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ABSTRACT
A procedure for deriving a three-variable, one-level baroclinic model by truncating the familiar two-level quasi-
geostrophic model is described. The longitude, latitude and isobaric height of the low centre are introduced into the new
model as alternative dependent variables. State space then becomes equivalent to geographical space, and the attractor
becomes a structure within the atmosphere.

1. Introduction

In examining an N-variable dynamical system it is standard prac-
tice to introduce a state space or phase space—an N-dimensional
Euclidean space whose coordinates are the variables of the sys-
tem. A state of the system is then represented by a point in state
space, while a time-dependent solution becomes a path or orbit.
A feature of many forced dissipative systems is the attractor, or
sometimes a set of attractors—the collection of all states that
the system can assume or approach again and again, as opposed
to those that it will ultimately avoid. A typical orbit lies in the
attractor or approaches it asymptotically, and sometimes an orbit
will remain in or close to one portion of the attractor for a long
time before moving on to another portion. The attractor consti-
tutes an often complicated structure in state space, and it is not
surprising that with a large N, as in realistic atmospheric models,
its shape can be hard to visualize. When N = 3 a set of parallel
2-D cross-sections may reveal the shape.

It is important to note that, for a concrete physical system,
the abstract state space is ordinarily not the same as the concrete
physical space. It is generally meaningless to say, for example,
that in the atmosphere or an atmospheric model one portion of
an attractor lies at low latitudes. It may be that the states in
one portion have strong cyclonic centres at low latitudes, but
these same states presumably possess other prominent features
occupying other regions.

It is nevertheless possible for one or more coordinates in state
space to be physical-space coordinates also. If, for example, the
dynamical system is an artificial satellite, three state-space coor-
dinates might be the satellite’s longitude, latitude and elevation,
but three additional coordinates giving its velocity are needed to
complete the system.
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The purpose of this note is to identify a special three-variable
system where state space and geographical space are in fact
identical. The system is obtained by introducing the longitude,
latitude and elevation of a special moving point as new variables
in a highly simplified atmospheric model. The attractor then be-
comes a structure within the atmosphere, and 2-D cross-sections
become geographical maps. The new system may strike some
readers as a mere meteorological curiosity, but others may find
it an aid in visualizing what constitutes an attractor.

2. The three-variable system

The three-variable system that underlies the present work was
originally introduced to illustrate certain properties of the gen-
eral circulation (Lorenz, 1984, hereafter L84). It is an extreme
simplification of one of the familiar two-level quasi-geostrophic
models, as typified by the early model of Phillips (1951), which
in turn is a rather extreme simplification of the atmosphere. In
L84 we did not derive it, but we mentioned that it could be ob-
tained by further simplifying an already simple system, whence
it appears that much of what a full derivation would entail has
already been performed. A secondary purpose of this work, and
the purpose of this section, is to indicate how the derivation may
be completed.

Our starting point is eqs. (31)–(50) of a study (Lorenz, 1963,
hereafter L63) dealing with vacillation (Hide, 1953). These were
derived from the two-level model by expressing the dependent
variables as double Fourier series, and then dropping all but six
terms in each series. Here we further truncate by discarding the
quantities bearing a subscript C, M or N in L63, thereby remov-
ing eqs. (34)–(36), (40)–(42) and (47)–(49) and shortening the
remaining equations. The truncated dimensionless stream func-
tion ψ and temperature θ then become, in the notation of L63,

ψ =
√

2ψA cos y + 2 (ψK cos(nx) + ψL sin(nx)) sin y, (1a)
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θ =
√

2θA cos y + 2 (θK cos(nx) + θL sin(nx)) sin y. (1b)

We may identify ψ and θ with the sum and difference of
the stream functions at the two levels. The variables ψ A and
θ A describe the zonal westerly flow, parallel to the walls of the
channel at y = 0 and y = π , while the remaining variables are
the cosine and sine phases of a chain of n identical superposed
waves that extend from x = 0 to x = 2π . Note that if λ and φ

are longitude and latitude, λ = x, but φ is only a linear function
of y.

We further simplify by replacing the time-dependent static-
stability parameter σ 0 by a positive constant σ , thus rendering
eqs. (43) and (50) of L63 superfluous. Copying what is left of
eqs. (31)–(33) of L63 as eq. (2), and eliminating ωA, ωK and ωL

from what is left of the remaining equations to obtain eq. (3),
after temporarily omitting the dissipation and external-forcing
terms, we have

dψA/dt = 0, (2a)

dψK /dt = −βα(ψLψA + θLθA), (2b)

dψL/dt = βα(ψAψK + θAθK ), (2c)

dθA/dt = −γα(θK ψL − ψK θL ), (3a)

dθK /dt = −δαθLψA + εαψLθA, (3b)

dθL/dt = −εαθAψK + δαψAθK , (3c)

where α is a positive interaction coefficient, β = n2/(n2 + 1),
γ = 1/(1 + σ ), δ = (1 − β + σβ)/(1 − β + σ ), and ε = (1 −
β − σβ)/(1 − β + σ ).

We proceed by assuming, as is often the case in baroclinic
flow, that the field of θ looks somewhat like the field of ψ ,
but displaced a fraction of a wave length westward. That is, θ A

behaves somewhat like pψ A, while θ K and θ L behave somewhat
like qψ K + rψ L and − rψ K + qψ L , for some suitable positive
constants p, q, and r, and, if the shapes of the fields are the same,
q2 + r 2 = p2. Accordingly, we introduce the new variables

W1 = f 2(θA − pψA), (4a)

W2 = f 2(θK − qψK − rψL ), (4b)

W3 = f 2(θL + rψK − qψL ), (4c)

where f 2 = 1/(1 + p2), noting that our assumption concerning
the temperature implies that W 1, W 2 and W 3 are small. We ac-
company these with

X1 = f 2(ψA + pθA), (5a)

X2 = f 2(ψK + qθK − rθL ), (5b)

X3 = f 2(ψL + rθK + qθL ). (5c)

It follows that

ψA = X1 − pW1, (6a)

ψK = X2 − qW2 + r W3, (6b)

ψL = X3 − r W2 − qW3, (6c)

θA = pX1 + W1, (7a)

θK = q X2 + r X3 + W2, (7b)

θL = −r X2 + q X3 + W3. (7c)

Our plan is to rewrite eqs. (2) and (3) in terms of the new vari-
ables, and then truncate the new system by omitting reference to
the small quantities W 1, W 2 and W 3. In practice the truncation
makes it unnecessary to seek expressions for the derivatives of
W 1, W 2 and W 3, while, having expressed the derivatives of X1,
X2 and X3 in terms of the old variables, the remaining work is
greatly shortened by truncating eqs. (6) and (7) before making
the needed substitutions. We obtain

d X1/dt = −c1

(
X 2

2 + X 2
3

)
, (8a)

d X2/dt = c2 X1 X2 − c3 X1 X3, (8b)

d X3/dt = c3 X1 X2 + c2 X2 X3, (8c)

where c1 = f 2αγ pr , c2 = f 2α(β + ε)pr , and c3 = f 2α(β +
(β − ε)pq + δ(q2 + r 2)). Noting that c1 > 0 and c2 > 0,
rescaling by letting X = c2 X 1, Y = c12 X 2, Z = c12 X 3, where
c2

12 = c1c2, and appending reasonable dissipation and forcing
terms, we obtain the equations of L84,

d X/dt = −Y 2 − Z 2 − aX + aF, (9a)

dY/dt = XY − bX Z − Y + G, (9b)

d Z/dt = bXY + X Z − Z , (9c)

where b = c3/c2.
There are various methods of introducing dissipation and forc-

ing into the two-level model, and many of these would place ad-
ditional linear terms in eqs. (9b) and (9c) if the procedure used
in deriving the quadratic terms were repeated. Note that no co-
efficients appear explicitly in the linear terms in eqs. (9b) and
(9c); this implies that the chosen time unit is the dissipation time
for the waves. Because of the rescaling, the truncated stream
function, aside from a constant factor, is

ψ =
√

2X cos y + 2c (Y cos(nx) + Z sin(nx)) sin y, (10)

where c2 = c2/c1 = (β + ε)/γ .
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3. The transformed system

In solving eq. (6) numerically we are free to choose any values
of a, F and G. With specified values of β, σ and p, the smaller
the value of r, that is, the smaller the westward displacement
of the temperature field, the larger the value of b. The allowable
displacements vary considerably, and it is as justifiable to choose
b directly as to choose the other constants and evaluate b.

In our examples we shall let a = 1/4, b = 4, F = 8 and G = 1,
a set of values shown in L84 to produce chaotic behaviour. We
integrate with the standard fourth-order Runge-Kutta procedure,
with a time increment of 1/40 unit, equal to 3 hr if the damping
time for the waves is set at 5 d. Aside from an additive constant,
ψ may be identified with the height z of some isobaric surface,
say 500 mb. We, therefore, let z = z + ψ , where z is the global
average value of z.

Figures 1(a) and 1(b) show two ‘weather maps’—fields of
z—separated by 5 d, drawn with n = 2. They reveal a pair of
identical slowly moving and rapidly weakening lows, along with
the accompanying highs. The synoptic systems will speed up and
regain strength as the zonal westerlies become stronger.

Construction of the maps requires a value of c in eq. (10).
Choosing n = 2 makes β = 4/5. If σ = 1/15, a value typical of
those computed in L63, γ = 15/16 and ε = 11/20, so c = 6/5. In
assigning scales to the figures, we have placed the channel walls

Fig. 1. Maps produced by integration of eq. (9) with a = 1/4, b = 4, F = 8, and G = 1. (a) Field of z at day 100 following initialization with X =
Y = Z = 1. Contour interval is 60 m. Central heights of low and high are 4984 m and 5816 m. (b) The same, but at day 105, when central heights are
5202 m and 5598 m. (c) Horizontal cross-section of attractor: all possible locations of low when central height is 4984 m. (d) Horizontal projection
of attractor: all possible locations of low centre. In all panels, horizontal and vertical scales are longitude and latitude in degrees.

at latitudes φS = 20 N and φN = 70 N, so that φ = φ S + (φ N −
φ S) y/π . We have assumed that z = 5400 m, while one unit of
z equals 100 m.

From eq. (10) we find that (λ0, φ0, z0)—the longitude, latitude
and central height of the low, and hence the coordinates of the
moving point where the 500 mb surface intersects the axis of the
low—are given by

nλ0 = −(Z/|Z |) cos−1(−Y/U ), (11a)

πφ0 = πφS − (φN − φS) cos−1(−
√

2X/V ), (11b)

z0 = z − V , (11c)

where U 2 = Y 2 + Z 2, V 2 = 2X 2 + 4c2U 2, and the inverse
cosines are principal values. Equation (11) may be inverted to
express (X, Y , Z) in terms of (λ0, φ0, z0). It follows that (λ0,
φ0, z0) may be used as dependent variables in eq. (9) in place of
(X, Y , Z). With this transformation of variables, the coordinates
of state space are (λ0, φ0, z0), and state space and geographical
space become identical. The attractor becomes a fixed structure
in the space that contains the atmosphere, while its horizontal
projection becomes a geographical map of all points (λ0, φ0)
that the low centre may occupy, and a horizontal cross-section
becomes a map of the possible locations of the low when the
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Fig. 2. (a) Enlargement of a portion of the cross-section in Fig. 1c. Horizontal and vertical scales are longitude and latitude in degrees. (b)
Perspective view of nine horizontal cross sections of attractor of eq. (9) with conditions of Fig. 1. Numbers at left are heights of surfaces in metres.

central height assumes a pre-specified value. From the perspec-
tive of the synoptic meteorologist, the location and intensity of
the low are all that need be observed in this truncated atmosphere
before a forecast can be completed.

In Figs 1c and 1d we see these maps—a cross-section with
z0 = 4984 m, the central height of the low in Fig. 1a, pro-
duced from an extended run by interpolating to the intersec-
tions of the orbit with the surface, and then the projection. The
lowest latitudes are avoided altogether, while, when z0 = 4984
m, the higher latitudes are avoided at most longitudes, and the
general areas where the low does occur seem to be filled with
gaps.

Figure 2 examines the attractor more intensively and more
extensively. Figure 2a is a 10-fold enlargement of the western end
of one piece of the cross-section in Fig. 1c. We see many quasi-
parallel curves with sometimes narrow and sometimes wide gaps
separating them. It appears, for example, that at 57 N when
z0 = 4984 m, the low centre can lie close to 66 E or 68 E, but
carefully avoids 67 E—a finding that may seem counterintuitive.
The figure in fact displays a rather typical strange attractor—an
attractor containing an infinite set of points, lines, surfaces or
higher-dimensional manifolds with finite gaps between any two
members of the set.

The general appearance of the complete attractor may be fairly
well deduced from Fig. 2b, a perspective view of nine horizontal
cross-sections at intervals of 40 m. Many features can be traced
from one section to the next, so that what appear as lines in
Fig. 2a are revealed as surfaces. The attractor lies entirely be-

tween 4840 m and 5230 m. At 5040 m, the most frequently
visited level of those examined, it extends around the globe, and
what look like separate attractors in some of the other sections
are seen to be separate upward or downward extensions from
5040 m. The seemingly blurred spots, particularly noticeable in
the upper left, are true features; they occur where the orbits are
nearly horizontal, and crossings are rather infrequent.

4. Concluding remarks

How common or rare are systems where state space and physical
space are one and the same? Presumably other three-variable sys-
tems that produce synoptic centres or other identifiable perma-
nent features may be treated similarly to eq. (9). A three-variable
barotropic model should make a good candidate.

It is even possible to vary the procedure for reducing eqs.
(2) and (3), yielding a system formally identical to eq. (9) but
with a different value of c in the accompanying stream function.
Equations (2) and (3) possess two global quadratic invariants—
energy and potential enstrophy—and the sum X2 + Y2 + Z2,
conserved by the quadratic terms in eq. (9), represents a linear
combination of these invariants. With a new constant replacing
f 2 in eqs. (4) or (5), but not both, X2 + Y2 + Z2 can be made
proportional to total energy—a useful property in some potential
applications.

As for possible systems where the variables are coordinates
of a tangible object moving through space instead of a point
where something occurs, the equations would have to describe
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the velocity of the object in terms of its position. Such a situation
seems uncommon. A balloon drifting with the wind can behave
in this manner, but only if the wind field does not vary with time.
We would welcome suggestions for other possibilities.

Regarding other models where a forecast can be based entirely
on the position and strength of the synoptic centres, there should
be six-variable systems where one low centre and one high centre
will suffice. Models with even more variables might be good
candidates, but, once a model is realistic enough to permit some
lows and highs to die out and others to be born, the forecasting
procedure breaks down.

Finally, for some specialists the most useful contribution of
this work may be the description of a procedure for reducing
models to one explicit level without sacrificing their baroclinic
nature. Other readers may find the geographical interpretation of
the attractors more revealing.
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