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THE PREDICTABILITY OF HYDRODYNAMIC FLOW*t

Edward N. Lorenz :
Massachusetts Institute of Technology, Cambridge, Mass.
. ‘ ' ~

Among the innumerable processes which take place in our
universe, there are many whose future behavior we often wish to
predict. Some of these are hydrodynamical processes; that is, they
depend upon the motion of a fluid. Let us begin by looking at a few
of these processes and some of the methods which have been used
to predict them. ' e s '

Following the occurrence of a heavy rain, or the melting of a
deep snow cover, the threat of a flood is often imminent. Itis then
a matter of great concern to predict the intensity of the flood crest
as it moves downstream. Considerable success.has been obtajned

"by using laboratory models of river-drainage basins, in which actual

floods may be simulated. .

On a larger scale, the ever-present problem of weather predic-
tion is now being tackled by dynamical methods. Mathematical
equations, supposedly governing the behavior of certain features
of the atmiosphere, are solved by high-speed computing machines.
Forecasts of upper-level wind patterns made in this manner compare
favorably with those produced by other methods. - o ~

On a still larger scale, we sometimes wish to predict the be-
havior of sun’s atmosphere, as manifested by sunspots and other
occurrences. The approximate eleven-year period in sunspot activ-
ity became evident many years ago. Even without any physical
theory, we can make reasonably good forecasts of sunspot numbers
during the next decade or two simply by extrapolating the eleven-
year cycle. We can gain further improvem ents by using more sophis-
ticated statistical techniques. ‘

Other problems of a less serious nature. also present them-

selves. A morning commuter who has stopped for a quick cup of
coffee may wonder how soon the coffee will become cool enough
for him to drink it, before he rejoins the rush to the office. He might

* This paper was presented at a meeting of the Section on January 22, 1963.

T This work has been sponsored by the Geophysics Research Directorate of
the Air Force Cambridge Research Laboratories, under Contract No. AF 19(60 4)-
4969. :

The Division of Biochemistry held a meeting on January 22, 1963, st which
Bernard L, Horecker of New York University School of Medicine, New York, N.Y.,
presented a paper entitled ‘“Mechanism of Action of Aldolases.’” This paper will
not be published by the Academy,
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seem to have a problem in simple thermal conduction, rather than
fluid motion. But actually there may be strong convective over-
tumning, which brings hot coffee from the bottom of the cup to the .
surface, and enables it to cool faster than it otherwise would. This -
convection often becomes visible if the cream fails to mix thor-
oughly. .
In the earlier examples the predxctmns are never perfect and -
they become successively poorer as the range of prediction in-
creases. Because the period between successive sunspot maxima
1. ' varies considerably about its eleven-year average vafﬁe, we cannot ‘
say with any confidence what the phase of the sunspot cycle will ‘
be 100 years from now. The mathematically predicted. weather di-
verges farther and farther from the real weather, as the cumulative
- ' effect of the approximations becomes more and more dominant. A
' laboratory model cannot predict next month’s floods . w1thout any
knowledge of next month’s rainstorms. :
The lack of perfection of current methods of predxctmg such
phenomena as the weather has often been contrasted with the deadly
accurancy of predictions of solar eclipses. Sometimes, it is con- ,
cluded that meteorologists are not in a class with astonomers.
K Another conclusion, which is certainly as well justified by present
evidence, is that no method of predicting the weather can ever
compare in accuracy to the prediction of eclipses. The motion of a ‘
fluid and the motion of discrete heavenly bodies are sxmply not the
same thing. : :

In this talk 1 want to explore the queshon, “How predlctable
is hydrodynamic flow?’’ Specifically, are there definite limits upon
the accuracy with which a particular hydrodynamical process can
be predicted? If there are, how is the accuracy of prediction related .
to the range of prediction? : :

The answer is obviously going to depend upon the particular .
flow. I should like first to distinguish between permanently estab-
lished or statistically stationary flow on the one hand, and tran-
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‘ sient flow on the other.
¢ ‘ In a permanently established flow, states closely resembling
; the present state have a positive probability of occurring again.
3 In a transient flow, states which have recently occurred will even-
%

tually be avoided altogether. If the motion ultimately dies out
completely, the flow is purely transient. :

The cooling cup of coffee is an example of a transient system.

The convective overturning will cease permanently as the coffee

e ’ approaches room temperature, assuming that nobody drinks the
coffee first. We might have trouble forecasting the temperature of
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the coffee one minute in advance, but we should have little dif-
ficulty in forecasting it an hour ahead. .

The other systems which we have considered are essentially
permanent. Differences in the typical behavior of the weather from
one year to another, or of sunspots from one century to another,
presumably represent very-long-period fluctuations, and do not

imply permanent changes in the nature of the atmosphere or the

sun. The flood problem might seem to resemble the coffee problem.
But even though each individual flood is temporary, the level of
the river, which subsides as the flood recedes, will-rise again with
the next flood. Two-month forecasts of the river level may be more
accurate than two-day forecasts when a flood is imminent, but two-
day forecasts are certainly superior when a flood is not imminent.

We might make the coffee problem leok more like the flood
problem by considering the life history of an individual coffee-cup,
as it is continually refilled with coffee. We could probably present
plausible arguments for statistical stationarity, but in considering
the relation between successive cupfuls of coffee, we should have
to pass far beyond the realm of hydrodynamics. :

During the rest of this discussion I shall not be concerned with
transient phenomena, and shall limit its scope to the predictability
of permanently established hydrodynamic flow with no transient
component. - o o

1 should next like to distinguish between periodic or quasi-
periodic flow on the one hand, and nonperiodic flow on the other.
A quasi-periodic flow with no transient component eventually comes
arbitrarly close to assuming a state which it has assumed before,
and the history following the latter occurrence remains arbitrarily
close to the history following the former. If the repetition is exact,
the flow is strictly periodic. Mathematically a quasi-periodic func-
tion may be expressed as the sum of a finite or denumerable number
of strictly periodic functions.

A nonperiodic flow may also come close to repeating a previous
state, but the histories following the two occurrences do not remain
close, except temporarily. Sometimes the two histories eventually
lose all resemblance to each other. The flow is then purely non-
periodic. A general nonperiodic flow may be expressed as the
linear sum of a quasi-periodic flow and a purely nonperiodic flow.

Quasi-periodicity is illustrated by the oceanic tides. Whether
the tides are strictly quasi-periodic may be a matter of semantics.
If we agree to talk about the vertical motion of the ocean surface,
with the effect of individual waves averaged out, the flow we are
considering has a nonperiodic component, which is due largely to
the influence of winds. The major component is nevertheless the
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quasi-periodic compo.nent, which in turn is a sum of strictly pe-
riodic components, : |

As a result, we can predict the tides many years in advance
"just about as accurately as we can predict them a few'daysiin ad-
vance, simply by extrapolating the known periodic components, and
recombinir_lg them. Indeed, the times of high and low tide, as they

' appear in the  daily newspapers in coastal cities, are probably
regarded by most readers as statements of fact rather than as pre- .

dictions. : : oo™

The nonperiodic component of the tides is to some extent pre-
dictable, and the statement that ‘‘tides will be from two to three
feet above normal” is a familiar one to coastal dwellers. But more

than a few days ahead, abnormal tides cannot be m_otevpredictable
than the wind sy stems which cause them. :

Other periodic systems, such as the annual and diurnal ‘com-

ponents of the weather, are equally predictable. It requires little
skill to conclude that, during the twenty-fi»fth century A.D., New

York will be wamer in July than in ]anuary. But if we are to make

more definitive statements even about the prediétability of quasi-
perodic flow in general, and certainly about nonperiodic flow, we
must become more specific in our concept of predictabi_lity._ Pre-
dictability -at a given range is -essentially a measure of the errors
in predicting at that range. In order to avoid dtéwing incorrect con-
clusions because of confusion in terminology, we must qualify
predictability a’ccording to the sources of the errors in prediction.

Let us call a flow deterministic if it is govemed by a deter-
ministic dynamics, or if for any other reason there exist formulas
which express without error the future of the flow in terms of the
present and past.. The word formula should be interpreted liberally.
It may denote a set of mathematical equations, a set of tables or
graphs, a set of verbal tules, or a combination of these. Strictly
periodic flow is certainly -deterministic in this sense. If a flow is
not deterministic, there will be prediction errors which are intrinsic
properties of the flow itself.

It is unrealistic to assume that measurements of any flow will
ever be exact. Even if a flow is deteministic, predictions of the
future may contain errors, as a result of substituting incorrectly
measured present and past states into the formulas. If the flow is
not deterministic, the errors due to measurement will be combined
with the intrinsic errors. Moreover the formula which would be most
appropriate if measurements were exact may not be the best formula
with measurements as they actually are,

Here we must interpret ‘‘errors in measurement’ as including
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not only instrumental errors, but errors due to incorrect interpola-
tion over regions where there are no measurements at all. In the
atmosphere the latter errors are presumably the more serious.

The mere existence of a perfect or nearly perfect formula does
not guarantee a method by which we can deduce the formula. Ideally
the dynamics of the flow should reveal the formula, but frequently,
as, for example, in the case of sunspots, the dynamics are imper-
fectly understood. Statistical procedures, based upon the recorded
past history of the flow, are then available, but frequently not
enough past history has been recorded. The very real possibility
that somebody might guess the proper formula is of little comfort,
unless there is some basis for selecting this formula in preference
to an inferior formula which somebody else has guessed. If we do
not wish to wait while more history accumulates, we can only hope
that with an apparently exponential growth in the world’s popula-
tion, there may also be an exponential growth in the number of
hydrodynamicists, until one of them finds the proper dynamics. -

In ‘summary, we must distinguish between intrinsic predict-
ability, which depends only upon the flow itself; attainable pre-
dictability, which is limited also by the inevitable inaccuracies in
measurement; and practical predictability, which is further limited
by our present inability to identify the most suitable formulas.

We may now state that there are no intrinsic errors in predict-
ing periodic flow. Errors in measurement may lead to comparable
errors in predicting periodic flow, but if the errors in measurement
are random, their effect may be largely eliminated by averaging the
past history over a number of cycles. However, a penod;c flow
need not be practically predictable at all, if neither theory nor
observation has yet revealed that it is periodic.

In the case of the oceanic tides, experience indicates that the
quasi-periodic component is practically predictable, with little
error. This predictability stems partly from the theoretical knowl-
edge that the frequencies involved are those which characterize
the relative motions of the moon, earth, and sun. The determination
of the amplitudes and phases in a particular tidal basin from a
sample of observations would be far less precise, if this same
'sample had to be used to determine the frequencies as well.

It is not only less simple to predict nonperiodic systems, but
it is also less simple to make general statements about their pre-
dictability. Later on I shall discuss the extent to which a general
theory of the predictability of hydrodynamic flow may be formulated.
For the time being let me simply say that such a theory is incom-
olete. In the absence of a complete theory, it is wise to base our
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diction which we have had so far. ,
I should therefore like to spend some time discussing Some

Richardson himself Spent many months jn a single-handed at-
tempt to produce g forecast over a limited portion of Europe. His
prediction fajled completely, and he attributed the failure to in-
accuracies in the observations of the initial wind field.

During the 1920’s and 1930’s, there was wj despread doubt that

future be measured with sufficient accuracy. Optimism grédually
returned following the Suggestion by Rossby (1939) that the large-
scale upper level wind systems might be governed approximately
by the two-dimensional vorticity equation, which €xXpresses the
conservation of the absolute vorticity of individual parcels of
fluid as they move horizontally. Computation of the advection of
vorticity was feasible with existing measurements. ,

With the arrival of high-speed digital computing machines, the
vorticity equation was solved numerically (see Charney, Fjortoft,
and von Neumann, 1950). After some technical tefineménts, encour-
agingly good twenty-four hour forecasts were produced. Thus the
first moderately successful dynamical weather forecasts were made
not with the most precise form of the dynamic equations possihle
but with a truly crude approximation.

of a complete theory, new computation schemes must generally be
tested before their worth is known. These Processes require much
time. Thus.the improvements in Prediction which we have gained
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during ten years fall far short of what many dynamic meteorologists
had anticipated. .

On a routine basis, we have yet to reintroduce such obvious
physical processes as the mechanical and thermal interaction be-
tween the atmosphere and its environment, and the evaporation and
condensation of water. It may be that within a few years, when
even bigger and faster computers are available, and we have in-
cluded the physical processes which we know about now, we shall
obtain highly accurate short-range forecasts. Perhaps, on the other
hand, we have nearly reached the limit which current errors in
measurement place on predictability by dynamical methods.

et us now turn our attention to statistical prediction — pre-
diction by means of formulas derived from the observed past behavior
of the atmosphere. A statistical formula may happen to .coincide
with a governing dynamical equation, although in general it will
not do so. I shall confine my remarks to formulas which_specify a
single value for the predictand, although much effort has been de-
voted to probability forecasting, where a formula may give a com-
plete probability distribution for the predictand.

The main stumbling block in statistical forecasting is the
necessity for any sample of observations of the past behavior of a
system to be finite in size. As a result, we can always find an
infinity of formulas which the sample of data fits exactly, provided

*that we allow the formulas to become complicated enough. The

sample itself provides no basis for selection among these formulas,
which ordinarily give widely varying results when applied to new
data, and which probably do not include the most appropriate for-
mula, anyway. '

There is therefore no such thing as a ‘‘best” formula, from the
point of view of a single sample, and we must seek instead thebest’
formula of a specified restricted type. In all probability the arbi-
trary restrictions will exclude the formula which is really most
appropriate. -

The simplest and most widely used procedure is to restnct the
formula to be linear. Specifically, we consider formulas of the form

y=a x +---+a,x,+€, (D
where y is the predictand, x,, ---, x,, are the predictors, and e is
the error in predicting y. The coefficients a, ---, a, are to be

chosen to minimize the mean square of e. We can include a constant
term in formula (1) by appending one more’ ““predictor,”” whose
value is always unity.
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arrange the data in tabular for

and the values of Xy --= %, in adjacent columns. The data for the

predictors then constitute a fectangular array of numbers, and may

be treated as a matrix X, with & rows and M columnS.-SimiIarly, ’
-the data for the predictand may be treated &s a matrix ¥, with

rows and one column. Formula (1) may then be rewritten

Y=XA+E, (2)

where E is a matrix of fows and one column, whose elements are

the prediction errors, and 4 is a matrix of M rows and one column,
whose elements are the prediction coefficients. The matrix A which

minimizes the'mean-'square error in predicting ¥ is simply

A= @Tx)1 X7y, (3)

where the Superscript T denotes the transpose of a matrix, and the

exponent ~1 denotes the inverse.

Formula (3) shows that the necessary computations to estab-
lish a linear prediction formula
consist only of three matrix mu

abilities of Richardson’s team of 64,000. Hdwever, if a digital

computer is available, and if the Computer can interpret individual

gram for the linear prediction problem.

It is not surprising, then, that numerous formulas have been
produced by this method. Some of them

whose value
but will be large in

TX will become sin-
gular, and equation (3) will yield no prediction formula at all
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and at the same time, there may be many predictors which one is
reluctant to discard. In this case procedures are available for
decreasing M as much as possible, while eliminating as little
significant information as possible. One of the simplest and most
successful of these is the screening pracedure, which Miller (1960)
has adapted for meteorologlcal purposes. In this procedure, data

for a large number of predictors are first collected. Predictors are

then selected from this set, one at a time, in order-of their ability
to reduce the error further. When the additional reduction in the
error is no greater than that expected by chance, the procedure is
terminated, and the chosen predlctors are used in an ordinary lmeat
prediction scheme.

Linear procedures have by now been applied on so many occa-
sions to the prediction of various weather elements at various
ranges, that there is some justification for claiming that the results
of these predictions reveal the linear predictability of the atmos-
phere. Experienee in predicting the sea-level pressure over the
United States, twenty-four hours in advance, may be rather reveal-
ing. Some of the earliest attempts gave mean-square errors which
were somewhat less than one half the variances of the predictands.
These results were highly gratifying. Subsequent attempts, how-
ever, failed to show any marked improvement. The formulas’ certainly
reveal positive skill, but I am sure that any practicing forecaster,

‘after seeing prognostic pressure charts prepared by statistical

formulas, would be convinced that he could do better by the usual
subjective methods.

Thus there seems to be a close parallelism between the his-
tories of dynamical prediction and statistical prediction, as they
apply to short-range forecasting. Both methods contain inherent

- pitfalls; in statistical prediction, too many predictors can lead to

disaster, while in dynamical prediction, too ptecise a formulation
of the equations can be fatal. In either case, the pitfalls may be

avoided by suppressing some information which should have been
of real use.

Both methods achieved comparable early successes, as soon
as the original pitfalls were circumvented. Much effort has since
been devoted to reincorporating some of the information which was
suppressed. In spite of these refinements, improvements in predic-
tion have not been great. We are left in the position of not knowing
whether short-range prediction of the quality we really desire is
possible or not.

Because I have so far said little about subj ective prediction,
I do not wish to belittle its importance. Certainly it has been
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practiced far more than dynamical or statistical forecasting. We
can assess subjective forecasting on the basis of its results. We
know that some forecasters achieve significantly better results
than others, so that at least the better forecasters possess real
skill. We know that good forecasters achieve results at least com-
parable to those which have so far been obtained by dynamical and
statistical means. Yet there is nothing in the history of subjective
forecasting to hint that great improvements are close at hand.

Let us now return to the question of building a theory of hydro-
dynamic predictability. This may be accomplished by first compiling
some known results, and then adding some new results. Many of
these results are not restricted to hydrodynamical systems.

Conceming subjective prediction, it is a bit discouraging to

 try to formulate a theory of predictability by a particular method,

‘when we cannot even formulate the method. I shall therefore confine
my remarks to dynamical and statistical methods. '

First let us consider statistical predictability. To -make full
use of any physical quantity as a predictor, we must allow its past
values, measured at two or more differert times relative to the time
of prediction, to enter the formula as separate predictors. We can
do this by using time-series methods.

The theory of linear prediction of stationary time series, ini-
tiated by Kolmogorov (1941) and Wiener (1949), has reached a
tather advanced state of development. The simplest and most thor-
oughly studied case is that of simple time series, where the future
of a single quantity is to be expressed as a linear function of its
own present and past. We let---, y_,, ¥, ¥y, --- be values of the
predictand at equally spaced time intervals, and seek formulas of
the form

= c C - - -
yn_+k ko yn + I yn-l + + ek.n+k * 4)
Here the constants ¢, , c,,, --- are to be chosen to minimize the

the mean square of e the error in predicting y .., k steps in

kntk’
advance. For completeness, we include as a formula a sequence of
successively better formulas which do not approach a particular
formula as a limit, provided that the sequence of errors approaches
a limit. -

In the general linear prediction scheme, the errors are com-
pletely determined by the variances and covariances of the pre-
dictors and the predictand. Likewise, in the present problem, the
errors are completely determined by the covariance function
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lim
R, =ow FoT z, Vo Iotx (5)

which depends upon the lég k. The autocorrelation is obtained by

‘dividing the covariance R_ by the variance R.1 shall enumerate

some of the principal results relating the covariance function to
the intrinsic linear predxctabxhty A deta1led presentanon is gwen

by Doob (1953, ch. 12).

First of all, any stationary time series may be expressed as
sum of two series, one of which is quasi-periodic, and one of
which is purely nonperiodic. These two series are completely
uncorrelated with each other at all lags. Hence the separate covar-
iance functions of the two series may be added to give the covar-
iance function for the total series. (If the mean of the series is not
zero, it is treated as a periodic component having an infinite period.

‘The quasi-periodic component or the nonperiodic component some-

tim es vanishes identically).

The autocorrelation function of the quasi-periodic series returns
artbitrarily close to one, arbitrarily often, as the lag approaches
infinity. The ‘autocorrelation function of the nonperiodic series
approaches zero as the lag approaches mfmxty. For the total series,
then, the fraction of the variance accounted for by the quasi-
penodlc component equals ‘the upper bound of the autocorrelatlon
function, as the lag approaches infinity.

The intrinsic linear predictability is most readily expressed in

' terms of the spectrum, which is a Fourier transform of the covar-

jance function. The covariance function of the quasi-periodic
component does not possess a Fourier integral, but is expressible
as the sum of a denumerable number of cosine functions. Its spec-
trum is therefore a denumerable set of lines. The quasi-periodic
component is intrinsically linearly predictable without error, at all
lags.

The covariance function of the nonperiodic component pos-
sesses a Fourier integral, and its Fourier integral transform is its
spectrum. The spectrum is absolutely continuous. The intrinsic
linear predictability is completely determined by the spectrum. In
patticular, aside from the factor 2#, the mean square error in pre-
dicting one step ahead is equal to the geometric mean of the spec-
trum, while the variance itself is equal to the arithmetic mean. If
the spectrum does not approach zero anywhere, or, more generally,
if the logarithm of the spectrum is integrable, there is a positive

.
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case of white noise, where the spectrum is constant, the arithmetic
and geonietric means are equal, and the series is completely unpre-
dictable. If, on the other hand, the Spectrum vanishes along a con-
tinuum, or, more generally, if the logarithm of the Spectrum is not
integrable, the series is intrinsically predictable without error at
all lags, that is, it js linearly deterministic. - '

Finally, in the general case, a_single. formula will simulta-
neously predict the quasi-periodic component without error, and
yield the optimum prediction of the nonperiodic component.

Random errors in Mmeasurement add their own spectrum to the
spectrum of ga perfectly measured series. They therefore do not
interfere with the ptedicta‘bility of the quasi-periodic component,
but they increase the errors in predicting the nonpeiiod_ic com-
ponent. In particular, they make a linearly deterministic nonperiodic

-Series indistinguishable from a nondeterministic series, so that
the attainable predictability at infinite range, instead of beihg
perfect, falls to zero. Only quasi-periodic flow is attainably pre-
dictable from its own past, by linear means, at extremely long
range. . - '
The procedure . for computing the series of prediction coeffi-
cients is iather lengthy. I am not aware of any instance where it
has been carried to completion with meteorological data. A straight-
forward procedure for estimating the spectrum has been presented
by Blackman and Tukey (1958), and a truly vast number of meteoro-
logical spectra have been evaluated in the past few years.

a number of rather narrow bands. Whether or not these bands indicate
real phenomena or sampling errors, there is no suggestion that the

Yotk alone.

We must therefore consider the theory of predictability of myl-
tiple time series. This theory is less complete. The prediction
errors in this case are determined by the autocovariances and
Cross-covariances. The predictability may be expressed in terms

R et e
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of the spectra and cross-spectra, which are Fourier transforms of
the autocovariance and cross-covariance functions.

As in the case of simple time series, periodic components are
intrinsically predictable without error at all lags. The predictability
of the nonperiodic components is determined by the matrix whose
diagonal elements are the spectra and whose off-diagonal elements
are the cross-spectra. If this matrix is not singular.anywhere, or,
more generally, if the logarithm of its determinant is integrable,
there are positive errors in predicting one step ahead, and the pre-
dictability falls to zero as the range becomes infinite. The converse
of this theorem is not true, however, as it would be in the simple-

The formal problem of detehﬁining the optimum prédiction co-
efficients has been solved, for the case where the matrix is non-
singular, but the precedure is extremely cumbersome. A formula of
Wiener and Masani (1958), for example, expresses each coefficient

as the sum of an infinite series, plus the sum of a doubly infinite.

series, plus the sum of a triply infinite series, and so on, to infinity.
This formula has yet to be applied to meteorological data.

Random errors will always render the spectral matrix non-
'singular, 'so that the attainable predictability of nonperiodic flow
always falls to zero as the range becomes infinite. .

Thus there exists a fairly well déveloped theory of predict-
ability by linear means. This theory has not been applied to the
atmosphere enough to indicate whether we have approached the
limit of linear predictability. Let us therefore look at dynamical
predictability. ,

A few years ago the Statistical Forecasting Project at M.L.T.
conducted an investigation which was aimed at determining whether
a hydrodynamical flow which is intrinsically predictable by means
of its own governing equations is also intrinsically predictable by
linear statistical means. It was planned to study a simplified
system of differential equations, which nevertheless would retain
the nonlinear process of advection, and would possess nonperiodic
solutions. Numerical solutions were to be generated on a digital
computing machine. These solutions wete then to be regarded as
data, which would be used to determine linear prediction formulas.
The ability of these formulas to reproduce the solutions of the
differential equations could then be ascertained.

A suitable set of twelve ordinary differential equations was

- derived from the partial differential equations of a two-layer baro-

clinic model used in dynamical weather prediction, by expanding
the original variables in double Fourier series, and then truncating
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the series. The twelve terms which were retained represented a
rectilinear zonal flow, with finite waves of a single wave length
superposed. The nonlinear advection process appeared as nonlinear
' interactions between the variables. :

Solutions of the equations, covering a total span of more than
twenty years, were generated on a Royal-McBee L GP-30 electronic
ecomputer. A six-hour time increment was used. The solutions were
judged to be nonperiodic simply because no periodicity was ev-

RPN

ident. o :
i . FicurE 1 shows the variation of one of the variables during

an interval of seven months. It reveals the occurrence of certain
typical features, but shows no tendency for these features to recur

after fixed periods.

%
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i FIGURE 1. Time series of one of twelve simultaneous numerically-

& generated meteorological variables, for a particular seven-month interval.
FicUr E 2 shows a spectrum of the same variable. The spec- |

re trum was based upon covariances at lags up to 200 days, which

3 were estimated from about eight years of daily values. There is no

4 suggestion of any spectral lines. However the spectrum lies near

: zeto over a considerable range of frequencies so that the series of

§ »daily values is predictable at short range from its own past, with

i relatively little error.

f The spectrum of the series of values at two-day intervals is

4 equal to the left-hand half of the spectrum shown in FIGURE 2,

H with the right-hand half, reversed in direction, added to it. This

$

#

: v f I —1

& . 0 ryder pw ooy ve “ - *

; FIGU RE 2. Numerically estimated spectrum of variable shown in

FIGURE 1, based upon eight years of ¢*data.”
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spectrum does not approximate zero over a continuum, so that the
series of values at two-day intervals is only moderately predictable
from its own past, even at short ran ge.

Attempts to predict one variable from the present and past of
all twelve variables could not be exhaustive. There was nearly
perfect predictability one day in advance, using observations sep-
arated by one day as predictors. When the values of the predictors
were separated by at least two days, and the range of prediction
was at least two days, the predictability was far. short of perfec-
tion. i

It thus appears that the solutions of deterministic dynamic

equations cannot in general be reproduced by linear formulas which
are easily deduced from moderate-sized samples of data. If, how-
ever, the spectra of the continuous solutions are almost devoid of
variance  at high frequencies, a linear prediction- scheme based
upon closely spaced observations may give nearly perfect results
at short range. In the atmosphere, no such absence of variance at
high frequencies has been detected. Turbulence of virtually all
measurable scales seems to be present. - . T

During the course of this investigation we encountered a rather
striking phenomenon. At various times we found it desirable to
repeat portions of previous computations. For this purpose we took.
the values which the machine had printed at one particular time
step, and entered these values into the machine as new initial con-
ditions. Sometimes the machine did not repeat its previous perform-
ance. Fairly soon, small differences between the solutions would
appear, and these would grow until eventually there was no resem-
blance between the two solutions.

The cause of the initial discrepancies was soon evident. The
numbers had been carried in the machine to six significant figures,
but only three figures had been prtinted in the output. The new
initial values had thus been rounded off to three figures, and we
were unwittingly superposing a small disturbance upon the earlier
conditions. In comparing the two solutions, we were observing the
growth of a small distutbance. In some sense, the original solution
was unstable.

Following this observation, we made further runs in which the
initial conditions represented small departures from conditions
previously encountered. In every case the new solution eventually
diverged from the old one, and finally lost all resemblance to it.

This result had obvious implications for the atmosphere, in
view of the inevitable inaccuracies of obse-ved initial conditions.
It suggested that two indistinguishable states could eventually
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evolve into entirely different states, and that a long-range predic-
tion would fail. completely in at least one instance.

Although the study was based entirely upon the numerical
" solution of a mathematical model, the results seem to be empirical
rather than theoretical. The underlying theory is the theory of
' dynamical systems, as presented by Birkhoff (1927).
‘ Consider a system of M ordinary differential equatmns in M
] dependent variables, with time as the single independent variable.
h A particular set of values of the dependent variables represents a
possible state of the system.

A convenient geometrical representatmn of such a system is a

A S NCCULAR N Y

(PP

Euclidean space of M dimensions. Each' state of the system is’
represented by a point, whose coordinates are the values of the M
variables. A state which is varying in accordance with the govern-
ing equations is then represented by a moving point or particle,
-and the trajectory on which this particle travels represents a par-
ticular time-dependent solution. This space has been called phase
space. Even when we are not visualizing phase space, we often
borrow the geometrical terminology. For instance, we may talk
about the distance between two states, meaning the square root of
the sum of the squares of the differences of the variables.

_In a hydrodynamical system, the nonlinear process of advection
does not alter the total energy, but simply increases the confusion. {F
If the remaining processes together dissipate energy whenever the
total energy already exceeds a certain value, the total energy, and ]
hence the value of each variable, will remain forever within fixed :
limits. In phase space, each trajectory will be confined within a
fixed volume.

A solution is stable if any other solutlon which approaches
sufficiently close to it must remain arbitrarily close. Otherwise it
is unstable. The solutions which we obtained in our numerical

“

study were evidently unstable. FicurREe 3 shows schematically
some trajectories in phase space which represent stable and un-

stable solutions.
The main result is based upon the necessity for any trajectory

which remains within fixed bounds to pass arbitrarily close to the
same point on more than one occasion, and, indeed on arbitrarily
many occasions. If it possesses no transient component, it must
pass arbitrarily close, arbitrarily often, to any point through which

FUCIRI NPT N NS PO SAPI SRR DTSy SRV SRR PP Y
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it itself has previously passed. In the language of the meteorologist,
an arbitrarily good analogue of any previous situation must even-
tually occur.

Now suppose that a solution is stable. Then when an approx-
imate repetition of a previous state occurs, the subsequent history
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must forever remain arbitrarily close to the history following the
previous occurrence. It follows that the solution is quasi-periodic.

Equivalently, if the solution is nonperiodic, it is necessarily
unstable. This situation is also shown schematically in FIGURE
3.

C d

FIGURE 3. Schematic trajectories in phase space; (a) neighboring
stable trajectories; (b) neighboring unstable trajectories; (c) stability
implying periodicity (after the transient flow has died out); (d) nonpe-
riodicity implying instability.

These results, together with rigorous proofs, are discussed by
Nemytskii and Stepanov (1960, ch. 5). They have been applied to
hydrodynamical flow by the writer (1963). They imply that attain-

able predictability of a finite nonperiodic hydrodynamical system,
by dynamical means, fall considerably short of perfection.
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Our arguments so far have been based upon point-set concepts.
We have regarded a solution as unstable if two arbitrarily close
states do not remain arbitrarily close. We have left open the pos-
sibility that the subsequent histories of two sufficiently close
states may continue to bear some resemblance to each other, even
though they do.not remain arbitrarily close. In our numerical study,
pairs of neighboring solutions appeared to lose all resemblance
after a few months. Let us see whether this result is tme in gen-
eral. ™

In the complete future history of any solution, there will be an
average distance D between two arbitrarily chosen states. In fact,
D? will be twice the sum of the variances of the M variables.
Suppose that the average square of the distance between two solu-
tions, as they evolve together, is less thaa D2 In this case, the
value of at least one of the variables in one solution is positively
correlated with the value of the same variable in the other solution.
If the two solutions are actually two portions of the same solution
separated by a time lag T, the vanable has a posxtxve autocortela-
tion at lag T.

As mentioned earlier any solution must pass arbitrarily close
arbitrarily often to any point through which it has previously passed
say after times T, T_, T, - If sufficiently. close states must
evolve into states retaining some resemblance, in the sense of
remaining closer together than randomly chosen states, there will
be a sequence of lags T, T, T, ---, approachmg infinity, for
which the corresponding autocortelatlons do not approach zero. But
then the solution has a quasi-periodic component.

Equivalently, if a solution is purely nonperiodic, that is, if it
has no periodic components, it is not only unstable, but two neigh-
boring solutions must eventually become as far separated as two
randomly chosen solutions.

This result has immediate 1mp11cat10ns concerning not only
dynamical prediction, but also all other method of prediction, pro-
vided that the system merely has a dynamics and is nonperiodic.
Errors in observation will always prevent us from distinguishing
between two sufficiently similar states. If these two states even-
tually evolve in different ways, no method of predicting the distant
future from the present can give good predictions in both instances.

Likewise, errors in observation will always prevent us from
distinguishing between the present and past of two states which
were so nearly alike in the past that their differences have not yet
grown to observable size. Hence no method of predicting the dis-
tant future from the present and past can give good predictions in
both instances.
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Finally, it is not even necessary that the dynamics of the sys-
tem be deterministic, provided that any component of the future of
the system which is not determined by the present and past of the
system is not determined by anything else observable.

Thus the attainable predictability of a purely nonperiodic flow
by any means approaches zero as the range approaches infinity. If
periodic components are ‘present, these are of course predictable,
even by linear means.

Let us try to see to what extent this theory may be apphed to
real hydrodynamical systems in general, and to the atmosphere in
particular. Our really crucial assumption is the assumption that the
system must eventually come arbitrarily close to repeating a pre-
vious state. This assumption is necessarily correct for finite-
parameter systems with bounded solutions, but not necessarily for
infinite-parameter solutions. It may not be an easy task to estab-
lish that analogues in the atmosphere are required.

Since we have assumed that any method of prediction will give
the same forecast in two mdxstmgmshable situations, any informa-
tion of predxctlve ‘'value must enter the definition of an analogue.
This means in the case of the atmosphere that the environment must
be included as part of the system, and two situations in which the
environment differs cannot be regarded as analogues. :

Finally, if some part of the atmosphere, or partxcularly some

part of the environment, is unobservable, it need not be considered
in judging analogues, but if the state of ‘the unobservable part is
implied by the observable past history, this past history must be
considered in judging analogues.

If it is safe to say that measurements can never become exact,
it should be safe to say that we can never measure an infinite
number of features of the atmosphere and its environment. We are
therefore justified in regarding the observable ‘atmosphere as a
finite system, and, unless the atmosphere is to blow up, we can
say that analogues will eventually occur in the observable at-
mosphere.

Following these occurrences of apparently similar situations,
the subsequent developments will either be the same, or they will
not be the same. If they are the same, the atmosphere will con-
tinue to repeat its past history, and from then on will be quasi-
periodic. The more reasonable alternative is that the atmosphere
will not repeat its past history, in which case no method of fore-
casting can succeed in both instances. ‘ '

What about predicting some special function of the system at
long range, as opposed to predicting the complete system? Can we,
for example, predict annual average temperatures many years in
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advance? Any such function may be appended to the system as an
additional variable, and if this new variable is not periodic, it too
cannot be predicted at very long range. The range at which it can
be predicted, however, may far exceed the range at which instanta-
neous states are predictable.

. In summary, we have found certain analogies between attain-
able predictability by linear methods, and attainable predictability
by unrestricted methods. In either case the quasi-periodic com-
ponent is predictable with relatively little error at all“ranges. The
nonperiodic component is not predictable, without some error, even
at short range, and its attainable predictability approaches zero as
the range approaches infinity. ‘

‘There is one important difference. Except in special cases,
there are intrinsic errors in predicting nonperiodic flow by linear
methods. The intrinsic errors in dynamic prediction, if any, result
only from possible physical indeterminism, and are not comparable
to the intrinsic errors in linear prediction. With sufficient 1mpfove-
ment in measurement, the attainable predictability by dynamic
methods at short and intermediate ranges should exceed the attain-
able predictability by linear methods. The ultimate hope for weather
prediction may therefore lie in dynam1ca1 or quasi- dynam1ca1 proce-
dures.

One word of caution should be added. The preference for dy-
namic over statistical methods is a preference for theory over
observation. Theory itself has dictated this preference. Perhaps
the referee is also one of the contestants.

I 'should like to conclude by describing another numerical
experiment, which was aimed at finding the rate of decay of pre-
dictability in the atmosphere. This work was performed at the
Meteorological Institute in Oslo, Norway.

As in the study mentioned earlier, the equations were derived
from a two-layer baroclinic model used in numerical weather pre-
diction. Long waves of three different wave lengths, together with
a rectilinear zonal flow, were included. The interactions among
these waves, and the interaction of each wave with the zonal
current, were represented in the equations. Altogether there were
28 dependent variables, and the 28 equations contained a total of
336 quadratic terms, 56 linear terms, and one constant term. The
computations were performed on a FACIT-EDB electronic com-
puter. A time increment of three hours proved satisfactory.

Most of the study was confined to one particular solutjion, and
other solutions which initially differed from it by small amounts.
FIicurR E 4 shows the graph of one of the variables, over a period
of four months. The straight-line segments connecting the plotted
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FIGURE 4. Time series of one of 28 simultaneous numerically-
- generated variables, for a particular four-_month interval,
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daily values are merely intended to make the chronological order
, more apparent, and do not imply any straight-line variations. The
- ~ variables appear to osciliate'irregularly. Extension of these graphs

<l : to a three-year span failed to suggest any periodicity.

’ .Resemblance between this system and the atmosphere is further
suggested by Fi1cURE 5, which shows two maps of the 500-millibar
contour height, separated by one day. The eastward displacement
of the principal features is obvious, and there is a suggestion that

. .. in high latitudes the predominant wave number is decreasing. L

~a

s by

FIGURE 5. Numerically generated 500

-millibar weather maps. Lower
map follows upper map by 24 hr.
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In order to study the behavior of random errors, a given initial
condition was subjected to small pertutbations on 28 separate
occasjons. In each of the 28 perturbed inijtial states, only one of
the 28 variables differed from its value in the unperturbed state.
In each case the equations were integrated over a period of two
days, and the 28 final states were compared with the undisturbed
final state. The mean growth rate of random perturbations during
the two-day period was given by the root-mean-square. growth rate
of the 28 individual perturbations. This entire procedure was then

.repeated at two-day intervals, for a total of 32 times. Thus the
time variations of the mean two-day growth rate could be studjed.

Since an ensemble of perturbations which is initially random
will in general not be random after two days, the mean growth dur-
ing a four-day period is not in general the product of the mean
growths during successive two-day periods. Hence the average
growth rates during 4-, 8- and 1€-day periods were also computed.

‘The growth rates during successive 2-, 4-, 8-, and 16-day pe-
riods are illustrated in riguik E 6. Perthaps the outstanding feature
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FIGURE 6. Mean amplification factors for small random errors dur-
ing a particular 64-duy interval. Curves labeled 2,4,8, and 16 irdicate
amplifications during successive 2-,4-,8-, and 16-day periods.
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of the growth rate is its great variability. Most of the growth which
might be termed ‘‘explosive” is confined to one rather brief in-
terval early in the 64-day span, and a few brief intervals in the
latter half. In a few cases random errors actually diminished in
size during two-day periods. During the fourth eight-day period,
random errors no more than doubled. By contrast, random errors
increased forty-fold during the first eight-day period. '

These growth rates apply only to small ‘errors. Once they have
become large enough to be serious in their own right, they grow
less rapidly. They cease growing altogether when the disturbed
and undisturbed solutions have lost all resemblance to each other.

"In the real atmosphere, average errors in measurement can
increase perhaps by a factor of five before a forecast becomes
generally poor. _‘OVer regions like the United States and Europe,
where observations are plentiful, the tolerable amplification is-
considerably larger; over the oceans it is ptesumably smaller. If
the results of this numerical study are at all applicable to the at-
mosphere, they suggest a wide discrepancy between practical
predictability and attainable predictability at ranges up to one
week. Good forecasts several days in advance do not seem to be
prevented simply by current errors in measurement. If, however,
we are genuinely interested in forecasting a few weeks in ad-
vance, we should give serious consideration to - enlarging our
network of observing stations, particularly over the oceans.

Pethaps these conclusions are too optimistic. The real at-
mosphere possesses significant fluctuations of shorter period than
any which occur in the numerical model. Maybe what we have
called one week in the model is more like two or three days in the
real atmosphere. If this is so, we have already reached the max-.
imum range which present errors in measurement will allow.

When the instability of a uniform flow with respect to infinites-
imal perturbations was first suggested as an explanation for the
presence of cyclones and anticyclones in the atmosphere, the idea
was not universally accepted. One meteorologist remarked that if
the theory were correct, one flap of a sea gull’s wings would be
enough to alter the course of the weather forever. The controversy
has not yet been settled, but the most recent evidence seems to

favor the sea gulls.
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