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ABSTRACT

The equations governing a symmetrically heated rotating viscous fluid are reduced to a system of fourteen
ordinary differential equations, by a succession of approximations. The equations contain two external
parameters—an imposed thermal Rossby number and a Taylor number.

Solutions where the flow is purely zonal, and solutions with superposed “steady” waves which progress
without changing their shape, are obtained analytically. Additional solutions exhibiting vacillation, where
the waves change shape in a regular periodic manner in addition to their progression, and solutions exhibiting
irregular nonperiodic flow, are obtained by numerical integration.

For a given imposed thermal Rossby number, the flow becomes more complicated as the Taylor number
increases. Exceptions occur at very high Taylor numbers, where the equations become unrealistic because
of truncation.

For values of the external parameters where steady-wave solutions are found, solutions with purely zonal
flow also exist, but are unstable, Where vacillating solutions are found, steady-wave solutions also exist,
but are unstable. A transition between unsymmetric and symmetric vacillation is not associated with the
instability of either form of vacillation. It is hypothesized that where irregular nonperiodic solutions are
found, vacillating solutions also exist but are unstable.
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1. Regimes of flow

The incessant fluctuations of the state of the atmos-
phere are noted for their irregularity. Exact repetitions,
which would make perfect weather forecasting possible
by means of analogues, are conspicuously absent. There
is considerable doubt as to whether any exact or nearly
exact periodic components, other than the annual and
diurnal periods and their overtones, occur with detectable
amplitude in tropospheric weather data (cf. Shapiro and
Ward, 1960). If hidden periodicities really do exist, they
are very well hidden.

In this respect atmospheric flow may be contrasted
with the thermally forced flow observed in certain
laboratory experiments (cf, Fultz e al., 1959). These
experiments have frequently been looked upon as models
of the atmosphere, but they often fail to show the
irregularity found in the atmosphere. In some of Fultz’s
earlier experiments, a dishpan containing water was
rotated about its axis, and heated near its rim and
cooled near its center. Rapid rotation with heating of
moderate intensity led to a flow with irregular traveling
waves somewhat like those in the atmosphere, but
slower rotation or stronger heating led to a steady-state
symmetrical flow. In later experiments where the flow
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was restricted to an annular region, Fultz obtained
waves which progressed at a uniform rate without
changing their shape. Meanwhile Hide (1953), studying
the flow in a deep annular region, obtained waves which
underwent regular periodic changes in their shape, in
addition to their progression. He called this phenomenon
vacillation.

The flow occurring during the course of any single
experiment, after initial transitory effects have had
time to disappear, is characterized by a certain number
of degrees of freedom—the number of parameters re-
quired to specify a single instantaneous flow pattern
from among all the patterns occurring during the experi-
ment. Thus a steady symmetric flow has zero degrees of
freedom, since it does not vary with time. A flow with
uniformly moving waves has one degree of freedom,
which may be taken as the absolute longitude of a chosen
feature of a wave. A vacillating flow has two degrees of
freedom—the longitude of the wave and the phase of the
vacillation cycle. The irregular flows appear to have at
least three degrees of freedom; in the case of the atmos-
phere there are presumably many more.

Together, then, the experiments and the atmosphere
exhibit at least four distinct regimes of flow; a steady
symmetric regime, a steady-wave regime, a vacillating-
wave regime, and an irregular-wave regime. We shall
refer to these regimes respectively as ®o,®1, Rz and Ray,
the subscript indicating the number of degrees of free-
dom. Presumably ®;. may be further subdivided.
Regime Qo is called the Hadley regime, while ®;, ®, and
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Ry, together form the Rossby regime, which might, in
our notation, be denoted by ®i.y. Regime ®; will be
called the steady Rossby regime, and the waves occurring
in it, which appear steady in a suitably moving coordi-
nate system, will be called steady waves.

In attempting to account for the occurrence of both
the Hadley and the Rossby regimes in a single experi-
mental apparatus, the writer (1953) advanced the
hypothesis that steady symmetric flow is mathemati-
cally possible under all combinations of rotation and
symmetric heating, but that under certain combinations
this symmetric flow is unstable with respect to wave
disturbances of small amplitude. Waves generated by
the inevitable small-amplitude irregularities will there-
fore attain appreciable size, and symmetric flow will not
be observed experimentally in these instances.

In a more recent study, hereafter referred to as S, the
writer (1962) attempted to substantiate this hypothesis
with a simple dynamic model. In this model, steady
Hadley flow proved to be always possible. The insta-
bility of this flow proved to be a sufficient, but not a
necessary, condition for the occurrence of a Rossby
flow. For a given low value of the heating, the corre-
sponding critical rate of rotation for the development
of small-amplitude waves proved to be the same as the
critical rate for the disappearance of already-established
waves, but for high values of the heating, the two
criteria were not the same, Thus there were combina-
tions of heating and rotation for which a Hadley flow
and a well developed Rossby flow represented alterna-
tive stable states.

Guided by these considerations, we may attempt to
account for the occurrence of vacillation, and of regimes
with three or more degrees of freedom. We hypothesize
that when the Hadley circulation is unstable, at least
one steady Rossby circulation is mathematically possi-
ble. Under certain conditions one or more of these
Rossby circulations may be unstable with respect to
still further disturbances. If all the steady Rossby circu-
lations are unstable, none will be observed experi-
mentally, and the system will oscillate with at least two
degrees of freedom. It should be emphasized that the
instability of a Rossby circulation means the instability
of the entire flow configuration, and not just the insta-
bility of the zonal part alone.

We further hypothesize that when the Hadley circula-
tion and all the steady Rossby circulations are unstable,
at least one Rossby circulation with just two degrees of
freedom, i.e., a vacillating circulation, is mathematically
possible. If at least one vacillating circulation is stable,
vacillation may be observed experimentally. If all the
vacillating circulations are unstable, the system will
oscillate with at least three degrees of freedom.

Finally, vacillation may be possible even when a
steady Rossby circulation is stable, provided that the
criterion for the development of a second degree of

EDWARD N. LORENZ

449

freedom differs from the criterion for the disappearance
of an already established second degree of freedom.

As in S, we shall attempt to substantiate our hy-
potheses with a simple dynamic model. In S, a system
of eight ordinary differential equations proved sufficient
to describe the essential features of the transition be-
tween the Hadley and Rossby regimes, and between
distinct Rossby regimes characterized by distinct wave
numbers. These equations did not appear capable,
however, of describing the phenomenon of vacillation.
In this study, we shall use a slightly less drastic simpli-
fication, which will yield a system of fourteen ordinary
differential equations. The phenomenon of vacillation
will then be exhibited through the use of numerical
integration.

Throughout the study, we shall be primarily con-
cerned with the mechanism via which vacillation arises,
rather than the specific values of rotation and heating
which can lead to vacillation. If we were interested in
duplicating the results of the laboratory experiments as
closely as we were able to duplicate them in S, we should
probably have to work with still less drastically
simplified equations.

2. The spectral form of the two-layer model

Among the simplest systems of equations capable
of depicting the prominent features of baroclinic flow
are the geostrophic and quasigeostrophic ‘“numerical
weather prediction” models. One of the most feasible
means of further simplifying these models consists of
expanding each variable in an appropriate series of
orthogonal functions, and then truncating each series
to include only a specified set of orthogonal functions.
The coefficients of these functions, which become the
dependent variables in the new system of equations, may
be regarded as forming generalized spectral analyses of
the original variables. In this section we shall derive a
general spectral form for one of the numerical-prediction
models. In the following section the equations will be
specialized for the vacillation problem. Meanwhile, the
general form will remain available for other studies of
this sort.

In the geostrophic form of the two-layer model de-
scribed by the writer (1960), we denote the stream func-
tions for the nondivergent part of the horizontal flow in
the upper and lower layers by ¥+ and y—, the tem-
peratures (in the case of a liquid) or potential tempera-
tures (in the case of a gas) in these layers by §+o and
6—o, and the velocity potentials for the irrotational
part of the horizontal flow in these layers by —yx and x.
The domain of these functions may be unbounded, like
the surface of a sphere, or there may be boundaries
across which no mass flows, in which case the tangential
derivatives of ¥ and 7, and the normal derivative of x,
vanish at the boundaries. If we take the Coriolis param-
eter f to be constant, and further simplify the system
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by letting the static stability ¢ vary only with time,
and not in the horizontal directions, the equations of
the model simplify to

VA dt=— T (Y, V) — T (+,V?7), (1)
AV2r/dt=—T (V) =T (r, YY)+ V%,  (2)

80/ dt=—TJ(,6) +v%,  (3)
© 86/0l= —0v.  (4)

Here ¢ is time, J denotes-a Jacobian with respect to
horizontal coordinates, and a bar denotes a horizontal
average. The system is rendered closed by the thermal
wind equation

V0= AV2r, (5)

where A is a constant whose value depends upon the
properties of the fluid, and, in particular, upon whether
the fluid is a liquid or a gas.

Still further simplifications would result from neglect-
ing the time variations of &#. The system would then
reduce to one of the conventional two-layer models, the
original example of which was given by Phillips (1951).

To transform these equations into spectral form, we
determine a denumerable set of orthogonal functions
Fy, F1, F,, -+ which satisfy the following corditions:

L*V’Fi=—a2F;, i=0,1, ---, ©)

where L is a constant with the dimensions of distance,
dF;/9s=0, i=0,1, --- O]

everywhere on the boundary, if a boundary exists, 9/9s
denoting a tangential derivative, and

1 if i=7,

FiFj=b;= [ (8)
0 if ¢

We shall furthermore require that Fo=1, whence a,=0.
The Jacobian of two orthogonal functions will satisfy
the relation

L2J(F;,Fy) =Y ciirls, Q)
i=0
where

Cijk=L2F¢](Fj,Fk)- (10)

It is evident that ¢;js= —c;x;. From the boundary con-
dition (7) it follows that c;ju= ¢jxi= Crs;.
We now introduce the expansions

y=1L2f i il (1)
r= L S riFy, (12)
i=1
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9=ALf Y 6.F; (13)
=0

F=AL%fay. (14)

A similar expansion for x is not permissible since x
satisfies different boundary conditions. However, since
only V?x appears in (1)-(4), we may let

Vix=f i wF;. 15)

ge=1

The coefficients s, 7, 6, oy, and w; are dimensionless.
In essence, we have used L as the unit of distance and
f~1 as the unit of time.

When relations (11)-(15) are substituted into (1)-(4),
and the coefficients of like orthogonal functions are
equated, we find that

Vi=3 “;il ai7a 2~ a)oip (bt TiTe), (16)
=3 : . a7t~ e (Tt ¥ime) — aitwi,  (17)
Py
=% jél cip(Os—i0) +owws, (18)
@:-ém% (19)
while, in view of (5),
O;=7; if a;540. (20)

Here a dot denotes a derivative with respect to a
dimensionless time f,= ff. The coefficients 3 before the
double summations can be omitted if the summations
are taken over only those pairs (4,k) for which &> j,
thus eliminating repetitions. Equations (16)-(20) are
the general spectral form of equations (1)—(3).

The particular set of functions F; to be used in any
given problem depends upon the domain of the variables
¥, 7, 0, o, and x. However, the functions F; enter
equations (16)—(20) only through the coefficients a; and
cije- All that need be stated concerning the domain ate
therefore the values of a;, and of ¢ for those triples
(i,7,k) for which ¢;;,#0. If two geometrically different
domains happen to lead to the same coefficients a; and
¢sjr, they will lead to identical spectral forms of the
two-layer model.

The equations so far presented apply to the “‘adia-
batic”” form of the two-layer model, in which forcing and
dissipation of a mechanical or -thermal nature are
omitted. In many studies, including the present one, it
is essential to include these processes. A number of
schemes for this purpose are possible; a simple one is
given in S. Here there is assumed a frictional drag at
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the lower surface, proportional to the velocity in the
lower layer, and a frictional drag at the surface separat-
ing the two layers, proportional to the shear at this
surface. Likewise there is assumed a heating of the
lower layer, proportional to the difference between the
temperature (or potential temperature) of the lower
layer and a preassigned temperature field 6*, and a heat
exchange between the layers, proportional to the differ-
ence between the temperatures of the layers. The ex-
pansion for 6* is obtained by adding stars to equation
(13). If the coefficients of friction at the lower surface
and the surface separating the layers, after being made
dimensionless by dividing by f, are denoted by 2k and
k', and if the dimensionless coefficients of heating at
these surfaces are denoted by 24 and %/, the additional
terms in the spectral form of the model become

Yi=—k(p;—72), (21)
ti=kpi— (B+28) 7, (22)
bi= — h(0— o))+ h0.¥, (23)
Go=hBo— (h+2H)g0— hs*. (24)

Other assumptions concerning the nonadiabatic effects
are possible. For example, a heat exchange between the
upper layer and the environment might be added.

3. The equations of the specific model

In order to apply the general spectral equations to a
specific problem, we need to specify the values of the
constants a; and c;j. These values are determined by
the orthogonal functions F;. The appropriate choice for
the functions F; depends upon the geometry of the
domain of the flow.

In S this domain was taken to be a circular cylindrical
region, and the variables were expanded in Fourier-
Bessel series. In the present study it might be more
logical to use an annular region, since it is in such
a region that vacillation is most readily observed
experimentally.

Still another region, which is difficult to set up experi-
mentally, but is much simpler mathematically, and has
often been used to approximate the annulus, is the
infinite channel, in which the flow is required to vary
periodically along the length, with a specified funda-
mental wavelength. In this study we shall choose the
infinite channel as the domain of the flow.

If our hypothesis concerning vacillation is correct,
vacillation should be mathematically possible in a
cylindrical as well as an annular domain. It may, how-
ever, be unstable with respect to further modes of oscil-
lation, in the cylinder. Possibly these modes are not
admitted by the geometry of the annulus. In a study
using truncated series of orthogonal functions, whether
the domain be a cylinder, an annulus, or an infinite
channel, we can suppress various troublesome modes
simply by not including the orthogonal functions
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necessary to describe them. Hence the vacillation which
we shall demonstrate numerically in the infinite channel
could perhaps just as readily be demonstrated in an
annulus or a cylinder.

Introducing rectangular coordinates x and y, we
shall let the walls of the channel be the surfaces y=0
and y=wL. A suitable set of orthogonal functions is
then the set

$oo=1, (25)
Gom="V2 cosmys, (26)
Dum=2 sinmy, cosnzo, n

Dum’ =2 sinmy, sinnag, (28)

where xp=x/L and yo=v/L. These functions form a
denumerable set, and so may be identified with the
functions F;in the general spectral form of the equations.

We next truncate the series expansions (11)~(15) for
¥, 7, 0, 0, and V2 by retaining only those orthogonal
functions (26)-(28) with m=1 or 2, and with a single
value of #. We shall find it convenient to use capital
letters instead of numbers for the subscripts of specific
orthogonal functions F;, and the associated constants
and variables a;, ¢;jr, ¥i, 74, 0, w; and 6;*. Thus we shall
let ¢oo=Fo, dn=Fa, ¢u1=Fk, ¢u'=Fr, ¢de2=F,
¢n2=Fy, and ¢ny’=Fy. The functions F4 and F¢
represent the zonal portion of the flow, while Fg, Fy,
Fjr, and Fy represent superposed waves. We shall call
a wave represented by Fx and Fz a wave of the first
mode, and one represented by Fu and Fy a wave of the
second mode. (“Mode” thus refers to the form of the
y-variation.)

For the preassigned temperature field 6*, we use the
simpler expansion

0% = AL2f(§*+04%F 4). (29)

We observe that as?=1, ax’=ar?=n2+1, ac®=4,
and ax®=anx?*=n*+4. The only triples (4,7,k) for which
cijx does not vanish are (4,K,L), (4,M,N), (C,K,N),
and (C,M,L). We find from (10) that

CAKL CAMN CCKN CCML 8v2
- _ _ - ]
157«

(30)

S 4 8 8

We introduce the further symbols
B=ax"*ar’—as2)=n?/(n2+1),
B'=au(ax'—a1)= (1+3)/ -+ ),
d=ax Han’—ac?) =n?/(n241),
¥'=ay~(art—act) = (w=3)/(w'+4),
and
e=ac am?—ar?) =2,

Letting Q== —CAKL, a/Z—CAMN, and a"=—chN

= —cenr, We obtain the equations
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Yu= —k(a—04) (31)
Yr=—PBa(Wr¥a+0:04) —da" (Wn¥o+On0c) —Ex—0k) (32)
Y1=Ba(Ys¥x+046x) -+ (We¥u+0c0s) —k(Yr—0L) (33)
Yo=e (Yryn+0x0y) —ea’'Yardr+0u0r) —k(o—0bc) (34)
Ya=—B Wsat0n04)— e Wibc+020c) —k(Yu—0u) (35)
Yn=BaWapa+040r) +8" Ye¥xt+0c¥x) —k(Yy—0n) (36)
ba= — wa+kya —(k+2k)04 (37)
bx=—PBa(0pa+¥r64) —d (Onpotyntc) —(1—Bwk +hyx —(k+2F)0x ' (38)
0r=Pa(Ba¥x+Ya0x)  +6 (Oc¥uticba) —(1—B)wr +hpyr —(k+2k")61 (39)
fo=ea”"(Ox¥n+yxln) —ea’ (OaprHyubr) —(1—ewe +hpe — (k+2k)b¢ (40)
Oyr=—B'e/ (O at+¥n04)— e (OrpcHpifc) — (1—B wm~+Rba— (k+2k)0 (41)
On=PB'a'(0a¥u+¥a0u) +&"(0c¥rt+¥cbx)—(1—B)wy +kpn — (k+2k)0n (42)

fo= — o +hoot-hbo* (43)
a=—a(0x¥r—¥x0) —o (Ouhn—Vubn)+owa—ha  +hoa* (44)
0x=—a(0ra—y¥104) —o"(Bupc—ynbc) +owr —hbx (45)
0= —a(0a¢x—V¥a0xk) —a’ (Bc¥m—¥cbu)+ows —hfr (46)
bo=—a" (Oxyy —Yxn)—a" O — Y1) Fowe — hbo (47)
bar=—a/(Oxpa—¥n04) —a"(01c—y¥10¢) +oown— kb (48)
On=—a'(Ospu—Va0n) —' (0c¥x—cOx) +own —hby (49)
Go=—{(0awa+0rwx+ 010+ 0cwct 0uwr+0xwn)+hy— (h+ 2k )oo— hbe* (50)

Altogether there are 20 equations. However the six
variables w4, wxk, - - are easily eliminated. There then
remains a set of 14 ordinary differential equations in
14 variables. In the remainder of this paper we shall be
concerned with solutions of this set of equations.

4. Analytic solutions

Equations (31)-(50), although presented as a sim-
plified system, are still so complicated that a general
solution, or even the most general statistically sta-
tionary solution, cannot readily be found analytically.
Nevertheless, certain analytic solutions are easily ob-
tained. In this section we shall present analytic solutions
for the Hadley circulations, and for some of the steady
Rossby circulations. We shall then examine these solu-
tions for stability with respect to further modifications
of small amplitude.

The coefficients &, £/, &, and 4’ were made dimension-
less through division by f. As in S, we shall arbitrarily
fix the ratios of these coefficients, and let #'=%'=#h/2
=k/2. The controllable external parameters may then
be taken as 84* and k.

Seeking first the steady Hadley circulation, we ob-
serve that if all the variables with subscripts K, L, M,

or N vanish identically, the equations governing these
variables are automatically satisfied. The equations
governing y¢ and 6¢ then show that ¢ and ¢ also
vanish in a steady-state solution. The equations govern-
ing Y4, 6o, 84, and oo may then be readily solved for
their steady-state values. The steady Hadley circulation
is identical with the one determined in S; specifically

Yya=04, (51)
o= 0o*-+0.42, (52)
oco="042, (53)
while 84 is the single real root of the cubic equation
64+043=04*. (54)

As indicated in S, ¥4 and @4 are proportional, re-
spectively, to the Rossby number and the thermal Rossby
number. The ratio

R=0/042 (55)

is proportional to the Richardson number, so that the
entire steady Hadley regime is characterized by a single
Richardson number. The external parameter 84* is
proportional to the imposed thermal Rossby number,
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while 272 is proportional to the Taylor number. Under
the physical assumption that the coefficient of friction
does not vary greatly from one experiment to another,
k7! becomes a measure of the rate of rotation.

We next observe that if all the quantities with sub-
scripts C, M, or N vanish identically, the equations
governing these same quantities are automatically
satisfied. The remaining equations are then formally
identical with the entire set considered in S. The steady
Rossby circulations determined in S are therefore to be
found among the steady Rossby circulations satisfying
equations (31)-(50). These circulations contain waves
of the first mode only, and we shall call them Rossby
circulations of the first mode. Incidentally, this result
would not hold if §¢* had not been taken equal to
zero in (29).

The following equations describing these circulations
are taken directly from S. For a Rossby circulation of
the first mode,

04=0a"%G(00), (56)
where
G*(a0)=(2+35)*[ (68— B2+ (118—68)s
+(38—68%)s2—582%%T1  (57)
and
§= (l_ﬂ)_la'o. (58)

Equations (53) and (54), which hold for Hadley circula-
tions, and (56), which holds for Rossby circulations,
together form the critical conditions for the stability
of a steady Hadley flow with respect to waves of the
first mode.

For an established Rossby circulation of the first
mode,

Y= B cosw(t—lo), (59)
Y= B sinw(t—te), (60)
Ox=px+qys, (61)
0r=—qyr+ ¥, (62)
where /oo is arbitrary,
w="Fk(1455)(24-35)"18G, (63)
p=01+FGC)[1— (1-25)(2+35)768°G*],  (64)
and
g=(14BG>)~1(345)(2435)"18G (65)
are functions of ¢, alone, and
B?=(gG—p2— ¢*)lao(c9—0.42). (66)

Equations (57)-(66) relate the Rossby circulation to
04 and oy; it is related to 6,* and # through (56) and
the further relation

04%=04[1400(qG—p*— ¢ (ReG—p*—¢?)]. (67)
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We now observe that if all the quantities with sub-
scripts C, K or L vanish identically, the equations
governing these quantities are automatically satisfied,
and the remaining equations are again formally identical
with the set solved in S, with ¢ and B replaced by o
and #'. There is therefore a second set of steady Rossby
circulations satisfying equations (31)-(50). These circu-
lations contain waves of the second mode only, and will
be called Rossby circulations of the second mode. The
equations describing them are obtained by replacing
the subscripts K and L by M and N, and by adding
primes to a, 8, G, 5, w, p, ¢, and B, in equations
(56)-(67).

In Fig. 1, the two heavy solid curves labeled “1”” and
“2” represent critical conditions for the stability of the
steady Hadley flow with respect to wave disturbances
of the first and second modes, respectively, for the case
n=2. For this case, a=2.40, «'=1.92, =%, and f'=1.
The coordinates are 272 and 04*, on logarithmic scales.
The area to the right of each curve indicates the region
of instability.

We observe that curve “2” lies completely on the
concave side of the curve “1.” Hence there are no
Hadley circulations unstable with respect to waves of
the second mode which are not also unstable with re-
spect to waves of the first mode. Thus, if a stable Had-
ley circulation is established, and then &2 and 6,* are
altered in the direction of instability, waves of the first
mode will appear first. This situation is not the result of
choosing #=2, but must occur whenever o>« and
B<f'. These inequalities hold for every value of #. This
result, incidentally, is unlike the result obtained when
two different values of # are permitted together, as in
the latter portion of S, where the critical curves are
found to intersect.

The value #=2 indicates a wave length 7 L. If, in an
analogy between the channel and the cylinder, the
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F1c. 1. Critical curves for the instability of established regimes
of flow. Heavy curves 1 and 2: Instability of Hadley flow with re-
spect to waves of first and second modes. Thin solid curves 1 and
2: Instability of Rossby flow of first and second modes with re-
spect to waves of second and first modes. Dashed curve 2: Over-
stability of Rossby flow of second mode with respect to waves of
first mode. Dots locate the numerical solutions of Tables 1-5.
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width #L of the channel is identified with the radius of
the cylinder, wave-length =L in the channel corresponds
to some wave number smaller than 27, whose exact
value depends upon how far from the center of the
cylinder one chooses to measure the length of a wave.
Actually the values a=2.4 and 8=0.8 correspond most
closely to the value of a for wave number 8§ and the
value of 8 for wave number 5, as tabulated in S. In an
analogy between the channel and the annulus, 7L may
be identified with the width of the annulus, and wave-
length #L may correspond to a much higher wave
number, if the annulus is narrow.

We note, in passing, that the results presented in S
would not have been altered, except for changes in the
numerical values of a and 8, if the cylindrical region
used in S had been replaced by the infinite channel. It
does not follow, however, that the results of the pres-
ent study would be unaltered by replacing the infinite
channel by a cylinder, or an annulus. The choice of the
channel has made the coefficients caxw, camr, coxr,
and ceun all equal to zero; the corresponding coeffi-
cients in the case of the cylinder or the annulus do not
vanish. Thus the two distinct Rossby circulations which
we have found in the channel would assume more com-
plicated expressions in the annulus or the cylinder (if
they exist there at all as distinct circulations), since
each circulation would involve waves of both modes. A
similar situation could be brought about in the infinite
channel by choosing 6¢* different from zero in the
expansion for 6%.

We now consider the stability of an established
Rossby circulation of the first mode with respect to
wave perturbations of the second mode, and vice versa.
It may be anticipated that sufficiently near the heavy
curve “1” in Fig. 1, the Rossby circulation of the
first mode will differ only slightly from the Hadley
circulation. If this is actually so, it should be stable with
respect to waves of the second mode. If, near the heavy
curve “2”, the Rossby circulation of the second mode
differs only slightly from the Hadley circulation, it
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should be unstable with respect to waves of the first
mode.

If an established steady Rossby circulation of the
first mode is regarded as known, equations (34)-(36),
and the three equations obtained by eliminating we,
war, and wy from (40)~(42) and (47)—(49), form a set of
six linear homogeneous equations in the six unknowns
Yo, O¢, ¥, Om, ¥, and Oy. The coefficients in these
equations are functions of the known solution, and are
therefore not independent of time. The vanishing of the
real part of an eigenvalue of the matrix of coefficients is
therefore not a suitable criterion for the stability of the
known circulation.

To overcome this difficulty, we introduce the variables

Yro=B'Yx¥x+¥r¥i)=B, (68)
Oxo= B (YxOx+¥101)=pB, (69)
Yro=B\Yx¥r—¥1¥x)=0, (70)
8ro=B Y Yxbr—y¥10k)= —¢B, (71)
Yaro= B (Yx¥at¥yw), (72)
Ox0=B (Y xbx+¥10w), (73)
Ynvo=B Y r¥n—¥1¥n), (74)
Ono=B Y (YxOn—V10x). (75)

These variables may be regarded as coefficients in new
expansions for ¢ and 6, in a coordinate system moving
with the wave of the first mode. For the established
steady Rossby circulation of the first mode, B vanishes,
while ‘LK"_— —wg!/L, 61(2 ——wBL, '¢/L=wl,bK. and 0r=wlxk.
The superposed quantities ¥¢,0¢, ¥ 0,810, Yo, and Oxo
are then governed by a set of six homogeneous linear
equations, which are formally identical with the equa-
tions governing ¥¢,0¢, ¥, 0u, ¥, and Oy, except for the
additional terms ¥aro=cw¥yo, Haro=wlxo, Ynvo= —w¥ o,
8nxo= —wlaro. The-matrix M of the coefficients of
these equations is given by

[ -1 1 0 24X X 2pX ]
4 1+48¢ 1—3¢ 1—3¢ 1+30.
- —- gX 0 — pX X
1+40 1+40 1+40 1440 1440
. .
0 8'gX —1 1 —%;3/G+z —$8'G
Eio= | 148’ s 1425 41—-8's 4148s (76)
QX 0 ’ - / - ’ G L ' G+.—
145 145 1+s 51 s 5 14 k
w
¥X ¥pX %B’G——k 48'G —1 1
146"’ 1—8's 41—-p8s 41485 w s’ 1425
pX - X — G - G—- -
L1+ T4 5145 5 14+s k14§ 1+s
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where X=Fk"1¢/'B and s'= (1—8")~10,, and the subscript
“0” has been omitted from ¢o. The elements of I,
although dependent upon the particular Rossby circula-
tion of the first mode, do not vary with time. The
criterion for stability is therefore the vanishing of the
real part of an eigenvalue of M.

The eigenvalues are the roots of the characteristic
equation

[
> eN=0 (77)
=0

obtained by equating the determinant |9—XI| to zero.
In particular, ce=1, and co=|9M|. Because of the par-
ticular locations in 91 of the elements which contain
X, ¢¢ and ¢5 are independent of X, ¢s and ¢ are linear
functions of X2, while ¢, ¢1, and ¢o are quadratic func-
tions of X2 Tn general the coefficients ¢; are compli-
cated algebraic functions of ¢o. Ultimately, they depend
upon 8,* and k.

If values of 64* and % are found for which the eigen-
values of 9N all have negative real parts, and then
6,4* and k are allowed to vary continuously, equation
(77) may eventually acquire either a real positive root
or a pair of complex conjugate roots with positive real
parts. In the former case, (77) will first acquire a zero
root, and, in the latter case, pure imaginary roots.

The condition for a zero eigenvalue of 91 is that

Co= 0 (78)
since ¢o is the product of the roots of (77). The condition
for a pair of pure imaginary eigenvalues (provided that
there are no eigenvalues with positive real parts) is that
the left side of (77) have a factor A\*-+a?, where a0.
The sum of the terms of even degree in (77), and also
the sum of the terms of odd degree, must then each
have the factor A%4-a?, so that
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é (— 02)j62j= 0.

=0

(80)

Multiplying equations (79) and (80) by —a? and
multiplying equation (79) by ¢, we obtain [with (79)
and (80)] a set of five linear homogeneous equations in
the quantities 1, —a?, a*, —a®, @® The condition that
these equations be consistent is the vanishing of the
determinant D of the coefficients;

cog C2 Ca Cp
0 €1 €3 Cp

Ci C3 C3 0 0
Cy C2 C4 Cg 0
D=0 1 €3 Cs 0l=0. (81)
0
0

The coefficients ¢;, and hence the determinant D, are
readily computed for numerical values of ¢ and X.
Because the coefficients ¢; vary at most quadratically
with X2, they may, for any one value of o, be determined
for all values of X? as linear combinations of their
values for three particular values of X2

In Fig. 1, the thin solid curve labeled “1” is given by
the condition ¢¢=0. The curve D=0 lies far to the right
of this curve, and is not shown in Fig. 1. The curve
¢o=0 is therefore the criterion for the stability of a
Rossby circulation of the first mode. Between the two
curves labeled “1”) a stable Rossby circulation of the
first mode may exist.

It appears, then, that among the mathematically
possible circulations of the first mode, only a small
portion are actually stable, and would be expected to
occur in a physical experiment. The region of stability
would presumably be further altered in a less highly
truncated model.

Considering now the stability of an established circu-
lation of the second mode with respect to perturbations
of the first mode, we find that if new variables ¥k,

ko, - -are defined by equations analogous to (68)—
" . (75), the variables ¥e¢, 0c, Y&, Oro’, Y10, 0o’ are
2 (—a)%2j41=0, (79)  governed by six homogeneous linear equations whose
=0 matrix of coefficients 91 is given by
-1 1 0 —3X’ —3X’ —3yX" ]
4o 14 8¢ 1430 1430 1—3¢
—_ — g’ / 0 . P/X! X/
1+40 1440 1+40 1440 1440
wr’
0 bX’ —~1 1 —$6+—  —36G'
k
EIOW = | 14-8s s 1+2s 51— 51 !
+ /X! 0 B S BSG' S _HBSG'_;_i (82)
145 1+s 14+ 4 1+s 4 1+s k
CU,
sX’ op'X’ %BG’—; 268G’ —1 1
—_— —_— ’
146 _1 ds_ _51 BSG' il-H?SG,__w_ s -1+2s
{145 145 4 145 4 1+s k 1+s 1+s

J
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where X'=k"1""B’. The coefficients ¢;/ of the charac-
teristic equation of M, and the determinant D’ defined
by a relation analogous to (81), may again be readily
computed numerically.

Again in Fig. 1, the thin solid curve labeled “2” is
given by the condition ¢y’ =0. In this case it is the region
on the concave side where the Rossby circulation of the
second mode is stable with respect to perturbations of
the first mode. In the area between the two thin solid
curves, neither a steady Rossby circulation of the first
mode nor one of the second mode is stable with respect
to all possible perturbations.

The dashed curve labeled “2” is composed of seg-
ments of two intersecting curves where D’=0. On the
convex side of this curve, small disturbances of a suit-
able shape, superposed upon a Rossby circulation of the
second mode, will amplify in an oscillatory manner. To
the right of the point where this curve intersects the
curve ¢o’=0 there is a region where oscillatory insta-
bility, or “overstability,” will initially be preferred over
nonoscillatory instability.

Tn summary we have established the existence of a
stable Hadley regime for suitable values 64* and &%
For certain other values of 8,* and 7%, one or the other
of two qualitatively different Rossby regimes, each
having but one degree of freedom, exists and is stable.
Finally, there are values of 64* and %~ for which neither
of the above Rossby regimes is stable, although either
one exists mathematically.

These considerations demand the existence of solu-
tions in which waves of the first and second modes exist
simultaneously. Such solutions do not necessarily have
more than one degree of freedom, since it is possible that
waves of each mode move together with equal speeds,
each maintaining a constant amplitude. Indeed, the
occurrence of a single real positive .eigenvalue of 91
or 91U, rather than complex conjugate eigenvalues, for
values of 8,* and £ for which the Rossby flow of one
mode or the other is slightly unstable, suggests, but by
no means proves, that the finite-amplitude solutions
for these values of #4* and k! also will be nonoscillatory
when viewed in a moving coordinate system. Steady
Rossby circulations in which waves of each mode move
together without changing their form will be called
Rossby circulations of mizved mode.

Conceivably, it is possible to solve analytically for
all Rossby circulations of mixed mode. If any such
solution can be found, it can be tested for stability with
respect to further perturbations, in the manner in which
we have tested the simpler Rossby solutions for sta-
bility. If it proves to be unstable for values of 64* and
£ for which the simpler Rossby flows and the Hadley
flow are also unstable, the existence of solutions with at
least two degrees of freedom will be proven. Even in
this case, the existence of stable vacillating solutions
will not be established, since the solutions with exactly
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two degrees of freedom, if they exist, may themselves
be unstable with respect to still further disturbances.

In any event, the contemplated procedure is ex-
tremely cumbersome, involving, among other things,
the evaluation of fourteenth order determinants. It
would therefore seem that the existence of vacillation
may be most readily established by using numerical
integration procedures to determine particular time-
dependent solutions..

5. Numerical solutions

In this section we shall summarize the principal
features of a large number of explicit time-dependent
solutions of equations (31)-(50), obtained by stepwise
numerical integration. The equations are ordinary
differential equations, so that finite-difference approxi-
mations are needed only to represent the time deriva-
tives. In all our computations we have used the double-
approximation procedure, where the value of a variable
at a particular iteration is obtained by averaging the
value at the previous iteration with the result of two
successive uncentered forward extrapolations. This pro-
cedure has been discussed in detail by the writer (1963);
it may be applied to many nonconservative systems for
an unlimited number of iterations, without computa-
tional blow-up.

It is to be anticipated that the higher the Rossby
number, the more rapidly waves of either mode will
progress. A time-step Af small enough to insure com-
putational stability when 84* is large is therefore much
too small for economy when 6,* is small. To avoid
computational instability without unnecessary waste of
time, we have chosen the value Ai=0.16(8,4*)"" for all

the computations. In most cases, with this value of

At, a wave will progress through one wavelength in
from twenty to thirty iterations.

All of the numerical integrations have been performed
on a Royal McBee LGP-30 electronic computing
machine. With the program used, about ten seconds are
required for one iteration.

Table 1 has been prepared by the computer. It
presents a particular numerical solution of equations
(31)—(50). Values of all the variables appear at every
fifth iteration N. The values are printed to four decimal
places (they are carried in the memory of the machine
to about seven places), and the decimal point is omitted.

For this solution, 8,*=0.25 and £=0.30. According
to Fig. 1, the Hadley circulation corresponding to these
values is unstable with respect to waves of the first
mode, but stable with respect to waves of the second
mode. The Rossby circulation of the first mode is un-
stable with respect to waves of the second mode. It is
therefore to be expected that waves of both modes will
be present in the solution,

For initial conditions we have chosen a weak zonal
circulation, with weak superposed wave disturbances
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TaBLE 1. Numerical integration of equations (31)-(50) for the case 64*=0.25, £=0.300. Variables are observed in
fixed coordinate system.

N Y4 174 122 2] 127 YNy Go—0* 64 0x (27 bc O On a0
0000 0100 0050 0000 0000 0000 0050 0100 0100 0000 0000 0000 0000 0000 0100
0005 0696 0023 0000 0000 —0001 0022 0132 1544 0003 —0012 0000 0008 0003 0223
0010 1435 0023 0007 0000 —0006 0016 0247 2069 0012 —0014 0000 0007 0008 0377
0015 1903 0014 0030 0000 —001S 0007 0359 2258 0025 0000 0000 —0000 0010 0459
0020 2150 0027 0037 0001 —0014 —0008 0437 2328 0016 0031 0000 —0009 0004 0500
0025 2270 —0063 —0017 0001 0001 —0016 0485 2354 —0032 0037 0000 —0007 —0005 0523
0030 2325 —0004 —0092 0001 0015 —0005 0514 2362 —0062 —0027 0000 0002 —0008 0538
0035 2348 0121 —0040 0002 0009 0011 0533 2362 0013 —0093 0000 0008 —0000 0549
0040 2356 0096 0147 0002 —0007 0012 0547 2358 0128 —0014 —0000 0003 0007 0560
0045 2354 —0161 0178 0003 —0013 —0003 0559 2348 0062 0163 —0000 —0005 0005 0573
0050 2345 —0287 —0149 0003 —0001 —0013 0573 2331 —0190 0133 —0000 —0006 —0003 0591
0055 2327 0093 —0414 0004 0011 —0004 0593 2303 —0228 —0196 —0001 0002 —0006 0618
0060 2299 0538 0021 0005 0007 0009 0621 2262 0167 —0334 —0001 0006 0000 0655

of each mode. Without some waves present initially,
there is no mechanism by which waves could ever form,
since the small irregularities inevitably present in
laboratory experiments have not been built into the
simplified equations.

Observing first the behavior of Y4, 6o, 84, and oo, we
see that the zonal circulation develops rapidly, and, by
step 40, approximates the equilibrium Hadley circula-
tion, in which, according to (51)-(54), y4=04=0.2367
and 6o—6¢*=0¢¢=0.0560. Meanwhile, observing ¥x, Y1,
6k, and 6z ,we see that the wave disturbance of the
first mode, which decays rapidly at first, ceases to decay
by step 10, and, by step 25, when the zonal circulation
is well established, surpasses its initial strength. There-
after it grows rapidly, apparently at the expense of the
zonal flow. The wave disturbance of the second mode,
indicated by the remaining variables, decays rapidly at
first, and then more slowly, but shows no signs of
rejuvenation by step 60.

The successsion of positive and negative values of the
variables with subscripts K, L, M, or N reveals the
progression of the waves. Evidently the waves are
moving through one wave-length in somewhat less than
25 time steps. From the times of sign changes in the
various columns, we see that waves of either mode in the
field 6 lag about five steps behind those in the field of ¢,
while, within the field of ¢ or 6, waves of the second
mode precede those of the first mode by about five steps.

This form of output is not convenient, however, when
we wish to examine the progression of values of such
quantities as B=(Yx2+y12)* without further calcula-
tion. An alternative form of output prints the values of
Yko, Yo, -+, as defined by (67)—(74), instead of Y,
¥, *--. Essentially the motion is then viewed in a
coordinate system moving with the wave of the first
mode.

Table 2 presents the same solution as that given in
Table 1, printed in the new form. The values now appear
at every tenth iteration, and are rounded off to three
places. Values of the last seven variables have been
omitted, since they are not needed to identify the regime.

TasrLE 2. Numerical integration of equations (31)-(50) for the
case *=0.25, £=0.300. Variables are observed in moving co-
ordinate system.

N YA Yro VLo Yo ¥me  ¥wno 6—6,*
000 010 005 000 000 000 005 010
010 144 002 000 000 000 002 025
020 215 005 000 000 000 002 044
030 233 009 000 000 000 002 051
040 236 018 000 000 001 001 055
050 235 032 000 000 001 001 057
060 230 054 000 001 001 001 062
070 221 075 000 001 001 001 070
080 210 087 000 001 000 001 077
090 203 090 000 002 001 002 081 1
100 200 090 000 003 001 002 083,
110 200 089 000 004 001 003 083:
120 200 088 000 005 001 004 083
130 201 088 000 007 002 005 083
140 201 087 000 009 002 007 083
150 202 086 000 012 003 009 083
160 202 084 000 015 004 012 082
170 203 081 000 019 005 015 082
180 204 077 000 022 007 019 081
190 206 072 000 025 - 008 022 080

-~ 200 209 067 000 026 010 024 079

210 211 062 000 026 012 025 078
220 214 059 000 024 013 026 076
230 215 058 000 023 013 025 075
240 216 059 000 022 013 025 075
250 216 060 000 022 013 024 075
260 215 061 000 022 012 024 075
270 213 062 000 023 012 024 075
280 214 062 000 023 012 025 076
290 214 061 000 023 012 025 076
300 215 061 000 023 012 025 076

We see that the equilibrium Hadley circulation, which
by step 60 is being upset by the growing wave, does not
reestablish itself, but that instead a steady Rossby
circulation of the first mode is nearly established by
step 100. This circulation is only slightly altered by
step 140.

Meanwhile, as revealed by the values of o and Y,
the wave disturbance of the second mode, which at first
decays so rapidly, ceases to decay after step 80, and
by step 130, when the wave of the first mode is well
established, surpasses its initial strength. Thereafter it
grows rapidly, apparently at the expense of the wave
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of the first mode. By step 220 a new equilibrium is
nearly reached; from then until step 300 there is little
change in any of the variables. Continuation of the
integration for 200 additional steps, not shown in
Table 2, shows virtually no further change, indicating
that the flow approaches a steady Rossby circulation of
mixed mode. Such a circulation was suggested in the
previous section.

We note that the final values of ¢, ¥mo, and Yo are
positive. Examination of the governing equations (31)-
(50) shows that if two solutions are initially alikeexcept
for the signs of those variables with subscripts C, M,
and A, they will remain alike except for the signs of
these variables. Hence there exists a second stable
steady Rossby circulation of mixed mode, characterized
by negative values of ¥¢, Y10, and ¢¥wo.

Thus there are two distinct stable circulations of
mixed mode, either of which may develop. The initial
conditions determine which circulation develops. It is
therefore not true, in this case, that the governing
equations determine the “climate” uniquely.

In both solutions y 4 is positive. The “westerly wind,”
averaged over longitude, is proportional to

U=V2Y 4 siny+2V2)¢ sin2y. (83)
Hence in the first solution, where Y¢>0, the strongest
westerlies lie south of the center of the channel, while
in the second solution they lie to the north. In general
we may regard —y¢ as a “zonal index,” although it is
primarily an index of the position, rather than the
intensity, of the zonal westerlies.

In a certain sense the two solutions look much alike,
one being obtainable from the other by changing the
signs of certain variables. Yet, to a hypothetical in-
habitant at a fixed latitude, the local climate willdepend
very much upon which of the two circulations prevails.

In Table 3, we give the solution corresponding to a
somewhat more rapid rotation, with 6,* again equal to
0.25 and £2=0.25. The form is like that of Table 2. At
first the zonal flow and the disturbances behave more
or less as they did in Table 2, except that developments
occur more quickly. But then the variables are unable
to find equilibrium values, and continue to oscillate,
with a period of about 70 time steps. At step 210, which
is nearly a repetition of step 140, the waves of the first
mode are very strong and those of the second mode
rather weak, while at step 240, which is nearly a repeti-
tion of step 170, the waves of the second mode are
stronger than those of the first mode. Thus we have
obtained a solution which exhibits the phenomenon of
vacillation, in this case with a period of 70 time steps.

Throughout the cycle ¥ ¢ remains positive, so that the
strongest westerly winds always lie south of the center
of the channel, although their latitude fluctuates. There
must therefore exist another vacillating solution in

which ¥¢ remains negative, and the strongest westerly

winds remain to the north. Thus there are two distinct
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TaBLE 3. Numerical mtegratlon of equatlons (31)-(50) the
case 84%=0.25, £=0.250.

N Ya ¥Yre  ¥rLo Yo Yuo  ¥no  Bo—0p*
000 010 005 000 000 000 005 010
010 122 003 000 000 000 002 021
020 201 007 000 000 000 003 039
030 227 019 000 001 001 003 049
040 231 046 000 002 002 004 056
050 221 088 000 005 003 005 069
060 198 111 000 012 003 009 084
070 181 109 000 025 006 017 091
080 179 092 000 043 011 030 092
090 188 061 000 051 024 039 089
100 201 039 000 034 041 028 084
110 211 043 000 013 041 014 079
120 215 060 000 004 031 013 077
130 210 084 000 008 019 015 080
140 198 097 000 025 011 022 087
150 189 085 000 045 014 035 090
160 194 053 000 049 029 040 088
170 205 038 000 028 044 021 082
180 213 046 000 009 040 011 078
190 215 066 000 003 028 012 Q77
200 207 091 000 009 015 015 082
210 194 100 000 027 010 023 088
220 188 083 000 047 015 035 090
230 194 051 000 048 030 039 088
240 206 038 000 026 044 020 082

vacillating circulations, the choice between them being
determined by the initial conditions.

For the same values of §,* and £, there also exists
a pair of sleady Rossby circulations of mixed mode. An
equilibrium solution may be estimated by averaging
each variable in the vacillating solution over a vacillation
cycle. Choosing this estimate as a new set of initial
conditions, computing a new time-dependent solution,
averaging this new solution over a vacillation cycle, and
then successively repeating this process eventually
vields the values 209, 58, 0, 28, 31, 32, 81 for Y., Yo,
Yo, Yo, Yaro, Yo, o—60*. This solution proves to be
unstable; when an approximation to it is used for initial
conditions, growing oscillations occur. Thus vacillation
has been made possible by the instability of the Rossby
solutions of mixed mode.

We note, incidentally, that if we had averaged each
variable as measured in the fixed coordinate system, the
moving waves would have been averaged out, leaving a
zonally symmetric flow in which ¥ ¢0. Thus, while a
long-term average in the moving coordinate system is
not itself an exact steady-state solution, a long-term
average in the fixed coordinate system doeq not even
resemble a solution,

It is possible to represent any instantaneous state of
the system by a point in a fourteen-dimensional phase
space, whose coordinates are 31mply the values of the
fourteen variables ¥4, Y&, ¥z, - . Alternatively, we
may use a thirteen-dimensional phase space whose co-
ordinates are Y, ¥xo, Yo, * -, since Yo is always re-
stricted to be zero. A complete vacillation cycle is then
represented by a closed loop in thirteen-dimensional
space. The upper right diagram in Fig. 2 shows the
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projection of two such loops, one for ¥ ¢>0 and one for
¥ <0, on the plane of Y ko and ¥¢. The curves have been
constructed from the data in Table 3. The stars repre-
sent additional statistically stationary (but unstable)
solutions. The stars on the ¥ xe-axis represent the Hadley
circulation and the Rossby circulation of the first mode,
while the stars enclosed by the loops represent the
Rossby circulations of mixed mode.

The upper left diagram in Fig. 2 is a similar diagram
for the conditions of Table 2. Here only the Hadley
circulation and the steady Rossby circulations occur, so
the diagram contains stars but no curves.

In Table 4, the rotation has again been increased, so
that again 6,4%=0.25, but £=0.225. At first the behavior
is an accelerated version of that in Table 3, but, by
step 90, Y¢ has become negative. Thereafter ¢ ¢ attains
extreme values of equal magnitudes but alternating
signs, and a0 and Yo do likewise. Step 240 is nearly a
repetition of step 180 except for the signs of Y¢, ¥ar,
and Yo; step 180 in turn is nearly a repetition of step
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120 except for signs. Thus there is vacillation with a
period of about 120 steps.

This vacillation is distinct from that of Table 3, in
that changing the signs of ¥¢, ¥k, and 1o does not
alter the climate, i.e., the statistical properties of a
fully developed solution, but merely shifts the solution
in time by about 60 steps. In particular, the mean value
of Y¢ is zero, so that the mean latitude of the strongest
westerlies is the center of the channel. We shall call the
vacillation in this solution symmelric vacillation, as
opposed to the wunsymmetric vacillation displayed in
Table 3.

The vacillation cycle of Table 4 is represented in the
lower left corner of Fig. 2. Here there is a single closed
curve instead of two separate loops. The unstable
Rossby circulations of mixed mode can still be located.
They look somewhat like averages over half a vacillation
cycle, but bear no resemblance to averages over a full
cycle, even in the moving coordinate system.

Fig. 3 shows symmetric vacillation as the synoptic
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F1e. 2. Projections on the plane of Yxo and y¢ of trajectories in phase space. Upper left: £=0.300;
upper right: k=0.250; lower left, £=0.225; lower right, £=0.200. In all cases #.*=0.25. Stars denote
steady Rossby solutions, in most cases unstable. Numbers 1, 2, 3, 4, 5 in lower right indicate time steps

100, 200, 300, 400, 500.
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Taere 4. Numerical integration of equations (31)-(50) for the
case 94*=0.25, £=0.225.

N V4 YKo  ¥YLo 12 Yo Yno  Bo—060*
000 010 005 000 000 000 005 010
010 109 003 000 000 000 002 019
020 190 008 000 000 000 003 036
030 221 026 000 001 002 005 047
040 226 068 000 004 004 007 058
050 205 115 000 015 005 012 079
060 178 115 000 041 009 026 093
070 172 072 000 066 025 044 094
080 187 036 000 040 058 008 089
090 203 048 000 —-001 047 -—011 083
100 208 069 000 —021 032 —009 081
110 202 094 000 —-034 010 —017 085
120 183 092 000 —055 —011 -—035 091
130 187 050 000 —060 —041 —040 091
140 199 041 000 —021 —056 006 086
150 207 057 000 010 —042 006 082
160 206 084 000 022 -—-023 007 082
170 194 106 000 033 —001 017 089
180 180 094 000 056 015 036 094
190 183 048 000 059 043 038 092
200 198 041 000 019 055 —005 086
210 207 058 000 —010 041 —005 082
220 206 085 000 —021 022 —006 082
230 193 108 000 —031 001 -—016 089
240 179 097 000 —054 —014 —034 095

meteorologist would look at it. Maps of the field of ¢
are given at intervals of twenty time steps. The maps
correspond to times steps 130, - - -, 230 in Table 4. The
oscillations in the configurations of the trough and
ridge lines, and the accompanying shifts in the latitude
of the strongest westerlies, are easily observed.

Table 5 presents a final solution, in which 6,* again
equals 0.25, and £=0.20. This time neither symmetric
nor unsymmetric vacillation can establish itself. The
extreme values of y¢, beginning at step 60, are of
alternate sign but decreasing magnitude. Then, at steps
270 and 320, two extremes of the same sign are reached;
beginning at step 390, the extremes again alternate
signs and decrease in magnitude. Between steps 100 and
250, waves of the first mode are generally weak, but
they become very strong at step 370. Step 480 is to
some extent a repetition of step 140, with the signs of
Yo, ¥are, and Yo changed, but not a very close repeti-
tion. What we have is a solution with at least three
degrees of freedom, in regime ®Rsy.

The excursion through phase space, from step 100 to
step 500, is shown in the lower right diagram in Fig. 2.
The apparent aimless wandering presents a striking
contrast to the simple vacillation cycles in the upper
right and lower left diagrams.

It thus appears that a given pair of values 64* and
k can lead to one of seven distinct regimes of flow:
a Hadley circulation; a steady Rossby circulation with
waves of the first mode only, both modes together, or
the second mode only; unsymmetric or symmetric vacil-
lation; or an irregular nonperiodic flow with at least
three degrees of freedom.
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F1c. 3. Field of y, at intervals of 20 time steps, for one vacilla-
tion cycle, in the case of symmetric vacillation (f4*=0.25,
k=0.225). Two complete wavelengths in the x-direction are shown.
Spacing of streamlines is 0.12 dimensionless units.
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TaBLE 5. Numerical mtegratmn of equatlons (31)-(50) for the
case 04*=0.25, £=0.200.

N Ya  ¥Yro  VYILo Yo ¥Mo  ¥no —86*
000 010 005 000 000 000 005 010
010 096 003 000 000 000 003 017
020 178 010 000 000 001 004 033
030 214 034 000 002 003 007 045
040 217 093 000 011 006 012 062
050 187 125 000 042 009 027 038
060 166 070 000 082 034 050 096
070 178 047 000 029 057 —032 091
080 192 062 000 -—029 041 —031 087
090 196 057 000 —057 024 -039 086
100 201 017 000 —058 —010 -—056 085
110 208 036 000 —-011 —027 053 082
120 208 045 000 039 —021 056 083
130 207 006 000 045 —009 065 084
140 210 034 000 000 011 —063 082
150 209 029 000 —037 003 —066 083
160 210 010 000 —024 —046 051 083
170 211 027 000 015 —024 062 082
180 211 010 000 029 —036 057 082
190 213 018 000 007 —009 —066 081
200 213 023 000 —019 —013 —065 081
210 212 011 000 —-020 —062 —029 082
220 213 018 000 002 —057 036 081
230 213 018 000 016 —063 016 081
240 214 024 000 011 —055 —030 080
250 214 039 000 —005 —-045 —040 080
260 211 053 000 —020 —044 —-039 082
270 206 057 000 —029 —047 —-037 085
280 202 054 000 —029 —053 -—032 087
290 201 056 000 —021 —-054 -—025 087
300 201 066 000 —019 —-046 —027 087
310 197 076 000 —032 —038 -—-035 089
320 192 062 000 —048 —044 -043 092
330 195 043 000 —031 —064 -014 090
340 201 052 000 —001 —056 000 086
350 202 078 000 011 —038 —005 085
360 192 115 000 004 —014 —007 091
370 169 130 000 —016 —004 —012 100
380 154 115 000 —047 —009 —028 101
390 158 063 000 —-074 —033 —046 098
400 179 042 000 —031 -—-039 021 091
410 194 059 000 020 —044 024 087
420 198 071 000 047 —026 028 086
430 196 053 000 069 005 050 088
440 200 030 000 040 059 —024 087
450 204 054 000 —021 041 -039 085
460 203 046 000 —053 031 —042 085
470 206 009 000 —048 053 —-022 082
480 212 038 000 —005 005 057 079
490 210 046 000 039 011 060 083
500 207 020 000 037 068 018 085

Fig. 4 is in a sense the principal product of this study.
It presents the results of a large number of numerical
integrations of the equations. Corresponding to each
pair of values of ,4* and k& for which an integration was
performed, a symbol appears in the figure, indicating
the regime of flow which occurred. On the basis of these
symbols, curves have been drawn separating the
regimes. Except for the general suggestion that the
curves should be smooth, and concave toward the right,
Fig. 1 has not been used to construct the lines in Fig. 4;
however, Fig. 1 was used as a guide in choosing some of
the values of 4% and % for which integrations were
performed.
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Fic. 4. Critical curves for transitions between regimes of flow.
Coordinates are Taylor number and imposed thermal Rossby
number. Location of each symbol indicates location of a single
numerical solution. Type of symbol indicates regime of flow
which occurs. Symbols ® | \\ — > A A denote, respectively,
Hadley flow, Rossby flow of first mode, Rossby flow of mixed
mode, Rossby flow of second mode, unsymmetric vacillation,
symmetric vacillation, and irregular nonperiodic flow.

When an initial state, or an intermediate state, repre-
sents a steady solution with superposed small perturba-
tions, it is relatively easy to tell by inspecting the
numerical solution whether or not the perturbations are
growing. In the central portion of Fig. 4, however, some
of the critical curves separate pairs of solutions neither
of which is steady, even in the moving coordinate
system. The closer one is to a critical curve, the longer
the integration may have to be extended to identify the
regime with reasonable certainty. Hence, with any pre-
specified amount of computation, the locations of some
of the curves in Fig. 4 will remain somewhat indistinct.

Moreover, parallel to the critical curve for the sta-
bility of the steady Rossby flow of the second mode,
there is a rather narrow band for which this flow and a
more complicated flow are alternative possible stable
solutions. Only the more complicated flow is shown in
Fig. 4. No attempt has been made to determine whether
this phenomenon is a real feature of equations (31)-(50),
or whether it results from the finite differencing process.

We see that the regions in Fig. 4 occupied by the
Hadley regime, and the Rossby regimes of the first and
second modes, are in good agreement with Fig. 1. As
suggested in the previous section, the Rossby circulation
of the first mode is bounded on the right by the Rossby
circulation of mixed mode. The Rossby circulation of
the second mode is, however, bounded in part by sym-
metric vacillation and irregular flow. Apparently, if any
Rossby circulation of mixed mode in this portion of the
diagram is possible, it is itself unstable with respect to
further disturbances. It should be noted in this connec-
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tion that the curves ¢,’=0 and D’=0 in Fig. 1 are in
close proximity in this region.

Perhaps the most outstanding feature of Fig. 4 is the
large number of changes of regime which may occur
when the imposed thermal Rossby number and the
Taylor number vary over a rather small range. The
existence of so many regimes suggests some of the
difficulties which one might encounter in trying to
deduce the climate, or the statistical properties of the
flow, directly from the governing equations, without
resorting to numerical integration. An analytic pro-
cedure involving only the long-term statistics of the flow
might yield the statistics of one of the simpler unstable
flows instead of the one which actually develops.

The details of Fig. 4, of course, depend upon the
choice of wave number, #=2. For other values of », the
central region representing irregular flow might be much
larger, or it might even be absent altogether.

We note that as one progresses from left to right in
Fig. 4, i.e., as the Taylor number increases, the flow at
first becomes successively more complicated. This fea-
ture seems to be in agreement with experimental results.
The eventual simplification to a steady Rossby circula-
tion of the second mode, at the extreme right of the
diagram, appears to have no experimental counterpart,
and instead seems to be a result of truncating the govern-
ing equations (31)-(50) to include waves of only two
modes. If still higher modes had been allowed, they
would presumably have become active at Taylor num-
bers higher than those required to activate the first and
second modes.

Finally, we have made no attempt to combine two
different wavelengths in the x-direction. Such a step
might also yield more complicated flow patterns at
high rates of rotation.

6. Unsymmetric and symmetric vacillation

The transitions from Hadley flow to Rossby flow of
the first mode, from Rossby flow of the first mode to
Rossby flow of mixed mode, and from Rossby flow of
mixed mode to unsymmetric vacillation, as the Taylor
number continually increases, represent in each case
‘the critical conditions for the instability of the simpler
flow with respect to motion characteristic of the more
complicated flow. Indeed, all of these simpler flows are
mathematically possible, but unstable, when unsym-
metric vacillation occurs. It is not obvious, however,
how the transition between unsymmetric and symmetric
vacillation can be identified with the instability of
either type of flow with respect to motions characteristic
of the other type. We shall therefore examine this
transition in more detail.

In Fig. 5, vacillation cycles resulting from two nearly
equal Taylor numbers have been superposed. As in
Fig. 2, the coordinates are xo and y¢. For the lower
rotation, where 64*=0.25 and £=0.233, unsymretric
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vacillation occurs. Only one of the two possible loops is
shown. For the higher rotation, where §4*=0.25 and
k=0.231, symmetric vacillation occurs. Successive dots
on either curve mark the passage of ten time steps.

Throughout much of the length of the unsymmetric-
vacillation curve, the symmetric-vacillation curve
nearly coincides with it. However, as the curves pass
from left to right past the center of the diagram, they
diverge slightly, and pass closely by the point Q, marked
by a star, on opposite sides of (). This point represents
the unstable steady Rossby flow of the first mode.
(There is really a separate point Q for each Taylor
number, but these are indistinguishable in the diagram.)
The temporary approach to .a steady state is further
reflected in the closeness of the dots on the curves, as
they pass Q. The instability of the steady state is re-
flected in the increasing distance between the dots, as
the curves leave again.

Sufficiently small departures from the Rossby solution
of the first mode, when viewed in the moving coordinate
system, are approximately governed by a set of thirteen
linearized equations (since ¥ z,=0). For a considerable
range of values of 84* and k, the matrix of coefficients of
these equations possesses a single positive eigenvalue,
and twelve eigenvalues with negative real parts. In
thirteen-dimensional phase space there is therefore a
twelve-dimensional hypersurface H passing through Q,
such that trajectories (i.e., time depéndent solutions of
equations (31)-(50)) which lie in H approach Q asymp-
totically as { — . There is also a single curve C passing

Ve
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F16. 5. Projections on the plane of yxo and ¥¢ of trajectories in
phase space, for nearly critical unsymmetric vacillation (94*=.25,
E=.233), and nearly critical symmetric vacillation (04*=.25,
E=.231). Star denotes location of point Q representing unstable
Rossby flow of first mode. Dots on curves are separated by ten
time steps. :
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through Q, such that trajectories passing near Q but
not lying in H approach C asymptotically, and leave the
vicinity of Q in the (positive or negative) direction
of C.

Sufficiently close to O, H resembles a hyperplane and
C resembles a straight line, but farther away, where the
linearized equations no longer apply, H and C assume
more complicated shapes. For some values of 04* and %,
a moving point leaving Q along C never approaches
closely again. However, the configurations of H and C
vary continuously with 6,* and %, and, for a given
imposed thermal Rossby number, there is one critical
Taylor number for which a moving point leaving Q
along C finds itself on H, and is steered exactly into
Q again. For slightly subcritical rates of rotation, a
point moving along C approaches Q closely again, and
then departs in the same direction in which it previously
departed, nearly repeating its earlier path. Forslightly
supercritical rates, a moving point approaches Q closely
and then departs in the opposite direction from that of
its previous departure, only to reverse directions again
following its next approach to Q.

The transition from unsymmetric to symmetric vacil-
lation therefore cannot be said to occur because unsym-
metric vacillation, although mathematically possible, is
unstable for the higher rates of rotation. On the con-
trary, unsymmetric vacillation does not seem to exist
at all when the Taylor number is supercritical. Similarly,
symmetric vacillation does not appear to exist when the
Taylor number is subcritical, and unsymmetric vacilla-
tion cannot be attributed to the instability of symmetric
vacillation.

Moreover, the transition does not depend upon the
local nature of the instability at Q. Instead, it depends
upon the entire large-scale configurations of the curve C
and the hypersurface H, both near Q and far-removed
from Q.

In Fig. 4 there is another small region of unsymmetric
vacillation, just above the region of irregular flow. This
vacillation does not resemble the unsymmetric vacilla-
tion which we have just examined. It looks more like
symmetric vacillation, but its behavior while y¢ is
positive is not quite a mirror image of its behavior when
Y¢ is negative. Presumably it does arise from the in-
stability of symmetric vacillation.

Finally, we may inquire about the nature of the
transition between symmetric vacillation and irregular
flow. Possibly it also results from the instability of
symmetric vacillation. It is not easy, however, to locate
an unstable vacillating solution by numerical integra-
tion, since we cannot, simply by equating certain vari-
ables to zero, suppress the additional oscillations which
wish to grow upon the vacillating flow. For the time
being, then, the existence of unstable vacillating flow,
when irregular flow is actually observed, must remain
hypothetical.
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7. Concluding remarks

Laboratory experiments have demonstrated that
when a fluid contained in a circularly symmetric rotating
vessel is heated symmetrically, the resulting flow may
fall into one of several regimes. These include a Hadley
regime Ry, in which the flow is circularly symmetric and
steady, a steady Rossby regime ®,;, in which waves
progress at a uniform rate without changing their shape,
a vacillating Rossby regime ®s, in which waves undergo
regular periodic changes in shape in addition to their
progression, and an irregular Rossby regime ®sy, in
which the waves vary nonperiodically. The flow in the
earth’s atmosphere appears to belong in regime ®a,.

We have reproduced all of these regimes with a simple
mathematical model. In this model the vertical dimen-
sion is represented by two layers. The flow in either
layer consists of a zonal flow, represented by two vari-
ables, and superposed waves of two modes, each mode
represented by two variables. The temperature field is
identified with the vertical wind shear through the
thermal wind equation. The over-all mean temperature
and the mean static stability are also allowed to vary,
bringing the number of variables to fourteen, which are
governed by fourteen ordinary differential equations.

Analytic solutions may be obtained for the flow in
regimes ®¢ and ®;, but solutions representing the more
complicated flow patterns are best obtained by numeri-
cal integration. The central result of this study is
presented in Fig. 4, which shows the regimes of flow
arising from various values of the imposed thermal
Rossby number 6.4*, used as a measure of heating, and
the Taylor number 272, used as a measure of rotation.
Regardless of the value of 64* a sufficiently low value
of 272 leads to a stable Hadley circulation. If 84* is
not too large, this Hadley circulation becomes unstable
as k2 is increased, and a steady Rossby circulation with
waves of the first mode develops. As &2 is further in-
creased, this circulation also becomes unstable, and a
steady Rossby circulation with waves of both modes
arises. At a still higher Taylor number this circulation
too becomes unstable, and a wvacillating circulation
appears.

Further transitions at still higher rates of rotation
are not so readily identified with the instability of the
simpler circulation. It is at this point, however, that the
model begins to lose some of its resemblance to reality,
since still further modes of oscillation, which have been
omitted from the model, would, if included in the model,
presumably become active at high Taylor numbers.

In a model admitting many modes of oscillation, it
seems likely that the regime of flow will continue to
become more and more complicated as the rate of rota-
tion continually increases. In this case, the initial ap-
pearance of vacillation, as the Taylor number increases
from low values, may be ascribed to the instability of
the steady Rossby flow. If our hypothesis is correct, the
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disappearance of vacillation, as the Taylor number
further increases, may be ascribed to the instability of
the vacillating motion itself with respect to still further
modes of oscillation.
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