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Abstract. The theory of adiabatic invariants is developed to cover the gyration of
a star about a nearly equipotential orbit in a galaxy with a strong bar. The guiding
centres for such orbits follow curves of constant Ergos. The energy and the gyration
adiabatic invariant give two constants of the motion. Critical Ergos curves have a pair
of X-type gravitational neutral points which provide switches between trajectories that
have the star circulating forward or backward relative to the corotating frame of the
bar and those that liberate back to remain on one side of the galaxy’s centre.

An attempt to discover the dynamical basis of the apparently random switching,
that has been observed in computations of orbits with finite amplitudes of gyration,
FAILS to find any such chaos at small gyration amplitudes, where Ergos curves give a
good description of guiding centre motion.

1 Introduction

Eddington [15] looked for solutions of the collisionless Boltzmann equation that
lacked axial symmetry but were steady in non-rotating axes. He introduced the
idea of principal velocity surfaces to which the principal axes of the velocity ellip-
soid were orthogonal. He then proved that, if the velocity ellipsoids were triaxial
corresponding to three independent integrals quadratic in the velocities, the prin-
cipal velocity surfaces had to be confocal quadrics. Also the potential had to be
of a special form corresponding to Stackle’s separable systems. Chandrasekhar
[6] vehemently criticised Eddington’s assumption that principal velocity surfaces
existed but the analysis without that assumption produced no new solutions of
interest. Meanwhile Clarke [7] derived the algebraic integrals corresponding to
Eddington’s system which were exploited to great effect by Kuzmin [20] and
others. Lynden-Bell [21] gave a new analysis without assuming that the inte-
grals were quadratic, but while he derived all six integrals and showed that the
turning points lay on the confocal quadrics, he again found no new systems.
It was de Zeeuw [12] & [13] who’s careful categorisations of the orbital struc-
ture in these separable systems that revived interest in them. For an elementary
derivation in axial symmetry, see Lynden-Bell [25]. Rather less is known about
the analytic form of the integrals of the motion in systems that are only steady
when viewed in rotating axes. Freeman [16] gave a fine analysis of the special
systems in which the forces are linear functions of position which form a natural
development of Riemann’s homogeneous ellipsoids. Vandervoort [28] discovered
a Stackle system in rotating axes which was further developed by Contopoulos
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and Vandervoort [9] but the density corresponding to this special potential is
not positive everywhere. de Zeeuw and Merritt [11] developed a theory suitable
for the cores of rotating systems, while Berman and Mark [3] analysed nearly
circular orbits trapped in weakly non-linear spiral waves and gave analytical ap-
proximations to the slightly non-circular motion of the guiding centres. Binney
& Tremaine [4] gave a general discussion of computed orbits.

For individual orbits a significant advance was made by L.S. Hall [17] who
asked for invariant relations for one energy rather than an integral of the motion
for all energies. This gave him a far wider class of potentials than those for which
exact integrals exist Whittaker [29] Marshall & Wojciechowski [26].

Here we develop the adiabatically invariant gyration of a star about a guiding
centre to give us an approximate integral independent of the energy, which is
especially useful in the complicated region of barred galaxies close to corotation.
The analysis of orbits into a gyration about a guiding centre’s motion shows a
bifurcation at the gravitational neutral points at the ends of the bar. Could it
be that it is the phase of the gyration motion as the star enters the bifurcation
region that determines which way the orbit goes? If so, we have a natural origin
for the chaos that has been observed in orbits near corotation Contopoulos et
al., [10]. In this paper, Sect. 2 is devoted to exact special cases in which the two
dimensional motion in the galactic plane is integrable, Antonov & Shanshiev
[2]. Section 3 develops the theory of guiding centre motion; when the gyration
is of zero amplitude this motion is along Ergos curves which are not far from
equipotential Lynden-Bell [22]. Section 4 considers the finite gyration about
slightly modified Ergos curves while Sect. 5 analyses the motion near saddle
points and the behaviour of the switch that directs the orbit into libration or
circulation.

In the related problem in which a charged particle moves in an electromag-
netic field some progress has been made in classifying the separable systems’
scalar and vector potentials but even for axial symmetry Lynden-Bell [23] such
classification is far from complete, although the charged Kerr Metric with G = 0
provides a very interesting special case Lynden-Bell [24].

2 Exact Special Cases

In rotating axes the equations of motion of a star in a galactic plane may be
written

R̈ = ∇Φ− 2Ω × Ṙ (1)

where Φ = ψ + 1
2Ω

2R2 is the gravitational plus centrifugal potential measured
in the sense that Φ is large in those regions to which particles are attracted by
gravitational or by centrifugal forces. Two special cases give the clue as to what
to do next

1. When ∇Φ = g is a constant then we may orient the y axis upwards, i.e.,
along −g. We then have a case analogues to the E × B/B2 drift of plasma
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physics, writing gy = −g = dΦ/dy

ẍ = 2Ωẏ , (2)

ÿ = −g − 2Ωẋ . (3)

We integrate the first and insert it into the second to find with c a constant

ẋ = 2Ω(y − c) , (4)

ÿ + 4Ω2(y − c+ 1
4gΩ

−2) = 0 , (5)

so y oscillates harmonically about the value c− 1
4gΩ

−2 = y0.
In plasma physics (2) and (3) are commonly combined by writing ζ = x+ iy.
Then

ζ̈ + 2iΩζ̇ = −ig ,
so

d

dt

(
e2iΩtζ̇

)
= −ige2iΩt ,

which may readily be integrated twice to give

ζ = − 1
2gΩ

−1t+ ae−2iΩt + ζ0 , (6)

where a and ζ0 are complex integration constants. Thus the motion consists
of a circular gyration of amplitude |a| and frequency 2Ω about a guiding
centre that moves with velocity vd = − 1

2gΩ
−1x̂ starting from point ζ = ζ0.

Notice that we may write this drift velocity in the form g × (2Ω)/4Ω2 in
analogy to E×B/B2 . The fact that g = ∇Φ means that the guiding centre’s
motion is along an equipotential but that is only true when the equipotentials
are of constant curvature as we show presently. When g = ∇Φ is not constant
but Φ is a non-linear function of y, (2) and (4) are still valid and (3) may be
replaced by

ÿ = dΦ/dy − 4Ω2(y − c) =
d

dy

[
Φ− 2Ω2y2 + 4cΩ2y

]
. (7)

In general we now have a non-linear oscillator with an energy–like integral

1
2 ẏ

2 − Φ(y) + 2Ω2y2 − 4cΩ2y = I = constant , (8)

but let us start with the simplest case in which g is expanded to first order
about y = y0 the trajectory of the guiding centre. Then

Φ = Φ0 − g0(y − y0) + 1
2Φ

′′
0(y − y0)2 .

Equation (5) then takes the form

ÿ + κ2(y − y0) = 0
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where κ2 = 4Ω2 − Φ′′
0 evidently

y − y0 = Im(aeiκt) .

and by (4)
ẋ = 2Ω(y − y0) + 2Ω(y0 − c) ,

x =
2Ω
κ

Re (
aeiκt

)
+ 2Ω(y0 − c)t+ x0 . (9)

If we write
ζ = x+ i

2Ω
κ

(y − y0) ,

then
ζ = (2Ω/κ)aeiκt + vdt+ ζ0 ,

where the first term represents an elliptical gyration at angular frequency κ
and the remainder is the drift motion of the guiding centre at velocity

vd = −g02Ω/κ2

along y = y0. In the non–linear case (8) y has some mean value which we
may again call y0 and 〈ẋ〉 = 2Ω(y0 − c) where 〈ẋ〉 indicates the temporal
mean.
Evidently ẋ−〈ẋ〉 = 2Ω(y−y0) so x executes an oscillation out of phase with
y − y0, making a closed curve which moves with the guiding centre. More
generally again Φ′′

0 might depend on x. Then (2) and (3) would be replaced
by

ẍ = 2Ωẏ +
∂Φ′′

0

∂x
1
2 (y − y0)2 ,

ÿ =
∂Φ0

∂y
− 2Ωẋ .

if we again write ẋ = 2Ω(y−c) then c must vary, albeit slowly, since (y−y0)2
is small. We again get

ÿ + κ2(y − y0) = 0

but now y0 may depend weakly on time.
We form the adiabatic invariant

J =
1
2π

∮
ẏdy , (10)

which will depend on y0 through the value of κ2 . We then use the invariance
of J and the exact conservation of the energy 1

2Ṙ
2 − Φ = ER to determine

the small changes in c and y0.
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2. In the above, the equipotentials were lines of constant y (or almost so).
More generally suppose that the equipotentials Φ = constant are curved
with radius of curvature r at the position considered. If Φ = Φ(r) we may
solve (1) in cylindrical polar coordinates centred at the centre of curvature.
With φ the azimuthal angle we have

r−1d/dt(r2φ̇) = −2Ωṙ

so
r2(φ̇+Ω) = h = constant , (11)

and
r̈ − rφ̇2 = Φ′(r) + 2Ωrφ̇ ,

hence
r̈ = d/dr

[
Φ− 1

2

(
hr−1 −Ωr

)2
]
, (12)

so
1
2 ṙ

2 −
[
Φ− 1

2

(
hr−1 −Ωr

)2
]

= ER .

Notice that if the centre of curvature were the galaxy’s centre then r = R.
This energy is 1

2 (ṙ
2 +r2φ̇2)−Φ, precisely the energy in the rotating axes. We

have written motion in an axially symmetrical potential in this complicated
way (in rotating axes) not merely to see the analogy with problem (1) but
also because we now wish to consider problems lacking any global axial
symmetry which are nevertheless steady when viewed from rotating axes.
Our results are in a suitable form for applications to barred spiral galaxies
and to galaxies with strong non-radial gravity fields.

We shall now generalise the above results to cases where the equipotentials
are not of constant curvature but have their curvatures varying continuously
along the orbits. Provided that the epicyclic motion is rapid compared with
the drift motion of the guiding centre along, or almost along, the equipotential
we expect an adiabatic invariant for the oscillation across the equipotentials of
the form J = (2π)−1

∮
ẏdy . This together with the exact conservation of the

energy relative to the rotating axes, gives two integrals of the motion and allows
the calculation of the orbits generally and of the drift trajectories of the guiding
centres in particular. In the next section we shall concentrate on finding the drift
trajectories of the guiding centres. Among all possible orbits will be some for
which the adiabatic invariant governing the gyration about the guiding centre is
and remains zero. Thus there will be a one parameter family of non-oscillating
trajectories.

3 Drift Trajectories – Ergos Curves

Near corotation, drift velocities are slow and guiding centre accelerations neg-
ligible, so (1) can be rewritten in the galactostrophic approximation in which
Coriolis force balances the gradient of the potential

2Ω × Ṙ = ∇Φ , (13)



Critical Ergos Curves and Chaos at Corotation 35

so
Ṙ = ∇Φ × Ω/(2Ω2) . (14)

The drift velocity Ṙ is thus along an equipotential (of constant Φ) - this is
just the E × B/B2 drift of plasma physics. However, here this approximation is
unsatisfactory since it actually conflicts with the exact conservation of energy
whenever |∇Φ| varies along an equipotential. Ṙ2 as given by (14) clearly varies
along an equipotential so ER = 1

2Ṙ
2 − Φ clearly varies along an equipotential.

But ER is strictly conserved along any trajectory so the approximation that
gave the drift trajectories along equipotentials conflicts with exact conservation
of energy. We now give a treatment free of such conflict.

We start again but now suppose that the drift trajectories lie at small angles
to the equipotentials rather than along them. Let n̂(x, y) be the unit normal to
the drift trajectories with the sense that n̂ × Ω̂ ≡ t̂, gives the direction of the
drift velocity. Ω̂ is the vector Ω/Ω . Then n̂ lies at a small angle to ∇Φ c.f. (14).
Further we shall define the curvature vector of the drift trajectories K(x, y) . K
is perpendicular to the trajectory and points towards its centre of curvature from
(x, y) . The magnitude of K is the reciprocal of the radius of curvature of the
drift trajectory at (x, y). A star travelling along a drift trajectory at velocity v
will have a transverse acceleration Kv2 towards that centre of curvature. Taking
components of (1) along the trajectory’s normal n̂ we thus find

K · n̂v2 = n̂ · ∇Φ− 2Ωv . (15)

To simplify this notation we put K · n̂ = K noting that K and n̂ are both
perpendicular to the trajectory; K is either |K| or −|K| depending on the sense
of the trajectory’s curvature. Solving for v we find

v =
1
K

[√
K · ∇Φ+Ω2 −Ω

]
=

n̂ · ∇Φ√
K · ∇Φ+Ω2 +Ω

. (16)

Notice the close correspondence between this expression and (14) which gives
v = |∇Φ|/(2Ω) . Evidently if the angle between n̂ and ∇Φ is small enough
to have its square neglected, and if |K∇Φ| � Ω2 the two expressions become
equal. However (16) is exact while (14) was approximate. We now use exact
energy conservation relative to the rotating axes

ER = 1
2v

2 − Φ = 1
2

(n̂ · ∇Φ)2[√
K · ∇Φ+Ω2 +Ω

]2 − Φ ≡ E(x, y) . (17)

The function E(x, y) is called the Ergos (Lynden-Bell, [22]). The definition is
implicit since n̂ is the normal to the trajectories along which E is constant and
whose curvatures are given by K(x, y) . So far all is exact; the Ergos curves along
which E is constant give the drift trajectories of the (zero amplitude) guiding
centres. Now for any function F that is −Φ or any better approximation to the
Ergos, writing suffixes to denote differentiation, and

s = (F 2
x + F 2

y ) 1
2 , (18)
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n̂ = −s−1(Fx, Fy); n̂ × Ω̂ = t̂ , (19)

we have
K =

(
t̂ · ∇)

t̂ = s−3 (
F 2

xFyy − 2FxFyFxy + F 2
yFxx

)
n̂ . (20)

Wherever |K · ∇Φ| is not as large as Ω2 it is easy to find approximations to
the Ergos. At zero order we use −Φ for F and calculate first approximates to
n̂ and K from the above formulae. Substituting them into (17) we find a first
approximation to the Ergos E1(x, y) . Using E1 for F in the above formulae we
calculate 2nd approximations to n̂ and K and putting them into (17) we get
E2(x, y) . Near corotation this will converge quite quickly to give the Ergos and
the level surfaces of it give the Ergos curves along which the guiding centre
trajectories lie. For related work on such systems see Antonov & Shanshiev [2].
Very close to gravitational neutral points where ∇Φ = 0 it is easiest to calculate
the Ergos curves as trajectories with zero gyration directly. Figs. 1 and 2 give
the equipotentials and the Ergos Curves.

Fig. 1. Equipotentials of Φ = ψ + 1
2Ω

2R2 where R2 = x2 + y2; ψ = GM(b +
s)−1 [

1 − 0.02b2(x2 − y2)s−4] ; and s2 = R2 + b2. The angular velocity of the bar,
Ω, is chosen so that Ω2s = GM/(b + s)2, that is Ω2 = GMb−3/(4 + 3

√
2). In the

diagram GM = 1 and b = 1.
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Fig. 2. Ergos curves for zero gyration and the potential of Fig. 1.

4 The Gyration Adiabatic Invariant

At any point R0 the equipotentials have some curvature K◦ and near there
Φ can be approximated as being a function of r the distance to the centre of
curvature. Thus, in a region near R0 the angular momentum about that centre
of curvature will be approximately conserved. Taking the cross product of (1) by
r the vectorial distance from that centre of curvature and using Ṙ = ṙ we find

d/dt(r × ṙ) = −2r × (Ω × ṙ) +O(ε2) ,

so
r × (ṙ + Ω × r) = h +O(ε2) , (21)

as in (11), but now h is only approximately constant locally. (21) will be just as
true of the motion of the guiding centre as it is of the motion of the star that
gyrates about that centre. Let the guiding centre be at r0 and the star at r0 + η
then working to first order in η writing r = r0 + η in (12)

η̈ + κ2η = −(�r−2
0 −Ω)δh ,

where κ2 = −d2Φ/dr2 − h2r−3
0 + Ω2r0 . We could have chosen to compare

the motion of our star with that of a guiding centre with the same h and put
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δh = 0 but as neither h nor δh are quite constant we have chosen not to do that.
Evidently η vibrates harmonically about κ−2(Ω − hr−2

0 )δh = η0 . We shall now
assume that this η vibration is sufficiently fast that the corresponding action is
adiabatically invariant. So the invariant is

J =
1
2π

∮
η̇dη =

∮ √
2[ER + Φ] − (hr−1 −Ωr)2dr

= ∆ER/κ

where ∆ER is the excess energy above that of the guiding centre. The integral
is evaluated with ER and h fixed and with Φ = Φ(r, φ,R0) only weakly depen-
dent on φ and expanded about the point R0 and φ . In the integration R0 and
φ are held fixed and only r varies. Henceforth any dependence on φ may be
incorporated into the R0 dependence. Thus we find

J = J(ER, h,R0) .

∆ER and J are second order in the displacement from the guiding centre. We
are now able to give a correction of this order to the guiding centre’s motion
which we earlier determined in the limit when J was zero. When J is non-zero
the vibration about the guiding centre has extra energy ∆ER = κJ . While J
is fixed; κ still varies from point to point. Thus the effective potential for the
guiding centres motion is

Φ̃ = Φ− κJ ,

so that the energy of the total motion is

ER = 1
2Ṙ

2 − Φ = 1
2Ṙ

2
0 − Φ̃ ,

where Ṙ0 is the motion of the guiding centre. Thus the Ergos curves for guiding
centres of given J should be calculated with Φ̃ replacing Φ . Fig. 3 shows a banana
orbit in which one can see the gyration especially near the ends of the banana.
Fig. 4 shows an orbit that starts librating in a banana close to the critical ergos
curve but then switches to circulation outside corotation.

5 Is the Saddle-Point Switch Chaotic?

When in the 1960’s Michel Hénon [19], [18] and George Contopoulos [8] discov-
ered the fascination of the onset of chaos in stellar dynamical orbits I saw that
a new branch of mathematics would develop, (Drazin [14]), but by that time I
was more interested in the astrophysical problems cast up by astronomy than
in the purely mathematical ones. I have never regretted that decision, though I
have watched with admiration the developments pioneered by my more math-
ematical colleagues. One of the early examples of chaos was in Doug Allen’s
thesis [1] on the behaviour of coupled disk dynamos. The problem was suggested
by Bullard and its solutions gave some indication of why the Earth’s magnetic
field suffers chaotic reversals. Later I learned of the pioneering studies of Mary
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Fig. 3. A banana orbit showing the effects of gyration about the moving guiding centre
especially near the ends of the banana.

Fig. 4. A banana orbit very close to the critical Ergos curve, which switched from a li-
brating orbit to one circulating outside corotation. Although integration was continued
much longer it did not switch back. Either the orbit must hit a very small hole to cross
back or the inaccuracy of the integrator allowed a small change in the guiding–centre
motion so that it no longer came close to the critical switch.
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Cartwright [5] who came upon the chaotic behaviour in the more mathematical
context of differential equations. A deep mathematical study of the conditions
that generate chaos in such systems was made by Colin Sparrow [27] under the
aegis of Peter Swinnerton-Dyer and DLB gained a taste for their mathematical
rigour by attending some of their lectures on chaos. What little he remembers
involved orbits that continually came back into a critical region from which they
could emerge in one of several different directions. It was the critical switching
between these that led to chaos in the solutions. Over the years he has heard
George Contopoulos talk about chaos many times, and chaos near corotation in
orbits that get close to the ends of the bar in barred spiral galaxies has often been
found. When George spoke on the subject at the Saltsjobaden Meeting in De-
cember 1995 [10], DLB had the belief that the saddle points in the gravitational
potential provided just that critical switch with two very different outcomes that
Sparrow needed. I thought the gyrations of the stellar orbit about its guiding
centre would provide just that wobble between one side of the separatrix and
the other needed to give chaos. The pressure of preparing this talk provided the
stimulus needed to work this out properly. We start by analysing the switch at
one of the gravitational points shown in Fig. 1. Centering our coordinates x, y
on the upper saddle point Φ may be expanded for x, y small in the form

Φ = Φ0 + 1
2α

2x2 + 1
2β

2y2 ,

so the equations of motion (1) take the form

ẍ = −α2x+ 2Ωẏ ,

ÿ = β2y − 2Ωẋ

writing D for d/dt we see that

(D4 + ω2
0D

2 − α2β2)x = 0 ,

where ω2
0 = α2 + 4Ω2 − β2, and y obeys the same equation. In practice α2 +

4Ω2 − β2 > 0. Writing D = iw we see that, for w2 there is one positive root

w2 = w2
1 = 1

2w
2
0

(
1 +

√
1 + 4α2β2ω−4

0

)

and a negative one with

−ω2 = γ2 = 2ω−2
0 α2β2/

(
1 +

√
1 + 4α2β2ω−4

0

)
.

The dying solution, γ > 0, e−γt corresponds to a contraction of the points
along the separatrix line from upper left or bottom right while the growing eγt

solution corresponds to expansion along the separatrix line from the saddle both
to lower left and upper right. Together these motions give x = γ(Ae−γt +Beγt),
2Ωy = (γ2−α2)Ae−γt+(γ2+α2)Beγt where A & B are arbitrary constants with
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the separatrices given by B = 0 and A = 0 respectively. This flow is drawn in
Fig. 6. At the saddle the flow switches to left or to right depending on the sign of
B which decides on which side of the separatrix the guiding centre approaches.
However, superposed on these motions is an elliptical gyration due to the real
roots ω2 = ω2

1 , these give x = ω1Ceiω1t and 2Ωy = (ω2
1 − α2)iCeiω1t where C is

an arbitrary complex constant and the real x and real y are the real parts of the

Fig. 5. A chaotically switching orbit of large gyration amplitude computed by Con-
topoulos et al 1996.

Fig. 6. Guiding centre flow close to the saddle point. Critical equipotentials (shown
dashed) are close to the critical Ergos curves.
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Fig. 7. An orbit outside corotation shows gyrations of slightly variable amplitude.

expressions given. Interestingly this elliptical1 gyration continues unaffected by
the saddle point.

Thus the switch to left or right is determined not by the position of the star
but by the position of its guiding centre. DL-B’s concept at the start of this
investigation was that the switch would act on the star’s position, so that the
phase of the gyration as the star approached the saddle point would be crucial.
Now this concept is seen to be false there is no random switching because the
guiding centres follow the ergos curves. What then is the origin of the apparent
switching of orbits seen in Figs. 4 & 5?

Three possibilities are

1. At finite gyration amplitudes there are resonances between the gyration and
the motions of the guiding centres which lead to oscillations in the value of
J and of the energy of the guiding centre’s orbit which allow it to cross the
separatrix before approaching the saddle–point switch.

2. The zero gyration motion of the guiding centre along an ergos curve is itself
unstable.

3. For bars with significant non-radial forces the motions along the ergos curves
are too rapid for the good conservation of the adiabatic invariant. Accurate
separation between a guiding centre motion and a gyration is not possible

1 For Fig. 6 the ellipse is almost round being only 1% flattened in y.
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except close to the saddle–points. Orbits close to the separatrix will return
on different sides of it on different approaches to the saddle–points.

Thus we have been unable to isolate the origin of the apparent randomness
in the switching. However, we hope we have added some understanding of the
orbits and of their integrals of motion.

Figure 7 shows an orbit that circulates “backward” outside corotation. No-
tice that even at the same azimuth there are small differences in the gyration
amplitude; this may be due to inexact conservation of the adiabatic invariant.
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