest winds are southwesterly, the coldest air
of all being at the north pole. To replace the kinetic
energy destroyed within the air mass by friction, some
kinetic energy is transferred across the boundary,
and some is generated within the air mass. The polar
air mass as a whole is heated, but aside from the
effect of friction the polar air mass as a whole is cooled,
while the region south of the polar front is heated.
Within the polar air mass, heating is strongest in the
northwesterly winds, and cooling is strongest in the
southeasterlies.

It is suggested that a similar latitudinal and longi-
tudinal distribution of heating and cooling may be
instrumental in maintaining the general circulation of
the atmosphere.
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