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ABSTRACT

The attractor set of a forced dissipative dynamical system is for practical purposes the set of points in
phase space which continue to be encountered by an arbitrary orbit after an arbitrary long time. For
a reasonably realistic atmospheric model the attractor should be a bounded set, and most of its points
should represent states of approximate geostrophic equilibrium.

A low-order primitive-equation (PE) model consisting of nine ordinary differential equations is derived
from the shallow-water equations with bottom topography. A low-order quasi-geostrophic (QG) model
with three equations is derived from the PE model by dropping the time derivatives in the divergence
equations.

For the chosen parameter values, gravity waves which are initially present in the PE model nearly
disappear after a few weeks, while the quasi-geostrophic oscillations continue undiminished. The states
which are free of gravity waves form a three-dimensional stable invariant manifold within the nine-
dimensional phase space. Points on this manifold are readily found by an algorithm based on the
separation of time scales. The attractor set consists of a complex of two-dimensional surfaces
embedded in this manifold. The geostrophic equation is a good approximation on most of the attractor,
while the balance equation is better. The attractors of the PE and QG models are qualitatively similar.

Some speculations regarding the invariant manifold and the attractor in a large global circulation model
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are offered.

1. Introduction

The physical laws which govern the behavior of
a fluid system are commonly expressed as a set of
partial differential equations (PDE’s). It is often as-
sumed that we may replace these equations by a
large set of ordinary differential equations (ODE’s),
with time as the independent variable, without seri-
ously altering the properties which interest us most.
Such a substitution may in fact be a necessary
step in preparing the PDE’s for numerical integra-
tion. For various reasons, however, we sometimes
choose to replace the PDE’s by a small set of
ODE’s, hoping that some of the gross qualitative
properties of the solutions will not be lost.

In mathematical terminology a set of N ODE’s
in N dependent variables constitutes a dynamical
system. It is convenient to treat the N variables as

coordinates in an N-dimensional phase space. A-

particular state of the system then becomes a point
in phase space, while a particular time-dependent
solution becomes an orbit. Periodic solutions be-
come closed orbits, while steady solutions become
fixed points.

A point Q is called a limir point of a point P, or
of the orbit C passing through P, if there exists a set
of times 14, t,, . . . , approaching infinity, such that
the points P,, P,, . . . , through which C passes at
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timest,,t,, . . . ,approach Q as a limit. It is evident
that each point on the orbit passing through Q is then
a limit point of each point on C.

A fundamental property of a dynamical system is
its attractor set A. A point Q is in A if the points
for which Q is a limit point together form a set of
nonzero volume in phase space. It is evident that
each point on the orbit through Q is then in A, so
that the attractor is composed of orbits.

A stable (not neutral) fixed point Q must be in 4,
since Q is a limit point for all points enclosed by
some sphere § which encloses Q. None of the
remaining points enclosed by S is in A. Likewise,
a stable closed orbit C must be part of A, since it
1s a limit point for all points enclosed by some tube
enclosing C. No other points enclosed by this tube
are in A. Unstable fixed points and closed orbits
need not be in A; in some dynamical systems,
however, they are.

For a system where some quantity such as total
energy remains invariant, the attractor set, as we
have defined it, may be empty. Here the points
for which a point Q is a limit point are confined
to the energy surface containing Q, which in general
possesses zero volume. For a large class of forced
dissipative systems, however, which possess no in-
variants, A is non-void and is itself a set of zero
volume.
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In the present study we shall confine our atten-

tion to forced dissipative systems. For well-behaved
systems we can be reasonably sure that if we choose
a point P at random, the orbit passing through P
at some initial time will, at any sufficiently later
time, be passing through a point extremely close
to A. This makes it possible to estimate the loca-
tion of A by integrating the ODE’s numerically.

If a system is a reasonably realistic model of the
earth’s atmosphere, we can anticipate some of the
properties of its attractor from our experience with
weather maps. Thus, we would expect most of the
dependent variables to be bounded; we do not, for
example, encounter sealevel maps with 1200 mb
high-pressure centers or 800 mb lows. Likewise,
there are combinations of variables which seldom if
ever occur; we do not find maps where the wind
blows the wrong way about the principal highs and
lows in middle and higher latitudes. Points in the
attractor, then, should not be too far removed from
the origin, and should correspond to states where
the bulk of the atmosphere is in approximate
geostrophic equilibrium.

The primary purpose of this study is to find out
what the attractor set looks like for some simple
atmospheric model. Since we shall be interested in
whether or not the points on the attractor tend to
represent states of geostrophic equilibrium, we must
avoid using a quasi-geostrophic (QG) model, for
which no other states exist. We shall therefore
choose a primitive-equation (PE) model.

We shall make two comparisons. We shall first
compare the attractor with the set of all states
where the wind and pressure fields are in exact
geostrophic balance. We do not expect these sets
to be identical, since in PE models the geostrophic
relation is only approximately satisfied. Moreover,
in a dry PE model with 3M ODE’s, derived
from ‘a system of three PDE’s, the set of all
geostrophic states forms an M-dimensional sub-

space of phase space. The attractor, on the other

hand, may be zero- or one-dimensional, if all orbits
approach a fixed point or a closed orbit. We shall
therefore seek a model where the general solution is
aperiodic. A necessary condition for this to be so is
that the points on closed orbits (including fixed
points) together form a set of zero volume, and
that all of these orbits be unstable. Even in this
case the attractor need not be M-dimensional; it
might have as many as 3M-1 dimensions.

We shall also compare the attractor with the
attractor of a QG model, which we shall derive
from the PE model by discarding certain terms,
including the time derivative of the divergence.
The QG model will have M variables. We shall
find that, in some cases at least, the attractor sets
of both models will be (M-1) dimensional, and
will bear considerable resemblance to one another.
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A precise knowledge of the attractor would be of
great practical value in numerical weather fore-
casting. A solution of a PE model originating
from an arbitrary initial state generally undergoes
rapid large-amplitude gravity-wave oscillations not
characteristic of the real atmosphere. This happens
even when the initial state has been determined
from actual observations, in view of their inevitable
omissions and inaccuracies. It should not happen if
the initial state lies exactly on the attractor. The
familiar initialization problem may therefore be
looked upon as the problem of projecting onto the
attractor in phase space.

In all dynamical systems where the general solu-
tion is aperiodic and the attractor has been deter-
mined, it has proven to be a strange atiractor. That
is, it is not topologically the product of several
one-dimensional continua, in the sense that a smooth -
surface in three-dimensional space is the product of
two continua. Instead it is the product of several
continua and one or more Cantor sets, and an ar-
bitrary intersecting curve, such as a line parallel to
a coordinate axis, intersects it in a Cantor set.
This is an uncountable nowhere-dense set; an ex-
ample is the set of all numbers between 0 and 1
whose decimal expansions contain only 0’s and 1’s.
For N =3 a strange attractor would be an infinite
complex of surfaces.

It is thus evident that except in very simple
models a sufficiently precise description of the at-
tractor to allow one to project onto it may be next
to impossible. We shall therefore not attempt to
study a particularly realistic atmospheric model,
and seek instead the simplest model which retains
pressure and the two wind components as separate
variables and includes the nonlinear interactions
which give rise to aperiodicity. For the latter pur-
pose we should represent each variable by at least
three functions of time alone. We thus anticipate a
system of nine ODE’s, and our problem will be to
describe the attractor in nine-dimensional phase
space.

2. Constraints on the attractor

1

We shall consider only dynamical systems whose
N equations may, after a linear transformation of
the dependent variables, if necessary, be written

dwi .
— = Y @pwWiwr — 2 byw; t ¢y, (1)
dt ik i
where
B = 2 bi,-wiw,- > 0, (2)
whenever "
3)

R? = Ewiz
i

is positive. Here all summations run from 1 to N.

'
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Many models of forced dissipative fluid systems pos-
sess equations of this form. Let A, B, and C, denote,
respectively, the maximum of

A= 3 ajpwwywyg, )
. i3,k
the minimum of B, and the maximum of
S

C =3 cw
i

on the sphere R = 1. Because A and C are of odd
degree, A, = 0 and C, = 0, while, because of (2),
B, > 0. It follows that

dR/dt < A,R* — BR + C,. (6)

We shall consider only those systems for which

Bz —-4A.C, > 0. N
~If the value of R? is conserved by the quadratic

terms in (1), A = 0, whence A; = 0, and (7) is auto-
matically satisfied. In this case dR/dt < 0 when R ex-
ceeds some value R,. It follows that all orbits ulti-
mately enter and remain within the interior of the
sphere R = R, + €, where € can be any small posi-
tive quantity, whence the attractor must be enclosed
by this sphere. ‘

If instead A, > 0, dR/dt < 0 when R lies between
two distinct values R, and R, in view of (7). In this
case some orbits may remain outside the outer sphere
R = R, and even go off to infinity, but those orbits
passing inside the outer sphere ultimately enter and
remain within the interior of a sphere R = R, + €.
A component of the attractor is therefore enclosed
by this sphere. The remaining points, if any, of the
attractor lie on or outside the sphere R = R,. For
such systems we shall consider only the portion of
phase space where R < R,.

We shall further restrict our attention to systems
where ‘

ape =0 if j=i or k=i,

@®)

such systems also include many fluid models. If S is
some closed surface, and if the points of § move ac-
cording to (1), the volume V enclosed by S obeys
the equation

dV/dt = -V z bﬁ.

i

®

The right side of (9) is negative since B is positive
definite. Hence V — 0-exponentially. In particular,
by letting S be the sphere R = R, + €, we see that
at times A¢, 2A¢, . . ., where Ar > 0, the attractor,
or its bounded component, is enclosed by a succes-
" sion of surfaces §,, S,, ..., each interior to the
previous one, and each enclosing an exponentially
smaller volume. Hence the attractor is a set of zero
volume.
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3. The model

For our physical system we shall choose a homo-
geneous incompressible fluid of average depth H,
moving over a surface of variable topographic height
h(r) and unbounded horizontal extent. The fluid
moves with horizontal velocity V(¢,r) which is in-
dependent of elevation, and a vertical velocity deter-
mined by mass continuity, and its upper surface is
at elevation H + z(¢,r). Here ¢ is time and r is a
horizontal position vector, and the horizontal aver-
ages of 1 and z are zero. We let the system rotate with
constant Coriolis parameter f. We allow V and z
to be damped diffusively by small-scale motions,
with diffusion coefficients » and k, and we let the
system be forced by a mass source and sink F(r)
which does not vary with time. We must assume,
however, that the fluid which is being added at any
point possesses the same horizontal velocity as the
fluid already at that point. Assuming essentially
hydrostatic conditions, we may write the governing
equations as

aV/ot = —(V-V)V — fk x V — gVz + vV2V, (10)
9z/9t = —(V-V)z — h) — (H +z — h)V-V
4+ kVZ +F, (11

where g is the acceleration of gravity and k is a unit
vertical vector.

Eqgs. (10) and (11) are a modified form of the shal-
low-water equations, which apply when the wave
length, but not the wave height, greatly exceeds
the depth of the fluid. Our purpose for introducing
them, however, “is to simulate certain features of
atmospheric behavior. Thus, although real water
waves are likely to be mechanically driven, the
mass source and sink more closely model thé thermal
forcing of the atmosphere. Likewise, the dissipative
term in (11) simulates thermal dissipation. We have
not included the familiar ‘‘beta’” term which would
result from a variable f; we note, however, that its
effect has been approximated in both theoretical
and laboratory models (e.g., von Arx, 1952) by choos-
ing suitable bottom topography.

We now let

V=Vx+kxVy, (12)

where x is a velocity potential for the divergent part
of V and ¢ is a streamfunction for the rotational
part of V, so that VZy and V2 are the divergence
and vorticity. Then, after some manipulation, (10)
yields the divergence and vorticity equations

OVEiy/ot = —1AVEVx-Vx) — Vx-V(VZ) X k
+ V¥(Vx- V¢ X k) + V-(V2VyY)
— VYV V) + vV

+ fV3 — gV2z, (13)
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avAlot = —V-(VAVX) — vy-V(V2P) X k

— [V + V4, (14)
while (11) becomes
0z/0t = =V (z — h)Vx — V{§-V(z — h) X k
— HV?*x + «V%z + F. (15)

We shall use (13)—(15) as our basic equations.

To convert (13)-(15) to a low-order model we
introduce three dimensionless horizontal vectors
@, a,, a; for which

a, +a, +a; =0, (16)
and, for (i,j,k) = (1,2,3), (2,3,1) or (3,1,2), we let

a; = a;" a;, (17
b; = a; ay, - (18)
c; = a; X ayk, (19)
and note that
b = Ya(a; — a; — ay), (20)
¢; = (biby + byby + bgb)'* = c. (21)

We then choose a length L, and introduce three
orthogonal functions

¢; = cos(a; r/L), - (22)

and observe that
L*V2¢; = —a;d;, (23)
LV Vo = —Vobp; + - -+, (24)
LV - ($;V i) = Vb + -, (25)
L2V Ve, X k = =Vace; + -+, (26)

where the omitted terms are multiples of cosines
of arguments other than those included in (22).
We now let

t =fr, 27)
X =2Lf 3 xidy, (28)
b =2LY Y yidi, (29)
2 =2L%" Y 2, (30)
h =2L%"%" ¥ hid, 31
F =2L%%" ¥ Fidi (32)

where all summations run from 1 to 3. Substituting
(27)-(32) into (13)-(15) and dropping the terms
which are omitted in (24)—(26), we obtain the equa-
tions of our low-order PE model

a;dx;/dt = a;b;x;x — c(a; — ag)x;y
+ c(a; — a;)yixi — 2¢%y;y — voaix;
‘ (33)

+ a;y: — aizi,

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoLUME 37
adyldr = —axbix;yx — a;b;y;x .
+ clax — a)y;ye — aixi — voalyi, (34)
dzjdr = —byxfzi — hy) — bj(z; — h))x,
+ cyifze — hi) — c(z; — hy)yx
+ goaix; — woaiz; + Fi, (35)

where vy = L7% "', ko = L™% 'k, and g, = HL™*f"%¢.
Each of Eqgs. (33)-(35) is defined for each cyclic
permutation (i,j,k) of (1,2,3).

Without loss of generality we may assume that
the vector «, points northward. The variables with
a subscript 1 then represent zonally uniform velocity
and height fields, while those with a subscript 2 or 3
represent superposed large-scale waves or eddies.

If we introduce the auxiliary variables

U; = —=byx; + cyi, 36)
Vi= —=brx; — cyi, (37
and use the compbnents
X = —ax; (38)
of the divergence and
Y, = —a;y; (39)

of the vorticity as variables in place of x; and y;,
we may, making liberal use of (20), write (33)-(35)
in the more concise form

dXdr
= UU; + VVi — voailX; + Y, + aiz,, (40)
dYJdr =U;Y, + Y,V — Xi — voa, Y, (41)
dzildr = Ufz — hy) + (z; — hy) Vi

— goX; — kpaiz; + Fi. (42)

Egs. (40)—(42) are used in our numerical-integration
program.

To construct a simple QG model, we may discard
all nonlinear terms and all terms containing the x’s,
including the time derivative, from (33), and all non-
linear or topographic terms containing the x’s from
(34) and (35). We then eliminate the x’s and z’s, and
obtain

= a;)y;Yx
— afa;govo + Ko)yi — chyy; + chsyp + Fi,

(a1g0 + Ddy/dr = goc(ay
(43)

which is again defined for all cyclic permutations
(i,j,k) of (1,2,3).

Eq. (43) is fairly general. Without topography it
is equivalent to the system used by Vickroy and
Dutton (1979) to study bifurcations and catastro-
phes. With both waves of equal length, with zonally
uniform forcing, and with topography in the form of
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one wave, it reduces to the system used by Charney

and Devore (1979) to study multiple equilibria. With-
out topography, forcing, or damping it becomes the
‘‘minimum equations’’ used by the author (Lorenz,
1960) to study triad interactions.

If the variables w; in (1) are identified with the
quantities (a;go + 1)V2y; in the QG model (43), B be-
comes positive definite, while R?, which may be

identified with twice the total energy, is conserved

by the quadratic terms. The QG attractor is there-
fore a bounded set with zero volume. If instead the
variables in (1) are identified with suitable linear
functions of the variables in the PE model (33)-(35),
B again becomes positive definite. However, be-
cause the expression for total energy in the shallow-
water equations (13)—(15) is not quadratic, it is not
positive definite in the truncated equations (33)-
(35) derived from (13)-(15), and in fact the quadratic
terms in (33)-(35) do not conserve any positive
-definite quantity, so A, > 0. It is therefore conceiv-
able that almost all orbits will go to infinity if the forc-
ing is strong, but, when F.2 + F,? + F3*> is suf-
ficiently small, the inequality (7) will be satisfied,
and a component of the PE attractor will be bounded,
with zero volume. It is this component which we
shall investigate, and compare with the QG attractor.

-

4. Choice of numerical values

As previously noted, we wish to choose the
numerical values of the various parameters.in the
PE model (33)-(35) so that the general solution will
be aperiodic. It seems reasonable to expect that we
might accomplish this by choosing the parameters
to make the general solution of the QG model (43)
aperiodic. It is beyond the scope of this study to
explore a major portion of parameter space for even
so simple a system as (43). We shall therefore turn
immediately to a set of values which makes (43)
equivalent to a system already known to have an
aperiodic general solution. This system is one studied
by the author (Lorenz, 1963) in a paper which we
shall subsequently refer to as D.

We shall first let i, = h; = 0 and F, = F, = 0,
so that the topography and the forcing are zonally
uniform. We shall let a, = 1, so that 2#L becomes
the distance between adjacent latitudes of maximum
eastward velocity. We shall choose a, = 1, and set
as = a, whence ¢* = a — a*/4. Finally, we shall let
Ko = V.

If we now set

yi' =A'B'hly, — vy (go + D7'Fil, (44)
y:' = A'B'hyy,, (45)
ys' =A'ys, (46)
T = v, 47)

EDWARD N. LORENZ
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where
A’ = vy (go + D7'gec(a — 1), (48)
B’ =y, Y ag, + 1) lca™?, 49)
we find that (43) becomes
dy,'ld7" =y,'ys’ — yi', (50)
dy;'ld7" = =yi'ys" =y’ + 1y (5D
dyy'ldr’ = ay,’ — ays', (52)
where
r=—-A'B'[gy(a — 1)7'h?
+ v (go + D7 Fy]. (53)

Eqgs. (50)-(52) are seen to be identical with (25)~-(27)
of D, provided that in the latter equations, we set
X=y,/,Y=y,/),Z=y,’,0=aandb = 1.

According to the results of D, the system (50)-
(52) possesses stable steady solutions, which we
wish to avoid, if (a — 2)r < a(a + 4). In particular,
it possesses such solutions for all positive values of
rifa < 2. On the other hand, (16) cannot be satisfied
if a > 4. An obvious choice for a is 3, whence ¢?
= 34. The steady solutions of (50)-(52) are then all
unstable if r > 21. Whether or not, as in D, the
periodic solutions are also unstable may be investi-
gated through numerical integration.

We shall choose the numerical values of the physi-
cal constants to conform with the earth’s atmosphere
in temperate latitudes, to the extent that this is pos-
sible. According to (27) 7 = 1 whent = f~!, and we
shall let f~! = 10800s = 3 h. We shall let g = 10
m s~2, L = 1080 km, and H = 8 km, so that g, = 8.
We shall let « = v = 2.25 X 10 m? s, so that
Ko = vy = Yag, implying a 6-day diffusive damping
time for y, and y, and a 2-day damping time for y,.
Noting that s, and F, must have opposite signs if
r > 0, we shall let #; = —1, whence the topography
varies between +2 and —2 km. Then r = 21 when
F,; = 0.10785. Since the critical value for F, in the PE
model is likely to differ from that in the QG model,
and since in any case we do not wish to restrict our
attention to the critical value, we shall work with
various values of F, differing from 0.10785 by not
too large a factor.

To advance our numerical solutions from time 7 to
time 7 + A7, where A7 is a prechosen time incre-
ment, we shall use a Taylor-series scheme, which
consists of evaluating the first n time derivatives of
each variable at time 7 and then letting

s(t + A7) = i [dEs(T)dT*]} AT k1,

k=0

(54)

where s stands for any dependent variable. This
scheme is especially convenient for estimating values
of s within time steps, such as at zero crossings or
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F1G. 1. Variations of x, (dashed curve), y, (heavy solid curve) and z, (thin solid curve)
during first day of first numerical solution of PE model.

maxima or minima, since, having in any case evalu-
ated the derivatives, we may simply replace At by an
appropriate fraction of At in (54). In all of our solu-
tions we shall let n = 4.

For (33)-(35) we shall choose A7 = %2 (i.e., 15
min), while for (43) we shall choose A7 = 1 (i.e.,
3 h). These values are considerably smaller than
those heeded for computational stability, but we are
interésted in more than stability; we wish a rather
accurate picture of the attractor.

5. Behavior of the model

For most of our solutions of (33)-(35) we have
chosen F, = 0.10, after discovering that somewhat
larger values including 0.11 and 0.125, which might
have appeared more likely to lead to aperiodicity,
actually produced stable periodic solutions. We
found, incidentally, that with F, = 0.40 the solu-

0.6

tion went to infinity. This blow-up was not compu-
tational; the solution was virtually reproduced when
At was lowered to Y24. In view of our earlier discus-
sion, this behavior was to be expected for sufficiently
strong forcing. - »

For our first numerical integration with ¥, = 0.10,
we have rather arbitrarily chosen the initial value of
each variable to be 0.10, and have rin the integration
for 400 days (38 400 iterations). Fig. 1 shows the
behavior of x,, y,, and z; for the first day. The varia- .
tions are dominated by pronounced oscillations
with a period close to 6 h. These are plainly ageo-
strophic, since y, and z, are opposite in phase, and
they are evidently gravity-wave oscillations.

Fig. 2 extends the variations of y, and z, to eight
days. The gravity waves exhibit considerable damp-
ing, and we see that they are superposed on longer
period variations where y, and z, are in phase and

N

_
0.4
0.2
0

1K

-0.2F -

-0.4 1 ] ]

o] days 2

4 _ 6 8

F1G. 2. Variations of y, (heavy curve) and z, (thin curve) during first eight days of first
numerical solution of PE model.
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F1G. 3. Variations of y, (heavy curve) and z, (thin curve) from ¢ = 34 days to¢ = 42 days
in first numerical solution of PE model. The difference between the curves is unresolvable

from 34 to 38 days.

nearly equal, and which therefore are presumably
quasi-geostrophic.

Fig. 3 is like Fig. 2 except that the variations of y;.

and z, are from day 34 to day 42. The quasi-geo-
strophic variations are almost like the earlier ones,
but the gravity waves seem to have vanished. Actu-
ally they are easily detected in the third significant
decimal place of the numerical output, and they
dominate the second time derivatives, but they be-
come lost in the round-off after several months.

If itis true that the gravity waves die out altogether
as 7 — o, while the quasi-geostrophic variations
remain, the system should ultimately vary with three
degrees of freedom instead of nine. That is, there
should be a three-dimensional stable invariant mani-
fold —invariant in that a point on it remains on it
while traversing an orbit, and stable in that a point
close to it approaches it. The attractor should be
contained in this manifold.

On the manifold the values of three variables,
_say the y’s, should determine the values of the re-
maining six. If analytic expressions for the x’s and
z’s in terms of the y’s could be discovered and sub-
stituted into the equations governing the y’s, a three-
variable system would result. The attractor of this
new system would be the projection of the nine-
variable attractor on the y,;-y,-ys;-subspace.

Attempts to initialize more general primitive-
equation models for forecasting are based on the
premise that contemporary relations among the vari-
ables do exist, at least approximately, i.e., that
large-scale gravity waves are of minor importance.
Quasi-geostrophic models may be regarded as crude
approximations to the reduced systems which would
result. In our case, if the QG model is actually a
reasonable approximation to the new three-variable
system, the attractor set of the PE model, or its

projection on the y;-y,ys subspace, should have
many features in common with the QG attractor,
and hence with the attractor discovered in D. We
shall attempt to determine whether our conjectures
are correct.

Fig. 4 shows the variations of Y, and Y, for the
first 80 days, which include the days shown in Figs.
2 and 3. We have switched from y; to Y;, given by
(39), because maxima of Z in D correspond to minima
of y,, and hence to maxima of Y,. The figure is con-
structed from values at 6 h intervals, except for the
first 5 days, when values at 12 h intervals are used.
The initial gravity-wave oscillations are thereby
not eliminated, but they show up in ‘‘aliased’’ form
as oscillations of considerably longer period.

The quasi-geostrophic oscillations of Y; exhibit
a succession of clearly defined maxima and minima
occurring about once a week, but at irregular in-
tervals, with somewhat similar but not identical
shapes and varying intensities. They show no sign of
damping. The rather flat initial minimum actually
results from the superposition of a maximum in the
aliased gravity waves on a more typical quasi-
geostrophic minimum.

If Y, were replaced by its absolute value, its
variations would look very much like those of Y;.
The maxima of |Y;| are in one-to-one correspond-
ence with those of Y, and occur a few hours earlier.
Moreover, the higher the maximum of Y, the higher
that of |Y3| . However, Y; also undergoes irregular
changes of sign; sometimes there are two successive
maxima of |Y;| where Y, has the same sign, and
sometimes only one. Examination of Fig. 4 and its
continuation indicate that sign changes follow the
higher maxima of Y,; the critical maximum is close
to 0.06. The general behavior is like that found in D.

A feature of the numerical solutions studied in D
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Fi1G. 4. Variations of Y, (upper curve) and Y, (lower curve) during first 80 days of first
numerical solution of PE model.

is that the value of Z at one maximum is a nearly
perfect predictor of the value at the following maxi-
mum, i.e., to a close approximation, successive
maxima satisfy a first-order difference equation. Once
observed, this behavior is not difficult to account for.
A point P at which Z acquires a specified maximum
value, say Z*, lies on three surfaces—the plane
Z = Z*, the hyperboloid dZ/dt = 0, and the attrac-
tor. It must therefore be one of the limited number of
points in which these surfaces interact. Actually the
attractor is an infinite complex of surfaces, but it is
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F1G. 5. Pairs of successive maxima of Y, in numerical solutions
of PE model. Abscissa is nth maximum Y, ,; ordinate is follow-
ing maximum Y, ,.,. Pairs from first and second numerical solu-
tions are indicated by closed and open circles, respectively.
Smooth curve fitting points is sketched in.

closely approximated by a pair of smooth surfaces,
one of which may be obtained from the other by ro-
tating through 180° about the Z-axis. The plane,
hyperboloid, and approximate attractor prove to in-
tersect in only four points. Two of these, with equal’
values of Z, are at maxima; the other two are at
minima. To within the 180° rotation, then, P is deter-
mined by Z*, and so, therefore, are the properties of
the orbit passing through P, including the next maxi-
mum value of Z.

Fig. 5 shows that this feature also characterizes
our PE model. It has been constructed as a scatter
diagram, but the points reveal no scatter. The solid
circles indicate points whose coordinates are two
successive maxima of Y;. Only those maxima oc-
curring after 50 days, when the influence of the gravity
waves is invisible, are shown; some points which
would have fallen nearly on top of other points are
omitted.

The open circles are obtained from a second
numerical integration, which was also run for 400
days. The equations ‘possess a steady solution in
which the flow is purely zonal and nearly geostrophic;
this is given by x, = —0.01111, y, = 0.53331, z,
= 0.53354, while each variable with a subscript 2 or
3 vanishes. It corresponds as closely as is possible
in the model to the theoretical ‘‘Hadley circula- -
tion’’ in an idealized atmosphere

The corresponding solution in the QG model is
y, = 0.53333,y, = y; = 0. This corresponds in turn
to the violently unstable state of no motion in the
convective model in D, where all variables vanish.
In the QG and PE models the steady Hadley solu-
tions are likewise unstable. For the second numeri-
cal solution we have chosen as an initial state a very
small departure from the Hadley solution, by letting
y, = z, = —0.00001. The open circles in Fig. 5 show
pairs of maxima of y, from this solution. A smooth
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curve which has been sketched through the open
circles fits the solid circles equally well.

As in D, the curve possesses a single cusp. The
abscissa, 0.060, is evidently the value of the maxi-
mum of Y, which separates those maxima of Y, where
Y; subsequently changes sign from those where it
does not. Just at the critical value, Y; cannot decide
whether to change or retain its sign, and so it does
neither; instead it approaches zero, and the orbit
approaches the intersection of the Y,-axis and the
attractor, i.e., the steady Hadley solution. Maxima
close to 0.060 are therefore followed by close en-
counters with the Hadley solution, and subsequently
by behavior resembling the initial days of our second

numerical solution. The extreme maximum, 0.326, -

which is the first maximum attained in the second
solution, is therefore shown as following a maximum
of 0.060. Incidentally, the Hadley solution is an ex-
ample of a fixed -point which, although unstable,
lies on the attractor.

We have noted that the general solution can be
aperiodic only if all periodic solutions are unstable.
In a periodic solution the succession of maxima of
Y, is also periodic, and therefore determines a finite
setof points P, .. . , Pyonthe curvein Fig. 5. If the
initial state is perturbed slightly, so that the abscissa
of one point P, is displaced by an amount e, the
abscissa of P,..;, which is the ordinate of P,, will be
displaced by the product of € and the slope A; of the
curve at P,. It follows that a periodic solution is un-
stable if the product Ay, . .., Ay exceeds unity in
absolute value.

The curve in D proved to have a slope exceeding
unity everywhere, so there was no question about
the product. A feature of the curve in Fig. 5 not found
in D is the singularity, i.e., the point where the slope
vanishes. This introduces the possibility of stable
periodic solutions, since large slopes near the cusp
may be cancelled by small slopes near the singularity.
In particular, if one point of a periodic solution coin-
cides with the singularity, the product of the slopes
will vanish, unless another point coincides with
the cusp.

It is not likely that for a given choice of F; the
singularity will coincide with a point on a periodic
solution, since the number of such points should be
countable. However, if the Nth point following the
singularity lies close to the singularity, a properly
chosen small change in F', should suffice to move the
Nth point to the singularity, thereby producing a
stable periodic solution. We have discussed this
question in detail in a study of a quadratic differ-
ence equation (Lorenz, 1964).

Since we do not know what values of F, near 0.10
will produce stable periodic solutions with very long
periods, we cannot be certain that 0.10 is not one of
these values, and that the apparent aperiodicity in
our numerical solutions is more than a transient phe-
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FIG. 6. Projection on Y,-Y; plane of two orbits emanating from
unstable fixed point representing Hadley solution, for PE model
with F, = 0.10. Where two curves cross, curve with lower value
of Y, is broken. The origin of the orbits is at center of symmetry
of figure. Arrowheads labeled 1, 2, 3, 4 indicate locations of first
through fourth maxima of Y, on orbit where Y, isinitially positive.

nomenon. We can be fairly sure that for some values
of F, very close to 0.10 there are no stable periodic
solutions. The long-term behavior for these values
of F, will be virtually indistinguishable from the
transient behavior for the values of F; producing
stable periodic solutions. We can be fairly sure,
then, that our numerical solutions represent long
term behavior, with the possible provision that it is
the behavior for some value of F, like 0.10002 rather
than 0.10.

6. The attractor set

Since we cannot easily make nine-dimensional
drawings, we shall examine the projections of orbits,
and of the attractor, on various three-dimensional
subspaces. Let us regard Y, and Y; as -horizontal
coordinates and Y, as the vertical coordinate in the
Y,-Y,-Y;-subspace. Fig. 6 shows the horizontal pro-
jection of a portion of the orbit in the second numeri-
cal solution, and of another orbit differing from this
one only in the signs of ¥, and Y;. Where two curves
cross, the lower one has been broken. The numbered
arrowheads show the locations of the first four
maxima of Y, in the first solution.

Fig. 7 shows the projection of the attractor on the
Y,-Y,-Y; subspace. A portion with positive values of
Y; is omitted, since the attractor is unchanged by a
180° rotation about the origin. The drawing requires
some explanation. .

As in D, the attractor is actually an infinite com-
plex of surfaces, but, for any choice of Y, and Y,
each possible value of Y, is very close to a single
value, or to one of two values. In the region where
only one such value exists, the thin solid lines are
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F1G. 7. Projection of PE model attractor on Y,-Y,-¥; subspace, for F; = 0.10. Coordinates
are Y, and Y,. Thin solid curves are contours of Y, or, where two surfaces exist, contours
of Y, on upper surface. Thin dashed curves are contours of Y, on lower surface. Heavy dashed
curve and extensions as heavy solid curves are natural boundaries of attractor. Heavy dotted

- curve is boundary of projection of attractor on Y,-Y; plane. Portion of figure with Y, > 0.10
is omitted, since it may be obtained by rotating figure through 180° about origin. See text

for details.

contours of Y,; where two values exist, they are
contours of the higher value of Y,, while thin dashed
lines are contours of the lower value.

If any initial state very close to the steady Hadley
solution is chosen, the orbit proceeding from it will
for a while be almost identical with one of the orbits
in Fig. 6. The heavy dashed curves emanating from
the origin, and their extensions as heavy solid curves,
are the initial portions of these orbits. Since the first
maxima of |¥,| and | Y| on these orbits are the ex-
treme maxima, the heavy solid curves form natural
boundaries for the attractor. The extensions of the
heavy solid curves into the interior of the figure form
natural boundaries for the upper surface. The curves
have been terminated where the upper and lower
surfaces for practical purposes merge.

The heavy dotted curves indicate where the at-
tractor is vertical, i.e., they are natural boundaries
for the projection of the attractor on the Y,-Y; plane.
They are not projections of single orbits, but are
envelopes of such projections. No orbits enter the
holes which they enclose.

Let us choose a point on the boundary in the lower
portion of Fig. 7, say Y, = 0.10, Y3 = —0.56, Y,
= 0.33, and move along the attractor toward higher
values of Y3, keeping Y, constant. We first move
downward, crossing the 0.3 and 0.2 contours of ¥,

!

and the (dashed) 0.1 contour shortly after sliding
under the boundary of the upper surface. We con-
tinue downward less steeply, and eventually move
horizontally, then upward, and then vertically up-
ward as we reach the dotted curve. To remain on
the attractor we must enter the upper surface pro-
ceeding back toward lower values of Y;, and we
reach the boundary of this surface just after crossing
the (solid) 0.1 contour.

Where the heavy solid curves have been termi-
nated, at Y, = =0.08, Y; = 0.0, the upper and lower
surfaces of course do not really merge; they simply
become too close to be easily resolved. If we follow
an orbit past one of these points along what now
looks like one surface, until it passes over or under
another apparent surface, a pair of surfaces is really
passing over or under another pair. These four sur-
faces subsequently appear to merge, and then pass
over or under another set of four surfaces, etc. The
surfaces on which an orbit emanating from the origin
eventually finds itself thus constitute a countable
set, which is analogous to the set of all numbers be-
tween 0 and 1 having terminating decimal expan-
sions which contain only 0’s and 1's. The attractor
set is the topological closure of this set of surfaces,
and contains all surfaces which are limits of se-
quences of surfaces in the countable set; it is thus
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analogous to the set of numbers with terminating
or nonterminating decimal expansions containing
only 0’s and 1’s, and hence is a Cantor set.

Our picture of the attractor is somewhat difficult
to compare with the picture in D, since there we
chose Y and Z, corresponding to Y, and Y,, as hori-
zontal coordinates. Had we done so in the present
case, showing contours of Y;, we would have found
it necessary to show four surfaces instead of two
in portions of the figure. The prominent holes
bounded by the dotted curves would have penetrated
two of these surfaces but not the other two. The
resulting picture would have been quite confusing.

We now turn to the remaining variables. Fig. 8 is
like Fig. 7, except that it shows contours of Z, (we
define Z; as —a;z;). We find that where a single sur-
face is present in Fig. 7, there is a single value of Z;
where two surfaces are present there are at most two
values of Z;—one on each surface. We conclude
that, to the extent that we can judge from the numeri-
cal output, the values of the ¥’s completely deter-
mine Z,.

If the motion were exactly geostrophic, the con-
tours of Z; in Fig. 8 would coincide with lines of
constant Y3;. We observe that over much of the figure
they come close to doing this; note, for example,
the solid —0.3 contour. There are some regions,
however, where the motion is less geostrophic; note
the dashed —0.3 contour, and the nearby portion of
the —0.4 contour. Further examination indicates
that those points where Z; and Y, differ appreciably
are located fairly close to the natural boundary of

-0.2
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lower surface. Orbits passing through these points,
such as the curve passing through (Y,,Y,) = (0.4,
—0.3) in Fig. 6, tend to remain close to the natural
boundary, so that ¥, should surpass 0.2 or perhaps
0.25 at its next maximum. Comparison with Fig. 5
shows that this can happen only if the previous
maximum lies in an extremely narrow range — per-
haps between 0.059 and 0.061. Since maxima of Y,
in a much wider range containing 0.60 are more or
less equally probable, we conclude that a maximum
exceeding 0.25, and hence a strongly ageostrophic
value of Z,, is a rather rare event.

It is of interest at this point to compare the geo-
strophic equation and the balance equation. The
latter may be obtained from (33) by discarding all
terms containing the x’s, but retaining the nonlinear
terms not containing the x’s. The resulting equation is

a;y; — 2¢%;yr = aiZi,- (55)

where again (i,j,k) is any cyclic permutation of
(1,2,3). It is easily solved for the y’s in terms of the
z’s for those values of the z’s for which solutions
exist. These include all values encountered in our
second numerical solution. We shall let z;' denote
the value of y; satisfying (55); the value satisfying the
geostrophic equation is of course z;.

It was our intention to present a figure like Fig. 8
showing the contours of Z,' (= —asz;') instead of
Z,. We found, however, that the contours were
hardly distinguishable from the lines of constant Y,
and that there were no interesting details to demon-
strate. We conclude that the balance equation is a

~0.6 L

-0.4 -0.2 0

0.2

F16. 8. As in Fig. 7, but with contours of Z,. ' '
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good approximation everywhere on the attractor.
The strongly ageostrophic states result from non-
linearity, which manifests itself in one term of the
balance equation.

Fig. 9 shows contours of Z,. For geostrophic con-
ditions these should coincide with lines of constant
Y,, and we see that they fit these lines reasonably
well. Like Z,, the value of Z, is completely deter-
mined by the Y’s.

Similar remarks apply to Z, and the X’s. The latter
variables would vanish under purely geostrophic
conditions, and actually they are small compared
to the Y’s.

We conclude first that on the attractor the values
of the y’s completely determine the values of the
remaining six variables. In addition, the nine vari-
ables are in approximate geostrophic equilibrium
at most points of the attractor, i.e., the attractor is
quasi-geostrophic.

It remains to be seen whether the attractor of the
PE model resembles that of the QG model. For
identical values of the parameters it evidently does
not, since in the latter model the forcing F, = 0.10
is subcritical. The two steady-state solutions with
eddies are stable, and the attractor consists of just
these two points.

We shall attempt to find a value of F, for the QG
model which makes the attractor as much as possible
like the PE attractor when F; = 0.10, in a qualitative

. sense. We shall do this by finding a value of F; which
makes the curve of successive maxima of Y, look
like Fig. 5.

Fig. 10 shows these curves for F, =

0.10,0.15and
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0.20. Although more suitable numerical values of
Y, occur for the lower values of F, a more appro-
priate shape occurs when F, = 0.20.

Fig. 11 is constructed like Fig. 7, and it shows the
QG model attractor, for F, = 0.20. Although the
pictures are not so much alike that one would be
mistaken for the other, the qualitative resemblance
is evident. The natural boundaries formed by the
orbits emanating from the origin possess the same
general shape, and each attractor has two promi-
nent holes.

It is likely, then, that the collection of attractor
sets which occurs over a considerable range of F,
in the QG model is rather like a similar collection
for the PE model. Similar shapes occur, and there
are critical values of F, separating one shape from
another. The critical values are not the same in the
two models, and evidently may differ by a factor of
about 2. We found, for example, that the PE attrac-
tor reduces to two fixed points for F, < 0.056. If a
single value of F, is selected, then, the attractors
of the two models may differ considerably.

7. The invariant manifold

Although we know that the attractor is invariant,
and have found that the values of three variables
on the attractor determine the values of the remain-
ing six, we have not thereby demonstrated that the
attractor is embedded in an invariant three-dimen-
sional manifold. We can do this by showing that
even for points not on the attractor, if gravity waves
are completely absent, the values of three variables

-0.2

FIG. 9. As in Fig. 7, but with contours of Z,.
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F1G. 10. Curves fitting pairs of successive maxima of Y, in numerical solutions
of QG model, for F; = 0.10 (thin curve), F, = 0.15 (medium curve), and F; = 0.20
(heavy curve). Abscissa is nth maximum Y,,; ordinate is following maxi-

mum Y .

determine the other six uniquely. Establishing a
method to find these values would amount to solving
the initialization problem for our PE model.
Gravity waves and quasi-geostrophic oscillations
in this model are distinguished by their frequencies,
which differ by about an order of magnitude. It fol-
lows that, in a particular solution, if the value of one
variable, say x,, can be resolved into gravity-wave
and quasi-geostrophic components, the ratio of
these components will be exceeded by about n

orders of magnitude by the ratio of the same com-
ponents of d™x,/dr". Hence, relative to its value in an
arbitrary solution, the value of d"x,/d+" in a solution
without gravity waves should be close to zero for
large n. This property leads to an algorithm for find-
ing points on the manifold.

We choose fixed values of y,, y,, y3, and seek the
remaining variables. For notational convenience we
letz; — y; = x;0afori = 1,2, 3, and let Y and X be
three- and six-dimensional vectors with components

Y3
o
-04+
-0.8 | 1 1 ] 1 1 1 1 o
-0.8 -04 0 0.4 o8 Y
2

Fic. 11. As in Fig. 7, but for QG model with F; = 0.20.
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(¥1,y2,y3) and (x4, . . . , x¢). For a starting approxi-
mation we choose X = 0, and in successive approxi-
mations we determine X so that dX/dt = 0, d*X/
dr? = 0, etc.

To find these values of X numerically we use a
double approximation procedure. We let Xy, be the
kth approximation to the value of X which makes
d™X/dr" vanish. We set X, , = 0, i.e., we begin with
the geostrophic approximation, and in general we let

X — (d™XKp 1 /dT™)[0(d™X 1 AT 00X ] 7,

where the quantity in brackets is a sixth-order square
. matrix, which may be estimated by perturbing the
components of X one at a time, and reevaluating
the components of d"X/d7". When the procedure
has converged for a particular value of n, say, when
k = K(n), we let

Xok+1 =

Xot10 = ), S (57
and continue.

We have applied our algorithm to a number of
values of Y, some of which lie on the projection of
the attractor on the y,-y,-y; subspace, and some of
which do not. In general the procedure converges
rapidly; three or four values of k are sufficient for
each value of n, and the computed components of X
do not vary appreciably after n = 3. When Y is on
the attractor, the components of X yielded by the
algorithm agree to five decimal places with those
appearing in numerical solutions where the orbit
has reached the attractor.

When Y is not on the attractor, we have used the
components of Y, together with the components of
X yielded by the algorithm, as initial conditions in
a new numerical integration. After a number of days,
but before the attractor has been reached, we have
stopped the integration. We have then applied the
algorithm to the final values of Y. The components
of X which it yields have again been identical with
the final components of X in the numerical inte-
gration. The invariance of the manifold is thus
confirmed.

Numerous variations of the algorithm are possible.
We have tested one in which the quantities which
are made to vanish in the nth approximation are
d™ x;/dr" ! and d™x;/d", fori = 1, 2, 3. Applied to
the same vdlues of y,, y,, y;, it yields the same re-
sults as the first algorithm.

We shall call the equation which describes the
invariant manifold the superbalance equation. Al-
though we have not managed to write it in explicit
form, we know that it looks somewhat like the geo-
strophic equation. It should look more like the
balance equation; in introducing the balance equa-
tion, Charney (1955) found that if in a simple system
it was initially satisfied, it would continue for some
time to be nearly satisfied, so that it would describe
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a nearly invariant manifold. The superbalance equa-
tion is not the balance equation, however, since the
latter is completely fixed by the divergence equa-
tion (33), while the former would be altered by any
change in the system (33)-(35), including the in-
tensity of the forcing.

As to the stability of the invariant manifold, it
appears that if an initial state close to the manifold
is chosen, the orbit may temporarily move toward
or away from the manifold, but in due time it will
approach the attractor, and so will necessarily ap-
proach the manifold, which contains the attractor.
We conclude that there exists a stable invariant
three-dimensional manifold composed of all states
from which gravity-wave oscillations are completely
lacking. Embedded in this manifold is the attractor
set, which consists of an infinite complex of two-
dimensional surfaces, but is closely approximated
by a pair of surfaces.

8. Concluding remarks

The attractor set of a dynamical system is for
practical purposes the set of points in phase space
which will continue to be encountered by an arbi-
trary orbit after an arbitrarily long time has passed.
For a large class of forced dissipative systems the
attractor has zero volume, i.e., an arbitrarily selected
point in phase space is almost always not on the at-
tractor. When the general solution is aperiodic, the
attractor is strange.

The dynamlcal system which we have chosen to
investigate is one of the simplest possible nonlinear
primitive-equation models. It possesses nine de-
pendent variables. We have found, as expected,
that the attractor is confined to a central region of
phase space, and that most of its points represent
states of approximate geostrophic equilibrium.
Where the geostrophic relation fails, the balance
equation is a good approximation.

We have also found that the system possesses a
three-dimensional stable invariant manifold, rep-
resenting states which are devoid of gravity waves.
The attractor is embedded in this manifold. Points
on the manifold, whether or not they are on the at-
tractor, tend to satisfy the geostrophic equation;
again, the balance equation is more closely satisfied.

We have constructed a three-variable quasi-
geostrophic model by replacing the prognostic diver-
gence equation by the geostrophic equation. The
attractor of this model is qualitatively like that of
the PE model, provided that the intensity of the forc-
ing is suitably adjusted. It appears that a three-vari-
able model in which the divergence equation is re-
placed by the balance equation would possess an
attractor more nearly resembling the PE attractor,
although we have not pursued this question. The
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perfect three-variable model would of course be the
one where the superbalance equation is used; there
the attractors of the three- and nine-variable models
would be identical.

The question naturally arises as to what the at-
tractor of a more realistic meteorological model,
perhaps a global circulation model (GCM) with
100 000 variables, would look like. We feel certain
that for appropriate choices of the constants the
model would vary aperiodically, and the attractor
would be strange. The model should admit many
modes of motion which decay with time, so that the
attractor should have few dimensions compared to
the entire space. Perhaps it would have several
hundred dimensions. Topologically it might be the
product of a few hundred continua and a number of
Cantor sets.

We know of no useful way to draw a picture of the
projection of the attractor on a subspace of several
hundred dimensions. If we project the attractor onto
a plane, or onto any subspace with fewer dimen-
sions than the attractor itself, the projection will
fill a continuous region in the subspace, and the
strangeness, i.e., the presence of Cantor sets, will
not be detectable.

The phase space of the GCM should also contain
an invariant manifold, representing states which
are devoid of gravity waves. The stability of this
manifold is another matter. Gravity waves are
present to some extent in the real atmosphere, and
they should appear in a realistic GCM. If the mani-
fold is unstable, the attractor will not be embedded
in it.

The simple algorithm which we used to find the
invariant manifold presumably does not solve the
initialization problem for larger models such as the
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GCM'’s. It is based on the complete separation of
quasi-geostrophic and gravity-wave frequencies. A
GCM will admit internal gravity waves, with lower
frequencies. Small-scale weather features will, simply
by being advected, oscillate more rapidly than large-
scale features. The gravity-wave and weather-system
frequencies are therefore likely to overlap. It would
still be interesting to see what this initialization pro-
cedure would produce.

For models which are much simpler than a GCM,
but more detailed and presumably more realistic
than our nine-variable model, the problem of draw-
ing a picture of the attractor seems more tractable.
Perhaps the next task to be accomplished is the
discovery and description of an attractor which is
topologically the product of more than two continua,
and, if possible, more than one Cantor set.
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