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ABSTRACT

After enumerating the properties of a simple model that has been used to simulate the behavior of a
scalar atmospheric quantity at one level and one latitude, this paper describes the process of designing one
modification to produce smoother variations from one longitude to the next and another to produce
small-scale activity superposed on smooth large-scale waves. Use of the new models is illustrated by
applying them to the problem of the growth of errors in weather prediction and, not surprisingly, they
indicate that only limited improvement in prediction can be attained by improving the analysis but not the
operational model, or vice versa. Additional applications and modifications are suggested.

1. Introduction

The time-dependent behavior of a real or hypotheti-
cal physical system can in principle be duplicated by
solving an appropriate set of mathematical equations.
Sometimes we can find a general solution explicitly,
but, with the advent of high-speed computers, we have
gained a practical means for determining particular so-
lutions of many otherwise intractable sets. In particular,
we can deal with chaotic systems, that is, those where
slightly different states generally evolve in due time
into states that are perhaps unrecognizably different.
Our preliminary task of establishing the equations,
given the physical system, may nevertheless continue to
entail some difficulties. Approximations are commonly
needed, and the equations then become a model of the
system.

When the system is sufficiently simple, the process of
formulating the equations may be fairly straightfor-
ward. If, for example, the system is an ordinary pendu-
lum, whose motion, incidentally, is not chaotic, two in-
dependent investigators may well arrive at the same set
of equations, particularly if they both disregard friction
and external driving and treat the entire mass as being
concentrated at a point. One could then say that the
investigators have simply discovered the equations that
were waiting to be found.

For more involved systems a unique model may be a
rarity; witness, for example, the multiplicity of opera-
tional and other models purporting to approximate the
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global circulation of the atmosphere. Each of these has
retained certain physical features deemed by the inves-
tigator or group of investigators to be rather important,
while omitting some thought to be less essential, and
each employs devices, for example, representation by
gridpoint values or spherical-harmonic coefficients,
that appeal most to the investigator. Here one can say
that the models have been designed rather than discov-
ered; indeed, a model can bear the mark of its designer
just as surely as a song can bear the mark of its com-
poser.

When we construct operational global circulation
models, we typically attempt to duplicate the atmo-
sphere and its surroundings as closely as is feasible,
given the present knowledge and the available comput-
ing facilities. On other occasions, perhaps in the interest
of speeding the computation or simplifying the inter-
pretation of the output, we often deliberately use some-
thing less than the best attainable approximation. Be-
sides discarding some features outright, we often effec-
tively remove others by simply reducing the spatial
resolution. Sometimes, however, we replace the terms
that describe a particular process by terms that cannot
justifiably be said to do so; they simply possess some
key properties in common with the terms that they re-
place. It is models of this sort that will occupy our at-
tention now.

The suitability of a particular model depends criti-
cally upon the purpose for which it is to be used. Per-
haps we may wish to gain some idea as to why a certain
phenomenon occurs. In this case we must not use a
model that will not produce the phenomenon, nor may
we use one that forces the phenomenon to occur. For
example, if we are interested in why the transport of
angular momentum across middle latitudes in the at-
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mosphere tends to be poleward, we must not use a
model where the orientation of sinusoidal trough and
ridge lines is specified to be from south to north, pro-
ducing no transport, or southwest to northeast, de-
manding a northward transport (cf. Starr 1948); evi-
dently we must allow the orientation to vary. Naturally,
with a simplified model we do not eliminate the possi-
bility that a phenomenon will appear for the wrong
reason.

Frequently, when one designs and describes a model,
subsequent investigators will appropriate it, as often as
not for applications that had not been envisioned by the
original investigator. Established models may prove at-
tractive because their key properties are known, or sim-
ply because they are ready to use, but it also seems
likely that merely having appeared in print endows a
model with a certain amount of legitimacy.

My starting point will be a very simple model that has
been previously used to advantage (Lorenz 1996;
Lorenz and Emanuel 1998, hereafter .96 and LE9S,
respectively), and that subsequent investigators (e.g.,
Hansen and Smith 2000) have found suitable for their
needs. I shall begin by documenting its typical behavior.

As with any model, there are certain potential studies
for which this one is not altogether suitable. One such
study is the problem of the appearance and growth of
errors in routine weather forecasting when both analy-
sis error and model error are present. Here, of course,
we need one model—the “perfect” model—just to pro-
duce the simulated true states, and a “model error” will
mean the failure of a simulated operational forecasting
model to duplicate the perfect one. I shall note certain
shortcomings of the original model for pursuing this
problem and describe my attempts to redesign it to
eliminate them.

I shall include a brief application of the new models
to the analysis error—-model error problem, but the prin-
cipal interest will be in the designing process itself. I
hope that the new models will also satisfy some of the
needs of future investigators.

2. Model I

The equations of the first model, which will be called
Model I, are

dX,/dt = =X, X, 1 + X, X,po1 — X, + F. (1)

The system is supposed to represent a one-dimensional
atmosphere; F is a positive constant, ¢ is time, and the N
variables X7, ..., Xy are to be identified with the val-
ues of some unspecified scalar atmospheric quantity at
N equally spaced points about a latitude circle, which
will be called grid points, even though the “grid” is
one-dimensional. Thus, when n < 1 or n > N, X, will
mean X,y or X, . The symbol X, without a sub-
script, will frequently be used to denote the set of vari-
ables X,.
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The quadratic, linear, and constant terms are sup-
posed to represent advection, thermal or mechanical
damping, and external forcing. Note that no coefficients
appear in the quadratic and linear terms; they were
removed by scaling to minimize the amount of compu-
tation. The time unit is therefore the damping time,
assumed to be five days. As we shall see, a typical cross-
longitude profile of X will consist of an irregular chain
of waves, if N and F are sufficiently large.

Equation (1) cannot be derived from any dynamic
equation of which I am aware; it is the result of an
attempt to formulate the simplest possible set of N dis-
sipative chaotically behaving differential equations that
is unchanged by cyclically permuting the variables. It
nevertheless shares certain properties with the atmo-
sphere, or at least with some much larger atmospheric
models. There follow its relevant properties, many of
which were documented in LE98.

Let r and s> denote averages of X, and X2 over n and
regard s*/2 as the total energy. Then

d(s’2)/dt = —s*> + Fr; )

the quadratic terms in Eq. (1) have canceled and, like
advection in many atmospheric models, they do not add
or remove energy. Since s = r, values of X that make s
> F will make the right side of Eq. (2) negative, that is,
they will make s* decrease; hence s and r can never
exceed F after transients have died out.

If R and S* denote long-term averages of r and s
that is, averages of X,, and X2 over n and over a long
enough time to make average time derivatives negli-
gible, the long-term variance o of X is $*> — R?. From
Eq. (2), $* = FR, whence o = R(F — R). Since vari-
ances are nonnegative, R must lie between 0 and F and,
when R = F/2, o acquires its greatest possible value F/2.
The only obvious steady solution, X,, = F, makes R =
F,S = F,and o = 0.

Since the forcing F is constant, it cannot directly in-
ject irregularities into the profile of X. Instead, its effect
is to increase X,, uniformly, and hence to increase the
mean r. However, if waves are nearly absent, so that the
values of X, are all close to r, the small departures x,, of
X, from r will approximately satisfy the linear pertur-
bation equation

dxn/d[ = r(xn+1 - xn72) — X (3)

If x,, = exp(ht) cos(kn — mt), so that the perturbation is
sinusoidal, with a wavelength of 2m/k gridpoint spac-
ings,

h = r(cosk — cos2k) — 1. 4)

The factor cosk — cos2k assumes its maximum value 9/8
when cosk = 1/4, or 2w/k = 4.77, so that waves of a
suitable length will grow if r > 8/9. The actual wave-
length must be a divisor of N; this will happen for a
length fairly close to 4.77 points if N is fairly large, and
finite-amplitude waves will develop when r slightly ex-
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FIG. 1. (a) Profiles of X produced by Eq. (1) with N = 30 and F = 10, at 6-h intervals for 5 days. Scale at bottom is gridpoint number.
Numbers at upper and lower right are scales for top and bottom profiles. Numbers at left indicate chronological order of profiles. Each

number is placed on the zero line for its profile; note that most profiles begin with X, > 0. (b) Time series of X,

..., X;o produced

by Eq. (1) with N = 30 and F = 10 extending 40 days. Scale at bottom is time in days. Numbers at upper and lower right are scales

for X, and X,,. Numbers at left are gridpoint numbers.

ceeds 8/9. This in turn will happen eventually if F ex-
ceeds 8/9.

Although we are interested mostly in positive values
of F, it is worth noting that cosk — cos2k assumes its
greatest negative value —2 when k = , or 2wk = 2.
Waves about 2 grid intervals long will therefore de-
velop if r < —1/2; this must happen eventually if F <
—1/2.

The remaining properties of Model I are most readily
found by numerical integration, where the standard
fourth-order Runge-Kutta scheme with a time step of
1/40 unit or 3 h will invariably be used. This requires
choosing values for N and F. The case N = 3 is of little
interest since the quadratic terms cancel. In a work
performed before Eq. (1) was formulated for general
values of N (Lorenz 1984), with a system equivalent to
Eq. (1) with N fixed at 4, I found that chaos would
appear with F > 11.84 or F < —60.7 and studied the
case F = —100 in detail (y, and c in that work equal
—X_, and —F in the present one). Here, only positive
values of F and larger values of N are considered. Val-
ues of F slightly exceeding 8/9 produce periodic behav-
ior but, as long as N = 12, chaos is found when F > 5.

In the principal example, N = 30 and F = 10, giving
12° longitudinal resolution (we used N = 40 and F = 8
in LE98). To eliminate transient effects each variable
was first chosen randomly from a uniform distribution
between 0 and 1, and then integrated for 2 yr. Here a
“year” consists of twelve 30-day months, or 72 time
units, or 2880 time steps.

Figure 1a shows a sequence of cross-longitude pro-

files of X, which are complete states, for five days at 6-h
intervals. The straight-line segments connecting succes-
sive computed values have been introduced solely to
show which point lies on which profile; they do not
imply that X varies linearly between grid points or is
even defined there. The initial profile (at top) contains
eight distinct crests and troughs—reasonably close to
the six or seven that might have been expected from the
theoretical 4.77-point wavelength. The major crests and
troughs generally maintain their identities through the
five days, although the trough initially at grid point 19,
for example, disappears by day 4. Minor crests and
troughs frequently appear and disappear. The irregu-
larity of the profiles, and their irregular modulation as
time advances, suggests chaos.

Figure 1b is like Fig. 1a, but with the axes of n and ¢
interchanged. The curves are time series of the con-
secutive variables, X, ..., X, extending for 40 days;
the left eighth of Fig. 1b and the left third of Fig. la
contain the same information. The curves are smooth
but irregular, with maxima and minima occurring every
few days and major extremes farther apart. Consecu-
tive curves do not appear highly correlated, and com-
putations indicate that the long-term correlation coef-
ficients at spatial lags of 1 through 5 grid points are 0.05,
—0.33, —0.11, 0.03, and 0.05.

To quantify the chaos inherent in Eq. (1) we go to
Fig. 2a, which shows error-growth curves over a 40-day
period, for N = 30, for selected values of F. In each case
a 2-yr integration from random conditions has pro-
duced the initial “true” state. For the initial “assumed”
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FIG. 2. (a) Growth curves for initially small errors in X extending 40 days, each produced by a single pair of solutions of Eq. (1), with
N = 30 and with values of F indicated by numbers beside curves. Scale at bottom is time in days. Scale at left is base-10 logarithm of
root-mean-square error. (b) Lyapunov exponents (natural logarithms of Lyapunov numbers) of Eq. (1) with N = 30 and with values
of F indicated by numbers beside curves. For each F, values of successive exponents are shown connected by line segments. Scale at

bottom is serial number of exponent. Scale at left is value of exponent.

state a randomly chosen value from a uniform distribu-
tion extending from —0.0001 to 0.0001 has been added
to each variable. The quantity shown is the root-mean-
square difference between the true and assumed values
of the 30 variables.

For F = 2.5 the solution is not chaotic and the curve
initially descends, leveling off when presumably the
only remaining error is a phase error. At F = 5 the
threshold for chaos is just exceeded, and by day 40 the
curve is still far short of its limiting value, or saturation,
but each remaining curve amplifies quasi-exponentially
at its own rate and reaches saturation before 40 days,
thereafter proceeding horizontally. As expected, larger
values of F produce faster error growth. For F = 10 the
slope before saturation implies a doubling time of
about 1.5 days—a reasonable simulation of the behav-
ior of synoptic-scale errors in the atmosphere (Sim-
mons et al. 1995). By averaging many cases, smoother
curves could have been produced.

Figure 2b shows the complete set of Lyapunov expo-
nents for the same values of F. For each F the expo-
nents have been evaluated from one integration that
uses the same true initial state as in Fig. 2a and extends
for two more years, and 30 additional integrations in
each of which a single variable is perturbed initially.

The most striking feature, aside perhaps from the
smooth progressions from the largest to the smallest
exponent, is the common intersection of the curves, at
a point separating the largest 15 exponents from the
smallest 15. For F = 2.5, where the solution is periodic
with a chain of six waves, the leading exponent is 0 and

the last six exponents fall well below the others. For F
> 2.5 the number of positive exponents increases from
6, when FF = 5, to 12, when F = 40. The model might
therefore appeal to someone requiring a system whose
fractional dimension is high, at least when evaluated by
the formula of Kaplan and Yorke (1979). The leading
exponent 2.2 when F = 10 corresponds to a 1.6-day
doubling time, in good agreement with the smaller
sample of Fig. 2a.

There remains the question of the values of R and $?,
for which analytic reasoning yielded only upper and
lower bounds. Extended computations through the cha-
otic range up to F = 100 reveal an almost perfect linear
relationship between log R or log S and log F, and, very
closely, R = a?F'? and S = a?F *?, with a” close to 1.2.
I know of no analytic explanation for this finding.

If in Eq. (1) F = 2, and then ¢t = f?>r and X,, =
f2Y,,, we obtain

dYn/dT = _Yn72Yn71 + YanYnJrl - fZYn +f‘ (5)

With this rescaling, arbitrarily large values of F can be
treated without computational difficulty by making f
arbitrarily small, whereupon the mean of Y, should ap-
proach 0 while the mean of Y2 should remain nearly
independent of f. In the limit we encounter a nondissi-
pative system.

3. Introducing spatial continuity: Model II

With N = 30 and F = 10, Eq. (1) simulates typical
atmospheric wavelengths and error-growth rates rea-
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Fi1G. 3. (a) Profiles of X produced by Eq. (6) with N = 120, j = 8, = 7, and values of F indicated by numbers at left. Scale at
bottom is gridpoint number. (b) Same as (a) but with N = 30,j = 2, and i = 1.

sonably well, but there are applications where the 12°
longitudinal resolution would be quite inadequate. In
the analysis error-model error problem, for example,
one would need to begin with observations that, in the
real world, would ordinarily fall between grid points. If
one planned to use Eq. (1) with N = 30 as the opera-
tional model, one would first have to use Eq. (1), per-
haps with a new value of F, or else some other equation
approximating Eq. (1), as the perfect model, to produce
true gridpoint values. One would then encounter the
problem of interpolating between these values to pro-
duce observations—a task not faced in the real world.

It is always possible to introduce some interpolation
scheme as part of the perfect model, and in certain
applications this might be the most satisfactory solu-
tion. Wholly apart from any particular problem, how-
ever, it may be difficult to identify a truly good scheme
for interpolating between quantities like X,, and X, ,,
which are almost as poorly correlated as random num-
bers. What would be preferable is a system that will
produce rather smooth variations from one longitude to
the next, so that almost any reasonable interpolation
scheme, and perhaps even linear interpolation, will give
nearly the same result. Equivalently, one would like the
system to make values at consecutive grid points rather
highly correlated. This implies that the typical wave-
length must be much greater than four grid intervals. If
chains of six or more waves are to be retained, this
demands a much larger value of N.

Retaining Eq. (1) and increasing N will not solve our
problem. The waves will still be about four grid inter-
vals long; there will simply be more waves. It follows
that, if Eq. (1) with a large value of N has been chosen

as the perfect model, Eq. (1) with a smaller value of N
cannot constitute a realistic operational model. For
some applications, then, a new equation is needed.

False starts are common in model designing, and this
account would be incomplete if I did not demonstrate
how a plausible assumption can lead to one. One way to
construct a new system would be to introduce two num-
bers, i and j, and replace Eq. (1) by

dX,Jdt = =X, X, ;+ X, ;X — X, + F. (6

n—i“*n—j n

Note that the quadratic terms still do not add or remove
energy and that Eq. (6) becomes Eq. (1) if i = 2 and j
= 1. If instead i = 8 and j = 7, for example, the coef-
ficient of r in Eq. (4) is replaced by cosk — cos8k, which
assumes its maximum value 1.925 when the wavelength
2m/k equals 16.24 grid lengths. The steady solution is
therefore unstable when F exceeds 0.519, and, if one
chooses N = 120, a chain of seven or eight waves should
develop.

The problem may seem to be solved, but Fig. 3a
shows what actually happens. The curves are profiles
produced by Eq. (6) with N = 120, i = 8, and j = 7 for
the indicated values of F. Each curve has been normal-
ized by division by F??. For F = 0.75, a bit above the
value where waves first appear, one sees the expected
chain of seven nearly sinusoidal waves, while the waves
are more distorted when F = 1.5 and especially when F
= 3. At F = 6 chaos has set in, and the seven waves are
scarcely detectable, while shorter waves are very active,
and in the final two profiles the short waves completely
dominate. Interpolation is therefore no more feasible,
when chaos is well developed, than with Eq. (1), and
the new system fails to serve its intended purpose.
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For comparison, Fig. 3b shows similar profiles pro-
duced by Eq. (1) with N = 30. Beginning with F = 1.25,
again shortly beyond where waves can develop, we see
six waves; a different initial state, incidentally, would
have produced seven. Again the waves become more
irregular as F increases and chaos ensues, but this time
there is only a modest increase in the prevailing wave-
number. Linearization about the mean value seems to
predict the general appearance of the chaotic regime
fairly well when i = 2 and j = 1, but it proves worthless
wheni=8andj="7.

The seeming success of the linearization procedure in
the one case may be fortuitous. In either figure, the
waves seem to acquire a length of somewhat over three
grid intervals when F becomes fairly large. This is close
enough to the 4.77 intervals predicted for Fig. 3b for the
procedure to seem moderately good, but it completely
fails to resemble the 16.24 intervals predicted for
Fig. 3a.

Equation (6) has been tested with other values of i
and j, with no success. Apparently the simplicity of Egs.
(1) or (6) has to be abandoned, and I shall do this by
replacing the pair of products in Eq. (6) by the sum of
many such pairs of products. A possible advantage to
this scheme is that many of the same products can be
made to appear in the derivatives of X,, and X, . Con-
ceivably the derivatives would then be correlated, and
X, and X,, ., might also be correlated.

There are undoubtedly many effective ways to
choose the products. For the method chosen, which is
influenced by the contemplated application, one first
introduces the symbol 2’ to denote a modified summa-
tion, like the ordinary summation that is denoted by =
except that the first and last terms are to be divided by
2. One chooses a number K, much smaller than N and
let J = K/2 if K is even and J = (K - 1)/2 if K is odd.
Then, for any two sets of variables X and Y, one defines

EEH

j=—J i=—J

+ Xrl—K+_j—iYn+K+j)/K2 (7)

[Xv Y]Kn

2Kl n—K—j

if K is even, with X' replaced by X if K is odd. The
equation for Model II, where the only set of variables is
X, will be

dX,/dt = [X, X, —

Note that setting K = 1 makes J = 0; hence [X, X],,,
represents the single pair of products appearing in Eq.
(1). Model II then reduces to Model 1.

In numerical computations one lets

J
W, = > 'X, /K, )

i=—J

X, + F. (8)

whereupon
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n2K 71K+2

j=—J

[X X]Kn =

—K+j n+K+]/K
(10)

Again X should replace X' if K is odd. Since W, ; may
be evaluated rather quickly by subtracting and adding
terms from and to W,,, while the summation in Eq. (10)
may be similarly evaluated from the previous summa-
tion, integration of Eq. (8) may be accomplished with
only about four times as much computing, per variable,
as is required for Eq. (1), but, in view of the need to use
more variables, the entire integration process can be
considerably slower.

Figure 4a shows typical profiles produced by Eq. (8)
when N = 240 and F = 10 for selected values of K.
When K = 2, there are nearly as many waves as if Eq.
(1) had been retained. Increasing K to 4 decreases the
number, but there are still too many compared with Fig.
la. When K = 8, one evidently succeeds in producing
an acceptable number of major waves, although weaker
smaller-amplitude waves are superposed. In drawing
the curve I have, as usual, connected the successive
values of X,, with straight-line segments, but these are
hard to detect. Any other reasonable interpolation pro-
cedure would have produced an indistinguishable
curve. Increasing K to 16, 32, or 64 lengthens the waves
still more, and, evidently, one can produce any wave-
number desired by choosing K judiciously.

Since the ratio N/K is 30 in the third profile, whose
dominant wavenumber agrees most closely with Fig. 1a,
where N = 30, there is a suggestion that the appearance
of a profile may depend largely upon N/K. Figure 4b is
constructed with F = 10 and N/K = 30 in each profile,
and with N successively doubling from 30 in the leading
profile to 960 in the final one. The conjecture seems to
be well supported; the profiles in Fig. 4b show little
resemblance to any profile in Fig. 4a except the third one.

With N = 960 and again with K = 32 = N/30 and
F = 10, Fig. 5a has been constructed in the manner of
Fig. 1a; it shows profiles produced by Eq. (8) at 6-h
intervals for five days. Again, at least for the five days,
the major crests and troughs retain their identities,
while minor ones come and go. One can conclude that
Model II is ready for some applications for which
Model I would have been inadequate.

For Model I the doubling time for small errors, as
seen in Fig. 2a, depends strongly upon F, but is nearly
independent of N if N is not too small. For Model II,
with K > 1, it also proves to depend strongly upon F
while being nearly independent of N and K if N/K is not
too small, but, for a given value of F, it is much smaller
when K > 1 than when K = 1. Thus, for the values used
in Fig. 5a, the doubling time is about four days—
considerably longer than expected in the atmosphere. It
can be restored to a more nearly atmospheric value by
increasing F.

Figure 5b is constructed like Fig. 5a, again with N =
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FIG. 4. (a) Profiles of X produced by Eq. (8) with N = 240, F = 10, and values of K indicated by numbers at left. Scale at bottom
is gridpoint number. (b) Profiles of X produced by Eq. (8) with values of N indicated by numbers at left and with K = N/30 and F =
10. Scale at bottom is gridpoint number for bottom curve.

960 and K = 32, but with ' = 15. There is still a sug- Apparently, in trying to make the curves produced
gestion of six or seven longer waves, but the shorter by Model II look like reasonable spatial interpolations
waves are more in evidence. Note that, with N so large, of the kind of curve produced by Model I, one must
even these shorter waves are 30 or more grid intervals choose between too long a doubling time (smaller F) or
long—the point-to-point variations are very smooth. unanticipated shorter waves (larger F). The value F =
The doubling time has been reduced to about two days. 15 is a compromise.
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FI1G. 5. (a) Profiles of X produced by Eq. (8) with N = 240, K = 8, and F = 10, at 12-h intervals for 5 days. Scale at bottom is
gridpoint number. Numbers at left indicate chronological order of profiles. (b) Same as (a) but with F = 15.
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4. Introducing multiple scales: Model III

In the forthcoming application, I shall assume that
the observations are free of instrumental error, but may
nevertheless be unrepresentative. In the real world this
can happen when, for example, spatially small-scale ac-
tivity is superposed on larger-scale synoptic features.
The local values that the instruments record are sums of
large-scale and small-scale contributions, and the large-
scale contribution alone, which one may wish to use in
an analysis, is not always readily extracted.

Model III will be designed to include both large-scale
and small-scale activity with waves much shorter than
the shorter ones in Fig. 5b. Before introducing it, I shall
describe another system that includes both large and
small scales; it is a modification of one presented in
L96, which, like Model I, has been used to advantage by
other investigators (e.g., Boffetta et al. 1998). One in-
troduces sets of variables X and Y, each defined at the
same set of N longitudes, and attempt to formulate the
equations so that X will exhibit mainly large-scale ac-
tivity, while Y will contain the small scales.

Temporarily let X be governed by Eq. (8) with N
large and N/K fairly large. Next note that solutions of
the equation

dy,/dt = blY, Y], —bY,+ F (11)

are identical to those of Eq. (1) except that the vari-
ables fluctuate b times as rapidly and their amplitude is
reduced by the factor b. Waves a few grid intervals long
must still predominate. With a fairly large value of b,
this is precisely the way that one would like the small-
scale variables to behave.

Temporarily let Y be governed by Eq. (11). Then,
following 1.96, couple the variables by introducing lin-
ear terms that together do not alter the large-scale plus
small-scale energy, and omit the external forcing term
in Eq. (11), letting the small-scale activity be driven
entirely by the coupling. One obtains the system

dX,/dt = [X, X]x,, — X, — cY, + F,  (12a)

dY,/dt = b’[Y, Y], — bY, + cX,, (12b)

where, like b, the coupling coefficient c is an additional
parameter of the model.

Note that the coupling term cX,, in Eq. (12b)—the
driving for Y—is a large-scale term; hence, like the forc-
ing in Eq. (1), it cannot directly produce small-scale
waves. Instead, wherever it is positive at a considerable
number of consecutive grid points, its effect is to in-
crease Y, at these points and, therefore, to increase the
mean of Y, over the same points. If small-scale activity
is nearly absent, the departures of Y,, from their local
mean will obey an equation much like Eq. (3), with a
derived equation much like Eq. (4), and in due time
waves with lengths of several grid intervals should de-
velop. Similarly, where cX,, is negative at many con-
secutive grid points, waves about two grid intervals long
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should eventually develop. The larger the value of N,
the greater the disparity between the lengths of the long
and short waves, that is, the stronger the spectral gap.

Equations (12) nevertheless possess an unrealistic
property that disqualifies them for the desired Model
III. The large-scale and small-scale features are repre-
sented by separate sets of variables X and Y instead of
appearing as superposed features of a single set, say Z.
What one would like is first a procedure for expressing
given variables Z, as sums of two quantities, say X,, and
Y,,, whose respective profiles will consist mainly of long
waves and short waves. One then needs an equation
governing Z, that will make the quantities X,, and Y,
derived from Z,, behave somewhat as X,, and Y,, do in
Egs. (12).

The former task is the easier. One could subject the
profile of Z to a complete Fourier analysis at each time
step and let X be the sum of the longest-wave compo-
nents, while Y is the sum of the remaining ones. I balk
at such a procedure, which would be computationally
costly and would remove from the model much of what
simplicity still remains.

Instead, one can introduce a number / and a pair of
constants « and 8 and let

1

X, = > (a=BliD) Z,.»

i=—1

Y, =272, X,. (13b)
One wishes to choose I, «, and B so that X will be
effectively a smoothed version of Z with the short
waves filtered out, whereupon these waves will appear
inY.

With a sufficiently large spectral gap, whose occur-
rence will depend upon the equation still to be chosen,
one can do this by choosing « and 8 so that X,, will
equal Z,, whenever Z varies quadratically over the lon-
gitudes n — I through n + I; X, will do so if ' (a — BJi])
=1 and X'i*(a — B|i|]) = 0, whereupon

a = (3P + 3)/2F + 4I), (14a)
B=QF+ 1)/I*+2P). (14b)

Waves whose lengths are exact divisors of I will be
completely eliminated from X and will therefore show
up in Y, while waves of comparable lengths will be
largely eliminated. If 7 is too large, there may not be
many intervals of length 2/ where Z,, varies nearly qua-
dratically after smoothing. A value of / between 10 and
20 may thus be optimal. The separation of scales will
not be complete, but it need not be; it is also not com-
plete in Egs. (12).

A procedure for constructing a governing equation
for Z that naturally suggests itself consists of formally
adding two equations like Eqgs. (12a) and (12b). How-
ever, adding Egs. (12) as they stand will not suffice. The
direct effect of the coupling term cX,, in Eq. (12b), if the
equations are not added, is to inject long waves into the
profile of Y; these will then enable short waves to de-

(13a)
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FIG. 6. (a) Profiles of Z produced by Eq. (15) with N = 960, K = 32,J = 12, F = 15, b = 10, and ¢ = 2.5, at 12-h intervals for 5 days.
Scale at bottom is gridpoint number. Numbers at left indicate chronological order of profiles. (b) Same as (a) but with superposed
profiles of X (the smoother curves) and Y and with Y profiles vertically stretched four times.

velop. If instead the equations are added, these long
waves will be injected into the profile of X + Y, if
indeed, the coupling term is not completely canceled by
being added to the dissipation term —X,, in Eq. (12a).
Presumably they will appear in X rather than Y when Z
is next analyzed, and there will be nothing to enable the
short waves in the profile of Y to grow.

The coupling process needs to be reformulated. One
way to do this would be to redefine Y to include a small
fraction, say ¢’, of the long waves that are presently
allocated to X; short waves in Y could then amplify.
Equivalently, one can simply replace Y, by Y,, + ¢'X,,
in the quadratic terms in Eq. (12b). The same purpose
proves to be accomplished by replacing [Y, Y], , by [Y,
Y + ¢'X],, rather than [Y + ¢'X, Y + ¢'X],,,. Upon
adding the new equations, and letting ¢ = b*c’ be the
new coupling coefficient, one obtains, for Model III,

dZn/dt = [X7 X]K,n + bz[Y’ Y]l,n + C[Y’ le,r: - Xn

—bY, + F. (15)

Note that « = 1 and 8 = 1 when / = 1, whereupon X,
= Z,and Y, = 0. Model III then reduces to Model II.

Figure 6a has been constructed from Model III with
the format of Figs. 1a and 5 with N = 960, K = 32, [ =
12, F =15, b = 10, and ¢ = 2.5, and it shows profiles of
Z at 12-h intervals for five days. The major crests and
troughs maintain their identities for several days, and
sometimes for all five. The intermediate-scale waves
that were so prominent in Fig. 5b are considerably
weaker, but very short waves appear at many of the

crests and troughs of the long waves. Figure 6b shows
superposed profiles of the quantities X and Y into
which Z has been analyzed; the Y profile has been ver-
tically stretched four times. The X profiles appear
smooth, while the regions where Y is active tend to
follow the crests and troughs of X.

In Fig. 7a a portion of Fig. 6a is enlarged near the
lower left corner; the top, middle, and bottom curves
are 45° segments (grid points 80-200) of the bottom
three profiles of Z in Fig. 6a, which span 24 h, while in
between profiles of Z at 4-h intervals have been in-
serted. The contrasting scales are quite evident. Figure
7b shows the corresponding profiles of X and Y, this
time with no vertical stretching of Y. The smoothness of
the X profiles attests to the effectiveness of the filtering
procedure. The Y waves are patently shorter in the
trough of the X waves than on the crest. Individual
crests and troughs in the short waves often do not last
through the 24 h, in contrast to the regions of short-
wave activity, which can persist as long as the long-wave
crests and troughs.

Figure 8a shows superposed separate error-growth
curves for X and Y; each has the format of the curves in
Fig. 2a. The first five days have been stretched horizon-
tally in Fig. 8b. The initial small error was placed en-
tirely in Y; it undergoes immediate rapid growth, dou-
bling in less than 3 h until it approaches saturation be-
fore two days. Meanwhile, an error in X appears and
increases equally rapidly, presumably because of its
coupling with the error in Y but, after the Y error
reaches saturation, the X error proceeds to amplify at
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its own rate, first doubling in a day or so and then
growing more slowly, reaching saturation in about 25
days. I conclude that Model III possesses a number of
potentially desirable properties that are not found in
Models I and II.
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5. An application

I shall now illustrate the effectiveness of Models

II

and III by applying them to a problem that was in mind
when designing them—the behavior of errors in opera-
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FIG. 8. (a) Growth curves for errors in X and Y extending 40 days, produced by a single pair of solutions of Eq. (15) with N = 960,
K =32,]J =12, F =15,b = 10, and ¢ = 2.5. The initially small errors were confined to Y. Scale at bottom is time in days. Scale at left
is base-10 logarithm of rms error. (b) Horizontal magnification of first 5 days of (a).
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tional forecasting when both analysis error and model
error are present. I shall examine how these errors at
various forecast ranges decrease as the analyses or op-
erational models are replaced by successively better
ones.

The application here consists of two experiments. In
the first one uses Model II, with rather large values of
N and K, say N, and K, as the perfect model, first to
produce a set of true initial states, on which the simu-
lated analyses will be based, and then, for each initial
state, to produce true future states, against which the
simulated forecasts will be verified. One chooses N, =
960 so that successive grid points are 3/8 of a degree of
longitude apart, while K, = 32. The second experiment
is identical with the first except that the perfect model
is Model III.

In either experiment one introduces a succession of
operational models. Each one is Model II, with small
values of N and K for the leading model and succes-
sively large values for the subsequent ones; N is always
a divisor of Ny, while K/N = K /N, and the N longitudes
constitute an equally spaced subset of the N, longitudes
used in the perfect model.

If in Model II, with N even and J = K/2 even, one
approximates X,, by (X,_; + X, ,1)/2 whenever n is
odd, and if x,,, = X,, when n is even, I find from Egs. (7)
and (8), or (9) and (10), that the model is simply ap-
proximated by Model II, with N/2 and K/2 replacing N
and K and x replacing X. If N is rather large and X,
varies rather smoothly with n, the approximation
should be rather good. It is therefore convenient to
form each new model by doubling the old values of N
and K. For the leading model let N = 30 and K = 1;
then the model thus reduces to Model I, and is presum-
ably a rather poor approximation to the perfect model.
The model is denoted by m30. Subsequent models, de-
noted by m60, ..., m480, should afford successively
better approximations; m960 will denote the perfect
model. In every model I let F' = 15.

Likewise, one introduces a succession of analyses
based on a succession of sets of observations. For the
leading set one chooses, as observations, the exact val-
ues of X, at a small number M of longitudes, chosen
randomly from the N, longitudes of the perfect model.
For convenience I have let M = 30, the value of N in the
leading operational model, although it would not be
necessary for M to be a divisor of N,. The analysis,
which consists of values of X, at all N, grid points, is
produced by first choosing the observed values of X, at
the M observation points. For each remaining grid
point, say point j, one finds the third-degree polynomial
in n whose values at the two observation points to the
west and the two to the east of point j are the observed
values of X, at these points. One then chooses the value
of the polynomial at point j as the analyzed value and
denotes the analysis by a30. I have made no attempt to
use a refined scheme like four-dimensional variational
assimilation, which would undoubtedly produce supe-
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rior analyses and lead to smaller prediction errors, but
would also make the model error contribute to the
analysis error.

For the subsequent sets of observations, one succes-
sively adds more randomly chosen longitudes to the
ones already chosen, doubling the total number M at
each step, and proceed as before, obtaining analyses
a60, . . ., a480; a960 denotes the perfect analysis or true
initial state.

To begin either experiment, one chooses states at
random and integrates forward with the perfect model
for 120 days to suppress transient effects, using 3-h time
steps in the first experiment and half-hour steps in the
second. With the resulting state as the first initial true
state, one integrates forward with each combination of
analysis and operational model for seven days, thus ob-
taining data for the first member of the set. For each
additional member, up to a total of 50, one obtains an
initial true state by taking the final true state from the
previous member and integrating forward for 28 days.

Separately for each combination of analysis, model,
and time step, the root-mean-square difference is de-
termined between the predicted and the true state, the
averaging being performed over all grid points used in
the particular operational model, and over all members
of the set. These differences—the “errors”—constitute
our output.

Table 1 presents a sampling of the output for the first
experiment. It shows the errors produced by different
combinations of model and analysis, including the per-
fect ones. The values are arranged into four blocks,
corresponding to the four selected forecast ranges 0, 1,
3, and 7 days. In each block, separate columns refer to
separate models, and separate rows to separate analy-
ses. The saturation value for the errors is about 8.0
units.

The 0-day forecast in the leading block is simply the
analysis, so that the numbers compare analyses with the
perfect one, and, since the forecast models have yet to
be applied, the separate columns should be the same
except for the differences in sampling. We see that a30
and even a60 are rather poor approximations to a960,
while a480 is nearly perfect.

For each remaining block, the combination a30-m30
produces essentially useless forecasts. If one follows
down the main diagonal from a30-m30 to a480-m480,
improvement is found at every step; a240-m240 pro-
duces good forecasts at 5 days while a480-m480 is ex-
cellent even at 7 days. However, if one begins with any
number on the main diagonal and proceeds to the right,
that is, if the model is improved but the analysis is
retained, the improvement in the forecast is hardly de-
tectable. If, instead, one proceeds downward from the
diagonal by a single row, improving the analysis but not
the model, the forecast is generally improved unless
near-saturation has already been reached, but moving
another row downward yields no further substantial
gain. One can conclude that there is a limit to how
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TABLE 1. Rms errors in prediction at indicated ranges (0, 1, 3, or
7 days) produced by indicated models (m30—m960) with indi-
cated analyses (a30—a960) when the perfect model (m960) is
Model IT with N = 960, K = 32, and F = 15.

0 days
m30 m60 m120 m240 m480 m960
a30 5.53 5.52 5.52 5.52 5.52 5.52
a60 3.12 3.11 3.11 3.11 3.11 3.11
al20 1.15 1.17 1.17 1.17 1.17 1.17
a240 0.21 0.21 0.23 0.23 0.23 0.23
a480 0.02 0.01 0.02 0.02 0.02 0.02
a960 0.00 0.00 0.00 0.00 0.00 0.00
1 day
a30 6.75 6.46 6.46 6.46 6.46 6.46
a60 4.88 4.02 4.00 4.01 4.01 4.01
al20 3.78 1.70 1.52 1.51 1.51 1.51
a240 3.73 0.88 0.32 0.25 0.25 0.25
a480 375 0.86 0.21 0.05 0.02 0.02
a960 3.75 0.86 0.21 0.05 0.01 0.00
3 days
a30 7.61 711 7.09 7.12 713 7.13
a60 7.29 5.69 5.51 5.51 5.51 5.51
al20 7.22 3.77 2.99 2.90 2.89 2.89
a240 7.20 2.54 0.78 0.51 0.49 0.49
a480 7.23 2.52 0.64 0.16 0.05 0.03
a960 7.23 2.52 0.63 0.15 0.03 0.00
7 days
a30 8.08 7.71 7.66 7.77 7.77 7.78
a60 8.02 7.27 7.32 7.38 7.38 7.39
al20 8.11 6.28 5.40 5.28 5.30 5.31
a240 8.25 5.74 2.94 1.97 2.02 2.05
a480 8.42 571 2.60 0.85 0.22 0.16
a960 8.38 5.71 2.60 0.84 0.18 0.00

much improvement in forecasting can be realized by
improving only the model or only the analysis. This
seems to be generally recognized by operational fore-
casters, and I cannot claim that this illustration has led
to any new discoveries.

Table 2, summarizing the second experiment, has the
same format as Table 1. The perfect model is Model III,
with N = 960, K = 32,1 = 12, F = 15, b = 10, and
c =25

Looking at the first block one sees that a480 is again
a very good analysis, although its departure from the
true state is an order of magnitude greater than in
Table 1. Perhaps surprisingly, al20 and even a60 and
a30 appear better in the second experiment than in the
first. The apparent explanation is contained in Figs. 5b
and 6a, which were actually produced by the perfect
models for the two experiments. Figure 6a, relevant to
Table 2, shows noticeable small-scale activity, which is
missing in the poorer analyses, but Fig. 5b reveals even
stronger intermediate-scale activity, which the poorer
analyses presumably do not capture.

Proceeding to the remaining blocks, one again sees
that the forecasts are not improved when we move to
the right from the main diagonal, or downward by more
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TABLE 2. Rms errors in prediction at indicated ranges (0, 1, 3, or
7 days) produced by indicated models (m30—m960) with indi-
cated analyses (a30—a960), when the perfect model (m960)
is Model IIT with N = 960, K = 32, [ = 12, F = 15, b = 10, and
c=25.

0 days
m30 mo60 m120 m240 m480 m960
a30 4.05 4.07 4.08 4.08 4.08 4.08
a60 1.84 1.83 1.83 1.83 1.83 1.83
al20 0.62 0.60 0.60 0.60 0.60 0.60
a240 0.31 0.32 0.30 0.30 0.30 0.30
2480 0.20 0.20 0.20 0.20 0.20 0.20
2960 0.00 0.00 0.00 0.00 0.00 0.00
1 day
a30 453 438 438 4.38 4.38 435
a60 2.77 2.36 233 2.32 2.32 2.28
al20 2.09 1.23 1.11 1.10 1.10 1.04
a240 2.01 1.07 0.92 0.90 0.90 0.78
2480 2.03 1.05 0.89 0.88 0.87 0.61
2960 1.99 1.04 0.89 0.87 0.87 0.00
3 days
a 30 5.49 5.18 491 4.85 43.84 4.37
a 60 4.94 4.17 3.73 3.65 3.63 3.08
al20 5.00 3.35 2.70 2.58 2.55 1.92
a240 5.01 3.34 2.64 2.52 2.50 1.58
2480 5.03 333 2.64 2.52 2.50 1.24
2960 5.04 3.30 2.64 2.52 2.49 0.00
7 days
a30 7.46 6.63 6.27 6.19 6.17 5.01
a60 7.20 6.24 5.56 5.45 5.43 3.93
al20 7.17 6.25 5.54 5.34 5.30 3.13
a240 7.26 6.24 5.56 5.36 5.31 2.64
2480 7.17 6.25 5.64 5.43 5.39 232
2960 7.06 6.21 5.62 5.44 5.37 0.00

than one row. One also sees that at the longer ranges,
with any operational model, it makes little differences
whether the analysis is al120, a240, or a480, while, with
any analysis, it makes little difference whether the fore-
cast is with m120, m240, or m480. At 7 days all the
forecasts are poor except those made with the perfect
model. The perfect model and m480 differ here mainly
in that only the former includes the dynamics of the
small scales. In the first experiment, both the perfect
model and m480 include the dynamics of the interme-
diate scales, and they perform equally well regardless of
the analysis.

Perhaps the errors shown in Table 2 could be slightly
reduced by basing the analyses on a smoothed true
state, or by parameterizing the small-scale effects in the
models. The latter might be accomplished by slightly
reducing the forcing or increasing the dissipation.

6. Concluding remarks

I have begun with a simple set of equations, previ-
ously used by myself and others to investigate various
atmospheric problems. I have noted that these equa-
tions, as they stand, are inappropriate for certain stud-
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FI1G. 9. Time series of s produced by Egs. (15) and (1) with F variable (upper curve)and with
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curve. Numbers (4-16) at upper left are scale for upper curve.

ies, and have introduced modifications that, with some
sacrifice of simplicity, render them more suitable. I
have applied the modified equations to a specific prob-
lem, but, since my main interest has been in the modi-
fying process per se, I have not pushed the application
to the point of producing new significant results.

There are numerous other problems that one could
pursue with Model II. One of these is ensemble fore-
casting, where many different schemes for selecting the
ensemble members could be explored. Another is data
assimilation, where one could examine many promising
variants of the procedure.

Either of these problems would ordinarily involve
vast amounts of computation, and the main advantage
of using a simplified model would be economy. In other
problems it might be beneficial to use different combi-
nations of the constants when we do not know which
combinations are really appropriate. In the real atmo-
sphere, for example, would smaller-scale systems be-
have chaotically or regularly if they could be decoupled
from the synoptic scales? Does their actual behavior,
since they are coupled, depend upon the answer to this
question? One could approach these questions by com-
paring Model III with the values of the constants used
in producing Figs. 6, 7, and 8, with an altered form
where the advective term +b°[Y, Y], in Eq. (15) is

retained but the damping term —bY,, is replaced by
—b'Y,, with b’ chosen large enough to remove the
chaos from the decoupled Eq. (11).

I have not developed anything resembling a general
theory of model design. What successes I have enjoyed
have resulted from trial and error, but not, however,
from random trial and error. Each satisfactory attempt
has been guided by the detailed analysis of previous
failures. I make no claim to have discovered the ideal
equations.

There are further problems for which different modi-
fications of Model I are in order. For example, the mod-
els appear not to produce significant variations with
periods of several months or longer, at least when chaos
is fully developed, and hence they are unsuitable for
problems where progressive changes from one regime
of behavior to another play a role. With little additional
effort one could produce long-term variability by let-
ting F in Eq. (1) vary with time instead of being a
constant and adding a single equation governing F.

Since, very nearly, S? = @’F*? in Model 1, s, if not
constant, must undergo fluctuations about aF %>, and, if
G = (sla)®?, we can expect G to undergo fluctuations
about F. In a modification of Model I, F can be forced
by a constant, say H, but also by G, as long as this
positive feedback does not force F all the way to % or
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close enough to 0 to eliminate the chaos. One way to do
this (there are many) is to let

dF/dt = —F+ (1 + g)(G — H) — g(G — HY’/h* + H.
(16)

With g > 0, but not too large or too small, and / not too
large, values of F will tend to avoid H and cluster
around H — h or H + h. In Fig. 9, the upper curve is a
10-yr time series of s produced by Eq. (16) [and Eq. (1)
with F variable], with N =30, H = 15,g = 0.1,and h =
5. The regimes, sometimes lasting 2 years or longer,
with s near a(H — h)*? = 5.08 or a(H + h)*? = 8.07 are
much in evidence. By contrast, the lower curve is pro-
duced with Model I, and while the short-term fluctua-
tions of s, this time about aF*> = 6.66, are as strong as
in the upper curve, the regimes are absent.

There are presumably numerous other ways to alter
Model I, II, or IIl advantageously. I do not suggest
adding a second horizontal dimension, which does not
offer obvious advantages over using some form of the
vorticity equation. Possibly there is some use for a
model with one horizontal and one vertical dimension.

I leave it to the reader or potential user to identify
new uses for the models already introduced, or new
profitable ways to modify them. Some of these, includ-
ing the addition of stochastic noise, have already been
suggested by an anonymous reviewer.
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