B h, b =1 and B k,k+! would be zero for large values

of k

Physically, the procedure which we rejected would have allowed
initial errors in the smaller scales to propagate to the larger scales
only through the interactions of wave lengths differing by a whole
pumber of resolution factors., The possibly much greater direct influ-
ence of one wave length upon a wave length which is only a fraction
of a resolution factor longer is admitted by the procedure which we
have chosen. The influence of the longer wave lengths within one
resolution interval upon the shorter wave lengths within the next
resolution interval is represented by the small areas of intersection

of the off-diagonal squares with the shaded area, in Fig. 1.

4, Incorporation of the nonlinear effects

The matrix formed by the coefficients (;kl in (43)
Y LN
possesses Yt eigenvalues %\ )" T, %y\ . Except in the unlikely

case that two of these eigenvalues are exactly equal, there will

exist YV linear combinations

)

n
‘Zk = i akk 22 ) (48)
t:l

or normal modes, such that the solution of (43) for which

A Zk /ﬂ{t = O when + =1, may be written
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Z‘Q = Zk/ (to) cosh }sklt-tJ - | (49)

A
Unless the eigenvalue )\k is real and negative (or zero), )‘Q

has a nonvanishing real part, and the corresponding mode 'Z:h will

be indicated as increasing without limit,

Actually, if an initially small error £ is subject to
amplification, it should ultimately become no larger than the differ-
ence between two randomly chosen stream-function fields. In that
event, G  should become no larger than E , and, in fact, for
any value of K B Z (\<> should become no larger than X (K) .
Thus (43) is applicable in its present form only when each :ZK. is

small,

In general the different normal modes will amplify at different
rates. In some systems the most rapidly growing modes represent fea-
tures of the smallest scales; in the atmosphere, for example, the
uncertainties in systems of cumulus scale may double in a matter of_
minutes, while those in synoptic-scale systems may require a matter
of days. It is evident, then, that unless the initial uncertainties
are heavily concentrated in the most slowly amplifying or non-amplifying
modes, the most rapidly amplifying modes will reach their maximum
allowable size, and (43) will cease to be applicable, at a time when
the more slowly amplifying modes have experienced almost no growth

at all,
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If (43) is to be made applicable to all scales of motion, some
modifications are needed. The most obvious procedure would be to
include the original nonlinear terms, which, after all, are responsible
for the eventual cessation of growth; i.e., equation (2) could be
used instead of (3). The derivation of an alternative equation to (43)

would, however, be a complicated task.

We shall adopt a simpler procedure. We first choose

Y. = 3 X+ X)) (50)

]

as a measure of the energy in the kth resolution interval, so that E
may be approximated either by z X\'& or Z Yk . We then assume
that for each value of k individually, (43) holds as long as

Z\n. £ \‘/h . Once Zh acquires the value Yh , it is

assumed to retain this value for the remainder of time,

This procedure has obvious computational advantages. Initially,
to insure computational stability, the time increment At must be
chosen small enough so that the growth of the most rapidly amplifying
variable from its initial small value to its ultimate large value will
require a reasonably large number of iterations, Once this variable
has attained its final value, we effectively deal with a system of
:L(V\") nonhomogeneous equations instead of 2Yl homogeneous
equations, and At may be increased, provided that it is kept small

enough to accomodate the most rapidly amplifying remaining variable,
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Each time a variable reaches its ultimate value, At may be further
increased, so that the ultimate growth of the most slowly amplifying
variable may take place in a reasonably small number of iterations,
rather than the myriad which would be required if At were held

fixed.

5. Introduction of numerical values

Before evaluating the constants Bkl ,' we must choose a
resolution factor f: o In this study we have chosen /9 = A,

Al

so that each "scale of motion" covers an octave of the spectrum.

The double integral in (40) is somewhat awkward to evaluate.
We have determined values of E;(U‘ll by summing the values of
the integrand B l()('/ L‘/ \) at a large number of points within

the shaded portion of each square in Fig, 1.

It is not necessary to determine individual values of

Eg(#)kﬂ , since only sums of these values appear in (41).
Obviously ka - B(‘)kl it £ % k, . From (40) and (41)
and the formulas (29) and (30) for B‘ and Ba , it may be shown
that
B(I)QQ if ,Q £0 5
B =
AL (51)
- Z. B if £ >0 s
k*k kQ
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i.e., 1 f>o0 , 89( is to be chosen so that the sum of
the constants Egkl corresponding to a vertical column of squares

in Fig. 1 is zero,

We must next choose numerical values for the minimum wave
number No and the spectral function Xk , in order to deter-
mine numerical values of the constants Ck( . If we wish to
compare our model with real physical systems, we must also specify

the units in which N,, and X‘t are measured,

It will be convenient to choose the units so that No =

-1

and £ =1 . The units of distance and time are then Nn and
-\ -\/1

T= N; E

. Alternatively, we may choose the units so

that E, = where [ , is some typical values of £
[+ s

Since we are particularly interested in atmospheric predict-
ability, we shall choose dimensional values of No and E appro-
priate to the earth's atmosphere. Accordingly, we shall let N,’l
equal the earth's radius, 6.,37xlO6 m, whereupon wave lengths greater
than half the earth’'s circumference contribute to Yl and Z ;o

wave lengths between one fourth and one half the circumference con- .

tribute to Y)_ and 'Z2~ , etc.

The total kinetic energy of the atmosphere is not precisely
known, Estimates of the root-mean-square wind velocity \/ based
upon large collections of upper-level wind data (Oort 1964, Krueger

- -1
et al, 1965) range from 16 m sec 1 to 23 m sec ; these would lead
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5 5
to values of T ranging from 5,6x10 sec to 3.9x10 sec. It will

1
be convenient to use a time unit T = 2 - 524,288 sec, or about

— 2 - -1
6 days, whereupon | = 148 m sec 2 and V =17.2 m sec .

If the total kinetic energy of the atmosphere is somewhat
uncertain, the allotment of this energy to different portions of the

spectrum is much less certain, We shall therefore simply choose an

analytic expression for Xh , Which makes X°= o] , gives
\{K a maximum in the long-wave or synoptic scale ( Rk = 2,3,4),
and allows ><k to fall off according to some power law for large

values of }{ . The "'minus-five~thirds law'" for the energy per unit
wave number, which appears to be characteristic of certain turbulent
fluids, and which would make the energy per unit logarithm of wave
number vary as the -2/3 power of wave number, seems to place a reason-
able amount of energy in the cumulus scales (say R = 13,14,15).

Accordingly, in our first experiments we shall let
-2k/3 -k
Xh = C (P / - ‘0 ) (52)

the factor C. being chosen to make E = |/ .

Table 1 contains values of \r; as determined by
formulas (52) and (50). We see that nearly half of the energy is
contained in the first three scales, with wave lengths greater than
5000 km, while about one per cent of the energy is contained in wave

lengths less than 10 km,
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Table 1. Maximum wave length & T bjh included in scale K R
and energy (dimensionless units) in scale h_ in Experiments A,

B, C and Experiment D,

h i f N‘;‘ YK : Ex, A,B,C Yk: Ex, D
1 40000 km .0925 .0925

2 20000 .1970 .1970

3 10000 .1935 .1935

4 5000 .1566 .1560

5 2500 .1160 .1160

6 1250 .0817 .0694

7 625 .0558 .0299

8 312 .0373 .0126

9 156 .0246 .0053
10 78 .0160 .0022
il 39 .0104 .000879
12 19531 m .0067 . 000356
13 9766 .0043 .000143
14 4883 . 0027 .000057
15 2441 .0017 .000022
16 1221 .0011 . 000009
17 610 ) .0007 . 000004
18 305 .0004 .000001
19 153 .0003 . 000000
20 76 .0002 . 000000
21 38 .0001 . 000000
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Table 2 shows the corresponding values of the constants
(:kg . For brevity it is confined to values of k and 2 from
1 to 9, but it reveals several distinctive features which also hold
for larger values. The negative numbers on the main diagonal, together
with positive numbers off the diagonal, indicate that errors initially
confined to one scale of motion will spread to neighboring scales.,
This spread will be most rapid for the smallest scales, as indicated
by the larger numbers in the lower portion of the table., The positive

sum in each column indicates that the error energy will grow,

The very small values in the upper right indicate that there is
virtually no direct effect of small-scale errors upon larger scales,
except upon scales only slightly larger. The large numbers in the
lower portion indicate a strong direct effect of large-scale errors
upon smaller scales., From the point of view of a single small-scale
eddy, the total large-scale flow is virtually rectilinear, and simply
displaces the eddy; thus the magnitude of the error in predicting the
position of the eddy will depend upon the magnitude of the large—scale
error, but not upon its distribution among the various scales, whence
the numbers in a given row in Table 2, to the left of the main diagonal,

are nearly equal.

As for larger values of k and 2 s Clllo is very close to
]

Zero = 209,600,000 andC: = -366,900,000, for example.
) cza‘ b) ) ) 2 0, 20 ) P > P
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Table 2. Values of coefficients C:kQ , for
k) L = b, ===, 9 , used in Experi-

ments A, B, C.

2 =1 2 3 4 ) 6 7 8 9
0.19 0.26 0.07 0.02 0,00 0,00 0.00 0.00 0.00
2.86 0.41 1.80 0.23 0.05 0.01 0.00 0.00 0.00

14.42 10,22 -1.21 8.73 0,68 0.13 0.02 06.00 0.00
45.8 44,9 33.1 -12.6 34.1 1.9 0.4 0.1 0.0

133.6 133.0 130.4 101.3 -61.8 117.8 5.3 1.0 0.2

372.4 372.0 370.3 362.3 298.1 -237.1 375.1 14.1 2.5
1010 1009 1008 1004 983 851 -804 1131 37
2686 2686 2686 2683 2670 2615 2373 -2526 3280
7053 7053 7053 7052 7044 7010 6864 6496 ~-7538
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6. Numerical experiments

In our first numerical integration (Experiment A), we consider
. . e . ~16 E?
the behavior of an error which initially has a magnitude of 2
and is confined to the smallest scale of motion. The initial root-
. . -8 \/ -
mean-square velocity error is then 2 , or about 7 cm sec . We
know of no method, incidentally, by which the smaller scales of motion

in real fluid systems can be observed with comparable accuracy.

We now encounter one difficulty, 1If the error energy were
initially confined to some intermediate scale, say the mth scale, the
total error energy would shortly afterward increase, as indicated by
the positive sum of the numbers in the mth column of Table 2, but the
amount in the mth scale would decrease and spread to adjacent scales,
as indicated by the negative numbers on the main diagonal in Table 2
and the positive numbers on the adjacent diagonals. Subsequently some
of the error energy which has spread to scales M-} and ™+
would spread back to scale WM . However, when the initial error is
confined to the smallest scale, the error energy which should spread
to even smaller scales is simply lost, and the total error energy may
decrease, This loss of energy is fictitious, resulting entirely from

not including scales beyond WV |

In the present instance we can resolve the difficulty by retain-
ing more scales than we actually wish to study. Accordingly, we retain

21 scales, but assume that the results are valid only for scales 1
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through 20, Initially, then, Z,= "~ - Za = O ’

-lé
‘Z;o = 1 za_, = o *

Through trial and error we have found that a suitable initial

/

-15
time increment Bt is 2 units, or 8 seconds. As each ZK
successively reaches its limiting value \/ , We lincrease FaNy o
k
by a factor 22/% = 1.5874, until, when only 7, has failed to

attain its maximum, At = 2_5/3 units = 23 hours.

Experiment A was completed with 109 iterations., After 22 iter-
ations or 2.9 minutes, when ZZ;\ becomes as large as \(3, s
only the variables :Zr7 through 7, have become appreciably
greater than zero, It was found, in fact, that throughout the exper-
iment not more than five of the variables which had not attained
their maxima were noticeably different from zero. Subsequent experi-
ments which capitalized on this result by varying only a few variables
during each iteration were performed with as few as 20,000 arithmetic
operations, in contrast to the 1012 operations typical of many of the
large general-circulation experiments, In fact, if no digital computer
had been available, Experiment A could have been performed with a desk
calculator in a few days (excluding the time needed for the original

determination of the coefficients C:hQ ).

Whereas ;Zlo and :Z;\ oscillate to some extent before
reaching their maxima, all the remaining variables increase in a mono-

tone fashion. Actually each variable passes its maximum in the middle
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of a time step, and overshoots; it is then set back to its proper
maximum value before the next iteration is begun. The time 1;K at
which 2211 passes \1g is readily estimated by linear inter-

polation,

The values of t’k for Experiment A appear in Table 3.
Errors in the smallest scales evidently develop and reach their max-
imum intensity in the course of a few minutes, ‘The cumulﬁs écales
(13-15) have a range of predictability of almost an hour, while the
synoptic-scale motions can be predicted a few days ahead, Predict~

ability of the largest scale disappears after 16.8 days.

Fig, 2 summarizes the results of Experiment A. The error-energy
spectra are shown at selected times. In order to obtain sufficient
detail in the smaller scales, and at the same time allow equal areas
in the diagram to represent equal amounts of energy, we have plotted
interpolated values of the error energy per unit wave number, multiplied
by the 5/4 power of wave number, i,e., K‘/ch (\4) , against K—l/* .

v/
The heavy curve is K X(K) o

The area under a thin curve represents the total error energy

G; at the indicated time, while the area under the heavy curve re-

presents E: . The error energy is seen to double very quickly
while it is confined to the smaller scales, but by three days (; has
attained one half the value of E; and its subsequent growth is

b

much less rapid.
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Table 3. Range of predictability tk for scale k

as determined in Experiments A, B, D.

kR tk Ex. A tk : Ex. B tk : Ex. D
21 2.9 min 1.8 min 1.5 min
20 3.1 2.0 3.1
19 4.0 2.9 6.2
18 5.7 4.4 13.0
17 8.4 7.1 46.5
16 13.0 11.6 1.8 hr
15 20.3 18.8 3.3
14 32.1 30.6 5.5
13 51.1 49.5 7.6
12 1.3 hr 1.3 hr 10.7
11 2.2 2.2 14.5
10 3.6 3.5 19.4

9 5.8 5.7 1.1 day

8 9.5 9.4 1.4

7 15.7 15.6 1.8

6 1.1 day 1.1 day 2.3

5 1.8 1.8 2.9

4 3.2 3.2 4,2

3 5.6 5.6 6.5

2 10.1 10.1 11.1

1 16.8 16.7 17.6
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From a closer study of Table 3 we can infer what the result
would have been if much smaller scales of motion had been included.
Except for the smallest scales retained, where the effect of omitting

still smaller scales is noticeable, and the very largest scales,

where ><h does not conform to a -2/3 law, successive differences
. -2/3

{;k - t:h+\ differ by a factor of about 2 . If one chooses

to reevaluate by summing the terms of the sequence tq—'t a B

t.}~'t3) --- , one is effectively summing a truncated geometric

series. If Y\ had been chosen larger, the series would simply
contain additional terms., Even with = 00 , this series would
converge to a value only about 2 minutes greater than its value for
“n= a0 . It thus appears that with an arbitrarily small initial
error, confined to an arbitrarily small scale, the range of predict-
ability of the present model is still about 16.8 days., If we can
trust the various assumptions used in deriving and solving the equa-
tions, we must conclude that the system falls in the third category

previously enumerated, and possesses an intrinsic finite range of

predictability.

In the second experiment (Experiment B), whose results are
also summarized in Table 3, we have again chosen an initial error of
magnitude 2716 | , but we have confined the error to the largest
scale of motion. Thus initially :Z‘ = 3:16 J :Z;_: -~ T 23;4 = O
Although errors in the larger scales do not amplify rapidly, they

quickly induce errors in the smaller scales., These then behave in
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essentially the same manner as if they had been present initially.
As a result, the two experiments indicate comparable ranges of pre-
dictability for all scales of motion. Evidently when the initial
error is small enough, its spectrum has little effect upon the range

of predictability.

Our final experiment (Experiment C) using the same spectral
function Xx‘ is designed to reveal how much predictability one may
expect to gain by reducing the initial error by a factor of two.

The experiment consists of eight separate runs (Runs Cl,~---, C8);.
in the jth run the initial value of each ka is 2:;}\(h .
Thus the root-mean-square velocity error in the jth run is 2;)'\/ .

For‘Run Cl it was necessary to choose an initial time incre-
ment AY of 2--21 units = 1/8 sec. This was doubled each time the
error in one scale attained its maximum value., Successive runs used
successively larger initial time increments, increased during the

runs by successively smaller factors, until Runs C7 and C8 used the

same time-increment scheme as Experiments A and B.

The results appear in Table 4, Turning first to Run Cl,
we note that even with an initial root-mean-square velocity error of
v/ & - -
, or nearly 9 m sec , the synoptic-scale systems have a
range of predictability of a day or more, while the planetary scales
retain some predictability for more than a week. With the smaller-

scale systems the situation is different. Systems with wave lengths

-126-




Table 4. Range of predictability '{.k for scale V{

as determined in Rumns Cl, -- -, C8 of Experiment C.

R t X c1 c2 c3 c4 c5 cé6 c7 cs
21 0.6 s 1.6 s 2.7 s 5.5 s 11 s 23 s 53 s 1.8 m
20 1.2 2.6 5.0 io 21 40 101.m 2.0
19 2.4 5.0 10 21 41 1.2 m 1.9 2.9
18 4.8 10 21 43 1.3 m 2.3 3.4 4.4
17 9 21 43 l.4m 2.6 4.3 5.9 7.1
16 19 43 1.5 m 2.9 5.1 7.9 10.2 11.6
15 39 1.5 m 2.9 5.6 9.7 14.0 17.1 18.8
14 1.3 m 2.9 5.6 10.9 17.8 24.3 28.2 30.6
13 2.6 5.8 11.4 20.8 32.3 41.3 47.0 49.35
12 5.2 11.7 22.6 39.6 57.5 1.2 h 1.3 h 1.3 n
11 10.6 23.3 44.0 1.2 h 1.7 h 2.0 2.2 2.2
10 21.5 46.7 1.4 h 2,2 2.9 3.3 3.4 3.5

9 42,6 1.5 h 2.8 4.1 5.0 5.5 5.6 5.7

8 1.5 h 3.1 5.2 7.2 8.5 9.1 9.3 9.4

7 3.0 6.0 9.6 12.7 14.4 15.2 15.5 15.6

6 6.1 11.9 17.8 22.3 1.0 4 1.1d l1.1d 1.1 d
5 12.8 23.8 1.4 d 1.6 d 1.8 1.8 1.8 1.8

4 1.1d 2.0d 2.6 2.9 3.1 3.1 3.1 3.2

3 2.5 4.0 4.8 5.3 5.5 5.6 5.6 5.6

2 5.7 8.0 9.2 9.8 10.0 10.1 10.1 10.1

1 10.7 14.3 15.8 16.4 16.7 16.7 16.7 16.7
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less than 40 meters have a range of predictability of less than a
second. This possibly surprising result could nevertheless have

been anticipated without any computation; the uncertainty in the
position of individual small-scale eddies increases by about 9 meters
during each second, and the range of predictability in this case is
simply the time required for this uncertainty to reach a quarter of

a wave length,

In Run Cl, the range of predictability continually doubles as
the wave length doubles, The times 1:k in this case do not repre-
sent times required for small-scale errors to induce larger-scale
errors, but are simply the times required for the positions of suc-

cessively larger scales to attain quarter-wave-length uncertainties.

In Run C2, the range of predictability is about twice that in
the first run, for all scales except the largest. Ultimately, however,
there is for each scale a point where cutting the initial error in
half fails to double the range of predictability, and, indeed, fails
to increase the range by more than a few minutes., Likewise, in each
run there is a point where doubling the wave length fails to double
the range. It is at this point that the spread of errors from smaller
to larger scales becomes appreciable., Run C8 is hardly distinguishable
from C7 except in the smallest scales, and it appears that further
reduction of the initial error would not greatly lengthen the range

of predictability of any scale,
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The times T’K in Run C8, incidentally, are almost indis-
tinguishable from those in Experiment B. In summary, it appears
likely that the system considered in Experiments A, B, and C has an

intrinsic finite range of predictability.

The coefficients C;hz appearing in Table 2 depend strongly
upon the spectral function ><h , and so presumably do the results
of the experiments just described. Our final integration (Experiment D)

uses a different spectral function,

The new spectrum follows a minus-seven-thirds rather than a

-4k /3

minus-five-thirds law, so that )(k varies as 2 rather than

-2k/3 for large values of k , whence there is far less energy in

2
the small scales. We have obtained new values of )<k by retaining
the old values for k,: o ,--—,E; , and multiplying the old values

by successive powers of 2—2/3, i.e., by 2_2(k_5)/3, for R > 5

The new values of \/k are included with the old in Table 1,

The initial conditions have been chosen as in Experiment B,
Again the values of t;k appear in Table 3. We note first that in
Experiment D the errors develop much less rapidly in the smaller '
scales (except scales 18-21), the cumulus scales having a range of
predictability an order of magnitude longer. Once the errors have
reached the larger scales, however, they grow as rapidly as in
Experiment B, whence the range of predictability is only slightly

longer.
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As in the earlier experiments, one may also in Experiment D
represent tl as the sum of the differences t‘~ 't;) tg,‘-tts) ST T .
The series is again geometric, except for the largest and smallest

scales, but successive terms differ by a factor of about 2—1/3,

rather than 2_2/3° Including all scales of motion would appear to

increase the range of predictability by about three hours, rather

than two minutes.

We note also that E <y in Experiment D. If the values
of X:k were all multiplied by 1.141, to make E =1 , the times
f;k would all be multiplied by 0,936 = (1.141)-1/2, whereupon the
range of predictability would be reduced from 17.6 to 16.5 days,
which is nearly the value in Experiment B. Indeed, it is possible
that as long as a system falls in the third category, the intrinsic
range of predictability may depend mainly upon the total energy rather
than on the details of the spectrum, Of course the range depends in

addition upon the wave length of the largest scale of motion; in

dimensionless units (T =\ ), the range seems to be about 2.7.

We shall not present any further numerical experiments. How-
ever, in view of those already performed, we may hypothesize that if
-3Ffk
Xk varies as ok for large values of k , the successive
-(-8)k
differences -tk - thﬂ vary approximately as ; .
It would follow that if the energy per unit wave number obeys

a minus-three or higher negative power law, so that ﬁ?Z;! , the series
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for t’k will fail to converge. In this case the range of predict-
ability may be made arbitrarily large by making the initial error

sufficiently small, and the system will fall in the second category.

7. Applicability to real fluid systems

In the previous sections we have been considering idealized
fluid systems. These systems have been deterministic, in the sense
that the exact present state determines the exact state at any
future time, It appears nevertheless that certain of these systems
possess an intrinsic lack of predictability; specifically, at any
particular range there is a definite limit beyond which the expected
accuracy of a prediction cannot be increased by reducing the uncer-
tainty of the initial state to a fraction of its existing size. In
this respect these systems are like indeterministic systems, differ-
ing only in that the latter systems cannot be perfectly predicted
even when the uncertainty of the initial state is reduced to zero.
It is appropriate to ask at this point whether real fluid systems

possess a similar lack of predictability.

In attempting to answer this question we are immediately
confronted by the fact that we do not know the governing equations
for any real systems, We need not invoke Heisenberg's Principle of
Uncertainty to make such a statement, nor do we even need to recog-

nize that fluids are collections of molecules rather than continuaj;
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there are processes of somewhat larger scale which are not completely
understood. In the case of the earth's atmosphere, for example, one
process which profoundly affects the future state is the transforma-
tion of clouds into precipitation; we still have much to learn about
how such a process is initiated, What we can do is to consider =a
number of idealizations or models of a real system, each of which is

in certain respects more realistic than the previous one.

In studies where the time-dependent behavior of a system has
been obtained by numerical integration, the state of the system has
necessarily been represented by a reasonably small collection of
numbers. The effects of the smaller scales of motion, if they are
recognized, are expressed parametrically in terms of the larger
scales, Such models may indicate that small initiai errors will
amplify, but there will be a definite minimum time required for
these errors to double in size. For some of the atmospheric models,

this time appears to be about five days.

The models treated in this work, although very crude in many
respects, are more realistic in that they explicitly contain motions
of all scales, As a consequence, they indicate no minimum time for

the doubling of small errors. The smaller the scale, the faster the

growth may be,

The model in which the energy per unit wave number falls off

according to the minus-five-thirds law as the wave number increases
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indefinitely could be made still more realistic. In the atmosphere,
for example, the minus-five-~thirds law is supposed to hold throughout

an inertial subrange extending to wave lengths as short as a few

centimeters, At still shorter wave lengths there should be a dissipa-
tion range, where the energy falls off much more rapidly. If we
modify our model by cutting off the energy at some very small wave
length, as we were forced to do in any event in our numerical solu-
tions, we again find a minimum doubling time, albeit a very short

one.,

If it is true that in certain real systems — possibly the

atmosphere — small errors of any configuration require at least a
few seconds to double, it would not be strictly correct to say that
there is an intrinsic limit to the accuracy with which predictions
can be made. However, a model in which such an intrinsic limit is
present would be much more realistic than one which indicates a

doubling time of several days.

It is thus a matter of great interest to determine the extent
to which the results of this study apply to the atmosphere. Although
we cannot formulate an exact system of governing equations, we can
continually modify the present study by introducing more appropriate
equations or more realistic statistical assumptions. In the mean time,

we can try to anticipate the results of such modifications.
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We note first that the vorticity equation used in our study is
at best a very crude approximation to the atmospheric equations. It
has nevertheless served as a basis for moderately successful baro-
tropic forecasts of the 500-millibar flow pattern. One of its most
obvious shortcomings is its inability to predict the development of
cyclone~scale baroclinic systems, and, on a smaller scale, the develop-
ment of cumulus-type convection. However, the use of an equation
allowing for additional instabilities would be expected to increase
rather than decrease the growth rate of small errors, and would thus
alter our results only quantitatively. We might note also that the
use of an atmospheric spectral function determined from.detailed
observations rather than from a simple formula should also bring
about only qualitative changes, although one might well obtain a
considerably longer range of predictability by including a spectral

gap somewhere between the synoptic and cumulus scales.

Probably a more serious shortcoming of the vorticity equation
is its omission of dissipative effects, Viscosity may be unimportant,
since we have treated all scales of motion as part of the flow. Con-
sequently only molecular viscosity need be considered, and its direct
effect is negligible except on the smallest scales, where it leads to
the already mentioned cut off of energy in the dissipation range.
Similar considerations apply to conductivity. Radiation, however,

can have a significant direct dissipative effect on all scales of

-134-




motion, and its omission may make the model unrealistic. It would
be desirable to repeat the present study with a model where temper-
ature appears explicitly as a dependent variable and where internal
radiative heat exchanges and radiative heat exchanges between the
system and its environment are present. Presumably these effects

would reduce the growth rate.

The effects of the various statistical assumptions used in
the model are more difficult to assess, and they may be much more
serious, The assumptions of homogeneity and isotropy are not real-
istic; the latter assumption does not allow any climatological mean
motion, such as a zonal westerly current, while the former does not
permit variations of any climatological properties from one location
to another. Likewise, the working hypothesis that quadratic functiomns
of the errors and quadratic functions of the flow upon which the
errors are superposed are statistically independent presumably does
not hold in the real atmosphere, and is possibly the feature of our

procedure most open to criticism,

In this connection we should note that such systems as large
cumulus clouds are not ranépmly distributed throughout the atmosphere,
but have a preference for regions containing such meso-scale systems
as squall lines and fronts. These in turn are not randomly distributed,
but prefer certain locations relative to larger-scale synoptic fea-
tures. It would be desirable to repeat the study using some set of

statistical assumptions which takes this sort of systematic nonrandom-

ness into account,
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Despite these shortcomings, we feel that this work suggests
that the earth's atmosphere may possess a certain intrimnsic lack of
predictability. 1Indeed, the evidence is strong enough to make further
investigation of the question virtually mandatory. It is especially
noteworthy that the ranges of predictability of the various scales
of motion obtained in our first three experiments agree remarkably

well with the times deduced by Robinson (1967).

In an earlier paper dealing with predictability, the writer
(1963b) quoted a meteorologist, whose identity he still cannot recall,
as having maintained somewhat disparagingly that if the theory of
atmospheric instability were correct, one flap of a sea gull's wings
would forever change the future course of the weather. If we take
the results of the present study at face value, we might conclude in
addition that such a change would be realized within about seventeen
days. Before accepting this conclusion, we should observe that we
could equally well conclude from this study that one flap of a sea
gull's wings would alter the behavior of all cumulus clouds within
about one hour, Since even sound waves cannot reach distant parts
of the globe in so short a time, it is somewhat difficult to accept
the latter conclusion. It would seem more logical to seek some fea-
ture of the present model which renders it inapplicable to this

particular problemn.

From the point of view of all but the smallest scales of motion,
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a disturbance created by a single flap of a sea gull's wings is a

point disturbance. Let us suppose that after some small time interval,
the smaller-scale errors resulting from an initial point disturbance
have grown to become as large in amplitude as the smaller-scale motions

upon which they are superposed, within a region near the initial dis-

turbance, but that the errors are still undetectable over most of the
globe. The error energy is then still very small compared to the
global kinetic energy in the same scale, and in the procedure used

in this study the linear equations would be assumed to hold. In ac-
tuality, the errors will already have entered their nonlinear phase

of growth, since they are large in those locations where they exist

at all, and they should no longer be amplifying except near the bound-

ary of the region which they occupy.

It thus appears that our method of treating the nonlinearity
greatly overestimates the growth rate when the initial errors are
concentrated at a point, and constitutes another possible shortcoming
of the procedure in the general case. If we should wish to study the
effect of the simultaneous activity of all sea gulls, our method might
still be applicable, after the errors had progressed to a scale com-

parable to the average distance between sea gulls.
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8. Summary

We have proposed that certain formally deterministic fluid
systems possessing many scales of motion may be observationally indis-
tinguishable from indeterministic systems, in that they possess an
intrinsic finite range of predictability which cannot be lengthened
by reducing the error of observation to any value greater than zero,
We have then sought to determine whether certain systems governed by
the two-dimensional vorticity equation fall into this category. We
have not been able to prove or disprove our conjecture, since in order
to render the appropriate equations tractable we have been forced to
introduce certain statistical assumptions which cannot be rigorously
defended. Nevertheless, we have seen that if our statistical assump-

tions are justified, our conjecture is correct.

In the strictest sense real fluid systems are not continua,
and our results do not apply to them. Systems whose motion is highly
turbulent, however, are closely approximated by the idealized systems
which we have considered. It appears likely, then, that certain
turbulent systems, possibly including the earth's atmosphere, possess
for practical purposes a finite range of predictability, which, once
the observations have been refined to a certain point, cannot be

noticeably extended by improving the observations still more.
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