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A PROPOSED EXPLANATION FOR THE EXISTENCE OF TWO REGIMES
OF FLOW IN A ROTATING SYMMETRICALLY-HEATED CYLINDRICAL
VESSEL

Edward N. Lorenz

Massachusetts Institute of Technology
Cambridge, Massachusetts

The forced flow of a fluid in a rotating cylindrical vessel has been the subject of-several
recent experimental investigations. In some of these experiments (I, 2) the fluid (water) is
heated near the rim of the cylinder and cooled near the center, the distribution of heating be-
ing symmetric about the axis. The heating establishes horizontal density differences, and
hence horizontal pressure differences, which force the fluid to move relative to the cylinder.
Details of the flow at the upper surface, and general features in the interior, are observed by
means of tracers. '

The experiments reveal the existence of at least two different types of flow patterns. In
the “low rotation regime,” which occurs with sufficiently low rotation or sufficiently strong
heating, the observed flow is symmetric about the axis, and is primarily zonal (horizontal and
perpendicular to the axis), with a weak meridional (m planes containing the axis) circulation
superposed. In the “high rotation regime,” which occurs with sufficiently high rotation or
sufficiently weak heating, the flow loses its symmetry, and disturbances resemblmg those
_found on upper-level weather maps are superposed upon the zonal flow. The high rotation
reglme seems to prevail when the Rossby number, which is essentially the ratio of the relative
speed at a representative point in the fluid to the absolute speed of a representative point of
the cylinder, lies below a critical value.

The purpose of this discussion is to propose a phvsmal explanation for the enstence of

two regimes of flow, and for the dependence of the regime upon the Rossby number.

In this discussion we shall propose several hypotheses, each dealing with a specific feature
of the problem. Along with these hypotheses we shall present pertinent pieces of information.
Finally, in summary, we shall assemble these hypotheses to form our proposed physical ex-
planation.

Our fundamental hvpothesis, upon which all of our following hypotheses are based. is that
symmetric flow is mathematically possible at subcritical as well as supercritical Rossby num-
bers, in the sense that is satisfies the governing equations and boundary conditions. How-
ever, at subcritical Rossby numbers it is unstable, in the sense that small superposed disturb-
ances can grow until they become important parts of the total flow. Therefore, symmetric
flow is not observed experimentally at subcritical Rossby numbers.

The disturbances existing at low Rossby numbers usually appear to be so shaped as to
transfer angular momentum into the regions where the zonal angular velocity is already greatest,
at the expense of the other regions, and hence to increase the kinetic energy of the zonal flow.
Computations made by Starr,! based upon experiments of Long (cf. Starr and Long (3)),
support this idea. A similar situation usually prevails in the atmosphere, as shown obser-
vationally by Starr (4).

We therefore propose the hypothesis that at suberitical Rossby numbers the growing dis-
turbances gain their kinetic energy from existing potential and internal energy, rather than

Note: The research reported in this paper was sponsored by the Geophysics Research Directorate, Air Force Cambridge Research Center,
under Contract No. AF 19(122)-153.

t Unpublished study.
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74 Edward N. Lorenz -
from existing kinetic energy. They are thus a manifestation of g baroclinically unstable flow,
rather than a barotropically unstable flow. A

Among the possible procedures which we may use to test these hypotheses, one in particu-
lar naturally suggests itself. It consists first of determining analytic expressions for the sym-
.metric flow, using suitable equations and boundary conditions, and then testing the flow for
stability. The success of this procedure may be limited by our ability to solve the equations, or
by our knowledge of stability of baroclinic flow. ‘

At various times investigators (Arakawa (%), Davies (6), and Oberbeck (7)) have sought
simultaneous solutions of the equations of motion, the equation of continuity, and the thermal
equation, satisfying boundary conditions appropriate to a rotating heated fluid. Davies’
recent investigation applies specifically to Fultz’s experiments. In most of these investi-
gations, the nonlinear terms in the equations have been neglected. Davies has considered
certain nonlinear terms in the equations of motion, using the method of small parameters, and
has shown that these terms are necessary to explain the presence of “easterljes” and ‘“west~
erlies” near the bottom of the fluid.

In view of the widespread application of linearized equations to problems of this sort, it
is important to consider the exact meaning of their solutions. The motion under considera-
tion is forced by the heating; i.e., with no heating there would be no motion relative to the
cylinder. Hence if the solutions of the nonlinear equations are expanded in power series in
Some parameter representing the heating, the terms independent of the parameter describe the
state of no motion just mentioned. The coefficients of the first power of the parameter are
precisely the solutions of the linearized equations. The effect of the nonlinear terms is repre-
sented by the coefficients of the second and higher powers.

It follows that the solutions of the linearized equations resemble those of the nonlinear
equations most closely when the heating is weak, and less closely when the heating is strong.
But, for a given rotation, weak heating is precisely the condition under which the symmetric
state is not observed experimentally. Thus, perhaps paradoxically, the most easily obtainable
symmetric solutions are the ones which are not observed. The observed symmetric solutions
are more difficult to obtain, since they involve to a greater extent the higher order terms in the
power series, if indeed the series converge at all, . : ‘

We therefore propose the hypothesis that the symmetric solution of the linearized equa-
tions is unstable. The nonlinear terms constitute g stabilizing influence, and stability can
exist only when their effect is sufficiently great.

If the flow is zonally symmetric, the principal nonlinear terms in the equations governing
the flow represent the transport of momentum and heat by the meridional circulation. OQOur
last hypothesis therefore implies that the stability of the observed symmetric flow results

- from the meridional transport of some quantity,

The stability of baroclinic flow has recently received much attention, although no com-
pletely general criterion for stability has been established. Very recently, several investigators
(Eady, (8), Eliassen, (9), Sawyer and Bushby, (10), and T hompson, (11 )) have independently
derived simplified sets of equations for quasi-geostrophic baroclinic flow. These sets of equa-
tions, which are essentially equivalent to each other, were derived for the purpose of numerical
weather prediction, but are applicable to the present problem with suitable modifications for
lack of compressibility. In addition to prediction, they are suitable for testing the stability
of a given flow. . '

The simplified equations contain, in addition to two dependent variables, a “static sta-
bility parameter,” which is customarily, but not necessarily, regarded as constant. Besides
varying inversely as the static stability (essentially the decrease in density with elevation, for

. water), this parameter varies directly as the square of the rate of rotation.

There appears to be a simple mechanism through which the static stability can be affected
by the meridional transport of heat. The meridional circulation must carry warm fluid from

: NSNS N

< ;
Ty e e e e e :
i ‘. .




Proposed Explanation for Two Regimes in Heating Experiment 75

the rim of the cylinder toward the center in the top layers, and cold fluid from the center
toward the rim in the bottom layers. It thus brings about a field in which the temperature
increases with height, superposed upon whatever temperature field would exist otherwise.

We therefore propose the hypothesis that heating and rotation both affect the regime of
flow principally by affecting the static stability parameter. An increase in heating increases
the strength of the meridional circulation, thereby increasing the static stability and decreasing
the static stability parameter. The rate of rotation, on the other hand, enters directly into
the static stability parameter.

The proposed hypotheses can hardly be convincing unless it can be demonstrated that
the values of rotation and heating actually present in the experiments lead to appropriate
values of the static stability parameter. In order to investigate this question, we shall attempt
to obtain approximate solutions to the appropriate equations, taking into account the nonlinear
terms in the thermal equation. Following Davies (6), we shall use the method of small param-
eters. Since a few terms of a power series do not constitute an exact solution, and since we
do not know precisely the boundary conditions in the experiment, we can hardly hope to do
more than determine the order of magnitude of the static stability parameter. It therefore
appears both convenient and permissible to make numerous approximations during the solu-
tion. Our result should in no way be considered an alternative result to that of Davies; it will
contain mere approximations to the wind field and the static stability parameter. It will also
contain an approximation to the Rossby number, so that the significance of that number
may be examined. 7

We shall use the same primitive equations used by Davies, namely, the Navier-Stokes
equations of motion, the equation of continuity, and an equation of heat transfer. These
equations appear in standard textbooks on fluid dynamics (12).

Since the flow is assumed to be steady and zonally symmetric, there remain two inde-
pendent variables, namely :

r=radial distance from axis of cylinder
2= vertical distance from bottom of fluid.

The dependent variables may be taken as
p=density
p=pressure A
u=tangential (counterclockwise) velocity component.
y=radial (inward) velocity component
w=vertical (upward) velocity component

The constants entering the problem are
a=radius of cylinder
h=depth of fluid
g=acceleration of gravity
f=Coriolis parameter (twice the angular speed of rotation)
v=kinematic viscosity
x=thermometric conductivity
po=mean density of fluid
& ="heating parameter’.

The parameter & will soon be more precisely defined.

834525 0—56——=6
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The number of quantities appearing in the computations may be reduced by introducing
dimensionless independent variables, dependent variables, and constants. These quantities,
all denoted by capital letters, are defined by the relations

R=kar

Z=h"1z

p=pyQ

p=poghP
u=glprry
po=g' 2R} 2o, 10
pw=g' PR3 a1 o W
F=g12p=102p —1gf
N=g-1zp-sr2f -15,
K=g-12p~52) -1,
H=ka 4.

Here [, is the first positive root of J1, the Bessel function of order one. The dimensionless
quantity ,
T2=lN‘1F=%u‘lfh2

plays an important part. It has been called the rotation Reynolds number, while 7* has been
called the Taylor number.

In terms of dimensionless quantities, the equations to be satisfied will be taken as

o +a=o L @
%HT?V:() | | &)
%—2T"U—+—N“ %}o @

- Direct substitution of the dimensionless quantities into the appropriate equations would yield
equations considerably more complicated than Egs. (1) through (5). The additional sim-
plification results from the following assumptions:

1. Density varies linearly with temperature, so that density may replace temperature
in the thermal equation, Eq. (1). ‘
2. The dissipation and divergence terms in Eq. (1) are negligible.
3. The equation for vertical acceleration may be replaced by the hydrostatic equation,
Eq. (2).
4. The dimensionless Laplacian operator may be replaced by the operator 0%/0Z? in Egs.
(3) and (4). .
5. The nonlinear terms ? in Egs. (3) and (4) may be neglected.
Of these assumptions, the last seems to be the most questionable. Indeed, as mentioned
previously, Davies has shown the importance of the nonlinear terms in determining certain
details of the wind field. [t must therefore be remembered that our purpose is not to obtain
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The simplification of the Laplacian operator in the equations of motion is justifiable if
the depth of the fluid is sufficien tly small compared to the radius of the cylinder, as is the case
in Fultz’s experiments. For Hide's experiments, such an assumption would be more ques-
tionable. -

In agreement with Davies, we shall choose the boundary conditions as

U=V=W=0, =rq@) when z=0,

dU_dV_ - 2Q_ -
52=37=0 W=y, 370 when Z=1.

Here € may assume any constant value, and @’ is a specified function of I, determined by the
rate at which heat enters the fluid through the lower boundary. -

In solving the equations, we shall assume that each dependent variable may be expanded
in a power series in &, so that
‘ =39,

i=0

if ® represents Q P, U, V,or W. Ag mentioned before, the coefficients ®, of £° represent
the solution when heating is absent,. They are given by

Qo=1
Py=Py—2
U0= I/’O:-_ W0=O

where Py, is a constant of integration, representing the pressure at the bottom of the fluid.

Because U, Vo, and W, vanish, the coefficients ®, of £ are simply the solutions of Eqgs.
(1)~(5) with the nonlinear terms omitted in (1). To solve for these coefficients, we must first
express Q' explicitly. The simplest choice which expresses heat inflow near the rim and heat
outflow near the center is a multiple of Jo(R), where Jy is the Bessel function of order zero.
The particular multiple may be chosen at will, since £ is arbitrary. If

Q'=H sinh H J,(R),
Egs. (1) and (2) yield the solution

Qu=cosh H(Z—1) Jy(R),
Py=[Pu—H"" sinh H—H-" sinh H(Z—1)] Jy(R),

where Py, is a constant of integration which expresses the value of P, along the bottom of the

fluid, and which will be determined by the boundary conditions for Uy, V1, and W,
IfHis sufficiently small, these expressions may be replaced by the further approximations

Q1=J0(R):
P1= (Pu—Z)Jo(R)-

In determining U/, V1, and W, it will be assumed that the rotation Reynolds number 7
is so large that the quantity e~" may be replaced by zero without serious error. It is convenient
to introduce the quantities a=TZ and B=T(Z—1), whence ¢~ is negligible except near the
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lower boundary, and ¢ is negligible except near the upper boundary. With the indicated
approximations,

U=F"! {Z-{-T“ [—H—e'“ cos a—-;— €8 (cos B-+sin B):I} Ji(R),
Vi=F-\T-! [——e‘“ sin a—{-——% &8 (cos B—sin B)] Ji(R),

Wi=F-1T-? [-—%—}-% e~ = (cos a+sin a)—i—-;- ef cos B] Jo(R),
while

Pi=—(2Z-TYHYJ(R).

In common with Davies’ solution, this solution is deficient in that it fails to satisfy a side
boundary condition W=0 when R=%,, which should perhaps have been imposed. It should
be noted that the horizontal portion of the meridional circulation is confined almost entirely
to two thin boundary layers, one at the top and one at the bottom, while the zonal flow is
quasi-geostrophic except within these boundary layers.

If the entire Eq. (1) is expanded in a power series in &, the coefficient of £2 becomes

K| 57+H (58 RDR>]+(V‘ W55 )=o

which is the equation to be solved for Q,. If the Laplacian operator is again replaced by
9?/0Z2, the solution is

(,32=NK—1F‘A2 {-—Z—I—T“ [-—e“’ cos a+% ¢® (cos B--sin B)]} JiA(B).

Outside of the boundary layers, the dimensionless density is therefore ’
Q=1+ EJy(R)—E*FNK ' ZJ X (R)+ . . .-

The static stability resulting from the meridional circulation first appears in the £2—
term. Evidently it varies with B. If A;Q is defined as the difference between the values of
Q at the top and the bottom, averaged horlzontallv we find, since the area average of J,2(R) is
Joz(k ) 0. 16 that

AZQ=O.16NK‘1F‘2€2.

In order to examine the static stability parameter, we introduce simplified equations for
quasi-geostrophic baroclinic flow. The equations derived by Thompson (71), when modified
to apply to a liquid, become

S VI, T3 T, =0,

2 MO+ T, (= MOY)+ W, V) =0,

where ¢ is a stream function for the vertically averaged flow; ¢’ is a stream function for the
vertical wind shear, expressed as the difference between the flow at the top and the vertically
averaged flow, V2 and J are the Laplacian operator and the Jacobian with respect to dimen-
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sionless horizontal variables, and M2 is the dimensionless static stability parameter, which may
be called the “stability number’”’. For the system under study,

M2=8F?(A,Q)~.
Introducing the approximate value of Az7?, we find that
MP=50N-1 K&~ F",
For water of room temperature N~'K is about 0.16, so that
MP=8&-2F

The Rossby number R, has been presented upon empirical evidence as a criterion for
stability. If R, is defined as the ratio of the maximum relative speed in the fluid to the absolute
speed of the rim of the cylinder, the approximate value of U, yields the value

Ro= 0.3 €F—2.
It follows that the Rossby number and the stability number are connected by the relation
M2=0.72 Ro—z.

Thus a definite value of M?implies a definite value of R,. We therefore propose the hypothesis
that a critical value of R, exists because of the relation between B, and M2

The problem of determining the critical value of M2 corresponding to an arbitrary wind
field has not yet been solved. Investigations by the writer,? based upon the properties of the
equations for baroclinic flow, indicate that the simple wind field whose components are eu,
and £V, should be stable if M?<2, except that it is neutral with respect to certain disturbances
of wave number one. Symmetric flows with such disturbances superposed appear as off-
center vortices. According to Fultz,* the center of circulation is often observed to be dis-
placed from the center of the cylinder, when the flow otherwise appears to be symmetric,

If M*=2'is assumed to be a criterion for stability, Ry=0.6 must also be a criterion. This
value of R, is at least of the proper order of magnitude.

There remains the question of introducing numerical values typical of the experiments.
In certain of Fultz’s experiments, =15 cm, h=2 cm, g=980 cm sec™?, and py=1 gm em=?, If
n is the number of rotations per minute, and 7 is the temperature difference in °C between
; the center and the rim, in the fluid, then f=0.21 7 sec™t, and &=18x10"*r. Thus F2=538
4. X 10° 172, so that

o s 5 i 2 et A bl b a1

! RQ=O.31 mT2.

The assumed critical value B,=0.6 is then obtained, for example, at 1 rpm if 7=2° C, or at
2rpmif r=8° C. Such values are certainly of the observed order of magnitude.
) It must be emphasized again, for additional reasons, that we have not presented a nearly
1 exact solution to the problem, in spite of our presentation of numerical values. Wholly aside
from the approximations introduced into the equations themselves, the expressions for the
wind field and the stability number are approximate in that they consist only of the first non-
vanishing terms in power series in &. The value of & appropriate to the experiments may lie

3 Unpublished study.
4 Verbal communication,
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in the range where the series are not well represented by their initial terms. Hence there is
further reason for regarding the numerical results as no more than estimates of orders of mag-
nitude. : ,

With this limitation, the numerical results agree with the hypothescs which have been
presented, and lead to the additional hypothesis that it is the relation between the Rossby
number and the stability number which makes the Rossby number a criterion for stability.
If we assemble the hypotheses, we obtain our proposed physical explanation for the experi-
mentally observed phenonena being considered. The proposed explanation is stated in the
remaining paragraphs.

“T,et o fluid in a rotating cylindrical vessel be heated near the rim and cooled near the
center, the heating distribution being symmetric about the axis. There then exists a mathe-
matically possible symmetric flow, which may or may not be observed experimentally, under
which the fluid is everywhere in equilibrim. This flow is characterized by a qfasi-gradient
zonal circulation and a weak meridional circulation.  The stronger the heating, the stronger
the flow, but, after a certain point, the higher the rotation, the weaker the flow.

“In such & flow the meridional circulation carries warm fluid toward the center in the
upper layers, and cool fluid toward the rim in the lower layers, and thus creates static stability.
The stronger the heating, the greater the static stability, but the higher the rotation, the smaller
the static stability. ‘

“The stability of a baroclinic flow is determined partly by a stability number, which
varies inversely as the static stability and directly as the square of the rate of rotation. The
flow under consideration is unstable for supercritical values of the stability number, and hence
for sufficiently high rotation or sufficiently weak heating. Since an unstable symmetric flow
is one where small superposed disturbances can grow until they become prominent, such flows
are seldom observed experimentally. Hence for sufficiently high rotation or sufficiently weak
heating, an unsymmetric flow is observed. L

“The Rossby number depends upon the rotation and the heating in such a way that it is
inversely proportional to the square root of the stability number. Hence for subecritical values
of the Rossby number an unsymmetric flow is observed.”
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