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ABSTRACT

Two states of the atmosphere which are observed to resemble one another are termed analogues. Either
state of a pair of analogues may be regarded as equal to the other state plus a small superposed “error.”
From the behavior of the atmosphere following each state, the growth rate of the error may be determined.

Five years of twice-daily height values of the 200-, 500-, and 850-mb surfaces at a grid of 1003 points
over the Northern Hemisphere are procured. A weighted root-mean-square height difference is used as a
measure of the difference between two states, or the error. For each pair of states occurring within one
month of the same time of year, but in different years, the error is computed.

There are numerous mediocre analogues but no truly good ones. The smallest errors have an average
doubling time of about 8 days. Larger errors grow less rapidly. Extrapolation with the aid of a quadratic
hypothesis indicates that truly small errors would double in about 2.5 days. These rates may be compared
with a 5-day doubling time previously deduced from dynamical considerations.

The possibility that the computed growth rate is spurious, and results only from having superposed
the smaller errors on those particular states where errors grow most rapidly, is considered and rejected. The
likelihood of encountering any truly good analogues by processing all existing upper-level data appears
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to be small.

1. Introduction

The physical laws which govern the behavior of the
earth’s atmosphere may be formulated as a system of
differential equations. The problem of weather fore-
casting may be identified with the problem of discover-
ing, by one means or another, a particular solution of
these equations, whose initial conditions correspond to
the present state of the atmosphere. In practice, all
methods of forecasting future states of the atmosphere
which have met with reasonable success have consisted
of forward extrapolation from the present state, or from
some recent past state, although many of the fairly
successful procedures have made little or no direct use
of the governing physical laws. Nevertheless, even
when the procedure is entirely empirical, what is being
sought is identifiable with a solution of the governing
equations.

As the process of observing the atmosphere is steadily
improved and the technique of forecasting is continually
refined, the frequent successful forecasts continue to be
accompanied by occasional spectacular failures. The
question as to whether there is a limit to the accuracy
with which forecasting is possible has therefore naturally
arisen. Recently there has been considerable interest in
those errors in prediction which necessarily arise be-
cause the state of the atmosphere cannot be observed
with complete precision.

1 The research reported in this article was performed under the

sponsorship of the Air Force Cambridge Research Laboratories,
under Contract AF 19(628)-5826.

The atmosphere is an unstable system; i.e., separate
solutions of the governing equations originating from
slightly different initial conditions will in general di-
verge, until ultimately they may bear little resemblance
to one another. Evidence that this is so is the absence of
any exact periodicities of appreciable amplitude, other
than the diurnal and annual periods and their overtones.
As indicated by the writer (1963), a stable system will
ultimately acquire a periodic behavior.

The errors in estimating the current state of the
atmosphere are due mainly to omission rather than
inaccuracy. Even over populated land areas, systems as
large as thunderstorms occurring between observing
stations may remain undetected. Assuming that there
is a limit to the precision with which the atmosphere
may be observed, we may conclude that the range at
which acceptable predictions are possible is limited by
the rate at which two solutions of the governing equa-
tions, one originating from the exact present state of
the atmosphere, and one from the present state as it
is believed to exist, will diverge from one another.

It has generally been assumed that the growth of
small errors, i.e., small differences between states of
the atmosphere, will be quasi-exponential. As an error
becomes larger, the growth rate should diminish.
Ultimately, all systematic growth should cease, and
the magnitude of the error should oscillate about a
value equal to the magnitude of the difference between
two states chosen at the same time of the day and year
but otherwise randomly. The slackening and ultimate
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cessation of the growth may be attributed to processes
represented by nonlinear terms in the governing equa-
tions, since, if the equations were strictly linear, the
quasi-exponential growth would continue indefinitely.

In recent literature the average doubling time for

initially small root-mean-square (rms) errors in the
wind and temperature fields has assumed a prominent
position. Most studies aimed at determining the doubl-
ing time have been based upon the numerical integra-
tion of systems of equations designed to resemble the
equations governing the atmosphere. Separate solu-
tions originating from slightly different initial states
are compared with one another.

The best known studies of this sort were performed
by Smagorinsky, Mintz and Leith, who used systems
of equations which they had previously developed for
studying the general circulation of the atmosphere
(Smagorinsky, 1963 ;Mintz, 1964; Leith, 1965). Charney
el al. (1966) have summarized the results of these
studies, and have concluded that a reasonable estimate
of the average doubling time is 5 days. Subsequent
studies (e.g., Smagorinsky, 1969) agree fairlv well with
this conclusion.

A recent theoretical study by Lorenz (1969) indicates
that the concept of a typical doubling time for small
errors of arbitrary form may be ill-founded. Errors in
observing the structure of a thunderstorm, for example,
should double in a matter of minutes rather than days.
However, when our picture of the present state of the
atmosphere is based upon values of the weather ele-
ments at stations or standard grid points separated by
several hundred kilometers, information concerning the
smaller scales of motion is almost completely lacking,
i.e., the errors in these scales have already acquired
their limiting magnitude. In that event, there may well
exist an average doubling time—perhaps a few days—
for errors in scales large enough to be resolved by the
network.

The purpose of the present study is to estimate the
growth rate of small errors not by solving systems of
equations but by recourse to observational data. As
noted, the conclusion that small errors must eventually
become large follows from the data, which reveal a
lack of periodicity. It seems logical that quantitative
statistics derivable from the data may indicate in
addition the rate at which these errors will grow.

The only statistics which we can presently suggest as
being suitable for our study are those based upon
naturally occurring analogues. By enalogues we mean
two states of the atmosphere which resemble each other
rather closely. Each state may then be looked upon as
equivalent to the other state plus a reasonably small
“error.” By observing the behavior of the atmosphere
following the occurrence of each state, we may de-
termine the rate at which the error grows. We exclude
as analogues those states which resemble each other
solely by virtue of occurring close together in time,
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since the errors in this case cannot be expected to show:
any systematic growth. ,

In a recent paper, hereafter referred to in this study
as R, Lorenz (1968) has described a procedure for per-
forming the necessary computations. In the present
study we have carried out the procedure, with certain
modifications. Our computations are based upon data
extracted from 5 years of upper-level weather maps.

In R it was anticipated that a few years of data might
not yield even a single pair of weather situations quali-
fying as “good” analogues. This has indeed proven to
be the case. Accordingly, if we are to draw any con-
clusions at all, we must base them on the behavior of
decidedly mediocre analogues. As indicated in R, dif-
ferences between mediocre analogues may be expected
to amplify more slowly than differences between good
analogues, since the nonlinear effects play a greater
role when the errors are large.

In the following sections we describe our computa-
tional procedure and present our numerical results. In
brief, we find that the best analogues encountered in
the data possess rms differences which on the average
amplify by a factor of about 2!/% in 1 day. The average
doubling time for small errors is thus indicated as
being not more than 8 days.

Presumably, however, the doubling time is consider-
ably smaller. We cannot say how much smaller it is
without introducing additional hypotheses which cannot
be readily verified from the data. One plausible hypo-
thesis leads to a doubling time of between 2-3 days.

In any event, our estimates agree with those ob-
tained by numerical integration to within a factor of
less than 2. Ultimately, we may hope that theoretical
and observational studies will attain much closer agree-
ment; meanwhile, the agreement between theory and
observation obtained so far is gratifying.

2. Procedure

Our first task is that of selecting a suitable measure
for the difference between two states of the atmosphere.
Ideally, two states should be considered similar only if
the three-dimensional global distributions of wind,
pressure, temperature, water vapor and clouds, and the
geographical distributions of such environmental factors
as sea-surface temperature and snow cover, are similar.
Also the states should occur at the same time of the
year, so that the distributions of the solar energ
striking the atmosphere will be similar. '

There are presently in existence many rather large
collections of surface and upper-level weather data.
Some of these contain observed values of the weather
elements at networks of observing stations. Collections
of this sort are not particularly suitable for the present
study, because of the large gaps between stations over
oceanic regions. We therefore turn to other data collec-
tions, which contain interpolated values at regularly
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spaced grids of points. These also prove to be inadequate
for determining differences between states of the
atmosphere, if we demand that our measure of the
difference shall fulfill all the requirements which we
have set forth.

In general, the data collections do not include global
distributions of environmental factors. Water-vapor
and cloud data, if present at all, are not reliably inter-
polated over the oceans. Even wind and pressure data,
if both are present, are generally not independent, since
they are usually interpolated from weather maps where
the geostrophic relation has been employed in the
analysis. In those cases where the wind and pressure
fields have been analyzed separately, the interpolations
over regions of sparse data again tend to be inadequate.
Likewise, temperature and pressure data are not inde-
pendent, since they have been forced to satisfy the
hydrostatic relation. Finally, it is doubtful that any
weather elements can be reliably interpolated over the
vast oceanic regions of the Southern Hemisphere.

We therefore find it expedient to regard two states of
the atmosphere as similar if the three-dimensional
pressure distributions over the Northern Hemisphere
are similar, or, equivalently, if the distributions of
height as a function of horizontal position and pressure
are similar. Accordingly, we have obtained, from the
National Center for Atmospheric Research, values of
the heights of the 200-, 500- and 830-mb surfaces, twice
daily for the 5 years 1963-67. These data were in turn
obtained from the National Meteorological Center,
and consist of values at the “NMC grid” of 1977
points, occupying an octagonal region centered at the
north pole and covering about three-fourths of the
area of the Northern Hemisphere.

Primarily to reduce the required amount of com-
putation, we have extracted from the NMC grid a
smaller grid of 1003 points, arranged as the light
squares of a checkerboard. Each point therefore repre-
sents an area of nearly 200,000 km?. Each pressure level
is assumed to represent one-third of the mass of the
atmosphere.

We shall let p,, p,, ps denote 200, 500, 850 mb, re-
spectively. We shall let sy, - - -, 51003 denote the positions
of the grid points, in an arbitrary order. Finally, we
shall let 4, ---, 3652 denote the observation times in
chronological order, beginning with 0000 GMT 1
January 1963, and ending with 1200 GMT 31 December
1967. Letting z:;. denote the height at pressure p;
grid point s;, and observation time #, our data then
consist of a possible 10,988,868 values of z;;;. Of these
values, a total of about 3%, were missing from the
collection.

. At this point we could measure differences between
states of the atmosphere in terms of differences between
height fields. We could also use differences between
horizontal height-gradient fields, representing dif-
ferences between wind fields, or differences between
vertical height-gradient fields, representing differences
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between temperature fields, or some combination of
these. We have chosen the simplest alternative, i.e.,
differences between height fields. Accordingly, we first
let
1003
Dil=3% (Zij—LZin)?,

J=1

1)

so that D, is proportional to the rms difference between
the height fields at times ¢, and #;, at pressure p;.

Since the heights of isobaric surfaces tend to vary
considerably less in summer than in winter, we may
anticipate that analogues defined entirely in terms of
values of Dy will show an unrealistically high pre-
ference for summer. We therefore let

@

where D is an estimate of the expected or climatolo-
gical normal value of D,/ for the times of year at which
t. and £ occur. We choose ¢=16/log2, so that an in-
crease in Ei: by 16 units represents an increase in
D1 by a factor of 2.

As a final measure of the difference between two
states, we let

Eg=3c(logDs?—logDui?),

3
Eu=% 2 Eum. 3

i=]

We also find it useful to introduce an average rms
height difference X; by letting

€]

For convenience, we round off the values of £;; to the
nearest integer. In effect, different values of Ej; repre-
sent different categories of analogues. Within each
category, the extreme rms height differences differ by
a factor of 211, We note that for randomly chosen
states, Ex=0 and X;=1.

It seems unlikely that two states of the atmosphere
occurring at different seasons will resemble each other
closely, while, even if they should, they cannot be ex-
pected to vary similarly, because the fields of heating
are dissimilar. Hence, we have restricted our com-
putations to values of Ey; for which the times of year of
t» and {; are within one month of each other. More
precisely, we have computed Ej; only for values £ and
! where I—k=p-+730g, where —60=<p=60 and
g=1, 2, 3 or 4. For purposes of comparison, we have
also computed Ey; for those cases where 0<p=<60 and
g=0, but we have not included these cases in the subse-
quent computations, since we wish to exclude as
possible analogues any pairs of states which are fairly
close together in time.

Moreover, to reduce the amount of computation

Ekl=6 lOngz.

'further, we have computed Ej; only for odd values of

k. Thus, the leading member of a pair of states always
occurs at 0000 GMT. We feel confident of not over-
looking any good analogues through this simplification,
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because of the likelihood that if the states at times #
and #; are good analogues, the states at ;41 and &4y,
or those at #_; and #;;, will also be reasonably good
analogues.

We thus have a possible total of 442,254 pairs of
states to be compared. Of these, a total of 26,110 pairs,
or about 6%, could not be compared because data for
one state or the other were missing.

To determine the values of log D2 in (2), we note
that in view of (1), if the states at times # and #; are
not expected to depend upon one another,

1008 ____ _—
Dul=3 (i —2Z:5Ei0+3580). ®)

J=1
Here a bar denotes a climatological normal. We have
first estimated Z;; and z;® for each pressure p; and

each point s;, for the 73 times of year corresponding to
k=75%, 153, ---, 725}, by means of the formula

1 10 4

fojk=5— 2 2 ziE, (6)

0 p=1 g=0

and an analogous formula for z? where K=k—5%
- p+730g. We have then computed D;;? according to
(3), for k=353, 153, -+, 725} and I—k=—170, —60,
.-+, 70. ‘ o

However, inspection of the values of D2 so obtained
reveals that for /—k=—10, 0 or 410, they are un-
reasonably small, relative to the remaining values. The
discrepancy can apparently be explained by noting
that (5) may also be written as

1003 —_— !
Dt =2 [(Zie—Zip) 42" in?+2" 5], (M

=l

where a prime denotes a departure from a climatological
normal. Since Z;;; and Z;;; have been estimated from
samples of data, the estimates will contain sampling
errors. In general these errors will combine when
(Zijx—2i5)* is evaluated. However, when k=I, the
errors will completely cancel, while because there is
some persistence in the height fields, there will be
some cancellation when |/—%| = 10.

We have managed to remove the discrepancy by
adding 1.5 units to each value of $¢ logD;:2 when I=£,
and 0.5 units to each value when /—% is —10 or +-10.
Finally, we have used a linear interpolative scheme to
estimate logDy:.? for k=1, 3, ---, 729 and I—k= —60,
~59, ---, 60.

The question as to how rapidly initially small errors
will amplify may now be worded in terms of Fy, as
follows: When Ey; is small, how large will the values of
Eitomyiiom be, for m=1,2, - .?

3. Results

We begin with the distribution of values of Ej,
shown in Table 1. We note that the smallest value en-
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TasLe 1. Number of occurrences N, of eachlobserved value a of
Ey, and letter used to represent each value in printed output. .

N, Letter

2
—10 13
62
230
631
2053
5739
14602
30988
52606
72980
79154
69000
47785
25098
10443
3636
894
190
34

Lle
=
HY

Pt reietd
O 00T Ui G N = D s N G b 1 OV ~T 00O
NN E<dHR RO Y Z 2RI

countered is —11; this occurs only twice. The corre-
sponding value of X;; is 0.62. We find it difficult to
maintain that an error is initially ‘“‘small” when it is
already more than half as large as a random error, i.e.,
a difference between randomly chosen states. We must
therefore abandon all thought of basing our study upon
““good” analogues, and draw what conclusions we can
be examining rather mediocre analogues.

For the purpose of printing out the individual values
of Ei;, we have assigned a letter to each value en-
countered, the earlier letters in the alphabet represent-
ing the better analogues. The letters are included in
Table 1.

Fig. 1 shows a portion of the output, as printed by
the computer. Successive rows correspond to successive
odd values of %, while successive columns correspond to
successive values of /—k. Our principal concern is
therefore with the manner in which the values vary
within columns.

In the central portion we see three E’s, representing
values of —10 for E:. These E’s are among the total of
13 encountered in the study. Surrounding them are a
number of F’s and G’s. In view of the evident tendency
for low values of Ej, to cluster, it is apparent that the
13 E’s do not represent 13 statistically independent
cases, nor do the 62 F’s represent 62 independent cases.
In fact, the 2 D’s occur in adjacent columns in the same
row, the D’s and E’s together occur in a total of 6
clusters, while the D’s, E’s and F’s together occur in
19 clusters.

Immediately below the three E’s we find two G’s
and an H. These indicate that during one day the
“errors” represented by the E’s have amplified some
10-159,. On the fourth row below the E’s, we find a
Q and two R’s, indicating that the errors have in 4
days become at least as large as random errors. If typical
errors of observation resembled the errors represented
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RRSRR SSTTSSSSSSSRRRRAQQORARQRAQ=QPPPP QRR
TITTTTTTTTTITT SSRRRAPPQOPQQRRR=RAPNPQRRRQ
VVVVUVUUUUTTSRRR QPPPPPPPQRR=RRAPQRSSSSRS
UUUUUUTTS SRORQQPNNMMNNQQOR=RRQPPRS SSSRRRR
TTUTTSSSRQOQP PPNMMNPQRR=QPPPPQRRRRSSSRSS
UUTTTSRRRRRQQQQRRRSTS=RQP PQRSRAQQQARRRSSS
TTTTSSSSSSRRQRRR STT=SSSRRRRQPAQPPPQRSSRQ
TTSSSTSSRQPQOQRRS=RSRSSRQPNNPPPNNPQRQPPN
SSSSSSSRPPNPPQQ=0QPQRRAPMMMPPPPNPQQOPNNM
SSSTSSROPNNPP=PPNPQQRPNMMNPQQPP PRQQPPNNM
UUUTSSRQPPP=PPNNP POPPPN PP QRPQARRAQOOQPPP
UTSTSRRRQ=QOPNNP PPNNNNNPQQQO0Q0Q0QQPPPPR
RRRRRRQ=NNMMMN MML MMNMNPPQPQPQQQQPPPPPPPP
NNPQQ=NMLLMNNML MMMNNNMPQOQQQQ QPPN NNNMMNN
MMN=NMLLKLMLKLLLMMNMNPPPQQPPPNMMMLLMMMMM
M=MNMLKK J HGGF HHJK JLL MMMMMNPNMMMML MPPP NP P
NNMLLKKHFEEEFGGGHH JJJJKLMMMNNMNPQQQQQQNN
MMLLL JHGFGGHJ JK JKK JJJH JKKLMMMMPQRRQQP PNM
MMMML JKKL MNLMMNNNMLL KJJKKKLL MNPQQQOQP PQP
NNNMMMNGRPPPQORAPNNL JKKKLKKL MNPPPPPPPNNN
NLMMNPQQQQRRR QP PNMK K KKKKKLL MNNNNNNNNNNNP
NPPORRRRSSSSRQPPNMMLL JJKLLMMMMNP PPPPPORQ
PORRSSTTTSSRRQPPPNMMLKKKL L MMMMNNNNNNPPPP
RRSTUULITS SRROPPNNMMLMLL M4NNPQQQPQQAPQQQ0
STTUTTSSRQPPNNNMKKKLLMLMNPPQQPPQQQQQRARQ
EE b b 3 2+ 2 2 2 2 E b 2 BT g 2]
TTSSSSRQAQQAPNNNNNMNNP PQRRRRRRRRRS SRRRRQPP
TTTTSROQOPML MMLI. LMNPPQGPQARQQRRRRRQQPPPP
UTS SROQQQPMLL MLLMNPPPPPQQQQPP PPPPPPPPAPP
TSRQOPPPPNMMMLMMPNPPQRRRRSRQ0QQAAQAASSRAQ

Fic. 1. Selected values of Ey, printed out by the computer.
Meanings of letters appear in Table 1, a double dash denoting
missing data. Successive rows correspond to successive odd values
of & from 695 to 753 (14 December 1963 to 12 January 1964).
Successive columns correspond to successive values of /—% from
751 to 790 (lag of 3753-395 days).

by the three E’s (as they presumably do not), the range
of predictability would be no more than 4 days.

To determine the typical behavior of Ex; within col-
umns, without having to examine the 416,144 printed
letters individually, we have, for each pair of integers
(a,8) ranging from —11 to +9, and for each value of
m from 1 to 14, determined the number of instances
N.s(m) where the corresponding values of Ej; and
Eiiom,11am are a and 8. For m=1, i.e., for a lag of 1
day, the values appear in Table 2.
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We observe that within each row where «<0, i.e.,
where the initial error is smaller than a random error,
the distribution of 8 is centered about a value between
« and 0, but generally much closer to a. Thus, during
1 day the errors tend to amplify by a modest amount,
although they sometimes amplify a great deal and some-
times diminish. When a> 0, the errors tend to diminish
rather than amplify.

We shall not present the values of N,s(m) for larger
values of m. We simply mention that for lags of several
days, when a<0, the distribution of 8 is again centered
about a value between « and 0, but now generally
closer to 0. Thus, there is substantial amplification.

From the values of N.s(m), for m=1, --- 8, we have
determined the average value

Eqo(m) =Zﬁl BN ag(m)/ % Nag(m) )

of Eiyomyieam, for those instances where Ex=a. Anal-
ogously to Eq. (4), we also let

)

so that X ,(m) is a kind of average rms error. The values
of E.(m) appear in Table 3. In general, as m increases,
E.(m) progresses rather regularly toward a limiting
value, which is not far from 0. -

Passing by the first two rows of Table 3, where the
number of cases involved is not sufficient to form a
representative sample, we see that errors having an
initial value of —9 units increase on the average by 1.40
units during the first day. During the second day they
increase by a larger amount, 1.92 units. Errors having
smaller negative initial values likewise exhibit a greater
increase during the second day than during the first.

To interpret this behavior, we note first that since
Nag(m)=Ngo(—m), values of E,(m) for negative

Eq (m)=clogXa(m),

TasLE 2. Number of occurrences Neg(1) of each observed value 8 of Eiye,1.2 following each observed value « of Ex by 1 day.

a B
—-11-10-9 -8 -7 —6 -5 —4 -3 -2 —1 0 1 2 3 4 5 6 7 89
-1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00
-100 3 1 4 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00
-9 1 0 1121 17 5 2 1 0 0 0 0 0 0 0 0 0 0 0 00
-8 1 6 13 4 59 S1 35 5 1 1 0 0 0 0 0 0 0 0 0 00
-7 0 1 20 59 110 151 151 79 19 0 0 0 0 0 0 0 0 0 0 00
—~6 0 0 13 50 174 407 597 433 187 48 3 0 0 0 0 0 0 0 0 00
-5 0 0 1 27 138 605 1333 1686 1076 417 82 10 0 0 0 0 0 0 0 00
—4 0 2 0 8 57 477 1689 3700 4332 2473 746 117 15 1 0 0 0 0 0 00
-3 0 0 1 1 23 186 1107 4442 8902 8888 4300 1092 - 160 11 0 O O 0 0 0 0
=20 0 0 0 1 25 38 2520 8888 16252 14090 5982 1292 130 7 1 0 0O O 0 0
-1 0 0 0 0 0 '7 75 709 4625 14512 23841 17618 6372 1086 100 O O 0 O 0 0
00 0 0 0 0 0 9 102 1004 5977 18343 25961 17224 5424 739 54 3 0 0 0 0
10 0 0 0 0 0 1 7 131 1128 6479 17933 22777 13194 3422 360 12 0 0 0 0
20 0 0 0 0 0 O 0 8 103 1064 5510 13699 15641 7681 1708 150 5 0 0 0
30 0 00 0 0 0 0 O 4 77 719 3558 8018 7638 3333 649 37 2 0 0
40 0 00 0 0 0 o0 O 0 3 36 374 1717 3503 3031 1204 178 9 0 0
50 0 00 O 0 0 0 0 0 0 2 8 142 680 1280 1041 336 43 0 0
60 0 00 0 0 0 0 O 0 0 0 1 5 63 157 350 233 61 5 0
70 0 0 0 0 O 0 0 0 0 0 0 0 0 2 14 31 66 50 17 3
80 0 0 0 0 0 0 0 ©0 0 "0 600 -0 0 0 3 517 71
90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 10
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TaBLE 3. Average values Eq(m) of Eiysm,112m for those instances Ex=a.

a m , =
1 2 3 4 5 6 7 o8
—11 —7.00 —4.00 —2.00 —3.00 ~3.00 -3.50 ~1.00 1.00
—10 —8.00 —4.85 —3.54 —231 —1.46 —1.69 142 —1.15
-9 —7.60 —5.68 —447 ~3.60 —2.64 —1.93 —1.53 ~1.09
-8 —6.75 —5.27 —4.00 —3.04 224 -1.80 —148 —1.15
-7 —5.87 —4.54 —343 ~2.68 ~2.08 —1.57 —1.17 —1.00
-6 -5.00 —3.75 —2.87 ~214 —1.64 ~1.22 —0.96 —0.82
-5 —-416 ~3.16 240 —1.79 —137 ~1.08 —0.88 —0.77
~4 —332 —2.52 —-1.92 —147 —-1.17 —0.95 ~0.82 —0.71
-3 ~231 —1.92 —148 —1.17 ~0.93 —0.74 —0.61 —0.52
-2 —1.69 —131 —1.03 —0.82 —0.64 —0.50 —0.40 —0.36
-1 —0.89 —072 —0.57 —0.45 ~0.37 —0.31 —027 —0.23
0 —0.04 —0.08 —0.10 —010 —0.11 —0.13 —014 —0.15
1 0.79 0.54 0.36 0.22 0.14 0.07 0.02 —0.01
2 1.63 1.17 0.81 0.54 0.35 0.20 0.09 0.03
3 2.46 1.81 1.30 0.91 0.60 0.38 0.22 0.12
4 334 2.50 1.82 1.33 091 0.60 037 0.21
5 424 329 248 1.87 1.38 0.98 0.70 0.55
6 5.08 394 3.04 2.48 1.87 1.35 0.89 0.68
7 6.15 4.86 405 3.68 3.09 2.28 1.65 1.31
8 6.94 5.91 5.26 482 429 3.44 2.79 2.50
9 7.00 5.00 350 425 400 325 175 1.00

values of m may be determined from values of Nag(m).
We shall not offer a table of these values; suffice it to
say that such a table would be nearly identical to
Table 3, i.e., Eo«(—m) and E.(m) are nearly equal, for
most values of @ and m. Thus, if the direction of time
were reversed, the errors would still increase during the
first day, and would increase by a greater amount
during the second day.

Fig. 2 shows the behavior of Eq(m) as a function m,
for a=—8, —4, 0 and 4. The dots represent observed
values; the smooth curves joining them represent the
values which would presumably have been observed if
data had been available at all times of day instead of
only twice a day.

In a rather unprecise manner, we may regard an
arbitrary error as a superposition of ‘“‘normal modes,”
some of which tend to grow quasi-exponentially and
some of which decay quasi-exponentially. If the error
is initially of random shape, the growth and decay tend
to cancel, and no net growth is immediately apparent,
whence the curves in Fig. 2 have horizontal tangents at
m=0. As the decaying modes disappear, the error
becomes dominated by the growing modes, and ampli-
fies. Thus, the early behavior is like a hyperbolic cosine
rather than a simple exponential. Ultimately, the
amplification dies down and ceases because of nonlinear
effects.

In Fig. 2, the curves resemble hyperbolic cosines
during the first day (0<m<1). By the second day, the
nonlinear effects have begun to dominate.

To investigate the growth rate which prevails once
the decaying modes have become reasonably small, we
have constructed a plot of X, (m-+1) vs X.(m), on the
basis of the values of E, () in Table 3. We have omitted
values where m=0, where the decaying modes-are im-
portant, and values where a= —11 or — 10, where the

number of cases is very small, but we have included all
other values where X ,(m)=<0.95. The values appear as
dots in Fig. 3.

The increase in X, during one day is indicated by the
distance of a dot above the diagonal line. Clearly the
larger errors generally amplify less rapidly. In fact,
the dots do not deviate greatly from a straight line
passing through (1,1), with a slope of about 0.78.

Excluding the first two lines, the maximum 1-day
growth of 1.92 units exhibited in Table 3 is represented
by the dot at the extreme left. Since this dot is not
appreciably out of line with the remaining dots, it does
not seem to be an anomalous case. It corresponds to an
amplification by a factor of about 1.09. The errors in
this instance are initially greater than half as large as
random errors, and so never manage to double. How-
ever, small errors which continued to amplify by a
factor of 1.09 each day would double in about 8 days.

4r

F16. 2. Values of Eq(m) as functions of m for a=—8, —4, 0, 4.
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F1c. 3. Observed values (solid circles) of ¥'=X.(m+1) vs
X =Xg(m) for all instances where ez —9, m=1, and X=<0.95.
Also shown are the closely fitting line ¥=0.78X+0.22 and the
reference line V'=X.

Since small errors amplify at least as rapidly as large
errors, we may conclude that the typical doubling time
for small errors is not more than 8 days.

Since, however, within the limits of our data the
1-day growth rate steadily increases as the magnitude
of the error decreases, it seems likely that the average
doubling time for truly small errors is much less than
8 days. Let us visualize the appearance which Fig. 3
would assume if we possessed such a large sample of
data that some truly good analogues were present. If,
as we have been assuming, the doubling time is inde-

Iy 4

0.5

o]
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F16. 4. Segment of line ¥'=0.78X+40.22 fitting data in Fig. 3
(heavy curve), and lines to which leftward extension of heavy
curve would be asymptotic at (0,0) if doubling time for small errors
were 1, 2, 4, or 8 days, or infinity.
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pendent of the size of the error, provided that the error is
sufficiently small, the curve of Xa(m-+1) vs X.(m)
would approach the point (0,0) with a slope equal to
the 1-day amplification rate.

In Fig. 4, the heavy line segment in the upper right
represents the line best fitting the points in Fig. 3, the
scale of the new figure being considerably reduced.
The lines labeled ‘17, €27, “4” “8” and “‘«”’ are the
lines to which the extension of this segment would be-
come asymptotic at (0,0), if the doubling time for small
errors should be 1, 2, 4, 8 days, or infinity. Our task is
therefore to determine which line is an asymptote for
the leftward extension of the segment.

Clearly, we cannot do this from the observations
alone, since the points in Fig. 3 fail to exhibit any
obvious departure from a straight line. It is easy to
sketch an extension which is asymptotic to the 1-day,
2-day or 4-day line, and we cannot with certainty
eliminate the possibility that the doubling time is
nearly 8 days, since the curve might possess an abrupt
change in slope.

It follows that if we are to determine the doubling
time for small errors, we must introduce some addi-
tional hypotheses. Conceivably these hypotheses might
then be justified on the basis of theory, but they cannot
be verified by the data alone.

4. A quadratic hypothesis

The foregoing analysis of the data has yielded only
an upper bound—about 8 days—for the average
doubling time for small random errors. It is neverthe-
less possible to obtain specific estimates by introducing
certain plausible hypotheses.

We begin by recalling that the quasi-exponential
growth characteristic of small errors would continue
unabated if the governing dynamic equations were
linear. The eventual cessation of growth is due to
processes represented by nonlinear terms in the equa-
tions. Of primary importance are the quadratic terms
which represent the advection of the temperature and
velocity fields. Indeed, in some mathematical models
of the atmosphere where the presence of water is
neglected and where radiative heating is but crudely
represented, advection is the only nonlinear process.

Under the assumption that the principal nonlinear
terms in the atmospheric equations are quadratic, the
nonlinear terms in the equations governing the field of
errors will also be quadratic. If x denotes the magnitude
of the rms error, and if the field of errors consists of a
superposition of various normal modes, the nonlinear
terms in dx/dt should be of second degree in the com-
plete field of errors, but need not be determined by x
alone. If, however, the error field consists essentially
of a single normal mode, dx/d! should be reasonably well
approximated by a quadratic function of .

“We shall therefore postulate that for arbitrary values
of a, and for values of m=1, the"quantity X.(m), as
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defined in (9), is governed by the quadratic equation

dX/dm=aX—bX> (10)
We regard X as being defined for continuously varying
values of m, even though it has been computed only for
integral values.

Since X — 1 as m — o, the constants ¢ and b must
be equal. Eq. (10) then possesses the general solution

X=_14Ce o). (11)
It follows that for any positive value of 7,
X(m+n)=Xm)[er+(1—e )X (m) ] (12)

Fig. 5 shows the curve of X (m—+n) vs X (m) for several
time lags #, corresponding to values of 1, % and { for
e In each case the curve is a portion of a rectangular
hyperbola. It passes through (1,1) with a slope of ¢~*»
and through (0,0) with a slope of e*#; the latter slope
represents the amplification factor for small errors
during »# days. The middle curve is therefore the curve
which applies when # is equal to the doubling time for
small errors; the upper curve applies when n equals
twice the doubling time.

The constant ¢ may now be estimated by recourse to
the data, specifically by fitting the curve of X (m+1)
vs X (m) to the points in Fig. 3. We noted that these
points appeared to fit a straight line with a slope of
0.78; however, the curves of X{(m—+n) vs X(m) are
slightly concave downward, and the curve approaching
(1,1) with a slope of 0.75 seems to fit the data best.
This, incidentally, is the lower curve in Fig. 5. Fig. 6
shows the upper portion of this curve, together with the
points which appear in Fig. 3. The good fit speaks for
itself.

05

o] I J
[} 0.5 X 1.0

Fi6. 5. Plot of Y=X(m+n) vs X=X (m), as given by Eq.
(12), for values of # for which e™en=1, }, . Line ¥ = X is included
for reference.
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Fic. 6. Upper portion of curve labeled “$” in Fig. 5 super-
posed upon dots appearing in Fig. 3. Line ¥=X is included
for reference.

It follows that e2=0.75, whence ¢=0.29. The
doubling time for small errors, obtained by setting
esn=2 is therefore about 2} days.

The close fit exhibited in Fig. 6 cannot be taken as a
verification of the quadratic hypothesis, since other
hypotheses would also yield fairly good fits over the
limited range of X covered by the data. A cubic hypo-
thesis, for example, with X? in (10) replaced by X3,
would yield a 5-day doubling time. However, such a
hypothesis would be harder to justify theoretically.
Moreover, the data do not suggest the greater curvature
which the cubic hypothesis would demand.

Certainly there is nothing in Fig. 6 which suggests
that the quadratic hypothesis is incorrect. Pending
further development of the theory, we may accept it
as being as reasonable as any simple hypothesis which
might be introduced. We then conclude that our best
estimate of the doubling time for small errors is 21
days.

5. Further considerations

We have observed that the smaller errors encountered
in our study tend to be followed a few days later by
errors of more nearly average magnitude, We have con-
cluded that small errors tend in general to amplify, and
more particularly that truly small errors tend to double
in about 23 days. Before we can accept these conclu-
sions, we must attempt to eliminate certain other inter-
pretations which suggest themselves.

Suppose, for example, that small errors possessed no
systematic tendency to amplify at all. They might then
still undergo continual fluctuations, perhaps associated
with fluctuations of the average intensity of the synoptic
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weather systems. In that event, the individual columns
in Fig. 1 would appear very much as they do in reality.
Smaller values of E;; would tend to be followed a few
days later by somewhat larger values, and one might,
using the reasoning which we have employed, incor-
rectly deduce a doubling time of a few days.

One feature distinguishes this example from the real
atmosphere. Small errors, in spite of their fluctuations,
would not develop into large errors. Consequently, the
different columns in Fig. 1 would possess appreciably
different mean values. In reality this did not prove to be
the case.

Let us therefore modify our hypothetical example by
supposing that small errors tend to amplify, but only
very slowly, doubling in perhaps a few weeks instead of
a few days. Suppose also that fluctuations of the type
envisioned in the former example are superposed upon
the slow systematic growth. Again the individual
columns in Fig. 1 would appear very much as they
actually do, and they would in addition possess equal
mean values. Once more, regardless of whether the
conclusions which we have drawn from the actual data
are correct, the same reasoning applied to the hypo-
thetical example would yield an incorrect conclusion.

Let us attempt to locate the flaw in our reasoning. We
shall do this by considering a specific flow where small
errors do not tend to grow, and applying our reasoning
to this flow.

An example of such a flow is afforded by the well-
known ‘“‘dishpan’” experiments, specifically those ex-
periments were “vacillation” occurs. In these experi-
ments a cylindrical vessel containing water is rotated
on a turntable about a vertical axis, and is heated near
its rim and cooled near its center. In the vacillating case,
a chain of several nearly identical waves develops and
progresses about the center, while the shape and in-
tensity of the waves and their speed of progression
undergo regular periodic oscillations (cf. Pfeffer and
Chiang, 1967).

Once vacillation has set in, two states may differ
because the waves have different longitudinal phases,
or because the phases of the vacillation cycle are
different. Let us consider a case where the principal
distinction between the latter phases is in the inlensity
of the waves. In that event, among those pairs of states
possessing a specified difference in the longitudinal
phase of the waves, those where both states are at the
strong-wave phase of the vacillation cycle will have the
largest values of ;. Half a cycle later, when both states
are at the weak-wave phase, Ej; will be substantially
smaller.

Thus, Ej; will oscillate periodically, with the period
of the vacillation cycle. Small errors superposed upon a
weak-wave state will grow during the next few “days,”

say half a vacillation period, while small errors super-

- posed upon a strong-wave state will diminish. When we

average over all states, we should find that the average

error neither grows nor decays.
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Yet we have seen that the procedure used in the
preceding sections would indicate that small errors
would grow. The discrepancy occurs because we have
been tacitly assuming that errors of a given magnitude
are equally likely to be superposed upon any state. In
the case of vacillation, if the errors are those associated
with naturally occurring analogues, the majority of
errors of a given small magnitude will actually be super-
posed upon weak-wave states, whence they will tend to
grow, while most of the errors of a given large magnitude
will be superposed on strong-wave states, whereupon
they will tend to diminish. The large number of amplify-
ing small errors will thus be averaged with only a small
number of decaying small errors, and complete can-
cellation will not occur. Qur erroneous conclusion that
small errors will tend to grow will therefore have re-
sulted from superposing the majority of small errors
on those particular states where errors do tend to grow.

It therefore behooves us to see whether our study of
the real data contains a similar shortcoming. We first
ask whether small errors have a preference for certain
states, i.e., whether certain states possess numerous
fairly good analogues while other possess rather few.
A glance at the printed output, of which Fig. 1 is a
sample, indicates that this is the case. Accordingly, for
each odd value of 2 we have averaged together all the
computed values of E; and Ey. The averages range
from —2.5 to 3.4; when rounded off to the nearest
integer, these averages determine six categories into
which all odd values of £ may be grouped. The number
of values of % in each category is given in Table 4,
together with the complete distribution of Ey; for each
category of &. :

We see, for example, that in determining the growth
rate of errors where initially Ex=—4, we have been
weighting the six categories in the ratio 2100, 8323,
3472, 644, 59, 4. For a proper determination of the
growth rate, we should have weighted them in the ratio
92, 629, 668, 305, 69, 10. In that case we would obtain
considerably different values of E_s(m), if errors of a
given magnitude tended to behave differently when
superposed upon states falling in different categories.

To see whether this is the case, we have computed
values of Na.s(m) separately for each category. From
these we have determined values of E.(m) for each
category. If the real atmosphere behaved like the hypo-
thetical case of vacillation, we should expect E.(m),
for negative values of a, to increase most rapidly with
m for category —2, and to increase least rapidly, or
even decrease, for category 4 3.

We shall not present all the values of E.(m); a few
selected values will illustrate the situation which pre-
vails. Table 5 presents values of E_o(m) and E_s(m)
for categories —2, —1 and 0, the only categories where
values of Ey; as low as —8 were encountered. Table 6
presents values of E_,(m) and E_3(m) for all six cate-
gories. Neither table reveals any appreciable difference
between the behaviors of errors superposed on states
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in categories —2, —1 and 0. There is some indication
in the left half of Table 6 that errors increase less rapidly
when superposed on states in category -1, and
especially +2, but this tendency does not appear in the
right half of Table 6, which is based upon more than
twice the amount of data. In any event, category +2
includes only 49, of all states. The unexpectedly rapid
growth exhibited by errors superposed on category +3
presumably is due to the small size of the sample.

We therefore find little reason to modlfy the con-
clusions which we reached in the previous section. As
far as we can determine, the growth rates presented in
Table 3 represent essentially unbiased averages, and do
not result from superposing most of the small errors on
those particular states where small errors tend to grow
most rapidly.

6. Concluding remarks

We have assembled 5 years of upper-level weather
data, consisting of twice-daily values of the heights of
the 200-, 500- and 850-mb surfaces, at a grid of 1003
points covering the greater part of the Northern
Hemisphere. We have introduced a weighted rms height
difference as a measure of the difference between two
arbitrary states of the atmosphere. From the data, we
have then evaluated the difference between each two
states which occur within one month of the same time
of vear, but in different years. Treating such a difference
as an error superposed upon one of the two states, we
have examined the growth rates of the errors.

We encountered no truly small errors, whence we
found it necessary to extrapolate the results obtained
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TasLe 4. Number of states occurring within each category,
and number of occurrences of each observed value a of Ex; with-
in each category. See text for distinction between categories.

Category —~2 -1 0 1 2 3

States 92 629 668 305 69 10
a Number of occurrences

—11 0 0 2 0 0 0

-10 - 3 6 4 0 0 0

-9 10 23 29 0 0 0

-8 84 83 63 0 0 0

-7 137 334 157 3 0 0

—6 427 1159 411 46 10 0

-5 979 3387 1179 177 17 0

—1 2100 8323 3472 644 59 4

-3 3308 17090 8689 1703 169 29

=2 4043 26246 17873 3951 439 54

—1 3705 31893 28074 8224 970 114

0 2466 28376 33107 13233 1803 169

1 1365 19151 29845 15591 2720 328

2 656 9712 19328 14368 3261 460

3 163 3476 8551 9470 2728 710

4 33 938 2659 4142 1841 830

5 0 208 618 1310 917 583

6 0 18 126 248 228 274

7 0 0 7 14 70 99

8 0 0 0 0 19 15

9 0 0 0 0 1 3

from examining moderately small errors. With the aid

of a quadratic hypothesis, we concluded that truly small
errors would tend to double in about 2.5 days, in the
rms sense.

However, the quadratic hypothesis is at best weakly
supported by theory. The data alone yield only the
weaker result that small errors should tend to double in
less than 8 days. To enable us to make a stronger state-
ment, it would seem highly desirable to repeat the

TaBLE 5. Values of E_o(m) and E_g(m) for categories —2, —1 and 0. See text for distinction between categories.

Category m
1 2 3 4 5 1 2 3 4 5 6
E_g(m) E_g(m)
-2 —7.8 —650 —490 —4.10 -2.68 -—1.78 —6.73 -=533 -—413 ~3.14 -253 -—198
-1 —7.32 =510 —4.17 -=3.09 —230 -—-232 —674 =526 -390 -—-276 -—195 -—191
0 —-7.76 —583 —445 —388 =293 —167 —681 —523 -—3.98 328 -224 -—141
TaBLE 6. Values of E_4(m) and E_3(m) for each category of states of the atmosphere, and weighted average
values according to old and new weighting procedures.
Category "
1 2 3 4 5 1 2 3 4 5 6
—a(m) E_3(m)
-2 -339 -—-259 -198 —155 —1.14 —-0.83 —-2.56 -—198 ~158 -—131 —-1.00 -—0.66
-1 —334¢ -253 -—192 -—-146 118 —0.96 -2.53 ~—~197 -—155 -121 -098 -—0.79
0 —3.28 —248 -188 —145 -—111 -0.89 —2.51 -—188 —140 —1.09 —084 —0.68
1 —3.18 -—-238 -191 -—152 -—140 —129 -230 ~15 —114 —-094 —087 -—0.79
2 —347 260 —2.12 =207 -—169 -—176 -2.52 ~175 =127 -090 -0.70 -—0.70
3 —-2.00 -0.75 0.75 1.75 2.25 2.00 =210 ~0.72 0.59 1.66 2.34 248
Old average —3.33 —2.52 -—192 147 —117 —095 —-2.51 —-192 —148 —117 —-093 —0.76
New average —3.29 —248 —190 —148 —-119 -—1.00 —248 —~185 -—140 -110 -0.89 ~-0.72
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TABLE 7. Number of occurrences of each observed value
of Ey; for each season.

a Winter Spring Summer Fall
—-11 2 0 0 0
-10 13 0 0 0

-9 43 12 5 2

~8 163 40 6 21

-7 398 89 52 92

-6 1051 368 231 403

-5 2310 1237 927 1265

—4 4818 3445 3100 3239

-3 8547 7167 7725 7549

-2 12451 12582 14426 13147

-1 16007 17793 20782 18398

0 16720 20273 21856 20303
1 16163 17979 17300 17538
2 12353 12715 10407 12310
3 7482 6506 4730 6380
4 4014 2495 1559 2375
5 1893 678 421 644
6 613 98 54 129
7 164 16 1 9
8 32, 2 0 0
9 3 1 0 0

study, using a much larger sample of data. The prob-
ability of encountering reasonably small errors would
thereby be greatly increased.

Before we undertake any such task we should be well
advised to estimate the size of the data sample needed
for significant improvement. The smallest value of
Ey; yielded by the S-year data sample was —11, corre-
sponding to a value of 0.62 for Xi;; we might, for
example, ask how many years of data we should prob-
ably have to process in order to encounter an error only
half as large as a random error, i.e., a value of —16
for Ekz.

One is often on dangerous ground when attempting to
estimate the probability of an event so rare that it has
not yet been observed to occur; nevertheless, what we
apparently must do is to extrapolate the frequency
distribution indicated in Table 1 down to —16. Before
attempting to fit a curve to the values, let us note then
that in seeking the individual dates on which the better
analogues occurred, we found a marked preference for
winter. We have therefore divided the entire set of pairs
of states into four seasons, according to the day of the
year midway between the days of the year of the states
being compared. The beginning dates of the seasons were
taken to be 5 December, 6 March, 5 June, 5 September;
this choice was found to maximize the contrast between
winter and summer. Table 7 shows the distribution of
Ey; for each season.

The preference of the smallest and also the largest
errors for winter is apparent. With any reasonable
extrapolation of the distributions, the probability of a
value of ~16 for E;; will be so much greater in winter
than in other seasons that only the winter distribution
need be considered. We may add in passing that the
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growth rate of errors was not found to vary greatly
from one season to another; if anything, it was least
rapid in winter.

As a first approximation one might expect a mean-
square error to possess a chi-square distribution.
Although the various steps in computing X, render
it somewhat different from a simple mean-square error
[see Egs. (1)-(4)] we find that the distribution of X/
in winter is reasonably well approximated by a chi-
square distribution with 44 degrees of freedom. From
this we infer that the probability of obtaining a value
of —11 for E,; is about 800 times that of obtaining a
value of —16.

Since the number of pairs of states varies as the
square of the number of states, we could probably
accomplish our objective by increasing the length of the
data sample by a factor of 28, i.e., by processing 140
years of upper-level data. Since, however, hemispheric
observations extending even as high as the 500-mb level
have been in existence no more than 25 years, our
objective seems to be unattainable. Probably we can
gain some additional insight into our problem by proc-
essing the largest sample of data which we can assemble,
but we must not expect miracles.
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