I1I1. ATMOSPHERIC PREDICTABILITY AS REVEALED

BY NATURALLY OCCURRING ANALOGUES

ABSTRACT

Two states of the atmosphere which are observed to resemble one
another are termed analogues. Either state of a pair of analogues may
be regarded as equal to the other state plus a small superposed "error",
From the behavior of the atmosphere following each state, the growth

rate of the error may be determined.

Five years of twice-daily height values of the 200-, 500-, and
850-millibar surfaces at a grid of 1003 points over the northern hemis-
phere are produced. A weighted root-mean-square height difference is
used as a measure of the difference between two states, or the error.
For each pair of states occurring within one month of the same time of

year, but in different years, the error is computed,

There are numerous mediocre analogues but no truly good ones.
The smallest errors have an average doubling time of about eight days.
Larger errors grow less rapidly. Extrapolation with the aid of a
guadratic hypothesis indicates that truly small errors would double in
about 2.5 days. These rates may be compared with a five-day doubling

|
\
i time previously deduced from dynamical considerations.

The possibility that the computed growth rate is spurious, and
results only from having superposed the smaller errors on those part-
icular states where errors grow most rapidly, is considered and rejected.
The likelihood of encountering any truly good analogues by processing

all existing upper-level data appears to be small.
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1. Introduction

The physical laws which govern the behavior of the earth's
atmosphere may be formulated as a system of differential equations,
The problem of weather forecasting may be identified with the prob-
lem of discovering, by one means or another, a particular solution
of these equations, whose initial conditions correspond to the

present state of the atmosphere. In practice, all methods of fore-

casting future states of the atmosphere which have met with reason-
able success have consisted of forward extrapolation from the present
state, or from some recent past state, although many of the fairly
successful procedures have made little or no direct use of the govern-
ing physical laws. Nevertheless, even when the procedure is entirely
empirical, what is being sought is identifiable with a solution of

the governing equations.

As the process of observing the atmosphere is steadily improved,

and the technique of forecasting is continually refined, the frequent
successful forecasts continue to be accompanied by occasional spectac-
ular failures. The question as to whether there is a limit to the

accuracy with which forecasting is possible has therefore naturally

|

| ' arisen. Recently there has been considerable interest in those errors
in prediction which necessarily arise because the state of the atmos-

\

|

phere cannot be observed with complete precision,

The atmosphere is an unstable system, i.e., separate solutions

of the governing equations originating from slightly different initial
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conditions will in general diverge, until ultimately they may bear
little resemblance to one another. Evidence that this is so is the
absence of any exact periodicities of appreciable amplitude, other
than the diurnal and annual periods and their overtones. As indicated
by the writer (1963), a stable system will ultimately acquire a

periodic behavior.

The errors in estimating the current state of the atmosphere
are due mainly to omission rather than inaccuracy. Even over popu-
lated land areas, systems as large as thunderstorms occurring between
observing stations may remain undetected. Assuming that there is a
limit to the precision with which the atmosphere may be observed, we
may conclude that the range at which acceptable predictions are
possible is limited by the rate at which two solutions of- the govern-
ing equations, one originating from the exact present state of the
atmosphere, and one from the present state as it is believed to

exist, will diverge from one another.

It has generally been assumed that the growth of small errors,
i.e., small differences between states of the atmosphere, will be
quasi-exponential, As an error becomes larger, the growth rate
should diminish. Ultimately all systematic growth should cease, and
the mangitude of the error should oscillate about a value equal to
the magnitude of the difference between two states chosen at the
same time of the day and year but otherwise randomly. The slackening

and ultimate cessation of the growth may be attributed to processes
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represented by nonlinear terms in the governing equations, since, if
the eduations were strictly linear, the quasi—exponential growth

would continue indefinitely.

In recent literature the average doubling time for initially
small root-mean-square errors in the wind and temperature fields has
assumed a prominent position. Most studies aimed at determining the
doubling time have been based upon the numerical integration of
systems of equations designed to resemble the equations governing
the atmosphere, Separate solutions originating from slightly differ-

ent initial states are compared with one another.

The best known studies of this sort were performed by Smagorinsky,
Mintz, and Leith, who used systems of equations which they had previous-
ly developed for studying the general circulation of the atmosphere
(Smagorinsky 1963, Mintz 1964, Leith 1965). Charney et al. (1966) have
summarized the results of these studies, and have concluded that a
reasonable estimate of the average doubling time is five days. Subse-

quent studies (e.g., Smagorinsky 1969) agree fairly well this conclusion,

A recent theoretical study by the writer (1969) indicates that
the concept of a typical doubling time for small errors of arbitrary
form may be ill-founded. Errors in observing the structure of a
thunderstorm, for example, should double in a matter of minutes rather
than days. However, when our picture of the present state of the
atmosphere is based upon values of the weather elements at stations

or standard grid points separated by several hundred kilometers,
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information concerning the smaller scales of motion is almost com-
pletely lacking, i.e., the errors in these scales have already
acquired their limiting magnitude. In that event, there may well
exist an average doubling time — perhaps a few days — for errors in

scales large enough to be resolved by the network.

The purpose of the present study is to estimate the growth
rate of small errors not by solving systems of equations but by
recourse to observational data. As noted, the conclusion that small
errors must eventually become large follows from the data, which
reveal a lack of periodicity. It seems logical that quantitative
stétistics derivable from the data may indicate in addition the

rate at which these errors will grow.

The only statistics which we can presently suggest as being
suitable for our study are those based upon naturally occurring
analogues. By analogues we mean two states of the atmosphere which
resemble each other rather closely. Each state may then be looked
upon as equivalent to the other state plus a reasonably small "error'",
By observing the behavior of the atmosphere following the occurrence
of each state, we may determine the rate at which the error grows.

We exclude as analogues those states which resemble each other solely
by virtue of occurring close together in time, since the errors in

this case cannot be expected to show any systematic growth.

In a recent paper, hereafter referred to in this study as "R",

the writer (1968) has described a procedure for performing the neces-
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sary computations. In the present study we have carried out the
procedure, with certain modifications. Our computations are based

upon data extracted from five years of upper-level weather maps.

In R it was anticipated that a few years of data might not
yield even a single pair of weather situations qualifying as ''good"
analogues. This has indeed proven to be the case. Accordingly, if
we are to draw any conclusions at all, we must base them on the
behavior of decidedly mediocre analogues. As indicated in R, differ-
ences between mediocre analogues may be expected to amplify more
slowly than differences between good analogues, since the nonlinear

effects play a greater role when the errors are large.

In the following sections we describe our computational pro-
cedure and present our numerical results. In brief, we find that
the best analogues encountered in the data possess root-mean-square

. i . 1/8
differences which on the average amplify by a factor of about 2

in one day. The average doubling time for small errors is thus

indicated as being not more than eight days.

Presumably, however, the doubling time is considerably smaller,
We cannot say how much smaller it is without introducing additional
hypotheses which cannot be readily verified from the data. One plau-
sible hypothesis leads to a doubling time of between two and three

days.

In any event, our estimates agree with those obtained by numer-

ical integration to within a factor of less than two. Ultimately, we
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may hope that theoretical and observational studies will attain much
closer agreement; meanwhile, the agreement between theory and obser-

vation obtained so far is gratifying.

2. Procedure

Our first task is that of selecting a suitable measure for the
difference between two states of the atmosphere. Ideally two states
should be considered similar only if the three-dimensional global
distributions of wind, pressure, temperature, water vapor, and clouds,
and the geographical distributions of such environmental factors as‘
sea—surface temperature and snow cover, are similar., Also the states
should occur at the same time of the year, so that the distributions

of the solar energy striking the atmosphere will be similar,

There are presently in existence many rather large collections
of surface and upper-level weather data. Some of these contain observed
values of the weather elements at networks of observing statiomns,
Collections of this sort are not particularly suitable for the present
study, because of the large gaps between stations over oceanic regions.
We therefore turn to other data collections, which contain interpolated
values at regularly spaced grids of points. These also prove to be
inadequate for determining differences between states of the atmosphere,
if we demand that our measure of the difference shall fulfill all the

requirements which we have set forth.
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In general the data collections do not include global distri-
pbutions of environmental factors. Water-vapor and cloud data, if
present at all, are not reliably interpolated over the oceans. Even
wind and pressure data, if both are present, are generally not inde-
pendent, since they are usually interpolated from weather maps where
the geostrophic relation has been employed in the analysis. In those
cases where the wind and pressure fields have been analyzed separate-
ly, the interpolations over regions of sparse data again tend to be
inadequate. Likewise, temperature and pressure data are not inde-
pendent, since they have been forced to satisfy the hydrostatic
relation. Finally, it is doubtful that any weather elements qan be
reliably interpolated over the vast oceanic regions of the southern

hemisphere.

We therefore find it expedient to regard two states of the
atmosphere as similar if the three-dimensional pressure distributions
over the northern hemisphere are similar, or, equivalently, if the
distributions of height as a function of horizontal position and
pressure are similar. Accordingly, we have obtained, from the
National Center for Atmospheric Research, values of the heights of
the 200-, 500-, and 850-mb surfaces, twice daily for the five years
1963~1967. These data were in turn obtained from the National Meteor-
ological Center, and consist of values at the "NMC grid" of 1977
points, occupying an octagonal region centered at the north pole
and covering about three-fourths of the area of the northern hemis-

phere.
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Primarily to reduce the required amount of computation, we
have extracted from the NMC grid a smaller grid of 1003 points,
arranged as the light squares of a checkerboard., Each point there-
fore represents an area of nearly 200,000 km2° Each pressure level

is assumed to represent one third of the mass of the atmosphere.

We shall let P'.) Fa-.) P3 denote 200, 500, 850 mb, res-
pectively. We shall let S, ---, S!°°3 denote the positions
of the grid points, in an arbitrary order. Finally, we shall let
'h‘J -m=, t3653 denote the observation times in chronological
order, beginning with 0000 GMT, 1 January 1963, and ending with
1200 GMT, 31 December 1967. Letting 2:ij\< denote the height
at pressure F'- , grid point SJ‘ , and observation time tk s
our data then consist of a possible 10,988,868 values of thfk .
Of these values, a total of about three per cent were missing from

the collection.,

At this point we could measure differences between states of
the atmosphere in terms of differences between height fields., We
could also use differences between horizontal height-gradient fields,
representing differences between wind fields, or differences between
vertical height-gradient fields, representing differences between
temperature fields, or some combination of these. We have chosen
the simplest alternative, i.e., differences between height fields.

Accordingly, we first let
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003 3

2
D'kk = z (Zl\)k- ZiJR) ’ D]
J:l
so that [>ik2 is proportional to the root-mean-square differ-

ence between the height fields at times t}‘ and tl , at pres-
sure P; .

Since the heights of isobaric surfaces tend to vary consider-
ably less in summer than in winter, we may anticipate that analogues

defined entirely in terms of values of L)i ¥} will show an un-

realistically high preference for summer. We therefore let

N .
t\hf = —!i C(loa Dikl - ,o; lei ) (2)

X

where EDihﬂ is an estimate of the expected or climatological
a
normal value of [>ikl for the times of year at which 1:h

and tl occur, We choose c = ,é/ leg > , so that an

increase in E; by 16 units represents an increase in [>ik2

Y
by a factor of 2.

As a final measure of the difference between two states, we

let

5 _
= <
Ehz 3 (2— Eiu (3)
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We also find it useful to introduce an average root-mean-square

height difference sz by letting

(4)
= C Io
E v Xy
For convenience, we round off the values of E kX to the nearest
integer. 1In effect, different values of Ehk represent different
categories of analogues, Within each category, the extreme root-
1/16

mean-square height differences differ by a factor of 2 . We note

that for randomly chosen states, Ehl = O and Xkl = |

It seems unlikely that two states of the atmosphere occurring
at different seasons will resemble each other closely, while, even
if they should, they cannot be expected to vary similarly, because

the fields of heating are dissimilar. Hence we have restricted our

computations to values of Ehl for which the times of year of
tk and tl are within one month of each other. More precisely,
we have computed E_k»l only for values k and «Q where

f-kh= P+ 730 ¥ , where -60% P £ 60 and 1, =1,2,3,

or 4, For purposes of comparison, we have also computed Ehk

for those cases where 0 <« P é &0 and ?— = O , but we have
not included these cases in the subsequent computations, since we
wish to exclude as possible analogues any pairs of states which are

fairly close together in time,
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Moreover, to reduce the amount of computation further, we
have computed E;hl only for odd values of k. . Thus the leading
member of a pair of states always occurs at 0000 GMT. We feel con-
fident of not overlooking any good analogues through this simplifi-

cation, because of the likelihood that if the states at times t;k

and tg are good analogues, the states at th“ and t2+l s
or those at'th_\ and t2-| , will also be reasonably good
analogues,

We thus have a possible total of 442,254 pairs of states to
be compared. Of these, a total of 26,110 pairs, or about six per
cent, could not be compared because data for one state or the other

were missing.

3 .
To determine the values of lo; [Dikl in (2), we note
that in view of (1), if the states at times -l;k and t, are not

expected to depend upon'one another,

e 1003 —_—
X 2 — — 1)
Die = 2 ( Zyn = 2 Zipn Zija + Zigs )
Jal

Here a bar denotes a climatological normal, We have first estimated

E_DJ k and Z‘j:‘: for each pressure P-’ and each point
Sj , for the 73 times of year corresponding to R = 5%, 154, -,
725%, by means of the formula

- te “%
Cije < 5_‘0‘5_ 2 Zijk (6)
Pt F7°
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a
and an analogous formula for Zijh , where

FY
K = R - 5% + F + 730 ¥ - We have then computed Dihl

according to (5), for k =53, 153, ---, 7255 and -k = -70,

-60,---, 70,

2
However, inspection of the values of Dihﬂ so obtained

reveals that for Q" R = -10, 0, or +10, they are unreasonably
small, relative to the remaining values. The discrepancy can

apparently be explained by noting that (5) may also be written

1vo3

L8 s *
2 5 — 5 - ‘
Dinge * X_( ZijnT Zijs) * Fige * Zips ] ,

iRt 5T

where a prime denotes a departure from a climatological normal.

—

Since ijh and lel have been estimated from samples of
data, the estimates will contain sampling errors. In general these

— — A
errors will combine when ( Zi)k - Z i)-‘) is evaluated.,

However, when kR = 2 the errors will completely cancel, while,

J
because there is some persistence in the height fields, there will

be some cancelation when lf- k] = Jo o

We have managed to remove the discrepancy by adding 1.5 units

] -5
to each value of S < leg D) when f =k , and 0.5

units to each value when ,[- %3 -10 or +10, Finally, we have

: . . =Y
used a linear interpolative scheme to estimate ‘O} Dikl

for k =1,3,---, 729 and f{-k = -60, -59,---, 60.
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The question as to how rapidly initially small errors will
amplify may now be worded in terms of EE,QQ , as follows: When
Ekl is small, how large will the values of E

R+am, Q4+ 3wM™

be, for wm = \J’.l,--- ?

3. Results

We begin with the distribution of values of E;hk , shown
in Table 1, We note that the smallest value encountered is -11; this
occurs only twice. The corresponding value of )<‘tl is 0.62.

We find it difficult to maintain that an error is initially "small"
when it is already more than half as large as a random error, i.,e.,
a difference between randomly chosen states. We must therefore

abandon all thought of basing our study upon '"good" analogues, and

draw what conclusions we can be examining rather mediocre analogues.

For the purpose of printing out the individual values of

E

R 2 , we have assigned a letter to each value encountered, the
earlier letters in the alphabet representing the better analogues.

The letters are included in Table 1.

Fig. 1 shows a portion of the output, as printed by the com-

puter, Successive rows correspond to successive odd values of h s
while successive columns correspond to successive values of I-k
Our principal concern is therefore with the manner in which the values

vary within columns.

—47-




Table 1, Number of occurrences hjd, of each
observed value QL of Ehz , and letter

used to represent each value in printed output.

ol Nq' Letter
-11 2 D
-10 13 E
-9 62 F
-8 230 G
-7 631 H
-6 2053 J
-5 5739 K
-4 14602 L
-3 ' 30988 M
-2 52606 N
-1 72980 P
0 79154 Q
1 69000 R
| 2 47785 S
3 25098 T
‘ 4 10443 U
| 5 3636 \Y%
6 894 w
7 190 X
8 34 Y
9 4 Z
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RRSRRSSTTSSSSSSSRRRRQQOQRQRQRON=QPPPPQRR
TTTITTYTTTITTTTISSRRRQPPQOPQQRRR=RQPNPQRRRQ
VVVVUVUUUUTTSRRRQPPPPPPPORR=RRQIPQRSSSSRS
DUBYUUTTSSRORQQAPNNMMNNQOR=RRQPPRSSSSRRRR
TTUTTSSSRQRAQPPPNMMNPQRR=QPPPPQRRRRSSSRSS
UUTTTSRRRRRQAQQQRRRSTS=RQP PQRSRQQQQARRRSSS
TTTTSSSSSSRRORRRSTT=SSSRRRRQPQQAPPPQRSSRQ
TTSSSTSSRQPAQQRRS=RSRSSROPNNPPPNNPQRQPPN
SSSSSSSRPPNPPQO=QQAPQRRQAPMMMPPPPNPQRQPNNM
SSSTSSRQOPNNPP=PPNPQQARPNMMNPQQPPPRQQPPNNM
UUUTSSRQPPP=PPNNPPQPPPNPPQRPQQARRAQQQQPPP
UTSTSRRRQ=QOPNNPPPNNNNNPQQQOOQQAQQQQPPPPP
RRRRRRQ=NNMMMNMML MMNMNPPQPQPQQQQPPPPPPPP
NNPQQ=NML LMNNML MMMNNNMPQQQQQQ QPPNNNNMMNN
MMN=NMULKIMUKLLLMMNMNPPPQQPPPNMMMLL MMMMM
M=MNM{ KK JHGGFHHIK JLLMMMMMNPNMMMML MPPP NP P
NNMLLKKHFEEEFGGGHH JJJJKLMMMNNMNPQQQQQNN
MMLLL JHGFGOHJIJKIKKJIIIHIKKLMMMMPQRRQQPPNM
MMMM L JKKL MNLMMNNNMLL KJJKKKLLMNPQQQQQPPQP
NNNMMMNQRPPPQQRQPNNL JKKKLKKLMNPPPPPPPNNN
NLUMMNPQQQQRRRQPPNMKKKKKKIKLL MNNNNNNNNNNNP
NPPQRRRRSSSSRQPPNMMLL JUKLLMMMMNPPPPPPQRQ
PORRSSTTTSSRRQPPPNMMLKKKL L MMMMNNNNNNPPPP
RRSTUUUTSSRRQOPPNNMMLMLL MMNNPQQQPQQQPQAQQQ
STTUTTSSRQPPNNNMKKKLLMLMNPPQQPPQOQQQQRQRQ

W e T T e s e o e TR e T v e R M mm e e o e e ame W S s D e e

TTSSSSRQQQOPNNNNNMNNPPQRRRRRRRRRSSRRRRQPP
TTTTSRQQAOPMLMMLLLMNPPQGPQRARQAQRRRRRQQPPPP '

UTSSRQQQAPMLLMLLMNPPPPPQQQQPPPPPPPPPPQPP ‘
TSRQQPPPPNMMM MMPNPPQRRRRSRQQQQQQQQSSRRAQ

Fig., 1. Selected values of E;hL , printed out by the computer.
Meanings of letters appear in Table 1; an " = " denotes missing data.
Successive rows correspond to successive odd values of h, from 695

to 753 (Dec. 14, 1963 - Jan. 12, 1964). Successive columns correspond

to successive values of [-® from 751 to 790 (lag of 375} - 395 days).,
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In the central portidn we see three E's, represenfing values
of -10 for E:h( . These E's are among the total of 13 encountered
in the study. Surrounding them are a number of F's and G's., In
view of the evident tendency for low values of Eh! to cluster,
it is apparent that the 13 E's do not represent 13 statistically
independent cases, nor do the 62 F's represent 62 independent cases.
In fact, the 2 D's occur in adjacent columns in the same row, the
D's and E's together occur in a total of 6 clusters, while the D's,

E's and F's together occur in 19 clusters.

Immediately below the three E's we find two G's and an H.
These indicate that during one day the "errors' represented by the
E's have amplified some ten to fifteen per cent, On the fourth row
below the E's, we find a Q and two R's, indicating that the errors
have in four days become at least as large as random errors. If
typical errors of observation resembled the errors represented by
the three E's (as they presumably do not), the range of predictab-

ility would be no more than four days.

To determine the typical behavior of E;hQ within columns,
without having to examine the 416,144 printed letters individually,
we have, for each pair of integers (c(/ﬁ?) ranging from -11 to
+9, and for each value of m from 1 to 14, determined the number
of instances Nwﬂ (W\) where the corresponding values of Ekl
are ¢, and B . For m =|, i.e., for

d
an Eh+1vv\, {+am

a lag of one day, the values appear in Table 2.
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We observe that within each row where & <o , i.e., where
the initial error is smaller than a random error, the distribution
of 3 is centered about a value between & and O , but gener-
ally much closer to QL . Thus during one day the errors tend to
amplify by a modest amount, although they sometimes amplify a great
deal and sometimes diminish, When @& > O , the errors tend to

diminish rather than amplify.

We shall not present the values of pr (Wt) for larger
values of ™M . We simply mention that for lags of several days,
when L <O , the distribution of { is again centered about

a value between O, and O , but now generally closer to o .

Thus there is substantial amplification.

From the values of N«,? (m)

we have determined the average value

Folm) = pZ A’Nu@w)/§ Nog (m) ©

of Eh-k'-\“«,iﬂ-*"“ for those instances where E ke = o PR

Analogously to equation (4), we also let
E-‘“,LMB = C ‘°3‘ Xw(‘”\) (9)

so that Xo(, (W\) is a kind of average root-mean-square error,
The values of [ 4 (W) appear in Table 3. In general, as Wn

increases, Ea,(v-\) progresses rather regularly toward a
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Table 3. Average values Eou \m)
I | Ek«»lw\ gaam for those instances E Rt = e @ .
wm 1 3 4 5 6 7 8
o
; ‘ -11 -7.00  -4,00 -2,00 -3,00 =-3.00 -3.50 -1.00 1.00
= -10 -8.00 -4.85  -3.,54 -2,31  -1.46 -1,69  -1,42  -1.15
-9 -7.60  -5.68  -4.47  -3.60 -2.64  -1,93  -1,53  -1.09
-8 -6.75  -5.27  -4,00 -3,04 -2.24 -1,80 -1.48  -1.15
-7 -5.87  -4.54  -3.43  -2.68  -2,08 -1.57  -1.17  -1,00
| -6 -5,00 -3.75 -2,87  -2.,14 -1.64 -1.22  -0,96  -0,82
I -5 -4.16 -3.16 =-2.40 -1.79  -1,37 -1.08  -0.88  -0.77
| -4 -3.32  -2,52  -1,92  -1,47  -1.17  -0.95  -0.82  -0.71
-3 -2.51  -1.92  -1,48  -1,17  -0.93  -0,74  -0.61  =0.52
2 -1.69  -1.31 -1.03 -0.82 -0.64 -0,50 -0.40  -0.36
-1 -0.89  -0.72  -0.57  -0.45  -0.37  -0.31  -0,27  -0,23
0 ~0.04 -0.08 -0.10 =-0.10 -0,11  -0,13  -0,14  -0.15
i f 1 0.79 0.54 0,36 0.22 0.14 0.07 0.02  -0.01
i 2 1.63 1.17 0.81 0.54 0.35 0.20 0.09 0.03
3 2,46 1.81 1.30 0.91 0.60 0.38 0,22 0.12
4 3,34 2,50 1.82 1.33 0,91 0.60 0.37 0.21
5 4,24 3,29 2.48 1.87 1.38 0.98 0,70 0.55
6 5,08 3.94 3.04 2,48 1.87 1.35 0.89 0.68
7 6.15 4.86 4,05 3,68 3.09 2.28 1,65 1,31
8 6.94 5.91 5.26 4,82 4,29 3.44 2.79 2.50
9 7.00 5,00 3.50 4,25 4,00 3.25 1.75 1.00
_.53_




limiting value, which is not far from o .

Passing by the first two rows of Table 3, where the number
of cases involved is not sufficient to form a representative sample,
we see that errors having an initial value of -9 units increase on
the average by 1.40 units during the first day. During the second
day they increase by a larger amount, 1,92 units. Errors having
smaller negative initial values likewise exhibit a greater increase

during the second day than during the first.

To interpret this behavior, we note first that since
Nm@(\m) = Naw(‘”‘) , values of }:a, (W\) for
negative values of m may be determined from values of
h]we (w) . We shall not offer a table of these values;
suffice it to say that such a table would be nearly identical to
Table 3, i.e., E“, (-m) and E 4 (w\) are nearly equal,
for most values of 6L and YA . Thus, if the direction of time
were reversed, the errors would still increase during the first

day, and would increase by a greater amount during the second day.

Fig. 2 shows the behavior of Eq,("") as a function m ,
for & = -8, -4, 0, and 4. The dots represent observed values;
the smooth curves joining them represent the values which would
presumably have been observed if data had been available at all

times of day instead of only twice a day.
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In a rather unprecise manner, we may regard an arbitrary
error as a superposition of "normal modes'', some of which tend to
grow quasi~exponentially and some of which decay quasi—exponentially.
1f the error is initially of random shape, the growth and decay
tend to cancel, and no net growth is immediately apparent, whence
the curves in Fig, 2 have horizontal tangents at = O ' . As
the decaying modes disappear, the error becomes dominated by the
growing modes, and amplifies. Thus the early behavior is like a
hyperbolic cosine rather than a simple exponential. Ultimately

the amplification dies down and ceases, because of nonlinear

effects.

In Fig. 2, the curves resemble hyperbolic cosines during the
first day (0 <« m < |) . By the second day, the nonlinear effects

have begun to dominate.

To investigate the growth rate which prevails once the decay-
ing modes have become reasonably small, we have constructed a plot
of )(o(, (W‘ "") against Xq, (W‘) , on the basis of the values
of Eq‘ (W\) in Table 3. We have omitted values where M = O ,
where the decaying modes are important, and values where & = -11
or -10, where the number of cases is very small, but we have included
all other values where X“[M) < 0.95 ., The values appear as

dots in Fig. 3.
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for all instances where
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is shown., Line \’ = )( is included for reference.
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The increase in >(d. during one day is indicated by the
distance of a dot above the diagonal line. Clearly the larger
errors generally amplify less rapidly. In fact, the dots do not
deviate greatly from a straight line passing through (1,1), with

a slope of about 0.78,

Excluding the first two lines, the maximum one-day growth
of 1.92 units exhibited in Table 3 is represented by the dot at
the extreme left. Since this dot is not appreciably out of line
with the remaining dots, it does not seem to be an anomalous case.
It corresponds to an amplification by a factor of about 1.09. The
errors in this instance are initially greater than half as large
as random errors, and so never manage to double., However, small

errors which continued to amplify by a factor of 1.09 each day would

double in about 8 days. Since small errors amplify at least as

rapidly as large errors, we may conclude that the typical doubling

time for small errors is not more than 8 days.

Since, however, within the limits of our data the one-day
growth rate steadily increases as the magnitude of the error de-
creases, it seems likely that the average doubling time for truly
small errors is much less than 8 days. Let us visualize the appear-
ance which Fig. 3 would assume if we possessed such a large sample
of data that some truly good analogues were present. If, as we

have been assuming, the doubling time is independent of the size
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of the error, provided that the error is sufficiently small, the
curve of )(w(m-\-\) against Xol. (\n«) would approach the

point (0,0) with a slope equal to the one-day amplification rate.

In Fig. 4, the heavy line segment in the upper right repre-
sents the line best fitting the points in Fig. 3, the scale of the
new figure being considerably reduced. The lines labeled "1", "2",

" 18]

"8", and "go " are the lines to which the extension of this

segment would become asymptotic at (0,0), if the doubling time for
small errors should be 1, 2, 4, or 8 days, or infinite. Our task
is therefore to determine which line is an asymptote for the left-

ward extension of the segment.

Clearly we cannot do this from the observations alone, since
the points in Fig. 3 fail to exhibit any obvious departure from a
straight line. It is easy to sketch an extension which is asymp-
totic to the l-day, 2-day, or 4-day line, and we cannot with certainty
eliminate the possibility that the doubling time is nearly 8 days,

since the curve might possess an abrupt change in slope.

It follows that if we are to determine the doubling time for
small errors, we must introduce some additional hypotheses. Con-

ceivably these hypotheses might then be justified on the basis of

theory, but they cannot be verified by the data alone.
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Fig. 4. Segment of line Y = 0.78 X + 0.22 fitting data in Fig. 3
(heavy curve), and lines to which leftward extension of heavy curve

would be asymptotic at (0,0) if doubling time for small errors were 1,
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4, A quadratic hypothesis

The foregoing analysis of the data has yielded only an upper
bound — about eight days — for the average doubling time for small
random errors. It is nevertheless possible to obtain specific

estimates by introducing certain plausible hypotheses.

We begin by recalling that the quasi-exponential growth cha-
racteristic of small errors would continue unabated if the governing
dynamic equations were linear. The eventual cessation of growth is
due to processes represented by nonlinear terms in the equations,

Of primary importance are the quadratic terms which represent the
advection of the temperature and velocity fields. Indeed, in some
mathematical models of the atmosphere where the presence of water
is neglected and where radiative heating is but crudely represented,

advection is the only nonlinear process,

Under the assumption that the principal nonlinear terms in
the atmospheric equations are quadratic, the nonlinear terms in
the equations governing the field of errors will also be quadratic.
If X denotes the magnitude of the root-mean-square error, and if
the field of errors consists of a superposition of various normal
modes, the nonlinear terms in o(‘X/ At should be of second
degree in the complete field of errors, but need not be determined
by X alone, If, however, the error field consists essentially
of a single normal mode, 4 ¥-/glt should be reasonably well

approximated by a quadratic function of X
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We shall therefore postulate that for arbitrary values of
o, , and for values of W Z ) , the quantity X g () ,

—

as defined in (9), is governed by the quadratic equation
-
MX/JW‘ = a X -b X _ (10)

We regard X as peing defined for continuously varying values of

wi

, even though it has been computed only for integral values.

Since )( 2\ a8 WM - ©© _ the constants o and b

must be equal. Equation (10) then possesses the\general solution
- AV -1
X = ( 1+ C e ) (11)

It follows that for any positive value of YL

-1
X (m+n) = X(W\)Le‘a“—k ("'C-M)X(M)] . a2

Fig. 5 shows the curve of X (\M +V\) against X (W‘) for several

time lags Y\ , corresponding to values of 1/4, 1/2, aud 3/4 for

-on
e . In each case the curve is a portion of a rectangular
—_—an
hyperbola, It passes through (1,1) with a slope of € , and
v
through (0,0) with a slope of e“ ; the latter slope represents

the amplification factor for small errors during YL days. The middle
curve is therefore the curve which applies when YW is equal to the
doubling time for small errors; the upper curve applies when N

equals twice the doubling time.
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O 0.5 X 1.0
Fig. 5. Graph of Y = X (W‘*‘V‘) against X = X (W‘) s
—-an
as given by equation (12), for values of W for which € > = 1/4,

1/2, 3/4. Line Y: X is included for reference,.
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The constant . may now be estimated by recourse to the

data, specifically, by fitting the curve of X (\M'H) against

'X (V“) to the points in Fig. 3. We noted that these points
appeared to fit a straight line with a slope of 0.78; however, the
curves of X (\M + "‘) against X (W\) are slightly concave
downward, and the curve approaching (1,1) with a slope of 0.75 seems
to fit the data best. This incidentally is the lower curve in Fig.
5. Fig, 6 shows the upper portion of this curve, together with the

points which appear in Fig. 3. The good fit speaks for itself.

-0
It follows that € = 0,75, whence o = 0.29. The
awn
doubling time for small errors, obtained by setting € = 2,

is therefore about 24 days.

The close fit exhibited in Fig. 6 cannot be taken as a veri-
fication of the quadratic hypothesis, since other hypotheses would
also yield fairly good fits over the limited range of )( covered
by the data. A cubic hypothesis, for example, with X1 in equa-
tion (10) replaced by )(3 , would yield a 5-day doubling time,
However, such a hypothesis would be harder to justify theoretically.

Moreover, the data do not suggest the greater curvature which the

cubic hypothesis would demand.

Certainly there is nothing in Fig. 6 which suggests that
the quadratic hypothesis is incorrect. Pending further development
of the theory, we may accept it as being as reasonable as any simple
hypothesis which might be introduced. We then conclude that our

best estimate of the doubling time for small errors is 24 days.
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Fig. 6. Upper portion of curve labeled ''3/4" in Fig. 5 superposed
upon dots appearing in Fig. 3. Line 1/ ==>( is” included for

reference.
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5, Further considerations

We have observed that the smaller errors encountered in our
study tend to be followed a few days later by errors of more nearly
average magnitude. We have concluded that small errors tend in
general to amplify, and more particularly that truly small errors
tend to double in about 23 days. Before we can accept these con-
clusions, we must attempt to eliminate certain other interpreta-

tions which suggest themselves,

Suppose, for example, that small errors possessed no system-
atic tendency to amplify at all., They might then still undergo
continual fluctuations, perhaps associated with fluctuations of
the average intensity of the synoptic weather systems. In that
event, the individual columns in Fig, 1 would appear very much as
they do in reality. Smaller values of E‘!g would tend to be
followed a few days later by somewhat larger values, and one might,

using the reasoning which we have employed, incorrectly deduce a

doubling time of a few days.

One feature distinguishes this example from the real atmos-

phere. Small errors, in spite of their fluctuations, would not

develop into large errors. Consequently the different columns in
Fig. 1 would possess appreciably different mean values. In real-

ity this did not prove to be the case,
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Let us therefore modify our hypothetical example by supposing
that small errors tend to amplify, but only very slowly, doubling in
perhaps a few weeks instead of a few days. Suppose also that fluc-
tuations of the type envisioned in the former example are superposed
upon the slow systematic growth. Again the individual columns in
Fig. 1 would appear very much as they actually do, and they would in
addition possess equal mean values, Once more, regardless of whether
the conclusions which we have drawn from the actual data are correct,
the same reasoning applied to the hypothetical example would yield

an incorrect conclusion,

Let us attempt to locate the flaw in our reasoning. We shall
do this by”Considering a specific flow where small errors do not

tend to grow, and applying our reasoning to this flow.

An example of such a flow is afforded by the well-known ''dish-
pan" experiments, specifically those experiments where ''vacillation"
occurs, In these experiments a cylindrical vessel containing water
is rotated on a turntable about a vertical axis, and is heated near
its rim and cooled near its center, In the vacillating case, a chain
of several nearly identical waves develops and progresseé about the
center, while the shape and intensity of the waves and their speed
of progression undergo regular periodic oscillations (cf. Pfeffer

and Chiang 1967).
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Once vacillation has set in, two states may differ because
the waves have different longitudinal phases, or because the phases
of the vacillation cycle are different. Let us consider a case
where the principal distinction between the latter phases is in the
intensity of the waves. In that event, among those pairs of states
possessing a specified difference in the longitudinal phase of the
waves, those where both states are at the strong-wave phase of the
vacillation cycle will have the largest values of Eikl . Half a
cycle later, when both states are at the weak-wave phase, Eihx

will be substantially smaller,

Thus Ehl will oscillate periodically, with the period
of the vacillation cycle. Small errors superposed upon a weak-wave
state will grow during the next few ''days', say half a vacillation
period, while small waves superposed upon a strong-wave state will
diminish. When we average over all states, we should find that the

average error neither grows nor decays.

Yet we have seen that the procedure used in the preceding
sections would indicate that small errors would grow, The discre-
pancy occurs because we have been tacitly assuming that errors of
a given magnitude are equally likely to be superposed upon any
state. In the case of vacillation, if the errors are those asso-
ciated with naturally occurring analogues, the majority of errors
of a given Eﬂiil magnitude will actually be superposed upon weak-

wave states, whence they will tend to grow, while most of the errors
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of a given lﬁ{gg magnitude will be superposed on strong-wave states,
whereupon they will tend to diminish. The large number of amplify-
ing small errors will thus be averaged with only a small number of
decaying small errors, and complete cancelation will not occur. Our
erroneous conclusion that small errors will tend to grow will there-
fore have resulted from superposing the majority of small errors on

those particular states where errors do tend to grow.

It therefore behooves us to see whether our study of the real
data contains a similar shortcoming. We first ask whether small
errors have a preference for certain states, i.e., whether certain
states possess numerous fairly good analogues while others possess
rather few. A glance at the printed output, of which Fig. 1 is a
sample, indicates that this is the case. Accordingly, for each odd
value of F\ we have averaged together all the computed values of
E;kl and E;Qh . The averages range from -2.5 to 3.4; when
rounded off to the nearest integer, these averages determine six
categories into which all odd values of '2 may be grouped. The
number of values of k in each category is given in Table 4, together

with the complete distribution of E;hl for each category of R

We see, for example, that in determining the growth rate of
errors where initially Ezhl = -4 , we have been weighting the
six categories in the ratio 2100, 8323, 3472, 644, 59, 4. For a

proper determination of the growth rate, we should have weighted them

in the ratio 92, 629, 668, 305, 69, 10, In that case we would obtain
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Table 4. Number of states occurring within each category,
and number of occurrences of each observed value O
of Ekl within each category. See text for distinc-

tion between categories.

Category -2 -1 0 1 2 3

States 92 629 668 305 69 10
oL Number of occurrences

-11 0 0 2 0 0 0

-10 3 6 4 0 0 0]

| -9 10 23 29 0 0 0 |

1 -8 84 83 63 0 0 0

-7 137 334 157 3 0 0

-6 427 1159 411 46 10 0

-5 979 3387 1179 177 17 0]

-4 2100 8323 3472 644 59 4

-3 3308 17090 8689 1703 169 29

-2 4043 26246 17873 3951 439 54

-1 3705 31893 28074 8224 970 114

0 2466 28376 33107 13233 1803 169

1 1365 19151 29845 15591 2720 328

2 656 9712 19328 14368 3261 460

3 163 3476 8551 9470 2728 710

4 33 938 2659 4142 1841 830

5 0 208 618 1310 917 583

6 0 18 126 248 228 274

7 0 0] 7 14 70 99

8 0 0 0] 19 15

9 0 0 0 1 3
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considerably different values of EZ—H (vn) , if errors of a
given magnitude tended to behave differently when superposed upon

states falling in different categories,

To see whether this is the case, we have computed values of
me@ (W\) separgtely for each category. From these we have
determined values of Eld,(V“) for each category. If the real
atmosphere behaved like the hypothetical case of vacillation, we
should expect E a'[vn) , for negative values of & , to in-
crease most rapidly with ™M for category -2, and to increase least

rapidly, or even decrease, for category +3.

We shall not present all the values of EO,,(V“\) ; a few
selected values will illustrate the situation which prevails, |
Table 5 presents values of E,q (_w\) and E-g (W\) for
categories -2, -1, and 0, the only categories where values of Eskl
és low as -8 were encountered, Table 6 presents values of E_q(vn)
and E‘__3 Lhn) for all six categories, Neither table reveals any
appreciable difference between the behaviors of érrors superposed
on states in categories -2, -1, and 0. There is some indication
in the left half of Table 6 that errors increase less rapidly when
superposed on states in category +1, and especially +2, but this
tendency does not appear in the right half of Table 6, which is
based upon more than twice the amount of data. In any event, cate-
gory +2 includes only four per cent of all states. The unexpectedly

rapid growth exhibited by errors superposed on category +3 presumably
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is due to the small size of the sample.

We therefore find little reason to modify the conclusions
which we reached in the previous section, As far as we can determine,
the growth rates presented in Table 3 represent essentially unbiased
averages, and do not result from superposing most of the small érrors
on those particular states where small errors tend to grow most

rapidly.

6., Concluding remarks

We have assembled five years of upper-level weather data,
consisting of twice-daily values of the heights of the 200-, 500-,
and 850-millibar surfaces, at a grid of 1003 points covering the
greater part of the northern hemisphere. We have introduced a
weighted root-mean~square height difference as a measure of the
difference between two arbitrary states of the atmosphere. From
the data, we have then evaluated the difference between each two
states which occur within one month of the same time of year, but
in different years. Treating such a difference as an error super-
posed upon one of the two states, we have examined the growth rates

of the errors.

We encountered no truly small errors, whence we found it
necessary to extrapolate the results obtained from examining moder-

ately small errors. With the aid of a quadratic hypothesis, we
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concluded that truly small errors would tend to double in about 2.5

days, in the root-mean-square sense.

However, the quadratic hypothesis is at best weakly supported

by theory. The data alone yield only the weaker result that small
errors should tend to double in less than 8 days. To enable us to
make a stronger statement, it would seem highly desirable to repeat
the study, using a much larger sample of data. The probability of
encountering reasonably small errors would thereby be greatly in-

creased.

Before we undertake any such task we should be well advised
to estimate the size of the data sample needed for significant im-
provement., The smallest value of EEkn yielded by the five-year
data.sample was -11, corresponding to a Qalue of 0.62 for ><h! ;
we might, for example, ask how many years of data we should probably
have to process in order to encounter an error only half as large as

a random error, i.e., a value of -16 for EIQL .

One is often on dangerous ground when attempting to estimate
the probability of an event so rare that it has not yet been observed
to occur; nevertheless, what we apparently must do is to extrapolate
the frequency distribution indicated in Table 1 down to -16. Before
attempting to fit a curve to the values, let us note then that in
seeking the individual dates on which the better analogues occurred,

we found a marked preference for winter. We have therefore divided
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the entire set of pairs of states into four seasons, according to

the day of the year midway between the days of the yeaf of the states
being compared. The beginning dates of the seasons were taken to be
December 5, March 6, June 5, and September 5; this choice was found
to maximize the contrast between winter and summer. Table 7 shows

the distribution of Ezk&_ for each season.

The preference of the smallest and also the largest errors for
winter is apparent. With any reasonable extrapolation of the distri-
butions, the probability of a value of -16 for EE){L will be so
much greater in winter than in other seasons that only the winter
distribution need be considered. We may add in passing that the
growth rate of errors was not found to vary greatly from one season

to another; if anything, it was least rapid in winter,

As a first approximation one might expect a mean—square error
to possess a chi-square distribution. Although the various steps in
computing X.:; render it somewhat different from a simple mean-
square error (see equations 1-4), we find that the distribution of

)(ht in winter is reasonably well approximated by a chi-square
distribution with 44 degrees of freedom. From this we infer that
the probability of obtaining a value of -11 for E;hk is about
800 times that of obtaining a value of -16.

Since the number of pairs of states varies as the square of

the number of states, we could probably accomplish our objective
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Table 7. Number of occurrences of each observed

value Ol of Ekl

for each season.

ol Winter Spring Summer Fall
11 2 0 0 0
10 13 0 0
-9 43 12 5
-8 163 40 6 21
-7 398 89 52 92
-6 1051 368 231 403
-5 2310 1237 927 1265
-4 4818 3445 3100 3239
-3 8547 7167 7725 7549
| -2 12451 12582 14426 13147
| -1 16007 17793 20782 18398
% 0 16720 20273 21856 20305
‘ 1 16163 17979 17300 17558
‘2 12353 12715 10407 12310
3 7482 6506 4730 6380
4 4014 2495 1559 2375
5 1893 678 421 644
6 613 98 54 129
7 164 16 1 9
8 32 2 0 0
9 3 1
_77._




by increasing the length of the data sample by a factor of 28, i.e.,
by processing 140 years of upper-level data. Since, however, hemis-
pheric observations extending even as high as the 500 millibar level
have been in existence no more than 25 years, our objective seems to
be unattainable., Probably we can gain some additional insight into
our problem by processing the largest sample of data which we can

assemble, but we must not expect miracles.
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