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ABSTRACT

A rapid procedure for inverting a second-order finite-difference form of the two-dimensional del-square
operator is presented. The procedure may be used whenever the precision of the computer significantly
exceeds the required accuracy of the results; effectively it acquires its speed by using the otherwise unneeded
power of the computer represented by the additional precision. A particular variant should prove especially
useful in numerical weather prediction, in instances when storage space is at a premium.

1. Introduction

There are numerous problems in diverse scientific
disciplines which require the inversion of the del-square
operator, i.e., the solution of Poisson’s equation

Vip=yq, (11

for p in terms of ¢, subject to prescribed boundary con-
ditions. As a consequence, numerous procedures for
.solving Poisson’s equation have been developed, not
only by mathematicians but also by workers in the
fields where the solutions are to be put to use. Extensive
bibliographies have been presented by Hockney (1969),
Dorr (1970), Buzbee et al. (1970), and more recently
by Bank (1975).

In meteorology the most familiar problem requiring
the inversion of the two-dimensional del-square operator

L L
Vi=—oFf—
dy?

dx?
is undoubtedly the numerical solution of the barotropic
vorticity equation

lile AW a oo oy
= +— ——0—. (1.3)
o dxdy 9y dx Ox

(1.2)

Here x and y are Cartesian coordinates, ¢ is time, g is a
constant, { and ¥ are the vorticity and the stream-
function, respectively, and

VY =t. (1.4)
Starting with an initial field of {, one must solve (1.4)
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for ¢ before one can compute the time derivative of {
and determine future values of { by stepwise integration.

Eq. (1.3) was suggested by Rossby (1939) as being
applicable to weather forecasting, and in a slightly
modified form, was used by Charney et al. (1950) to
produce the first moderately successful numerical
weather prediction. In the latter work the field of { was
represented by its values at a gird of 15 by 18 points,
and the corresponding values of ¥ were obtained by
inverting a finite-difference approximation to del-
square. Producing a 24-hour forecast required about
24 hours of computation on the ENIAC computer.

During the quarter century which has since elapsed,
the time required to produce a 24 h forecast with a
similar grid has been reduced to about 0.1 s. Although
the bulk of the gain in speed has resulted from the
development of faster computers, at least one order of
magnitude has been gained from the discovery of more
efficient algorithms, and in particular, algorithms for
inverting del-square. The purpose of this paper is to
present a procedure for solving (1.1) when p and ¢ are
represented by grid-point values, which is suitable for
use with many present-day computers, and which
appears to be faster than any other procedure currently
in use.

Certain developments during the past decade may
have served to decrease the interest among meteorolo-
gists in such a procedure. One of these is the more wide-
spread use of the primitive equations, where the
inversion of del-square is not generally required unless
external gravity waves are filtered out. Another is the
increased popularity of spectral methods, where the
inversion of del-square becomes a trivial problem,
although the remaining steps required to solve (1.3)
become more cumbersome.

Nevertheless, there remain a number of problems
where the use of spectral methods is at best rather
awkward. Notable among these are problems where
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evaporation and condensation of water in the atmo-
sphere play a significant role. Since one may not always
wish to handle such problems with the primitive equa-
tions, it would seem that rapid algorithms for inverting
del-square should retain considerable meteorological
interest. Finally, fluid dynamicists continue to be
interested in Eq. (1.3), often with 8=0, for its own
sake, where the motion governed by it has acquired the
name ‘‘two-dimensional turbulence.”

2. The marching-correction-marching procedure

Our procedure is based upon a process generally
known as “marching.” In its unmodified form the
process is very simple, but the results which it yields
are often worthless. We shall present a modification
which can generally produce acceptable results.

Let a grid of points be formed by the intersection of a
set of horizontal lines (rows) with a set of vertical lines
(columns). Let the distance between two adjacent rows
or columns be 4. Let ¢;,; and p; ; denote respectively the
values of ¢ and p/8 at the intersection of the row num-
bered i with the column numbered 4, and let these
quantities be defined for = ., M—1and j=0, .

N —1. Given the values of q,,,, we seek a solution p,,, of

(Ap)ii=4i, (2.1)

where
(Ap)i,i=pijatpiritpiiptpini—4pi; (2.2)

is a second-order finite difference approximation to V2p.

For i=0 or M—1, or j=0 or N—1, (2.1) contains
implicitly the quantities p_1.j, psr.j, Pi~i, OT pin. We
shall describe only the case of periodic boundary condi-
tions, where these quantities are equal respectively
to pm—1,5, Po.i, pi.n—1, and pio. Eq. (2.1) then becomes
a system of MN simultaneous equations in MN un-
knowns, whose matrix of coefficients is singular. No
solution exists unless

N~-1 M-1

Z Z 9-',:'=0,

=0 i=0

(2.3)

in which case p;,; is determined to within an additive
constant. The procedure may be modified to apply to
other boundary conditions, but considerable effort may
be needed in some cases to formulate a modification
with comparable efficiency. We have not attempted
any such formulations.

Suppose that the values of $;,; are correctly known
everywhere on two adjacent columns, say those where
j=J—1, and j=J. We can then readily determine
Dias1 by setting j=J in (2 1), since the remaining
terms in (Ap):, s are known, i.e., we can “march” from
columns J—1 and J to column J -+1. Having done so,
we can set j=J-+1 in (2.1) and march to column J+2,

“and likewise ultimately to all columns. If we then use
the newly determined values of p;; to compute ¢;, s
and g;,7—1 from (2.1), the values so obtained will agree
with the correct (given) values.
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If instead the values of p;,7_1 and p; s are incorrectly
known, perhaps by having merely been guessed at, the
marching process may still be executed, but the remain-
ing values of p;; will be incorrect, as will the values
of g;,7_2 and ¢;,7-1 computed from (2.1). However the
differences between the correct (given) and incorrect
(computed) values of ¢;,7-2 and g¢;,51 will completely
determine the differences between the correct (un-
known) and incorrect (assumed) values of p;s_1 and
ps,7, through a set of 2M simultaneous equations. The
values of p;s_1 and p; s may thus be corrected, and
the marching process may be repeated to yield correctly
the remaining values of p;,;. Since the computation in
the marching process is minimal, the speed of the whole
procedure will depend largely upon the efficiency of the
algorithm used to solve the 2M equations for the
corrections to p;,s—1 and pi,s.

In practice, this seemingly optimal procedure
possesses a serious shortcoming, namely, its instability.
Even after “correction” the values of p; s and pi s
will not be entirely correct; at the very least they will
possess round-off errors, whose magnitudes will depend
upon the precision of the particular computer. In
evaluating p;, 741, the round-off error in p; s will be
multiplied by 4 and added to other round-off errors;
the resulting larger error will in turn be multiplied by 4
and added to other errors in evaluating p;, 742 Thus,
for each additional column to which one marches, the
accuracy will fall by about 23 bits (actually by a factor
which approaches 3+8%=5.83 as a limit). Eventually
the error may exceed the signal.

This shortcoming is not necessarily fatal. If the com-
puter possesses far greater precision than is actually
required, and if in addition M is reasonably small, the
procedure may be acceptable. If, for example, the
computer has 48-bit precision, and only 28-bit accuracy
is required, the procedure should work for M =10,
where one marches over 8 columns. In effect, the method
provides a means of gaining speed by using the other-
wise unneeded power of the computer represented by
the high precision.

If instead M =64, a value frequently used in two-
dimensional turbulence studies, the procedure as
presented would be useless with any of today’s standard
computers. It could be made to work by writing a
multiple (not simple double) precision subroutine, but
this would presumably more than nullify any gain in
speed which would otherwise be realized.

An obvious modification which would partially re-
move the shortcoming would be to march both forward
and backward from columns J—1 and J, using (2.1)
with j=J—1, then j=J~2, etc., for the backward
marching. With the hypothetical precision and required
accuracy previously assumed, the procedure should
work for M =18, where one marches over 8 columns in
each direction.

A still further modification would be to march
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forward and backward not from just one pair of ad-
jacent columns but from several pairs. Assuming again
that the precision of the computer exceeds the required
accuracy, one can, for any particular value of M, choose
enough pairs to make the procedure acceptable. It is
this modification which forms the basis for our
procedure.

3. The modified marching-correction-marching
procedure

The procedure which we propose is simplest when
one marches forward and backward over the same
number of columns, say K—1, from each of L pairs of
adjacent columns. Accordingly, we shall present the
case where N=2KL, where K>1 and L>1 and K is
not too large. We could extend the procedure to arbi-
trary values of N by marching over different numbers
of columns from different pairs of columns. The speed
of any computer program will depend to a considerable
extent upon the efficiency of the algorithm used to
perform the complex Fourier transformation which
appears in the “correction” process. The procedure can
therefore be especially fast when M is a power of 2.

In this section we shall present the formulas which
are to be executed in solving (2.1), in their order of
execution. Only these formulas need appear in a com-
puter program. In the following section we shall present
additional formulas, which are needed in order to
demonstrate that the procedure of this section is valid.
The reader may prefer to proceed at this point to
Section 4, referring back to Section 3 whenever refer-
ences to formulas in Section 3 occur.

If (2.1) is to be solved many times with the same
values of K, L and M, as will be the case in the nu-
merical integration of (1.3), certain quantities should
be evaluated once and for all, and stored. These
include the cosines and sines

cm=cos(2wm/M), 3.1
Sm=sin(2rm/M), (3.2)

for m=0, .., M—1, which appear implicitly in the
complex Fourier transformation, the “multipliers”

Cn=2—Cpm, 3.3)

the “roots”
A= (K—1)/(K+1), (3.4)
An=0n—(an*—1)}, (3.5)

for m=1, ---, M—1, and the functions of A, which
appear in (3.11), (3.12), and (3.21)-(3.26).

The formulas which follow are to be executed each
time (2.1) is solved. We begin by setting

£1=0 (3.6)

for ¢=0,...,M—1 and j=2K-—1 or 2K, with
I=0,...,L. We march forward and backward by
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letting

P;J= _P;J—Z-P;—],j-l '_P;+u—1+417;,;—1+‘1i.i—1 (3.7

for i=0,...,M—1 and j=2K+1, UK+2, ...,
2UK+K—1, with 1=0, ..., L—1, and

1’;4: —P;._H—Z—P;—Lj-i-l—?;—i-l,j+1+4p;.j+l+qf-f+1 (3-8)
for 4=0,...,M—1 and j=2IK-2,2IK-3, ...,
2IK—K, with I=1, ..., L. When the quantities p"_,,
and pj,; appear on the right side of (3.7) and (3.8),
they are to be set equal to p,_,,and p,, respectively.
Having completed the marching, we let

0y =i~ iyt Pir st Pt i —4p,) (3.9)
for 1=0,...,M—1 and j=2IK4+K-1 or 2IK+K,
with =0, ..., L—1.

We begin the correction process by performing the
complex Fourier transformation

Gmat+IHnm,

M-1
=Y (grux+r—1+Igiaxsx) expQulim/M) (3.10)
i=0
for m=0,...,M—1 and /=0, ..., L—1, where G,
and H,,; are real. Here and subsequently we use I for
the imaginary unit to distinguish it from the row index .
We then let

G';n.l= % (1+}\m) (Gm.l+HM—m.l)

—3(A =) Hmi—Grr—m), (3.11)
H, =314} Groit-Hrr—m)
+3(1 =) Hum1—Grtem,1), (3.12)

for the same values of m and . When Gu.; and Hyr,
appear in (3.11) and (3.12), they are to be set equal
to Go,l and Ho,z.

To obtain quantities E,,; and F,,, from G,,, and H,,,
we first set

Eq,=0, (3.13)
Fyo=0, (3.14)
and let

Ey,=Gyyy—Ey, 1 +2Fy, 4, (3.15)
Fo,=Hy,_—F;,_+2F;, (3.16)

for /=1, ..., L. We then set
Ey,=0, (3.17)
Foo=3L"'F,,, (3.18)

and obtain E,, and F,, by repeating (3.15) and (3.16)
with double primes replaced by single primes. Likewise
form=1, ..., M—1 we set

E, =0, (3.19)
F, =0, (3.20)

and let
E;z,t = —)\’,,‘:H ;n,:—l"‘)‘anE;».z -1 (3.2 1)
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forI=1, ..., L (in that order), and
For = —NKG,, AMKF (3.22)
for]I=L—1, ..., 0 (in that order). We then set
=(1-\)E, 1, (3.23)
=(1=N)F 0, (3.24)

and obtain E,,, and F,,, by repeating (3.21) and (3.22)
with double primes replaced by single primes.
To complete the correction process we let

Epa=3(1=\)" (E;r.s,l+F ;n,l)

H3 AN Ermmi—Far—mp)y  (3.25)
FM-m,l= % (1 _)\fn)_l (E;nl—I_F;nl)
_% (1+>‘m)—l (E;ll—m,l_F;ll—m,l)r (326)

for m=0, ..., M—1 and /=0, ..., L—1, and set Fy,
equal to F,,.z We then perform the inverse Fourier
transformation

pisik—1t1Ipiax

M-1 .
=M Z (Em,z—f-IFm_l) exp(—-—21rlzm/M) (327)
m=0
fori=0, ..., M—1and I=0, ..., L—1, where p; 2151
and pi ik are real, and set p;y-1 and p;n equal to
Pi— and Pi.0.
Finally, we complete the solution of (2.1) by repeat-
ing the marching procedure (3.7) and (3.8) with the
primes removed from the variables.

4. Justification of the procedure

Eqgs. (3.6)-(3.9) assure us that

(Ap)i,i=qii—q1; (41
if j=2IK+K—1 or 2IK+K, and
(Ap")ii=4:.i (4.2)

otherwise. It follows that the desired solution p;; may
be obtained by adding to p;, a quantity p;, such that

(Ap")ii=q.; (4.3)
if j=2IK4+K—1 or 2IK+K, and
(A9"):,i=0 _ 44

otherwise. It is furthermore sufficient to determine p;,
when j=2/K—1 or 2IK; these values may be added to
the corresponding values of p;; (which vanish), after
which (3.7) and (3.8), without primes, will yield the
remaining values of p.;. It remains to establish a
procedure for solving the 2LM equations obtained by
eliminating from (4.3) and (4.4) the (N—2L)M vari-
ables p;; for which j=2IK—1 or 2IK, and to show that
this procedure may be carried out by executing (3.10)-
(3.27).
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For this purpose we lntroduce the alternative Fourier
transformation

M—1
Omi=V2 3 giscos(2mim/M+x/4),

=0

(4.5)

M—-1
P, ;=V2 3 piscos(2wim/M+=n/4).

=0

(4.6)

We include the phase angle w/4 so that Qm,; and
Qum—m,; will contain different information, as will P, ;
and Py.m ;. Egs. (4.3) and (4.4) now become

Pm,j—l"’Zaum,j+Pm,j+l=Qm,j (4-7)
if j=2IK4+K—1 or 2IK+K, and
Pm_j_1—2aum,j+P,,.,,-+1=0 (48)

otherwise, a» being given by (3.3). We must now
establish a procedure for solving the M systems, one
for each value of m, of 2L equations obtained by
eliminating from (4.7) and (4.8) the variables P, ; for
which j=2IK—1 or 2IK.

To set up these equations, we let ¢m,0=0 and cm,1=1
for each value of m, and, for k=2, ... K, let

(4.9)

Cm,k+1=20m6m,k —Cmyk~1.

From repeated application of (4.8) we find that, in

two-row matrix notation,
P 2ig+E—2 —~Cm.E-2 Cm,K—1\[Pm 2k
- . (4.10)
P oikir—1 ~Cm,K—1 Cm,K Pu ok

( Pooix )
P ikt K41

cmE  —Cm,E—-1\/Pm, _
_ ( 1)( 2IK42K 1)’ (@.11)
Cm,K~1 —Cm,K-2 P ok
whence, from (4.7),

( Cm,K —Cm,K+l>(Pm,2lK—1
—CmE-1  Cm,K Pk
Cm,K —Cm,K~1 Pm,2lK+2K—~1
+
" \—Cm,E+1  Cm,K P aigyox

_ (Qm,ZlK-}-K—l). (4.12)

Om 2k+K

Each system of 2L equations is represented by (4.12),
with one value of m, and with !=0, ..., L—1. The
quantltles Pk and P2k are equal to Pp,—1and
P, since 2LK=N.

In principle we can solve (4.12) by another marching-
correction-marching procedure. With assumed values
for Pm_1 and P, we could solve for P k-1 and
P ok, then Pp k-1 and Pm, ik, etc., and then obtain -
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corrections to Pm—1 and Pno and solve again for
Pansk—iand Pk etc. However, this procedure proves
to be unstable (except when m=0) and hence unsuit-
able, because cm2K-1, Cm2k and Cmz2k41 ar€ large
quantities.

We can use a stable marching-correction-marching
procedure after transforming the variables. Comparing
(4.5) and (3.10) we see that

it Hyrm,1=0m 2184 k-110Omaxsx,  (4:13)
Humi—Git—m= —Qm2k+k—1F0muxsx, (4:14)
whence it follows from (3.11) and (3.12) that
Gmii _ 1 Aa\/Om,2ig+K-1
(H;,,;)—<>\,,. 1 )( Om ik )
L]ikewise, from (4.6) and the inverse of (3.27) it follows
that

(4.15)

Emi+Fa—mi=Pmag-1+Pnuk, (4.16)
Fui—Eu—mi=—Pmag-1+Pmaug, (4.17)
whence it follows from (3.25) and (3.26) that

E;n,t 1 —Mm Pm,‘ZlK—l
, )= : ) ) (4.18)
Fra T | P, ux
It is in fact because of (4.15) and (4.18) that we chose
to introduce the quantities G,,;, Hy,;, Er,; and Fy, .

We now observe that except when m=0, An is the
smaller root of the equation

An?—20,Am+1=0, (4.19)

the larger root being A, '. It therefore follows by
induction that

Cmp= A E=AE)/ A —Am). (4.20)
From (4.20) it follows that
1 ‘)\,,, Cm,K —Cm,E+1
(7\,,, 1 )(—6,,.,1@_1 Cm, K )
' 0 =A% 1 —Am
G o Mo 3) e

1 A Cm,K —Cm,K—1
()\m 1)(—6m,x+l Cm.K )
0 A/ 1 -
=(—>w:" 0)(—)»,. 1 ) 42

In view of (4.15), (4.18), (4.21) and (4.22), Eq. (4.12)
reduces to

(0 —An K (E;,,,;
AR 0 )F;,,.z)
0 2K E;n,l+l Gimi
H o o) ()
—AN\m 0 Fm.l+1 Hm,l
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The 2L scalar equations represented by (4.23), with
one value of m and with /=0, ..., L—1, now separate
into two systems of L equations. Each of these may be
solved by a slable marching-correction-marching proce-
dure, by assuming a value for E,, and marching
forward in , and assuming a value for F .z and march-
ing backward in I. Stability is assured by multiplying
only by positive powers of Am, which are small. The
explicit procedure is given by (3.19)-(3.24).

When m=0, the equations represented by (4.12)
possess a singular matrix, reflecting the fact that (2.1)
determines p:; only to within an additive constant.
Since ao=1, the roots of (4.19) become equal, and the
procedure used when m0 is unfeasible.

Instead we choose to define Ao by (3.4). Egs. (4.15)
and (4.18) are still valid, and it is readily verified
that ¢o,,=#, whence it follows that

—Co,K+1
)

1 =2/ 1
=(O 1 )(—)\o
—C0,K-1

e )

1 0 1 =X\
=( )( ) (4.25)

-2 1/\=x 1

whereupon (4.12) reduces to

1 —2\/Eo; 1 O\/Eos+1 Gou
G DG al)-() e
0 1 Fo, —2 1/\Foi+1 Hy,
The 2L scalar equations represented by (4.26) may
be solved by a stable marching-correction-marching

procedure, using forward marching only. The explicit
procedure is given by (3.13)-(3.18).

Co,K

(. X
N 1/7\—c¢o,g-1

— }\0
), (4.24)
1

Oy
N 1/\—cors

5. Concluding remarks

The Fourier transformation (4.5) and the subsequent
formula (4.15) provide straightforward definitions of
G,,, and H,,,. The Fourier transformation (3.10) and
the formulas (3.11) and (3.12) define precisely the same
quantities, but the definitions seem less natural, since
there is no logical reason for regarding Grox+ x—1 and
¢+ x 85 real and imaginary parts of the same physical
quantity. We nevertheless present (3.10)-(3.12), to-
gether with the inverse transformations (3.25)-(3.27),
in the recommended procedure, because the rapid
algorithms available for complex Fourier transforma-
tions may then be used. )

In a computer program based upon (3.1)-(3.27),
further savings may be realized by eliminating some
of the indicated multiplications. For example, the
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factor M~! in (3.27) could be moved to (3.25) and
(3.26) and included as a factor in the precomputed
functions of A, thus effectively redefining E,, ; and Fi, 1.
Likewise the factor AX in (3.21) and (3.22) could be
moved to (3.11) and (3.12) by redefining G,,, and H,,,.
Finally, execution of (3.7) and (3.8) may, for the first
indicated values of j only, be replaced respectively by
equating pi2ik41 to ¢i,zux and P;,zzx—z to ¢i2ix—1, thus
eliminating the indicated multiplications of 0 by 4, and
the additions of some zeros.

We have written a FORTRAN program for the
solution of Poisson’s equation, based on (3.1)-(3.27),
and containing the improvements just noted. We have
applied it to a number of cases where the given values
of ¢;,; were produced by a random-number generator.
For M =64 and N =64, with K=8 and L=4, the time
required to invert del-square, exclusive of the pre-
computation of the stored quantities, is 0.0195 seconds
on the CDC 7600 computer at NCAR. The words in
the computer possess 48 bits (about 14 decimal places),
and the results are accurate to 8 decimal places. We
have not applied the procedure to any cases where M
is not a power of 2.

Among other direct procedures which have been used
to solve Poisson’s equation, the one which ours re-
sembles most closely appears to be one of those pre-
sented by Bank (1975). This procedure also uses a
marching process, and differs from ours mainly in the
details of the “correction” process.

Our procedure is also related to one recently described
by Sweet (1974), even though the steps actually exe-
cuted are rather different. In each procedure the original
system of MN equations is effectively replaced at an
intermediate stage by a system of MN/K equations, in
which the unknowns are the values of p;; on a set of
- N/K columns. However, in Sweet’s procedure these
columns are equally spaced, while in ours they occur
as N/2K pairs of adjacent columns, the pairs being
equally spaced. The use of pairs of adjacent columns
permits the use of the marching process.

Our procedure is easily converted into one for solving
the equation

(Ap)w pii=qi; (5-1)

which appears in numerous physical problems, and in
particular in numerical weather prediction when certain
multi-layer models are used. We replace the constant 2
in (3.3) by 2+¢?/2 and the coefficients 4 in (3.7)-(3.9)
by 4-+-¢?% and we use (3.5) in place of (3.4), and (3.19)-
(3.24) in place of (3.13)-(3.18), even when m=0,
Finally, we note that our procedure may be particu-
larly useful when the inversion of del-square is being
performed for the purpose of solving the barotropic
vorticity equation, and when M and N are large enough
to render storage space of some concern. We first march
forward from the first pair of columns and backward
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from the second pair, and obtain values of ¢, ,_, and
4,k We then discard the values of p;, obtained during
the process before we march forward from the second
pair of columns and backward from the third pair to
obtain g5 _; and ¢; 5, etc.

Later, during the second execution of the marching
process, we first determine the values of p;; on and
between the first and second pairs of columns. We
immediately evaluate and store the corresponding
nonlinear terms in (1.3), representing the advection of
vorticity, and then discard the values of :; used in the
evaluations before we determine the values of p:; on
and between the second and third pairs of columns, etc.

We note that in any event MN locations [or prefer-
ably (M+2) (N+2), to make efficient use of cyclic
continuity] are required to store the vorticity field.
With a minimum-storage time-differencing scheme,
such as the N-cycle scheme proposed by the writer
(Lorenz, 1971), a similar number of locations will
suffice to store the time derivatives of vorticity. It
follows that in addition to these approximately 2MN
locations, which would be needed in any case, only
2M (K+-1) locations are needed to store p;,, or, sub-
sequently, p. ;, while 2M (L+1) locations, plus a small
amount of working space, will suffice for ¢; yx4 x—, and
4 21x-+ x> O, Subsequently, Gm,i and Ho, 1, Em i and Fon
and ﬁnally pi2x—1 and p;2x. The procedure, modified
for solving (5.1), should likewise use a minimum of
storage space when a multi-layer model is used for
numerical weather prediction.
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