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ABSTRACT
Because of the errors entailed in observing certain systems, the states that one might believe to be the true states form an
ensemble, as do the states obtained from these states by forward extrapolation in time. We identify the uncertainty with
the root-mean-square distance in state space of the ensemble members from their mean. We enumerate the properties
of a special three-variable system that behaves chaotically, and we use the system to evaluate a logarithmic measure
« (11, to) of the ratio of the uncertainty at a ‘verifying time’ 7 to that at an ‘observing time’ #¢. With 7o and 7| as
coordinates, we construct diagrams displaying contours of « (¢1, #¢). We find that the details of the diagrams tend to line
up in the horizontal and vertical directions, rather than parallel to the diagonal where ¢ | = t, as they would if « (¢, 7o)
depended mainly on the forecast range 71 — 7. The implication is that states at certain times 7| are highly predictable,
ie. o (t1,tp) <a(t,tp)if t occurs somewhat before or after # 1, and that states at certain times 7 are highly predictive,
ie.a(ty,tp) <o (t,t)if t occurs somewhat before or after 7. When observations at times preceding ¢ are combined
with those at 7, the greatest resulting reductions in uncertainty at 71 occur when the states at the additional times are

highly predictive. We speculate as to the applicability of these findings to larger systems.

1. Introduction

Speculations that the atmosphere and its surroundings form a
chaotic dynamical system — one where future states depend sen-
sitively on their antecedents — were abundant long before any
reasonably convincing quantitative demonstrations could be of-
fered. Nearly a century ago, in an essay concerning chance,
Poincaré (1912) chose the atmosphere as one example of a sys-
tem whose future states are in doubt. Much later, but still more
than half a century ago, the implications of chaos for weather
forecasting were aptly described by Eady (1951), who, after ex-
pressing the opinion that ‘instability is a normal [his italics]
feature of atmospheric motion,” stated the following:

The practical significance of a demonstration that the motion is unstable
is clear, for in practice, however good our network of observations may
be, the initial state of motion is never given precisely and we never
know what small perturbations may exist below a certain margin of
error. Because the perturbation may grow at an exponential rate, the
margin of error in the forecast (final) state will grow exponentially as the
period of the forecast is increased, and this possible error is unavoidable
whatever our method of forecasting. After a limited time interval, which,
as we shall see, can be roughly estimated, the possible error will become
so large as to make the forecast valueless. In other words, the set of
all possible future developments consistent with our initial data is a
divergent set and any direct computation will simply pick out, arbitrarily,
one member of the set.
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Eady was preparing his article just as the first computer-
produced numerical integration to originate from an observed
atmospheric state was being performed (Charney et al., 1950).
It would be another five years before Phillips (1956) would con-
struct the first GCM, and more than a decade before Leith, Mintz,
and Smagorinsky would use GCMs to estimate the rate of diver-
gence of the possible future developments (Charney et al., 1966).
In the subsequent years, GCMs have evolved from general-
circulation to global-circulation models, extending through the
tropics, and from systems of a few hundred or a few thousand or-
dinary differential equations to some with several million. Here,
bigger has meant better, if the quality of the forecasts produced
is a valid measure. Systems that appear to be ever closer approx-
imations to the real atmosphere continue to exhibit chaos, and
they provide strong evidence favoring Eady’s claim.

Meanwhile, with an eye toward a deeper understanding of
certain properties of GCMs and more general chaotic systems,
some investigators were making GCMs systematically smaller,
most often by lowering the spatial resolution. Thus, with a
28-variable system we were able to examine changes in pre-
dictability that accompanied changes in the synoptic situation
(Lorenz, 1965). More recently, we managed to reduce the sys-
tem to a set of three ordinary differential equations (Lorenz,
1984, hereafter L84). While some might take exception to our
description of the system as a GCM, there is no doubt as to its
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chaotic behavior. The bulk of the present study is based on the
behavior of this system, as revealed by numerical integrations.

Following standard practice in treating dynamical systems,
we shall introduce, for any system, a state space or phase space
—a multidimensional Euclidean space whose coordinates are the
dependent variables of the system. Often we must first decide
what quantities to use as dependent variables; in a global atmo-
spheric model, for example, should we choose grid-point val-
ues or spherical-harmonic amplitudes? The choice having been
made, an instantaneous state of the system becomes a point in
state space, while a state varying through time becomes an or-
bit. A collection of states may become a sphere or some other
object, which will be continually deformed as each point of the
collection traverses its orbit. What might be called the climate
of the system — the set of states that will be approached again
and again by all or a large number of orbits, as opposed to those
that will be permanently avoided — becomes the attractor, or the
set of attractors.

Often we must distinguish between the existence of a state
and our knowledge of the state. We can, when we wish, specify
the state of a mathematically defined system precisely. A state of
a real physical system such as the atmosphere, say the weather
pattern 24 h ago, may also be a precisely defined entity, but at
best we can know it to be one member of an infinite ensemble. As
a measure of uncertainty in knowing the state, we shall choose
the root-mean-square distance, in state space, of the points of the
ensemble from their centroid, although other measures are pos-
sible and often preferable. Our concern will be with the growth
or decay of uncertainty as each point in the ensemble advances
along its orbit.

The scalar quantity most often associated with the growth
of uncertainty is the leading Lyapunov exponent X, which, for
a chaotic system, is positive. The Lyapunov exponents Ay, ...,
Ak, where K is the dimension of the state space, are long-term,
actually infinite-term, properties of the system, and a number
of different processes converge to them. The long-term average
growth rate of the length of an infinitesimal line segment in phase
space is A1, i.e. if D(¢) is the length acquired by the segment at
time ¢, the limit as t — oo of (1/¢) log[D(¢)/D(0)] is A;. If in-
stead D(¢) is the area of an infinitesimal parallelogram, the above
limit is A; + A,. In general, two adjacent sides of the parallelo-
gram will each grow as exp (1 t), but the angle between them
will decay as exp[—(A1 — A2)f]. The sum Ay + - - - + Ay is simi-
larly related to the growth of the volume of a k-dimensional box.
If k = K, the time-dependent vector to which all sides of the box
ultimately become nearly parallel is the leading Lyapunov vector
L;. The exponents may also be described in terms of long-term
growth rates of the axes of an infinitesimal ellipsoid, but the for-
mer description leads to a more easily formulated computational
algorithm, which we shall presently use to produce Fig. 1.

In applications, A; is often little more than an order-of-
magnitude estimate of the quantity in which we are interested.
If, for example, we are dealing with a true state and an observed
state that approximates it, either state may be viewed as the other
plus a small perturbation, and, for a while at least, the growth
rate of the uncertainty — the magnitude of the perturbation — will
depend upon the form of the perturbation. It can also depend
strongly upon the true state itself, and sometimes upon a regime
of behavior in which the true state is occurring (see Palmer,
1988). We might try to remove this dependency by averaging
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Fig 1. Variations of the Lyapunov exponents
A1, A2, A3 of egs. (1) (vertical scale) as G

-1.0 (horizontal scale) varies from 0.98 to 1.38.
- - Points are plotted whenever G is a multiple
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1.0 1.1 1.2 1.3 G 10-yr sample.
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over an ensemble of perturbations, or an ensemble of true states,
or both, but this can introduce new complications.

It has been pointed out on numerous occasions (e.g. Lacarra
and Talagrand, 1988; Farrell, 1990; Trevisan, 1993) that the early
growth rate of small uncertainties often exceeds a subsequent
quasi-exponential rate; that this excess is systematic can become
apparent if averaging is performed. Moreover, in most applica-
tions the initial uncertainties are not infinitesimal, and may not
even qualify as small. Because the various ensemble members
will ultimately be confined to the attractor, the uncertainty is lim-
ited by the diameter of the attractor, and the growth must slacken
and eventually cease. ‘Saturation’ will then have occurred. We
thus recognize three possible stages in the growth of uncertain-
ties: an early stage, often with rapid growth; a mature stage,
possibly with quasi-exponential growth; and a late stage, when
saturation is imminent. With a realistically large initial uncer-
tainty, it is quite possible that the slackening will commence just
as the early rapid growth is ending, and the mature stage will be
virtually absent.

The purpose of this paper is to examine in detail the manner in
which step-by-step changes in the uncertainty at various stages
of growth depend upon the succession of true states. We shall
do this in the context of the three-variable model of L84, where
the true state can visit most portions of the attractor during a
relatively short time interval. We shall then speculate as to the
applicability of the results to larger systems.

2. Documentation of the model

We feel that it is important, whenever speculations as to the
behavior of a system are to be influenced by computations with
a model, to have a thorough documentation of the model, which
at the least should reveal the obvious ways in which the model
resembles or fails to resemble the system. This would appear
especially true when ostensibly the model differs considerably
from the system, perhaps by being much simpler in structure. As
already mentioned, the model in this case will be that introduced
in L84 as the ‘littlest GCM’.

Many of its interesting properties have by now been well doc-
umented (e.g. Lorenz, 1990; Trevisan, 1993; Aires and Rossow
2003), and here we shall simply note those that are relevant to
the later sections of this work. The equations are

dX/dt = —Y* - Z*> —aX +aF, (la)
dy/dt = XY —bXZ - Y + G, (1b)
dZ/dt =bXY + XZ — Z, (1c)

where ¢ is time. In their meteorological contexts, X represents
the strength of a uniform westerly current (easterly when X <
0), identified geostrophically with a poleward temperature de-
crease, and driven by the forcing F, while Y and Z represent the
components, in phase and in quadrature with the forcing G, of a
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large-scale superposed wave, assumed implicitly to tilt westward
with increasing elevation. The linear terms represent thermal and
mechanical damping, and the absence of coefficients for ¥ and
Z indicates that the time unit is the damping time for the wave,
assumed to equal 5 d. The quadratic terms containing b represent
a simple translation of the waves by the zonal current, while the
remaining quadratic terms describe exchanges of total energy,
proportional to X> + Y2 + Z2, between the zonal flow and the
waves. We shall frequently denote the point (X, Y, Z) in state
space by the vector X. In solving eqgs. (1) numerically we shall
invariably use the ‘standard’ fourth-order Runge—Kutta scheme
with a time increment of 0.05 units, or 6 h.

An uncertainty at a time ¢( may be thought of as the mag-
nitude of a perturbation X upon a basic state X. If we let W =
X + x, we can determine x at a later time 7, by numerically
integrating eqs. (1) from the initial states X(¢() and W(z,), and
then subtracting X(7,) from W(z,). Alternatively, if x is small —
strictly speaking infinitesimal — we can derive from egs. (1) the
‘perturbation’ equations

dx/dt = —ax —2Yy —2Zz, (2a)
dy/dt =Y —bZ)x + (X — 1)y — bXz, (2b)
dz/dt = (bY + Z)x + bXy + (X — 1)z, (2¢)

for the components x, y, and z of x. Because the coefficients in
egs. (2) depend upon X, to integrate eqs. (2) we must integrate
egs. (1) and (2) as a system with six variables.

In either event, if X is small, the equations define x(¢) as A
(t1, to)x(to). Here, the vector x is treated as a matrix with one
column, and A is a square matrix depending upon the values of
X between ¢ and ¢ | but independent of x. The matrix A is easily
determined, because each column is the vector x(¢;) obtained
when X(7) is a unit vector directed along a coordinate axis.

We shall confine our attention to the well-studied values a =
0.25,b =4.0, and F = 8.0, and all further references to eqs. (1)
or (2) will imply that these values have been incorporated. With
these values, we found in L84 that chaos occurred with G = 1.0,
but not with the smaller values of G examined.

Figure 1 shows estimates of the three Lyapunov exponents,
for values of G from 0.98 to 1.38, at intervals of 0.00005. For
each value of G we have computed the exponents by making a
basic run and three perturbed runs, which reveal the behavior of
the three sides of an infinitesimal box, each run extending for
10 yr. We have then used the final state in the basic run as the
initial state in the basic run for the succeeding value of G. Because
the values of G are so closely spaced, the plotted values of each
exponent appear to be organized into bands, with several breaks
in the upper and lower bands. The finite vertical thickness of the
bands reflects the sampling error; for a short range of values of G
we produced segments of bands about half as wide by extending
the runs to 40 yr instead of 10.
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Positive values of A, implying chaos, occupy much of the
range of G, but a number of periodic windows — continua where
chaos is absent — are evident, the most conspicuous extending
from 1.186 to 1.217. A few additional computations with higher
resolution have revealed still more windows, and the true number
is presumably infinite. Except when all solutions approach a fixed
point, which happens when G exceeds 1.367, one exponent must
equal zero. This corresponds to a perturbation directed along the
orbit, where the perturbed solution must continue to equal the
basic one displaced by a fixed time, and long-term growth or
decay cannot occur. The prominent zero line was not drawn as a
reference line; it was formed by the computed values of A, in the
chaotic regions and A, in the windows. The frequently occurring
values of A; between 0.22 and 0.23 imply a doubling time of
about 15 d for small errors — very slow by real atmospheric
standards. The slow growth rate may result from the very coarse
horizontal resolution of the model, but may also occur simply
because the model is not the real atmosphere.

On the basis of Fig. 1 we have chosen the value G = 1.23
for the chaotic system to be intensively studied; hereafter G will
always equal 1.23, unless it is otherwise stated. Figure 2 shows
the intersection of the attractor of the system with the plane
X = 1.0, as approximated by 100 000 consecutive intersections
of a single orbit with the plane. Its structure, with an infinite
number of quasi-parallel curves separated by sometimes narrow

and sometimes wide gaps, is typical of low-order chaos. Inter-
sections with other planes show similar structure. Their finite
diameters place a limit upon the ultimate size of uncertainties.

Figure 3 shows a time series for X for a two-year period,
displayed as two 1-yr segments. To construct the figure we first
designated a time as ‘day —300’, and let the ‘true’ state at this
time be given by X = 1.0, Y = 0.0, and Z = —0.75, a point on or
nearly on the attractor, as indicated by Fig. 2. We then integrated
forward for 300 d to ‘day 0’. The series shown begins at day 0.

Like the attractor, the series is typical of low-order chaos;
there are no exact repetitions, but certain distinctive patterns
occur frequently, while other conceivable ones are never found.
Strong westerlies lasting a week or so seem to appear about once
a month, while easterlies appear less often. The three months
following day 156 nearly repeat those following day 34, while
the four months after day 595 repeat equally closely those after
day 433, but no extended portion of the second year superposes
well on any part of the first, and, without additional output, one
might wonder whether the two segments were produced by the
same equations. The principal fluctuations of Y and Z, not shown,
are due largely to translation of the waves, and tend to exhibit
higher frequencies than those of X.

Figure 4 presents four estimates of the average behavior of ini-
tially small uncertainties. The computation procedure involves
an ensemble of runs. For the first run only, not counted in the
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Fig 2. Intersection of the attractor of eqs. (1)
when G = 1.23 with the plane X = 1.0.
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Fig 3. A 2-yr time series of X (vertical scales) satisfying eqs. (1) with
G = 1.23, displayed as two 1-yr segments. Horizontal scales are times
in days.

ensemble, we choose a basic initial state X(¢o) and two arbi-
trary unit perturbation vectors X; (fo) and X»(#¢), which we call a
‘Lyapunov perturbation’ and an ‘isotropic perturbation’. We let
X;(to) = X(t9) + ex;(to) (i =1, 2), where ¢ is a chosen small
quantity. We then integrate each state until time ¢, subtracting
X(#) from X;(¢) at each time 7 to obtain ¢x;(¢) and its magni-
tude ev;(¢). By time 7, X, is presumably nearly parallel to L,
because its component parallel to L; grows while its other com-
ponents do not. For initial values of X and x; in each remaining
run, we choose the final values of X and x; /v, in the preceding
run, while choosing each component of the new x, randomly
from an isotropic Gaussian distribution, and then we repeat the
procedure. Finally, the uncertainties v, and ev, are averaged
geometrically at each time over the ensemble of runs to produce
the curves labeled GL (Lyapunov) and GI (isotropic), while the
curves labeled AL and Al are root-mean-square values, where
the averaging is arithmetic.

For Fig. 4, logpe = —10, the ensemble size is 1000, and ¢, —
to = 8 months. The inset at the lower right magnifies the first 10
d. Only in curve GL is the growth rate constant, and in agreement
with A;. In curve GI, the same growth rate becomes established,
but only after a rapid early growth that has increased the uncer-
tainty fourfold; there is no subsequent compensation. Arithmetic
averages are necessarily larger than geometric averages when the
quantities being averaged are not all equal, but it is apparent that
they continue to grow more rapidly.

It is interesting to compare Fig. 4 with Fig. 5, which is con-
structed in the same manner, but with G = 1.21, when the system
is not chaotic. The new curve GL is (nearly) horizontal, as ex-
pected, but the antics of the other curves might not have been
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Fig 4. Estimates of average amplification of initially small
uncertainties when two types of perturbation are superposed on each of
1000 basic states, in a system governed by solutions of egs. (1) with

G = 1.23. The horizontal scale is days following initial state, and the
vertical scale is base-10 logarithm of uncertainty. ‘G’ denotes
geometric average, ‘A’ denotes arithmetic average, ‘L’ indicates that
initial ensemble members are parallel to the leading Lyapunov
exponent, ‘I’ indicates that the initial ensemble is isotropic. The inset at
the lower right is a four-times enlargement of the first 10 d.
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Fig 5. The same as Fig. 4, but with G = 1.21. Note the stretched
vertical scale.

anticipated. All of them show rapid early growth, which is thus
clearly revealed as not necessarily indicating chaos. The curve
AL has the 78-d periodicity of the system, and touches GL once
every period, when the quantities being averaged are all the same.
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Fig 6. As in Fig. 4, with G = 1.23, but with 1000 perturbations of
either type superposed on a single basic state.

The curves GI and Al appear to have a doubled period, but, well
beyond the range of the figure, GI flattens out, nearly an order
of magnitude above GL, while Al acquires the 78-d periodicity.

The arithmetic averaging in Fig. 4 reduces the long-term dou-
bling time to about 9 d — still rather slow — but two doublings
occur in the first 5 d. Historically, this rapid early growth, not
recognized then as being confined to a few days, was a factor in
our decision to accept the model as a GCM.

Recall that in constructing Fig. 4 we superposed one Lyapunov
and one isotropic perturbation on each of 1000 basic states. By
contrast, in Fig. 6 we have superposed 1000 perturbations of ei-
ther kind on the same basic state. After the first few weeks, when
the mature stage seems to have set in, the curves closely parallel
each other, suggesting that the spread in Fig. 4 resulted from
the large number of basic states rather than perturbations. The
curves AL and GL coincide, because the quantities being aver-
aged, derived from the vector L, are the same for the different
ensemble members.

The total growth of uncertainty is comparable to that in
Fig. 4, but, during the early weeks of the mature stage, the growth
is more rapid, with doublings requiring about 4 d. After day
80, however, net growth ceases for two months, and then, after
a brief resumption, ceases again. For the final month, the 4-d
doubling reappears. The uncertainty also undergoes fluctuations
with periods comparable to a week, often by a factor of 2 or 3
but sometimes by nearly an order of magnitude.

Other choices of the basic state produce different curves, some
without the month-long interruptions of growth, but all with the
shorter-period fluctuations. It is features that are characteristic
of Fig. 6 but not present in Fig. 4 that will occupy the bulk of
our subsequent attention.

. LORENZ
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Fig 7. Base-10 logarithmic measure « (¢ 1, to) of ratio of uncertainty at
time ¢ (vertical scale, in d) to uncertainty at time #( (horizontal scale,
in d), when size-20 isotropic ensembles with uncertainty ¢ = 0.00001
are introduced at time 7. Values are computed at 6-h intervals of #¢
and 7. The number indicating the value of o on the contour has been
placed on the high side of the contour.
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Fig 8. The same as Fig. 7, but with the computing procedure using
eq. (6) (see text).

3. Predictability and predictivity

Figures 7 and 8 show two triangular arrays that are much alike;
the main difference is that Fig. 7 has a decidedly fuzzier appear-
ance. In each figure the coordinates are times 7 and 7, measured
in days, each extending from a time T (day 0) to 7'y (day 180).
The curves, or fuzzy approximations to them, are contours, at
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unit intervals, of the base-10 logarithm «( 1, 7o) of the ratio of the
uncertainty at ¢ to that at #¢, when the uncertainty, presently to
be more precisely defined, results from imperfect observations
at to. In a meteorological context we are examining, for each
time ¢, the quality of forecasts for each later time ¢, when the
forecasts are based only on observations at ¢, and we should
note that the uncertainty at ¢, results only from that at z¢, i.e. we
are assuming ‘perfect model” forecasts.

The number (0—4) adjacent to a contour has always been
placed on the high side of the contour; thus, for example, the
number 2’ is located where o slightly exceeds 2.0, meaning
that the uncertainty has amplified more than 100 times since .
The ‘2’ contour was actually formed by placing a dot at every
point (¢, 1) where « lies between 2.0 and 2.1, at 6-h intervals
of 1y and ¢,; the other contours were produced similarly. Thus,
slow variations of o may be recognized by wide contours, and
very-small-scale structure by fuzziness.

To define «, we assume that a particular system governed by
egs. (1) possesses, at any ‘observing time’ #, a true state U(zy),
and that observing U entails an error of expected magnitude ¢, as
a consequence of which an observer will observe the state to be
V(to). We assume that the error is systematic rather than random,
so that different observers using the available observing proce-
dure will make essentially the same error; otherwise the error
could be considerably reduced by averaging the observations.

When we represent states by points in a three-dimensional
state space, the different states Wy, W, ... that the observer,
knowing that V involves an expected error, might believe to be
the true state U will form an ensemble M (z(), and their expected
distance from V will be ¢. For definiteness we shall assume,
not too realistically, that the members of M are distributed uni-
formly through a solid sphere S(¢,), i.e. a sphere plus its interior,
centered at V, which must have radius £4/5/3 to make the root-
mean-square distance from V equal to ¢, while V is a single point
in a solid sphere of similar radius centered at U. The situation at
time ? is illustrated schematically by the left portion of Fig. 9a,
which shows U, V, and three sample points W, all contained
in S.

As time advances to an arbitrary ‘verifying time’ 7, the points
in S progress along their orbits. The situation is shown in the right
portion of Fig. 9a. The shape of S (¢,) will be ellipsoidal if the
uncertainty is small, but may become snake-like when it becomes
large.

Although V(ty) is a single point determined by U(z() and the
observing procedure, we know in advance of the observation only
the expected distance € of V from U. Hence, to our knowledge, V
is simply one member of an ensemble, whichis like M (z() except
that it is centered at U, while the ensemble M is one member of
an ensemble M*(t,) of ensembles, and S is one member of an
ensemble of solid spheres, all contained in a solid sphere S*(#()
having twice the radius of S, and centered at U. As time advances,
M*(to) and S*(¢) are carried into M*(¢ ) and S*(¢ ;). A complete
schematic diagram would entail an infinite ensemble of diagrams
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orbit of U

to ty

Fig 9. (a) Schematic diagram containing the true state U, the observed
state V, shown connected to U, the solid sphere or distorted solid
sphere S centered at V, and three sample states W that the observer
might believe to be the true state U, shown connected to V, and
contained in S, at time 7o and at later time 7. (b) Superposition of

Fig. 9a (without labels on U, V, and W) and two similar diagrams, each
with same state U but different conceivable observed states V. The
solid sphere S* contains states U, V, W and solid spheres S.

like Fig. 9a; in Fig. 9b we offer an ensemble of size 3, and include
S*(to) and S*(¢1).

We define the uncertainty s(¢,), which depends also upon
to and ¢, as the root-mean-square distance of all points Wy,
W,,...in M*(t;), i.e. in all ensembles M(t), from their com-
bined centroid { W}. Here the braces denote an average over M*.
Thus, if x denotes W — {W},

s2(t) = tr {x(t)x" (1)} . 3)

If the uncertainty is small, {W(z,)} is close to U(¢;) and, in any
case, {W(z)} = U(ty), while 52 (t) = 2¢2. Finally we let

a(ty, to) = logg[s(t1)/s(1o)]. “)

For Figs. 7 and 8, the base B is 10.

To produce Figs. 7 and 8, we note that, given U, a typical mem-
ber W of M* may be obtained by randomly selecting a point V
from a distribution that is uniform in a solid sphere of radius
e4/5/3, centered at U, and then randomly selecting W from a
similar distribution, centered at V. We first use egs. (1) to gener-
ate a sequence of true states U(¢), at 6-h intervals, beginning with
the state at day O used in constructing Fig. 3. Then, separately
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for each choice of observing time 7, from 7' to T ;, we select
K points V and their accompanying points W, in the manner
indicated above, to produce an ensemble of size K, intended to
approximate M*(t(). Again using eqs. (1) we advance each W
forward to each verifying time ¢ | from ¢ to 7', to obtain M*(t ),
and finally we evaluate s and then « from eqs. (3) and (4).

For Fig. 7, ¢ = 0.00001, and the ensemble has only 20 mem-
bers — a far cry from infinity. Figure 8 is identical to what we
would have obtained with a very large value of K, although the
procedure used to obtain it, to be described presently, is different.
We see that even the small ensemble of Fig. 7 captures most of
the visible details of Fig. 8.

Large ensembles can consume considerable computation
time, and the time may be greatly reduced if we assume that
¢ is small, so that eqgs. (2) apply and x; = A}y X,. Here X, x|,
and A |y denote x(#¢), X(¢1), and A(t 1, 1), respectively. It follows
from eq. (3) that

s7(t1) = tr (Ao {xoxg } ATy) - (5)

Because xo has been chosen randomly and isotropically,
{xox}} = 0’1, where 02 = 2¢2 /3 is the variance of an individual
component of xo. Hence, s%(t1) = otr(A 0A}), and, because tr
@ =3,

1
alt, o) = 5 log, [tr(A10AT,)/3]- (6)

Equation (6) was used to produce Fig. 8, with its absence of
fuzziness.

Although Figs. 7 and 8 readily reveal where o is small or
large, our primary interest is in rather small-scale features, which
are not too well resolved with the present contour spacing.
Figure 10 is constructed like Fig. 8, except that the logarith-
mic base B is 2. We have not attempted to number the now

180

t1

60

0 L
0 60 120 180

to

Fig 10. The same as Fig. 8, but for a base-2 logarithmic measure.

closely spaced contours; approximate values are readily found
by comparing Fig. 8.

If a(ty, 1) depended only upon the forecast range ¢ — ¢, the
contours would be parallel to the main diagonal. Although there
is some tendency for the contours nearest the diagonal to follow
it, the most prominent property of Fig. 10 is the tendency for the
smaller features, and especially the closed centers, to line up in
two directions: the vertical and the horizontal. The tendency for
a(ty, to) to be abnormally high throughout a column, notably
near days 13 and 76, but also near days 27 and 94, and low,
especially near day 48 but also near days 6 and 86, illustrates
the well-known dependence of the subsequent growth on the
state when the uncertainty is introduced. Likewise, the equally
evident tendency for « to be high in certain rows, notably near
days 55, 83, and 168, but also near days 122, 145, and others,
and low, especially near day 65 but also near days 50, 114, and
others, illustrates the possibly less familiar dependence of the
growth rate on the state when the uncertainty is occurring. In a
meteorological context, we can describe the horizontal lining up
by saying that some states, such as those near day 65, tend to be
more predictable than others. Likewise, the vertical lining up im-
plies that some states, like those near day 48, are more predictive
than others; they are better predictors. The most predictable and
also the least predictable states are in general neither the most
nor the least predictive.

Figure 11 is constructed like Fig. 7, with B = 10, but with the
initial uncertainty no longer small; ¢ = 0.05, about 5 percent of
the somewhat indefinite saturation value. The ensemble size is
100. The ‘1’ contour shares many details with the one in Fig. 7,
but farther from the diagonal the final stage of growth has been
entered and saturation has been reached, and ‘2°, ‘3’, and ‘4’
contours no longer appear.

180; T T T T T T T T T T T T T T

to

Fig 11. The same as Fig. 7, but with ¢ = 0.05, and with size-100
ensembles.
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Fig 12. The same as Fig. 8, but for B(z1, to) (see text for definition),
and for odd-integer values of base-2 logarithm.

A close look at the columns and rows in Fig. 10 suggests that,
away from the diagonal, and so presumably in the mature stage
of growth, «(z, o) may be closely approximated by the sum of a
function of ¢( and a function of 7 ; the two functions bear no ob-
vious relation. If this is the case, subtracting one column, or one
row, of a(t, to) from the field of a(z,, ¢() should produce con-
tours that are mainly vertically, or horizontally, oriented, while
subtracting one column and one row should produce a field that
is nearly uniform, away from the diagonal. We therefore let

B, 1) = a(ty, to) — alty, To) — a(Ty, ty) + a(Ty, Tp) @)

(we could use times other than 7'y and 7';), and in Fig. 12 we
show odd-numbered contours of (¢, t¢), with B = 2, for the
same ranges of 7, and ¢ as in Fig. 8. The use of odd contours
serves to place the upper-left corner, where g = 0, midway be-
tween contours. As expected, there is a large contiguous area
free of contours, where —1 < § < 1, but, perhaps less expected,
the contours nearer the diagonal, where f is not nearly 0, have a
decidedly step-like arrangement. On the diagonal, 8 appears to
be always negative, although often small.

A plausible assumption is that the mature stage sets in when
most perturbations in the ensemble have become nearly parallel
to the leading Lyapunov vector L. In a region of a diagram like
Fig. 8, if this has happened, the increases or decreases in (¢, f)
as t; moves up a column to a time ¢ will then be independent of
the column, i.e. independent of 7, and

a(t, to) — a(ty, to) = ®(1, 1) ()

for some function ®. If this region extends to the top of the
diagram, where t = T |, the first and third terms on the right of
eq. (7) will sum to —®(Ty, t;), while, if it also extends to the
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left edge, where 1y = Ty, the second and fourth terms will sum
to &(T'y, ty), and B(t, to) will vanish.

Our assumption therefore explains the large contiguous area
free of contours in Fig. 12. An explanation for the step-like struc-
ture is more elusive.

4. Impact of past observations

Throughout our discussion we have been implying that if there
is no basis for saying which members of a hypothetical set of
nearly equal observed states are more like the true present state,
there can be no basis for saying which of a set of perhaps widely
differing predicted states will resemble a true future state. Often,
however, there is a basis for saying which observed present states
are more like the true state. This basis is the availability of past
observations.

Consider again, but with new subscripts attached to some of
the symbols, the scenario that led to the construction of Fig. 9.
At time t(; an observer will observe the true state U(¢(;) to be
Vi(to1), and will know that U is a point in a solid sphere S (z;)
centered at V, but will not know which point, and hence at a later
time ¢, will know simply that U is a point in the distorted solid
sphere S(7(2), shown as an ellipse in Fig. 9a. Assume now that
t¢ is an additional observing time rather than a verifying time.
The observer will observe U(¢(,) to be V,(¢(,), and will know
that U is a point in a solid sphere S,(7(;) centered at V,, again
without knowing which point. Hence, U will be assumed to lie
in the intersection of §; and §,. This intersection is not empty,
because it contains U(# (), but it may be much smaller than S or
S,. If there are still more observing times s, . . ., fon, the true
state U(#oy) will be known to lie within the possibly very small
intersection of Sy (fgy), - . . » Sy(Zown ), and the uncertainty may be
very small. Figure 13, constructed for N = 3, and including a
single verifying time ¢, illustrates the situation.

As in defining s and «, we treat the sequence of observa-
tions Vq, ..., Vy as one member of an ensemble of conceivable
sequences. The sequence of solid spheres Sy, ..., Sy that are
centered at V, ..., Vy then becomes one member of an ensem-
ble of sequences, and the intersection of S;(fon), ..., Sn(ton)
becomes one member of an ensemble M*(¢(y) of conceivable
intersections. Analogously to eq. (3), we define the uncertainty
sy(t1), for times ¢, following ¢y, as the root-mean-square dis-
tance, from their combined centroid, of all the points W in all
the intersections comprising M*(z1).

Just as we evaluated s by choosing a point W randomly from
each member of an ensemble of solid spheres, so effectively we
evaluate sy by choosing a point W randomly from each member
of an ensemble of intersections of distorted solid spheres. Our
procedure for accomplishing this consists of randomly selecting
points V(#¢1), ..., Vn(ton), after having established a sequence
of true states U(7). We then randomly select a point W(z(;) from
the solid sphere S(7¢;) centered at V(o) (see Fig. 13), and
integrate eqs. (1) to obtain W(¢(;), which will lie in §(¢¢y). If



10 E. N. LORENZ

to 1o 2
Fig 13. Schematic diagram like Fig. 9a, with true states U (not labeled)
and observed states V1, V,, V3 determining solids spheres S1, Sz, S3
at observing times 791, 702, 103, respectively, and states and distorted
solid spheres into which these are carried at times ¢y, o3, and
verifying time 7. Shaded areas are regions common to S| and S, at
top and common to S, S», S3 atro3 and 7.

W(t ;) does not also lie in S,(7(;) (and hence in the shaded area
at t(, in Fig. 13), we discard W and select another point W(z(, ),
repeating until we have made a selection that makes W(z,) lie
in S»(2¢2). We then integrate eqgs. (1) again to obtain W(z¢3), and
again discard W if W(z(3) does not lie in S3(#¢3) (and hence in
the shaded area at #¢3). When we have finally produced a point
W(toy) that lies in each of S(toy), ..., Sy(fon), it will be the
first member of M*(toy). We repeat, with different choices of
Vi,..., Vy, until we have amassed a suitably large ensemble of
size K, from which we can compute sy after advancing to 7.

Our procedure is a variant of the ‘shadowing’ process, used to
find exact solutions of a system that agree as closely as possible
with a finite sequence of inexact values, such as might result from
observations (Farmer and Sidorowich, 1991). Hansen and Smith
(2001) have aptly illustrated the shadowing process by applying
it to a sequence of ‘observations’ of the two-dimensional (Ikeda,
1979) system.

It is evident that in considering how past observations might
affect present or future uncertainty, the number of combinations
of past times at which observations might be introduced is enor-
mous. To keep the paper reasonably concise, we shall treat a
single case, where N = 4, and where the times 7, f¢,, and
to3 precede the most recent observing time to4 by 15, 10, and
5 d, respectively. Instead of constructing a diagram of the ratio
sn(t1)/sn(tos), analogous to Fig. 7, we shall evaluate the ratio
s(t1)/sn(t1), i.e. the factor by which the uncertainty is reduced
when past observations are added. We let ¢ = 0.00001 and K =
100, and, in Fig. 14, rather than showing a complete distribution,
we simply place dots at those values of 7o(= #(4) and ¢, where
the reduction factor exceeds 8.0. Obtaining the 72 100 points W
used in the evaluations required 32 740 917 tries.

We see first that the locations of greatest reduction tend to be
organized into vertical bands. Comparison with Figs. 7, 8, or 10

0] 60 120 180
to

Fig 14. Ratio of S(¢1), the uncertainty at verifying time 71, when only
observing time is ¢, to S4(71), the uncertainty at #; when observing
times occur 15, 10, and 5 d before ¢ in addition to (. The shaded area
indicates where S(¢1)/S4(t1) exceeds 8.0. Computations were
performed with ¢ = 0.00001 and ensembles of size 100.

shows that the large reduction factors occur when the state 5,
10, or 15 d before ¢, is more predictive than the state at ¢(. The
widest band includes the days that follow the highly predictive
states near day 48 by 5-15 d, and also the days near day 76,
which have very low predictivity.

Secondly, we see that, except for about 3 d following day 60,
the shaded areas avoid the main diagonal where 7, = t(. Meteo-
rologically, the incorporation of past observations has improved
the forecasts more than the analyses, and the implication is that
the greatest improvements in forecasting may come from pro-
ducing analyses that are not simply more accurate per se, but are
also more suitable for forward extrapolation.

Further calculations have indicated that it is difficult to make
general statements about the number of past observations that
yield significant reductions of uncertainty at various forecast
ranges. It seems to be more important to add observations of
those states, sometimes in the immediate and sometimes in the
more distant past, that are especially predictive.

5. Discussion and conclusions

By superposing ensembles of perturbations on each of a suc-
cession of ‘true’ states of a simple system, we have obtained a
succession of ensembles of perturbed states, in which any per-
turbed state might be mistaken for the true one. We have then
examined the growth of uncertainty — the spread of the ensem-
ble members about their mean — as each member advances in
time. We have displayed our numerical findings in graphical
form.
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The most conspicuous feature of our diagrams is the strong
dependence of the magnitude of the uncertainty at any particular
time ¢4, if the uncertainty is isotropic and of specified magni-
tude at an earlier time ¢, upon the characteristics of the states at
times ¢( and 7, rather than simply on the elapsed time ¢, — ¢,.
There are special times 7, that are highly predictive — uncertain-
ties introduced then do not grow so rapidly as those introduced
somewhat earlier or later — and there are special times ¢, that are
highly predictable — uncertainties introduced previously do not
acquire the magnitude then that they reach somewhat earlier or
later. In terms of weather prediction, it appears that knowing a
state rather well at a highly predictive past time can contribute
more than knowing the state equally well at one or even a suc-
cession of more recent but less predictive times.

Perhaps the most interesting question concerns whether these
findings are true for many larger systems, and in particular for the
global atmosphere or the large GCMs, or whether we have merely
uncovered additional properties of our simple model. First of all,
we do not expect the total atmosphere to show as much day-to-
day variability in uncertainty as occurs in the model, simply be-
cause at any one time there are generally many synoptic systems,
which at short range may be varying nearly independently. One
system may be rapidly intensifying while another is decaying,
and the effects may partially cancel. Thus, a single atmospheric
state may act more like a medium-sized ensemble of states of
the model. Of course the analogy is imperfect, because at longer
range each synoptic system should influence all the others.

Viewed otherwise, a single realization of the model may act
more like a restricted region of the atmosphere, or a restricted
portion of a global model of the atmosphere — one about large
enough to contain a single major synoptic system. We would
expect the predictivity and the predictability within such a region
to vary significantly with the synoptic situation. The uncertainty
within a region with a rapidly intensifying system ought to act
rather differently from that in one where not much is happening.

How might we test these ideas with real data, or at least with
a fairly realistic GCM? The computational burden need not be a
problem, because we could use the output of routine ensemble
forecasts from an operational center. Further processing of the
output could enable us to construct diagrams in the manner of
Fig. 7, but with s and « evaluated over specified restricted regions.

Our findings seem relevant to the process of data assimilation,
which, as currently carried out, is computationally very expen-
sive. Might we do nearly as well by assimilating observations
only at the highly predictive times, at least in certain regions, in-
stead of at all times? It seems possible, but first we would require
a means of identifying the predictive states when they occur, if,
indeed there are states that are highly predictive in restricted re-
gions. Recourse to routine ensemble forecasts might again prove
advantageous.
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In any event, we feel that anyone who might seek analogous
results with state-of-the-art models would do well to work first
with small but not-too-small models, perhaps with a few hundred
variables and a dozen or more positive Lyapunov exponents.
Possibly our findings would not hold up, but we have an intuitive
feeling that they have wide applications.
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