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The Growth of Errors in Prediction.

E. N. LORENZ
Massachusetts Institute of Technology - Cambridge, MA

Partr I
General Aspects of Error Growth.

1. — Introductory remarks.

Among the innumerable systems which exist in Nature, in the laboratory,
or as mathematical abstractions, some are convergent, or stable, while others
are divergent, or unstable. By a stable system we mean one whose future
succession of states, if the present state should be slightly disturbed, will con-
verge toward the succession of states which would have occurred if there had
been no disturbance. By an unstable system we mean just the opposite—a
system whose future following a slight disturbance will diverge from what its
future would have been without a disturbance.

Stable and unstable systems may be very simple. Consider, for example,
a smooth plain in which there is a single bowl-shaped depression. Consider the
motion of a ball, which is placed somewhere in the depression and allowed to
roll until friction stops it. It will ultimately come to rest at the bottom of the
depression. If it had been placed in a slightly different location in the depres-
sion, it would still have come to rest at the bottom. Equivalently, if two
identical balls had been placed in slightly different locations, they would have
come to rest at the same place. The system is stable.

Consider next a smooth plain from which there rises a single dome-shaped
hill. If a ball is placed somewhere on the hill and is allowed to roll, it will come
to rest somewhere on the plain. If a second ball is placed in a slightly different
location on the hill, it may come to rest at a considerably different location on
the plain, particularly if the initial locations are near the top of the hill. The
system is unstable.

In the former example we do not need a detailed knowledge of the laws
of motion to predict the final location of the ball. It is sufficient to know that
the ball will seek the lowest point. Moreover, we do not need to know the
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initial location. It is sufficient to know that it is in the depresssion rather
than on the plain. The accuracy of our prediction will be limited only by the
degree of precision with which we can locate the bottom of the depression.

In the latter example our prediction of the final location depends upon
the details of the laws of motion, including the manner in which friction acts.
This does not mean that we must know the laws; we could, for example, have
previously placed many balls in different locations on the hill and have learned
by experience what final location corresponds to what initial location. We
must, however, know the initial location of the ball. If the precision of our
measurements allows us to say only that the ball is initially in some small
region on the hill, we can say only that the final location will be somewhere
in a much larger region on the plain. It is thus apparent that stability favors
predictability, while ingtability opposes it.

Most systems are much more complicated than the two which we have
described. Many of them are somewhat analogous to a ball rolling on an undu-
lating surface with numerous depressions and hills of different sizes. Here
there are additional possibilities for instability; for example, two balls rolling
down a hill along slightly different paths may subsequently encounter another
hill and be deflected by its curvature into widely diverging paths. This increases
the likelihood that they will ultimately come to rest in the bottoms of different
depressions.

2. — The concept of error growth.

In the above examples we may define the state of the system at any particu-
lar time as the combined position and velocity of the ball at that time. We
may represent the state by a set of four numbers—two position components
and two velocity components. Likewise, we may represent the laws of motion,
applied to the system, by a set of four first-order ordinary differential equations.
Strictly speaking, our systems are more complicated; in addition to rolling,
the ball may be spinning about an axis perpendicular to the ground, and its
spin may influence its future path. More general systems often require hundreds
or thousands of numbers to represent their states, even approximately, and
an equal number of ordinary differential equations to represent the governing
laws. Alternatively, the laws may sometimes be represented by a relatively
small number of partial differential equations.

We shall define an error as the difference between two possible states of a
system. In our examples an error may be represented by four numbers, obtained
by subtracting the numbers representing one state from those representing the
other. The logic of this definition becomes apparent when we consider the case
where one state is the true state, and the other is the state which has been
observed to exist or is believed to exist, with the inevitable lack of perfect
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precision in the observations. If each state subsequently varies according to
the physical laws, the future error becomes the error in prediction which we
would make, using an optimal prediction procedure. The decay or growth of
errors, therefore, influences the possible aceuracy of predictions. In our first
example the ultimate error is merely the error in determining the lowest point
in the depression; in the second example it is the difference betweon two points
in a possibly extensive region of the plain.

It is sometimes useful to extend the definition of an error to apply fo the
difference between states of two different systems. The systems must, of course,
be enough alike for the state of one to be subtractable from the state of the
other. In our examples the second system could be one where a ball of a dif-
ferent mass or radius is allowed to roll. For practical purposes two systems
are different only if the equations governing their states are different. The
usefulness of the extended definition becomes evident when one initial state
is the true state of a real system, and its equations are the true equations,
while the other is the assumed state, and its equations are approximations to
the true equations.

To study the predictability of a system, we may investigate the growth or
decay of errors. We need not know in advance whether the most feasible
method of predicting the behavior of the system actually involves starting out
from an jnitial state. If our investigation indicates that errors will decay, it
will tell us that some simpler method is probably available. If it indicates
that errors will grow, it will imply that we cannot prediet the future without
knowing the present or some recent past state.

The systems in our examples are somewhat specialized in that the motion
of the ball is a strictly transient phenomenon. In each example the system
eventually acquires a steady state. Geophysical fluid systems where prediction
is of interest, such as the atmosphere, undergo fluctuations which never cease.
It is systems of this sort whose predictability will be our primary concern.
Despite the differences, the concepts of stability and instability, and decay
and growth of errors, are still relevant.

3. — Simple numerical examples.

Before presenting a general treatment of error growth in systems whose
states continue to vary, we-shall consider some simple numerical examples.
In each of these the state is defined by a single variable z(#), and its variation
with time ¢ is given by the quadratic difference equation

(1) By =22 — C

rather than by a differential equation, where x,= x(t,) and #, %, %, ... is &
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sequence of times. Onece the constant ¢ has been specified, an initial value x,
determines a sequence o, &y, &, .... If ¢ lies between 0 and 2, and x, lies between
— ¢ and 4 ¢, », will lie between — ¢ and - ¢. Because a state is defined by
a single number, the example cannot illustrate all aspects of error growth.
Equaﬁion (1) has received much recent attention from mathematicians because
of the many types of solutions which it exhibits [1, 2].

TasiLe 1. — Particular solutions z, and vy, of quadratic difference equation x,,, =
= g} —¢, with ¢ = 1.2, difference vy, — x,, particular solution z, with ¢ = 1.201, and
difference 2, — %, . All values have been multiplied by 10000.

n Ty Yn Yp— Ty 2y Zp— Tp
0 5000 5010 10 5000 0
1 — 9500 — 9490 10 — 9510 —10
2 — 2975 — 2994 —19 — 2966 9
3 —11115 — 11104 11 — 11130 —15
4 354 329 —2b 378 24

5 — 11987 — 11989 — 2 — 11996 — 9
6 2370 2374 4 2380 10
7 — 11438 — 11436 2 — 11444 — 6
8 1084 1079 — 5 1086 2
9 — 11 883 — 11884 — 1 — 11892 — 9
10 2120 2122 2 2132 12
11 — 11551 — 11550 1 —11555 — 4
12 1342 1340 — 2 1343 1
13 — 11820 — 11821 — 1 — 11830 —10
14 1971 1972 1 1984 13
15 — 11612 — 11611 1 — 11616 — 4
16 1483 1481 — 2 1484 1
77 — 11708 — 11708 0 —11716 —

78 1708 1708 0 1716 8

79 — 11708 — 11708 0 —11716 — 8

80 1708 1708 0 1716 8

In our first example ¢ = 1.2. Table I compares a basic or « true » solution
x, where 2,= 0.5 with a perturbed or «predicted » solution g, where ¥, has
been « observed » to be 0.501. The error y, — , is also shown. If the example
represented a real physical system whose state could be measured, the « obser-
vational » error 0.001 might not be unreagonably large.
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We see that the error amplifies several fold in the first few steps, but sub-
sequently undergoes damped oscillations. Before step 80 the solutions are
alike to four decimal places. Evidently the system is stable.

Table I also compares x, with a solution 2z, of (1), with ¢ = 1.201. In a
real system involving physical constants the error 0.001 in determining one
constant ¢ might not be unreasonable. Again, the initial error growth soon
ceases, and the error ultimately oscillates between — 0.0008 and - 0.0008.

It is apparent that with this stable system we do not need to know the
governing law exactly to make reasonably good predictions far in advance.
Neither do we need to know the initial state very closely; it is sufficient to
know that x, lies between — 0.6 and - 0.6.

In our second example ¢ == 1.8. Table II is similar in format to table I.
‘We see that the initially small error y, — x, proceeds to grow rather irregularly,
generally gaining an order of magnitude in about five steps, until it becomes
comparable to «, itself. At this point the prediction y, for x, has become

TasrLE II. — Same as table I, with ¢ = 1.8 for z, and y,, and ¢ = 1.801 for z,.

n , Yn Yn— Ty Zn 2y by,
0 5000 5010 10 5000 0
1 — 15500 — 15490 10 — 15510 — 10
2 6025 5994 — 31 6 046 21
3 — 14370 — 14407 — 37 — 14355 15
4 2650 2757 107 2595 — 55
5 — 17298 — 17240 58 —17336 — 38
6 11922 11722 — 200 12045 123
7 — 3786 — 4260 — 474 — 3502 284
8 — 16566 —16185 381 — 16784 — 218
9 9444 8196 — 1248 10 160 716
10 — 9080 — 11282 — 2202 — 7688 1392
11 — 9755 — 5271 4484 — 12100 — 2345
12 — 8484 — 15222 — 6738 — 3370 5114
13 —10802 5170 15972 — 16874 — 6072
14 — 6331 — 15328 — 8997 10 465 16796
15 —13992 5493 19 485 — 7059 6933
16 1578 — 14982 — 16560 — 13227 — 14805
17 —17751 4447 22198 — 1041 16710
18 13510 —16023 — 29533 —17902 — 31412
19 253 7672 7419 14 037 13785
20 — 17994 —12114 5880 1693 19 687
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worthless. The system is patently unstable. Of course, the error cannot amplify
forever, since both %, and z, remain bounded.

If 2y=x,, but ¢ is taken to be 1.801 instead of 1.8, the situation is similar.
The error amplifies at roughly the same rate and levels off similarly. Evidently
it makes little difference whether the original uncertainty is in the observed
state or in the governing law.

It is evident that the temporary growth rate of vy, — «, or 2, — z, is highly
dependent on the true state xz,. In a large system with many components,
some components might undergo their more rapid growth, while others undergo
their slower growth, and the overall growth might be smoother. With the
present system we can produce smooth growth by averaging a large ensemble
of solutions.

To obtain a representative ensemble, we have extended the solution #, in
table II to 10000 steps, subsequently using each of the 10000 values x, as an

TaBLE III. — Geomelric mean &, of absolute values of differences y, — x, between 10000
particular solutions x, and corresponding solutions y,, with y, = x, + 0.001, of quad-
ratic difference equation x,., = x2 — 1.8. All values have been multiplied by 10000.

n £, n £y
0 10 20 5534
1 15 21 5845
2 23 22 6130
3 34 23 6380
4 51 24 6639
5 76 25 6752
6 114 26 6901
7 172 27 6816
8 258 28 6 850
9 385 29 7034
10 578 30 7101
11 853 31 7134
12 1273 32 7244
13 1794 33 7258
14 2358 34 7277
15 2904 35 7226
16 3430 36 7282
17 4138 37 7407
18 4918 38 7540
19 5406 39 7526
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initial value in a new solution. Each new initial value is perturbed by adding
an error 0.001. Table III shows the behavior of the average error. At first
the growth is almost perfectly exponential, with an amplification factor of
about 1.5 per step. Later the growth subsides, and by step 40 it has nearly
ceased. The average is actually a geometric mean; the arithmetic mean would
grow somewhat less smoothly.

A noteworthy feature of table I is that each solution asymptotically ap-
proaches a periodic sequence. This behavior is, in fact, demanded by the
stability of the system. Sinee x, must be between — ¢ and 4 ¢, a value zy
closely approximating a previous value x, must occur in due time. Because

Taere 1V. — Same as table I, with ¢ = 1.5 for z, and y,, and ¢ = 1.501 for z,.

n T, Yn Yp— T, - Zp— Ty
0 5000 5010 10 5000 0
1 — 12500 — 12490 10 — 12510 — 10
2 625 600 — 25 640 15
3 — 14961 — 14964 — 3 — 14969 — 8
4 7383 7392 9 7397 14
5 — 9549 — 9536 13 — 9538 11
6 — 5881 — 5907 — 26 — 5912 — 31
7 — 11541 — 11511 30 —11514 27
8 — 1680 — 1751 — 7 — 1752 — 72
9 — 14718 — 14693 25 — 14703 15
10 6661 6590 — 7 6608 — 53
11 — 10563 — 10637 — 4 —10643 — 80
12 — 3841 — 3642 199 — 3682 159
13 — 13524 — 13674 — 150 — 13655 — 131
14 3201 3 697 406 3635 344
15 — 13917 — 13633 284 — 13689 228
16 4368 3587 — 781 3728 — 640
17 — 13092 — 13713 — 621 — 13620 — 528
18 2139 3806 1667 3540 1401
19 — 14542 — 13552 990 — 13757 785
20 6148 3365 — 2783 3915 — 29233
21 — 11220 — 13868 — 2648 — 13477 — 2257
22 — 2411 4231 6642 3154 5 565
23 — 14419 —18210 1209 — 14016 403
24 5790 2 449 —3341 4633 —1157
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of the stability the solutions u, with u, = &, and v, with v, = »,, will approach
one another, 7.c. the sequence x, will eventually be almost unchanged by
replacing #n by » + M — L, and the solution will be periodic, with period
M— L. In our example M — L = 2. In the unstable solutions in table II
there is no evidence of periodicity.

The most general behavior may be a superposition of periodicity and aperi-
odicity. To illustrate this possibility, we present a third example, with ¢ = 1.5.
Table IV shows basic and perturbed solutions z, and y, and an additional
solution 2, with ¢ = 1.501. Again we observe an irregular but unmistakable
amplification, implying that the system is unstable, but the amplification
ceases well before y,— #, or 2z,— @, is comparable to z,. There is a contin-
ual oscillation between small negative or positive values of #, when = is even
and large negative values when = is odd. To someone unaware of this periodicity,
Y and 2z, might seem to be moderately good predictions for ,, for all values
of n. If, however, the periodicity is removed from #,, v, and z, by subtracting
the average value for all the even, or odd, numbered steps from each value
at an even, or odd, step, there remain three aperiodic sequences, the second
and third of which do not constitute good predictions for the first in the distant
future.

4. — More general systems.

We now consider error growth in more general systems. First of all, the
result that stability creates periodicity still holds, provided that the system
is one in which analogues, i.e. close approaches to previous states, must oc-
cur [3, 4]. A sufficient but not necessary condition for the occurrence of ana-
logues is that the system may be represented by a finite number of numbers,
each having a finite range. An equivalent result is that any system which is
observed to very aperiodically must be unstable.

In general an unstable system will possess some periodic solutions, but,
if these are even slightly disturbed, the periodicity will disappear. The unstable
system defined by eq. (1) with ¢ = 1.8 possesses many periodic solutions; one
of these is an oscillation between — 0.5 + /1,056 and — 0.5 — 4/1.05.

The mere presence of aperiodicity does not reveal the rate at which small
errors grow. For a quantitative treatment, let the state of the system at time
¢t be given by M numbers X,(t), ..., X,(t), which may be treated as elements
of a matrix X with M rows and one column, or a M-dimensional vector. Let
the equation governing the system be

2) dX/dt = F(X),

and let the elements of F be ¥, ..., Fy: Let a basic solution and a perturbed
solution be given by X and ¥ = X | z, so that x is the error. If z is suf-
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ficiently small, it is approximately governed by the homogeneous linear equation
(3) dz/dt = Gz,

where the elements G of the square matrix G are the partial derivatives
3F,j0X,. Between a time f, and a later time #, eq. (3) may be integrated to
yield the solution

(4) a(t) = Ax(h) ,

where 4 = A(t,, t,) is a square matrix which depends upon the behavior of X
between ¢, and {,.

If we define the magnitude of the error as the magnitude of the vector z,
small errors of a given magnitude at time f, satisfy the equation

(5) Zx = eI,

where I is the identity of order one.
At time #, these errors, therefore, satisfy the equation

(6) HAA) 1w = &7 .

Equations (5) and (6) define a sphere and an ellipsoid in M-dimensional space.
Whether or not any small errors grow between. ¢, and #, depends upon whether
any semi-axis of the ellipsoid exceeds the radius ¢ of the sphere. The semi-
axes of the ellipsoid are the quantities eA,, where 4, ..., Ay are the singular
values of 4, i.e. 22, ..., A}, are the eigenvalues of AA. These may be numbered
in order of decreasing magnitude. Error growth, therefore, depends upon
whether the singular value A,, or the eigenvalue A2, exceeds unity.
If ¢t is a later time than ¢,, it is evident from (4) that

(7) . A(ta to) - A(ta tl)A(tl, to) .

This does not mean that the singular values of A(, f,) are products of singular
values of A(t, t,) and A(t, %). It is even possible that each of the latter two
matrices possesses a singular value exceeding unity, while the product matrix
does not. To investigate the ultimate growth or decay of small errors, as opposed
to temporary growth or decay, we should make ¢ — ¢, large. The limiting values

(8) li — }ggo ;t;/(t—to)
are called the Liapunov numbers of the system, while their logarithms

(9) ;= }LIEQ log A./(t — 1)
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are called the characteristic exponents. For many well-behaved systems these
are independent of the choice of the state at ¢,. For eq. (1), with ¢ = 1.8,
the single Liapunov number is 1.5; with ¢ = 1.2 it is 0.89. (There are other
definitions of Liapunov numbers and characteristic exponents, in which the
quantities 2, are eigenvalues of A instead of square roots of eigenvalues of 4.4.)

To evaluate A(?, ), we may first choose the initial state x(f,) and then
integrate (2) numerically from t?, to #;, obtaining x(t,). We then perturb x(t,)
with M separate one-column matrices ¥, ..., ¥y, where the j-th component
y:; of y; i3 €d,; and ¢ is very small, and integrate numerically M times from
ty to t,: We obtain (%) 4 2, for each 4, from which we may subtract =(z).
The M columns of A(t,{,) are the M one-column matrices z,/e.

5. — Approximate formulae.

Unless a, and a, are nearly equal, a randomly chosen small error will even-
tually behave as if the only characteristic exponent were a,: The magnitude B
of the error will then be governed approximately by the equation

(10) dBjdt = a, B .

A popular measure of the growth of an error is the doubling time, which in
this case is given by log 2/a,.

We have noted that errors do not grow forever. The processes which limit
the error growth must be represented by nonlinearities in (2), which have
been purposely omitted from (3). A simple assumption, which often gives
fairly realistic results, is that these processes are quadratic in E, so that (10)
may be replaced by

(11) ABjdt = — ¢, B+ a0, E ,

where ¢, is chosen so that the limiting value of F is a,/c, . Equation (11) cannot
be rigorously justified even in the frequent cases in which eq. (2) is quadratic in
X, but it often affords a useful means for dealing approximately with the life
history of an error. The numbers in table III fit (11) rather well, with a, = 1.5
and ¢, = 2.

If the governing equation (2) is not perfectly known, the prediction X + »
for X will obey an equation

(12) X + 2)/dt = F(X + o) + (X + =),
where f as well as @ is small. In this event eq. (3) will be replaced by

13) dz/dt = Gz + f(X).
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The term Gz, depending on @, implies a possible exponential amplification,
while the term f(X), which is independent of x, implies a possible additional
linear accumulation. Integrating (13) between #, and ¢, we obtain

(14) ¢=Ay+ B,

where A is the same as in (4), and B is a one-column matrix depending only
upon the behavior of X between ¢, and ¢,. Equation (10), when the approxi-
mations leading to it are justified, is then replaced by

(15) dBJdt = a,E + b,

where b, is a constant. Integration of (15) shows that the eventual exponential
growth rate is independent of b,, i.e. independent of the fact that the wrong
governing equation is used. This result is consistent with the behavior observed
in table II. Likewise, when F becomes large, (11) is replaced by

(16) dEjdt = — e,B*+ a, E + b, .

Equation (16) ineludes the case in which b, is large, whence the solutions of (11)
and (16) are not alike. This indicates that the proper exponential growth will
not be revealed with a completely erroneous governing equation.

The case in which (11) and (16) fail occurs when the most rapidly amplifying
mode grows very rapidly to a small limiting value, after which another mode
continues to grow more slowly to a larger limiting value. A better approximation
than (11) might then be the pair of equations

a7) B /it = — ¢, B} + a,E,,

for 7 =1 and 2, where a,> a, and a;/¢;<< a,/c, and F, 4~ B, = E. More gen-
erally there may be many modes F,, H,, ... which grow at different rates while
small and level off at different amplitudes. This is sometimes the case in geo-
physical fluid systems which possess a wide variety of scales of motion.

Part II
Error Growth in the Atmosphere.
6. — The general atmospheric problem.

Investigations of error growth acquire special significance when the system
being studied is one whose behavior has been the object of numerous attempts
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at prediction. Probably no system fits this description better than the atmos-
phere.

There is no question but what the atmosphere is an unstable system. Evi-
dence is its lack of perfect or nearly perfect periodicity [3, 4]. The prominent
periods in temperature, wind, moisture and other weather elements are the
diurnal and annual periods and their principal overtones (semidiurnal, semi-
annual, ete.). Other periodic variations such as a lunar tide are detectable
with careful measurements. Nevertheless, when all known periods are sub-
tracted out, the remaining variations are still large. These include the weather
changes associated with the passage of migratory cyclones and anticyclones
across the continents and oceans.

The periodic variations can easily be predicted without a detailed knowl-
edge of the governing laws or the present weather pattern; it takes little skill,
for example, to predict that during the next century the winters will continue
to be colder than the summers. On the other hand, there is a range beyond
which the locations of the migratory storms cannot be predicted with detectable
aceuracy ; if this were not the case, these storms would also occur periodically.

As we have noted, the fact that a system is varying aperiodically does not indi-
cate therate at which errors will grow. The most direct way to determine this rate
would be to disturb the system, i.e. to introduce an error at some « initial » time,
and observe what happens. For some simple systems this procedure might work,
but, if our system is the atmosphere, we would never know what would have
happened if we had not disturbed it. We might attempt to predict what would
have happened and subtract this prediction from what did happen, but,
unless we have somehow introduced a disturbance which is as large as our
uncertainty in observing the initial state, the uncertainty in the prediction,
and hence in evaluating the error, will continue to be as large as the error itself.

As an alternative to introducing an error, we can search through the many
years of past atmospheric states which have been recorded and archived. If we
find two states which are analogues, i.e. which are very much alike, we may
regard the second state as equal to the first plus a reasonably small error.
We can then determine the growth of the error by subtracting states following
the first state from states following the second. We shall presently examine
what we have learned about error growth from studying analogue pairs; for
the moment we simply mention that, among all states which are presently
archived, there appear to be no pairs which would qualify as good analogues [5].

There remains the possibility of using the equations governing the atmos-
Phere, and this is just what has been done in most investigations of atmos-
Pheric predictability. Since we cannot formulate the equations exactly, and
sinece, even if we could do so, we could not solve them exactly, we must introduce
some simplifying approximations. Systems of equations which to some degree
approximate the true atmospheric equations are generally called « models ».
In most instances the solutions have been obtained numerically.
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It is to be expected that the least simplified models can yield the most
realistic results. However, they also require the greatest computational effort.
Since in general the growth rate of an error depends upon both the nature
of the error and the sgtate on which it is superposed, the labor involved in
performing comprehensive investigations with the best available models is
prohibitive. Very simple models had to be used some years ago, when computers
were slower, or else the scope of the investigations had to be limited.

7. — A simple model.

The first systematic study of error growth was made with a model in which
the state of the atmosphere was represented by only 28 numbers, and its
behavior was governed by 28 ordinary differential equations [4, 6]. The study
was concerned mainly with the growth of very small errors. The model was
derived from the familiar two-level quasi-geostrophic equations, with thermal
and mechanical damping and thermal foreing, by expanding the streamfunction
at each level in a double Fourier series, and then retaining only 14 terms in
each series. Two of these terms represented a zonally symmetric flow with a
variable profile, while the remaining twelve represented three interacting waves
with variable shapes and longitudinal phases.

The simplicity of the model permitted a special treatment of random errors.
We may denote the dependent variables of the model by X, ..., X,, where
M = 28, and let the governing equation be eq. (2). Small errors then obey
(3) and (4), and small errors of a given magnitude at time ¢, satisfy (5). The
squared magnitude of an error at time #, is then

(18) ‘ Bt w(t) = F(to) A Aw(ty) .

If an ensemble of errors is random at time f,, aside from the existence of
a common magnitude ¢,

(19) @ilte)w5(t0)> = 204/ M

where the pointed brackets denote an ensemble average. If follows, since the
eigenvalues of A4 equal those of AA, that

(20) L&) w(t)) = & z Al

That is, the amplification of a random error is simply the root-mean-square
singular value of A.
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We first performed a basic run of 64 simulated days, using three-hour time
steps in the integration, and retained the values of z at times £, %5, ..., fg;
the subscript demoting the number of days since #,. At each time ¢, for
j=20,2,..,62 we then determined the matrix A(t; ., ?,); this required 28
two-day runs for each value of j. Finally we determined the singular values
A; of A(t;4,,1) and, using (20), found the average two-day amplification factor
o(t;1ay t,) of small errors which were random at time ¢,.

We found that « varied greatly with X. On four of the 32 occasions af(f;,,,?;)
was actually less than unity; on three occasions it exceeded 3.0.

We then determined the matrices A(¥;,4,1,) for j = 0,4, ..., 60, A(t;.s, ;)
for j=0, 8, ..., 56, ete., using (7). Three of the 16 amplifications «(?;.4,?;)
were less than 2.0; two exceeded 10.0. Both 32-day amplifications were greater
than 100-fold, while the single amplification o(ts, f,) was 2-10¢; this implied
an average doubling time of 4.5 days. From these results, and from estimates
of the accuracy with which real atmospheric states could be determined, we
concluded that, pending further results from larger models more closely resem-
bling the real atmosphere, the prospect was rather favorable for forecasting
a week in advance and unfavorable for one-month forecasts.

8. — Early experiments with global circulation models.

At the time when the results of the 28-variable study appeared, the meteoro-
logical community was in the process of planning the Global Atmospheric
Research Program (GARP). This was to be an international program in-
volving many related observational and theoretical investigations. One of
its stated aims was to extend the range at which useful predictions could be
achieved [7].

Ag the 4.5-day doubling time indicated by the 28-variable model, and also
the general result that an aperiodically varying system could not be predicted
at sufficiently long range, became generally known, the question arose as to
whether the goal of extended-range prediction might be unattainable. It soon
became obvious that error growth studies ought to be performed with the
most realistic models possible.

At that time the suitable models in existence were those which had been
developed by SMAGORINSKY [8], LEITH [9] and MINTz [10], who, at a special
meeting devoted to the planning of GARP, consented to performing some
error growth experiments with their respective models. To the extent possible,
the experiments were to have a comumon format.

Each model had its individuality. Smagorinsky’s model, which was the
oldest, was a two-layer model covering most of the northern hemisphere. Heat-
ing was Newtonian in form, and surface friction and lateral diffusion provided
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the mechanical damping. The underlying surface was uniform, and the atmos-
phere was dry. Leith’s model had six layers and was global in extent. The
underlying surface was again flat, but the model included moisture and an
accompanying release of latent heat. Radiation and small-geale convective
heating were present, and a somewhat unrealistically large horizontal eddy
diffusion coefficient was used to control the computational stability. Mintz’s
model had only two layers, but was also global. Moisture was not present ex-
plicitly, but the underlying surface possessed oceans and continents, and the
continents had mountains. The model contained radiative and convective
heating and a reasonably small eddy diffusion ecoefficient; computational sta-
bility was controlled by a differencing scheme designed by ARAKAwA [11].
It should be noted that none of these model was constructed for the purpose
of investigating predictability.

With each model a basic run was performed and was followed by one or
more perturbed runs in which the initial error was confined to the temperature
field. In Leith’s model, the error decayed rapidly during the first few days
and then partially recovered, but leveled off while still small. Once the result
was obtained, it became apparent that the large diffusion coefficient which
pbrevented computational instability also suppressed much of the real atmos-
pheric instabiliby and that the migrating disturbances were passing by in
essentially periodic sequence.

In Smagorinsky’s models the errors grew rather slowly, but after two months
acquired a reasonable amplitude before leveling off. The more rapid growth
did not commence until the second month. Examination after the fact indicated
that during the first month the variations were mainly periodie, subsequently
becoming more irregular. During the second month the doubling times was
about eight days.

In Mintz’s model the error initially decayed, but then grew regularly, with
a five-day doubling time. It leveled off with a reasonable amplitude. The
visible outecome of these experiments was a report on the feasibility of a global
meteorologioal experiment [7], which concluded that only Mintz’s model dis-
Played a reasonable absence of periodicity and that a five-day doubling time
represented the best available estimate.

There were some interesting additional results. In the experiments common
to all models the initial error field was sinusoidal. SMAGORINSKY and MINTZ
also performed experiments with random and localized initial errors and found
that the form of the error had little effect on the growth rate. MINTZ also com-
bared the northern and southern hemispheres and found that the errors tended
to be smaller in the southern hemisphere (where it was summer), particularly
when the initial error was confined to the northern hemisphere, but that the
growth rates in the two hemispheres were similar. We have already noted
that SMAGORINSKY obtained different growth rates during different. months,
when the weather patterns were different.

17 - Rendiconti S.I.F. - LXXXVIII
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9, — Later studies with global circulation meodels.

A significant advance in predictability studies with large models came with
a new study by SMAGORINSKY [12]. His new model was a nine-level primitive-
equation model covering the northern hemisphere. It contained all the advanced
physical features of Leith’s and Mintz’s models; in addition, the underlying
surface contained sea ice and land ice and snow, and the absorbers of radiation
included water vapor, carbon dioxide and ozone. Actually the model had been
in existence when the earlier experiments were performed, but it could not be
used then because it would have required too much computation.

In format Smagorinsky’s experiment was like the earlier ones. He found
that after the first day small errors were doubling in about three days. As
they became larger, the growth rate subsided, but the errors had not reached
their ultimate size by three weeks, when the computations were terminated.
Interesting additional results were that the temperature errors grew most
rapidly in the lower troposphere, while, when a spectral analysis was performed,
the smaller scales were found to grow most rapidly.

Following these studies, error growth experiments using newly developed
or improved global circulation models made frequent appearances [13,14]. We
shall confine our description to one of the most recent ones, which we performed
with the operational model of the European Centre for Medium Range Weather
Forecats (ECMWF) [15]. This is a 15-level primitive-equation model which
contains most of the refinements developed in the decade or more since Sma-
goringky’s experiment, including a nearly complete hydrological cycle.

As with some of the earlier studies, the amount of computation required
for a comprehensive study would have been prohibitive. However, it turned
out that nearly all of the computations needed for a more limited study had
already been performed in the course of preparing the operational forecasts.

Forecasts from one to ten days in advance are issued daily at ECMWE.
The feature which makes it possible to use these forecasts in an error growth
study is the rather high quality of the one-day forecasts; thus the one-day
forecast for today’s weather pattern may be regarded as equal to today’s pattern
plus a moderately small error. To see how much this error grows in one day,
when both patterns are governed by the equations of the model, it is sufficient
to compare the two-day forecast for tomorrow with the one-day forecast for
tomorrow. Likewise, we can determine the error growth during the next day
by comparing the three-day with the two-day forecast for the day after tomor-
row, and we may, in fact, continue the process for nine days. Additional
estimates of the growth rate of somewhat larger errors may be obtained by
comparing K-day with J-day forecasts, for various values of J and K.

As a measure of the error we have used the root-mean-square difference
of the 500 mb height fields; this choice effectively gives greater weight to middle
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and higher latitudes. We have used the analyses and forecasts for each day
of the 100-day period beginning 1 December 1980. Table V shows the average
error when J-day and K-day forecasts are compared. A zero-day forecast is
simply an analysis.

TABLE V. -~ Average global root-mean-square 500 mb height differences B, g, in meters,
between J-day and K-day forecasts for the same day, during the period 1 December 1980 -
10 March 1981, made by the ECMWE operational model.

J By By, By By, By By By, By By By
0 24 38 51 63 75 85 93 99 104 108
1 29 45 59 71 82 90 97 102 106
2 36 53 67 78 88 95 100 104
3 44 62 74 85 93 99 103
4 52 70 81 91 97 . 102
5 61 7 86 95 100
6 68 82 91 97
7 74 87 94
8 79 90
9 84

The top row, comparing forecasts with analyses, reveals the average rate
of error growth when two states are governed by two different systems of
equations—the ftrue atmospheric equations and the model. It, therefore,
indicates the average performance of the model. The diagonal rows, where
K — J is constant, reveal the rate of growth when both states are governed
by the model equations; this is the rate usually sought in predictability studies.
Comparison of the diagonals for different values of K — J indicates that, to
a reasonable approximation, the amplification rate d¥/dt is a funection of the
error I, so that the numbers in the lower diagonal may be extrapolated for
several more days.

The smallest error, 24 m, doubles in about 3.5 days. The usually quoted
doubling time is, however, the doubling time for very small errors. We have
extrapolated the numbers on the lowest diagonal to smaller errors, using eq. (11).
We find that very small errors double in 2.4 days. ]

Comparing the results of predictability studies performed with hemispherie
or global circulation models, we find that the estimates of the doubling time
have continually decreased. The first and simplest model, Smagorinsky’s
original model, suggested about eight days, when it wag behaving aperiod-
ically [7]. Mintz’s model, with such features as oceans and continents, indieated
five days [7]. Smagorinsky’s more recent model, with nine levels, reduced the
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time to three days [12], while the most refined model, the ECMWEF model,
gave 2.4 days [15].

It seems unlikely that this continual decrease is coincidental. We suspect
that the most appropriate doubling time is rather short, perhaps two days.
The earlier models were necessarily the simplest, and one result of the simpli-
fications appears to have been an underestimate of the atmosphere’s instability.
The ECMWEF model, whether because of additional physieal features, higher
spatial resolution, or superior numerical techniques, appears to give the closest
estimate.

Global circulation models are still undergoing development, and we have
attempted to estimate the doubling time which some future model would yield
by noting that the ECMWEF model makes some systematic errors. Further
refinements in the physies or mathematiecs will presumably remove these errors,
but, in the mean time, we can subtract them out. We have done this and
have repeated the study which led to table V. The new doubling time is 2.1
days [15]. This is copsistent with our hypothesis that continual refinement
will continue to shorten the doubling time.

10. - An analogue study.

To pursue the matter further, we turn to one of the few atmospheric pre-
dictability studies which involves no models [5]. It is based on the oceurrence
of analogues. As we have noted, if we can discover two weather patterns
which closely resemble each other, their difference will constitute an error
whose growth. can be studied. If the patterns occur at the same time of year,
they will be governed by effectively the same equations; at different times of
year the different diabatic heating fields might cause them to behave rather
differently. Ideally the values of each weather element should be nearly alike
at all points of the globe.

Our study was based upon twice-daily observations for the five years 1963-
1967. At that time there were no data which would reliably indicate whether
two patterns were similar in the southern hemisphere, and even in the northern
hemisphere we lacked large-scale cloudiness and moisture fields. We were
ultimately led to using the height fields at 850, 500 and 200 mb in the northern
hemisphere and defining the error as a weighted root-mean-square height dif-
ference. Patterns which are sufficiently alike in these fields should also be
somewhat alike in temperature, according to the hydrostatic relation, and
wind, according to the geostrophie relation. Today we could probably evaluate
errors defined in terms of global fields of cloudiness, as measured by satellite.

We compared only those patterns which oceurred within one month of
the same time of year, but in different years (or different winters, if they oc-
curred in December and January). This yielded a total of about 400 000 error
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values. These values were normalized so that two randomly chosen weather
patterns at the same time of year would yield an error F == 1,

We had hoped to find some moderately small errors, say 0.2 or 0.3, but
the smallest error encoutered was 0.62. We were thus forced to base our study
on mediocre analogues. We first observed that the value of dE/d¢, averaged
over all cases in which F fell within a given narrow range, was a smoothly varying
funetion of E, having the same sign as 1— F. Upon invoking the quadratic
hypothesis as expressed by eq. (11), we were able to extrapolate to small values
of E, and we found a doubling time of 2.5 days.

It should be noted that this study was performed before SMAGORINSKY
had obtained the three-day doubling with his newer model and that the generally
accepted value, among those who accepted the reality of error growth, was
Mintz’s five days [7]. In seeking to explain the discrepancy, we considered
the possibility that the analogne results were invalid, but decided that models
were probably more likely than observations to go astray. In particular, it
appeared that the Arakawa differencing scheme [11] which ensured computa-
tional stability could also render the simulated atmosphere more stable [16].
The more recent model studies agree with the analogue study to within 20
percent one way or the other; closer agreement is unlikely in view of the dif-
ferences in the dates and locations of the data and the quantities chosen to
define the error.

11. — The influence of smaller scales.

Error growth studies based on global circulation models tell us only about
the growth of errors in the spatial scales which the models resolve. Likewise,
the study based on analogues tells us only about the seales appearing in the
analyses. By omitting the smaller scales, we effectively make the initial errors
in these scales large enough so that they undergo no further growth. Even
if the smaller scales were resolved, the error growth in these scales would con-
stitute only a minor part of the total growth, since these scales account for
only a small part of the total variability.

The influence of errors in the smaller scales upon errors in the larger scales
can nevertheless be large. In most models which retain only the larger scales
explicitly, the smaller scales are treated as turbulent eddies, and their effect
on the larger scales is represented in terms of coefficients of eddy viscosity and
eddy conductivity. In reality the small-scale features which are present at any
one time constitute no more than a statistical sample, and their effect is subject
to sampling fluctuations. Thus the fact that the details of the smaller scales
are uncertain introduces some uncertainty into the behavior of the larger
scales. To predict the larger scales perfeetly, we would also have to predict
the smaller scales perfectly [17].
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It appears that errors in very small scales produce an almost undetectably
small direct aecumulation of errors in the very large scales. Nevertheless,
they may cause errors to accumulate fairly rapidly in slightly larger scales.
Once these have become appreciable, they will produce an accumulation in
still larger scales, ete., and the eventual result will be errors in the largest
scales.

‘Whether errors in the small scales are of practical importance depends on
how rapidly the accumulation in the large scales ean occur. Suppose that a
weather pattern contains an ineipient storm and that the initial error consists
of overlooking the storm. The error will then grow just as rapidly as the storm
itself. If the storm is a migratory cyclone, the error may double in two days
or less. If it is a thunderstorm, it may double in less than an hour.

It thus appears that errors in the very small scales require very little time
before they have attained the size at which they can appreciably affect some-
what larger scales. These seales will require somewhat longer, but not too
long, to affect still larger scales, etec. The initial amplitudes of the smallest-
scale errors are, therefore, of little concern, provided that they are not zero.
Even an uncertainty of a factor of ten in the magnitude of the error in the
thunderstorm scale will cause an uncertainty of only a few hours in the time
required for the larger scales to be affected. Equivalently, if we could somehow
make perfect measurements of all scales larger than thunderstorms—a task
which, incidentally, would be far more expensive than any observational program
8o far undertaken—, we would subsequently add only a few hours to the range
of useful prediction by accomplishing the equally expensive task of improving
our thunderstorm observations by a factor of ten.

Let us consider the possible procedures for determining how soon a small
error in a small scale will significantly affect the large scales. We can certainly
accomplish nothing by physically perturbing the small scales and observing
what happens, because again we would have nothing with which to compare
the perturbed state. We can construct global models with one-kilometer or
even. finer horizontal resolution, but to solve them numerically would vastly
overburden even today’s fastest computers. The studies which have provided
tentative answers have taken existing atmospheric models—generally rather
simple ones—and derived new systems of equations whose dependent variables
represent the amplitudes of the errors, in the various scales [17-19]. The
number of equations is minimized by introducing such simplifications as spatial
homogeneity and assuming that the spectral amplitude is a smooth function
of scale, so that fairly coarse spectral resolution is allowable.

In the first study of this sort [17], our atmospheric model was the simple
barotropic-vorticity equation, with neither damping nor forecing. The new
variables were the specfral amplitudes in 21 consecutive bands, extending
from the 40 m scale to the 40000 km scale. Growth rates of errors depend
very much upon the properties of the basic state on which they are superposed,
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and the variance spectrum of the basic state was specified in advance. As is
generally the case when the original equations are quadratic, the derived equa-
tions for means contain covariances, the derived equations for covariances
contain mean triple produects, etc., and at some point an auxiliary assumption
must be introduced to close the system. Our assumption was that quadratic
functions of the errors and quadratic functions of the basic state were statis-
tically independent. Subsequent studies with more realistic closure assumptions
have yielded rather similar results [18,19].

The derived equations were formally linear. The nonlinear effects, which,
as in eq. (1), should prevent the errors from growing indefinitely, were incorpo-
rated by replacing each variable by a constant as soon as that variable, repre-
senting the amplitude of the error in one scale, reached the prespecified amplitude
of the basic state in that scale.

TaBLE VI. — Times t,(10) and t,(90) required for mean square error im spectral band mn,
with average wave length L, to attain 10 percent and 90 percent, respectively, of its limiting
value, in theoretical model with no spectral gap, and similar times 1,(10) and t,',(90)
in theoretical models with strong spectral gap centered mear band 10, when initial errors
are confined to band 20.

n L, (km) t,(10) 1,(90) 1/ (10) 1 (90)
12 12 0.8h 1.3h 1.0h 1.5h
11 25 1.3 2.1 1.8 2.9
10 50 2.2 3.4 3.6 7.6

9 100 3.5 5.6 7.8 3.5d

8 200 5.8 9.2 2.3d 4.6

7 400 9.6 15.2 3.7 5.5

6 800 15.9 11d 4.7 . 6.3

5 1600 1.1d 1.8 5.2 6.7

4 3200 1.9 3.1 6.0 » 7.6

3 6400 3.3 5.4 7.6 9.8

2 12800 5.9 9.8 10.2 14.2

1 25 600 9.4 16.3 13.8 20.6

In the numerical integrations the initial error was confined to the smallest
seales. The middle columns in table VI show the times required for the squares
of various amplitudes to attain 10 percent, and 90 percent, of their limiting
values. Predictions with a 10 percent error would generally be considered good,
while those with a 90 percent error would be almost worthless.

We see that the error progresses up the scale rapidly at first and then more
slowly, until, after about half a day, 10 percent errors have reached the scales
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commonly resolved by global circulation models. The largest scales remain
predictable for a week or two.

The final columns in table VI were produced by similar computations, in
which the basic state was assumed to possess a «spectral gap» centered in
the mesoscale [20]. The errors progress through the smallest scales more or
less as before, but they encounter considerable difficulty in crossing the gap
and are delayed by several days in reaching the larger scales. Whether or
not a spectral gap exists is still a topic for debate. In any event, it is apparent
that a definite determination of the range at which the larger scales are pre-
dictable will require a more precise knowledge of normal atmospheric conditions
than we presently possess.

12. — Concluding remarks.

We have hypothesized that the errors presently made in one-day prediction
by the «improved » ECMWEF operational model are similar in magnitude and
spectral distribution. to the errors which would be present in J-day prediction
as a result of the inevitable errors in the very small scales, if the largest scales
possessed no initial errors at all [20]. Assuming a somewhat weaker spectral
gap than the one leading to the final columns in table VI, we have estimated
that J = 4. It, therefore, appears reasonable to add about three days to esti-
mates, based upon table V, of the range at which predictions of a given quality
are possible.

Having seen that there is a limit to atmospheric predictability, it is relevant
to ask why there should be a limit, ¢.e. why the atmosphere should be unstable.
In the 28-variable atmospheric model the cause is easy to identify ; it is advection,
which is the only nonlinear process. Advection appears in the model as a dis-
placement of the temperature and vorticity fields by the wind field; since the
wind which does the advecting is not uniform, it produces distortion as well
as displacement. This increases the variety of temperature and vorticity
patterns which can occur and reduces the likelihood of periodic repetition.

In the real atmosphere and also the global circulation models the cause of
ingtability is probably advection also. There are other important nonlinear
processes, including evaporation and condensation of water, and radiation.
We suspect, however, that the latter processes by themselves would not produce
instability, while advection by itself would. Very likely these processes are
important modifiers to the instability which advection produces.
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