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ABSTRACT
When the exact time-dependent solutions of a system of ordinary differential equations are chaotic, numerical solutions
obtained by using particular schemes for approximating time derivatives by finite differences, with particular values
of the time increment τ , are sometimes stably periodic. It is suggested that this phenomenon be called computational
periodicity.

A particular system of three equations with a chaotic exact solution is solved numerically with an Nth-order Taylor-
series scheme, with various values of N, and with values of τ ranging from near zero to just below the critical value
for computational instability. When N = 1, the value of τ below which computational periodicity never appears is
extremely small, and frequent alternations between chaos and periodicity occur within the range of τ . Computational
periodicity occupies most of the range when N = 2 or 3, and about half when N = 4.

These solutions are compared with those produced by fourth-order Runge–Kutta and Adams–Bashforth schemes,
and with numerical solutions of two other simple systems. There is some evidence that computational periodicity will
more likely occur when the chaos in the exact solutions is not very robust, that is, if relatively small changes in the
values of the constants can replace the chaos by periodicity.

1. Introduction

When seeking time-dependent numerical solutions of systems
of differential equations (DEs), one is faced with a choice of
procedures for approximating the time derivatives by finite dif-
ferences. Partial DEs are generally considered appropriate when
modeling atmospheric or oceanic flow, and here one sometimes
merges the time differencing and space differencing into a sin-
gle more elaborate scheme. Particularly in operational weather
forecasting, new procedures, often tailored to the particular equa-
tions, are continually being introduced; a very recent example is
a semi-implicit scheme of Giraldo (2005). When one chooses a
rather simple system of ordinary DEs for a model, however, one
is likely to use a relatively simple differencing method, particu-
larly when beginning to investigate a new system. The familiar
Runge–Kutta and Adams–Bashforth methods are described in
textbooks written well before electronic computers were gen-
erally available to use them (e.g. von Karman and Biot, 1940).
Formulas for these and other schemes, some more recently devel-
oped, have been presented in tabular form by Durran (1999), who
also discusses their adequacy for use in geophysical problems.
This study is concerned only with approximations to ordinary
DEs.
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Anyone who has solved many systems of equations numer-
ically will be familiar with the phenomenon of computational
instability (CI), where the computed values of the dependent
variables eventually go rapidly to infinity. The often cited
Courant–Friedrichs–Lewy conditions (Courant et al., 1928) ap-
ply to partial DEs, but one of their implications, that the chosen
time increment τ cannot be too large a fraction of the period of
any possible oscillation if CI is to be avoided, is equally true for
ordinary DEs. The usual cure for CI consists of simply lower-
ing τ , but sometimes there is a range where τ is small enough
to prevent CI, but where the numerically determined solution
nevertheless bears little resemblance to the solution that is being
sought. In particular, when the exact solution varies periodically
with time, there is sometimes a range of τ where the computed
solution is chaotic. This phenomenon has been called computa-
tional chaos (CC) (Lorenz, 1989).

A while ago we encountered an instance of the opposite phe-
nomenon. We had recently submitted an article (Lorenz, 2006,
hereafter L06) to Tellus, dealing with a system whose solution,
as estimated by a fourth-order Runge–Kutta scheme with a small
time increment, was chaotic, and we had included several pic-
tures of the resulting strange attractor. One reviewer went well
beyond the call of duty and attempted to duplicate our pictures,
and instead found a stable limit cycle. It presently appeared that
he or she had used a first-order time-differencing scheme, which
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one might have presumed adequate for detecting chaos. All of
the numerical values, including τ , were the same as ours, so
that the choices of differencing schemes seemed a likely reason
for the discrepancy. We procceded to solve the equations with a
first-order scheme, and confirmed the reviewer’s findings.

By analogy with CC, it seems reasonable to call this phe-
nomenon, where an exact solution is chaotic and a numerical
solution is periodic, computational periodicity (CP). The term
‘periodicity’ is intended to include almost-periodicity, where the
solution is expressible as a sum of periodic components with in-
commensurable periods. It is also intended to exclude systems
where all periodic solutions are unstable.

This study deals with CP. Our primary purpose is to observe
in detail the conditions under which CP appears in numerical
solutions of the particular system where we first encountered
it. We shall make some inferences concerning its appearance in
more general systems, but we emphasize that no attempt will be
made to present a comprehensive treatment.

2. First-order differencing

The system on which this study is based consists of the three
equations

dX
dt

= −Y 2 − Z 2 − aX + aF, (1a)

dY
dt

= XY − bX Z − Y + G, (1b)

Fig. 1. (a) Intersection with plane Z = 0 of attractor of eqs. (1) when a = 1/4, b = 4, F = 8 and G = 1, as represented by 97 428 points computed
with fourth-order Taylor-series procedure with time increment τ = 0.025. Coordinates are X and Y . (b) The same, but with 168 266 points, and when
a = 1/4, b = 5, F = 14 and G = 7/4. Note the change in scale.

dZ
dt

= bXY + X Z − Z . (1c)

It was originally introduced to illuminate certain properties of the
general atmospheric circulation (Lorenz, 1984, hereafter L84),
and it has seen considerable subsequent use, often for unrelated
purposes (e.g. Trevisan, 1993; Aires and Rossow, 2003). In me-
teorological applications X represents the strength of a circum-
polar westerly current, while Y and Z denote the cosine and sine
phases of a superposed chain of large-scale waves. The absence
of explicit coefficients of Y and Z in eqs. (1b) and (1c) implies
that the chosen time unit is the damping time for the waves,
assumed to be 5 d.

In the computations that follow we shall use an Nth-order
truncated Taylor-series procedure, namely

X (t + τ ) =
N∑

n=0

[dn X (t)/dtn]τ n

n!
, (2)

with analogous expressions for Y and Z, chosen because a single
very simple program will handle any value of N. Higher deriva-
tives are easily expressed in terms of lower ones. Interpolation
between time steps is accomplished by substituting a fraction of
τ for τ in eq. (2).

With a = 1/4, b = 4, F = 8, and G = 1, the behaviour of
eqs. (1) was found in L84 and L06 to be chaotic. Figure 1a
shows a cross section of the attractor—its intersection with
the state-space plane Z = 0—as determined by integration for
3 000 000 time steps with N = 4 and τ = 0.025, or three hours.

Tellus 58A (2006), 5



COMPUTATIONAL PERIODICITY AS OBSERVED IN A SIMPLE SYSTEM 551

The 97 428 points of intersection comprising the figure were de-
termined by interpolating between steps. Figure 1b shows, on
a somewhat compressed scale, a larger and more complicated
cross section, similarly produced, again with a = 1/4, but with
the larger values b = 5, F = 14 and G = 7/4. The figures
show rather typical low-degree strange attractors—hallmarks of
chaos.

Presumably, given τ , a larger value of N better approximates
the differential equations, at least when τ is moderately small,
suggesting that the exact solution of eqs. (1) is indeed chaotic.
Presumably also, given N, a smaller value of τ yields a better
approximation, suggesting that with N = 1 a low enough value
of τ will reveal the chaos. Upon making a set of runs with N = 1,
with successively smaller values of τ , we encountered chaos only
after τ had fallen by a factor of nearly 10 from the original 0.025,

Fig. 2. (a) Superposition of three curves
showing variations with τ , as τ increases
from 0 to τ 2, of Lyapunov exponents λ1, λ2

and λ3 of approximation to eqs. (1), when
a = 1/4, b = 4, F = 8 and G = 1, by
first-order differencing with time increment
τ . Horizontal coordinate is τ . Vertical
coordinate is λ. For each value of τ , either
λ1 or λ2 coincides with zero line. Where
fewer than three curves appear, two or more
exponents are equal. (b) The section of (a)
where τ < 0.0045, horizontally stretched 20
times. c) The section of (a) where 0.033 <

τ < 0.048, horizontally stretched six times.

to 0.0028. At this point the resulting attractor closely resembled
the one in Fig. 1a.

Choosing many values of τ and examining each resulting at-
tractor is at best a cumbersome procedure, while choosing fewer
values entails the risk of jumping over short ranges of τ with
anomalous behaviour. An equally reliable indicator of chaos, in
a numerical approximation or in the original DEs, is the leading
Lyapunov exponent λ1, which is positive when chaos is present
and zero otherwise, except when the solution decays to a steady
state, when λ1 is negative. Each new value of τ effectively de-
fines a new dynamical system, which may possess a new value
of λ1.

With the values of the constants used in Fig. 1a, the three
Lyapunov exponents λ1, λ2, λ3 of the DEs are 0.17, 0.00 and
−0.39. Figure 2a shows the computed values of these exponents,
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Fig. 3. (a) Intersection with plane Z = 0 of attractor of approximation to eqs. (1), when a = 1/4, b = 4, F = 8 and G = 1, by first-order
differencing with τ = 0.037. Coordinates are X and Y . (b) The same, but with τ = 0.042.

with N = 1, as τ increases from just above 0 through τ 1, the
highest value below which only chaos occurs, to τ 2, the lowest
value above which only CI occurs. Each value is determined
from one basic and three perturbed runs, and each run lasts 10
yr, so necessarily the lowest values of τ demand many times
steps. Evidently τ 2 = 0.0822, or about ten hours. We see that
CP, where λ1 = 0, dominates, but does not occupy the whole
range from τ 1 to τ 2.

When τ is near τ 1 the resolution in Fig. 2a is poor, and
Fig. 2b repeats the extreme left portion, with a stretched hor-
izontal scale. The chaos previously found when τ = 0.0028 evi-
dently disappears when τ becomes still smaller, and does not be-
come permanently established until τ reaches 0.00039 (=τ 1), or
2.8 min —a much smaller value than one would ordinarily choose
in solving eqs. (1). Above τ 1, values ofλ2 andλ3 alternate rapidly
between being equal and being unequal, indicating rapid alter-
nations in the manner in which small initial departures from the
periodic solution will decay.

Returning to Fig. 2a, we see some larger values of τ where
chaos appears, dominated by a range from 0.0344 to 0.0374 and
one from 0.0402 to 0.0435. The details are more easily seen in
Fig. 2c, which stretches the central portion of Fig. 2a.

We have found that certain values of τ produce intransitiv-
ity, that is, with the same τ , different initial states may produce
different attractors and different values of λ1, λ2, λ3 and, in par-
ticular, one solution may be periodic while another is chaotic.
In Fig. 2, where only one set of exponents is shown for each

τ , the curves were produced by increasing τ in small steps, and
using the final state from one computation as the initial state in
the next. If τ had instead been decreased in small steps, addi-
tional chaotic ranges would have appeared in Fig. 2c between
0.0444 and 0.0449 and between 0.0453 and 0.0459, while the
short chaotic range between 0.0459 and 0.0462 would have dis-
appeared. Something resembling hysteresis thus occurs; without
the hysteresis we might have failed to notice the intransitivity.

Figures 3a and b show cross sections of the attractors for
τ = 0.037 and τ = 0.042—values within the prominent chaotic
ranges in Fig. 2c. Both attractors are clearly strange. Figure 3a
looks somewhat like the attractor of the DEs in Fig. 1a, but it
is by no means a duplication. Fig. 3b shows a closer resem-
blance to Fig. 1b, which was produced with different values
of the constants. Rather unexpectedly, Fig. 3a fits rather neatly
into the interior empty spaces in Fig. 3b; most states encoun-
tered when τ = 0.037 seem to be carefully avoided when τ =
0.042.

Quantitatively our results must depend upon the values of
the constants. In Fig. 4, we present some similarly constructed
curves, again with a = 1/4, b = 4 and F = 8, but with G
successively equalling 1.0, 1.1, 1.2 and 1.3. The details vary
considerably, but all exhibit some periodicity extending below
τ = 0.01, and all show several separate chaotic ranges of τ above
0.02. We have verified that qualitatively similar curves also arise
when other constants are changed, so that the CP has not resulted
from a fortuitous choice.
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Fig. 4. The same as Fig. 2a, but separately
for each value of G indicated by number at
left of curves. Numbers indicating G are
placed opposite zero lines for λ. Small
divisions on left and right margins are at
intervals of 0.1 unit of λ.

A new feature is the presence of some ranges where no points
at all appear, most pronounced when G = 1.2 and 0.057 <

τ < 0.071. Here the numerical solutions are computationally
unstable, even though they become stable again before τ finally
reaches τ 2.

Between τ = 0.005 and 0.065 the panels in Fig. 4 for
G = 1.2 and 1.3 are much alike; clearly the alternations between
periodicity and chaos are the same phenomenon in either panel.
However, as G varies from 1.0 to 1.3 in the DEs, a window—a
continuum of values of τ where the solution is periodic, within
an otherwise generally chaotic range—extends from 1.186 to
1.217, and hence spans 1.2. Within this window, the attractor
of the DEs is a closed curve, and its intersection with the plane
Z = 0 consists of just 20 points. The question thus arises as to
whether when G = 1.2 the periodicity should be called CP or
whether another name is more appropriate, since the true solu-
tion is periodic anyway. Likewise the chaos when G = 1.2 is

clearly computational, but the question arises as to whether the
similar chaos when G = 1.1 or 1.3 should be called CC, since the
true solutions are chaotic anyway. We shall leave these questions
of terminology unanswered.

In preparing L06, we might well have chosen to speed the
computations by using a somewhat longer time increment, pos-
sibly near 0.037; with the fourth-order differencing scheme
the attractors would not have been noticeably changed. The
reviewer would then have found the patently strange attrac-
tor of Fig. 3a, and, although probably noticing the imperfect
resemblance to our attractor, would not have encountered a
stable limit cycle, and might not have considered the differ-
ences in the details of the attractors worth mentioning. We
would then never have been led to investigate the numeri-
cal solutions produced by first-order differencing. We would
never have encountered CP, and we would not be preparing this
article.
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3. Higher-order differencing

Although the extremely small value of τ 1 apparent in Fig. 2b
might not have been anticipated, it should surprise no one that
first-order differencing schemes often do not constitute close
approximations to the DEs. Here we examine the degree of im-
provement afforded by higher-order schemes. We find that CP is
by no means eliminated.

Figure 5 shows the variations of λ1, λ2 and λ3 with τ , in
the manner of Fig. 2a, for successively increasing orders. When
N = 2 or 3, the range of τ where CP occurs far exceeds the range
where the true chaos is captured. Even with N = 4 the ranges are

Fig. 5. The same as Fig. 2a, but separately
for each order N of differencing scheme
indicated by number at left of curves.
Numbers indicating N are placed opposite
zero lines for λ. Small divisions on left and
right margins are at intervals of 0.1 unit of λ.

about equal. Only when N reaches 6 does CP almost disappear.
We have found, however, that for each value of N, with τ not
too far below τ 1, the numerically determined attractor closely
resembles the true one.

It also appears from Fig. 5 that, once N > 2, τ 2 shows lit-
tle further systematic increase. We have found that τ 2 = 0.35
when N = 10 and τ 2 = 0.46 when N = 20. We even integrated
eqs. (1) with a 100th-order scheme—generally an impractical
and useless undertaking—and found CI when τ reached 0.53.
Choosing an arbitrarily large N will not produce an arbitrarily
large τ 2, since in general the Taylor series do not converge when
the argument is large.
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The Taylor-series scheme and the Runge–Kutta scheme are
not the same (unless N = 1), and one might wonder whether
the results shown in Fig. 5 are peculiar to the former. We have
repeated the computations of λ1, λ2, and λ3 with a fourth-order
Runge–Kutta scheme. Qualitatively we find little change from
Fig. 5, but τ 1 = 0.11 rather than 0.14, and τ 2 = 0.49 rather than
0.33, so that the range of τ where CP prevails is about twice
as great. For good measure we have also applied the Adams–
Bashforth scheme with N = 4 to eqs. (1), and we find that
τ 1 = 0.048 and τ 2 = 0.085—great reductions from the values
encountered with the other methods. Also, while this scheme is
very fast, it is less convenient for tasks like evaluating Lyapunov
exponents, where an initial state is perturbed and the conse-
quences are observed, since the Nth-order scheme uses N − 1
past time derivatives for the forward extrapolation, and initially
these must be perturbed consistently with the present state.

4. Further considerations

An American writer once denounced the exhortation ‘See Amer-
ica first’ that was often proclaimed by the local vacation industry.
He maintained that Americans could not see America without
travelling to other countries and experiencing their way of life,
thereby perhaps discovering that certain practices that they had
always thought were universal were in fact peculiar to their own
land. In a rather similar manner, even though our main interest is
in the response of eqs. (1) to various differencing procedures, we
may better appreciate our findings by examining the responses
of some other equations.

We first choose the system

dx
dt

= −y − z, (3a)

dy
dt

= x + ay, (3b)

dz
dt

= b + xz − cz, (3c)

introduced by Rössler (1976) as a model of a chemical reaction.
Containing a single quadratic term and no other non-linearities,
it may well be the simplest set of autonomous DEs capable of
producing chaos. Rössler found chaos with a = 0.2, b = 0.2 and
c = 5.7, among other sets of values.

We have performed computations like those leading to
Fig. 5, with N = 1, 2, and 3, for eqs. (3) with Rössler’s values
of the constants. Again CP appears when N = 1 or 2, although
it occupies a smaller fraction of the range of τ below τ 2, and
when N = 3 it has disappeared. Also, as with eqs. (1), there is
sometimes a range of τ below τ 2 where CI occurs.

Next is the system of M equations

dXm

dt
= −Xm−2 Xm−1 + Xm−1 Xm+1 − Xm + F, (4)

with X m+M = X m ; it has been used in a number of meteorological
studies (e.g., Lorenz and Emanuel, 1998, Hansen and Smith,
2000, Hunt et al., 2004), where it simulates the variations of
some quantity at M equally spaced points about a latitude circle.

With M > 4, chaos is fully developed whenever F > 8.0. With
such combinations of values of M and F we have been unable to
discover any instances of CP. In fact, we encountered CP only
with M = 8 or 9, and with F in a narrow range close to 4.0,
where the chaos is incipient rather than fully developed.

A property distinguishing eq. (4) with F > 8 from eqs. (1)
and (3) and the special cases of eq. (4) is that the chaos occur-
ring in the latter cases appears to be less robust, in the sense that
relatively small changes in the values of one or more constants
can remove the chaos, replacing it with periodicity. On the other
hand, chaos can also be replaced by periodicity, if CP is present,
by changing the value of τ . If, for a given system, changes
in τ are qualitatively like changes in the constants, CP should
be expected if the chaos produced by that system is not very
robust.

That changing τ and changing the constants have somewhat
similar effects is suggested by the previously noted similarity
between Fig. 1b, where the constants have been altered from
those of Fig. 1a, and Fig. 3b, where τ has been changed from
Fig. 3a. Further support for this idea comes from Fig. 6, which
shows the variations of the Lyapunov exponents of the DEs as
the constants vary linearly through the values used in Fig. 1a and
those in Fig. 1b, whence, as b varies, F = 6b − 16 and G = F/8.
The curves look familiar. With slight alterations they could be
segments of a panel in Fig. 2 or 4, produced by varying τ . Still
another similarity is the intransitivity produced by some values
of the constants; the periodicity in Fig. 6 when 3.89 < b < 3.98
would be replaced by chaos if different initial states were used
in the computations.

With its frequent alternations between periodicity and chaos,
Fig. 6 also supports our statement that the chaos produced by
eqs. (1) lacks robustness. The appearance of CP in Figs. 2 and 4
should therefore not surprise us.

5. Concluding remarks

This study has been concerned with the appearance of periodic
numerical solutions of a system of equations whose exact solu-
tion is chaotic. It does not aim to establish theorems regarding the
general properties of CP, although it includes a suggestion that
CP is favoured when the chaos in the exact solution lacks robust-
ness. It limited findings may nevertheless have some practical
implications.

The findings are based mainly on the evaluation of Lyapunov
exponents. These, like attractors and the presence of periodicity
or chaos, are long-term properties. Two systems that are rather
similarly defined, such as the systems obtained by successively
letting τ equal 0.0038 and 0.0037 in the first-order approxima-
tion to eqs. (1), can be expected to yield rather similar short-range
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Fig. 6. Superposition of three curves
showing variations with b, as b increases
from 3.7 to 5.3 and F = 6b − 16 and G =
F/8, of Lyapunov exponents λ1, λ2 and λ3

of eqs. (1) when a = 1/4, as approximated
by fourth-order Taylor-series procedure with
τ = 0.025. Horizontal coordinate is b.
Vertical coordinate is λ.

forecasts from the same initial state, even though one may even-
tually attain periodicity while the other produces chaos.

For one whose main interest is large operational weather-
forecasting models, our findings may be somewhat irrelevant.
Presumably the differencing schemes there have been chosen to
be compatible with the equations—effectively they are a part of
the equations—and, I would assume, their properties will have
been thoroughly examined. I must point out, however, that one
reviewer finds my assumption far too optimistic.

Someone working instead with a simple model will more
likely choose a simple differencing scheme. Even small com-
puters are now so fast that millions of iterations can often be per-
formed in a few seconds, but studies involving large ensembles
or many sets of parameter values can still be time consuming,
and the temptation to choose a rather large time increment τ

is always present. Our work suggests that such a choice is of-
ten quite legitimate, provided that it is accompanied by a bit of
caution.

Suppose, for example, that you are simulating an entire short-
range and medium-range operational weather forecasting rou-
tine, using simple equations, perhaps to investigate the effect of
substituting a new data-assimilation scheme. You choose one set
of DEs to simulate the truth, from which the simulated observa-
tions, with or without added errors, will be produced. You choose
another set, or perhaps the same one with different values of the
constants, to simulate the operational model. The chosen time
increment qualifies as one of these constants.

Since simple DEs cannot closely approximate the real atmo-
sphere in any event, there is no real reason why the output of your
‘truth’ system, with its chosen differencing scheme and time in-
crement, needs to resemble that of the DEs used in obtaining
it. Even something like the first-order approximation that pro-
duces Figs 3a or b may be acceptable. What is important is that
you know the properties of your system. These may differ from
those of the DEs, that have perhaps already been documented,
and that you may wish your system to possess. In particular,

CP, with its consequent virtually infinite range of predictability,
must be avoided. If your system includes seasonal variations of
the constants, robustness may be an additional consideration.

As for the ‘operational’ system, its long-term properties, in-
cluding the presence or absence of CP, are of minor concern.
Since our findings pertain only to long-term behaviour, they are
unlikely to add to the considerations that will determine your
choice. If, however, you are simulating climate prediction rather
than prediction at short or medium range, the long-term proper-
ties of your operational system, and their resemblance to those
of the truth system, become essential considerations.

Meanwhile, dynamical systems exhibiting CP can be of in-
terest for their own sake. The pattern of alternations between
equal and unequal values of λ2 and λ3, as τ varies, prominent in
Figs. 2 and 4, often possesses an intricate structure. Possibly
one of these systems could form the basis for a unique study of
bifurcation. Finally, the chaotic ranges that appear between sep-
arate ranges of CP can yield unusual attractors that may not be
the exact attractors of any simple DEs. The nested attractors of
Fig. 3 seem to be good candidates for further study.
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