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1. INTRODUCTION

I have been asked by the organizer of this multidisciplinary gathering
to present a few closing remarks. 1 could attempt to summarize
everything that has transpired here, but any such effort would
necessarily be superficial. Instead I shall discuss a specific topic
which appears to be of falrly general relevance.

In a good number of the communications presented, the results have
involved the use of low—order models. The discussions that have
followed the presentations have suggested that the rationale for these
models has not always been appreciated by the audience. I have
therefore decided to speak about the construction and potential use of
low-order models. My discussion will deal with the procedures commonly
used in meteorology, and the illustrative examples will be drawn from
meteorology; however, the methods described should be equally
appropriate in any science where the basic laws are well enough known to
allow them to be formulated as a system of equations. In particular,
they should be applicable throughout the geophysical sciences.

2. CONSTRUCTION OF LOW-ORDER ATMOSPHERIC MODELS

Atmospheric models usually consist of systems of equations that are
supposed to approximate to some degree the physical laws governing the
atmosphere. This is in contrast to some other disciplines, where the
models may consist of empirically determined equations, or simply
postulated relationships. 1In a sense all systems of equations used in
atmospheric dynamics are approximations, and are therefore models; I am
unaware of any recent studies where, for example, the earth's surface,
aside from orographic features, has been treated as an ellipsoid rather
than a sphere. However, when the purpose of a study is to obtain
qualitative results, or even quantitative results where departures from
reality up to a factor of about two are acceptable, much more drastic
simplifications are allowable.
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One of the commonest simplifications is to replace the earth's
spherical surface by a plahe, thus permitting the use of rectangular
coordinates. Topographic features are often omitted altogether. A
Coriolis force is introduced to take into account the effect of the
earth's rotation. The rationale is that systems that would develop
above such a plane are likely not to differ too greatly from those that
actually form above the earth. Another common simplification is to
treat the atmosphere as an ideal gas, neglecting the presence of water
in its various phases. It is assumed that in a dry atmosphere the
global-scale currents, once formed, would behave much as they actually
do, although such systems as tropical cyclones, which depend upon water
for their formation and maintenance, would have no counterparts.

Two other common simplifications are the hydrostatic approximation,
which specifies a permanent balance between gravity and the vertical
pressure force, and the geostrophic approximation, which balances the
Coriolis force with the horizontal pressure force. Each of these
approximations replaces a prognostic equation, which expresses the time
derivative of one dependent variable in terms of the set of variables,
by a diagnostic equation, which expresses the contemporary value of one
variable in terms of the others. Each approximation effectively reduces
the number of dependent variables.

Whether or not the above simplifications are introduced, the model
consists at this point of a system of partial differential equations
(PDE's). Numerical methods of dealing with PDE's are becoming
increasingly common. Numerical solution requires each dependent
variable to be replaced by a number of new variables which are functions
of time alone; these are often the values of the original variable at a
prechosen grid of points. Each PDE is then replaced by a set of
ordinary differential equations (ODE's) governing the new variables.

The total number of ODE's serves as a convenient measure of the
approximate size of the model. Ultimately the ODE's will be replaced by
difference equations.

A low-order model is one where the number of ODE's is very small.
Physical simplifications may in some cases reduce the number of
equations by almost an order of magnitude, but the greatest savings come
from drastic reduction of the horizontal and vertical resolution.

When the resolution is barely sufficient to capture the features of
interest, finite differences do not afford good approximations to the
partial derivatives that they are supposed to represent. The usual
procedure is therefore to transform the PDE's into spectral form; this
is done by expressing the field of each dependent variable as a series
of orthogonal functions, such as multiple Fourier series or spherical
harmonics, and letting the coefficients in these series be the variables
in an infinite system of ODE's. This system is then truncated by
discarding all but a finite number of variables and equations; for a
low-order model this number is very small. Usually the retained
variables are the coefficients of the orthogonal functions of largest
spatial scale, although selective truncation is sometimes used.
Partial-derivative fields are obtained by differentiating the orthogonal
functions, and no spatial differencing is needed.
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in magnitude to the wind speed. We treat the atmosphere as an ideal
gas. We introduce the hydrostatic and geostrophic approximations. We
omit all thermal and mechanical forcing and damping; by so doing we
forgo the possibility of explaining the presence of the westerlies, and
simply take their existence for granted.

We next confine our attention to flow patterns in which there are
no vertical variations of the wind. In this way we effectively
eliminate the vertical coordinate as an independent variable. We then
find that the two—dimensional flow is free of divergence, so that it may
be expressed in terms of a stream function Y, while individual values of
the vorticity ¢ are conserved, i.e., { remains fixed at any point moving
with the flow. Introducing x- and y-axes pointing eastward and
northward, so that
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and letting t denote time, we find that the system of governing
equations reduces to a single PDE-~the familiar vorticity equation
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containing a single dependent variable §. In a slightly modified form,
the vorticity equation was actually used at one time for operational
weather forecasting, despite its obvious shortcomings.

We next transform the equation into spectral form by letting
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Y will be real if Wk, 4 and Y-y, -y are complex conjugates. We obtain
the infinite system of ODE's

d * .
%“t—”‘q &2+ 51 1 (me - nk)@? + 0P Yeep, gonn,ne (4D

m, n=-—o

We now note that parallel belts of westerly and easterly winds may
be described by the terms in eq. (3) countaining ¢0 L and Yo, -1L>
where L is any single value of 2. Likewise, variations with longitude
are captured by the terms containing Yy o and YK, 0> where K is a
single value of k. 1If we choose 1n1tlai condltlons for eq. (4) in which
the only nonvanishing variables are ¥, 0 and yo, L and their complex
conjugates, we find tht the only varlables whose time derivatives differ
from zero are yg ,L and WK -1 and their complex conjugates.

We can therefore convert eq. (4) into a non-trivial low-order model
by retaining only the variables Vk,0s %0,L» VK,L: and W, L and
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Low-order models cannot be expected to produce good weather
forecasts in real situations, and their main use is in theoretical
work. Their most obvious advantage is the large saving in computation
time which they afford--this is especially important when the more
powerful computers are not available--but, because they also minimize
the numerical output, they can make the subsequent interpretation much
easier. Ideally a low-order model should be tailored to fit the
particular phenomenon, such as the intensification of middle-latitude
cyclonic storms, to which it is to be applied. Physical processes that
are patently irrelevant are best omitted. Afterward, only enough
variables need be retained for an adequate representation of the
phenomenon.

If the purpose of the model is simply to describe an already
understood phenomenon, perhaps for instructional purposes, the number of
variables may be the minimum needed for its description. If instead the
model is to be used in an attempt to explain a phenomenon, or, better,
to test the hypothesis that a particular process is responsible for the
phenomenon of interest, less extreme simplification is generally called
for. Care must be taken not only that the process being tested is
unambiguously described, but also that alternative processes, which
might be the ones actually responsible for the phenomenon, are
included, since otherwise the model would be unable to choose among the
various processes, and might be forced to accept the hypothesis.

We shall present two examples of low—order atmospheric models. The
first model is used to examine the influence of superposed large-scale
vortices on a globe-encircling westerly wind current. Its purpose is
descriptive, so it need not include other processes that might affect
the current. The second model is designed to investigate the
maintenance of approximate geostrophic balance in middle and high
latitudes. Clearly a model using the geostrophic approximation, which
does mnot permit geostrophic unbalance, is not suitable for the purpose,
and a so-called primitive-equation model, where the wind and pressure
fields are not diagnostically related, is used instead.

3. A DESCRIPTIVE MODEL

A prominent feature of the atmospheric circulation is the presence of a
belt of westerly winds in the middle latitudes of either hemisphere.
These winds undergo continual fluctuations in intensity. Observations
indicate that a major process in producing these fluctuations is the
horizontal transport of eastward momentum into or out of these belts by
the large—scale superposed vortices. We shall describe the construction
of a low-order model which displays the working of this process. Since
we are not attempting to explain why other processes, such as
large-scale overturning, are not equally important in producing the
fluctuations, we do not require a model that includes these other
processes.

We begin by introducing some of the commonly used physical
simplifications. We replace the earth's spherical surface by an
infinite plane, and introduce a horizontal Coriolis force proportional
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Fig. 1. Initial streamlines for the solution of eqs. (6)
described in the text. The arrowheads indicate the
direction of flow. The stream-function interval is

4 x 10® m?s~!. The thin line extending from the bottom
to the top is a trough line. The x- and y-scales are

in thousands of km.
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their conjugates, discarding all terms containing other variables. We
note in addition that if these variables are initially real they remain
real, while if also wK -1, and -yg 1 are initially equal, they remain
equal. Letting g o X Yo, = ?, and K,-L = Z, we find that

eq. (3) becomes

P = 2X cos Kx + 2Y cos Ly + 4Z sin Kx sin Ly , (5)

while the infinite system (4) reduces to the finite system

dx
ST = -2KLYZ, (6a)
ay
Ir = 2KLXZ, (6b)
g—i = KL(k? - 1.2)(x? + L?)~ xv. (6¢)

The solutions of eqs. (6) are elliptic functions sn, cn, and dn of
time. Which variable is given by which elliptic function depends upon
the ratio K/L and the initial values of X, Y, and Z. The equations
possess the two quadratlc invariants K2X2 + L2Y + 2(kK% + 19)z? and
K*x? + L*v? + 2(K + 1.2 ) 22 equal to the average kinetic energy per
unit mass and one half the mean—square vorticity.

For a sample solution we let 27/K = 7500 km and 27/L = 10000 km,
and we choose KX = 6 m s, LY = 8 m s™", and Z = 0. The initial state,
shown in Fig. 1, represents parallel westerly and easterly currents with
central speeds of 16 m s‘l, separated by 5000 km in latitude, with
superposed north-south trough and ridge lines, 3750 km apart, between
which there are maximum southerly and northerly wind components of
12 ms™t.

After integrating for two days we obtain Fig. 2. The trough and
ridge lines have acquired cross-longitude tilts. South of the maximum
westerlies, where the arrowheads are shown, the contours are more
closely spaced in the northward flowing air than the southward flowing
air, while north of the maximum westerlies they are more closely spaced
in the southward flowing air. There is thus a net transport of eastward
momentum into the belt of westerlies. As a consequence, the westerlies
have increased in strength. Farther north, the easterlies have also
become stronger. This 1s revealed by the numerical values KX = 3.75,

LY = 8.74, and (K2 + 12 ) /27 =219 m s 1; the westerly and easterly
currents, represented by Y, now account for a larger fraction of the
kinetic energy.

Continued integration reveals that the westerlies reach their
maximum speed of 18.36 m s~ after 3.52 days and return to their
original strength after 7.04 days, thereafter repeating the cycle.
Integrations with other initial values of X, Y, and Z or other values of
K and L reveal how these values affect the period and amplitude of the
fluctuations. A detailed description of these aspects of the model is
given elsewhere [1].
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Fig. 2. The same as Fig. 1, but for t = 2 days.
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4. AN INVESTIGATIVE MODEL

It has been known for a century that the winds in middle and high
latitudes tend to blow parallel to the isobars, and that this phenomenon
implies an approximate balance between the Coriolis force and the
horizontal pressure force. This relationship makes it feasible to use
the geostrophic approximation in various models. It says nothing,
however, about why the two forces should be nearly in balance. One can,
in fact, picture an atmosphere where the forces are not in balance, in
which case there will be important fluctuations with periods of hours
rather than days. The longer-period and shorter-period fluctuations are
sometimes call slow modes and fast modes; the latter are inertial-
gravity oscillations, commonly known as gravity waves. The problem at
hand is to explain why the slow modes predominate.

It is evident that both slow and fast modes will be diminished by
dissipative processes, while the external forcing which keeps the
circulation going is primarily of low frequency, thus favoring the slow
modes. What one must explain is why the nonlinear processes, which can
produce fast modes from slow modes and vice versa, do not produce fast
modes which are strong enough to dominate the circulation. We shall
describe a low-order model which we introduced a few years ago to
address this problem [2]. The model has formed the basis for a number
of subsequent studies [3,4,5].

Like the descriptive model considered earlier, the new model uses a
plane earth and a homogeneous atmosphere. The hydrostatic approximation
is introduced, and vertical variations of the wind are suppressed.
Forcing and dissipation must be retained, however, and the geostrophic
approximation must be avoided. The model also possesses surface
topography; this presumably does not play an important role in the
development or suppression of fast modes, but it can be effective in
producing aperiodic solutions, which we desired in the original study.

The resulting PDE's are a form of the so-called shallow-water
equations; they are equally applicable to a gas and a liquid. To

transform them to spectral form, we let

o«

X = XO .2 Xj exp i(ij + ljy), (7¢)
j=1
0

v =y Iyjexp ilkjx + £5v), (7v)
. ] 3 J
i=1

P=po L zjexp i(ij + ljy), (7¢)
j=1

where %, ¢, and p are the velocity potential, stream function, and

pressure, ¥g, Yp, and py are dimensional comstants, and the values of
k; and %£; are chosen so that k; + ky + k3 = 0, 2 + 42 + 23 = 0, and
k142 —xlﬂz = 0 but are otherwise unrestricted. We then truncate the
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Fig. 3. Variations of y, (heavy curve) and z, (thin curve) during
the first 8 days of a numerical solution of the 9-variable primitive-
equation model, with F, = 0.1. The values are dimensionless.
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Fig. 4 The same as Fig, 3, but from day 34 to day 42,
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system by retaining the dimensionless dependent variables x, Yi»

and zj only for j =1, 2, or 3. The resulting low-order model then
consists of nine nonlinear ODE's [27.

Fig. 3, taken from reference [2], shows the variations of vy and z
during an eight-day period, starting from arbitrary initial conditions,
with relatively weak foreing (F; = 0.1). For exactly geostrophic
conditions, y; and z) would be equal. We observe fast modes where Y1
and z] have opposite phases superposed on a slow mode where y1 and z,
are nearly the same. There is some indication that the slow modes are
decaying. Fig. 4 shows what happens after about a month. The slow mode
is behaving much as it did before, while the fast modes have become
virtually undetectable. Extension of the solution to several years
reveals no qualitative change in the slow mode, while the fast modes
appear to die out altogether.

Fig. 5, from reference [4], shows the variations of X1, Y1, and z;
when the forcing has been increased beyond the “atmospheric” range
(F1 = 0.3). Here the fast modes persist. The two cases suggest the
additional hypothesis that solutions like the one shown in Fig. 4 exist
even when F) is large, but are unstable with respect to fast-mode
perturbations when Fj exceeds a critical value. However, further
investigation [4] has failed to reveal any abrupt transition from one
type of behavior to the other, and has suggested the alternative
hypothesis that fast-mode activity varies more like a fairly high power
of Fi. If this is the case, some fast-mode activity should always be
present, except when all fluctuations die out. Clearly we are dealing
with a problem where not all questions have been answered, and where
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Fig. 5. Variations of X315 Y1, and z; during 20 days of a numerical
solution of the 9-variable primitive-equation model, with F, = 0.3,
after transient effects have died out. The central horizontal line

is the zero line. The variable remaining closest to the zero line is
X;. The variable with the most intense short-period fluctuations is z,.
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5. CONCLUDING COMMENTS

The cases which I have discussed illustrate only a few of the
potentialities of low-order models. New uses, in fact, are continually
being found. In a recent review article [6] I have described the
general aspects of low~order models in cousiderable detail. Here one
will also find a much larger selection of examples.
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