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ABSTRACT

We define the slow manifold S in the state space of a primitive-equation model as a hypothetical invariant
manifold on which there is no gravity-wave activity, and on which unique velocity-potential and streamfunction
fields correspond to each isobaric-height field. We introduce a five-variable forced damped model, and show
that for this model the point H representing the Hadley circulation and the two orbits forming the unstable
manifold of H must lie in S if S exists. We then show that in traveling along one of these orbits one eventually
encounters gravity waves, whereupon it follows that S does not exist.

A measure G of gravity-wave activity is found to decrease very rapidly as the external forcing F decreases.
An approximate formula is derived for G as a function of F.

We show that a particular nine-variable forced damped model with orography also fails to possess a slow
manifold, and we speculate as to the existence of slow manifolds in larger and more realistic models.

1. Introduction

Although a fairly realistic numerical simulation of
the global atmospheric circulation demands a rather
large primitive-equation (PE) model, many of the basic
qualitative features of the circulation may be captured
by small PE models. Such models often consist of sys-
tems of 3N ordinary differential equations, governing
the fields of three physical variables, each of which has
been represented in some manner by a set of N num-
bers. The variables may be the pressure and the hori-
zontal wind components, or some related quantities
such as the velocity potential x, the streamfunction v,
and the isobaric height 2.

It is standard practice to treat the 3N dependent
variables as coordinates in a (3NV)-dimensional “state
space” (or phase space). States of the model atmosphere
then become points in state space, while time-depen-
dent solutions of the equations become orbits along
which the points travel.

If the model is confined to middle and higher lati-
tudes, points representing states of instantaneous geo-
strophic balance form an N-dimensional manifold in
state space. This manifold is not invariant, i.e., a point
on the manifold generally leaves the manifold as it fol-
lows its orbit. Equivalently, a state which is initially in
geostrophic balance does not remain in geostrophic
balance, and short-period inertial-gravity wave activity
soon becomes evident.

States satisfying the nonlinear balance equation form
another N-dimensional manifold, which is also not in-
variant, but comes closer to being invariant than the
geostrophic manifold in the sense that points do not
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move away from it so quickly or so far (see Charney,
1955). Other relationships, such as those arising in
nonlinear normal-mode initialization (e.g., Machen-
hauer, 1977; Baer and Tribbia, 1977), define other N-
dimensional manifolds, which may be even more
nearly invariant. These considerations have led to the
concept of a slow manifold (see Leith, 1980)—an N-
dimensional invariant manifold whose states are com-
pletely devoid of gravity-wave activity.

On the slow manifold, the fields of x and y are sup-
posed to be unique functions of z, or, alternatively, x
and z are supposed to be unique functions of . Evi-
dence supporting the reality of the slow manifold was
provided by a study (Lorenz, 1980; hereafter referred
to as L80) in which extended numerical solutions of a
simple forced dissipative PE model failed to reveal the
development of any gravity wave activity when none
was present initially.

More recently the existence of slow manifolds as ex-
act N-dimensional manifolds has been questioned, ap-
parently first by T. Warn (personal communication,
1983), who noted that the various algorithms for lo-
cating the slow manifold appeared to be asymptotic
rather than convergent. He therefore postulated a
fuzzily defined manifold, or, equivalently, a (3N)-di-
mensional subset of state space that at each point was
very thin in 2N directions.

Very recently, Warn and Menard (1986, hereafter
referred to as WM86), confirmed the presence of gravity
waves in certain solutions of the L80 model that had
been thought to be free of them, using high-precision
arithmetic and high-resolution output. Results favoring
the “fuzziness™ of the slow manifold were also obtained
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by Krishnamurthy (1985) and Vautard and Legras
(1986) (hereafter referred to as K85 and VL86), using
the model of L80 but with stronger forcing than was
used in L80. In both studies, extended numerical so-
lutions that seemed for a while to be free of gravity-
wave activity eventually encountered obvious gravity
waves. This behavior could have occurred if undetect-
able gravity waves initially present or introduced by
the computational procedure subsequently amplified
manyfold because of the instability of the slow mani-
fold; it could also have been produced by the absence
of nontrivial solutions permanently devoid of gravity
waves, i.e., by the nonexistence of a slow manifold.

As an initial state for an operational weather forecast,
a point on a fuzzily defined slow manifold is as satis-
factory as one on a sharply defined manifold, but the
fuzziness or sharpness is of much theoretical interest.
In an attempt to clarify the situation, we (Lorenz, 1986;
hereafter referred to as L86) constructed a five-variable
unforced undamped model by simplifying the equa-
tions of L80. We found that for this model the usual
slow-manifold algorithms indeed failed to converge,
but we succeeded in identifying a “slowest invariant
manifold”, on which x and z were unique functions
of ¢, and on much of which gravity waves were not
evident, but on parts of which they were unmistakably
present. The absence of forcing and dissipation greatly
facilitated the study; we were unable to say how greatly
it influenced the results.

The purpose of the present study is to demonstrate
that a particular model resembling the .86 model, but
with forcing and damping, does not possess an invari-
ant slow manifold, and to suggest by inference that a
similar result holds for a wide variety of models. To
do this we shall show that a particular solution that
must originate on the slow manifold, if such a manifold
exists, subsequently develops pronounced gravity
waves. We shall then show that these waves are not an
instability phenomenon. In essence, the seeds of grav-
ity-wave activity are present from the start.

2. The model

Our model is a modification of the model of 186,
which in turn is a simplification of the PE model of
L80. The latter model was derived from the shallow-
water equations on an f-plane by expressing the fields
of x, ¥ and z as double Fourier series, and then dis-
carding all of the Fourier modes but three, designated
as modes 1, 2 and 3, which formed an interacting triad.
Scaled coefficients x;, y; and z; in the truncated expres-
sions for x, ¥, and z, respectively, for / = 1, 2 and 3,
became the nine dependent variables. An accompa-
nying quasi-geostrophic (QG) model was produced by
discarding the time derivatives and certain other terms
in the equations governing Xx;, after which x; and z;
could be eliminated to yield a system of three equations
m y;.
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In L86 the terms in the L80 PE model representing
forcing, damping, and orographic effects, and also all
nonlinear terms except those representing advection
of vorticity by the portion of the wind derivable from
¥, were discarded. The QG model of L80 was similarly
simplified. A five-variable model was then obtained by
combining the QG equations for modes 1 and 2 with
the PE for mode 3. Finally, the resulting system was
transformed to normal-mode form by introducing
variables U, V, W, X and Z, proportional respectively
to y1, V2, 3 + b*z3, X3, and z3—y3, where b, the single
adjustable constant in the system, represented the ratio
of the wave length of mode 3 to the Rossby circum-
ference of deformation. For further details the reader
should consult L80 and L86.

The equations of the present model are

dvidt=UW—bUZ—aV+ aF, (1a)
dUjldt=~-VW+bVZ—al, (1b)
aw/dt=~VU—aW, (Ic)
dXjdt=—Z-aX, (1d)
dZ/dt=bVU+X—aZ. (le)

They were obtained by copying Egs. (5a)—(5¢) from
L86 (with the order of the first two equations inter-
changed) and appending damping terms —aV, ...,
where ¢ is a damping coefficient, and a forcing term
aF. The model reduces to the L86 model when a = 0.
The model describes a single gravity-wave complex,
given by X and Z and oscillating with period 27, non-
linearly coupled to a single quasi-geostrophically in-
teracting triad or “Rossby wave” complex, given by V,
Uand W and oscillating with a period that is amplitude-
dependent, but is much longer than 27 unless F is close
to or exceeds unity. We shall call X and Z the fast
variables, and V, U and W the slow variables, even
though X and Z may sometimes oscillate slowly, or V,
U and W may oscillate rapidly, because of the coupling.
On the slow manifold, if it exists, X and Z should be
unique functions of ¥V, U and W.

Because of the damping and forcing, the equations
possess no quadratic invariants, but the quantity U?
— W? — X? — Z? decays exponentially to zero. In par-
ticular, if U? and W? + X? + 72 are equal initially,
they remain equal.

A convenient value for b, which we have used in
most of our numerical work, is 0.5. This corresponds
to a wavelength of about 8000 km for mode 3. Our
time unit, which makes the free gravity wave period
equal to 27, may be assumed to equal about 90 min,
so that the convenient value a = 0.02, used in many
of our computations, implies a damping time of about
three days. We have used various values of F exceeding
a critical value F,, which we shall presently define.

Our model is like many forced dissipative models
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in that, when the forcing is weak, there is a single steady
solution—the directly forced solution—which is stable,
but, when the forcing exceeds F,, the directly forced
solution is unstable, In that event there are two addi-
tional steady solutions, which are stable when the forc-
ing is not too strong.

To confirm these statements, we observe that Egs.
(1) always possess the steady (directly forced) solution
V=F U= W= X=Z=0. The absolute orientations
of the Fourier modes do not affect the equations, so
that we may, in this model, identify mode 2 with the
zonally symmetric flow. The directly forced solution
then represents the Hadley circulation, which we shall
denote by H. We have chosen to identify mode 2 with
the zonal flow, and to force mode 2, because if we
forced mode 1 (as in L80) or mode 3, the directly forced
solution would not become unstable.

Infinitesimal departures (v, u, w, x, z) from H are
governed by the linear equations

v —a 0 0 0 0 v

dl v 0 —a -F 0 bF u

Z w = 0 ~F —a 0 0 w 2)
x 0 0 0 —a -1 X
z 0 bF 0 1 -—-a z

The eigenvalues of the square matrix satisfy the char-
acteristic equation

A+ alA+a+ —Fz—b2F2)(A+a)2—F2]=O.
3

Equation (3) always possesses two complex conjugate
roots A4, A5 with negative real parts (if a > 0), associated
with gravity-wave activity, and at least two real negative
ToOts Ay, Az, associated with quasi-geostrophic behav-
ior. The remaining root A, is positive so that H is un-
stable when |F| > F,, where

F2=a%1+a»/(1 +a*+ b*a?. 4

If @ is small, F, is slightly less than «, while if F is not
too large, A, is close to F — F..

When F > F,, Eqgs. (1) possess the additional steady
solutions V'=F,, U= +4, W= FF_A/a, X = TbF_ A/
(1 +a?), Z=+baF,A/(1 + a?), where A2 = F{F — F,).
A plot of U against F for the steady solutions would
therefore exhibit a typical pitchfork bifurcation at F..
The steady solutions with U = +4 represent flows with
stationary Rossby waves, and we shall denote them by
R and R'. They appear to be stable for all positive values
of b, a and F so that almost all points are attracted to
one or the other of them, but since the stability or
instability of R and R’ will not enter our basic argu-

ments, we shall not seek a proof.
" Again when F > F,, the point H possesses a four-
dimensional stable manifold S,;, which extends from
H in the directions corresponding to A,, ... ., As, and
1s composed of the points whose orbits approach H
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instead of R or R’ as t = oo. It separates points attracted
to R' from points attracted to R. The point H also pos-
sesses a one-dimensional unstable manifold Uy, com-
posed of the points on the two orbits that emanate
from H, i.e., that approach H in the two opposite di-
rections corresponding to A, as ¢t = —oo. On these
orbits U? = W? + X? + Z2. These orbits will play a
major role in our subsequent arguments,

3. The basic result

We begin by observing that if there is a universal
slow manifold S, 1.e., one on which X and Z are defined
for all combinations of V, U and W, the point H must
lie on S. This conclusion seems self-evident, but we
may verify it by noting that if the values V=F, U= W
= 0—the values on H—are accompanied by any values
of X and Z other than both zero—the values on H—
short-period oscillations will ensue. We next maintain
that if F > F_, the unstable manifold Uy of H must be
contained in S. Our argument is that a short enough
segment of Uy originating at H approximates a straight-
line segment, with no wiggles, as closely as desired. We
shall presently consider this point in greater detail.

To show that there is no universal slow manifold it
should therefore be sufficient to show that a point trav-
eling along either of the orbits of Uy will eventually
undergo gravity-wave activity. It would be difficult to
demonstrate the absence of gravity waves numerically;
the possibility that the waves are so weak as to be ob-
scured by the computational uncertainty or even the
round-off error always exists. It need not be difficult,
however, to demonstrate the presence of gravity waves
if they are reasonably strong; unless the Rossby waves
are so strong that their period is comparable to the
gravity-wave period, any observed oscillations with a
period of about 27 can have no other interpretation.

To determine the portion of Uy near H, we note
that on Uy, as t = —oo, the departure of each variable
from its value at t = —co varies as exp(A,#). Accordingly,
we may let p = ¢ exp(\£), where c is arbitrary, and we
may then express ¥ as a power series

2]
V= 2 Vnpn’

n=0

&)
with analogous series for U, W, X and Z. It follows
that '

dV/dt= A] E nV,,p".

n=0

(6)

Since the constant terms Vy, . . . are simply the values
of the variables when p = 0, or t = —oo0, they are the
values on H; therefore, Vo= Fand Uy = Wy = Xy = Zy
= Q.

To determine the remaining coefficients we substi-
tute (5) and (6) into (1), and find that
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-, O 0 0 0 / v,
0 —u, —-F 0 bF\!luU,
0 -F —u, 0 o |l w,
0 0 0 —u, -l X,
0 -bF 0 1 —u,/) \2Z,
—UnyY;
n-1 Vo, Y;
=2 UV |, (D)
J=t 0
bU,-,V;

where p, = nA\; + aand Y; = W, — bZ;. For n = | the
square matrix is singular, and is, in fact, the matrix
whose determinant was equated to zero to obtain Eq.
(3), while the summation is vacuous. Obviously ¥, =0,
while U, may be chosen at will, after which W,
= —FU/uy, X, = =bFU /(1 + p,*), and Z, = bu,FU,/
(1 + w,%). Changing the value of U, or changing c
merely shifts the time at which any given point of Uy
is encountered. For # > 1 the matrix in (7) is nonsin-~
gular and the summation is nonvacuous, and the values
of V,,, ... may be found by matrix inversion.

Since to evaluate the elements of the right side of
(7) we sum n — 1 terms, while for large n to multiply
by the inverse of the matrix we effectively divide by
n\;, the values of V,,, ... should increase no more
rapidly than exponentially with #, and the series should
have a finite radius of convergence. We find, in fact,
from numerical computations, that, after suitably ad-
justing the value of U,, the values of V, for even #,
and the values of U,, W, and Z, for odd » are nearly
constant, except that the signs alternate, while the
magnitude of X,, for odd n decreases approximately as
1/n. Values of V,, for even n and U,, W,, X,, and Z,
for odd » vanish. The series thus converge for |p| < 1,
and, in fact, the series for ¥ and U look much like
those for 1/(1 + p?) and p/(1 + p?).

With convergence established for small values of p
we can strengthen our claim that Uy lies in the slow
manifold S, if .S exists. Our argument involves noting
that small differences between points near H are gov-
erned approximately by Eq. (2).

We assume that S exists but does not contain Uj.
Since the constant and linear terms in (5) would define
a straight line in state space, any miniscule gravity-
wave activity on Uy, when p is small, must be described
by the terms of higher degree. The distance from a
point P moving along Uy, to the point on .S having the
same values of V, U and W must, according to (2),
vary in proportion to the gravity-wave activity on Uy,
and must therefore decrease with decreasing p at least
as rapidly as p?. In the limit the distance from P to the
closest point on S must decrease equally rapidly. How-
ever, Eq. (2) also indicates that the distance from P to
a point moving along an orbit in S can amplify with
increasing p no more rapidly than exp(\?), or p. The

E. N. LORENZ AND V. KRISHNAMURTHY

2943

distance from P to the closest point on S must then
amplify equally slowly. This contradicts our previous
finding; therefore, Uy lies in S or else S does not exist.

To construct the portion of Uy near H we have
computed the first 64 terms in the series (5), and have
then summed the series for various values of p < 1/2.
The maximum error due to the omission of higher
terms is therefore comparable to 27%, and so is no
larger than the round-off errors in our “double preci-
sion’’ computations. We have let ¢ = 1/2,sothat 1 =0
when p = 1/2. For b = 0.5, a = 0.02, and the fairly
strong forcing F = 0.2, the variations of Z determined
by series summation appear in the portion of Fig. 1
from ¢t = —30 to ¢ = 0. The expected quasi-exponential
growth occurring near H is seen to persist beyond ¢
= —10, while an abrupt decrease sets in before ¢t = 0.

The remainder of Uy may easily be found by step-
wise numerical integration, starting with the values al-
ready found at 1 = 0. We have used a fourth-order
Taylor-series procedure, in most cases with the rather
small time step Az = 0.05, so that more than 100 steps
occur within a single gravity-wave period. As a consis-
tency check we have first integrated backward from ¢
=0tot = —30, with At = —0.05, and have found that
the values of Z so obtained differ by less than 2 X 1078
units from the values already obtained by series sum-
mation.

The curve produced by forward integration from ¢
=0 to t = 50 forms the remainder of Fig. 1. A major
minimum of Z occurs near ¢ = 4, coincidentally at
about the limit of convergence of the power series, and,
for t > 10, there are unmistakable oscillations of ap-
proximate period 27, which must be gravity waves,
and which imply that there is no universal slow man-
ifold. Figure 2 extends the solution to ¢ = 180, and
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FiG. 1. The variations of Z (scale at left) with time ¢ along the orbit
that satisfies Eqs. (1) and emanates from the fixed point H, for b
=0.5, a = 0.02, and F = 0.20. The values of Z for t < 0 were
obtained by power-series summation, while those for ¢+ > 0 were
obtained by numerical integration.
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FI1G. 2. The variations of Z (upper curve) and X (lower curve) with
t for the conditions of Fig. 1, for an extended range of ¢. The scale
at the left is for Z; the curve for X has been displaced downward by
0.003 units to reduce the overlap.

shows X as well as Z. The short-period oscillations of
X are comparable in magnitude to those of Z, and lead
them by a quarter period, while both the short-period
and longer-period variations undergo damping as the
orbit proceeds toward R or R’.

It remains for us to demonstrate that the gravity
waves in Figs. 1 and 2 are not an artifact of the com-
putational procedure. We have first repeated the in-
tegration from 7 = 0 to ¢ = 50 with A7 = 0.01, and have
found no detectable change in the graphical output,
strongly suggesting that the gravity waves are genuine.

We may define the total error of a point on an orbit
as the distance between its true and computed posi-
tions. With a reasonably small At the errors in the
individual variables added during a single time step by
the fourth-order procedure should be comparable to
the first omitted terms, i.e., to (d°V/dt3)AL*/S,, .. ..
With Az = 0.05 we find numerically that the total error
introduced during a single time step reaches nearly
equal peaks of about 1.9 X 1072 units near ¢ = 2 and
t = 6, where the steepest slopes appear in Fig. 1, and
that it exceeds 1.0 X 107'? only when 0 < ¢ < 10. The
accumulated total error during the 400 steps from
£ = 0to ¢ = 20 therefore cannot reach 10~° units; with
At = 0.01 it cannot even reach 107!2 units. On the
other hand, according to Fig. 1, if the gravity-wave
activity at ¢ = 20 is spurious, the total error must exceed
10~* units. It follows that if the gravity waves are spu-
rious they must have been produced not by simple
accumulation of errors but instead by amplification by
several orders of magnitude of errors already present
at £ = 0 or introduced shortly afterward. We have al-
ready noted that such rapid amplification is not to be
expected near H.

Since we are now farther from H, we have deter-
mined numerically the behavior of a sphere of radius
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¢, centered about the point on Uy where ¢ = 0, as each
point on the sphere travels along its orbit. The sphere
is initially deformed into an ellipsoid, and, if € is small
enough, say 107 units, it is still an approximate ellip-
soid when ¢ = 20. We find that during this period the
longest semi-axis of the ellipsoid never exceeds 3.5¢,
i.e., there is not even a one-order-of-magnitude am-
plification of errors. We conclude that the gravity waves
displayed in Fig. 1 are real, and that there is no slow
manifold. ‘ .

For good measure we have taken the solution of

Figs. 1 and 2 at t = 50, and have “initialized” it by

retaining the values of V, U and W but substituting
the values of X and Z which make d2X/dt? and d%Z/
dt? vanish simultaneously. This procedure does not
eliminate gravity waves, but it should reduce their am-
plitude considerably. We have then integrated back-
ward, with Az = —0.01, from ¢ = 50 to t = —30. The
result is shown in Fig. 3. The gravity waves remain
much weaker than those in Fig. 1 while 1 > 0, but when
t < 0, there are strong gravity waves where there were
none before. Integrating forward from the new values
at 1 = —30, with Ar = +0.01, essentially reproduces
the curve in Fig. 3. Evidently, on an orbit close to Uy, .
if we are to avoid gravity waves following the major
minimum of Z, we must have unmistakable gravity
waves before the minimum.

4. Other parameter values

Despite the positiveness of our main conclusion we
have done nothing to establish its generality. We should
like to know whether it is valid for other and perhaps
almost all values of the constants in our model, and
more importantly, whether it is valid for more general
models.
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FIG. 3. The variations of Z with ¢ along the orbit that passes through
the point obtained by following the orbit of Fig. 1 to ¢ = 50, and
then replacing the values of X and Z by new values which make d%X/
dt? and d*Z/dt? vanish.
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We begin by varying F. Figure 4 shows three curves
similar to the one in Fig. 1, again computed with b
= 0.5 and a = 0.02, but with F = 0.18, 0.16 and 0.14.
Evidently the gravity-wave activity falls off very rapidly
as F decreases; for F = 0.14 it is no longer visible in
the graph, although it is easily detected in the numerical
output. For F = 0.10, not shown in Fig. 4, even the
numerical values leave some doubt.

The question thus arises as to whether gravity waves
simply become progressively weaker as £ — F,, or
whether they disappear altogether at some value of F
exceeding F,. Not the least of the difficulties in reaching
an answer is that of precisely defining the presence or
absence of gravity waves, when the waves are weak.
The longer-period oscillations on which the gravity
waves are superposed are generally not sinusoidal, and
may therefore possess overtones in the gravity-wave
frequency band. Since the longer-period variations have
no unique analytic form, we cannot determine the pre-
cise magnitude of the overtones, and so we cannot sub-
tract them from the total signal to obtain the gravity
waves as a residual.

We can obtain a partial answer by considering the
case when a = 0, 1.e., when Eqgs. (1) reduce to the model
of L86. Here there is no longer a unique Hadley so-
lution. For every value of F'the point V=F, U= W
= X = Z = 0 on the V-axis is a fixed point, and each
of these points possesses a one-dimensional unstable
manifold U;, on which V? + U? = F? and U? = W?
+ X%+ Z2. Here F is meaningful only as the value of
V when ¢ = —o0; it no longer appears in the equations.

The significance of a manifold U, for our problem
is that, except at ¢ = + o0, it is the limiting form of Uy
as a — 0 while b and F remain fixed. Fig. 5 is like Fig.
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FIG. 4. The variations of Z with ¢ for the conditions of Fig. 1,
except that F = 0.18 (upper curve), 0.16 (middle curve), and 0.14
(lower curve). The scale at the left applies when F = 0.18; the curves
for F = 0.16 and 0.14 have been displaced downward by 0.001 and
0.002 units, respectively, to reduce the overlap.
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FIG. 5. The same as Fig. 4, except with @ = 0.0, and with the
orbits emanating from the points V= F, U= W=X=2Z=0.

4, but with ¢ = 0, and it shows the behavior of Z on
U; for F=0.18, 0.16 and 0.14. For the included range
of ¢ the curves in Fig. 5 are much like those in Fig. 4,
except that, for a given value of F, the gravity waves
are stronger. The activity still decreases rapidly as F
decreases. We shall attempt to determine whether or
not it ceases altogether before F reaches zero.

Along one of the two orbits forming a typical un-
stable manifold U; we find that U remains positive,
while W, after first becoming negative, eventually be-
comes positive again. As a definable measure G of the
gravity-wave activity that follows the major minimum
of Z, we shall choose the value of (X? + Z?)!/2, which
also equals the value of U, at the time ¢ty of the first
zero-~crossing of W. For F = (.18 we find that ¢, = 45.0;
the accompanying gravity-wave activity, with Z oscil-
lating between about —0.0005 and +0.0005, appears
prominently in the upper right portion of Fig. 5. For
F = 0.16 and 0.14 the crossings occur respectively at
t = 56.8 and 73.9, beyond the range of 7 in Fig. 5.

The upper curve in Fig. 6 shows the variations of
G, computed with At = 0.02, and plotted logarithmi-
cally, as ¥ varies from 0.1 to 0.2. The activity varies
by more than three orders of magnitude, and the de-
crease with decreasing F is most rapid when F is small-
est. Superposed on the decrease there are small-am-
plitude wobbles, which are more closely spaced when
F is smaller. These are evidently associated with the
phase that the gravity waves reach at .. To see this,
observe the lower curve in Fig. 6, which shows the ratio
X/U at ty. Recall that X? + Z? = U? at ¢y, so that X/
U and Z/U are simply the cosine and sine of the phase.
It is clear that the wobbles in the upper and lower curves
are phase-locked.

If F is not too large, we can remove most of the
gravity-wave activity at time ¢, by retaining the values
of V, U and W and replacing X and Z by —bVU and
0—the values which make d2X/dt? and d?Z/dt? vanish
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F1G. 6. The variations of the gravity-wave amplitude G (upper
curve, with scale for log,, G at left) and the cosine X/ U of the gravity
wave phase (lower curve) with the external forcing F, for 5 = 0.5 and
a = 0.0, at the time ¢y of the first zero-crossing of W on the orbit
that satisfies Egs. (1) and emanates from the point V= F, U= W
=X=Z=0.

when W = 0. We shall then no longer be on the unstable
manifold Uy, since now W? + X? + Z? = p2V2U2,
which, since V cannot exceed F, is decidedly smaller
than U2, The values of X and Z on U, should therefore
temporarily undergo oscillations of amplitude G'(F),
where (G')? = (X + bVU)* + Z? about the new solution.
For a modified measure of gravity-wave activity, which
should nearly eliminate the wobbles from Fig. 6, we
shall choose G'. '

A casual inspection of the numerical output that
accompanied Fig. 6 had suggested that G, and so pre-
sumably G', fell off by a factor of about. 5.0 whenever
the reciprocal of F increased by one unit, so that, ap-
proximately,

G = g exp(—k/F) (8
for suitable constants g and k. In Table 1 we present
values of log,;oG’, again computed with Az = 0.02, cor-
responding to integer values of 1/F. For the smaller
values of F, the increments of log,oG’ as 1/F increases
by one unit are alike to three significant figures, so that
(8) becomes a continually better approximation as F
decreases to the smallest values for which our com-
putational procedure will yield an answer. The in-
creasing accuracy of (8) strongly suggests that some
quantifiable gravity-wave activity persists all the way
to ¥ = 0. The indicated values of g and k are 2.76 and
1.574, respectively.
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When one discovers within a set of numerical so-
lutions a relationship as simple and as closely obeyed
as the one apparently connecting G’ and F, one often
suspects that there is a simple way to deduce the re-
lationship directly from the equations, without recourse
to numerical procedures. In the present instance it is
fairly simple to obtain an approximation G” to G'. We
first decouple the slow and fast variables by discarding
the terms in Eqs. (1) containing b, and solve (1a~-c) for
V, Uand W. We then recouple the variables, and solve
(1d) and (le) for X and Z, using the decoupled values
of ¥V and U to evaluate the term bVU in (le). This
proves to be equivalent to expressing each variable as
a power series in b, and determining the first nonvan-
ishing term in each series, which in turn is equivalent
to expressing V, U, W, X/b, and Z/b as power series
in #%, and determining each leading term.

We therefore let

V=73 v,b*, (9a)
n=0
with analogous expressions for U/ and W, and
X=3 x,p, (9b)

n=0

with an analogous expression for Z, and substitute the
expressions into Eqs. (1), with a = 0; we have used
lower-case symbols for the coeflicients to distinguish
them from the coefhicients in (5). For n = 0 we obtain

dvy/dt = upwy, (10a)
dup/dt = ~vgwy, (10b)
dwy/dt = —vouy, (10c¢)
dxy/dt = ~2z,, (10d)
dzo/dt = voug + xy. (10e)

TABLE 1. Values of E, L'(E), and AL(E) corresponding to values
of F for which FE is an integer, where E = 1/F, L'(E) = logoG'(F),
and AL(E) = L'(E) — L(E — 1).

F E L(E) AL(E)
0.500 2 —0.8863 —
0.333 3 —1.5875 —0.7012
0.250 4 —2.2841 ~0.6966
0.200 5 —2.9706 —0.6865
0.167 6 —3.6594 —0.6888
0.143 7 —4.3452 ~0.6858
0.125 8 —5.0284 —0.6832
0.111 9 ~5.7133 —0.6849
0.100 10 —6.3970 ~0.6837
0.091 1 —7.0804 —0.6834
0.083 12 ~7.7641 —0.6837
0.077 13 —8.4473 —0.6832
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From (10a)-(10c) we find, since vy = F and uy, = wyp
=(0at¢= —oo, that

vy = —F tanh(Fi), (11a)
up = F sech(Ft), (11b)
Wy = -F sech(F1), (11c)

after which, from (10d) and (10e),
Xo = —P(t)cost — Q(f)sint, (114d)
zo= Q(t)cost — P(¢)sint + F sech(Ft), (lle)

where

PH=F ftm sech(F7)cosrdr, (12a)
on=F J:) sech(Fr)sinrdr. (12b)

We note that wyp, unlike W, has no zero crossing; instead
wo—>0ast—> +oo.

In principle we could estimate the time ¢, when W
vanishes by finding w; and equating w, + w,b? to zero,
but the equations seem rather intractable. Instead we
merely assume that # is large, and note that, when ¢
is large, the integrands in (12) are very small, so that
P(tw) and Q(t») may be approximated by P(co) and
((00). Obviously Q(c0) = 0, since the integrand is odd,
while we find from tables of definite integrals or Fourier
transforms (e.g., Campbell and Foster, 1948) that P(c0)
= = sech[r/(2F)]. It follows from (11) that X and Z
continue to oscillate as t = oo, with the approximate
amplitude

G” = b(xy> + 20%)'? = wb sech[n/(2F)].  (13)

For the range of F considered, the hyperbolic secant
is hardly distinguishable from twice the negative ex-
ponential. The numerically determined value k = 1.574
in (8) is closely approximated by 7/2. The main dis-
crepancy is in the coefficient g = 2.76, which falls short
of 2xb by about 12 percent when b = 1/2. Additional
numerical integrations with smaller values of b reveal
that, for fixed values of F, the discrepancy between G”
and @ is closely proportional to °, suggesting that
very close agreement could have been obtained by
evaluating one additional term in each series. The ex-
istence of a simple approximation where G” > 0 when-
ever F > 0 makes it seem even more likely that, on
the actual unstable manifold U, , gravity waves always
develop when F > 0. :

We note in passing that the hyperbolic secant for-
mula (13) holds only for the first zero-crossing of W.
For most values of F in the range that we have con-
sidered, the successive gravity-wave amplitudes at a

succession of zero-crossings fluctuate aperiodically. .

Figure 7, which extends over five zero-crossings, illus-
trates the phenomenon. For values of F that make
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F1G. 7. The variations of Z (scale at left) with ¢ along the orbit that
satisfies Egs. (1) and emanates from the point V= F, U= W =X
= Z = 0, for an extended range of ¢, for b = 0.5, a = 0.0, and F
= 0.195. Zero-crossings of W occur at ¢ = 38.5, 118.3, 198.8, 268.4,
and 334.1.

Z = 0 (or X/U = =1, see the lower curve in Fig. 6) at
t = ty, the orbits that form U are homoclinic, i.e.,
they converge at ¢ = oo to the point from which they
emanated at ¢ = —oo. One such value, F = 0.19518,
is close to the value 0.195 used in Fig. 7; this accounts
for the weakness of the gravity waves at the second
Zero-crossing.

We have still not answered the question as to whether
gravity waves disappear before F reaches either 0 or
F,, when damping is present. The procedure that we
used when a = 0 is not universally applicable when a
> 0; for the unstable manifolds shown in Figs. 1 and
4, for example, W has no zero-crossings. The conclu-
sion that gravity waves will always develop on Uy when
F> F,, if a > 0, is not incompatible with our result
for a = 0; neither is the conclusion that they will fail
to develop when F is less than some value Fy > F.,
provided that F, > 0 as a = 0.

5. Other models

The procedure with which we have investigated the
existence of a slow manifold can be applied to a wide
variety of PE models. If all of the variables possess
continuous time derivatives, and if the external forcing
is steady, the equations should possess at least one
steady solution or fixed point. If the matrix in the
equation [like Eq. (2)] that governs infinitesimal de-
partures from one of the fixed points, say H, possesses
at least one real positive eigenvalue, the two orbits em-
anating from H in the directions corresponding to one
of these eigenvalues, say A, will form a one-dimen-
sional manifold Uy. Just as in the model governed by
Egs. (1), Uy must lie in the slow manifold S, if S exists.
It is not necessary for H to represent a Hadley circu-
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lation. Neither is it necessary for Uy to constitute the
entire unstable manifold of H, i.e., for A, to be the only
eigenvalue with a positive real part. It is not even nec-
essary for H to be unstable; if A, is real and negative,
the orbit that converges to H, rather than emanating
from H, in the direction corresponding to A\; should
lie in S, if S exists.

We may again determine the portion of Uy close to
H by summing power series in exp(A?), if the series
converge, and we may then determine the remainder
of Uy by numerical integration. If unmistakable gravity
waves appear, .S does not exist.

We have applied our procedure to one additional
model: the 9-variable PE model of L80. As we noted
earlier, the variables in the model—yx;, y;, and z;, for
i = 1, 2 and 3—are coefficients occurring in double-
Fourier-series expressions for x, ¥, and z, truncated to
three modes. In most of the work of L80 the constants
assumed a fixed set of values, which we shall call the
“standard” values. In particular, the external forcing,
represented by the constants F,, F,, and F;, was con-
fined to mode 1, which in this model represented the
zonally symmetric component of the circulation, so
that F, and F; vanished, while the topographic height
of the underlying surface, represented by 4, A, and
hs, was zonally oriented, so that /4, and /; vanished.
There was therefore a steady Hadley-circulation solu-
tion H in which the variables with subscripts 2 and 3
vanished. The time unit was chosen to be 3 h, and the
gravity-wave period varied from 2 /5-27/3 units.

Much of the work of K85, VL86, and WM86 used
the standard values of the constants, except for F,,
which covered a considerable range. The exact form
of the equations and the precise values of the constants
other than F, appear to be of minor concern for the
interpretation of our results, and we refer the reader
who may wish to perform additional experiments to
L80, VL86, or WM86.

With the standard values of the remaining constants,
the solution H becomes unstable when F; exceeds
0.015, in which case there are two additional steady
solutions R and R, which become unstable when F,
exceeds 0.053. In L80 we dealt mainly with the case
where F; = 0.10. The general solution was aperiodic.
Gravity waves, when initially present, seemed to dis-
appear permanently; they could not be detected in the
five-decimal-place printout. We had not supposed at
that time that a higher-resolution printout was called
for; the results of WM86 indicate that such a printout
would have revealed weak gravity waves.

With the higher values of F; in K85 and VL86, grav-
ity waves often failed to disappear, or they would appear
when they were not obviously present initially. As we
have noted, such behavior does not by itself contradict
the existence of a slow manifold, since it might arise
from the instability of such a manifold.

In the present study we have examined the orbits

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoOL. 44, No. 20

emanating from H in the direction corresponding to
the largest real eigenvalue \,, for various values of F;
and for standard values of the other constants. Figure
8 shows the variations of the geostrophic departure z;—
3 [the analogue Z in Eqs. (1)] for £, = 0.20, 0.18 and
0.16. Although the details differ from those in Figs. 4
and 5, the general resemblance is apparent. Again there
is a rapid decrease of gravity-wave activity as F; de-
creases. (Somewhat similar curves, obtained by nu--
merical integration from initial points close to H, ap-
pear in Figs. 3.30 and 3.31 of K85.)

Auxiliary computations show that for F;, = 0.20 a
sphere of small radius ¢ at £ = 0 becomes an ellipsoid
whose longest semi-axis never exceeds 25.0¢ while ¢
< 20, indicating that, as with Egs. (1), the gravity waves
are not an instability phenomenon. We feel that the
nonexistence of a universal invariant slow manifold
for the model of L80 has been confirmed.

6. Concluding remarks

We have examined two simple forced dissipative

- models in which the forcing is constant with time, and

in the second of which there are orographic effects. We
have determined that in neither case is there a universal
invariant slow manifold, at least when the forcing is
moderately strong. Our method has been to identify
an orbit that must lie in the slow manifold if such a
manifold exists, and then to show that gravity waves
ultimately appear as one follows the orbit.

With sufficient effort our procedure could be applied
to much larger models, including some global circu-
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FIG. 8. The variations of z;—y; with time 7 along the orbit that
satisfies the equations of the PE model of L80 and emanates from
the Hadley solution H in the most unstable direction, for standard
values of the constants other than F,, and for F; = 0.20 (upper curve),
0.18 (middle curve), and 0.16 (lower curve). The scale at the left
applies when F,; = 0.20; the curves for F; = 0.18 and 0.16 have been
displaced downward by 0.4 and 0.8 units, respectively, to reduce the
overlap.
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lation models that provide moderately realistic simu-
lations of atmospheric behavior. We suspect that these
models would yield similar results. For the real at-
mosphere, or for any model which is sufficiently real-
istic to .include the local diurnal variations of solar

heating, we would not expect to encounter solutions

without gravity waves in any event.

The absence of a slow manifold should not be
equated with the presence of gravity waves in the at-
tractor (as illustrated, for example, by Fig. 11 of VL86),
although the two phenomena are closely related. In
our five-variable model, which has no slow manifold,
the attractor set consists of two points representing
steady flows, which certainly do not possess gravity
waves. Conversely, it must still be considered possible,
unless and until it is shown otherwise, that some models
possess true slow manifolds which are unstable with
respect to gravity-wave perturbations, so that gravity
waves become established as the attractors are ap-
proached. Some of the numerical solutions in K85,
VL86, and WMS86 appear to verify the existence of
" gravity waves in the attractor, but not necessarily the
nonexistence of a slow manifold, since a slow manifold
need not be an attractor.

A simple qualitative explanation for the eventual
presence of gravity waves that are not present initially,
whether they subsequently die out or persist, is sug-
gested by our procedure for approximating G’ by G”.
It appears to be valid for a wide variety of models where
the fast variables may be regarded as constituting a
forced damped linear oscillator, with the “forcing” F’
supplied entirely or mainly by the slow variables. For
Egs. (1) the fast variables are X and Z, and F’ is simply
the term bV U in (1e). If, as in (1), the orbit emanating
from an unstable fixed point is attracted to a fixed point,
F' should be expressible as a Fourier integral. If instead
the orbit is attracted to a periodic limit cycle, the tran-
sient and permanent parts of F’ should be given by a
Fourier integral and a Fourier series. If the orbit is ape-
riodic, F’ should possess a continuous spectrum, i.e.,
its serial covariance should be given by a Fourier in-
tegral.

Because of the nonlinear advective terms in the
equations governing the slow variables, a Fourier series
may be expected to possess overtones in the gravity-
wave frequency band, while a Fourier integral should
overlap the band. In either event the response of the
fast variables to the slowest frequencies in F’ may be
weak, but, close to the resonant frequencies, the re-
sponse should be greatly enhanced. A possible outcome
is that the fast oscillations of the fast variables will have
all the properties of separate oscillations superposed
on the slow variations, rather than overtones, i.e., they
will be gravity waves. There is probably no unequivocal
bounding condition separating the cases where gravity
waves appear from those where the forcing is so weak
that the fast oscillations still qualify as overtones.
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The production of one type of motion from another
type is by no means a newly recognized phenomenon
in fluid dynamics, or even in atmospheric dynamics.
In studies somewhat like ours, Errico (1982, 1984) has
obtained solutions of multilayer models which appear
to be quasi-geostrophic for extended periods, but where
gravity waves finally develop and amplify until equi-
partitioning is reached. On a smaller spatial scale, Lilly
(1983) has examined the apparent production of both
gravity waves and quasi-two-dimensional turbulence
from decaying three-dimensional cumulonimbus con-
vection. Outside of meteorology, an example is the
production of audible sound waves from a jet (see
Lighthill, 1978).

We note in closing that our principal result is not
incompatible with the existence and structure of the
“slowest invariant manifold” in L86. For Egs. (1) with
a = 0, which are also the equations of L86, there ap-
pears to be an extensive region of state space where all
solutions are periodic or almost periodic, possessing
line spectra. The strictly periodic solutions in L86
which form the slowest invariant manifold occupy this
region. With fixed initial values of all of the variables
but one, spectral lines coincide with the gravity-wave
frequency for discrete initial values of the remaining
variable, and near-resonance, marked by prominent
gravity waves, occurs in narrow intervals surrounding
these values.

There is also an extensive region of state space where
almost all solutions are aperiodic, possessing contin-
uous spectra. The portion of the V-axis that we have
considered, and the orbits emanating from it, as typified
by Fig. 7, lie in this region. Here, with fixed initial
values of all variables but one, the spectral continuum
overlaps the gravity-wave frequency for all initial values
of the remaining variable, and the gravity-wave activity
varies continuously with this variable.
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