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With great sadness, we note the passing away of Edward Lorenz, who opened up a revolutionary new field of science,
and led the way through it for many, many years.

Abstract

For the two-parameter second-order Hénon map, the shapes and locations of the periodic windows – continua of parameter values for which
solutions x0, x1, . . . can be stably periodic, embedded in larger regions where chaotic solutions or solutions of other periods prevail – are found
by a random searching procedure and displayed graphically. Many windows have a typical shape, consisting of a central “body” from which four
narrow “antennae” extend. Such windows, to be called compound windows, are often arranged in bands, to be called window streets, that are made
up largely of small detected but poorly resolved compound windows.

For each fundamental subwindow – the portion of a window where a fundamental period prevails – a stability measure U is introduced; where
the solution is stable, |U | < 1. Curves of constant U are found by numerical integration. Along one line in parameter space the Hénon-map
reduces to the one-parameter first-order logistic map, and two antennae from each compound window intersect this line. The curves where U = 1
and U = −1 that bound either antenna are close together within these intersections, but, as either curve with U = −1 leaves the line, it diverges
from the curve where U = 1, crosses the other curve where U = −1, and nears the other curve where U = 1, forming another antenna. The
region bounded by the numerically determined curves coincides with the subwindow as found by random searching. A fourth-degree equation for
an idealized curve of constant U is established.

Points in parameter space producing periodic solutions where x0 = xm = 0, for given values of m, are found to lie on Cantor sets of curves
that closely fit the window streets. Points producing solutions where x0 = xm = 0 and satisfying a third condition, approximating the condition
that xn be bounded as n → −∞, lie on curves, to be called street curves of order m, that approximate individual members of the Cantor set and
individual window streets. Compound windows of period m + m′ tend to occur near the intersections of street curves of orders m and m′.

Some exceptions to what appear to be fairly general results are noted. The exceptions render it difficult to establish general theorems.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Two-parameter maps; Periodic windows; Bifurcation curves

1. Introduction

Consider a dynamic system defined by equations that
contain one or more parameters—quantities that are constant
in any solution but may assume different constant values
in different solutions. Let us restrict our attention to the
“good” points in parameter space—simultaneous values of the
parameters for which initial states chosen randomly from a
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bounded region of state space have a positive probability of
producing solutions that remain bounded, i.e. do not blow
up. Such points will be called chaotic if, after any initial
states that produce blow-ups have been discarded, almost all
remaining initial states produce chaotic solutions; they will be
called periodic if, again after eliminating blow-ups, almost all
initial states produce stable periodic solutions, or solutions that
approach periodicity asymptotically, possibly after extended
transient behavior resembling chaos. Points that fit neither
category include some where intransitivity prevails, and chaos
and periodicity can each be produced by a set of initial states
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with positive measure. There may also be points where different
initial states will produce different stable periodic or different
chaotic solutions.

If one parameter is allowed to vary through a range while the
others, if any, remain fixed, every point in the range will in some
instances be chaotic. In other cases an otherwise chaotic range
may be punctuated with periodic windows—one-dimensional
continua of periodic points. Often there are infinitely many
windows. Similarly, if several parameters are varied, there may
be multidimensional windows. Such windows will constitute
the subject of this work.

A system where chaotic points fill a range of a single
parameter α is the frequently discussed (although not always
named) tent map [7,10,13], sometimes written

Xn+1 = min(αXn, α(1 − Xn)). (1)

It is apparent that any point where 0 < α < 2 is good, and
is chaotic if α > 1; the single Lyapunov exponent is log α.
A system with an infinity of windows is the logistic map,
commonly written

Xn+1 = αXn(1 − Xn); (2)

it is probably the most intensively studied of all dynamical
systems capable of chaotic behaviour. It is again apparent
that any point where 0 < α < 4 is good; somewhat
more effort is needed to show that chaotic and periodic
points both abound when α > 3.5. Studies of Eq. (2)
date back at least to Julia [12], but they have proliferated
only since the appearance of computers. May [16] has
provided a particularly detailed exposition, and has tabulated
the limiting values of α for the windows of small period.
Each window consists of a continuum, which we shall
call the principal subwindow, in which a solution with a
fundamental period K is stable, followed without pause, as α

increases, by continua of decreasing lengths, also qualifying
as subwindows, where, for n = 1, 2 . . ., period 2n K is
stable. Each window begins at a fold (saddle node) bifurcation
point, while the successive subwindows are separated by flip
(period doubling) bifurcations. A complete knowledge of the
bifurcation structure therefore determines the locations of the
windows and subwindows.

Feigenbaum [5] has shown that the successive lengths
decrease by a factor that approaches a universal limit
4.6692. Following Feigenbaum and May we shall call these
subwindows harmonics, even though they differ from the
familiar musical harmonics in that the period rather than the
frequency is a multiple of that of the fundamental. We have
speculated [14], and Jakobson [11] has accomplished the rather
involved task of proving, that even though any two chaotic
values of α are separated by a window, the measure of the set of
chaotic values is positive, while Collet and Eckmann [3] have
established a similar result for a hybrid of the logistic and tent
maps.

There are a number of algorithms for locating the windows
of the logistic map, but their shapes have little choice but to
be line segments. For systems with two or more parameters,

however, explaining the shape of a window can present as big a
problem as accounting for its location.

In this work we have chosen for study the map

Xn+1 = Yn + 1 − a X2
n, (3a)

Yn+1 = bXn, (3b)

introduced by Hénon [8] as the simplest dissipative second-
order two-parameter polynomial system capable of producing
chaos. The Lozi map [15]

Xn+1 = Yn + 1 − a|Xn|, (4a)

Yn+1 = bXn, (4b)

which bears a relation to the Hénon map much like that of
the tent map to the logistic map, seems equally simple, but
its derivative possesses a discontinuity, which Hénon sought
to avoid. As with the logistic map, Hénon-map windows may
be divided into subwindows. A fold bifurcation curve forms
one boundary of the principal subwindow, while the remaining
subwindows are bounded by flip bifurcations.

In the following section we shall perform “brute force”
numerical computations that will reveal in graphical form the
locations and shapes in parameter space of numerous windows
of the Hénon map. We shall find that many of the windows have
similar shapes, and that their central portions tend to line up in
bands. The task of the remaining sections will be to provide
reasonable if not completely rigorous explanations for these
findings.

2. Locating the windows by random searching

The present study was originally motivated by our desire to
use the Hénon map to illustrate some of the basic properties of
chaotic behaviour, particularly for an audience not especially
familiar with chaos. A prerequisite for relevant numerical
examples would appear to be a knowledge of what values of
the parameters produce chaos; certainly values within a window
must be avoided. This section is especially but by no means
exclusively addressed to those who may wish to put the Hénon
map to a similar use.

We first let xn = aXn and then eliminate Xn and Yn
explicitly from Eqs. (3), obtaining the single equation

xn+1 = bxn−1 − x2
n + a. (5)

An unspecified term in the sequence x0, x1, x2, . . . produced by
iteration from initial values x0 and x1 will simply be called an
x . Use of xn in place of Xn will simplify some of the derived
equations.

In Figs. 1–3 that follow, each plotted point results from
choosing a and b randomly from a uniform distribution over the
area of the particular figure, choosing x0 and x1 randomly from
uniform distributions between −2 and 2, and then examining
the properties of the sequence of xs produced by iteration,
plotting (a, b) if certain conditions are met. For these figures
we have intentionally avoided using Eq. (5), or any relation
derived from it, other than for producing the xs. If the sequences
were something observed in nature instead of being generated
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Fig. 1. (a) Locations (shaded) in parameter space where a solution of Eq. (5) has a positive probability of not blowing up, as determined by random searching.
Variations in shading indicate variations in probability of a blow-up. Along horizontal line b = 0. (b) The same as Fig. 1(a), but for locations where a solution has a
positive probability of being chaotic. Horizontal scales indicate a, vertical scales indicate b.

Fig. 2. (a) Same as Fig. 1(a), but for locations where a solution has a positive probability of being periodic. (b) An enlargement of a portion of Fig. 2(a). Horizontal
scales indicate a, vertical scales indicate b.

by an equation, our approach would be considered empirical. It
contrasts with the algebraic approach of Hitzl and Zele [8], who
have presented bounding curves for the principal subwindows
of period K ≤ 6.

We first locate the good points; these are shown in Fig. 1(a).
It is apparent that if |b| > 1, outside its range in the figure,
Eq. (5) is an expanding mapping, and (a, b) is “bad” regardless
of a. With |b| < 1 if, in iterating Eq. (5), |xn| > 10 for some n,
implying an imminent blow-up, we proceed immediately to the
next choice of a, b, x0, and x1. If instead n reaches a chosen N

and no blow-up has occurred, we plot (a, b) before proceeding
to the next choice. In practice we have chosen N = 300,
accepting the slight risk of a solution that blows up only after
300 iterations.

The variations in shading result from variations, as a and
b vary, of the likelihood that the randomly chosen (x0, x1)

will produce a blow-up. Some of the boundary curves continue
inside as discontinuities in shading.

Fig. 1(b) shows the chaotic points. We assume a point to
be chaotic and plot (a, b) if we fail to find a stable periodic
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Fig. 3. (a) An enlargement of a portion of Fig. 2(b). Along horizontal line b = 0.3. (b) An enlargement of a portion of Fig. 3(a). Horizontal scales indicate a,
vertical scales indicate b.

solution. To find solutions with periods not exceeding a chosen
M , we choose ε and an integer J , and let N = J M . We
again terminate the iteration if |xn| > 10, but also, whenever
n = j M for some j < J , we note xn and xn+1, and if
subsequently |xn+K − xn| < ε and |xn+1+K − xn+1| < ε

for some K < M , i.e., if |∆0| < ε and |∆1| < ε, where
∆ j = xn+ j+K −xn+ j , we interrupt the process, and assume that
we have approached a period-K solution. To test it for stability
we perform 2K additional iterations, and evaluate ∆K , ∆K+1,
∆2K , and ∆2K+1. The matrix A governing the behaviour of
small perturbations through K iterations satisfies(

∆K ∆2K
∆K+1 ∆2K+1

)
= A

(
∆0 ∆K
∆1 ∆K+1

)
, (6)

and its characteristic equation, with roots λ1 and λ2, is

(∆0∆K+1 − ∆1∆K )λ2
− (∆0∆2K+1 − ∆1∆2K )λ

+ (∆K ∆2K+1 − ∆K+1∆2K ) = 0, (7)

and the solution is stable if |λ1| < 1 and |λ2| < 1. Here
we accept the risk of missing a stable periodic solution where
K > M , or one where K < M but where there is transient
chaotic behaviour lasting more than N iterations. Regions
where solutions may be either chaotic or periodic will also
appear shaded, but less heavily. In practice we let ε = 0.00001,
while M = 80 and J = 15, so that N = 1200.

A few windows are plainly seen, but they prove to be more
easily viewed if we reverse the shading, plotting periodic points,
omitting those with period 1 or its harmonics to avoid obscuring
certain other features. This is done in Fig. 2(a), where many
more windows are detectable. In the curved band that widens
near the lower left corner, period 3 or one of its harmonics
is stable; the band that widens at the upper left is similarly
produced by period 6. In the small weakly shaded area in the
lower right, period 5 is stable. Each of these areas appears in a
figure in [9]. In each case period 1 or 2 is also stable in the same

area, so that intransitivity is present. Intransitivity is, in fact, a
well-established feature of the Hénon map [4,6,21].

Fig. 2(b), an enlargement of the portion of Fig. 2(a) where
the resolved windows are most abundant, displays the principal
findings of this section. Centred near a = 1.45, b = 0.15 is
a dominating window suggestive of a strange creature with a
central “body”, which we shall call the centre of the window,
and two narrow “antennae” extending downward to the right
and two more extending upward to the right. Within the
window, solutions of period 5 or a harmonic are stable; we shall
call it a 5-window.

Diagonally below and above the 5-window are somewhat
smaller 7-windows, centred near (1.62, 0.08) and (1.24, 0.29).
Their shapes are remarkably similar to that of the 5-window,
even in their details where these are resolved; with suitable
linear changes of coordinates they would nearly superpose on
one another. Wherever antennae of two windows intersect, both
periods are stable.

Since separate centres are connected by intersecting
antennae, one might choose to say that the entire shaded area
in Fig. 2(b) constitutes one big window. This is really a matter
of definition. To exclude this possibility, let us stipulate that,
for a region to qualify as a subwindow, one must be able to
travel within the region from any point to any other point
by varying a and b continuously, with the accompanying xs
also varying continuously, and with the periodicity and its
stability preserved. A window is simply a juxtaposition of a
fundamental subwindow and its harmonics. Separate centres or
their antennae then belong to separate windows.

Many considerably smaller windows, produced by higher
periods, line up along the diagonal. Passing through them is a
narrow shaded band, and, since only periodic points have been
plotted, it must be composed of additional minuscule windows
that are detected but not well resolved. We shall call bands of
this sort window streets, and this particular band the principal
window street, and, for reasons that will appear in the next
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section, we shall call a window with a centre and four or more
antennae a compound window.

Between the upper 7-window and the 5-window, a 9-window
centered near (1.35, 0.26) is clearly off the street. Fig. 3(a),
an enlargement of a portion of Fig. 2(b) where the upper 7-
window dominates, reveals that above and below the 9-window
there are smaller windows that also lie off the street, and that
evidently form another street not quite parallel to the first one,
extending upward from the lower right corner of the figure.
For reasons to appear later we shall regard this street as a
branch of the principal street, rather than a separate street.
The uppermost antenna from the 9-window, incidentally, passes
through (1.4029, 0.3), close to the point (1.4, 0.3) chosen by
Hénon for detailed study, although it still misses the point by
about 12 antenna widths.

It is interesting to compare a cross-section of Fig. 3(a)
along which b = 0.3 with graphs of the larger Lyapunov
exponent of Eq. (5) against a, presented by Feit [6], Olsen and
Degn [20], and Simó [21]. What show up there as a wider and a
separate narrower interval of negative values are seen to be the
intersections of the line b = 0.3 with the body of the 7-window
and an antenna of the same window.

Extending upward to the right from the 7-window, between
two antennae, is a clearly separate window street, and there are
suggestions of other streets. The 7-window exhibits remarkable
symmetry about a nearly horizontal line. For good measure we
have enlarged, in Fig. 3(b), a small region just above the axis of
symmetry of the 7-window and just to the right of the center,
14 times horizontally and 25 times vertically, plotting only
points whose periods are multiples of 7, and leaving the lower
left corner empty. The result, with a dominating 21-window,
is nearly a copy of Figs. 2(b) or 3(a), complete with window
streets.

Returning to Fig. 2(b), we note that not all windows are
compound. Some of the many parallel bands on the left side are
in fact left-hand antennae extending downward from windows
centered above them, but at the extreme left they are complete
windows by themselves. Of special interest is the 6-window
centered somewhat above the 5-window, near (1.51, 0.23),
whose uppermost antenna bends back to the left and then
widens and makes a loop before heading to the right. The
large camel-shaped 8-window near the upper left corner is sui
generis.

We must now note that although the Hénon map has been the
subject of a multitude of studies, and the numerical indications
for chaos are overwhelming, it has yet to be proven that chaos
actually occurs with the values a = 1.4, b = 0.3 chosen
by Hénon, or, more importantly, with any pair of values near
these [6,9]. Benedicks and Carleson [1] have shown that some
points where b is much smaller can produce chaos.

The question thus arises as to the meaning of this entire
work, if chaos is in fact not present. Let us note, then, that
our definition of a window does not assume that points just
outside it are chaotic. It is sufficient that the xs there not be
small departures from the xs at points just inside. The concept
of a window is therefore not altered.

Two general questions arise. First, why do the compound
windows have rather complicated but similar shapes, and what
determines these shapes? Second, why do they often line up
along rather smooth curves, and what determines these curves?
The following sections are aimed at establishing at least partial
answers to these questions.

3. Locating the windows by numerical integration

Although random searching can presumably locate any
compound window, other procedures are available. Here
we shall abandon the “empirical” approach and adopt a
“theoretical” one, based on numerical integration along the
curves that bound the subwindows. Our approach will be more
like the one in [9], but our formulas will refer to general rather
than specific windows.

To specify a solution uniquely we need four quantities—the
parameters a and b and initial values x0 and x1. We assume
the mapping to be contracting, so that |b| < 1. If one or more
quantity is allowed to vary continuously while Eq. (5) remains
satisfied,

dxn+1 = bdxn−1 − 2xndxn + da + xn−1db. (8)

If in general

dxn = Pn0dx0 + Pn1dx1 + Pn2da + Pn3db, (9)

then Pni = δni when n = 0 or 1, and, when n > 0,

Pn+1,i = bPn−1,i − 2xn Pni + δ2i + xn−1δ3i . (10)

(We separate multiple subscripts by commas when any
subscript consists of more than one symbol.)

For variations about a period-K solution, with xK = x0 and
xL = x1 (for conciseness we write L for K + 1), if a and b are
held fixed,(

dxK
dxL

)
=

(
PK 0 PK 1
PL0 PL1

) (
dx0
dx1

)
. (11)

Since the determinant in Eq. (11) is (−b)K (K consecutive
contractions), the characteristic equation, with roots λ1 and λ2
with |λ1| ≥ |λ2|, is

λ2
− (PK 0 + PL1)λ + (−b)K

= 0, (12)

whence, if we let

U = (PK 0 + PL1)/(1 + (−b)K ), (13)

U = ±1 when λ1 = ±1, the limiting values of λ1 for stable
periodicity. Hence U can serve as a stability measure. Note that
U is real, while λ1 may be complex, and in general U 6= λ1,
but |U | < 1 when |λ1| < 1; U is closely related to the
quantity Σ in [8]. The boundaries of a compound subwindow
should thus be curves along which U = 1 or −1. We shall let
dU = U0dx0 + U1dx1 + U2da + U3db.

If a and b are allowed to vary while the periodicity is
preserved, and while some quantity s determined by the state,
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with ds = s0dx0 + s1dx1 + s2da + s3db, is held fixed, and some
other quantity t with dt = t0dx0 + t1dx1 + t2da + t3db varies,

PK 0 − 1 PK 1 PK 2 PK 3
PL0 PL1 − 1 PL2 PL3
s0 s1 s2 s3
t0 t1 t2 t3




dx0
dx1
da
db

 =


0
0
0
dt

 . (14)

Eq. (14) is readily solved for expressions for dx0/dt , dx1/dt ,
da/dt , and db/dt , once s and t have been specified. By treating
t as the independent variable we may, given a suitable initial
state, integrate these expressions numerically, just as we would
if t were time, obtaining a curve along which the periodicity
and the value of s are maintained.

In the integrations of greatest interest, s = U , so that
ds = dU . A curve along which periodicity is preserved and U
is constant will be called a U -curve. A U -curve with U = +1
or −1 will be called a U+-curve or a U−-curve; such a curve
should follow a boundary of a subwindow. Thus, U+- and U−-
curves are fold and flip bifurcation curves, respectively. From
Eqs. (8)–(10) it follows that if in general, when i = 0 or 1,

dPni = Qni0dx0 + Qni1dx1 + Qni2da + Qni3db (15)

then Qni j = 0 when n = 0 or 1, and

Qn+1,i, j = bQn−1,i, j − 2xn Qni j − 2Pni Pnj − Pn−1, jδ3i , (16)

whence, from Eq. (13),

U j = (QK 0 j + QL1 j + KU (−b)K−1δ3 j )/(1 + (−b)K ). (17)

The simplest choice for t would be b, making t j = δ3 j , but
if b attains a local extremum on a boundary of the subwindow,
the integration will break down; this will be reflected in the
vanishing of the determinant of the matrix in Eq. (14). Since
in any event the derivatives dx0/dt , etc., are proportional to
the minors of t0, etc., any choice that prevents the determinant
from vanishing (unless all the minors vanish simultaneously)
will suffice, and here we simply let t0, t1, t2, t3 be multiples of
their respective minors.

A convenient initial state on a U -curve is its intersection with
the line b = 0. When b = 0 and only then, Eq. (5) reduces to
the first-order two-to-one mapping

xn+1 = a − x2
n , (18)

a form of the logistic equation, obtainable from Eq. (2) by
letting a = (α − 2)α/4 and xn = (2Xn − 1)α/2. We shall
call the line b = 0 the logistic line, or simply the b-line, and the
windows on this line logistic windows, or b-windows.

Each compound Hénon-window has two antennae extending
downward or upward across the b-line, and the short segments
in which they intersect it are b-windows; thus each compound
window is associated with two distinct b-windows. As already
mentioned, these windows have been intensively studied, and
here we shall simply note a special procedure for locating them,
which involves integrating numerically along the b-line with
a = 2 initially, while preserving periodicity.

On this line, if n > 0, Pn0 = 0, so that U = PL1, while the
first and last terms on the right of Eq. (9) drop out. A sufficient

condition for periodicity is now xL = x1, whence dxL = dx1.
It follows that we can integrate the equation

dx1/da = −PL2/(U − 1) (19)

numerically (until U reaches 1), and thus, given x1 when a = 2,
determine the values of x1 and U , and hence of all the xs,
when a reaches any particular value. If |U | < 1, a lies in a
b-subwindow.

A more convenient alternative is to choose U as the variable
of integration (t = U ), making it easy to carry the computation
to a prechosen value of U . Since U = PL1, t j = QL1 j , so if
periodicity is preserved(

PL1 − 1 PL2
QL11 QL12

) (
dx1
da

)
=

(
0

dU

)
, (20)

from which expressions for dx1/dU and da/dU are readily
obtained.

As often noted [6,12], when a = 2 the general solution of
Eq. (18) may be expressed explicitly, since, if x0 = −2 cos θ0
for some θ0, x1 = −2 cos(2θ0) and more generally xn =

−2 cos(2nθ0). If |x0| > 2 so that no real θ0 exists, the solution
is one that blows up.

It follows that for a solution of period K , cos(2K θ0) =

cos θ0, so that θ0 = jφK , for some integer j , where φK =

φ′

K = 2π/(2K
+ 1) or φK = φ′′

K = 2π/(2K
− 1). Consider the

former alternative. If, for any n, in is the smallest nonnegative
integer that makes cos(inφ′

K ) = cos(2nθ0), we find that in+1 =

2in or 2K
+ 1 − 2in . It is convenient to number the xs so that x0

is the x closest to 0, whence x1 and x2 are the extreme positive
and negative xs, respectively, and i1 and i2 are the largest and
smallest integers in the sequence of is. We shall refer to the
particular period-K solution where i2 = j as period K ( j). Note
that period K ( j) does not exist when j exceeds some other
integer in the sequence.

Since, for such a solution, U is just (−2)K times the
product of the xs, U is 22K times a product of cosines.
Since also cos θ cos 2θ = (cos θ + cos 3θ)/2, and hence
cos θ cos 2θ cos 4θ = (cos θ +cos 3θ +cos 5θ +cos 7θ)/4, etc.,
we find that U = −2K if φK = φ′

K while U = 2K if φK = φ′′

K .
We can now perform the integration along the b-line, once

K and j are specified. We shall extend the definition of K ( j) to
the periodic solutions obtainable by such an integration from a
solution where a = 2, and also to the b-windows containing
the solutions, and to certain curves extending from these b-
windows. The 7-window in Fig. 3(a) proves to intersect the 7
(11) and 7 (21) b-windows.

Table 1 shows values of a and xn for selected values
of U , including −1, 0, and 1, as determined by numerical
integration with U as the independent variable, with a fourth-
order Runge–Kutta scheme with an increment of 1.0, for
periods 7(11) and 7(21). In either case U = −128 initially, and
the integration is continued until U = 128. We see that a, after
reaching a minimum when U = 1, returns to 2 at the end, and,
in fact, the accompanying values of xn are precisely the cosine
solution that would have been used initially with φK = φ′′

K .
The narrow ranges of a where |U | < 1 are seen to fit within
the intersections of antennae of the 7-window with the b-line in
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Fig. 2(b). A similar procedure can in principle be used to locate
any desired subwindow.

Having found the points on the b-line where U assumes
specified values, we can perform numerical integrations along
the U -curves. From Table 1 we see that the 7(21) U+- and U−-
curves must be close together when b = 0, but they diverge as
b increases. One might have supposed that the U -curves with
|U | < 1, which contain all the points where period 7 is stable,
would fill the space between the U+- and the U−-curve, but
Fig. 4(a), showing portions of the U -curves near the center at
intervals of 1/4 unit, reveals that this is not the case. One set
of curves continues upward, following the U+-curve, while an-
other set turns to the right, following the U−-curve. No curves
enter the upper right region. Separating the sets is a single U -
curve (not shown) with U = 0.0064, terminating at a singular
point where a = 1.235, b = 0.296, shown as a dot. Fig. 4(b)
shows similar curves originating in the 7(11) subwindow. The
U+-curve possesses a cusp, about which the nearby U -curves
loop. Again no curves enter the upper right region, and a sepa-
rating curve terminates at the same singular point.

The Runge–Kutta scheme can give inadequate and
sometimes bizarre results if the time increment is too large. An
increment that is suitable on one part of a curve may be too long
on another. Particularly with our procedure for defining dt , it is
not obvious in advance what increment is appropriate. We have,
therefore, for selected U -curves, performed several integrations
with successively smaller increments, until further reduction by
a factor of two produces no difference in the 5-decimal-place
output.

At a cusp on a U -curve, da/dx0 and db/dx0 vanish as x0
varies along the curve. Returning to Eq. (14) with s = U
but with t = x0, so that t j = δ0 j , numbering the rows
and columns of the matrix from 0 to 3 and letting Ci j be
the determinant of the elements in rows 0 and 1 and columns
i and j , while Di jk is the determinant of those in rows 1,
2, 3 and columns i, j, k, we find that da/dx0 = D013/D123
and da/dx1 = −D012/D123. After some algebra we find that
C12da/dx0 + C13db/dx0 = C01. According to Eq. (12), van-
ishing of C01 implies that λ1 = 1, so that U = 1, whence any
cusp on a U -curve must lie on a U+-curve.

Fig. 4(c) simply superposes Fig. 4(a) and (b). There is a
symmetry about the line that passes through the cusp and the
singular point, not obvious in Fig. 4(a) and (b) separately, and,
contrary to what occurs in these figures, the U -curves with
|U | < 1 fill the space bounded by the U+- and U−-curves.

Fig. 4(d) has been produced by random searching, exactly
in the manner of Fig. 2, except that only those points where
K = 7 are plotted. No harmonics are included. It thereby shows
a period-7 principal subwindow, which is somewhat simpler in
shape than a complete compound window, but still has a center
and four antennae. We see that it fits exactly onto the region
covered by the curves in Fig. 4(c).

The U+- and U−-curves originating in the two b-windows
have not simply happened to encounter each other temporarily;
they have effectively switched partners. Each U−-curve closely
follows the course of a U+-curve, forming one antenna,

until it nears the centre, but it then crosses the other U−-
curve, and upon receding from the centre it is seen to be
accompanying the other U+-curve, forming another antenna.
In view of this behaviour the term “compound window” seems
appropriate.

Similarly constructed U+-curves for the 5-window agree
with the bounding curves of Hitzl and Zele [9], who note the
cusp. Their figure covers a wide range of a, however, making
it difficult to distinguish the U−- from the U+-curves, and the
divergence of the former from the latter as they approach or
recede from the cusp, which gives the centre of the subwindow
its characteristic shape, is not revealed.

The shape does appear prominently in an extensive study by
Mira [17] of bifurcations in mappings, with the Hénon map as a
specific example. One should compare the U+- and U−-curves
in our Fig. 4 with his Fig. 6.27, where he displays the fold and
flip bifurcation curves near the centres of the 5-, 6-, and two
7-windows that appear in our Fig. 2(b).

Mira has identified three special types of area within
parameter space – the crossroad, spring and saddle areas –
characterized by different relative locations of the bifurcation
curves. In Fig. 6.28 he shows the peculiar 8-window, which,
like the windows in Fig. 6.27, belongs in a crossroad area, but
involves a three-way rotation of partners, while in Fig. 6.32
he deals with the upper loop of the 6-window, which belongs
in a spring area. In subsequent works [2,18,19], he and his
coworkers investigate the transitions among the areas, and they
present a “skeleton” of a crossroad area, with the now familiar
shape of our Fig. 4(c) and (d).

4. A generic compound window

If a typical window had been bounded by a simple
curve, perhaps an ellipse, we might never have been led to
ask why. The more complicated actual boundary, which has
raised questions, or at least the boundary of an idealized
compound window, nevertheless yields to a reasonably simple
mathematical formula.

We note first that when b 6= 0, vanishing of x0 does not
assure us that U = 0, but, particularly when b is small, a large
x0 favours a large U . When K = 5, for example,

(1 − b5)U = −32x0x1x2x3x4 − 8b
4∑

n=0

xn xn+1xn+2

− 2b2
4∑

n=0

xn . (21)

When K assumes other values, the leading term in a similar
expression is also (−2)K times the product of the xs. If x0, the
smallest x , is not small, it is unlikely that the later terms on the
right can nearly cancel the dominant leading term.

Table 1, which is typical, has indicated that, with b = 0,
x0 remains small enough to make |U | < 1 only through
narrow ranges of a—the logistic subwindows. Near the centre
of a compound window the range of a, and so very likely the
extreme value of |x0|, is considerably larger. It is nevertheless
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Table 1
Values of a and x0, . . . , x6 corresponding to selected values of U in period-preserving numerical integrations along the b-line

U a x0 x1 x2 x3 x4 x5 x6

Period 7(11)

−128.0 2.00000 0.267 1.929 −1.720 −0.958 1.083 0.827 1.316
−96.0 1.96026 0.215 1.914 −1.703 −0.940 1.077 0.800 1.321
−64.0 1.92383 0.154 1.900 −1.687 0.922 1.074 0.770 1.330
−32.0 1.89608 0.081 1.889 −1.674 −0.906 1.075 0.741 1.347
−1.0 1.88484 0.003 1.885 −1.668 −0.897 1.081 0.716 1.372

0.0 1.88480 0.000 1.885 −1.668 −0.896 1.081 0.715 1.373
1.0 1.88479 −0.003 1.885 −1.668 −0.896 1.082 0.715 1.374

32.0 1.89501 −0.082 1.888 −1.670 −0.895 1.094 0.699 1.406
64.0 1.92288 −0.157 1.898 −1.681 −0.902 1.109 0.693 1.442
96.0 1.95995 −0.219 1.912 −1.695 −0.914 1.124 0.696 1.476

128.0 2.00000 −0.271 1.926 −1.711 −0.928 1.139 0.702 1.507

Period 7(21)

−128.0 2.00000 −0.506 1.744 −1.042 0.914 1.164 0.646 1.583
−96.0 1.91743 −0.452 1.713 −1.018 0.881 1.141 0.615 1.539
−64.0 1.81693 −0.377 1.675 −0.989 0.839 1.112 0.580 1.481
−32.0 1.68908 −0.254 1.625 −0.950 0.787 1.070 0.543 1.394
−1.0 1.57541 −0.010 1.575 −0.906 0.754 1.007 0.562 1.259

0.0 1.57489 0.000 1.575 −0.905 0.755 1.005 0.566 1.255
1.0 1.57472 0.010 1.575 −0.905 0.756 1.003 0.569 1.251

32.0 1.67251 0.250 1.610 −0.920 0.826 0.990 0.693 1.193
64.0 1.80223 0.376 1.661 −0.955 0.889 1.011 0.780 1.194
96.0 1.90981 0.456 1.702 −0.987 0.935 1.035 0.839 1.206

128.0 2.00000 0.514 1.736 −1.014 0.971 1.057 0.884 1.219

possible for U to remain small if, as x0 becomes only
moderately small, some other x , say xm , becomes rather small.

A major difference between the two integrations displayed
in Table 1 is the sign of x3. If in Fig. 4(c) one travels along
U -curves from one b-window to the singular point and then to
the other b-window, x3 must have a zero crossing somewhere,
allowing U to remain small. This is also true for the 5-window.

It may therefore be enlightening to view the curves of Fig. 4
in a new system with x0 and xm as coordinates. Note that
Eq. (21), and similar equations for other values of K , may be
rewritten as

U = B0m x0xm + B0x0 + Bm xm + B. (22)

The coefficients, functions of b and the remaining xs, are not
constants, but, in the case of Eq. (21) with m = 3, for fairly
extensive variations of x0 and x3 about 0, they do not change
sign, and are relatively constant, so we may expect the new
U -curves to look somewhat like rectangular hyperbolas with
common asymptotes. Fig. 5 shows the new curves, for U = 1,
0, and −1. The hyperbolic appearance is confirmed.

Consider next either an extremum or a saddle point of a,
where ∂a/∂x0 and ∂a/∂xm vanish. Letting s = xm and t = x0
in Eq. (14), so that s j = Pmj and t j = δ0 j , we find that
∂a/∂x0 = D013/D123 and ∂a/∂xm = −C13 D123. Again after
some algebra we find that C12∂a/∂x0 + D012∂a/∂xm = C01.
As with the cusp, the point, and a similar point for b, must lie
on a U+-curve.

Without a formal treatment we note, say from Fig. 4(a),
that near the center of a typical compound window a has an
absolute minimum – U -curves with U < 1 or U > 1 lie

to the right of the U+-curve – while b lacks a minimum and
at most has a saddle point. Accordingly, we shall construct a
“generic” compound window by first letting U = x0xm , and
then letting the lines of constant a be concentric circles centered
at (1, 1), and those of constant b be rectangular hyperbolas
with common asymptotes, centred at (−1, −1), points where
U = 1. The simplest choice is a = (x0 − 1)2

+ (xm − 1)2, b =

(x0 + 1)2
− (xm + 1)2. Eliminating x0 and xm yields the fourth-

degree equation

(b2
− a2

− 20a + 12 − 8U + 4U 2)2

− (8a + 16 − 8U )2(a − 1 + 2U ) = 0. (23)

With U specified, the values of b corresponding to any chosen
a are easily found, and b may be plotted against a.

Fig. 6 superposes such plots for selected values of U . We
have effectively reproduced Fig. 4(c). The typical shape of a
compound subwindow, although not rigorously derived, is at
least shown to be one that is not unreasonable. Polynomial
expressions have previously been noted [2] for bifurcation
surfaces in a first-order three-parameter map. Of course, in
the formulas for the actual U -curves, the fourth-degree terms
are at most the dominating ones. A similar although more
involved analysis could perhaps “explain” the typical structure
of a complete compound window, with its harmonics.

5. The principal window street

The visible branches of the principal window street in
Figs. 2 and 3 are suggestive of smooth curves, but, since they
are composed of portions of windows, they must have finite
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Fig. 4. (a) Portions of U -curves from U = 1 to U = −1, at intervals of 1/4, that extend from 7(21) logistic subwindow. (b) The same as Fig. 4(a), but extending
from 7(11) logistic subwindow. (c) Superposition of Fig. 3(a) and (b). (d) Portion (shaded) of area covered by Fig. 3(a)–(c) where period 7 is stable, as determined
by random searching. Horizontal scales indicate a, vertical scales indicate b, numbers beside curves indicate U .

widths. In this section we shall establish a procedure for closely
approximating them by readily defined smooth curves. Such a
curve might pass through some special point of each window
along a branch.

Obvious special points of a compound window are the
cusp on the right-hand U+-curve and the singular point, but
another point, to be called the 0-3 point, proves to be more
convenient. We shall first demonstrate that the street is closely
approximated by the set of 0-3 points, which we shall in turn
approximate by definable curves.

We have hypothesized that in the central portion of each
compound window, two xs in the stable periodic solution are
small. We have discovered that in the 5-window and two 7-
windows one small x follows the other by three iterations. It
therefore seems possible that within each of these windows,
and also within or close to a typical window on the principal

street, one pair of values (a, b) produces a periodic solution
with x0 = x3 = 0. Such a pair, when it exists, is readily located
by identifying a suitable logistic window, locating the point
in it where x0 = 0, and then integrating numerically, while
preserving the periodicity and holding x0 fixed, until x3 = 0.
We shall call a curve produced in this manner a 0-curve, and
the point on it where x3 = 0 a 0-3 point. Not all 0-curves reach
0-3 points.

Fig. 7(a) contains the 0-curves extending from the 7(11) and
7(21) logistic windows—the windows from which the U -curves
in Fig. 4 extend. The 0-curves meet at a common 0-3 point,
indicated by the arrow. Together they form such a smooth curve
that the 0 3-point looks no different from any other point, and
if either integration were carried past the 0-3-point it would
produce the other 0-curve.
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Fig. 5. The curves of Fig. 4(c) where U = 1, 0, and −1, in a transformed
coordinate system. Horizontal scale indicates x0, vertical scale indicates x3,
numbers beside curves indicate U .

Fig. 7(b) superposes the 0-curves extending from all K ( j)b-
windows where K ≤ 11, and where 2K /12 < j < 2K /6
and j = 3 or 5 (mod 8), for which the integration can be
carried to the 0-3 point. When j is smaller or larger the curves
tend to be rather far to the right or left of the principal street,
while the restriction (mod 8) eliminates cases where b < 0
at the 0-3 point. Every 0-curve joins another one to form as
smooth a combined curve as in Fig. 7(a). Each combined curve
is quasi-parabolic, and the axes of the parabolas seem to follow
one or the other of the two branches of the street. Moreover,
examination reveals that whenever two curves join, say the
curves from the K ( j) and K ( j ′) windows, j + j ′ = 2K /4.

When instead j = 1 or 7 (mod 8), the x that eventually
vanishes as one travels along a 0-curve precedes rather than

Fig. 6. Segments of generic U -curves from U = 1 to U = −1, at intervals
of 1/2. Horizontal scale indicates a, vertical scale indicates b, numbers beside
curves indicate U .

follows x0 by three iterations, so that x0 = xK−3 = 0. In all
cases that we have examined, j − j ′ = 2.

It seems reasonable that the U+- and U−-curves extending
from two windows that share a 0-3 point should meet to form
the boundaries of a compound subwindow, with which the 0-3
point may be associated. This certainly happens when K = 5
or 7, but a general conclusion does not follow.

Fig. 8 shows 0-3 points with b > 0 for K ≤ 24, and those
with b < 0, which crowd more closely together, for K ≤ 18. As
might have been expected from Fig. 7(b), the points seem to lie
on a complex of curves rather than a single curve. The curves
visibly separate when b is low, and again when b is higher. The
second separation is easily seen in the tenfold enlargement of
the uppermost points of the right-hand branch, produced with

Fig. 7. (a) The 0-curves extending from the 7(21) and 7(11) logistic windows, meeting at 0-3 point indicated by arrow. (b) The 0-curves extending from all K ( j)
windows with K ≤ 11 and 2K /12 < j < 2K /6 and j = 3 or 5 (mod 8), meeting in pairs at 0-3 points (not shown). Horizontal scales indicate a, vertical scales
indicate b.
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Fig. 8. The 0-3 points that terminate the 0-curves from all K ( j) logistic
subwindows with 2K /12 < j < 2K /6, and with K ≤ 24 when j = 3 or
5 (mod 8) and K ≤ 18 when j = 1 or 7 (mod 8). Inset in upper right is tenfold
enlargement of points where b > 0.51 that terminate 0-curves from logistic
subwindows with 2K /12 < j < 2K /6 and K ≤ 30. Horizontal scales indicate
a, vertical scales indicate b.

K ≤ 30, and a third separation appears. It seems likely that if
enough points could be plotted, they would be seen to lie on
a Cantor set of curves. The left-hand branch passes through or
near most of the windows of Fig. 2(b) and Fig. 3(a), but the
prominent 9-window lies on the right-hand branch.

Although the 0-3 points may lie along smooth curves, they
do not fill such curves, since they are defined only for periodic
solutions. We shall seek a procedure for defining continuous
curves that approximate the curves along which the 0-3 points
appear to lie.

Such curves presumably must pass through chaotic as well
as periodic points. Except when b = 0, a continuum of
values of a can produce solutions where x0 = x3 = 0.
We need a condition that chooses among these values where
chaos prevails, and that selects a 0-3 point or one close to it
where periodicity prevails.

One condition satisfied by all periodic solutions and some
but not most chaotic solutions is that the solution does not blow
up when iterated backward. Among such solutions are those
that originate on the unstable manifold of a steady or periodic
solution. Let us examine those on the unstable manifold of the
fixed point x∗, the positive root of x∗2

+ (1 − b)x∗
− a = 0.

On this manifold successive values of xn − x∗ increase by the
factor λ, the negative root of λ2

+ 2x∗λ − b = 0.
Fig. 9(a) shows a plot of x3 against x0 along the manifold,

for a = 1.08 and b = 0.38. The point (0, 0), represented by
the central dot, lies below and slightly to the right of several
local minima of x3. Fig. 9(b) is similarly produced, but with
a = 1.28. The manifold has stretched out considerably as a
has increased, and more local minima of x3 are resolved—
presumably they form a Cantor set – and now the point (0,0)
lies to the left of the curves that extend downward through the
minima. By continuity there should be some easily resolvable

values of a somewhat above 1.08, and some others somewhat
below 1.28, that make the manifold pass through (0,0), i.e. that
make the solution with x0 = x3 = 0 approach x∗ instead of
−∞ as n → −∞.

Ideally, given b, we might seek the entire Cantor set of values
of a that place the point x0 = x3 = 0 on the unstable manifold,
but we shall instead seek a finite number of values, each of
which is close to one or another member of the Cantor set.
On the unstable manifold xn − x∗

→ 0 as n → −∞, while
(xn − x∗) − λ(xn−1 − x∗) → 0 even more rapidly, so we may
accomplish our aim by letting one of these quantities vanish for
some finite negative value of n. It proves convenient to let

Fn = −b
(
(xn − x∗) − λ(xn−1 − x∗)

)
/λ. (24)

Substituting (xn+1 − x∗) + (x2
n − x∗2) for b(xn−1 − x∗), and

then substituting λ2
+ 2λx∗ for b, we obtain

Fn = (xn+1 − x∗) − (λ − xn + x∗)(xn − x∗). (25)

It appears that we can obtain reasonable results with n =

−2; i.e. by letting our condition be F−2 = 0. Given b, it is
convenient to choose a succession of values of x1 rather than
a, and then evaluate in turn x2, a, x−1, x−2, x∗, λ, and F−2.
When b = 0 the procedure breaks down, but it also becomes
unnecessary, since the Cantor set degenerates to the single
value a = c2

= 1.7549, where c = 1.3247 is the real root
of the equation x3

− x − 1 = 0. Fig. 10 shows curves of
F−2 against a for selected values of b. The curves are quasi-
parabolic with small negative minima. Note that the minima are
displaced leftward and the zero crossings become farther apart
as b increases.

In Fig. 11 the zero crossings from Fig. 10 and for other
values of b are joined to form two curves—the desired curves
where F−2 = 0. Superposed on them are the 0-3 points from
Fig. 8. The fit is seen to be good even if not perfect.

It is also possible to produce either curve of Fig. 11 by
numerical integration, starting on the logistic line, with the
constraints that dx0 = 0, dx3 = 0, and dF−2 = 0. At the start
a = c2, x1 = c2, and x2 = −c, and x−1 must equal x2 or −x2.
The condition dx3 = 0 becomes −4c3dx1+(2c+1)da+c2db =

0, and, with x0 = 0, the condition dx1 = d(bx−1 − x2
0 + a)

becomes −dx1 + da + x−1db = 0. Thus, with x−1 = −c,
da/db = (5c2

+ 4c)/(2c + 3) = 2.491, while, if x−1 = c,
da/db = −(3c2

+ 4c)/(2c + 3) = −1.870. The former choice
makes the curve leave the b-line with a positive slope and
follow the curve where x0 = 0 within the period-3 window, so
clearly the latter choice, x−1 = −x2 = c, is needed to follow
the window street. In this case x−2 = ±

√
c2 − c; either sign is

allowable. Integrations with x−2 > 0 and x−2 < 0 will produce
the left-hand and right-hand curves in Fig. 11, respectively.
Consistently with this finding, if in constructing Fig. 8 we had
plotted only those points that produce solutions with xK−2 > 0,
only the left-hand branch would have appeared; with xK−2 < 0,
only the right-hand branch appears.

The condition F−2 = 0 thus appears acceptable. We shall
call a curve produced in this manner a street curve, and the
particular curves, where the vanishing xs in the solutions



Author's personal copy

1700 E.N. Lorenz / Physica D 237 (2008) 1689–1704

Fig. 9. (a) Unstable manifold of fixed point (x∗, x∗) when a = 1.08 and b = 0.38, in system with x0 and x3 as coordinates. Dot in centre is (0, 0); dot on manifold
is (x∗, x∗). (b) The same as Fig. 9(a), but when a = 1.28 and b = 0.38. Horizontal scale indicates x0, vertical scale indicates x3.

Fig. 10. Curves of F−2 against a, for b = 0.30, 0.38, and 0.46. Numbers beside
curves indicate values of b. Horizontal scale indicates a, vertical scale indicates
b.

are three iterations apart, street curves of order three. To
approximate more members of the Cantor set by street curves
we would have to replace the condition F−2 = 0 by Fn = 0
with n < −2, and use various choices for the signs of x−2, x−3,
etc.

6. Intersecting window streets

Consider the prominent 7-windows in Fig. 2(b), one of
which is enlarged in Fig. 3(a). Each one lies on the principal
street, and each appears to lie also at the lower end of another
street extending to the right. If a period-7 solution has two
zeros three iterations apart, it necessarily has two zeros four
iterations apart. That is, a 0-3 point associated with a period-
7 solution should also qualify as a 0-4-point, and the set of

Fig. 11. Branches of street curve of order 3, as determined by numerical
integrations starting on logistic line, with 0-3-points from Fig. 8 superposed.
Horizontal scale indicates a, vertical scale indicates b.

0-4 points should lie on a complex of curves somewhat like
the one implied in Fig. 8. More generally, there should be 0-
m points, lying on 0-curves that presumably extend from b-
windows other than those associated with 0-3 points, and are
obtainable like the 0-3 points, but with x0 = xm = 0 or
x0 = xK−m = 0.

Like the points in Fig. 8, a set of 0-m points may be
approximated by a street curve of order m, obtainable like the
curves in Fig. 11 by numerical integration, but starting at a b-
window of period m. Fig. 12 shows such curves for 2 ≤ m ≤ 6.
In each case the third condition has been F−2 = 0, and initially
x−1 = −xK−1 and x−2 > 0. Additional curves could be
obtained with x−2 < 0.
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Fig. 12. Street curves of orders m ≤ 6 as determined by numerical integrations
starting on logistic line, with x−2 > 0. Horizontal scale indicates a, vertical
scale indicates b, numbers beside curves indicate m.

Comparison with Fig. 2(b) shows that the centres of the
compound windows of lowest period – the 5-window and the
two 7-windows on the principal street and the 6-window to the
right – all lie close to intersections of two street curves, the sum
of whose orders is the period. We are led to the hypotheses that
every compound window is centred on or near an intersection
of two street curves. Note that some of the street curves have
extensive portions where no corresponding streets appear in
Fig. 2(b). This should be expected if streets, which consist
of windows, are confined to regions near where street curves
intersect.

Further comparison fails to reveal an expected street curve
of order 6 passing near the centre of the 9-window on
the right-hand branch of the principal street, prominent in
figure Fig. 3(a). This is true also of the less prominent 9-
window above the lower 7-window. If our hypothesis is correct,
there must be additional street curves that do not intersect the
logistic line. These, if they exist, as well as the street curves
already produced, may be found by integrations originating
near already detected 0-m-points.

Fig. 13 contains the four 9-windows on the principal street,
as found by random searching, and superposed on these are
two street curves of order 6 obtained by integrations starting
near the 0-6-points that are near the centres of the upper two
9-windows. Each of these passes near the center of one of the
lower 9-windows, and one curve is found not to intersect the b-
line. Also included in the figure are street curves of order three
obtained by integrations starting near the upper 9-windows. The
curves found in this manner are indistinguishable from those
in Fig. 11.

The locations of the shorter-period compound windows are
thus reasonably well accounted for. When the period is higher, it
seems possible that stability might be favoured by having three
or more small xs, which could happen if three or more window
streets come close to having a common intersection.

Fig. 13. Selected street curves of orders m = 3 and m = 6 as determined
by numerical integrations starting near centres of 9-windows, superposed on
9-windows as determined by random searching. Horizontal scale indicates a,
vertical scale indicates b, numbers beside curves indicate m.

7. Further considerations and conclusions

Throughout this work our conclusions regarding the
properties of compound windows have been drawn primarily
from the study of particular cases. We have not offered
mathematical proofs of propositions that the encountered
properties are completely general. There is a good reason for
this; such propositions tend not to be true.

Consider, for example, the proposition that if period K ( j)
exists, with 2K /8 < j < 2K /6 and j = 3 or 5 (mod 8), then
period K ( j ′) where j + j ′ = 2K /4 exists (whence 2K /12 <

j ′ < 2K /8 and j < 2 j ′), and the K ( j) and K ( j ′) 0-curves
meet at a common 0-3-point. Consider also the proposition
that, under the same conditions, as b increases, the U−-curve
extending from either logistic subwindow diverges from the
U+-curve extending from the same subwindow, crosses the
other U−-curve and nears the other U+-curve, so that the
curves together form boundaries of a compound subwindow,
with four antennae.

We have found no exceptions to the first proposition among
the 272 cases where K ≤ 17. The second proposition fails in
one of the 20 cases where K = 13.

Fig. 14(a) shows segments of the 13(1363) and 13(685)
U+- and U−-curves. The U+-curves appear normal, with a
cusp on the right-hand curve, but the U−-curves fail to cross.
U -curves with U = −1.343 from either b-window meet
at a common singular point, outside the region of stability.
Fig. 14(b), obtained by random searching, confirms that there
are two separate period-13 windows.

A figure showing several U -curves with U ranging from 1 to
−3 rather than 1 to −1 would resemble Fig. 4(c), but the region
covered by the curves would no longer be a subwindow. We
shall call a pair of windows produced in the manner of Fig. 14
an almost-compound pair.
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Fig. 14. (a) Portions of U+ and U− curves that extend from 13(1363) and 13(685) logistic subwindows. (b) Portion (shaded) of area covered by Fig. 14(a) where
stable periodic solutions occur, as determined by random searching. Horizontal scales indicate a, vertical scales indicate b, numbers beside curves indicate U .

Fig. 15. (a) Irregular subwindow of period 18, determined by random searching. (b) Portions of U+- and U−-curves in region covered by Fig. 15(a), that extend
from 18(22 891), 18(22 933), 18(42 603), and 18(42 645) logistic subwindows. Horizontal scales indicate a, vertical scales indicate b.

Such pairs appear more frequently as K becomes larger,
and we might consider modifying the second proposition to
state that, under the given conditions, the indicated U+- and
U−-curves would bound a compound window or an almost-
compound pair. Such a proposition indeed holds when K ≤ 17,
but, when K = 18, the first and the modified second proposition
both encounter exceptions.

Fig. 15(a) shows a principal subwindow where K = 18,
produced by random sampling over a small region after being

first detected as a small irregular patch near the centre of
Fig. 3(a). It might appear to be two windows whose locations
happen to overlap, but Fig. 15(b), containing the segments of
the K ( j1)− K ( j4)U+- and U−-curves in the same region, with
j1 = 22 891, j2 = 22 933, j3 = 42 603, and j4 = 42 645,
shows that this is not the case. Note that j1 + j4 = j2 + j3 =

2K /4. There is a four-way rotation of partners rather than
two separate exchanges. Also, three of the U+-curves possess
cusps. Thus the second proposition fails. In addition, the 0-
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Fig. 16. (a) The same as Fig. 15(a), but for irregular subwindow of period 40. (b) The same as Fig. 15(b), but for eight logistic subwindows whose U+- and
U−-curves extend through region covered by Fig. 16(a). Horizontal scales indicate a, vertical scales indicate b.

curves extending from the K ( j3) and K ( j4)b-windows and also
from two more of the 132 b-windows with K = 18 do not reach
0-3-points, so that the first proposition fails.

As K becomes larger, still more shapes appear. The most
intricate window that we have encountered is one of period 40.
Fig. 16(a) shows the 40-subwindow, while Fig. 16(b) presents
an analysis like that in Fig. 15(b), containing U+- and U−-
curves from eight b-windows. There is a complete 8-way
rotation. The window of Fig. 15 seems simple by comparison.

As for street-curve intersections, we might have expected a
7-window where curves of orders two and five cross, but all
that appears in Fig. 2(b) is a pair of faint streaks. Enlargement
identifies it as an almost-compound pair.

The work of Mira [17] implies that windows of special
shapes, including those seen in this study, are features of
more general maps, but the question arises as to whether the
arrangement of these windows into streets is also a general
feature. We remark only that an answer can presumably
be found if one is willing to perform sufficiently lengthy
computations.

May [16] titled his classic paper “Simple mathematical
models with very complicated dynamics.” Here a system only
a bit more complicated than the logistic equation has exhibited
far more complicated dynamics.

Note added in proof

In this paper, I noted a frequently occurring structure in
parameter space in the Hénon map [8], which I called a
“compound window,” and which I described as resembling a
strange creature with a central body and four long antennae.
Subsequently I have received a number of communications
[22–25] informing me that similar structures have appeared in
a number of articles, and that they have already received the
apt name of “shrimps.” References [22–25] and probably others
should have appeared among the papers cited here, and would

have appeared here if I had been aware of them at the time of
submission.

Fig. 3b of my paper is nearly a copy of Fig. 7 of [25]. In view
of the frequent encounters with shrimps by various authors,
I feel that the principal contribution of my paper may be the
recognition of long narrow bands, which I have called “window
streets,” composed of innumerable microscopic shrimps, and
the identification of Cantor sets of readily computable smooth
curves that closely approximate the window streets.
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