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ABSTRACT

Zonal flow resembling zonally averaged tropospheric motion in middle latitudes is usually barotropically
stable, but zonal flow together with superposed neutral Rossby waves may be unstable with respect to
further perturbations. Rossby’s original solution of the barotropic vorticity equation is tested for stability,
using beta-plane geometry. When the waves are sufficiently strong or the wavenumber is sufficiently high,
the flow is found to be unstable, but if the flow is weak or the wavenumber is low, the beta effect may
render the flow stable. The amplification rate of growing perturbations is comparable to the growth rate
of errors deduced from large numerical models of the atmosphere. The Rossby wave motion together with
amplifying perturbations possesses jet-like features not found in Rossby wave motion alone. It is suggested
that barotropic instability is largely responsible for the unpredictability of the real atmosphere.

1. Introduction

One of the distinguishing properties of a field of fluid
motion is its stability or instability with respect to
perturbations of small amplitude. Among the innumer-
able flow patterns which may be examined for stability
or instability are those occurring in the atmosphere. Of
the hundreds or perhaps thousands of investigations of
stability which have appeared in the meteorological
literature during the present century, the vast majority
have treated a basic flow (i.e., the flow without the
superposed perturbations) which is steady (independent
of time). In most cases the basic flow has also been
zonally uniform (independent of longitude). The per-
turbations are usually allowed to vary with longitude,
and, in the case of instability, must amplify with time.

Fields of fluid motion are ordinarily governed by non-
linear equations, but, to a good approximation, small
perturbations upon these fields are governed by derived
linear equations, so that investigations of stability lend
themselves well to analytic treatment. Invariably some
simplifications are introduced into the original equations
to render them more tractable, or to eliminate certain
aspects of the flow regarded as irrelevant. Analytic
solutions representing steady uniform flow are most
easily obtained after the equations have been stripped
of the terms representing external forcing and internal
dissipation. Under these conditions the only possible
energy source for a growing perturbation is the energy
of the basic state itself.

In dealing with unstable flows of global extent, one
may frequently characterize the instability as baro-
tropic or baroclinic, according to whether the source of
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the energy is the kinetic energy or the available poten-
tial energy of the basic state. A combination of baro-
tropic and baroclinic instability, where the perturbation
receives some of its energy from each source, is also
possible.

The fundamental properties of barotropic instability
arc most easily investigated by considering a flow which
possesses no available potential energy at all, hence no
horizontal temperature gradient, and thus, in accord-
ance with the thermal wind relation, no vertical shear.
The problem can then be effectively handled with the
equations for two-dimensional horizontal motion. Hori-
zontal shear must be present in this case if the flow is to
be unstable, since, among those flows possessing a speci-
fied total eastward momentum (or angular momentum,
if spherical geometry is used), the flow with uniform
eastward velocity (or angular velocity) possesses the
least kinetic energy, and has none available for transfer
to a perturbation.

Likewise, baroclinic instability is most easily studied
by treating a flow possessing no transferrable kinetic
energy, and hence no horizontal shear. Vertical shear is,
of course, required.

It has been reasonably well established that flow
patterns of global scale, resembling those which one
would obtain by averaging typical middle-latitude at-
mospheric flow patterns with respect to longitude, are
usually barotropically stable. However, they are ordi-
narily baroclinically unstable, and, indeed, the horizon-
tal dimensions of the most rapidly amplifying perturba-
tions compare well with those of typical atmospheric
wave disturbances. As a consequence, the relevance of
baroclinic instability in determining what constitutes
typical atmospheric behavior has been almost uni-
versally recognized. Barotropic instability, on the other
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hand, is often considered to be important mainly for
fluid systems other than the atmosphere.

Nevertheless, the reasoning leading to the conclusion
that flows resembling those found in the atmosphere
are usually barotropically stable does not apply to flows
which are neither steady nor uniform. Recently there
has been an awakening of interest in the stability of
flows of this sort. This interest has arisen largely from
the desire to learn the extent to which future states of
the atmosphere are predictable. If a perturbation is
possibly present but below the threshold of detect-
ability, one cannot know whether the future behavior
of the total flow will be that which would ensue in the
presence or in the absence of the perturbation. If the
flow is unstable, the range at which highly accurate pre-
dictions of the flow can be made is therefore limited.

Because appropriate systems of governing equations
possess few simple analytic solutions representing un-
steady non-uniform basic flows, and because the result-
ing equations for the perturbations, while linear, are
yet rendered awkward by time-variable and longitude-
variable coefficients, most investigations of the stability
of these basic flows have been numerical. The equations
are solved from initial conditions with no perturbation
present, and again from initial conditions with a per-
turbation. Flow patterns bearing at least a superficial
resemblance to atmospheric motion indeed frequently
prove to be barotropically unstable.

It is the purpose of this study to investigate, pri-
marily by analytical means, the barotropic instability
of a flow pattern which varies with time and longitude.
The basic flow will be the total flow in Rossby’s familiar
solution of the barotropic vorticity equation, which
depicts the progression of large-scale waves embedded
in a westerly current. The flow is actually so simple that
the time dependence drops out in a moving coordinate
system, and therefore the problems usually encountered
in examining the stability of a time-dependent system
will not arise. The dependence upon longitude remains,
however, and will be shown to lead to instability. Some
inferences as to the importance of barotropic instability
in limiting the predictability of the real atmosphere will
be drawn.

2. The equations

We begin with the barotropic vorticity equation,
which in its simplest form reduces to the equation for
the motion of a two-dimensional, homogeneous, incom-
pressible nonviscous fluid, and expresses the conserva-
tion of absolute vorticity at any point which moves with
the flow. Following Rossby (1939), we use the beta-
plane approximation, where the earth’s surface is
approximated by a horizontal plane, and where 3, the
derivative of the Coriolis parameter f with respect to
northward distance, is treated as a constant. Qur equa-
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where ¢ is time, x and y are distances in the eastward and
northward directions, ¥ a streamfunction for the flow,
and {=V% the vorticity relative to the earth; thus,
¢+ f is the absolute vorticity.

For a basic flow which exactly satisfies (1), we choose
Rossby’s (1939) original solution, which, with some
changes in notation, may be written

Yo=— Uy-+A4 sinko(x—ct), 2
where U, A4, ko and ¢ are constants, and
c=U—B/ko 3)

Eq. (3) is Rossby’s celebrated formula for the speed of
waves of wavelength 2m/ko embedded in a westerly
current of speed U.

If y=yo+y¢' defines a flow obtained by slightly per-
turbing Rossby’s flow pattern, the perturbation ¢ is
governed approximately by the linearized equation

a’ Y
—=—U——5—
at ox ox

a’ oy’
—kod cosko(x-—ct)<—+koz——>, @
dy dy

where {'=V%/. We wish to determine whether Eq. (4)
possesses solutions which amplify with time, and, if so,
to determine the amplification rate and the horizontal
structure of these solutions.

We begin by noting that ¢, is independent of time in
a coordinate system moving with speed ¢. Accordingly,
we let xy=x—ct. With £, x0 and y as independent vari-
ables, (4) reduces with the aid of (3) to

at’ B o 9
= = _[_ —t-kod cos(koxo)—] ' +k¥). (5)
ot ko? 09 dy

For side boundary conditions we impose cyclic con-
tinuity by choosing a large distance D and requiring
that ¥/ (¢,x0,y) be unchanged if either xo or y is increased
by a multiple of 2zD. In order that the basic flow (2)
may also satisfy the boundary conditions, it is necessary
that the product NV =Dk, be an integer. If the distance
27D is identified with the length of a latitude circle, V
becomes the wavenumber of the basic flow.

At this point we could reduce the number of constants
appearing in (5) by introducing suitable dimensionless
constants and variables. Instead of doing this, we shall
simply choose the units in which the constants and vari-
ables are measured so that ko=1 and 4 =1. The quanti-
ties with dimensions of time and distance whose numeri-
cal values are unity are then k¢ 247! and k¢!, while
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Eq. (5) reduces to

Iiled d 9
—= —(6——+cosxo—> ' +Hy). 6)
ot 0% ay

An arbitrary perturbation field satisfying the bound-
ary conditions may be written

V= KZL Axr(t) exp[iD~ (Kxot+Ly) ], Q)

where the sum runs over all pairs of integers. We
shall refer.to each term in the summation (7) as a
“component.”

Because (6) is linear, we may anticipate that the gen-
eral solution can be expressed as a sum of simpler solu-
tions, or “modes.” If the coefficients in (6) were con-
stants, the modes would simply be components, and the
factors Axy in (7) would be exponential (real or com-
plex) functions of ¢ Because the coefficient coszo ap-
pears in (6), however, the dependence of a mode upon
x9 will assume some other form. A mode may neverthe-
less be expressed as the sum of a restricted set of com-
ponents. Indeed, the simplest solutions of (6) assume
the form

v =Zk X expli(kao+ly+M) ], (8

where & and [ are real and XA may be real or complex, and
where the separate values of £ differ by integers. It is
not necessary that £ and / themselves be integers, but
they must be multiples of 1/N. With less restrictive side
boundary conditions, solutions with arbitrary values of
k and ! would be allowable.

If we let
¢+ =% Vi explikxotiy+a) ], ©)
3
it will follow that
Vi=—F+P-1)X,. (10)
Moreover,
=3 ay 1V explilkaot+ly+N) ], (11)
3
where
ar= (B*+12—1) (k2411 (12)

Upon substituting (9) and (11) into (6), and expressing
cosxo in terms of complex exponentials, we find that

ldek—1+ 2(6kak+)\) Yk+lakYk+1=O. (13)

We may solve (6) by solving the infinite system of
algebraic equations (13).

Since these equations are homogeneous, we may
anticipate an eigenvalue problem; for given values of
the remaining constants, meaningful solutions of (13)
will exist only for special values of . Amplifying solu-
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tions will be those for which the product ¢x has a positive
real part. The general solution of (5), and hence the set
of eigenvalues, evidently depend upon the value of the
dimensionless parameter k5°’43~!, whose reciprocal ap-
pears simply as 8 in (6) and (13). Moreover, for a given
value of 8 in (13), different sets of eigenvalues will result
from different choices of /, and the smallest non-nega-
tive value of k.

Appropriate values of 8 in (13) cover a fairly wide
range. The beta plane is supposed to model the earth
at some middle latitude ¢o. If ¢ and Q denote the earth’s
radius and angular velocity, respectively, then

B=20a" coseo, (14)
while
ko= N (a cosgo). (15)
If Vo denotes the rms northward velocity, and if
Ro=Vo(Qa cospo)™ (16)

denotes a sort of Rossby number for the north-south
motion, it follows from (2) and (16) that

Eod =V2R0Qa cosgo. 17)
Letting ¢o=45°, we find that
kPAB 1 =V2N*Ro. (18)

From the point of view of atmospheric predictability,
an important case arises when the Rossby waves have
the length of typical waves in the middle-latitude west-
erlies, and when their energy is comparable to the total
eddy kinetic energy of the atmosphere. In this case NV
may equal 6, while V¢ is about 12 m sec™; this gives a
value for Ro of ~0.04. Thus, k848" is about 2. We
shall henceforth use the numerical value 8=% in our
computations, noting, however, the manner in which
different values of 8 would alter the results. With the
above values of N and Ro, the units in which time and
distance are measured become approximately 12 hr
and 750 km.

To obtain suitable values of ! in (13), we recall that
the barotropic vorticity equation (1) possesses two
quadratic invariants—the mean kinetic energy and the
mean enstrophy (one-half the mean-square vorticity).
As shown by Fjértoft (1953) and others, it follows that
if kinetic energy, or enstrophy, leaves one component,
some of it must pass to a component of greater wave-
length, and some to one of lesser wavelength.

Tt follows that if (8) is to represent an amplifying
solution of (6), at least one component in the summation
must possess a wavelength exceeding that of the basic
Rossby waves, i.e., £2-+12<1 for at least one value of k;
thus, 1< 1. As already noted, ! must be a multiple of
1/N.

Although the values of & may be integers augmented
by any multiple of 1/N, Eq. (13) acquires a certain
symmetry when they are pure integers. We shall restrict
our attention mainly to this case, which appears to be
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typical in other respects. In this event ax>0 if k50,
and indeed a;,— 1 as £k — 4= . However, a, is nega-
tive (when /< 1). Mathematically it will prove to be the
negative value of a¢ which enables (13) to possess
amplifying solutions.

3. Solution by successive approximation

Our first task is to find values of N for which the
infinite system (13) possesses solutions. More precisely,
we must find values for which the corresponding solu-
tions, when substituted into (9), will represent a mean-
ingful field of motion, since it is obvious that we may
choose any value of A, and any values of ¥, and ¥y,
and formally solve the equations in succession for ¥,
Vs, ...,and alsofor Y_y, ¥_,, .. .. At the very least we
must find values of A for which Yy — 0 as bk — - .

For such solutions we can say something about the
rapidity with which ¥, — 0. For large positive values
of %, the cancellation will be mainly between the first
two terms in (13). Thus, to a first approximation,
Yi=—(/2Bk)Y1-1; as a result |Vi] — 0 about as
rapidly as (1/28)%/k!.

It follows that the larger values of &£ contribute very
little to the summation in (9), and even less to that in
(8). It should therefore be possible to obtain a good
approximation to the infinite system (13) by setting
Y=0 for the higher values of %, and retaining only
enough equations in the system to govern the retained
components. Accordingly, we shall define the Mth ap-
proximation to the system (13) as the system of 2M+1
equations within (13) which retain at least two non-
vanishing terms when V7 is set equal to zero for k> M.

The first approximation is the system of three
equations

ldoY_l—f— 2\ Y0+ldoY1= 0
la1Vo+2(Ba1+MN)Y1=0

2(—Bar+N)Y_1+1a,Y =0
}, (19)

in the three variables Y_y, Yo, V1. Values of A for which
solutions exist satisfy the characteristic equation
A3— (ﬁzal“’—l——%lzaoal))\ = 0, (20)

obtained by equating the determinent of the coefficients
to zero. Once A is determined, ¥ may be chosen arbi-
trarily, and ¥_; and ¥; may be immediately evaluated.
It might not be expected that the first approximation
would be a very good one, but actually it yields con-
siderable information regarding the exact solution. If
I>1, all the constants in (14) are positive, and the three
roots are obviously all real. There are, therefore, no
amplifying (or decaying) perturbations—a conclusion
already reached in the previous section. However, if
I<1, ao is negative, and (20) may possess imaginary
roots. Eliminating the root A=0, which corresponds to
a neutral perturbation, we find in view of (12) that the
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remaining roots are given by
N=—3P(1+)2(1-2p%—1Y). (21)

Thus, for any value of 8, there are small positive values
of I for which amplifying perturbations exist. For large
enough values of 8, however, these values of / may not
be allowable, i.e., multiples of 1/N.

For 8=3%, values of |A| satisfying (21) for various
values of / may be found in Table 1, in the rows headed
M=1. The maximum value, about %, corresponds to a
value of [ between § and £, and indicates an e-folding
time for the perturbation of about 4 units, or 48 hr, and
hence a doubling time of about 33 hr. The growth rate is
therefore somewhat larger than, but comparable to,
the growth rate of errors obtained from large numerical
models simulating the general atmospheric circulation
(e.g., Smagorinsky 1969).

Again for =% and I=%, if we choose Xo=1 (and
thus Vo=2), it follows from (19) that ¥V,=—0.050
—0.128 (and X;=0.204-0.517), while X_,;=—X*,
the asterisk denoting a complex conjugate. Thus, the
first approximation to an amplifying perturbation, as

given by the real part ¥z’ of ' in (8), is
Vi =% cosyy— (1.02 cosxo+0.40 sinxo) sindy]. (22)

For the Mth approximation, the characteristic equa-
tion reduces to one of Mth degree in A? after the root
A=0 is divided out. In principle, it may therefore be
solved analytically, for M < 4. However, when numerical
values of 8 and / are given, it is much simpler to solve
numerically for A by a trial-and-error procedure.

The matrix of coefficients of the Mth approximation
is tridiagonal; the first and last equations contain only
two terms. If an assumed (imaginary) value of A is sub-
stituted into the equations, and if the first and last
equations are multiplied by suitable (complex) con-
stants and subtracted from the second and next-to-last
to eliminate ¥_j and Vi, the resulting system of
2M—1 equations still possesses a tridiagonal matrix.
After this procedure has been performed M times, there
will remain a single equation of the form 8V (=0. The
correct value of A is the one which makes =0; this is
readily found by systematic trial and error. Frd

Values of || for the first four approximations appear
in Table 1. We see that for the smaller values of / even
the first approximation is good. For the larger values
the second approximation is hardly distinguishable from
the correct value. It is interesting to note that the
largest value of A for an allowable value of ! has been
shifted from /=% to /=2,

To solve the equations after A is known, we note that
in the process of reducing the system of 2M+1 equa-
tions to one equation, we may determine the ratios
YM/YM_l, YM,_l/YM_g, ey and also Y—M/Y—M+ly
Y_sm1/Y_pmps, ..., without additional labor. Choosing
Y, arbitrarily, we may then immediately evaluate ¥,



262 JOURNAL

OF THE ATMOSPHERTC

SCIENCES VoLuME 29

TaBLE 1. Absolute values of the eigenvalues A, and values of the coefficients Cj, and Sy, satisfying the first four
approximations (M =1,2,3.4) to Eq. (13), for 3=3%, and for allowable values of I for N =6.

l M [)\ | C] Sl Cz Sz Ca Sa C4 54
¥ 1 0.1139 0.0813 0.6831

2 0.1139 0.0800 0.6831 0.0000 —0.0003

3 0.1138 0.0800 0.6831 0.0000 —0.0005 0.0000 0.0000

4 0.1138 0.0800 0.6831 0.0000 —0.0005 0.0000 0.0000 0.0¢CO 0.CCCO
3 1 0.2048 0.1500 0.6144

2 0.2051 0.1418 0.6152 0.0001 —0.0036

3 0.2051 0.1416 0.6152 0.0002 —0.0037 0.0000 0.0002

4 0.2051 0.1416 0.6152 0.0002 —0.0037 0.0000 0.0002 0.0000 0.0000
i 1 0.2530 0.2000 0.5100

2 0.2574 0.1750 0.5148 0.0000 —0.0099

3 0.2574 0.1741 0.5147 0.0002 —0.0102 —0.0001 0.0006

4 0.2574 0.1741 0.5147 0.0002 —0.0103 —0.0001 0.0007 0.0000 0.0000
2 1 0.2486 0.2308 0.3729

2 0.2611 0.1743 0.3917 —0.0018 —0.0174

3 0.2611 0.1743 0.3916 —0.0011 —0.0185 —0.0002 0.0016

4 0.2611 0.1742 0.3916 —0.0011 —0.0186 —0.0003 0.0017 0.0000 —0.0001
2 i 0.1436 0.2459 0.1723

2 0.2037 0.1529 0.2444 —0.0066 —0.0208

3 0.2056 0.1424 0.2467 —0.0052 —0.0234 0.0002 0.0028

4 0.2056 0.1418 0.2467 —0.0052 —0.0236 0.0001 0.0030 0.0000 —0.0003

Vo, ...,and Y, Vo, .. .. Actually, some of the com- S;of Xy, for k=1, 2, 3, 4, after X, has been chosen equal

putation is unnecessary when X is pure imaginary and
Yy is chosen to be real, since in this event, for any

approximation,
Y_p=(—1)FY* (23)

The values of X; may then be determined from (10).
Table 1 includes the real and imaginary parts Ci and

%
-
-
-
-

N
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- Fie. 1. Unperturbed Rossby waves satisfying Eq. (1). The
constants have been chosen so that the amounts of zonal and eddy
kinetic energy are equal. The rectangle indicates the region 0«
<21r/ko, 0 $ y <41r/ko.

to unity. Again the second approximation would be
acceptable for most purposes.

As for the field of perturbations, we find in view of
(23) that

Yr =Mt cosly[Co+>" (2C} coskxy— 2S5} sinkxo) |
&
+elMtsinly 3 (2S) coskxo+2Cy sinkxo), (24)
%

where the first summation runs only over even positive
indices, and the second only over odd positive indices.
We shall illustrate the field for the case 8=% and I=1%.

Fig. 1 shows an unperturbed field of Rossby waves.
The constants in (2) have been chosen to make the
amounts of zonal and eddy kinetic energy equal, i.e.,
U*=3. Fig. 2 shows the Rossby waves plus the pertur-
bation given by (24). The values of Cj and Sj are pro-
portional to those in Table 1, and the amplitude has
been chosen to make the kinetic energy (zonal plus
eddy) of the perturbation equal to % that of the basic
flow, or % the eddy kinetic energy of the basic flow. This
large amplitude has been chosen simply to render the
principal synoptic features in Fig. 2 more apparent;
actually, Eq. (1) conserves total energy, and the
original Rossby waves will weaken as the perturbation
intensifies.

There are some noteworthy features. First of all, the
perturbation possesses zonal kinetic energy, as indicated
by the term in (24) containing Cq. In Fig. 2, the excess
of zonal kinetic energy over that of the basic flow alone
shows up as a belt of stronger westerlies in the southern
portion of the fundamental rectangle, and weaker west-
erlies in the north. The accompanying shapes of the
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trough and ridge lines indicate a convergence of trans-
port of eastward momentum into the latitudes of
stronger westerlies, tending to intensify the westerlies,
and a divergence from the weaker westerlies, tending to
weaken them further. At the same time, the flow pat-
tern favors rapid displacement of the troughs and ridges
where they are already advanced, and slow displace-
ment where they are retarded, thus intensifying the
existing momentum transports. There is, therefore,
positive feedback—an essential ingredient for instability.

Incidentally, the basic flow plus a decaying perturba-
tion, as given by the other imaginary value of A, would
appear as the mirror image of Fig. 2 in"a’north-south
line. Eastward momentum would be transported out of
the belt of stronger westerlies, while the advanced por-
tions of the troughs would move more slowly, and the
perturbation would be self-destroying. The feedback
would still be positive; negative feedback would char-
acterize a neutral perturbation.

For the amplifying perturbation, the source of both
the zonal and the eddy kinetic energy is the eddy kinetic
energy of the basic flow. Thus, the prior presence of
waves favors the development of bands of stronger and
weaker westerlies. Possibly a similar mechanism is
instrumental in favoring the development of jets in the
real atmosphere. We must be cautious, however, in
extending these ideas to an exposition of the general
circulation, since it is not obvious that an arbitrary
atmospheric flow pattern can be resolved into a ‘“basic
flow” containing waves, and a finite-amplitude ‘“‘per-
turbation,” in any unique manner.

There are additional amplifying perturbations which
we have not attempted to find. These are given by solu-
tions of (18) in which the values of £ are multiples of
1/.V, but not integers. For such solutions the summation
in (8) contains no terms which are independent of wq,
and the perturbations possess no zonal kinetic energy.
Nevertheless, the basic flow plus a perturbation of this
sort should exhibit features resembling jet streams.
These will meander enough so as not to favor any par-
ticular latitudes.

4. Concluding remarks

We have taken one of the simplest of the few known
exact analytic solutions of the barotropic vorticity
equation, namely Rossby’s (1939) original solution
representing the progression of waves embedded in a
uniform westerly current. We have used analytical
procedures to test this field of motion for stability with
respect to further perturbations of small amplitude.
We have found that the flow may indeed be unstable.

Our results are of particular interest in connection
with the problem of atmospheric predictability. Spe-
cifically, they yield further information about the rate
at which separate solutions of the system of equations
governing the atmosphere will diverge from one another.
Current estimates of this rate (e.g., Smagorinsky, 1969)
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T16. 2. Rossby waves of Fig. 1, with superposed perturbation
satisfying Eq. (5). The amplitude has been chosen so that the
kinetic energy of the perturbation equals one-fourth that of the
basic flow. The rectangle indicates the region 0<xo<2w/ko,
0< y<4r/ko, containing one complete period (in each direction)
of the perturbation.

have been based mainly upon numerical integration of
rather specialized models of the atmosphere. It has
been suggested (e.g., Robinson, 1967) that results of
this sort tell us more about the models than about the
atmosphere.

Admittedly the vorticity equation which we have
used is only a model of the atmosphere, and a rather
crude one at that, but because our solution is analytic
rather than numerical, it is not dependent upon the
choice of a finite-differencing scheme, nor upon the
horizontal resolution afforded by any grid of points. If
it is the use of models which causes separate solutions
to diverge, it is certainly not due to the numerical tech-
niques used to handle these models.

Actually, the doubling time of 33 hr which we have
obtained for the rms difference between separate solu-
tions is no more than half the doubling time for small
errors obtained by Smagorinsky. One might, therefore,
be led to conclude that numerical methods tend to
underestimate the growth rate. While this may be true
to a slight extent, we believe that the above discrepancy
is due mainly to other causes. For one thing, we have
not included viscous effects, which tend to suppress the
growth rate. Probably more important, however, our
model is unrealistic in that all the eddy kinetic energy
has been lumped into wavenumber 6. It is easy to
demonstrate that if we had chosen a lower wavenumber,
we should have obtained a slower growth rate. We
cannot be certain from the work which we have per-
formed what our results would have been if we had



264

attempted to model the atmosphere more closely by
distributing the energy among several wavenumbers,
but it seems likely that the growth rate would have
been closer to Smagorinsky’s, which we regard as fairly
realistic.

It has been frequently noted that the growth rate is
comparable to the rate of amplification of waves super-
posed on a daroclinic zonal current, and the unpredict-
ability of the atmosphere has sometimes been attributed
to baroclinic instability. Undoubtedly, Rossby waves in
the atmosphere owe their existence to baroclinic in-
stability, but when the waves are already well estab-
lished, as is usually the case, the effects of barotropic
instability appear to be sufficient to account for the cal-
culated growth rates. It is our opinion that barotropic
instability is the most important immediate factor in
the unpredictability of large-scale atmospheric flow. Of
course, we have not eliminated the possibility that the
effects of baroclinic instability are also present; perhaps
it-is when both types of instability are active that pre-
dictions are the least reliable.

Aside from any applications to the predictability
problem, we have demonstrated the feasibility of an
analytic approach to the problem of the stability of a
flow which is not zonally uniform. Earlier studies (e.g.,
Drazin and Howard, 1966) have established stability
criteria, but have not generally determined amplifica-
tion rates nor sought the forms of growing perturba-
tions. With regard to a flow which is non-uniform and
unsteady, however, we have made little progress, since

“our flow becomes steady in a moving coordinate system.
For an arbitrary unsteady flow the growth of a perturba-
tion should not be precisely exponential, since the in-
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stantaneous growth rate will fluctuate as the basic flow
alters its shape.

Finally, we have touched upon the theory of the gen-
eral circulation. In particular, we have established one
reason, which we hypothesized in an earlier paper
(Lorenz, 1964), why flow patterns resembling Rossby’s
original solution of the vorticity equation, and obeying
Rossby’s trough formula, are not regularly observed in
the atmosphere; these patterns are unstable, and give
way to other patterns. Beyond this, we note that Rossby
wave motion with superposed growing perturbations
tends to possess jet-like features which are not present
in the Rossby wave motion alone. Possibly the preva-
lence of jet streams in the atmosphere is, in part, a
manifestation of barotropic instability of the type
which we have considered.
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