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ABSTRACT
We describe various types of approximation which have
been introduced into the atmospheric equations to convert
them into models. These models may be treated as dynamical
systems. We examine one model in detail, and we enumerate
some atmospheric problems where a nonlinear—dynamical

approach might yield beneficial results.

1. Introduction——models

The laws which govern the atmosphere may be expressed as a system
of nonlinear equations. Deducing the typical behavior of the
atmosphere from these equations constitutes a challenging problem in
nonlinear dynamics. In attacking this problem one might expect to be
guided by some of the recent studies in dynamical-systems theory, and
one's first reaction to our title might be, "Why models of the
atmosphere? Why not the real thing?” To understand our preference for
models one needs to know what constitutes a dynamical system. One must
also take a close look at the real atmosphere, and at the nature of the
systems which comprise most atmospheric models.

We sometimes define a dynamical system as a finite system of
coupled deterministically formulated ordinary differential equations in
as many dependent variables [l]. Sometimes we relax the requirements
to allow a countably infinite number of equations. Sometimes our
systems consist of difference equations rather than differential
equations. Whatever modifications we may permit, our interest is
mainly in the long-term properties of typical solutions of the

equations, rather than in methods of finding the solutions. We expect

to encounter some special solutions, perhaps steady or periodic, whose




properties differ considerably from those of most other solutions, but
we expect that in some meaningful sense the special solutions will form
a set of measure zero, so that their properties will not contribute to
the overall average behavior.

What about the system of equations representing the laws which
govern the atmosphere? Among these laws are the fundamental laws of
hydrodynamics and thermodynamics, and we ordinarily take the attitude
that they are known. A few details still elude us; for example, we do
not know what determines just when a cloud, consisting of suspended
water droplets or ice crystals, will release its water in the form of
larger rain drops or snowflakes. Nevertheless, we are reasonably
confident that a system obeying the atmospheric equations, as we have
formulated them, will closely resemble the real atmosphere in its gross
features and in many of its details.

What are typical solutions of these equations like? The equations
are highly nonlinear, the most prominent nonlinear terms representing
the quadratically nonlinear process of advection——the transport of
momentum, heat, or moisture by the atmospheric motion. Any
time-dependent solutions which we may be skillful or fortunate enough
to discover by analytic procedures are likely to represent highly
specialized behavior. In principle we can obtain typical solutions to
any desired degree of approximation by numerical integration, although
the actual task may be impractical. However, if our assumption
regarding the exactness of the equations is correct, we can determine
the nature of the typical solutions by observing the behavior of the
atmosphere itself.

An outstanding characteristic of the atmosphere is the
simultaneous presence of features of many spatial and temporal scales,
and, in particular, many horizontal scales. There are globe-encircling
westerly-wind currents, culminating in the jet streams. There are
migratory vortices of subcontinental size, whose progression is
responsible for many of the day-to-day weather changes in middle
latitudes. There are tropical hurricanes, otherwise known as typhoons

or tropical cyclones, which are less extensive but equally vigorous.

There are intricately structured thunderstorms, comparable in size to




large mountains. There are fair-weather cumulus clouds, often no
larger than small hills. There are individual wind gusts, sometimes
only broad enough to sway a single tree at one moment. Our list is but
a sampling.

The above are not simply features which may be present in a
correct solution of the equations; they are features which must be
present in almost all time-dependent solutions. Any solution which
describes only the meanderings of a westerly current, or only the
progression of a chain of cyclonic and anticyclonic vortices, is a
special solution, belonging to the set of measure zero whose existence
we have noted.

It is evident that we lack the means for representing, even at a
single instant, global fields of wind, temperature, and moisture which
contain several thousand thunderstorms and hundreds of millions of
gusts. In short, we are limited by the speed and capacity of today's
most powerful computers, or of our brains, from determining typical
solutions of the most realistic atmospheric equations which we can
formulate. As a dynamical system the real atmosphere does not lend
itself to convenient investigation.

In view of these limitations, how is it possible for dynamic
meteorology, which was actually a well-established discipline long
before the advent of computers, to accomplish anything? Several lines
of pursuit are available.

We may use the equations, without actually solving them, to study
various atmospheric phenomena and processes. For example, we may
derive from the exact equations an expression for the time derivative
of the total energy of the vortices, and we may identify the various
terms in the expression with particular physical processes. If
adequate observational data are available, we may then evaluate the
long-term averages of the various terms, and learn which physical
processes play leading roles.

Alternatively, we may introduce various approximations. A common
procedure consists of linearizing the equations. The great advantage
of linear systems, aside from relative ease of solution, is

superposability of solutions. Thus, we may find solutions in which all



features have 3000-kilometer wave lengths, and others in which they all
have 3-kilometer wave lengths, and we should then be able to study
large—scale vortices and cumulus-cloud circulations independently of
one another. Of course, any direct influence of one feature on the
other will be suppressed.

With the advent of computers, numerical methods of solution have
become popular, although many dynamicists still find the earlier
procedures more appealing. As we have seen, essentially exact
numerical solutions of the exact equations are unattainable, and again
we must introduce various approximations, but there is no need to
remove the nonlinearity.

Along with the adoption of numerical techniques has come a change
of perspective. Whereas we were previously content to find approximate
solutions of the equations governing the atmosphere, we now take the
attitude that we are finding exact solutions of models of the
atmosphere. In short, our atmospheric models are simply systems of
equations, derived by introducing various approximations into the exact
equations, and arranged so as to be amenable to analytic or numerical
integration. When the model is to be handled numerically, we may
regard the finite-differencing scheme, and even the round—off
procedure, as a part of the model. This contrasts with the situation
in some fields, where models are often constructed simply by
postulating interrelations among various features.

Many types of approximation are in common use [2]. First, we may
simplify thbe physical nature of the atmosphere or its surroundings.

For example, we often ignore the presence of gaseous, liquid, and solid
water, and treat the atmosphere as an ideal gas. This step appears to
handle the largest-scale features reasonably well, although it would be
fatal in dealing with phenomena like tropical hurricanes, which depend
upon water for their origin and maintenance. Likewise, we often
replace the spherical surface of the earth by an infinite or bounded
plane. We represent the effect of the earth's rotation by a force——the
Coriolis force--which deflects the wind to the right in the northern

hemisphere and to the left in the southern. We assume that features

which would develop under such conditions are qualitatively like those



which do develop above a rotating spherical earth. The globe-
encircling westerly current, for example, would become rectilinear, but
its vertical and cross-latitude structure might remain virtually
unchanged. In conjunction with the latter simplification, we often
omit the earth's topographic features.

Ve may instead modify or eliminate certain physical processes. If
we replace the equation of vertical motion by the hydrostatic
approximation, which balances gravity against the vertical pressure }
force, and equates the pressure at a point to the weight of a column of |
air extending upward from that point, we obtain a considerably simpler |
system which is incapable of propagating sound waves, but is scarcely
distinguishable from the exact equatioms in its treatment of systems
larger than thunderstorms. 1f we also replace one equation of
horizontal motion by the geostrophic approximation, which balances the
Coriolis force against the horizontal pressure force, and effectively
equates the pressure to a stream function for the wind, so that a low
pressure center and a cyclonic vortex become equivalent, we obtain a
still simpler system which is incapable of propagating inertial-gravity
waves, but handles the largest-scale atmospheric features fairly well
outside of the tropics. A combination of the hydrostatic and
geostrophic approximations equates the vertical shear of the wind to
the horizontal temperature gradient. Sometimes we simply discard
annoying terms from an equation with little regard for their physical
meaning.

Further approximations are necessary if numerical methods of
solution are to be used. The exact equations, and the equations
obtained from them by introducing various physical simplifications, are
generally formulated as a set of partial differential equations. If
radiative heating and cooling enter explicitly, the equations will also
contain integrals. Before the usual numerical procedures can be
carried out, the field of each dependent variable must be represented
by its values at a finite grid of points, and finite differences and
sums must replace derivatives and integrals. Alternatively each

variable may be expressed as a series of spherical harmonics or other

orthogonal functions; multiple Fourier series may be used if plane




geometry has been introduced. The equations are then transformed into
a countably infinite system of ordinary differential equations, with a
countably infinite number of terms in each equation. Again, all but a
finite number of equations, and all but a finite number of terms in
each equation, must be discarded before numerical integration can
begin.

If we intend to use our model to study the smaller scales, we can
resolve these scales by restricting the model to a limited area. We
may include the influence of larger-scale features through prescribed
boundary conditions. If instead our purpose is to study the larger
scales, we must discard the small scales. However, the small scales
influence the large scales; the circulation within each cumulus cloud,
for example, can carry significant amounts of heat and moisture to
higher levels. We are therefore well advised to include additional
terms in our model, representing the probable influence of an extensive
ensemble of small-scale features.

How well do models with both physical and mathematical
simplifications perform? Many of them have been constructed for the
purpose of weather forecasting. These typically contain thousands of
equations; the chief limitation to their size is the speed and capacity
of the computers which are compatible with the budgets of the various
weather services. The forecasts produced by the largest models, with
several hundred thousand variables, compare favorably with forecasts
produced by other means, although they are far from perfect.

Models used primarily for research are sometimes equally large,. .
but, when only qualitatively correct results are desired, they are
often made much smaller. The most highly simplified models are the
"low~order models”, which are often designed to study specific
phenomena, and where, ideally, one retains the minimum amount of
physics and the minimum resolution needed to describe the phenomenon of
interest [3]. Low-~order models typically have fewer than a hundred
variables, and sometimes fewer than ten. Not surprisingly, some of the

lowest-order atmospheric models have become some of the most

intensively studied dynamical systems.




In the following paragraphs we shall describe how a
dynamical-systems approach may be applied to a specific model. We
shall then enumerate several problems where this approach may yield

beneficial results.

2. A simple model

For a model which is readily treated as a dynamical system, we
choose what is perhaps the simplest set of equations which can make
some claim to being a model of ‘the global atmospheric circulation [4].

This low-order model contains only three ordinary differential

equations:
ax/dt = -(¥%2 + z%) - a(x - F) , (1)
dy/dt = XY - bXZ - (Y - G) , (2)
dz/dt = bXY + XZ -~ Z . (3)

In Eqs. (1)-(3), X represents the intensity of the middle-latitude
westerly wind current in the northern or southern hemisphere; the two
hemispheres may be treated as mirror images of each other.
Simultaneously, X represents the cross—latitude temperature gradient in
either hemisphere. The wind and temperature fields are assumed to be
in permanent geostrophic balance, so that a single variable can
represent both. We shall refer to these combined fields as the zonal
flow, using the term "flow”, as we often do in meteorology, to refer
not only to the motion field but also to the pressure and temperature
fields which must accompany it. The horizontal and vertical structures
of the zonal flow are prespecified, and only the intensity is allow to
vary.

The variables Y and Z represent the cosine and sine phases of a
chain of vortices superposed on the zonal flow. The horizontal and
vertical structures of the vortices are prespecified, and only their
longitude and intensity are allowed to vary. Relative to the zonal
flow, the vortices are scaled so that x? + Y2 + 22 is proportional to
the total (kinetic plus potential plus internal) energy.

The vortices are linearly damped by viscous and thermal processes,

and the damping time for the vortices is chosen as the time unit. The

constant a is the reciprocal of the damping time for the zonal flow,




and we let a < 1. In interpreting our results we let one time unit
equal five days. '

The vortices are constrained to tilt westward with increasing
elevation, whence, under the assumed geostrophic balance, the
poleward-moving air is warmer than the equatorward-moving air at the
same latitude, and the net effect of the vortices is to transport heat
poleward, thus reducing the temperature gradient. This effect accounts
for the terms -(Y2 + Zz) in Eq. (1). At the same time the transport
does not alter the total energy of the atmosphere, so that the energy
extracted from the zonal flow must be absorbed by the vortices; hence
the terms XY in (2) and XZ in (3). The variables are scaled to make
the coefficients of these terms equal to unity.

In addition to strengthening the vortices, the zonal flow
transports them eastward (or westward, if X < 0). The constant b
measures the ratio of the transport rate to the amplification rate, and
we assume that b > 1.

The principal external driving force——the contrast between the
low—latitude and high-latitude solar heating--acts directly on the
zonal flow, and is represented by aF. A secondary driving force, which
varies with longitude, and may be assumed to depend upon the
contrasting thermal properties of the oceans and continents, acts on
the vortices, and is represented by G.

In view of the simplicity of the included physical processes, it
is evident that we could have constructed essentially the same model by
simply postulating relationships among the variables, as is commonly
done in some other disciplines. Actually, however, the model may be
derived through systematic simplifications of the exact equations,
including omission of moisture, introduction of the hydrostatic and
geostrophic approximations, and extreme truncation.

As a dynamical system, Egs. (1)-(3) possess a rich bifurcation
structure, and the solutions exhibit many forms of behavior as the four
parameters are altered. In this description we shall confine our
attention to the fixed values a = 1/4, b = 4, and F = 8, and examine

the changes in behavior as G increases from zero. Changing the sign of

G has no effect other than changing the signs of Y and Z.
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Fig. l. Variations of X in the stable periodic solution of Egs.
(1)-(3), for G = 0.270, 0.285, and 0.300. In each case a = 0.25,
b = 4.0, and F = 8.0.
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Fig. 2. Variations of X in the two distinct stable periodic \
solutions of Egs. (1)-(3), for G = 0.8. As in Fig. 1, a = 0.25,
b= 4.0, and F = 8.0.
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When G = 0, the equations possess the single steady solution
X=F, Y=0, Z=0, representing undisturbed eastward flow. This is
seen to be unstable if F > 1, in which case there is a periodic
solution X = 1, Y =R cos bt, Z = R sin bt, with R2 = a(F - 1), repre-—
senting steadily progressing vortices. By transforming Y and Z to R
and 8, where tan 6 = Z/Y, we readily see that this solution is stable.

When G acquires a small positive value, we may expect a modified
periodic solution in which the vortices tend to intensify when Y > O
and weaken when Y < 0. A resultant effect of these variations of R
will be oscillations of a similar period in the zonal flow X; these in
turn will produce additional variations in the behavior of the
vortices.

Explicit solutions when G > O may be sought numerically. We find
that the anticipated behavior does occur until G reaches 0.277, when
the solution becomes unstable. The bifurcation at this value at first
resembles a classical period-doubling bifurcation [5], with
oscillations occurring at the original frequency, but with weaker
oscillations alternating with stronger ones. However, when G reaches

0.294 the weaker maximum disappears, at least in the variations of X,

and the frequency has indeed been halved. Fig. 1 compares the
variations of X for G = 0.27, 0.285, and 0.30.

No further doublings in this solution are evident, but at G = 0.75
a new periodic solution is born, and there are two disjoint attractors.
Fig. 2 shows the variations of X for the two periodic solutions, for
G = 0.8.

The new solution soon enters a period-doubling sequence, and
becomes chaotic when G reaches 0.85, but the older solution remains
stable, although its basin of attraction becomes increasingly smaller,
up to G = 0.99, when it is swallowed up by the chaotic solution. For
most values of G from 0.99 to 1.367, where a new stable steady solution
appears, there is a single strange attractor, but, within this range of
G, there are some intervals, notably near G = 1.19, where the solution
is periodic. Such periodic windows are common occurrences in systems

containing very few variables, and are probably rarer in'more detailed

atmospheric models.
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Fig. 3. Variations of X in an aperiodic solution of Eqs. (1)-(3),
for G = 1.1, during a one-year interval, shown as four consecutive
90-day segments. As in Fig. 1, a = 0.25, b = 4.0, and F = 8.0.

Fig. 3 shows the variations of X during a one—year interval, when
G = 1.1, displayed as four consecutive 90-day segments. The lack of
periodicity is apparent, and there is some tendency to switch back and
forth between weaker more rapid oscillations, like those in the upper
curve in Fig. 2, and stronger less rapid oscillations, characteristic
of the lower curve.

Fig. 4 shows the intersection of the attractor with the plane
Z = 0, when G = 1.1. An intricate structure is evident. Qualitatively
the appearance of the attractor is about the same on either side of a
periodic window, and it contrasts with the small collection of points
which would replace Fig. 4 in the window. Fig. 5 shows one half of the
intersection of the attractor with the plane Y = 0, with higher

resolution, and many details, including the interior blank areas, are

more easily seen.

What does this analysis tell us about the real global atmospheric

circulation? It certainly does not reveal what processes maintain the

zonal flow and the vortices; at most it indicates that the processes

which we have included in the model may be capable of doing so. It
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Fig. 4. The intersection of the attractor of Eqs. (1)-(3), for
the conditions of Fig. 3, with the plane Z = 0, as represented by
3000 successive crossings of a single orbit.
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Fig. 5. A portion of the intersection of the attractor of Egs.
(1)-(3), for the conditions of Fig. 3, with the plane Y = 0, as
represented by 12000 crossings of a single orbit.
does not, for example, imply that a transfer of energy from the zonal
flow, rather than a transfer from smaller—-scale features, is the
process which maintains the vortices, since the model is incapable of
saying anything about the smaller-scale features.

Perhaps the property of the model's behavior which most closely
resembles its real atmospheric counterpart is the erratic variations of
the zonal flow, as displayed in Fig. 3. Various conflicting
explanations for such variations in the real atmosphere have been
offered. The model tells us that there is no certainty that variable
external activity is involved; in the model everything external is
steady. Moreover, complicated internal mechanisms need not be
involved; everything in the model is simple.

In the real atmosphere vortices seem to be always present; the
flow never becomes purely zonal. One sometimes assumes, however, that
the flow would become zonal, at least temporarily, if one waited long
enough, and, in attempting to explain certain occurrences, one

sometimes feels compelled to explain how they could have evolved from

an essentially zonal state, or perhaps even from a state of rest. In



at‘factor cléar1y éxcludes a cylinder surrounding the

s &heré‘the'éhergy of the vortices is small. This suggests that,
n ‘the rea ‘:‘at‘mc;spl"‘xere,’ states which are nearly zonal may never be
pfdééhéé; huch less attained. The frequently used initial conditions
ihknﬁﬁéficél integrations of various model equations, consisting of a

Zonal flow plus ‘a small perturbation, may therefore be illogical, even

“{f convenient.

‘3; kConclusion-—atmospheric problems

In looking at Egs. (1)-(3) as a dynamical system, we have gained
some insight into one atmospheric problem--the coupling of the zonal
flow and the large vortices——but the simplicity of the model has
prevented us from treating all aspects of the problem. We could have
learned more, for example, by using a model which does not assume that
the vortices transport heat poleward, and instead determines its own
heat transport, or a model which does not presuppose geostrophic
balance, and instead produces its own balance. Meanwhile, there are
numerous other atmospheric problems which presumably can be profitably
investigated by constructing appropriate models and treating them as
dynamical systems.

Probably the classical example of irregular or chaotic behavior is
turbulent behavior. Atmospheric turbulence is especially complicated
because of its inhomogeneity and intermittency. In the lowest few
meters of the atmosphere, where most of us spend most of our lives, the
vertical extent of a turbulent eddy is limited by the proximity of the
ground or the sea, but no such limitation exists farther aloft.
Turbulence covers a wide range of scales, and even the largest vortices
possess some of the properties of anisotropic turbulent eddies. The
volume of research in atmospheric-turbulence theory has been enormous,
but many basic questions remain unanswered, and it has recently been
predicted that future research will involve the concepts of strange
attractors and coherent structures [6].

Coherent structures, which pose another problem, are in a sense

the antithesis of turbulence, but they are equally nonlinear. They

consist of features which retain their form over extended time
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intervals, even though they may be superposed on an essentially
turbulent background. The classical example is the soliton. Coherent
atmospheric structures appear to be more easily found in models than in
the atmosphere itself [7], but there is some evidence that tropical
hurricanes are structures of this sort.

A more specialized problem is initialization. This is one step in
the process of numerical integration of operational weather—forecasting
models which do not preassume geostrophic balance, and it is needed
because small errors in wind and temperature observations usually
produce observed initial states where the geostrophic unbalance is much
greater than in the true initial state. Large—amplitude inertial-
gravity waves then ensue, and contaminate the forecast., Initialization
procedures attempt to replace the observed initial state by a slightly
different state which is in approximate geostrophic balance, and will
remain in approximate geostrophic balance as the forecast evolves. A
number of initialization procedures have been developed [8], but even
the more successful ones are often awkward to apply. As a problem in
dynamical-systems theory, initialization may be equated with seeking a
special invariant manifold, sometimes called the "slow manifold” [9].
The problem has been approached via invariant-manifold theory [10].

We close with a somewhat more detailed discussion of another
problem—-predictability. This concerns the extent to which it is
possible to predict various aspects of the weather at various ranges.
The limiting factor is the sensitive dependence of atmospheric models,
and presumably of the real atmosphere, on initial conditions; our
observations will not distinguish among a number of nearly identical
states, and, since these states will develop differently, there will be
no basis for choosing among a number of considerably different future
states.

The key quantity is the rate at which small differences between
states will amplify, traditionally expressed in terms of a doubling
time. For a simple system like Egs. (1)-(3), this is proportional to

the reciprocal of the largest Lyapunov exponent. One might suppose

that a similar relationship would hold in more general models, but
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actually this is not the case, if the model has sufficiently high
resolution.

The reason is again the abundance of scales found in the
atmosphere. Errors in observing smaller-scale features, especially the
more energetic ones, will grow rapidly; the error in observing the
details of a thunderstorm, if such observations are indeed performed at
all, should amplify at least as rapidly as the thunderstorm itself,
doubling in half an hour or less. In short, the largest Lyapunov
exponenets of high-resolution atmospheric models, and of the atmosphere
itself, are associated with small scales.

These same errors, however, soon acquire limiting amplitudes, at a
time when the errors in the larger scales are just beginning to reveal
their growth. The latter errors, aside from growing more slowly and
therefore being associated with smaller Lyapunov exponents, continue to
grow much longer, generally doubling in two days or more [1l], and they
ultimately acquire much larger amplitudes than the small-scale errors;
they therefore provide the major contribution to the total error in the
forecast.

We need to know, then, not only how rapidly small-amplitude errors
of all scales will depart from their initial magnitudes, but also how
slowly large-amplitude errors will approach their limiting magnitudes.
Such information is especially pertinent to extended-range prediction
and the prediction of climate. We also need to know how errors in
separate weakly coupled scales will influence each other. Some
relevant individual studies have been performed [12], but the
development of a coherent theory presents an especially challenging

problem in nonlinear dynamics.
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