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T E L L U S

Reply to comment by L.-S. Yao and D. Hughes

By EDWARD N. LORENZ †, Dept. of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA

(In final form 28 November 2007)

Theauthors make some strong statements, not merely about the
system that they call and that I shall call eq. (1), but regarding
the general practice of approximating solutions of ordinary dif-
ferential equations (ODEs) numerically. Before assessing these
statements one must distinguish between just plain convergence
and uniform convergence.

Let Xn(t), n = 1, 2, . . ., be a sequence of vector functions of
time t and let X(t) be another vector function. Of special interest
here are cases where X is a particular true solution of a sys-
tem of ODEs, where there exists a sequence of time increments
τ n approaching 0 as n → ∞, and where the functions Xn are
approximations to X produced by procedures that are identical
except that the nth approximation uses the increment τ n. The
sequence Xn converges to X at time t′ if, given any ε > 0, there
exists a corresponding N(t′) such that

|Xn(t ′) − X(t ′)| < ε if n > N (t ′).

Here the vertical bars indicate distance in state space. The con-
vergence is uniform (in t) if N(t′) can be chosen independently of
t′, that is, if there exists an N0 with N(t) < N0 for all t. When, even
though N(t) exists for every value of t, successively larger values
of t demand successively larger values of N(t), the convergence
is not uniform.

From the authors’ statement as to what they mean by con-
vergence, and from their discussion of their fig. 2, it appears
that they are talking about uniform convergence. Without invok-
ing complete rigor, one can state that if the behaviour of X(t) is
chaotic, Xn(t) cannot converge uniformly to X(t), since the small
difference between X(t) and Xn(t), introduced immediately by
the difference between the approximation and the ODEs when it
is not already present, will amplify, consistently with the leading
Lyapunov exponent λ1, until it exceeds ε. Here I have assumed
that the amplification occurring at t′ because Xn(t′) �=X (t′), and
that occurring because the laws governing Xn(t) are not the ODEs
governing X(t), are essentially additive. The authors’ computa-
tions were therefore destined not to produce convergence.

Nothing appears to prevent convergence at individual values
of t when the system is chaotic. Suppose that in a particular
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case convergence has been established when t is rather small,
that is, given ε and a small t′, one has determined N so that
|Xn(t) −X(t)| < ε when t < t′ and n > N. Suppose also that
|XN(t) −X(t)| ≥ ε for some (and presumably most) values of
t ≥ t′, including t = t′, so that a larger value of N will be needed to
reveal convergence, if it is indeed present. Optimistically, if this
value of N makes τ half as large, and if an Mth-order numerical
scheme is used, |XN(t′) −X (t′)| < ε/2M; this conclusion assumes
that τ is small, but not so small that the contribution of τM is
drowned by the ubiquitous round-off error. One can then extend
t beyond t′ for M doubling times before |XN(t) −X(t)| reaches ε.
The doubling time may vary greatly as t varies, but, for eq. (1),
where λ1 = 0.17, the long-term average doubling time is about
4.0 units, or 20 d. This implies, for example, that with a fifth-order
scheme, like the reference case in the authors’ fig. 2, the time
when convergence can be confirmed will be increased beyond t′

by 1 yr if τ is decreased by a factor of about 12.
It is therefore not surprising that the authors saw noth-

ing resembling convergence at their maximum ranges near
30 yr. To reveal convergence for even five more years, τ would
have to be reduced by about 125 or a quarter million, and the
computation time would increase by an even greater factor, since
‘double precision’ arithmetic would no longer be adequate.

Since my quantitative conclusions are somewhat speculative,
I have attempted to support them with some computations. In
Table 1, each row contains the values of the leading dependent
variable X in eq. (1) at 100-d intervals up to 600 d, as found by a
fifth-order Taylor-series approximation with τn = 2−n d (1 d =
0.2 time units). At 100 d the sequence has converged, to four
decimal places, when n = 4; by 600 d, similar convergence oc-
curs when n = 12. Cutting τ in half thus appears to extend
the range where convergence is detectable by about 3.1 rather
than 5.0 doubling times, so my conclusions seem too optimistic.
However, further computations indicate that during the 600-d
interval of Table 1 the average doubling time is about 15 rather
than 20 d, and the range of detectability is extended by 4.2 of
these doubling times—closer to the optimistic 5.0.

Table 1 was produced with quadruple-precision arithmetic. If
similar computations are performed with double precision, the
first three columns are left unchanged, but the values in the last
three fail to converge.
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Table 1. Values of Xn(t) at selected values of t in numerical
solutions of eq. (1) with fifth-order Taylor-series procedure with
τn = 2−n d, with Xn(0) = Yn(0) = Zn(0) = 1.0

n t (d)

0 100 200 300 400 500 600

1 1.0000 0.5236 1.4596 1.2740 0.7932 1.4383 1.1122
2 1.0000 0.2455 0.1869 1.1035 0.9186 0.9174 0.9493
3 1.0000 0.2410 1.0710 1.5457 -0.1476 1.1772 1.1317
4 1.0000 0.2408 1.0416 1.2203 0.6216 1.4408 1.1383
5 1.0000 0.2408 1.0388 2.0926 0.9274 1.1228 0.7039
6 1.0000 0.2408 1.0386 2.0127 1.5891 1.1954 2.0582
7 1.0000 0.2408 1.0386 2.0048 1.3742 0.7455 0.2838
8 1.0000 0.2408 1.0386 2.0043 0.9308 0.3397 0.8062
9 1.0000 0.2408 1.0386 2.0043 0.9144 1.7856 0.7789
10 1.0000 0.2408 1.0386 2.0043 0.9134 1.7885 0.6385
11 1.0000 0.2408 1.0386 2.0043 0.9134 1.7878 0.6456
12 1.0000 0.2408 1.0386 2.0043 0.9134 1.7878 0.6461
13 1.0000 0.2408 1.0386 2.0043 0.9134 1.7878 0.6461
14 1.0000 0.2408 1.0386 2.0043 0.9134 1.7878 0.6461

I do not find a numerical solution meaningless simply because
it does not agree with the true solution beyond a certain time in-
terval. First, there is the likelihood that it closely approximates,
throughout a considerably longer interval, a true solution that has
a slightly different initial state. Under the conditions of Table 1,
for example, values of X produced by the fourth approximation
(τ 4 = 1.5 h), with X4(0) = Y4(0) = Z4(0) = 1.0, lose all resem-

blance to the true values of originating from the same initial state
by 300 d, but for at least 600 d they remain within 0.0001 units of
the true values that occur when X(0) = 0.999998980632321 and
Y(0) = Z(0) = 1.0. Beyond the longer interval, if it is finite, an
approximation may still exhibit the correct mean values, ranges,
and other statistics. One might say that in generating the wrong
sequence of weather it still produces the right climate. Stated
otherwise, it can possess the right attractor.

Incidentally, I cannot agree with the claim that eq. (1) has no
attractor. The authors show that volumes in state space can ex-
pand, but their fig. 1 clearly reveals a trajectory shuttling between
expanding regions (X > 9/8) and contracting regions (X < 9/8).
If the long-term mean X of X were 9/8 (1.125), there would be no
long-term expansion or contraction, and no attractor would ex-
ist, but additional computations accompanying those displayed
in Table 1 show X converging to 1.024, whence the average di-
vergence is −0.202, implying that, on the average, volumes in
state space are cut in half in 17 d, or are divided by a million in
about a year. More computations extending over 100 yr indicate
that X is closer to 1.01, but there is no suggestion whatever that
X is as large as 1.125. I am convinced that an attractor does exist.

In summary, numerical approximations can converge to a
chaotic true solution throughout any finite range of time, al-
though, if the range is large, confirming the convergence can be
utterly impractical. If a uniformly convergent sequence of ap-
proximations is discovered, the true solution cannot be chaotic;
seeking such a sequence is pointless, except perhaps as a test
for chaos. The ‘exciting contribution’ identified by the authors
in their abstract would indeed be exciting, but it can never be
realized.

Tellus 60A (2008), 4


