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ABSTRACT

A two-layer quasi-geostrophic beta-plane model is converted into a moist general circulation model by
including total water content as an additional prognostic variable. The water-vapor and liquid-water mixing
ratios are determined diagnostically from the total-water mixing ratio and the saturation mixing ratio. The
underlying surface is ocean, which exchanges water with the atmosphere through evaporation and precipitation.
The circulation is driven by solar heating. Thermodynamic and radiative effects of water are included. The
model is reduced to a low-order model by expressing each horizontal field in terms of seven orthogonal

functions.

When horizontal variations of solar heating are suppressed, there are sometimes two stable steady states—
a cold, rather cloudy state and a warm, nearly clear state. A cloud-albedo feedback process appears to be
responsible for the multiple equilibria. With variable solar heating the model produces cyclones and anticyclones,
with maxima of relative humidity and precipitation ahead of the cyclones, and minima ahead of the anticyclones.

1. Imtroduction

Many of the most important and influential recent
works which dynamic meteorologists have acknowl-
edged as belonging in their field, and which meteo-
rological journals have accepted for publication, have
dealt with the behavior of a gas of uniform composition.
This situation might surprise a nonmeteorologist, since
the most easily seen features of the real atmosphere,
as is especially evident in these days of satellite pho-
tography, are the clouds, whose variable distribution
in space and time demands a fluid of varying com-
position. The clouds are not mere atmospheric or-
naments or tracers. The fact that they are visible implies
that they reflect some of the sun’s radiation which
otherwise would penetrate to lower levels in the at-
mosphere and heat the ocean and land surfaces un-
derneath, while, together with the water vapor which
must be present if they are not to evaporate imme-
diately, the clouds are strong absorbers and emitters
of longwave radiation. Furthermore, the gain and re-
lease of latent heat, which must accompany changes
in pressure and temperature if the clouds and water
vapor are to remain in equilibrium, give moist air a
different thermodynamic behavior from dry air. It is
therefore relevant to ask to what extent the dry at-
mosphere which appears in so many theorétical studies
is an acceptable model of an atmosphere where water
in its gaseous, liquid and solid phases occurs in varying
concentrations.

One can seek an answer by comparing the results
of dry-atmosphere studies with observations of the real
atmosphere, although it may remain uncertain whether
the inevitable discrepancies are due to approximations
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other than the omission of water. Alternatively, one
can compare dry-atmosphere studies with other theo-
retical studies where the presence of water enters ex-
plicitly. Such studies logically include the recent work
with large global circulation models. However, to make
their problems more manageable, dynamicists often
construct less complicated models, where some real
properties believed to be of secondary importance are
purposely omitted. Additional labor is often saved by
making the spatial resolution rather coarse. Models
with the lowest resolution have become known as “low-
order” models—a term introduced by Platzman
(1960).

Many of the most familiar models are “low-order”
in the vertical direction; one- and two-layer models
continue to be popular. Models may be low-order in
two directions; an example is a moist model of Held
and Suarez (1978), which, however, retains consid-
erable cross-latitude structure. A model may be called

. “very-low-order” if appreciable further reduction of

the resolution in any direction would automatically
eliminate some property or process which the inves-
tigator wishes to study, just as reduction from two
layers to one eliminates baroclinic activity.
Very-low-order models cannot have as their purpose
the quantitative duplication of real atmospheric be-
havior, Qualitatively they must reproduce some aspects
of the behavior, if they are to serve any purpose. Ofien
they are of pedagogical value; they can illustrate in an
understandable manner the chain of events responsible
for some phenomenon. Their chief use, however, may
be exploratory; they can uncover new features or phe-
nomena, which can subsequently be checked with more
detailed models, or perhaps with real observations.
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They can also provide great savings in computational
effort.

The purpose of the present study is to construct a
very-low-order model, capable of examining the dif-
ference between the global-scale behavior of a moist
atmosphere and that of an atmosphere of uniform
composition. Water-vapor and liquid-water content
will appear in the moist model as dependent variables,
and the physics of the model will include both the
radiative and the thermodynamic effects of water. To
obtain a dry model for comparison, we could take the
moist model and equate the water content to zero, but
we suspect that this would alter the field of radiative
heating and cooling so drastically that the- resulting
circulation would be unrecognizably different. An al-
ternative procedure is to remove only the thermody-
namic effects of water, and evaluate the radiative effects
which would occur with some prechosen uniform water
distribution.

The construction of a low-order moist model entails
certain difficulties. The radiative and thermodynamic
processes which characterize a moist atmosphere both
introduce complicated nonlinear terms into the gov-
erning dynamic equations. Low-order models are most
frequently formulated by expressing the relevant fields
as truncated series of spatially orthogonal functions,
since, when sparsely distributed grid points are used
instead, horizontal finite differences do not afford good
approximations .to horizontal derivatives. Simple
products of series of orthogonal functions are easy to
evaluate, but more complicated nonlinear functions
are not.

In larger models using orthogonal functions this dif-
ficulty is often circumvented by transforming the vari-
ables from orthogonal-function space to grid-point
space at each time step, evaluating the cumbersome
nonlinear terms at each grid point, and then trans-
forming back to orthogonal-function space, where the
horizontal derivatives are evaluated. This procedure
is also possible in a low-order model, but it introduces
new difficulties. Because a global field of water vapor
content possesses horizontal variations comparable to
its mean value, the representation of a realistic field
in terms of a small number of orthogonal functions,
with coeflicients which are optimal for the bulk of the
atmosphere, is likely to yield supersaturation at some
outlying grid points and negative moisture content at
others. Neither outcome is tolerable.

We can avoid these difficulties by making a few
departures from the most commonly used procedures.
First, we shall use a quantity representing total water
content rather than ‘water vapor content as a basic
dependent variable. We shall use a diagnostic equation
to specify how much of the total water is vapor and
how much is liquid; if this equation is judiciously cho-
sen the problem of supersaturation will not arise.

Next, our variable representing total water content
will be “total dew point” rather than total-water mixing
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ratio. By the total dew point we mean the value which
the dew point would acquire if !all the liquid water
were converted to vapor. Like the temperature, the
total dew point should vary by a|factor of less than 2
in the horizontal direction, and even a highly truncated
series of orthogonal functions should not yield negative
values.

We anticipate performing experiments in which we
shall alter the value of a constant, or the initial value
of a dependent variable, by a very small amount, after
which we shall determine the consequent change in
some other quantities. To avoid possible bizarre results
we shall insist that our equations be free of all dis-
continuities. In particular we shall formulate our di-
agnostic equation for water vapor so that, as air is
lifted, there will be no abrupt change from dry adiabatic
to moist adiabatic cooling. We can justify such a for-
mulation by noting that each grid point actually rep-
resents a large area, and that a portion of this area
may contain clouds while another portion is subsat-
urated.

With the many simplifications which we shall in-
troduce, our model might more properly be regarded
as a very-low-order model of some unspecified planet
whose atmosphere contains some unspecified constit-
uent which is present in varying concentrations and
in more than one phase. Nevertheless, in making nu-
merical computations we must choose numerical val-
ues for the physical constants, and we shall choose
these to be representative of the earth’s atmosphere,
with water as the variable constituent.

In a recent article reviewing the general subject of
very-low-order models (Lorenz, 1982), we described
some features of an earlier version of the moist model,
in order to demonstrate how certain difficulties en-
countered in the construction of models might be-
overcome. In the present article we shall describe the
current version of the model in its entirety. After ex-
amining some preliminary numerical solutions we shall
speculate on how future versions of the model might
best be formulated.

2. The continuous equations

Our model atmosphere will be composed of a mix-
ture of dry air, water vapor and liquid water in variable
proportions. It will be of infinite upward and west—
east extent, and will be bounded on the south and
north by frictionless vertical walls. Under the atmo-
sphere will be an ocean of uniform composition and
limited vertical extent. The atmosphere will be gov-
erned by baroclinic, geostrophic, midlatitude beta-
plane dynamics, while the ocean will exchange heat
and water with the atmosphere. The sole external driv-
ing force will be incoming solar radiation; dissipation
will be both thermal and mechanical. We shall not
consider the possible presence of ice, even at subfreez-
ing temperatures, nor shall we allow ocean currents
to develop.
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We shall first formulate the equations for a vertically
and horizontally continuous atmosphere-ocean sys-
tem. We shall next reduce the equations to those of a
two-layer atmosphere and a single-layer ocean, by ver-
tical averaging. Finally, we shall introduce a truncated
set of orthogonal functions, in terms of which each
horizontally continuous field will be expressed.

Our basic equations will contain the constants:

D distance between walls, divided by ,

Do  mean sea-level pressure,

p1 mean pressure at bottom of oceanic layer,
/S Coriolis parameter midway between walls,
B8 northward derivative of Coriolis parameter,
¢, specific heat of air at constant pressure,

R gas constant for air,
-L  latent heat of condensation,

c specific heat of water,

Ry gas constant for water;

the independent variables:

time,

eastward distance,
northward distance,
pressure;

AS R

and the basic dependent variables:

streamfunction,

velocity potential,
individual pressure change,
atmospheric temperature,
total dew point, and
oceanic temperature.

Mc%,"]as'x"’&‘

The horizontal wind field will be the sum of a rotational
nondivergent part, derivable from y, and an irrotational
divergent part, derivable from %. To this list we shall
add the auxiliary variables:

saturation mixing ratio at temperature 7' and
pressure p,

water vapor mixing ratio,

total-water mixing ratio, equal_to saturation
mixing ratio at temperature W and pressure
p, and .

saturation mixing ratio at temperature S and
pressure pg.

~Ne

T, <@

=1

We have placed a tilde over each dependent variable
because we shall be using the same symbols without
tildes for the values of these variables at the atmo-
sphere-ocean interface.

QCur diagnostic equation for water vapor, which will
distinguish our model from most other models, will
be

F — D) — D) = ¥, (1)
where +y is a constant. This equation makes the liquid
water content w — D small when the degree of sub-
saturation 7 — D is large, and vice versa, while the ratio
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of liquid water to vapor approaches zero as w — 0.
Choosing v = 4 makes the relative humidity 7 = /7
equal to only 80% when 7 and w are equal, so that
the water, if all vapor, would saturate the air; the re-
maining 20% of the water is in the form of clouds.
When w/7 = 0.5, /7 = 0.473. Should we wish to
return to the conventional assumption that there is
no supersaturation, and no cloudiness with subsatu-
ration, we need merely set y = 0; this will, however,
introduce the discontinuity which we prefer to avoid.
Alternative equations with-similar properties could
presumably be formulated.

The mixing ratios 7, w and § will be related to the
basic variables by the diagnostic equations

F=c'T*p, )
W = c'W*/p, 3
§ = c'S*/po, 4)

where p is a constant and ¢’ is to be chosen to produce
the desired saturation mixing ratio at some standard
temperature and pressure. Equations (2)-(4) may be
derived from the familiar Clausius-Clapeyron equation
if the factor. 772 in that equation is first replaced by the
product T,T, where T is a standard temperature typical
of the atmosphere, say 273 K. An appropriate value
for the exponent p = L/(RyTy) is then about 20.0.
Making 7 proportional to a high power of 7" assures
us that the moist adiabatic lapse rate will be close to
the dry adiabatic when T is low, but considerably
smaller when 7 is high. Making u an integer effects a
significant reduction in computation time.

The basic prognostic equations will be the vorticity
equation

VI3t + I, V) + BaY/dx = —fV*k + F, (5)
the atmospheric thermodynamic equation
d(c,T + Lv)/dt = RT&/p + H, (6)
the water-content equation
awjdt = G, )
and the oceanic thermodynamic equation
d(cS)/dt = E. (8)

Here J denotes a Jacobian with respect to x and y,
while the diabatic terms F, H, G and F denote, re-
spectively, the curl of the viscous drag, the atmospheric
diabatic heating per unit mass (including the effect of
evaporation from the ocean surface, but not conden-
sation within the atmosphere, which increases 7" but
decreases ), the gain or loss of water by evaporation
or precipitation, and the oceanic heating per unit mass.
Note that (7) has been formulated in terms of W rather
than W. In keeping with the geostrophic simplification
we have omitted the advection of vorticity by the di-
vergent part of the wind, but we implicitly include the
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complete advection of enthalpy and water in the time
derivatives in (6) and (7); we do so because we feel
that an important possible feature of a moist general
circulation is the accumulation of water at low levels
in low latitudes brought about by a Hadley circulation,
which is divergent.

Equations (5)~(8) are to be accompanied by the di-
agnostic continuity and thermal-wind equations

di/dp = —V%, ©)
o¥/dp = ~RT/(fp). (10)

Equation (10) implies that the horizontal average of
¥ increases with elevation, and that, aside from a con-
stant factor, ¢ is the isobaric height. For boundary
conditions we shall let @ = 0 when p = 0 or p,. Equa-
tions (1)—(10) form a closed system in the ten dependent
variables.

At this point it is convenient to convert to dimen-
sionless quantities. To do this we choose 1/f, D, po
and D?f%/R as the units in which time, distance, pres-
sure and temperature are measured. We then redefine
each symbol, including V and J, as the ratio of the
quantity originally defined by the symbol to the com-
bination of f, D, p, and R with the appropriate di-
mensions. In the equations which follow we shall as-
sume, unless we state otherwise, that all quantities
have been made dimensionless. Since f, D, pp and R
then all equal unity, we can omit them when they
occur as factors.

3. Vertical simplification

In many two-level or two-layer atmospheric models
. the stream-function is specified at each of two levels,

or averaged through each of two layers, while the tem-
perature is specified for only one level or layer. The
temperature is then identified through the thermal wind
equation with the difference of the stream functions.
We shall use the two-streamfunction one-temperature
format in our model. Tt is consistent with this for-
mulation to specify the total dew point for only one
level or layer.

Our procedure for reducing Egs. (1)-(10) to a layered
model will be dictated by a consideration of the source
and sink terms F, H, G and E. It is not at all obvious
how these should be formulated at individual levels
within the atmosphere or ocean. However, if horizontal
diffusive exchanges of momentum, energy and water
are considered negligible, the vertical averages of F,
H, G and E simply represent net exchanges between

. the atmosphere and the ocean, and, in the case of
energy, between the atmosphere or the ocean and outer
space. Accordingly, we shall construct our vertically
simplified model by averaging Eqs. (6)-(8) through the
depth of the atmosphere or ocean. Equation (5) must
. be averaged through two separate layers in order to
yield two streamfunctions, so that the exchange of mo-
mentum between these layers will also enter the model.
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Because 7, ¥ and W normally|fall off much more
rapidly with elevation than 7 and| W, we cannot locate
a particular level at which the v;alues of the various
terms in (5)—(7) are all suitable substltutes for vertical
averages. We shall therefore ‘.pemfy the manner in
which each dependent variable vlanes with p, where-
upon vertical averaging will be feasible. We shall find
it convenient to express the cdependent variables in
terms of their values at the atmosphere-ocean interface;
these will be denoted by symbols without tildes, and
will become our new dependent variables.

We first let the lapse rate of atmospheric temperature
with elevation be constant, so that

T=1p, (11)

where A is a constant. We make no attempt to model
a stratosphere. Since A = 0 would imply an isothermal
stratification, and A = « = R/c, would imply a dry-
adiabatic lapse rate, A should li¢ between 0 and x. We
omit all vertical variations of oceanic temperature,
since we are considering a relatively shallow layer SO
that

~

$=8. (12)
It follows from (10), (2) and (4) that
=y + T - pYA\, (13)
F=1p, (14)
§=-s. (15)

Next we let 7 = ¥/7 be constant w1th1n each vertical
column, thus 7 = r. Then

D = pp*r L, (16)

Equation (1), being homogeneous in 7, # and W, still
holds when the tildes are dropped, so that

W= wp!, 17)

_ W= wph (18)
In order that W remain finite as the top of the atmo-
sphere is approached, it is necessary that A = », where
v=1/p.

Flnally, we let x, like \b, be linear in p*, so that if
(5) is to be satisfied, with @ = 0 when p = O or 1,

X =x{—1++ NP}/, (19)
V2x(p — PN/ (20)

We may treat Egs. (11)-(20) as approximations to be
used only for vertical averaging, or we may assume
that F, H, G and E implicitly include internal processes
which serve to maintain the prescribed vertical dis-
tributions against the disruptive effects of advection
and other processes, just as vertical motion and di-
vergence serve to maintain hydrostatic and geostrophic
equilibrium against the disruptive effects of various
processes.

@ =



15 JUNE 1984

We shalil average Eq. (5) separately from p = 0 to
1 and p = 0 to a level \'; this is equivalent to averaging
from 0 to A’ and N\’ to 1. The most logical value of A\’
would probably be ;, but it makes the equations slightly
simpler to let A’ = (1 — M), or, for acceptable values
of \, about}. We then find that two linear combinations
of the averaged equations are

VAot + K¢, V) — a, KT, VT) + Bay/dx
= —V’x + 2F — F,
oV2T/ot + J(y, V2T) + KT, V) + ar T, V*T)
+ B3T/3x = (1 + NV — (1 + \(F = F), (22)

where g, = 1/(1 + 2X), ar = (3 + Nay, and the double
and single bars over F denote averages from 0 to 1
and 0 to A, respectively.

Averaging Eq. (6), after using (1), (2) and (7) to
express db/dt in terms of d7T/dt and G, we obtain

(1 + a){8T/0t + Sy, T)}
= —(br + bywa)VT -Vx + (c7 — cwa)TV?*x
+ (1 + A\(H — 3v/owLG)/c,, (23)

1

where
1 —p/\
b = — =
T A.a% bw 1+»°
cr = (k — MNay, cw = vby,

NNov (L 7
“ ( A) or (c,,) T’ (24)
and the partial derivatives dv/d7 and dv/dw are to be
evaluated from (1). Averaging Eq. (7), and then using
(3) to express w in terms of W, we obtain

ow
¥l +JW, W)+ apJT, W)

= —buVW-Vx — cy WV + N\W/WG, (25)
where ay = v/{\(1 + »)}. Finally, Eq. (8) becomes
ds/dt = EJc. (26)

With the auxiliary variables 7, v, w and s defined by
(1)~(4), applied at p = 1, and with the definition (24),

Egs. (21)-(23) and (25)-(26) become a closed system
" in the basic dependent variables , x, T, W and S.

The thermodynamic effects of water are incorporated
in . The factor dv/dr in « is a function of r, and
increases from 0 to 1 with increasing r; with v = 0 it
would change abruptly from 0 to 1 at the saturation
point. The dry model [Egs. (21)-(23), with a = 0]
differs little from other two-layer models. Potential
vorticity is still advected at two levels; with A = 0.175
and p, = 1000 mb, these levels are 679 and 88 mb.
Moisture is advected with the wind at 642 mb, but
the layer which radiates to space is often far above the
500 mb level. :
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4. Horizontal simplification

Low-order models of dry global-scale circulations -
are typified by a two-layer model which we introduced
some time ago (Lorenz, 1963) to study the phenom-
enon of vacillation. In that model we expressed each
horizontal field as a series of orthogonal functions
truncated to seven terms; specifically, in a somewhat
different notation, we introduced the approximation

27)

where X stands for any dependent variable, and
$p =1
®;,_, = 2 sinjy cos2x
&3, = 2 sinjy sin2x | ’ (28)
®;; = V2 cosjy

where j = 1 or 2. The orthogonal functions ®, were
chosen so that

Ve, = —a,®,, (29)
where gy = 0,a, = a, =5,a3; = 1,a, = as = 8 and
as = 4. They satisfy the orthonormality conditions

(21241 = O, (30)

where the square brackets denote a horizontal average,

whence the coefficients in (27) satisfy
X, = [X9®,]. 31)

We then converted each horizontally continuous
partial differential equation into a set of seven ordinary
differential equations, by first substituting (27), for each
dependent variable X, into each continuous equation,
then expressing the left and right sides of each resulting
equation in terms of orthogonal functions, using (31),
and finally equating coefficients of ®, . . . , ®¢. In the
present model we shall express the basic dependent
variables ¥, x, 7, W and § in terms of the same set
of orthogonal functions. We may, in fact, regard the
present model as an extension of the earlier model to
a moist atmosphere. _

Strictly speaking we should not express x in terms
of &, . .., B¢, since the y-derivative of x should vanish
at the boundaries y = 0 and =, while it is the x-de-
rivatives of &, ..., ®¢ which vanish there. We shall
presently consider how the model would be changed
by expressing x in terms of more appropriate functions.

In the earlier model the right-hand sides of the con-
tinuous equations contain terms of the form J(X, Y),
to be expressed in terms of orthogonal functions. Ap-
proximating these terms by

6 6
JX, )= 2 (2 XY %,

n=0 jk=0

(32)
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we find from (31) that
Jnje = [RnJ(B), PL]. (33)

It follows that J,; is unchanged by any cyclic per-
mutation of (n, j, k) and changed only in sign by any
noncyclic permutation, and, with our choice of or-
thogonal functions, Ji;3 = —5b, Jis¢ = Jae = —8b,
Jas3 = —4b, and J,. = 0if (n, j, k) is not a permutation
of (1, 2, 3), (1, S, 6), (4, 2, 6) or (4, 5, 3). Here
b = 16V2/(157).

In the present model we have additional quadratic
terms of the form X Y and VX-VY. Approximating

XY by
6

XY= 2 ( Z 1y X;Y)®,, (34)
n=0 jk=0
we find that
Lnjx = [$, ;4] (35)

It follows that I, is unchanged by any permutation
of (n, j, k) and, with our choice of orthogonal functions,
Io; = 1 for all j, I314 = Inps = Isz¢ = —Isiy = —Ien
= 1/¥2, and Ly = 0 if (n, j, k) is not a permutation
of (0, 4,/), 3, 1,4), (3,2, 5), (3, 3,6), (6, 1, 1) or (6,

2, 2). Since
VX-VY =3 (VAXY) - X(V?Y) — (VEX)Y}, * (36)
the appropriate approximation for VX VY is
6 6
VX-VY = 2 (2 KuXX)®., 37
n=0 jk=0
where
Ky = %(a, + a; ~ a)ly. (38)

As already noted, to evaluate the more complicated
nonlinear functions appearing in the source and sink
terms, and in the moist-thermodynamic terms, it is
preferable to transform from orthogonal functions to
grid points, using (27), evaluate the nonlinear terms
at each grid point, and then transform back, using
(31). We have chosen a set of nine grid points, at the
intersections of the lines x = #/6, 37/6 and 57 /6 with
the lines y = w/6, 37/6 and 57/6. We have found no
way to get by with fewer than nine points..

Our model contains no prognostic equation for x.
To integrate the equations, we must eliminate d7/3¢
from (22) and (23), and solve the resulting diagnostic
‘w-equation” for x. Although some of the terms must
first be evaluated in grid-point space, the equation,
which contains horizontal derivatives of yx, is not suit-
able for solution in grid-point space, and special care
must be taken to make it readily solvable even in or-
thogonal-function space.

We note first that if V-2 denotes the particular inverse
of V2 whose horizontal average vanishes, (22) may be

written ,
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AT — To)/dt = (1 + N + xo) + V2F, (39)

where F' denotes all the terms in (22) which contain
neither x nor a time derivative. The horizontal average
xo of x does not enter the dynamxcs and therefore
may be chosen at will, and we ¢an gain conciseness
by equating xo to (8T/df)/(1 + X). When we then
eliminate 37/0¢ from (39) and (23), after dividing (23)
by br + by a, the resulting w-equation may be written

Ay — BV2 + VT-Vyx = H', (40)

where 4 and B are algebraic ~functions-of a, and H'
represents the combined contribution of F' and all
terms in (23) containing neither x nor a time derivative.
Upon transforming to orthogonal functions, we ob-
tain the seven linear algebraic equations _
6 6
2 2 Injk{A + akB + - (aj + A — an)T}Xk H,m
k=0 j=0
(a1)

to be solved for xo, ..., xs. The value of x, gives us
07,/0t, while x1, . .., x¢ may be substituted into the
transformed forms of (21), (22) and (25) to yield the
time derivatives of ¢, (n # 0), T, (n #* 0) and W,.
Equation (26) for S does not contain x and presents
no additional problems, while 4, which is proportional
to the horizontally averaged 1000 mb height, is as-
sumed to vanish.

As we noted earlier, x, when expressed in terms of
Py, . .., P, fails to satisfy the proper boundary con-
ditions. One acceptable procedure would be to express
V2x in terms of &, ..., ®. The corresponding
expression for x would then contain correction terms
involving hyperbolic sines and cosines; specifically, we
would have

X = 2 Xn®h, (42)
n=0
where
h(2y —
P = {2 siny + ggs_(__y__g)} cos2x
sinh
2 sinh(2 > 49
P, = {2 sin2y —~ _im_(_y: W)} cos2x
coshr

with analogous expressions for & and &5, while ¥,
=®,ifn=0,3o0r6.

Since we would not be chan;,mg V2x, changes in
the model would be confined to VT- Vy in (23) and
VW.Vx in (25), which represent advection of heat
and water by the divergent part of the wind—processes
which are omitted altogether in many models. These
changes will show up as changed numencal values of

n_/k in (37)

These values are integrals over the entire channel.
Examination of the correction terms in (43) shows that
they are rather small, except in rather narrow latitude
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bands near y = 0 and w, and that their contribution
to integrals from O to = is likely to be of secondary
importance. We shall therefore adopt the simple pro-
cedure of neglecting the corrections to K, altogether.

5. Sources and sinks

As we have already remarked, the vertical averages
of F, H, G and E represent vertical exchanges of mo-
mentum, sensible and latent heat, and water. We shall
assume that the exchanges across the ocean-atmo-
sphere interface are proportional to the differences of
appropriate quantities across this interface, with the
same factor of proportionality k. We could appeal to
Ekman-layer theory to determine a suitable value for
k, but, in view of the drastic simplifications already
introduced, we can hardly justify anything more in-
volved than simply choosing a time constant, say five
days, for 1/k. Exchanges of momentum across the sur-
face p = X', where there is no Ekman layer, will be
made proportional to the shear, with a damping coef-
ficient k' considerably smaller than k.

To formulate precipitation we assume that clouds
have a “half life,” i.e., that during a specified time
interval they give up a specified fraction of their water
as rain. The damping time 1// should be considerably
shorter than 1/k, perhaps one day. Denoting the ra-
diative contributions to H and E by Hy and Eg, we
have

F=—kv¥y, (44)

F = ~k'V?T, (45)

H=~k{c(T - S)+ L(v — 5)} + Hp, (46)

G = —k(® = 5) — (ly/A\)(w — v), (47)

E= —{p p"p )k{c,,(s — T)+ L(s — v)} + Eg. (48)
1~ Po

The factor »/\ appears in the precipitation term in
(47) because the vertical average of W is (v/A\)w.

Radiation is traditionally a complicated process, and,
despite our efforts at simplification, our formulation
will reflect this fact. Even if we are interested only in
some atmosphere with some absorbing constituent,
the appropriate radiation formulas will be highly de-
pendent upon what this constituent is, and our radia-
tion formulas, to a greater extent than our other
expressions, will be based upon the supposition that
it is water.

We shall express the incoming solar radiation in
terms of a planetary temperature 7%*; this is the tem-
perature which a blackbody covering the entire sky
would have to have, in order to be locally equivalent
to the sun. We shall allow some of the incoming solar
radiation to be reflected by clouds; the remainder will
pass through the atmosphere and heat the ocean. We
shall let the fractional cloud cover g be a function of
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the relative humidity. This appears preferable to letting
a depend upon total water content; we are not aware,
for example, that the tropics are much cloudier than
the polar regions. As a first approximation we shall
let the cloud albedo equal the fractional cloud cover
a. A function which appears to produce a reasonable
global average albedo is a = r*.

The ocean will in turn emit longwave radiation as
a blackbody. The cloud-free portion of the atmosphere
will be assumed to possess a spectral window, through
which a fixed fraction a’ of the longwave radiation will
pass; the remaining longwave radiation will be partially
absorbed and reemitted by atmospheric water vapor.
The cloudy portion of the atmosphere will behave like
the cloud-free portion, except that there will be no
spectral window.

Our expressions for emission of longwave radiation
will need to contain the atmosphere’s fractional emis-
sivity, and the temperature at which the emission oc-
curs. In a model with such low vertical resolution we
balk at considering the radiative transfer from level to
level, and find no reason for using anything more com-
plicated than Simpson’s method. Basically, Simpson
(1928) treated the atmosphere as completely trans-
parent in the 8.5-11 um band (the window), while
below 7 and above 14 um he treated any layer con-
taining 0.3 kg of water per m? of cross section as com-
pletely opague. Simpson’s atmosphere would therefore
radiate to space in the latter wavelengths at the tem-
perature of the uppermost such layer. Between 7 and
8.5, and between 11 and 14 um, more water vapor
would be needed to render the atmosphere opaque.

Paraphrasing Simpson’s treatment, we shall as a first
approximation allow the cloud-free portion of the at-
mosphere to radiate upward and downward at tem-
peratures 7" and 77, respectively, with the fraction 1
— a’ of the intensity of blackbody radiation, while it
will absorb the fraction 1 — a’ of the radiation it receives
from the ocean. We shall neglect any variations of a’
which ought to occur with temperature. We shall treat
the cloud-covered portion of the atmosphere similarly,
except that a’ will be replaced by 0. The temperatures
T' and T” will occur at pressures p’ and p”, which will
be the pressure levels above and below which the
amount of water vapor is V,/2, where ¥, = 0.3 kg m™2.
Thus p’ and p” are supposed to represent the centers
of the uppermost and lowermost layers whose water
vapor content is V. Letting v, be the value which v
would possess if the water vapor content of an entire
column were Vg, i.e., v, = (A\/v)gV/po, Where g is the
acceleration of gravity, we obtain for our first ap-
proximation, using (16),

N E72
p= (5 vs/v) ,

1 72
p’= (1 -3 vs/v) .

(49)

(50)
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Equations (49) and (50) are fairly satisfactory if
v/v; is large, but if v < v,/2 they place the uppermost
layer with a water content of V below the lowermost

. layer, while in actuality such layers do not exist at all.

We shall therefore modify (49) and (50) by replacing

v with v + v,. Introducing the ratio v' = v/(v + p,),
which is near unity when v is large but is small when
v is small, we find that

r 1\
p =(§_§ ) , (51)

72N
r=(+2v (52)

p=\3+5v)

whence
: ' 1.1
r=1(} 2#), (53)
r=1(l+ly) (54)
2 2 .

Equations (51) and (52) are almost identical to (49)
and (50) when v is large, but they make p' and p”
approach one another as v — 0. *

The assumption that the intensity of the radiation
is 1 — g’ times that of blackbody radiation also becomes
unrealistic when v is small, since there is very little
water vapor to radiate. Likewise, a sufficiently tenuous
cloud layer should not radiate as a blackbody. We shall
adjust for this situation by multiplying the emitted and
absorbed radiation by v'. Finally, a tenuous cloud layer
should not be a complete reflector of solar radiation,
and we shall multiply a by v’ to obtain the cloud albedo.

Collecting our results, and letting a” = a + (1 — a)
X a’, we find that

Hr = (cg/po)va’(S* — T" — T, (55)
ER = {og/(p\ — Po)}{—S4.+ va'T™ + (1 — v’a)T*“},
(56)

where ¢ is the Stefan-Boltzman constant.

6. Preliminary computations .

A necessary final step in the development of our
model is the performance of enough computations to
assure us that the model is not completely unable to
serve its purpose. Once we have discovered the model’s
capabilities and limitations we can engage in produc-
tion runs.

With a typical low-order dry model the problem of
finding an equilibrium solution, when the external
heating is horizontally uniform, is trivial, but, with
our moist model, the appropriate values of 7, W and

S are not at all obvious. Discovering how these quan-
tities vary with 7* would appear to be a prerequisite
to understanding the model.

Our problem consists of solving the algebraic equa-
tions obtained by equating F, H, G and E to zero, and
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the lazy way to solve them is to solve the model equa-

tions numerically with arbltranly chosen initial con-

ditions. We anticipate that ¥ w1ll vanish, while 7, W
and S will be horizontally umform so that instead of
transforming back and forth between grid points and
orthogonal functions we can work with a single grid
point.

A necessary prelude to numerical computatlon is
the selection of numerical values for the various con-
stants. We shall choose our values with the ‘earth’s
atmosphere and ocean in mind, but, to reduce the time

" needed for transient effects associated with the chosen

initial conditions to disappear, we shall make the

‘oceanic layer interacting with the atmosphere very thin.

We might even regard the underlying surface as wet
land rather than ocean.

The dimensionless values of f, D, p, and R are all
unity. Our chosen dimensional values will be 1/f
=3 h, D = 1830 km, p, = 1000 mb, and R = 287
m? s~2 K~!. These values have the practical advantage
of making the unit for temperature exactly 100 K.

Dimensionless values of the remaining constants,
or, where sufficient, combinations of constants, follow.
We shall use these values in our numerical runs except
where we indicate otherwise:

A 0.175
u 20.0

v 0.05

K 2/7

Cp 3.5

L 25.0

8 0.3

c 0.0038/(2.73%)
Y 0.25

k 0.015
k' : 0.003
v/ 0.03

c’ 1.0

a 0.5
/A 0.0006

og/(cpo) 0.000061.

For various values of 7* we have performed runs
where initially ¢ = 0and T'= W = S = T*, allowing
each run to proceed until equilibrium is reached or
easily extrapolated. Table 1 shows the results. An ob-
vious feature is the large range of T, W and S, which
are very high when T* is high and very low when T*
is low. In addition, r and a are high and S and W
exceed T when T'is low, and the opposite is true when
T is high, while S always exceeds W.

Once observed, these features are readily explained
in the context of the model, regardless of whether they
would occur in nature. First, sincé we have chosen
Iv/A to exceed k, Eq. (47) with G = 0, representing a
balance between evaporation and precipitation, ex-
presses w as a weighted average of v and s, and, since
v < w always, s > w, whence S > W. .
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TABLE 1. Equilibrium values approached by 7, W and $ (K), and
by r and a (%), in the low-order model when T* is horizontally
uniform and 7= W = § = T* initially.

EDWARD N. LORENZ

T* T w S r a
264.0 245.2 246.6 249.3 84.1 50.0
267.0 2479 249.3 252.1 84.1 - 50.0
270.0 251.1 252.5 255.3 84.1 50.0
273.0 255.5 256.8 259.7 83.7 49.1
276.0 301.6 296.7 298.2 64.7 17.5
279.0 312.8 305.4 306.5 57.2 10.7
282.0 3209 311.5 3124 51.7 7.2
285.0 328.0 316.7 317.5 47.0 49

Next, starting from a cold equilibrium state, suppose
that 7, W and S increase by the same factor, so that
r and ¢ remain fixed. The latent heat transferred to
the atmosphere, which is proportional to s — v, would
then increase as T2, while the heat lost by radiation
or sensible heat transfer would increase only as 7% or
T, and equilibrium would no longer exist. To maintain
a balance T would have to increase more rapidly than
S, and hence ultimately more rapidly than W, since
¥ 1s bounded by S. Hence r and a would decrease.
Warm equilibria thus tend to be dry equilibria.

The abrupt increase in 7, Wand S as T* increases
from 273 to 276 K is completely out of line with the
other increments. Indeed, if we plot T against T* and
attempt to draw a smooth curve through the points,
it is difficult not to make it S-shaped. This suggests
that, corresponding to some values of T*, there may
be two stable equilibria, with an unstable equilibrium
in between.

We have attempted to locate the remaining equilibria

by performing additional runs with new initial con- -

ditions. The result is the heavy curve in Fig. 1. The
large dots indicate where runs were performed. Mul-
tiple equilibria occur when T* is between 274.5 and
276 K. The unstable equilibrium represented by the
dot at T* = 275.3, T = 277.5 was located by a trial
and error procedure.

The multiple equilibria appear to result from a pos-
itive cloud-albedo feedback process. If we had for-
mulated the model with a constant albedo, 7 would
increase in response to an increase in 7% We have
seen that as the model is presently formulated, the
albedo a would decrease, allowing the solar heating to
increase T still more, whence a would decrease still
more, and so on. Under suitable conditions this might
be a runaway process, i.e., an equilibrium might be
unstable. Ultimately a new equilibrium would be
reached, since a cannot decrease below zero.

We have tested this idea by performing additional
runs in which the cloud albedo is held fixed, first at
0.1296 = 0.6* and subsequently at 0.4096 = 0.8% The
absorption and emission of longwave radiation are still
computed for a cloud cover of »*. The result is the
pair of thin curves in Fig. 1. There is no sign of multiple
equilibria, and the upper curve is in fact nearly straight.
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FiG. 1. Equilibrium temperature T corresponding to assigned hor-
izontally uniform planetary temperature 7*, as given by the model.
Heavy curve: albedo dependent on relative humidity. Upper thin
curve: fixed low albedo. Lower thin curve: fixed high albedo.

If we let Iv/\ equal 0.015 instead of 0.03, Eq. (47)
with G = 0 assumes the even simpler form s = w,
whence S = W. Since such a simple relation might
facilitate the subsequent interpretation, we have re-
peated the runs which produced the heavy curve in
Fig. 1, with the new value of /. The result is the right-
hand heavy curve in Fig. 2. Multiple equilibria now

330
T
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240
L. i i . A i
260 270 280 T™ 290

F1G. 2. Equilibrium temperature T corresponding to assigned hor-
izontally uniform planetary temperature T*, as given by the model,
with albedo dependent on relative humidity. Left heavy curve: me-
dium k, high /. Left thin curve: low k, medium /. Central curve:
medium &, medium /. Right thin curve: high k, medium /. Right
heavy curve: medium k, low [
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cover a wide range of values of 7*, and the two stable-
equilibrium values of T are invariably separated by at
least 60 K. The middle heavy curve is a copy of the
heavy curve in Fig. 1.

The contrast between the curves suggests that if /
had been increased rather than decreased, the multiple
equilibria might have disappeared altogether. This
proves to be the case; the left-hand heavy curve in Fig.
2 has been constructed from runs where /»/A = 0.06.

The variations of the equilibrium curve are in qual-
itative agreement with what one might expect if a
cloud-albedo process is operating. The low value of /
corresponds to clouds which experience some difficulty
in precipitating their water, and consequently tend to
persist. The high value of /, which does not produce
multiple equilibria, corresponds to clouds which are
rapidly attenuated by precipitation, so that the cloud-
albedo feedback process is also attenuated. At some
value of / the model evidently undergoes a transition
between regimes, one where multiple equilibria occur
and the other where T is merely highly sensitive
to T*.

Are the multiple equilibria realistic? They do not
agree with what we have seen in our own atmosphere.
" The cold equilibria are so cold that the oceans would
be frozen over, while the warm equilibria are so warm
that the implicit assumption that the mixing ratios are
small would break down. However, the real atmosphere
always possesses a circulation, transporting excess heat
from warm to cold regions, and we do not know what
would happen if the heating could be made horizontally
uniform, although our guess is that we would be in
the high-/ regime.

For good measure we have added two more curves
to Fig. 2, corresponding to halved and doubled values
of k. Qualitatively, lowering k is like raising /, but the
effect is much smaller. We have also made compu-

tations with a = r?, obtaining a curve much like the

right-hand heavy curve. Letting a = r?/2 removes the
_ multiple equilibria and produces a curve like the left-
hand heavy curve, but we prefer a formulation where
a — 1 as w — oo0. Including a surface albedo in the
model might further complicate the feedback process,
as indicated, for example, by the analysis of Stephens
and Webster (1981).

In our remaining computations the solar heating
varies with latitude; we have let T* = T§®, + T%®;,
with T¢ = 273.0 K and 7% = 5.0 K. According to
(28) the values of T* at the southern and northern
grid points are therefore about 267 and 279 K, re-
spectively. Reference to Table 1 shows that the equi-
librium temperatures are about 248 and 313 K. Al-
though we would expect the circulation to prevent
such a large contrast in T from developing, we should
not be surprised if T; [defined in Egs. (27) and (28))
exceeds T%.

For initial conditions in our first run we have su-
perposed a fairly small wave disturbance 7, = W,
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= S, = 1.0 K on the zonally symm}etric (but not steady)
circulation ¢y =0, T = W= § = T* We have used

the four-cycle scheme (Lorenz, 1971) with 6t = 1.5 h’
and At = 6 h. Table 2 shows the development of the
temperature field during the 500:days of the run.

During the first 20 days the mean temperature 7T, -
drops, at first rapidly, apparently in response to an
unbalance between 7, and Sy, and then rather slowly.
As anticipated, the cross-latitude contrast T; proceeds
to grow. The superposed wave damps considerably,
and, as indicated by the succession of plus and minus
signs in T; and T,, and T, and T, progresses eastward
slightly more than a full wavelength.

This behavior continues until the third month, when.
the wave is rejuvenated, soon surpassing its original
amplitude. Presumably the growth takes place because
T3 has increased to the point where the zonal flow is
baroclinically unstable. As the wave continues to ex-
tract energy from the zonal flow during the fourth
month, T3 decreases, thereafter oscillating about a bar-
oclinically neutral value. Meanwhile, 7, Ts and T
begin to assume appreciable values. It is noteworthy
that with the chosen initial conditions these variables
would have continued to vanish in a model whose
only nonlinear process is advection by the geostrophic
wind. .

During the second half-year T becomes decidedly
negative, indicating, since T3 is strongly positive, that
the cross-latitude temperature gradient is largest in high
latitudes. Evidently a stronger temperature gradient is
required for baroclinic instability under these condi-
tions, since 73 now oscillates about a larger value.
There appears to be a 120-day period in the oscillations;
however, examination of daily values from days 480
to 500 has revealed that the period is actually about

TABLE 2. Values of temperature coefficients T, ..., Ts (K), at
selected times ¢ (days), in the first numerical run with the low-order
model, with 7* = 273.0 + 5.0%,.

t T 0 Ta Tz ° T3 T4 T5 Tb
0 273.00 1.00 0.00 5.00 0.00 0.00 0.00
4 27205 022 0.78 5.46 0.02 0.00 0.02
8 271.83 -0.49 030 5.72 -0.01 0.03°  0.02
12 271.73 -030 -0.28 596 -0.03 -—0.02 0.03
16 27164 0.13 -0.22 6.18 0.02 -0.02 0.04
20 27155 0.14 0.08 6.40 0.00 0.02 0.06
40 271.12 -0.02 001 846 0.00 0.00 0.16
60 270.74  0.01 002 848 0.00 0.00 0.28
80 27043 -0.11 0.15 948 -0.01 0.01 0.39
100 271.58 243 -1.61 8.48 -0.40 0.46 0.33
120 27254 . 135 -1.62 853 -0.23 0.13 -0.84
180 272.19 -0.12 002 10.06 -0.10 033 -1.87
240 272.35 -0.72 022 10.67 0.39 004 -2.12
300 272.74- -0.19 -0.19 1035 -061 —0.05 -—2.17
360 27298 —0.68 —0.10 10.54 0.31 0.08 -2.02
420 273.32 -0.16 .—0.15 10.31 -0.64 -0.01 -—-2.21
480 27352 -—0.62 0.10 10.59 029 -0.06 -2.03
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TABLE 3. Values of temperature coefficients Ty, ..., Te (K), at
selected times ¢ (days), in the second numerical run with the low-
order model, with 7% = 273.0 + 5.0%;.

0 28368 -0.19 -0.17 1033 -0.63 0.13 -2.19
30 28477 0.12 -0.06 9.28 -0.47 -0.37 -2.39
60 284.79 -0.03 025 8.76 038 —0.34 225
90 28472 0.03 026 8.74 0.18 —044 -2.15

120 284.60  0.07 020 9.04 0.07 —0.44 -2.09
150 284.44 —0.10 0.07  9.56 0.40 005 -2.04
180 284.19  0.09 0.03 1035 -0.06 -0.36 —1.96
210 283.77 -~0.03 0.01 11.65 0.11 0.16 —1.83
240 2839 0.28 ~1.26 1111 -0.59 —0.89 -—2.70
270 28371 -040 -0.02 8.1 050 -0.14 -249
300 283.69 0.11 024 815 -0.18 -043 -2.22
330 28360 -0.10 ~-0.04 8.59 0.00 039 -2.08
360 28332 -006 -0.08 9.57 -—0.08 030 -1.92
390 282.64 0.01 0.00 1111 0.00 0.13  -1.59
420 282.82 -0.49 0.56 1040 -0.90 026 278
450 283.00 043 000 873 -0.51 -0.09 240
480 28297 027 -0.14 857 -~046 007 -2.19

13 days; nine cycles rather than one occur between

days 360 and 480. Superposed on this oscillation there
is an upward trend of about 1.5 K per year in T,
suggesting that transient effects have not yet disap-
peared.

Instead of continuing the run to equilibrium, which
would require several simulated years, we have per-
formed a second 500-day run, whose initial conditions
are the final conditions of the first run with 10.0 K
added 1o Ty, W, and Sy. Table 3 shows what happens.
After an initial adjustment, T, drops while the waves
decay. In response, T; increases, until, after day 200,
baroclinic instability sets in, whereupon the wave be-
comes strong again and T3 decreases. This set of events

TABLE 4. Values of coefficients ;, T;, W; and S; (K), fori = 1, .
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is repeated 180 days later. Examination of daily values
from days 480 to 500 shows no appreciable shori-
period oscillation. A downward trend in 7, is com-
parable in magnitude to the upward trend in the
first run. :

For initial conditions in our final run we have used
the final conditions of the second run with 4.0 K sub-
tracted from T, W, and S,. During the 500 days T,
fluctuates but shows no appreciable trend. Statistically-
stationary behavior appears to have been reached.

In Table 4 we present values of all the prognostic
variables for the final state of each run. These states
have certain features in common, which also prevail
throughout most of each run. First, Wy < Ty; as a
consequence the globally averaged relative humidity
and the global albedo fall short of the values 0.80 and
0.41 which would prevail with W = T; for the three
final states the global albedos are 0.37, 0.31 and 0.34.

As indicated by the plus and minus signs in the
coefficients of T, and 7>, the waves in the 7-field are
generally displaced westward from those in the y-field
(the coeflicients of T, and T’s are less consistent), while
the W-field waves are well to the west of the T-field
waves. Thus the most humid air is flowing with a
component from the south. A striking feature which
we had not anticipated is the consistently larger am-
plitude of the W-field waves than the T-field waves.
It is not surprising that the S-field waves are weak;
they are forced by the atmospheric waves, which move
too fast to allow much build-up in the ocean.

Figure 3 translates the final tabulated state into syn-
optic charts, covering somewhat more than one wave-
length. There are well formed cyclones and anticyclones
at 1000 mb; the 15 m spacing for the height contours,
derived geostrophically from ¢, is equivalent to about
a 2 mb spacing for sea-level isobars. The isotherms

.., 6, at final time in each of three runs with the low-order model,

with T* = 273.0 + 5.0®; (for streamfunction ¥, 1 K = 0.01 dimensionless units = 3.10 X 10° m* s™', geostrophically equivalent to 29.3

m in 1000 mb height).

Run 0 1 2 3 4 5 6

I
Vi 0.00 0.36 -0.22 0.12 —0.19 0.09 —-0.42
T; 273.68 -0.19 -0.17 10.33 —0.63 0.13 -2.19
W; 272.92 -1.92 -0.46 9.29 1.72 1.10 —~1.22
S; 275.44 -0.04 0.03 9.40 —0.04 0.18 -1.97

2:
Vi 0.00 0.00 0.35 -0.12 0.00 -0.12 -0.10
T; 282.88 0.07 0.20 8.88 -0.01 0.42 -2.09
W; 281.00 1.36 -1.02 7.73 -1.09 0.63 —1.40
S; 283.17 0.02 0.04 7.68 -0.10 -0.04 -1.76

3
i 0.00 0.08 —0.53 -0.05 —0.08 0.11 —0.13
T; 278.56 -0.44 -0.50 10.74 0.11 0.39 -2.11
wW; 277.12 ~1.43 1.68 9.49 0.97 —0.54 -1.69
S; 279.50 -0.13 0.02 9.93 0.09 0.04 —-1.94
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FI1G. 3. Fields at end of third model run. (a) 1000 mb height (solid curves, interior labels in m), and 1000 mb temperature (dotted
curves, labels at right in K). (b) 1000 mb relative humidity (solid curves, interior labels in %), and 1000 mb dew point (dotted curves,
labels at right in K). (c) Precipitation (solid curves, interior labels in mm day™), and 1000 mb total dew point (dotted curves, labels at

right in K). (d) Evaporation (solid curves, interior labels in mm day™"), and ocean surface temperature (dotted curves, labels at

right in K).

are fairly zonal, but the air is a few degrees warmer
to the west of the anticyclones and cooler to the west
of the cyclones.

The waves in the dew-point field and especially the
total-dew-point field are more pronounced, while waves
in the sea-surface temperature field are virtually absent.
The relative-humidity field possesses a moist center
north-northeast of the 1000 mb cyclone and a dry
center south-southeast of the anticyclone, while the
maximum precipitation is somewhat south of the moist
center and the minimum is somewhat north of the
dry center. The evaporation exhibits less variability
than the precipitation. .

The longitudinal variations in Fig. 3 are rather weak
by real atmospheric standards. We have yet to deter-
mine whether this is due principally to an excessively
high static stability, a weak cross-latitude heating con-
trast, or some other cause. At times the systems are
stronger; on day 240 in the second run, for example,
the sea-level pressure varies from 984 to 1014 mb, the
relative humidity from 31 to 96%, and the precipitation
rate from 0.1 to 12.5 mm day~'. Qualitatively we find
the behavior reasonable, and we conclude tentatively
that the model is suitable for production runs.

7. Cdncluding remarks

Our model has undergone considerable evolution
during its development, and the evolution need not
cease at this point. Some changes .ought to be made .
in any experiments where closer quantitative resem-
blance to the earth’s atmosphere is desired. We might
tune the model by changing the values of some of the
constants, or we might add such physical features as
reflection of shortwave radiation by the ocean or ab-
sorption of longwave radiation by carbon dioxide. Such
changes would make the model conceptually somewhat
more complicated, but they would not noticeably affect
the amount of computation per time step.

More important are changes which would improve
the model for general purposes. We feel that the prin-
cipal shortcoming at present is the assumption of a
uniform prechosen lapse rate of temperature. Ampli-
fying waves should limit their owr ultimate growth by
making the zonal flow on which they are superposed
less unstable baroclinically, and one way in which they
may do so is by transporting heat upwards, thereby
stabilizing the lapse rate. )

In our vacillation model (Lorenz, 1963), we allowed
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the lapse rate to vary with time but not spatially. With
a prechosen lapse rate we could not have simulated
the stable behavior which is observed in the associated
laboratory experiments (Fultz et al., 1959) when the
heating is strong. We could modify the present model
by making A a function A, of time alone, deriving a
governing equation for Ay from (6) or (7) or some
combination of (6) and (7). Vertical transport of heat
would then alter Ay. Unfortunately, we would also
have to make some assumption regarding the vertical
radiative flux within the atmosphere—an assumption
which we have been trying to avoid. The model would
become somewhat more cumbersome, but we see no
insuperable difficulties. Allowing A to vary horizontally
would greatly complicate the model.

Finally, we may question whether we have really
accomplished our goals of simplicity in concept, for-
mulation and execution. Certainly the model is far
more complicated than the dry vacillation model, and
the execution is an order of magnitude slower. It could
presumably be speeded up by replacing some of the
more complicated functions by tables, and by using
interpolation, but we see no way to simplify the for-
mulation appreciably without weakening the model.
In models of local circulations (e.g., Shirer and Dutton,
1979) where the total range of temperature is not too
great, assumptions such as a constant value of the
moist adiabatic lapse rate, perhaps half of the dry adi-
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abatic, have been profitably used. In a model extending
from tropical to polar latitudes, such assumptions could
be counter-productive.
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