IV. THE PREDICTABILITY OF A FLOW

WHICH POSSESSES MANY SCALES OF MOTION

ABSTRACT

It is proposed that certain formally deterministic fluid systems
which possess many scales of motion are observationally indistinguish-
able from indeterministic systems; specifically, that two states of the
system differing initially by a small 'observational error" will evolve
into two states differing as greatly as randomly chosen states of the
system within a finite time interval, which cannot be lenghtened by
reducing the amplitude of the initial error. The hypothesis is inves-
tigated with a simple mathematical model. An equation whose dependent
variables are ensemble averages of the "error energy' in separate scales
of motion is derived from the vorticity equation which governs two-
dimensional incompressible flow, Solutions of the equation are deter-
mined by numerical integration, for cases where the horizontal extent
and total energy of the system are comparable to those of the earth's

atmosphere,

It is_found that each scale of motion possesses an intrinsic
finite range of predictability, provided that the total energy of the
system does not fall off too rapidly with decreasing wave length.
With the chosen values of the constants, 'cumulus-scale' motions can
be predicted about one hour, "synoptic-scale' motions a few days, and
the largest scales a few weeks in advance. The apblicability of the
model to real physical systems, including the earth's atmosphere, is

considered.
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1. Introduction

The laws which govern the behavior of a fluid system — the
principles of continuity of mass, momentum, and energy - are often
stated in a form which relates the present rate of change of the
state of the system to the present state of the system and its envif
ronment. Taken at face value, the laws expressed in this manner
would imply that an isolated fluid system is deterministic; i.e.,
that the exact present state of the system completely determines
the exact state at any future time. It would follow as a corollary
that if we knew the exact present state of an isolated system, and
if in addition we knew the equations of fluid dynamics in their
exact form and possessed an exact method for solving them, we could

predict the entire future of the system without error.

This is not to imply that fluid dynamicists generally believe
that real fluid systems are deterministic. It is a fundamental prin-
ciple of quantum mechanics, for example, that real systems are inde-
terministic, and presumably few fluid dynamicists would question the
validity of quantum mechanical principles merely because they do not
customarily make use of them. More likely, they would simply take
it for granted that their equations need to be idealized to some
extent, in view of the complexity of most real fluid systems, and
that properties of the exact equations which are not pertinent to

the problem under study need not be retained. In many familiar
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problems the question of determinism or indeterminism is of minor
importance, and deterministic equations will yiéld acceptable‘results.
It is often convenient to look upon an idealized equation as the
exact equation for a model of a real system. A model may of course

be deterministic by definition,

It is in problems of prediction that the question of determin-
ism would seem to be of greatest importance. A familiar problem in
this category is the practical problem of weather forecasting. Here
also the uncertainty demanded by Heisenberg's Principle appears not
to be very significant, because of the much greater uncertainty re-
sulting from our failure to observe the state of the atmosphere and

formulate the governing equations with anything approaching perfection.

Without intending to pass judgment upon Heisenberg's Principle

of Uncertainty, we shall assume in this study, as a working hypothesis,

that the systems with which we are dealing are deterministic, and also
that the exact equations governing the systems are known, We shall
acknowledge that the state of a system cannot be observed without
error, but we shall assume, again as a working hypothesis, that there
is no limit to how small the error may be made, We shall then produce
evidence favoring the conclusion that the observable behavior of cer-
tain deterministic systems is indistinguishable from that of indeter-

ministic systems,

In order to study the errors in prediction which result entirely
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from an inadequate knowledge of the initial state of a system, we
shall consider arbitrary pairs of solutions of the governing equa-
tions. When we so choose, we may at some initial time regard one
solution as an exact state of the system, and the other solution as
an estimate of the same state based upon observations. In general

we shall refer to the difference between two solutions of a pair as
an error; however, we need not restrict our attention to those in-
stances in which the initial error resembles an error which one would

be likely to make in observing a real system,

If at some initial time an error is in some sense small, it
may subsequently follow one of several courses. We shall classify
the systems under consideration into three categories, according to

the general behavior of initially small errors.

1. At all future times the error remains comparable to or
smaller than the initial error. The error may be kept arbitrarily

small by making the initial error sufficiently small,

2. The error eventually becomes much larger than the initial
error., At any particular future time the error may be made arbitrar-
ily small by making the initial error sufficiently small, but, no

matter how small the initial error (if not zero), the error becomes

large in the sufficiently distant future.

3. The error eventually becomes much larger than the initial

error., For any particular future time there is a limit below which
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the error cannot be reduced, no matter how small the initial error

(if not zero) is made.

Among real fluid systems whose behavior approximates that of
ideal systems in the first category is the flow of a liquid in a
rotating annulus, as observed in laboratory experiments (cf. Fowlis
and Hide 1965), when the controllable parameters are such that the
wave patterns either progress without changing their shape or alter
their shape in a periodic manner. Systems which have often been
assumed to fall in the second category include the earth's atmosphere,
and also the flow in a rotating annulus when the wave patterns vary
nonperiodically. It is those systems in the third category which
are observationally indistinguishable from indeterministic systems.
We shall present evidence that certain fluid systems possessing many
scales of motion fall in this category, and we shall consider the

possibility that this category includes the earth's atmosphere.

Let us understand by the range of predictability the time

interval within which the errors in prediction do not exceed some
prechosen magnitude, which for practical purposes should be consider-
ably greater than the magnitude of typical errors of observation but
less than the magnitude of the difference between randomly chosen
states of the system. Systems in the first category then have an
infinite range of predictability. Systems in the second category

have a finite range, but this range may be increased indefinitely
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by reducing the observational errors. Systems in the third category,
however, have an intrinsic finite range of predictability, which

cannot be lengthened by bettering the observations.

Since the earth's atmosphere has perhaps been subjected more
than any other fluid system to man's attempts to predict it, it is

not surprising that many studies of the range of predictability have

dealt specifically with the atmosphere, and that among those studies
not confined to the atmosphere many have yet appeared in meteorolo-
gical journals., We shall briefly recount some of the principal

results so far obtained.

First of all, whether or not a system can be predicted at in-
finite range depends upon whether the general behavior of the system
is periodic or nonperiodic, as shown by the writer (1963a, 1963b).
This result is not restricted to fluid systems. Application of the
result to a particular system usually requires that one observe the
behavior of the system, unless one can somehow determine whether or
not the general solution of the governing equations is periodic. In
the case of the atmosphere, whose variations are a superposition of
periodic and nonperiodic oscillations, the periodic oscillations —
principally the annual and diurnal variations and their overtones —
are predictable at essentially infinite range, but the range of pre-

dictability of the remaining oscillations is finite.

Studies aimed at quantitatively determining the range of
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predictability of the atmosphere have for the most part been based
upon idealized systems of dynamic equations. Pairs of solutions

originating from nearly identical initial conditions are obtained
by numerical integration, whereupon the growth rate of differences

between solutions may be determined.

Among the more realistic systems of equations which have sub-
sequently been used in predictability studies are those of Smagorinsky
(1963), Mintz (1964), and Leith (1965). Each of these systems governs
a model atmosphere whose instantaneous state is represented by the
values of the atmospheric variables at a grid of a thousand points or
more, and each system, incidentally, is deterministic. The results of
predictability studies based upon these models have been described by
Charney et EE' (1966). The different models do not agree with one
another, but Charney et gio conclude that a reasonable estimate of
the time required for small errors to double, in the root mean square
sense, is five days. With present-day accuracy in observing the state
of the atmosphere, the range of predictability would then be about
two weeks, We might add that any system whére small errors continue
to doqble in a fixed length of time until they become large belongs

in the second category mentioned above,

If small errors generally require about five days to double,
it should be possible to increase the range of predictability by five

days simply by reducing the initial field of errors to half its size
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(although the task of effecting this reduction could be enormous).
In actuality, for reasons to follow, such a reduction may well in-

crease the range of predictability by a much smaller amount.

A grid of a few thousand points covering the surface of the
globe cannot resolve features having diameters of a few hundred kilo-
meters or less. Studies of predictability based upon model atmospheres
have thus had the common shortcoming of including only the larger
scales of motion explicitly as features of the state of the atmosphere,
although they have acknowledged the presence of smaller scales, In
a typical model atmosphere, it is assumed that only the statistical
properties of the smaller-scale motions influence the larger scales,

and that at any instant these statistical properties are determined

by the larger-scale motions upon which the smaller scales are super-
posed. Usually the particular statistical properties involved are

not even stated, and their effects are introduced through coefficients
of turbulent viscosity and conductivity. Effectively a system consist-

ing of only the larger scales is assumed to be deterministic.

1 In such a model the only errors in the small-scale statistics
are those resulting from an inadequate knowledge of the large-scale
motions which determine them. That additional errors in the small-
scale statistics ought to appear in more realistic models is indicated

by the following idealized example.

Suppose that a region having a diameter of a few thousand

\
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kilometers contains about 106 "eddies", which might perhaps be asso-
ciated with individual cumulus clouds, Although the statistical
properties of a typical eddy may very well be determined by the
large-scale motion in the region, each individual eddy possesses a

life history, consisting of its generation, growth to maturity, and

eventual. decay. At any instant the separate eddies are at different
stages of their respective life histories, and therefore possess

considerably different amounts of kinetic energy. If, for example,

the mean value and the standard deviation of the kinetic energy of

an eddy per unity mass are respectively 20,000 and 10,000 ergs per
gram, and if the separate eddies are at independent stages of their
life histories, the best estimate of the average eddy kinetic energy
over the region is 20,000 ergs per gram, but this estimate has an
expected error of 10 ergs per gram, Similar considerations apply to
other statistical properties of the eddies, including those properties

which directly influence the larger scales of motion,

It thus appears that even though large-scale motions may deter-

mine expected values of small-scale statistics, there remain uncertainties
in these statistics, and hence in their influence upon the larger

scales, The direct effect of errors in one scale upon errors in a

scale a thousand times larger is apparently very small, but not zero.

f The situation is quite different with regard to the direct effect of
errors in one scale upon errors in a scale only about twice as large.

Here so few eddies of the smaller scale can be superposed upon a single
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eddy of the larger scale that the uncertainties in individual smaller-
scale eddies are likely not to cancel, Errors in eddies with a dia-
meter of one kilometer may thus have an important direct effect in

producing errors in eddies with diameters of about two kilometers,

The latter in turn may have an important direct effect upon
errors in eddies with diameters of three or four kilometers, which
in their turn may influence the errors in still larger scales, Ulti-
mately the errors in the smallest scales of motion may lead to errors
in the largest, not directly, but by a continual progression from

scale to slightly larger scale,

Although the five-day doubling time suggested by the model
atmospheres may be reasonable for errors confined to the larger scales,
it does not appear at all reasonable for errors in the smaller scales.
Consider, for example, two states of the atmosphere which differ
slightly in the structure of a single thunderstorm, and not at all
otherwise., In view of the rapidity with which thunderstorms themselves
develop, it seems likely that the errors in this instance will double

in a matter of minutes rather than days,

An error in observing a thunderstorm, after doubling perhaps
every fifteen minutes until it becomes large, may subsequently lead
to an error in a larger scale of motion, which may then proceed to
double every five days. If this is the case, cutting the original

error in half would increase the range of predictability of the larger
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igglg not by five days but by only fifteen minutes. Considerations
of this sort lead us to speculate that reducing the error in esti-
mating the initial state of the atmosphere to half its size need not
increase the range of predictability by five days, and that there
may be some systems where a reduction of the initial error will not

increase the range of predictability at all,

Somewhat similar views have recently been expressed by Robinson

(1967), who notes that a fluid element of a given size ultimately

loses its identity as an element, as a result of diffusion by smaller-

scale motions, He then adopts the premise that the dynamic equations
do not allow one to predict the mofions of a given scale over a longer
time interval than fluid elements of this scale maintain their identi-
ties. On this basis he deduces predictability times for various scales
of motion in the atmosphere, ranging from a few days for synoptic-scale

motions to about an hour for cumulus-scale motions.

If we wish to investigate the growth of uncertainties in the

very small scales, and the subsequent progression of these uncertainties
to very large scales, we need in principle do no more than modify the
existing models of the atmosphere by greatly increasing the number of
grid points. The many small eddies at various stages of their life
histories will then be recognized individually as features of the at-
mosphere. However, since the area of the earth is about 5x108 km2,

the vast number of grid points needed to resolve systems even of
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thunderstorm size, together with the need for advancing the computa-
tion in very small time increments when the grid points are closely
spaced, makes any such procedure wholly unfeasible with present-day

computing machines,

Moreover, unless we are interested in the individual small-
scale eddies for their own sake, such a procedure would be wasteful
even if it were feasible. . If we are concerned not with the details
of small-scale errors but merely with their statistical properties,
and their effect in producing errors of larger scale, we can profit
from the assumption that systems of nearly the same scale have nearly

the same statistical properties. To put this assumption to use, we

may work with new systems of equations whose dependent variables are

statistics.

Although statistical properties may sometimes be conveniently
defined in terms of averages over specified intefvals of space or
time, the mathematical work may generally be simplified by introducing
the notion of an ensemble, i.e., a collection of states of the system
being studied, The desired statistics may then be defined in terms
of averages over all members of the ensemble, The ensemble may often
be required to satisfy certain conditions of regularity; for example,
it may be assumed that any two states of a system which are alike
except for a translation in space occur in the ensemble with equal
probabilities, New equations whose variables are ensemble statistics

may be derived by averaging the original equations.
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This procedure was used by Thompson (1957) in his statistical
study of the growth rate of small initial errors. As a measure of
the difference between two fields of motion, Thompson chose the
total kinetic energy of the hypothetical field obtained by subtracting
one field of motion from the other — a quantity which we shall call

the error kinetic energy. He then derived from the original governing

equations expressions for the initial first and second time derivatives
of the ensemble-average error kinetic energy. He concluded that with

the existing observational network, small errors in observing the

_earth's atmosphere would tend to double in about two days, but that

the growth rate could be considerably reduced by increasing the density

of observations.

By introducing assumptions which are somewhat more drastic than
Thompson's, it is possible to obtain expressions for the time derivatives
of error kinetic energy which are valid for all times, rather than only
initially. Also, since the problem in which we are interested involves
the possible progression of errors from one scale of motion to another,
it is desirable to modify Thompson's procedure by obtaining expressions
for the time derivatives of the error kinetic energies of separate
scales of motion, An essential feature of these expressions is that
they contain ensemble averages not only of properties of differences
between solutions but also of properties of the solutions themselves,
The latter averages may be chosen at will, as for example on the basis

of observations of real systems resembling the systems being studied.
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In the following sections we shall deal with ensembles of
pairs of states of a simple fluid system., With the aid of certain
simplifying assumptions we shall develop a system of equations
whose dependent variables are ensemble-average error kinetic energies
of different scales of motion. We shall then obtain solutions of
these equations by numerical integration, for different choices of
initial errors, and different choices of basic statistical properties
of the system under study. From a study of these solutions we shall
draw certain conclusions regarding the predictability of the system.
Finally we shall consider the extent to which these conclusions also

apply to real fluid systems, including the earth's atmosphere.

2. Formulation of the equations

In this section we shall apply our proposed procedure to an
ensemble of fields of two-dimensional incompressible flow in an in-
finite plane. Any such field is completely specified by a stream
function #j(j(,t}/'t) , Where )C and ;P’ are rectangular Cartesian
coordinates and 't is time. We shall let the flow be governed by

the vorticity equation

2(v))ot = - T (v VYY) @

>

where V‘z: 91/37{’1 + 23/3}
respect to X and :}f .

and J— denotes a Jacobian with

-99~




1f ‘{/ and l)(J + £ denote two separate fields of flow,

their difference £  is governed by the equation
N 2
(7)ot = -T(¥ve) - Tl vv)-Tle, VE) |

I1f furthermore the "error” € can be regarded as small compared to

\P , it will be governed approximately by the linearized equation
2 . 2
Avie)[at = - T4 Ve) -T (g, v¥) -

for such time as it remains small, We shall make no further explicit
use of (2), recognizing, however, that (3) is not wholly appropriate

when E is large.

We shall consider an ensemble 7770 of stream-function fields
\{JL‘X, v, ‘L§ ) . Corresponding to each L}/ in 7470 , we shall
also consider an ensemble 7?79; of error fields E (){,J ?,‘t>
From these ensembles we shall form a grand ensemble 777 whose members
are all pairs (Y, E) for which \1(/ is a member of 7770 and

E_ is a member of the corresponding 777;, .

We shall require that at some initial time 'to the separate
ensembles ?7751/ be identical with one another, i.e., that Y/ and
E be statistically independent within the ensemble 777 . We
shall demand furthermore that at time to the ensemble Wa be

homogeneous, i.e., that for any distances g and /)? the field

\(J (')(_+ g/ ’y— 1—’72 )‘t°> shall occur in Wo with the same
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probability as the field ‘P(')Lz 7’/ t) . VWe shall likewise
t

demand that each ensemble W‘/’ be homogeneous at time o .

It follows immediately that 777 is homogeneous at time

to . It follows also from (1) and (3) that 9770 and 777

will remain homogeneous as 1 increases. 1In particular, if a bar

denotes an average over all members of 977 , the means \(/ l’)L, 7', t)

and € (‘)L/ y.;t) will be functions of *© alone, and may without

loss of generality be assumed to vanish, while the covariances

V(r gt )WLt § 4+7,t) ana  €(% %, t) E(x+§, £+, 4)

will be functions only of g B /’I , and t . It does not follow,
however, that the separate ensembles W‘/’ will remain homogeneous
as t increase, nor that they will remain identical with one another,

A quantity of fundamental importance is the ensemble-average

kinetic energy per unit mass,

E = % VV.V¥ @

which we shall simply call the energy. According to 1), E will

not vary with time. The ensemble-average error kinetic energy

]: = —‘EVE.-V‘E (5)

could be used as a measure of the difference between two fields, but

it will be more convenient to use the quantity

G

|

L veve' , 6)
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1
fi being the departure of ‘Ei from its average value over the

ensemble ?77‘P (not ??7 ). With (3) as a governing equation,

G} will be time-variable. In the remainder of this work we shall

use the expression error energy to denote G; rather than F: .

When T exceeds t:o only slightly, G} is hardly distinguishable
from F: , but, if there is no predictability at sufficiently long
range, G~ E as t+ 2 ©9 , while F - 2L E . Since
4/ is a constant as far as averaging over the ensemble ?77%; is

concerned, the governing equation for e is
2(9%") Jot =-T(¥,Ve)-TlETY) | o

identical in form with (3).

Since statistics over ik?? do not differ from one location
|
| to another, while it is to be anticipated that different scales of
!
motion in the field of § will tend to grow at different rates, it
will be advantageous to transform equation (7) into spectral form,
For this purpose, we choose a distance [) , which is to be extremely
large compared to the dimensions of the largest important scale of
1
motion in the fields of #/ and §& . We then assume that \F’
'

and E, vary periodically in the directions of the coordinate axes,

with a fundamental wave length 3-71. E) . We may then let

V= = S exp(iK )

) 8
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‘E.[ Y egﬂ exp(i KrL) y ©)

rvh
K
A

where JU and K
Pavaval

are two-dimensional vectors with components ()L, y.)
A

and (K7‘1 K?) respectively, and the sums run over all veetors for
which the products DKX and DK.\’, are integers. The require-
‘
ment that \P and € be real demands that S—K and e'—K
A Es

be the complex conjugates of SK and e,( .

The condition of homogeneity now demands that SK and

€k vanish, while SKSL and € € vanish unless
AL E - Eats S

K +L = O . The energy and error energy thus become
a1 oy

E = 3 2 K Sk>-x , (10)

K X “\ v
2

i
G = 3 % K € € ) (11)

A
where K = K'K

O

Upon substituting (8) and (9) into (7) we obtain the spectral

form of (7),

o e Faes Lo

D€ /ot = % Al Sf—:.e:. (12)
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where

- & 2
A = Kot e

Here K X L. denotes the scalar K-,_ L’ - K? L)( , which

would be regarded as one component of K Xx L. ifr K and L.

~

[

were three-dimensional vectors.

Having established (7) and subsequently (12), we shall discard
(1), although we shall still require that the time derivative of QJ
be quadratic. We shall then have no governing equation for 4/ )
and we shall assume instead that the ensemble {k??o is stationary,
i,e., that the statistical properties of q/ do not vary with time,
and may be prespecified. Statistical properties of E,, , on the

other hand, will be governed by equations to be derived from (12).

We now seek a closed system of equations in which the dependent

variables include the quantities €K G’_K . From (10), since

AL = Axo , it follows that

Q(é';_'e_,f)/ 7t =3 Ay (Skr € € +5k€, 8) aw

A A

/
The right hand side of (14) contains joint statistics of E.

and 4/ . As already noted, we cannot assume in general that 4/

1 .
and E, are statistically independent, except at time 139 . For

—

example, if we assumed that S¢ €. €, = Sy €_Cn for all
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b

ﬁl,\{/lf'/ M , we would find, since S',{ =0

At

A

for all !K/ L, M , Whence, according to equation (14), &C€-y

[

would not vary with time. We must therefore retain such statistics

as Sk €_.€_yx as additional dependent variables,
AN

sy Aan SR

Again from (12), we find that

o(Sk-L 8 e /ot = (3 Sf-}v/at) €L E-x

+ z AKM SK~LS‘~'” O e'f.,
> kL=

[N
At Aa

s

-+ E_ Akm Sk-L Sm-« €L €.m
M P s s -

Aan Axa Ay

(15)

A%

Additional joint statistics thus appear.,

Although we have seen that linear functions of "P and quadratic

!
functions of § cannot be statistically independent, we shall now

introduce the less restrictive assumption that quadratic functions of

I
l{/ and quadratic functions of § remain independent, i.e., that
SKSL e,., e = S\( S,_ QM EN (16)
AN Ane A o o S 2 e
for all K, L, ™M N . This relation cannot be rigorously defended

_98_




on the basis of equation (12). It must therefore be regarded as

simply a working approximation., It does not, however, lead to any

obvious absurdities., The assumption that quadratic properties of

%J and quadratic properties of Ei are independent is unrealistic
1

when §  becomes large; hence our use of E, instead of &

In view of the homogeneity of the ensembles, it follows further that

S¢S, €460 PN Smn Sk S-x €nm € (17)
A e st T e e A ¢ Ea :
Because o Sk-L / ot is assumed to be quadratic, and
because P §K-L / 2t is assumed to vanish, the first term on
e -

the right of (15) vanishes. Applying equation (17) to the remaining

terms, we find that

2572 ot = 65 (A, TAECK)  am

A b\d 43

At

Since SK-L SL M is a known quantity, which does not vary with time,

AR St

equations (14) and (18) form a closed system of first-order linear equa-

tions.

Moreover, the quantities E;K— f? é?,xv are easily eliminated.

Differentiating (14) and substltutlng from (18), we find that

ﬁ(e——‘:—é:")/gtz = 9‘2 SK LSL K<AKL€ e-L *AVLALM K > (19)

AS 440 A e Lt

PN
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Although equation (19) ié simpler than (12) in that the coeffi-
cients are independent of time, the number of dependent variables is
no less, and fhe process of solving it in its present form would in-
volve an equélly prohibitive amount of computation. The principal
simplifications to be gained by using an equation in which the depend-

ent variables are statistics comes from the further assumptions that

SxS.

FAvaan

and eK C_K vary in a smooth manner with K\ , SO
that relatively few ;alue; of ii need be considered explicitly.

In order to incorporate these assumptions we assume that the distance
E) is so large, and hence that the values of L: over which the

summation in (19) is performed are so closely spaced, that the summa-

: i
tion may be replaced by an integral. We introduce functions X'(f<)

and Z l( K) such that

E=§§X"§”’<MM , o)
G = g g ZI(KB JK,JK} ' (21)

Comparing (20) and (21) with (10) and (11), and noting that there are
*
[) terms in the summations in (10) and (11) for each unit increase

of K;( and K.; , we see that ><'( l() and ZI(K) are the

liniting forms of 4 DK S, S a Lp*¢t
imiting forms of -3 Lv K S-k an 30 K €. E’K.

puv .t
A

as (O =¥ ©° . Thus equation (19) becomes
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o oo .
2ot - g gq(“-l’( (k-O)K L A 2+ A AL 2R dbnd Ly
-0 _o0
We next introduce the assumption that Wo is isotropic at
time t, , i.e., that for any angle & the field

L)/('x, oS © - yslkej 7‘-5'."‘9#“}-‘056 ) to> occurs in

W, with the same probability as the field WX, 4, to)

Likewise we assume that each ensemble 97? ‘P is isotropic at time
-to . It then follows that 747 is isotropic at all times, so
' /
that at any time X (K) and Z (K) depend only upon the
AV A
magnitude K of K . Actually the assumption of isotropy is incom-

AL

patible with equations (8) and (9), when D is finite, but in the

limit as [ — ©9 it leads to no inconsistencies. We might add
that the introduction of a distance D is simply a means of avoiding

the more rigorous but more cumbersome procedure of deriving a governing

equation for the covariance E’(')(, y/ts g,'(‘)i'('gj ’4'#’7 )'t) , and

then taking the Fourier transform of this equation,

Letting X (K> and Z (K) denote the energy and the error
energy per unit scalar wave number, multiplied by the wave number, i.e.,

energies per unit logarithm of wave number,

£ = X(K) 4 (1opK) (23)
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Oo

G=( z()dlieg) (24)

-0

L X __ 7
whereupon X(K) =*dMWK X ({<) and Z(K) =xATK Z (K>
Denoting the magnitude of l<-ki in (22) by M , we find it con-
venient to use leg L. and leg M  in place of L.; and L—,y

as variables of integration, thereby eliminating explicit reference

to vector components, We note that
-]
A L)( JL% :LKXL—) L;‘Mz 0{(‘0?. L~) J(("? M) , (25)

while

1/a :
KXL =2 (L(K) ij) = '&[(K"‘L‘TM)(]('{’L*M)(K‘L"'M}("K'H—TM)] J (26)

i.e., O(,(\(JL.)M) is the area of a triangle whose sides are K, L./M
Introducing the values of /&ML_ and /;LJ< from (13) into (22),
A ey ALY A

and including an additional factor of 2 because, given )< , each pair

([oa_ L, ‘°3 M ) corresponds to two separate pairs ( L’X ; L }) ’

we obtain the governing equation

3 200 )>8*= ([Cilie )20 - €, (1) 20)] A {1oy L)

(27)
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where, for ), =1, 2,

log (1 +L)
Cilk Ly = 85 (e, ) X (1) o (g M>/ (28)
Jog | XL

and where

- - 2 >
B (x,L,m) =8 ML (M) (kM) (29)

=22 2 2 R
B, (i, L) - 37 1 TR ) (50)

By defining B‘(K)L) P’\) and B;(K, L.jM) to be zero when one
the quantities l<) L7 M is greater than the sum of the other two,

we may replace the limits of integration in (28) by - o9 and &0

By choosing suitable analytic expressions for )((P4) , we
could evaluate the integrals in (28)., We shall not do this, since we
shall be interested in some spectral functions X'(”4> which are
not conveniently expressed analytically. In the following section we
shall put equation (27) into a form suitable for numerical solution.
At that point we can introduce the assumption that X(K) and Z(K)

are smoothly varying functions of F<

Meanwhile we can derive from (27) and (24) the general relation

DIGr/B‘t:7~ = g Q*MQ(Ml‘LaY Z(L)X(M> “’(";M> J(“’} L) (3D
=00 oL ‘
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The implications of equation (31) are of considerable interest.

First of all, the integrand is non-negative. Thus, in general, if

96—/ Q"t vanishes initially, 6- will subsequently increase

at an ever increasing rate, for such time as £I remains small

enough for the linearized equation to be valid. We note, however,

that only those products Z (L) )((M) for which L < ™

actually contribute to the integral in (31). Thus the growth of

6’ igs favored by large-scale features in the field of £ ' together
with small-scale features in the field of \‘/ . In the special case
where all the features of E.' are initially of smaller scale than any of

the features of \l/ ,A there will be no growth as long as this condi-

tion prevails — a result also obtained by Thompson (1957).

3. Arrangement of the equations for numerical solution

In this section we shall explicitly introduce the assumptiori
that ¥ (K) and Z(K) vary smoothly with K , and may
adequately be represented by relatively short sequences
X -, )(y\ and Z

that since the energy L  given by (23) is finite, X (K) must

y TS Zn .  We begin by noting
approach zero as leg [ = -0 and also as leg K — ©° .
We may therefore choose a wave number No so small that X (K)

is negligibly small when K é No . We next choose a resolution

k
factor f , and let Nk = f’ No . We may then choose an
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integer W large enough so that X (K) is agin negligibly small

when K > Nn

We now let Z‘) -y ZV\ denote the error energies within

the W1 resolution intervals, i.e.,

%k
7 = g Z (K) ”{(“;KB ) (32)
k
a,
where ak = ‘09_ Nk . If we then integrate both sides of (27)
between the limits ak') and a.k , and assume in evaluating the

~1
right hand side that Z(\() =0 Zk when lo; K 1lies between

a h = find that
CLL._‘ and kR where ¢~ ),3_ F , we find tha

Ai?k/OH} ) xgl (C(‘\M 22 - C(l)\ﬂzk) , 33

where

C(})kl < 0':)8 g C}(K/L)d('oé L> J(IOQ KB . (34)

We next let

Xh: G"-'X/(Nk) (35)

and approximate the integral in (28) by a sum over the values
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Ay, --- A, of leg ™ . We then find in view of (34) that

w
z B(})hﬁw XW\ ; (36)

where

(/9% az
-1 N .

Blytm = T & B}_(KJL.) w) o (log L) J(l,?K). G
ak-l aﬂﬂ

Since (29) and (30) define B } (K) L-) NW,) as known analytic func-
tions, the constants E;(;)kIVn may be evaluated once and for all
from (37). After X\,"";><n are chosen, the constants C;(;)kl
may be evaluated from (36), whereupon equation (33) may be solved

numerically.

A few simplifications are possible. First, from (29) and (30)

it follows that
2
BJ(KJL/M):' M B;(K/""; L /M) » (38)

Hence (36) may be replaced by

n
cy
C‘})\zl = 2 B(}‘)h-w/ll-w NM Xm (39)

wmz= !
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where
R L7
B, =T B, (kL)) ey 1) (1 ')
(F)n ¢ (20)
(k=) (1)
The constants [Bti)kﬂ must be evaluated for negative as well
as positive values of R and 2 , but still the number of these
constants is far less than the number of constants B (}')klm
which would otherwise be required,
We may also let
20
Bhk = By T s “\E;jx B aynm . (41)

If we then let

2

, .
C—hx - :Z.:, Bh-w,z-m N“" X ; (42)

we may replace the governing equation (33) by

2 2 < :2
At = 2. C
4 = 43
A Z /4 2, S ‘2 (43)
The procedure for solving the system of Y\ equations (43) as
it stands is straightforward. The equation is first replaced by a

system of 2N first-order equations
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A2, [/de = W, (44)

M
I
N

FIVT:

IS * (45)

A time increment At small enough to insure computational stability
is then chosen., A number of forward-difference or centered-difference
schemes may now be used; we have chosen the following simple second-

order scheme:

Z, (t+iat) Z, &)+ 388 W, 14) (46)

7, (tant) = Zy (e + At Wlexibe) @)

with analogous equations for W .

R

The reader may wonder why we have chosen to define the variables
zzk. by (32), rather than using the apparently simpler procedure of

letting Z V) T, 'Zh be the values of Z (K) for wn specific

values of H( . In the latter case the constants E;(j)h( could
¢ 1
be defined as the values of E& (I<_,L_/ l) for specific values of
] )
K and | , and it would be unnecessary to perform the integra-

tions indicated in (40). Actually the latter procedure would prove

quite unsatisfactory, because of the special properties of [3| and

B. .
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1 t
In Fig. 1, the coordinates are L and K , on a loga-

] 1]
rithmic scale. Within each small square L and K vary by a
1
factor of two. The shaded region covers those values of L. and
! Al 1 ' 1

K for which B,(K /L , ‘) and B}(K, L, l) differ
from zero, On the boundary of this region B‘ and B a Vvanish,
but their inward normal derivatives are infinite, except at special

points.

For a resolution factor {7 = & , the constants BL;l)kl
as defined by (40) are proportional to the average values of
B LK' L' \) . R . R

} 7 ) over small squares in Fig, 1. It is evident

that these averages may differ greatly from the values of

1 ) . .
B& (\4 ,L o, |) at the vertices of squares. The lower right por-
tion of the figure, for example, reveals that not only the squares

I [

on the main diagonal ( K = L ) but also the squares on the two

adjacent diagonals intersect the shaded region; although the areas

i '
of intersection become very small as K and L become large,
v \
the values of B) (K ) L R \) become large so rapidly that the
values of Bh)k—‘ and Bh,k+\ as defined by (40) and

{41) also become large.

In the procedure which we rejected, the constants Bl}')\rzk
. Pyt
would be proportional to the values of Bj (K L_/ \) at the ver-
4
U

!
tices of small squares., As K and L become large, only the

vertices on the main diagonal remain within the shaded region. Thus
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1
Fig, 1. Values of K and L (shaded area) for which functions

B’ (K') L" l) and BQ (K') L', ‘) differ from zero.

' 1
Within each small square K and L vary by factor of 2,
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