copies
available

NOISY PERIODICITY AND REVERSE BIFURCATION*

Edward N. Lorenz

) Reprinted from
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES
Volume 357 Pages 282-291 .
December 26,1980 27933



NOISY PERIODICITY AND REVERSE BIFURCATION*

Edward N. Lorenz

Department of Meteorology
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

In studying apparently periodic phenomena modeled in the laboratory or simu-
lated on the computer, we often find, upon close examination, that the periodicity is
noisy. FIGURE 1a is a laboratory example. It is a trace of the temperature of a fluid at a
fixed location in a rotating, differentially heated vessel recorded by Hide et al. during
a 20-minute interval as a chain of waves passed by.' Since no fluid experiment can be
perfectly controlled, one might assume that the failure of each peak in the curve to
duplicate the third peak preceding it represents the experimental uncertainty. The
authors have established, however, that the differences between the peaks are a real
feature of the process they are investigating.

FIGURE 1b is a computer example. It shows the variations of one of a set of three
variables governed by a system of ordinary differential equations during 930
iterations, after transient effects have died out. Here, likewise, the failure of each peak
to duplicate the second peak preceding it does not represent computational uncertain-
ty; it is the behavior to be expected.

We shall first examine noisy periodicity as a phenomenon that might be produced
by iteration of a differentiable mapping

Xnii =f(xn)' (1)

FIGURE 1c¢ is an example; the 16 line segments connecting successive iterates of x, are
included only to make the chronological order stand out. Again, every peak fails to
duplicate the second peak preceding it.

We shall denote by {x,} and {x,ly the sequences {xg, x,, x;,...} and {x,, xp,
Xy, - . .} generated by fand its Nth iterate, £ V. A sequence {x,} is periodic of period N
if xy = xoand x,, # xo when 0 < m < N. It is eventually periodic if x,, y = x, for some
k > 0 and asymptotically periodic if x; — y,— 0 as k — « for some periodic sequence
{yol. Otherwise, it is aperiodic. 1t is steady if it is periodic of period 1.

We shall call an aperiodic sequence {x,} semiperiodic of period N if the ranges of
{x,1y are disjoint for 0 < k < N and the ranges of {x,},, overlap for 0 < k < m when
m > N. An aperiodic sequence that is not otherwise semiperiodic is semiperiodic of
period 1. A variance spectrum of a semiperiodic sequence with V > 1 contains lines
superposed on a continuum.

If the ranges of {x,}y are very narrow, {x,} may be mistaken for a periodic sequence
from which transient effects have not yet disappeared, but, if sufficient precision is
used, the periodicity will be seen to be noisy. The sequence in FIGURE Ic is
semiperiodic of period 4. The curve in FIGURE 1b, and possibly that in FIGURE la, is
like FIGURE Ic in that the sequences of successive maxima are semiperiodic.

*This research was supported by the Climate Dynamics Program of the National Science
Foundation, grant no. NSF-g 77 10093 ATM.
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A sequence {x,} is stable if y, ~ x, — 0 as k — oo for every sequence {yo} where
Yo — X, is sufficiently small. Otherwise, it is unstable. A periodic sequence {x,} is
stable if | A] < I and unstable if|A|> 1, where A is the product of the NV values of the
derivative f’(x).

We shall now restrict our attention to the quadratic mapping

Xup1 = o X2 - a 2)

For suitable values of a, (2) is equivalent to the familiar quadratic mapping of the unit
interval. We have chosen the form (2) to make f'(x) = x. Many of the statements that
follow apply to more general mappings.

FIGURE 1. Examples of semiperiodic
or apparently semiperiodic variables
(a) from the laboratory, (b) from a
system of differential equations, and (b)
(c) from a mapping.

{c)

A value wy of x for which f'(w,) = O is a singularity of f. For (2), the lone
singularity is at wy = 0. We shall call the sequence {w,} the singular sequence. A
frequently cited theorem states that if a stable periodic sequence {x,} exists, then w, —
Xiem — O for some m as k — .2 A corollary is that there is at most one stable
periodic sequence. We shall say that a is periodic if there is a stable periodic sequence
and aperiodic otherwise.

For a > —1, the mapping (2) generates two steady sequences, {s,} and {u,}, where
So=1~ (1 + 2a)""* and uy = 2 — s,. For a in (—'4, 4), the interval (—a, u,) of x is
mapped into itself. We shall call the interval (-4, 4) of a the principal band.

In the principal band, {1} is always unstable, but, for — ' < a < 3, {50} is stable, so
a is periodic of period 1. For some values of a in (=7, 4), including those for which the
singular sequence {wo} is eventually, but not immediately, steady, a is aperiodic.
Outside the principal band, ifa < — %2, all sequences go to infinity as # — w. If @ > 4,
{so} and {u,} are still steady and unstable, but some sequences {x,} with x, in (—a, u,),
including {w,}, go to infinity.
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We shall call a value of a, of a for which the singular sequence {wy} is periodic a
singular value of a. A singular value is stable because A = 0. For period 1, the singular
value is g, = 0.

For variations of a and x, about aq, and w,,

dx, = x,dx, — da, 3)
whence, by iteration,
dxy = Pxydx, — Qda. 4)

where

N-1

P=me’

m=1

Q=I+anm.

k=1 m=1
For sufficiently small variations, even though x, may change sign, x,, will remain
relatively close to w,, for 0 < m < N, and P and Q will not vary greatly.

In general, P and Q are large. If P and Q were true constants, then (4) could be
integrated, yielding

Px, = 'h(Px,)* — PQ(a — ay). C)
The Nth iterate of (2), i.e., (5), would then be identical in form with (2). Thus, for
a > d', where PQ(a’ — a,) = — '/, the mapping would generate steady sequences {toly

and {v,ly, and, hence, periodic sequences {15} and {v,}, where Ptg = 1 — (1 + 2PQ(a —
ay)}'/* and Pv, = 2 — Pt,. For ain (d’, a"), where PQ(a” — a,) = 4, the interval (—b,
v,) of x, where b = Q(a — a,), would be mapped into itself by (5). Moreover, (2) would
map ( —b, vy) into an interval near —a that would be disjoint from (- b, v,). Hence, for
a in (a’, a”) and x in (—b, v,), aperiodic sequences would be semiperiodic, and all
periods would be multiples of V.

The actual variation of P and Q alters the values of @’ and a”, but does not appear
to invalidate the qualitative conclusions. For example, the lone singular value a, for
period 3 is 3.50976,s0 P = —9.299 and Q = —5.649. The estimated values of @’ and a”
would, therefore, be 3.50024 and 3.58590. The true values, which may be found by
rapidly converging algorithms using the estimated values as initial approximations,
are 3.5 (exactly) and 3.58066. The algorithms are based on equation 5 and make use
of the existence of sequences {x,} with xy = xoand Px, = +1,if a = @, and x, ~ 0 and
Xy = — Xy, ifa=a".

We shall call a true interval (@', a”) a semiperiodic band of a. We shall say that a
is semiperiodic if it is aperiodic and lies in a semiperiodic band. The principal band is
semiperiodic of period 1. Different bands of the same period, /V, are distinguished by
the sequence of plus and minus signs in {wy}.

In a semiperiodic band, {v,} is always unstable, but {t,} is stable for the smaller
values of a, and a is periodic. Some of the larger values of a are semiperiodic. Outside
the band, if a < o', all sequences {x,}y leave (—b, v;) and no periodic sequence of
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period N with the appropriate sequence of signs exists. If @ > a”, then {1} and {v,} are
still periodic and unstable, but {w,}y leaves (—b, v,), and a is no longer semipe-
riodic.

Since a semiperiodic band is topologically a small copy of the principal band,
which contains semiperiodic bands, each semiperiodic band must contain semiperiodic
bands, which in turn contain more semiperiodic bands, etc. A band that is contained in
no other band except the principal band will be called a prime band; other bands will
be called composite. The period of a composite band is obviously a composite number,
but the converse does not hold. The sequence in FIGURE Ic satisfies (2) for a = 2.85,
which is in a composite band of period 4. TABLE 1 gives (&', a”) for all prime bands of
period <6.

We can now describe a routine that will yield (with an infinite amount of work) the
complete structure of the principal band, i.e., the arrangement of the steady, periodic,
semiperiodic, and aperiodic values of a. We first find all prime semiperiodic bands and
place them with their proper periods in their proper locations in the band; these are
countable in number and do not overlap. To the left of the first prime band, a is steady;

TABLE |

LOWER AND UPPER LIMITS &', a” AND WIDTHS a” — a' OF PRIME SEMIPERIODIC BANDS
OF PERIOD N =< 6 FOR EQUATION 2

N a a’ a’ - da
2 1.50000 3.08738 1.58738
5 3.24879 3.26672 0.01793
3 3.50000 3.58066 0.08066
5 3.72117 3.72466 0.00349
6 3.81450 3.81503 0.00053
4 3.88110 3.88552 0.00442
6 3.93353 3.93369 0.00016
5 3.97082 3.97108 0.00026
6 3.99275 3.99277 0.00002

between prime bands, a is aperiodic. We then place composite bands in the prime
bands, and more composite bands in the composite bands, until each prime band, and
hence each composite band, has attained the structure of the principal band.

We are not aware of a proof that the Lebesgue measure of the set of aperiodic
values of a exceeds zero, but we have previously offered considerable evidence favoring
a positive measure,” while Collet and Eckmann have given a proof for a somewhat
similar mapping.® Let r,, r,, and r; denote the fractions of the principal band for which
a is periodic of period 1, in a prime semiperiodic band, and between prime bands,
respectively, and let 5, and s, denote the fractions for which a is periodic and aperiodic.
Thenr + r, + r; = 1and s, + s, = 1; 7, = 0.44 and, from a crude extrapolation of
TABLE 1, we estimate that r, — 0.39 and r, = 0.17, With the approximation that each
semiperiodic band is a small but otherwise exact copy of the principal band,
53/, =ry/r;, 50 5, = 0.70 and s, = 0.30, and the fraction of the principal band for
which a is semiperiodic of period >1 is s, — r; = 0.13.
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Perhaps the most interesting prime band is the single band of period 2, which
begins at a’ = 1.5 with a bifurcation of period 1 and terminates at a” = 3.0874, where
the condition w, = —w, can be satisfied. We shall determine what the structure of the
principal band would be if there were no other prime bands, so that the periods of all
composite bands would be powers of 2 and all values of a > @” would be aperiodic.
FIGURE 2a shows schematically, for each a < &/, the value s, that w, approaches as
k — o, and, for a > a”, the continuum of values that would form the range of {w,}. A
gap has been left between @' and a”.

Since the band of period 2 belonging in the gap must be a small copy of the
principal band with all periods doubled and with the number of admissible values of x
doubled where it is finite, we must fill the gap with two reduced copies of FIGURE 2a,
one upside down. FIGURE 2b shows the result of doing this. A band of period 4 now
belongs in the remaining gap, so we must fill it with four copies of FIGURE 2b. This
gives us FIGURE 2c, which still contains a gap. We see eight narrow continua to the
right of the gap reaching out like fingers to meet the eight curves to the left. The gap
becomes filled by a nested sequence of bands when the process is continued to
infinity.

On the left in FIGURE 2¢, we see the familiar bifurcations to periods of successively
higher powers of 2."® The successive values of @', which appear in TABLE 2 for periods
up to 22 converge to a, = 2.80231, and the ratios of successive differences, a, — &',

FIGURE 2. A schematic illustration
of the procedure for constructing a
nested sequence of semiperiodic bands.
See text for details.
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TABLE 2

LOWER AND UPPER LIMITS &', @’ AND WIDTHS a” — o' OF NESTED SEMIPERIODIC
BANDS OF PERIOD N = 2, M =< 12 FOR EQUATION 2

M N a a’ a —d
0 1 —0.50000000 4.00000000 4.50000000
1 2 1.50000000 3.08737803 1.58737803
2 4 2.50000000 2.86071526 0.36071526
3 8 2.73619788 2.81481024 0.07861236
4 16 2.78809231 2.80498435 0.01689204
5 32 2.79926248 2.80288299 0.00362051
6 64 2.80165748 2.80243330 0.00077582
7 128 2.80217054 2.80233664 0.00016610
8 256 2.80228043 2.80231600 0.00003557
9 512 2.80230396 2.80231158 0.00000762
10 1024 2.80230900 2.80231064 0.00000164
11 2048 2.80231008 2.80231043 0.00000035
12 4096 2.80231032 2.80231039 0.00000007

converge rapidly to 0.21417, the reciprocal of a ratio found by Feigenbaum to be
characteristic of a wide class of mappings.®

On the right in FIGURE 2c, we see transitions to semiperiodicities of successively
higher powers of 2 as a decreases. The successive values of a”, which also appear in
TABLE 2, also converge to a,, and the ratios of successive values of a” — a, converge
equally rapidly to 0.21417. The ratio of " — a,to a, — @’ converges to 0.18781, which
appears to be another universal value.

We shall call the process of transition to successively lower semiperiodicities
reverse bifurcation. We feel that the reverse bifurcation of semiperiodicities to
successive powers of 2 as a decreases is as significant a feature of the structure of the
principal band as the more familiar bifurcation of periodicities to successive powers of
2 as a increases. FIGURE 3 shows the same nested sequence of bands, drawn to scale for
equation 2.

We must now consider the effect of the remaining prime bands, which we
neglected in constructing FIGURES 2 and 3. Since these bands occur only where a > a,,
their effect on the left portion of FIGURE 2a and, hence, of FIGURES 2b and 2c, is nil. In
the right portion of FIGURE 2a, however, the solid shading must now be interpreted as
meaning that, for some of the included values of a, the range of {wo} is as shown. Other
values of a lie in semiperiodic bands of period =3. Similarly, just to the right of the gap
in FIGURE 2, the indicated ranges of {w,}, for 0 < k < 8 are valid only for some values
of a; other values lie in composite bands. Needless to say, within every semiperiodic
band of period N, prime or composite, there is a nested sequence of composite bands
whose periods are the products of N with successive powers of 2.

To extend the concept of semiperiodicity to solutions of differential equations, we
might define a function of time to be semiperiodic if its spectrum contains lines and a
continuum. If the function possesses a clearly defined succession of maxima and
minima, we might instead define it to be semiperiodic if its sequence of maximum or
minimum values is semiperiodic. The two definitions are not equivalent, since, in the
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FIGURE 3. Bifurcations to periodici-
ties and reverse bifurcations to semi-
periodicities of successive powers of 2
for equation 2.

latter case, the time intervals between successive maxima are, in general, neither
uniform nor periodic. Hence, the function may pass in and out of phase with a sine
curve of any chosen frequency, and no line need appear in the spectrum.

We shall investigate the semiperiodicity of solutions of the system

dx

dt—-—ax+ay,

d

aivt-=—xz+rx—y, (6)
d

d—j=xy—bz

For b = 84, ¢ = 10, and r = 28, we have found that the general solution is aperiodic.’
Robbins has found that the solution is periodic for much higher values of #.'® Its
projection on the xz or yz plane resembles a figure eight with equal maxima of z, while
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the values of x or y at successive maxima of z differ only in sign. She has also observed
bifurcations to periods of successively higher powers of 2 as r decreases.

By examining extended numerical solutions of (6) using a fourth-order Taylor
series procedure with a time step, Az = (256b(r — 1))~"/?, we have found that, for b =
% and ¢ = 10, the sequence of successive maxima of z bifurcates to period 2 when r is
decreased to 312.98. As r is further decreased, a succession of bifurcations to higher
powers of 2 culminates at r, = 215.364. This is followed by reverse bifurcations to
semiperiodicities of successively lower powers of 2 until the sequence becomes
completely aperiodic when r passes 203.04. In a sense, the total solution is still
semiperiodic, since x and y continue to alternate in sign at successive maxima of z.
This alternation is replaced by aperiodic behavior when r passes 197.6, which is the
highest value of r for which the unstable fixed point (0, 0, 0) is in the attractor.

TABLE 3 gives the limiting values 7’ and # for the nested semiperiodic bands. To
the precision of the computations, the lower part of TABLE 3, where r is near r,, is a
linear transformation of the lower part of TABLE 2, where a is near a,. The same
limiting ratios, 0.21417 and 0.18781, are present.

FIGURE 4 shows a spectrum of z for r = 205, where the sequence of maxima is
semiperiodic of period 2. To perform the analysis, we made Fourier analyses of 16 runs
of 2" time steps or 87.81 time units each, and then averaged the squares of the real
and imaginary parts of each Fourier component. Each run spans 344 maxima of z. The
figure shows only the first 800 of the 2'* + 1 spectral amplitudes, and these have been
smoothed by averaging in groups of 5. The remainder of the spectrum tapers off to
Zero. »
There is a continuum with several prominent wide bands, but superposed on this
are three apparent lines at 172, 344, and 516 waves per run; these are completely
unresolvable as bands even with the high resolution used. The corresponding
wavelengths are 2, 1, and % maxima of z. The lines account for 25, 30, and 7 per cent
of the variance of z, respectively, the remaining 38 percent being contained in the
continuum. Evidently, z is also semiperiodic according to the spectral definition.

FIGURE 5 is a similarly obtained spectrum for r = 200, where the sequence of the
maxima of z is aperiodic. The lines at 172 and 516 waves per run have been replaced
by strong bands, but the line at 344, which accounts for 26 percent of the total
variance, is as unresolvable as before. Again, z is spectrally semiperiodic.

Since the time intervals between successive maxima vary with an aperiodic

TABLE 3

LOWER AND UPPER LIMITS r”, r* AND WIDTHS r’ — r” OF NESTED SEMIPERIODIC
BANDS OF PERIOD N = 2¥ M < 6 For EQUATION 6

M N r r o=
1 2 203.04 312.98 109.94
2 4 212.94 229.40 16.46
3 8 214.82 218.21 3.39
4 16 215.252 215.967 0.715
5 32 215.340 215.492 0.152
6 64 215.359 215.393 0.034
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FIGURE 4. The spectrum of variable z satisfying equation 6 for b = %, ¢ = 10, and r = 205.
The abscissa is the frequency in waves per run of 2" time steps. The ordinate is the variance
contained in given frequency. The vertical lines at frequencies 172, 344, and 516 represent delta
functions containing 25, 30, and 7 percent of the total variance.

component, the lines in the spectrum can occur only if the long intervals are
compensated almost immediately by short intervals. Accordingly, in a run of 2% time
steps spanning M = 11008 maxima of z, we have determined the time, ¢,, of
occurrence of each maximum for m < M. For an optimally chosen time interval, 7 =
0.255575, the range of t,, — m7 is only 0.16513. Thus, the maxima of a suitably chosen

20r

(0] l 1 §
0 200 400 600 800

FIGURE 5. Same as in FIGURE 4, but for r = 200. The vertical line at frequency 344
represents a delta function containing 26 percent of the total variance.
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sine curve never become completely out of phase with the maxima of z. If the apparent
lines are actually narrow bands, it will require a much higher-resolution spectrum to
demonstrate this.

We thad not anticipated this feature of the spectrum from other known properties
of the equations. The periodic solutions that are stable when r > ry still exist as
unstable solutions when r < r,, but the failure of the resulting fully developed
aperiodic disturbances to destroy the periodicity of the solution was not expected.

The semiperiodic variable in FIGURE 1b is the variable z in equation 6 for » — 210.
Whether or not the experimentally recorded variable in FIGURE 1a is semiperiodic we
cannot say without further analysis, but we do know that systems of equations used to
simulate rotating-fluid experiments possess semiperiodic solutions. More generally,
semiperiodicity seems to be a normal phenomenon in mathematical and physical
systems.
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