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ABSTRACT

We identify the slow manifold of a primitive-equation system with the set of all solutions that are completely
devoid of gravity-wave activity. We construct a five-variable model describing coupled Rossby waves and gravity
waves. Successive-approximation schemes designed to determine the slow manifold fail to converge when applied
to the model, although they sometimes appear to converge before finally diverging. A noniterative scheme
which demands only that the fast variables be functions of the slow variables yields a “slowest invariant manifold,”
which, however, is not unequivocally stow. We question whether the complete absence of gravity waves can be
logically defined, and we note that the existence or nonexistence of a slow manifold does not depend upon the
convergence or nonconvergence of a power series or a succession of approximations.

1. Introduction

The laws which govern the behavior of the atmo-
sphere permit the simultaneous presence of a number
of oscillation modes. Among these are quasi-geo-
strophic modes, which generally have periods of a few
days, and inertial-gravity modes, whose periods are a
few hours. We shall refer to these modes as Rossby
waves and gravity waves respectively, regardless of
whether they actually propagate as waves through the
atmosphere. In Rossby waves the stream function and
pressure fields tend to be in phase, while in gravity
waves they tend to be 180 degrees out of phase. It was
recognized many years ago that, at least in the tropo-
sphere and lower stratosphere in middie and higher
latitudes, the motion is generally quasi-geostrophic,
implying that Rossby waves tend to dominate,

Reasonably realistic primitive-equation (PE) models
of the atmosphere likewise permit the superposition of
Rossby and gravity waves. In time-dependent solutions
with sufficiently realistic initial conditions, Rossby
waves again tend to dominate, but, with arbitrary initial
conditions, both Rossby and gravity waves are prom-
inent. The latter generally become much less pro-
nounced after a few days if the models include a rea-
sonable amount of damping, so that ultimately the
models may behave like the real atmosphere.

In numerical weather prediction with PE models a
problem arises because even when the initial wind and
pressure fields are both fairly realistic, gravity waves
will occur if the fields are not in proper balance. Ap-
preciable errors in the forecasts will then appear after
no more. than a few hours. In the early days of nu-
merical weather prediction this problem was met by
replacing the PE system by a simpler system of quasi-
geostrophic (QG) equations, which did not permit the

occurrence of gravity waves. It was soon recognized,
however, that QG models possessed other shortcom-
ings. There followed an eventual return to PE models,
but the model equations were integrated only after the
performance of an initialization procedure, whose
purpose was to replace the presumably incorrectly ob-
served initial wind and pressure fields by slightly dif-
ferent fields, which were to be properly balanced, so
that only Rossby waves would occur.

Letting the initial conditions satisfy the geostrophic
equation, which effectively makes the individual time
derivative of the wind vanish everywhere, is clearly an
unsatisfactory initialization procedure, since the second
time derivatives can still be large, and the effects of
gravity waves will simply be postponed. In seeking a
more satisfactory procedure to apply to a relatively
simple model, Charney (1955) noted that if the balance
equation, which more nearly makes the local time de-
rivative of the wind vanish everywhere, is satisfied ini-
tially, it will continue to be approximately satisfied, so
that gravity-wave activity will never become annoyingly
great.

As PE models continued to become larger and more
refined, new initialization procedures appropriate to
these models were developed. Methods in which the
fields of the dependent variables are analyzed into nor-
mal modes seem to be currently favored. The pioneer-
ing works in nonlinear normal-mode initialization were
those of Machenhauer (1977) and Baer and Tribbia
(1977). In principle these procedures involve an infinite
succession of approximations, but in practice only one
or a few approximations are carried out.

Formal treatments of initialization often use the ter-
minology of dynamical-systems theory. Here, each
possible state of the atmosphere, or of an atmospheric
model, is identified with a point in a multidimensional

1547

© 1986 American Meteorological Society



1548

space, while a time-depem'ient solution becomes a tra-
jectory or orbit through the space. For a relatively un-
complicated model the space may possess 3N dimen-
sions, representing three physical variables—pressure
and two wind components, or pressure, vorticity, and
divergence—at each of N grid points. A successive-
approximation initialization procedure, when carried
out to any finite number of approximations, will de-
termine two physical variables as functions of the third
and hence will determine an N-dimensional manifold
in the 3N-dimensional space.

These considerations led Leith (1980) to introduce
the concept of a slow manifold. This is a hypothetical
N-dimensional manifold consisting of those states fol-
lowing which gravity-wave activity will never develop.
It is inherent in the concept that the slow manifold is
invariant, i.e., that an orbit originating at a point of
the manifold is completely contained in the manifold.
It is assumed that on the manifold the values of N
properly chosen variables uniquely determine the val-
ues of the other 2N.

Although convergence of a successive-approxima-
tion algorithm is not guaranteed by the theory, in prac-
tice near-convergence is often attained fairly rapidly.
Thus, in a numerical study of a simple 9-dimensional
model (Lorenz, 1980; hereafter referred to as 1.80) we
- obtained what was indicated by computations, carried
to five décimal places, as being an invariant 3-dimen-.

sional slow manifold.

" There seems to be little doubt that in a typical model,
at least if sufficient damping is present, one can identify
a 3N-dimensional subset on which gravity-wave activity
- is very weak, and which at each point is very thin in
2N directions, i.e., each point of the subset lies close
to an embedded N-dimensional (not necessarily in-
variant) manifold. As an initialization procedure for
practical forecasting, determining a point in the thin
subset should suffice, since weak gravity-wave activity
presents no problem, and is in fact characteristic of the
real atmosphere. Points in the thin subset may be ob-
tained by carrying out a successive-approximation ini-
tialization algorithm for a few steps.

The existence of a slow manifold as an exact N-di-
mensional invariant manifold seems to have first been
seriously questioned by T. Warn (personal commu-
nication, 1983), who based his reasoning on the prop-
erties of the nonlinear equations typically found in at-
mospheric models. He noted that the succession of ap-
proximations produced by some of the initialization
algorithms should be asymptotic rather than conver-
gent, i.e., the changes from one approximation to the
next could temporarily become small but should even-
tually become large again. He thug visualized a fuzzily
defined slow manifold, which would be equivalent to
the thin 3NV-dimensional subset mentioned above.

These ideas have been extended by Vautard and Le-
gras (1986), who prove that in certain cases some of
the successive-approximation algorithms are asymp-
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totic. They also introduce a new algorithm, for which
they prove convergence under certain conditions. Us-
ing high-precision arithmetic, Krishnamurthy (1985)
has shown that the algorithm of L80, applied to the
model of L80, is asymptotic under some conditions
for which it was previously thought to converge.
Meanwhile, Kopell (1985) has established the existence
of conditions where the algorithm of L80 converges.

In the trivial case where the Rossby and gravity waves
are completely uncoupled, i.e., where the system of
equations degenerates into two systems, one governing
Rossby waves and one governing gravity waves, the
slow manifold obviously exists and is obtained simply
by equating all of the gravity-wave variables to zero.
In the more realistic case with coupling, if a suitable
successive-approximation procedure converges, it will
determine an invariant manifold. As we have noted,
if a procedure fails to converge, we can still determine
a precisely defined manifold by terminating the pro-
cedure afier a specified number of approximations, but
the manifold will no longer be invariant.

The purpose of this study is to demonstrate, by
means of a specific example, that nontrivial models
exist where, even when the various successive-approx-
imation procedures fail to converge, there is a well-
defined invariant manifold, satisfying conditions which -
the successive-approximation procedures seck to sat-
isfy. This manifold is not unequivocally slow; in our
example, extensive regions of the manifold appear to
be devoid of gravity-wave activity, but other extensive
regions exhibit unmistakable gravity waves. Since the
manifold is entirely smooth, we cannot identify a
unique partitioning into slow and fast regions. We can
conclude, however, that the existence or nonexistence
of a slow manifold involves something more than the
mere convergence or nonconvergence of an algorithm.

2. The model

The arguments which have been presented for and
against the existence of a slow manifold have been
largely mathematical. They have dealt with the prop-
erties of nonlinearly coupled modes of oscillation with
differing time scales and have not been particularly
concerned with whether the mechanisms producing or
coupling these oscillations are meteorologically real-
istic. Accordingly, in constructing a model to which
the arguments are supposed to apply, we may make
drastic simplifications,. freely discarding unwanted
terms in the equations, provided that we do not elim-
inate the Rossby and gravity waves or their coupling
altogether. ,

In L80, our previously mentioned study, we exam-
ined the interaction of Rossby and gravity waves with
a system of nine ordinary differential equations. These
were derived from the shallow-water equations on an
J-plane by expressing the field of each dependent vari-
able as a double Fourier series and then truncating the
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series so as to retain only three Fourier modes, forming
an interacting triad. The equations, copied from L80,
but with the terms representing forcing, damping, and
orographic effects omitted, are

aidxi/dr = aibx;xi — c(a; — ax;yi + c(a; — a)y;xk
| - ZCZ.VJ.Vk + a;yi — aizi, (la)
adyildr = —aybix; yi — aib; yixi
+ clax — @)y; e — axi,  (1b)
dzi/d-f = —bpxjzk — bizixi + c(yjzx — Z; Y1) + goaiXi.
(1c)

Here (i, j, k) represents a cyclic permutation of (1, 2,
3), while the indices 1, 2, and 3 refer to the three Fourier
modes. The variables x;, y;, and z; are coefficients of
the ith Fourier mode in the expressions for the velocity
potential, stream function, and height of the free sur-
face, respectively, while g; is the square of the ith wave
number; thus, when multiplied by —a;, the variables
x; and y; represent divergences and vorticities. The
constants b; and ¢ are functions of a,, a,, and a3, while
go is a constant which reduces to unity if the Rossby
radius of deformation is used as the distance unit, and
T is time, scaled by the reciprocal of the Coriolis pa-
rameter. The reader is referred to 1.80 for further de-
tails. Equations (1), which constitute a PE model, will
be our starting point.

To simplify Eqgs. (1) we first discard all nonlinear
terms except the “y)” term in (1b), which represents
advection of vorticity. We obtain the simple PE model

dx,-/d-r =y 2z (za)
dyi/dr = ca; ax — a)y; v — Xi, (2b)
dz/dr = goawx;. (2¢)

As in L80, we can derive a QG model from Egs. (1)
by discarding all terms which are nonlinear or contain
n “x” (including the time derivative) from (1a), and
all terms which are nonlinear and contain an “x” from
(1b) and (1¢). Since z; will then equal y;, the remaining
nonlinear terms in (1¢) will cancel, and the result will
be the same as would be obtained from Egs. (2) by
merely discarding the time derivative in (2a). Elimi-
nating x;, we obtain the simple QG system

(goa; + 1)dyi/dr = goclax — a)y; k. 3

Equation (3) obviously does not permit gravity-wave
activity.

The simplifications entering Eqgs. (2) may appear
rather drastic; one could argue, for example, that it
would be more logical to keep the “yy” term in (la)
as well as (1b), or to keep the “yz” terms in (1c), which
do not cancel when the motion is not geostrophic. Our
choice was motivated by the following considerations.

First, we wish the QG model (3) to be a good ap-
proximation to the PE model (2) when gravity-wave
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activity is low. Studies by Gent and McWilliams (1982)
and Krishnamurthy (1985), both using the model of
L80, and the latter extending over a wide range of the
forcing parameter, indicate that when gravity-wave ac-
tivity is negligible, solutions of the balance-equation
(BE) model constitute good approximations to the PE
solutions, while those of the QG model are no more
than mediocre. The BE and QG models derived from
Egs. (1) differ mainly in that the former retains the
“yy” term in (1a). Since Eq. (2a) lacks the “yy” term,
the BE and QG models derived from Eqgs. (2) are iden-
tical and are given by (3), and we may anticipate, even
though we cannot be certain in advance, that (3) will
afford a good approximation to (2).

Second, it is convenient to have Eqgs. (2) possess two
quadratic invariants, rather than only one or none at
all. It is evident that if 2E; = goa;(x* + ¥?) + z7, Eas.
(2) conserve both ZE; and Za; E;; these represent total
energy and total potential enstrophy. If the “yz” terms
had been included in (2¢), only 2 E; would have been
conserved.

It is therefore evident that our model is highly spe-
cialized. It is not our intention in this work to study a
very general model.

To simplify Egs. (2) still further while still retaining
interacting Rossby and gravity waves, we introduce the
quasi-geostrophic approximation for Fourier modes |
and 2, but retain all three time derivatives for mode 3,
i.e., we combine Eq. (3), with { = 1 and 2, with Egs.
(2), with i = 3. We restrict our attention to the case
where a; > a; > as, and let ¢, = cgo(goa; + 1) (a2
— a3), ¢* = cgolgoaz + 1)™'(ay — a3), and ¢5* = cas™'(a
— a;). We let b = (goas)” "7, i.e., b is the ratio of the
wave length of mode 3 to the Rossby circumference of
deformation. Finally, letting u = bcacs i, v = beics ya,
w = bcierys, x = beicoxs, z = bPeicazs, and t = by,
we obtain the equations of our model

du/dt = —vw, (4a)
dv/dt = uw, (4b)
dwfdt = —uv — bx, (4c)
dx/dt = bw — z, (44d)
dz{dt = x. (4e)

3. Properties of the model

Equations (4), like Eqgs. (2), possess two quadratic
invariants, since #* + v* and v* + w? + x% + z2 ob-
viously remain constant. The particular combinations
of these invariants that represent energy and potential
enstrophy depend upon the values of a;; explicit ref-
erence to 4, and a; in (4) has been removed by the
scaling. It follows that the properties of particular so- -
lutions will be strongly dependent on the initial con-
ditions.

Equations (4) also possess a group of symmetries
not shared by Egs. (2). Given any time-dependent so-
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lution, it is apparent that we can obtain another time-
dependent solution by reversing the signs of u, x, and
t. Likewise we can obtain a solution by reversing the
signs of v, x, and ¢, or the signs of w, z, and ¢. These
transformations generate a group of size 8.

Figure 1 shows the simultaneous variations of w and
z in a typical solution. We see shorter-period gravity
waves, with w and z 180° out of phase, superposed
upon longer-period Rossby waves, with w and z in

phase. Extension of the solution to large values of ¢ .

reveals no tendency for either the Rossby waves or the
gravity waves to amplify or weaken. Different initial
conditions would lead to different relative amplitudes
of the Rossby and gravity waves. :

In Egs. (4) the separate variables represent separate
physical quantities. To examine the separate modes of
oscillation it is convenient to transform the equations
to normal-mode form, where the Rossby and gravity
modes are coupled only by nonlinear terms. To do this
welet a = (1 + »*)"12 and then let U = o?u, V = o?v,
W = a*(w+ bz), X = &x, Z = a®(—bw + 2), and
T = a't, 5o that T = (goa; + 1)"*r. We obtain the
system

dUu/dT = —VW + bVZ, (5a)
dav/dT = UW - bUZ, (5b)
dw/dT = -UV, (5¢)
dx/dT = -Z, (5d)
dZ/dT = bUV +.X. (5¢)

Equations (5) possess the same invariants and sym-
metries as Eqs. (4). In what follows we shall work
mainly with Egs. (5) rather than (4).

If U and ¥V both vanish initially, they continue to
vanish, while ¥ remains constant, and X and Z un-
dergo pure gravity-wave oscillations of period 2, gov-
erned by
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dXjdt = -2, (6a)
dzZ/dt = X. (6b)
With X* = 0, the solution is simply
X =—2Z*sinT, - (7a)
Z = Z* cosT. (7b)

Here and subsequently an asterisk (s) will denote an
initial value.

If we could choose initial conditions to produce pure
Rossby-wave oscillations, we would be choosing a point
on the slow manifold. Meanwhile, we can approximate
the pure Rossby-wave solutions, if they exist, by so-
lutions of the derived QG model. When we discard the
time derivative in (5d), Z vanishes, and the model re-
duces to

dUjdt = —=VW, (8a)
dvidt = UW, (8b)
awjdt = =UV. (80

With * = 0 and W* > U* > 0, the solution is given
by the elliptic functions

U= U*cn(W*T), (9a)
V= U*sn(W*T), (9b)
W = W*dn(W*T). (9¢)

These functions have modulus k = U*/W*, while U
and V oscillate with period 4K/W*, where K is given
by the complete elliptic integral
xf2
K= f (1 — k?sin%0)"'d9, (10)
, 0
and W has period 2K/ W*. When k is small, X is close

to w/2, but, when k is close to unity, K is much larger.
Thus, unlike pure gravity waves, pure Rossby waves

[o] 10 . 20

30 40 t 50

FIG. 1. Variations of w (upper curve) and z (lower curve) in a solution of Egs. (4), with
b =05, u* =0.15, v* = 0, w* = 0.15, x* = 0, and z* = 0.1. Integration was performed with
a fourth-order Taylor-series scheme, with time steps of 0.1 units.
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in our model oscillate with a period depending upon
-their amplitude.

We should also note that the elliptic functions in (9)
possess poles in the complex plane, the closest to the
origin occurring at 7 = +{K’/W*, where K’ is also given
by (10), with k replaced by k', and k" = 1 — k2. Power
series in T for U, V and W therefore have finite radii
of convergence. v

We shall call X and Z the fast variables and U, V'
and W the slow variables. In Egs. (5) the fast and slow
variables are coupled by the nonlinear terms that con-
tain b as a factor, so that both the fast and slow variables
generally possess both fast and slow components, and
the coupling generally alters the periods. It may, how-
ever, be justifiable as a first approximation to neglect
the coupling. In this event we find, if k is not too large,
that the ratio of the fast to the slow period is approx-
imately W* (if V* = 0 and W* > U* > 0), and it is
reasonable to regard #* as a Rossby number, at least
when gravity-wave activity is not strong. We shall con-
fine our attention to solutions where U and V undergo
continual zero crossings and W does not.

We should observe that in many models, including
some which have been used as illustrative examples in
slow-manifold theory, the equations governing pure
Rossby waves possess linear terms. These might rep-
resent the g-effect, or orographic effects. In this event
the periods of at least some of the Rossby modes remain
finite as their amplitudes approach zero. It appears that
the convergence or nonconvergence of certain initial-
ization procedures depends upon whether the periods
of infinitesimal Rossby waves are finite or infinite.

4. Successive-approximation schemes

To find points on S, the slow manifold of Egs. (5),
if .S exists, we must obtain unique values of X and Z
to accompany given values of U, ¥ and W. We first
observe that if an orbit is contained in S, reversing the
signs of U, X and T produces another orbit in S, since
the transformation does not affect the slowness of the
vaniables. It follows that at any point of S where U
vanishes, X vanishes also, since otherwise the trans-
formation would produce a new value of X while pre-
serving U, ¥V and W. Similarly, wherever V' = 0 on S,
X = 0. This result allows us to simplify our procedures
for seeking S; we can confine our attention to points
where V vanishes, and, since X then vanishes, we need
seek only Z. Other points on S, if needed, may be sub-
sequently found by following orbits from zero crossings
of V. .

As we have already noted, we may derive a QG
model, which is supposed to approximate the behavior
on S, by discarding the time derivative of X in (5d).
This does not mean that we set X to zero; we simply
do not allow (5d) by itself to say anything about X, We
find in fact from (5e), since (5d) now says that Z = 0,
that X = —pUV. Equivalently, in the QG model derived
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from Egs. (4), z = bwand x = —a?uv. These expressions
for X and x are simply the forms that the w-equation—
a familiar diagnostic feature of operational QG mod-
els—assumes when the model is Eqs. (5) or (4).

A procedure for constructing an improved QG
model which naturally suggests itself consists of taking
the value of X given by the present QG model, and
substituting its time derivative, rather than substituting
zero, for the left-hand side of (5d). The new model
yields a presumably improved value of X. One may,
if one wishes, substitute its time derivative into the
left-hand side of (5d), obtaining yet another value of
X, etc.

This suggests an algorithm, which, if convergent,
should determine the initial values X* and Z* to ac-
company any initial values U*, V* and W*, and thus
should define S. We let X, = O for all values of T, and,
forn=1,2, ---,welet Ut = U*, V¥ =V* W}
= W* and

du,/dT = -V ,W, + bV, Z,, (11a)

dv,/dT = U,W, — bU,Z,, (11b)
aAw,/dT = —U,V,, (11c)
dX,./dT = —Z,, (119

dzZ,/dT = bU,V, + X,. (11e)

From (11¢)—(11e) it follows that
Z, = ~dX bW, + Z,,)/dT> (12)

To determine Z} for any N, we note from (1 1d) that
Z, = 0forall T, whence, for n = 1, (11a)~(11c) reduce
to the QG equations (8), and the initial values of the
first 2N — 2 derivatives of U;, ¥, and W), may be eval-
uated. Having found Z¥ and the first 2N — 2k initial
derivatives of Z,, Ui, Vi and W, we may evaluate
Z%,1 and the first 2N — 2k — 2 derivatives of Z;,; from
(12) and then evaluate the same derivatives of Uy,
Visi, and Wy, from (11a)-(11c). We continue until
we have found Z%. '

In practice, choosing V* = 0 eliminates much com-
putation. The even derivatives of V, and X, and the
odd derivatives of U,, W, and Z, all vanish and need
not be evaluated or used in computing subsequent
values.

In all of our subsequent computations we shall let
goaz = 4, so that b = 0.5. We shall let U* = 0.9W*,
P* =0, and X* = 0. We have chosen the rather high
ratio k = U*/W* to make the elliptic functions (9)
distinétly nonsinusoidal.

Table 1 shows values of Z* when W* = (.1. Also
shown are the successive increments of Z* and the
ratios of successive increments. At first the approxi-
mations appear to converge, but the successive incre-
ments soon decrease less rapidly, and finally increase,
and the approximations diverge. The ratios of the in-
crements are approximately quadratic in n.
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TABLE 1. Successive approximations Z, successive increments
DZ, = Z¥* — Z*,, and successive ratios RDZ, = DZ;/DZ,., for
Scheme M applied to Egs. (5) with b = 0.5, U* = 0.9W™*, V* =0,
and. W* = 0.1. Values of Z, and DZ, shown are to be multiplied by
1078,

n zy Dz, RDZ,
1 . 0 :
2 40 500 40 500 )
3 42 366 1 866 0.046
4 42 560 194 0.104
5 42 598 39 0.199
6 42611 12 0.323
7 42617 6 0.477
8 42 620 4 . 0.660
9 42 624 3 0.872
10 42 628 4 1.113
11 42 633 5 1.384
12 42 642 9 1.684
13 42 660 18 2013
14 . 42 702 42 2.372
15 42 818 117 2.760
16 43 189 370 -3.177
17 44 531 1342 3.624
18 50032 5501 4.100
19 75 368 25336 4.605
20 205 595 130 228 5.140
21 948 465 752 870 5.704
22 5627135 4678 670 6.298

Table 2 shows values of Z¥ for several values of W*.

For W* = 0.05, with output to the number of places
shown, 33 approximations are needed to reveal that
the sequence has not converged. If the computations
had been carried only to the precision of the output,
Z¥ and Z% would have been identical, and all further
approximations would have been identical to Z¥. Ac-
tually the smallest increment, from Z¥s to Z1,, is only
1.5 X 1073, Since determining Z%; involves determin-
ing initial values of 64th derivatives, it is evident that
we are not dealing with initialization of real atmo-
spheric data. For W* = (.15 and 0.2 the behavior is
qualitatively the same, but the illusion of convergence
is gone.
" As discussed by Vautard and Legras (1986), in a
paper which we shall call VL86, the failure to converge
could have been anticipated. From (12) it follows, since
Z 1= 0, that

n—-1
Z,=b 2, (—1)d*W,_/dT?,

=1

(13a)
implying that, if the sequence of approximations con-
verges, :

Z=b 3 (—1)d*wydT%. .

i=1

(13b)

We have seen that the elliptic function of 7" which con-
stitutes the initial approximation W has a finite radius
of convergence K'/W*, and in fact, for large »,
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d>WidT? = 2(—1)"Qm(W*/K'Y"  (14)

when T = 0. If the high derivatives of W behave like
those of /|, the sum in (13b) must diverge for all values
of W*. The alternative possibility, that ¥ has an in-
finite radius of convergence even though W, does not,
seems improbable.

A more common procedure in normal-mode ini-
tialization is to make the derivatives of all the fast vari-
ables vanish in the initial approximation; this would
be in the spirit of the method of Machenhauer (1977).
With the present model, this would lead to an equation
somewhat like (13a), which, if convergent, would again
yield (13b), so that convergence seems equally unlikely.

Actually Machenhauer (1977) determined only the
equivalent of X, and Z,, and he needed a successive-
approximation scheme to do this since he worked with’
a more realistic model, where the fast equations were
nonlinear in the fast variables. Had he proceeded to
larger values of n, he would have needed a double-
approximation scheme. We shall call the procedure of
Egs. (11) Scheme M, even though it does not exactly
follow the method of Machenhauer.

In another normal-mode initialization procedure,
Baer and Tribbia (1977) used a “two-timing” scheme,
letting slow time and fast time, whose rates of evolution
differed by the Rossby number ¢, be separate indepen-
dent variables. They stipulated that for points on §
both the slow and the fast variables be independent of
fast time, after which they could express the variables
as power series in e.

For Egs. (5) their procedure is equivalent to express-
ing the variables as power series in a Rossby number

TABLE 2. Successive approximations Z5(W™*) for Scheme M ap-
plied to Egs. (5), with b= 0.5, U* = 0.9W™*, and V* = 0. Values of
Z2 for W* = 0.05, 0.1, 0.15 and 0.2 are to be multiplied by 10-1,
1078, 10”7 and 1075, respectively. Note break in included values of
n for W* = 0.05.

n Z%(0.05) n Z30.1) Z3%(0.15) Z3%(0.2)
1 0 1 0 0 0
2 306 250 2 40 500 13669 3240
3 512 081 3 42306 15086 3837
4 512233 4 42 560 15417 4085
5 512240 5 42 598 15 565 4282
6 512241 6 42 611 15673 - 4538
7 512 241 7 42617 15788 5026

—_ — 8 42620 15 960 6315

31 312241 9 42624 16 297 10818

32 512 241 10 42628 17 142 30920

33 512243 11 42633 19776 142 502

34 512250 12 42 642 29768 896 505

35 512279 13 .42 660 75093 6991474

36 512 404 14 42 702 317352

37 512990 15 42 818 1824318

. 38 515885 16 43 189

39 530961 . 17 44 531

40 613 709 18 50032

41 1 093 667 19 75 368

42 3995112 20 205595
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¢, which may be taken equal to W*, stipulating that
the constant terms in the series vanish, and then equat-
ing coefficients of like powers of ¢, but only after noting
that the rate at which a solution of (5) evolves is pro-
portional to ¢, and introducing slow time 7" = ¢T. Let-
ting subscripts identify the power-series coefficients,
which are time-dependent, we find that Ut = U¥*,
V=V Wf=W*and U} = Vi = W} = 0 when
n> 1, while, forn=1

UJAT" = ~(V W)t + BV Z)per,  (159)
VAT = (UW)ss = BUZ)ws,  (15D)
dW,/dT" = ~(UV s, (15¢)
/AT = ~Zper, (15)
AZ,/AT' = BUV Yt + X (15¢)

Here (VW),41, etc., denote coefficients of ¢"*! in the
series for the products VW, etc., i.e.,

(VWpr = Vi + <+ » + VW, (16)
since Vy = Wy = 0. From (15) it follows that
Zn = —d 2(b Wn-—2 + Zn—Z)/ d(T’)z' (]7)

We shall refer to the procedure as Scheme BT.
Determining successive terms in the series may be
speeded up by noting that, in view of the symmetries,
U, ¥V, W and Z contain only odd-degree terms in e,
while X contains only even-degree terms. Also, as in

Scheme M, the odd-order derivatives of U, Wand Z -

and the even-order derivatives of V and X vanish. In

principle, Scheme BT does not involve successive ap-

proximations, but, since one must stop evaluating coef-
ficients at some point, one may regard the sum of the
first n odd-degree terms in the expression for Z as the
nth approximation, to be denoted by Z,). Substituting
eT for T" in (17), we obtdin

Zmy = —A bWy + Zin-p))/dT?, (18)

a relation formally identical with (12), which may be
expected to possess similar convergence properties.

In the leading columns of Table 3 we compare the
sequences of approximations in Schemes M and BT,
for W* = 0.2. For the first three approximations the
schemes give identical results; afterward the differences
remain minor. By construction the nth approximation
in Scheme BT is a polynomial of degree 2n — 1 in W™,
Repeated application of Eqs. (11), with V* = 0 and
U* = kW*, shows that in Scheme M the second and
third approximations are 3rd- and 5th-degree poly-
nomials in W™, but the fourth is of 11th degree. Evi-
dently the terms through degree 7 in this polynomial
are identical with the entire fourth approximation in
Scheme BT.

In L80 we adopted a somewhat different approach,
which is in the spirit of the bounded-derivative method
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TABLE 3. Successive approximations Z2? for schemes M, BT and
K applied to Egs. (5), with b = 0.5, U* = 0.9W*, ¥* = 0, and we
= (.2. Values shown are to be multiplied by 10~ ’

n M BT K
1 0 0 0
2 32400 32400 32140
3 38371 38 371 38119
4 40 850 40 849 40 554
5 42 825 42 822 42319
6 45 380 45373 44 148
7 50 257 50 235 46 300
8 63 147 63 059 48 372
9 108 184 107 752 49 497
10 309 199 306 616 49 702
11 1425019 1 406 510 49 634
12 8 965054 8 807 739 49 608
13 69 914 744 68 343 729 49 649
14 : 49716
15 49 768
16 49 784
17 49763
18 49 725

of Kreiss (1979). Here we assumed that because of the
separation of time scales, if slow and fast components
were superposed, the contribution of the slow com-
ponents to the high time derivatives would be very
small compared to that of the fast components, unless
the latter had very small amplitudes. Accordingly, in
our nth approximation we equalized the contributions
by choosing the fast variables so that their nth deriv-
atives would simultaneously vanish.

In the present model, where X and Z are the only
fast variables, and where, when V* = 0, even deriva-
tives of X and odd derivatives of Z vanish, and even
derivatives of Z equal odd derivatives of —X, we
may choose the nth approximation Z} so that the
(2n — 2)nd derivative of Z, vanishes initially. We shall
call the procedure Scheme K.

The final column of Table 3 shows the results. The
sequence first behaves much like the sequences in
Schemes M and BT, but, where the old sequences begin
to diverge more rapidly, the new one begins to oscillate.
It looks as if it might eventually converge, but at
the 29th approximation it suddenly terminates, i.e.,
we cannot find zeros of d°®Z/dT>® close to those of
d*$Z/dT*S. For other values of W*, Scheme K shows
similar oscillating and terminating behavior.

In equating high derivatives to zero we are effectively
solving high-degree algebraic equations. Evidently we
finally reach a point where the roots become complex.

The failure of the method to produce a slow manifold
is again due to the occurrence of elliptic or quasi-elliptic
functions. The assumption that high-order derivatives
of slow components are small compared to those of
fast components breaks down when » is too large, and
ultimately the amplitude of the gravity waves may have
to exceed that of the Rossby waves to make their con-
tributions to the nth derivative cancel. Even if the
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equation for the vanishing of the nth derivative could
be solved for all values of n, it would not necessarily
yield a point close to S.

A considerably different approach is offered in VL86.
The authors propose to find the slow manifold by sti-
pulating that the fast variables be analytic functions of
the slow variables. They expand the fast variables as
power series in the slow variables and determine the
successive coefficients. Their procedure differs from
that of Scheme BT, where the expansion is in powers
of only the initial value of a slow variable, and the
coeficients are functions of time. They present an ex-
ample where the series converges. )

To apply the procedure to Egs. (5) we let X
= ZXuU'VIW* and Z = 2Z,;U'V?W*. Evaluation of
Z;; and Xy in order of increasing values of i +j + k
may be speeded up by an order of magnitude by noting
that Xj; vanishes unless i and j are odd and k is even,
and Zg, vanishes unless i and j are even and k is odd.
We find that Zy; = 0 and X}, = —b, and, for i + j
+k>2, ’

Zige = (4 DX 11 — U+ DXijrne
+ (k + DXi—1j-1k41 — ODZXpmn
X (Zisy—tj1-mp-n — MZi1~pjr1-mp—n)> (192)
X = —(i + DZisyjorp—1 + (J + DZicy jr1 41
—(k+ DZisyjorjeer + DZZyn

X (1Zis 1t jt-mp-n — MZii~Ljr1-mi-n)- (19D)

We shall call the procedure Scheme VL. We have
not tabulated the results, because they prove to be
identical to those of Scheme BT.

The proof of convergence given in VL86 assumes
that the periods of the Rossby waves approach finite
limits as the amplitudes approach zero. The proof
breaks down in our model because the periods become
infinite.

In summary, we have not found a successive-
approximation scheme which converges for Egs. (5).
We suspect that Scheme VL would converge if the
power-series expansion were performed about some
point of S other than a fixed point, but first we would
have to find the point, and finding it would virtually
imply that that we had already found a way to deter-
mine S.

5. The slowest invariant manifold

In this section we adopt an alternative approach to
the slow manifold, which is not beset with convergence
problems. Like VL86, we require that X and Z be
functions of U, ¥ and W, but we do not require that
they be analytic. Our procedure is especially simple to
apply to our particular model, and, in fact, our model
was constructed with application of the procedure in
mind. With a more general model the procedure might
fail.
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Again we choose V* = 0 at time T = 0, whence X™*
= 0 if we are on S. We let W™* > U* > 0 and choose
Z* rather small, anticipating by analogy with the QG
model that U rather than W will undergo zero crossings.
The first row in Table 4 describes the initial state. ‘

We then integrate Eqs. (5) numerically up to the
time T = T, when U first vanishes. Letting subscripts
I denote values at time T, we observe that V;, = U*,
since U2 + V2 is invariant. We do not expect X, to
vanish, but we may alter Z* and observe how X,
changes in response. By suitably modifying Z* we may
be able to make X; = 0. The conditions at time 7,
would then be as in the next row in Table 4.

We now observe that, at time T, reversing the signs
of U, X, and T-is equivalent to reversing 7 only. It
follows that at time 27T, the conditions at time zero are
repeated, with the signs of U and X reversed; the state
is shown 1in the next row of Table 4. Similarly, reversing
the signs of V, X and T at time 27 is equivalent to
reversing 7 only, so that the states at times 37, and
4T, must be as shown in Table 4. The orbit is periodic
with period 47. Since U, ¥ and W do not encounter
the same set of values more than once during one pe-
riod, X and Z are uniquely defined in terms of U, V
and W on the orbit. Repeating the process for other
choices of U* and W*, and assuming that Z* varies
continuously with U* and W*, we can build up an
invariant manifold composed of periodic orbits. This
manifold must be the slow manifold, if the latter exists.
Pending investigation as to whether the manifold is
really “slow,” in the sense that gravity waves are com-
pletely absent, we shall call it the slowest invariant
manifold (SIM).

In our numerical integrations we use a fourth-order
Taylor-series scheme within each time step, and we
choose a time step of 0.1. Thus there are about 63 time
steps in each gravity-wave oscillation, and even for
rather small Rossby numbers the accumulated com-
putational error during one-fourth Rossby-wave oscil-
lation is very small.

The leading row in Table 5 shows the results of ap-
plying the procedure to the four cases examined in the
previous section. These results are compared with the
values toward which Schemes M, BT (or VL) and K
appear to converge before eventually diverging or ter-
minating, defined somewhat arbitrarily as the approx-
imation differing least from the previous approxima-

TABLE 4. Values of U, ¥, W, X and Z at selected equally spaced
times in a typical simple periodic solution of Eqs. (5).

T U v 4 X z
0 u* 0 w* 0 z*
T, 0 u* W, 0 zZ,
2T, -y 0 w* 0 z-
3T| 0 "‘U‘ W; 0 Z|
47T, u* 0 we 0 z*
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TABLE 5. Values of Z*(#W*) on the slowest invariant manifold
(SIM) and values toward which schemes M, BT and K temporarily
appear to converge, for Egs. (5), with b = 0.5, U* = 0.9W*, V* =0,
and selected values of W*. Values shown are to be multiplied
by 1078 .

EDWARD N. LORENZ

Scheme Z%(0.05) Z%0.1) Z*0.15) Z%0.2)
SIM 512241 42 630 152476 399 239
M 5122.41 42624 156 725 428 249
BT 512241 42624 156 724 428 223
K 512241 42 642 161 480 496 961

tion, for Schemes M and BT, and as the average of the
first relative minimum and the following relative max-
imum, for Scheme K. For W* = 0.05 all procedures
agree to six significant figures, and for W* = 0.1 there
is still agreement to three figures, but for W* = 0.15
and especially 0.2 the SIM values of Z* are noticeably
smaller.

Figure 2a shows values of Z* on the SIM for values
of W™ at intervals of 0.01. For the lower Rossby num-
bers the points seem to fit 2 smooth curve, but near
W* = (.18 there is a pronounced irregularity. In Fig.
2b the dots show the ratios of Z*, on the SIM, to (W*)},
while the curve shows the ratios, to (F#*), of the values
of Z* toward which Scheme M appears to converge,
defined now by fitting a cubic in # to the four consec-
utive approximations surrounding the smallest incre-
ment of Z¥, and taking the value of Z* at the point
of inflection. Another irregularity in the SIM near W*
= (.15 becomes apparent, in contrast to the smooth
curve. Evidently further investigation is called for.

The fact that a variable is a function, or even an
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analytic function, of a slow variable does not assure us
that the former variable is slow. Clearly cos(10¢), for
example, is an analytic function of cost, but the periods
differ by an order of magnitude. Our procedure for
finding the SIM is therefore not guaranteed to deter-
mine a slow manifold, i.c., a manifold completely de-
void of gravity waves.

If we temporarily suppress the coupling between the
slow and fast vanables, i.e., if we replace Egs. (5) by
Eqs. (6) and (8), we can easily determine the conditions
which X and Z would have to satisfy to be uniquely
defined functions of U, ¥ and W, Either X and Z would
have to vanish identically, or else the fast period 2=
would have to be a divisor of the slow period 2K/ W*,
i.e., W* = K/(m~) for some integer m. The SIM would
then degenerate into a set of intersecting manifolds.
The simultaneous intersection of this set with the hy-
persurfaces V' =0, X = 0, and U = kW would then be
a set of intersecting lines like those in Fig. 3, which has
been constructed for k = 0.9, so that K = 0.726x. At
low Rossby numbers the horizontal line would clearly
be the slow manifold, while the vertical lines, which
become more and more closely packed as the Rossby
number becomes smaller, would represent sets of orbits
where the gravity waves coincide with overtones of the
Rossby waves. At high Rossby numbers the horizontal
line would still be a Rossby-wave manifold, but it would
be illogical to call it “slow™ since the Rossby waves
would actually oscillate more rapidly than the gravity
waves.

With the coupling restored, we can expect Fig. 3 to
be distorted. In particular, we can expect possible res-
onance phenomena near the vertical lines.

Figure 4 shows what happens. For the smaller Rossby
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FIG. 2. (a) Values of Z* on the slowest invariant manifold of Eqs. (5), corresponding to equally
spaced values of #*, with b = 0.5, U* = 0.9W™, and V* = 0. (b) Values of Z*/(#*)® on the
slowest invariant manifold for the same conditions as in (a). The smooth curve shows values of
Z*/(W*)’ when Z* is the value toward which Scheme M appears to converge.
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FIG. 3. The simultaneous intersection of the slowest invariant
manifold of Eqgs. (5) with the hyperplanes V' = 0, X = 0, and U
= 0.9, when the coupling between the slow and fast variables is
suppressed. The horizontal line is the slow manifold. Vertical lines
are not shown for W < 0.1.

numbers the figures are scarcely distinguishable, except
that the vertical lines have acquired a slight tilt, and
some of them terminate abruptly. For the larger Rossby
numbers the pattern has been drastically altered. Each
horizontal segment, in addition to acquiring a slope,
is joined to the lower vertical segment to the left and
the upper vertical segment to the right, but has become
separated from its neighboring horizontal segments.
Thus the intersection of the SIM with the three hy-
persurfaces has split into disjoint curves, along each
of which there is a continuous transition from near-
vertical orientation.to near-horizontal and back again
to near-vertical. Figure 5, which shows a small portion
of Fig. 4 with an enlarged horizontal and a greatly en-
larged vertical scale, reveals that the curves are disjoint
even where Fig, 4 fails to resolve the breaks. What ap-
peared to be a smooth curve in Fig. 2 therefore contains
singularities which become infinitely closely packed as

2 T T

-2 1 1 i I 1
[+] 2 LA K3 w 8

F1G. 4. The simultaneous intersection of the slowest invariant
manifold of Egs. (5), when b = 0.5, with the hyperplanes V' = 0, X
=0, and U = 0.9W. Quasi-vertical portions of curves are not shown
for W < 0.1.

L6010

0005

) t 1 I 1 1
10 . a2 W A3

FIG. 5. An enlargement of a portion of Fig. 4.

the Rossby. number approaches zero. Within any hor-
izontal segment this curve may be analytic, but it can-
not be analytic at W* = 0, and it is not surprising that
attempts to represent it by a convergent power series
do not succeed.

Qualitatively Fig. 4 looks a bit like the curve Z
= g tan W, while Fig. 3 looks like the limiting form of

. this curve as a — 0. Figure 4 looks considerably more

like the curve Z = g exp(1/ W) cot(K/ W), although the
fit is still not very good. The terminations of the vertical
curves in Fig. 4 are apparently catastrophes which occur
when the gravity-wave component of U, which be-
comes increasingly strong as Z* becomes larger, causes
a zero crossing of U to become.a near miss, or vice
versa,

It therefore appears that there is no unequivocally
slow manifold. Gravity-wave activity may be unde-
tectably small on the horizontal portions of the curves
in Fig. 4, but it is strong on the vertical portions. The
transitions from horizontal to vertical appear to be
smooth, and possibly analytic. If that is the case, and
if we can formulate a precise measure of gravity-wave
activity, there can be no continua within the hori-
zontal portions of the curves where this measure van-
ishes identically. At most the measure can be zero at
isolated points. ‘

An alternative attitude to take is that there is no
logically defined precise measure of gravity-wave ac-
tivity. The Rossby-wave frequencies possess overtones
in the gravity-wave frequency band, and superposed
gravity waves, whose frequencies could be altered
through the coupling, can either enhance or attenuate
these overtones. Since we do not know the functional
form of pure Rossby waves—the elliptic functions are
only first approximations—we do not know precisely
what the amplitude of the overtones would be in the
absence of gravity waves, and we cannot determine the
actual gravity-wave amplitudes by subtraction from the
total signal. The definition of the slow manifold may
therefore be fuzzy simply because the definition of
gravity-wave activity is fuzzy.
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6. Concluding remarks

We have seen that for some models we may find an
invariant manifold by imposing a specific condition—
that the fast variables be functions of the slow vari-
ables—which has sometimes been identified as char-
acterizing the slow manifold. We have been aided in
implementing the condition by the group of symme-
tries in the model that we used.

The question arises as to whether our procedure can
be modified to be applicable to more general models,
which may be far more complicated than ours. Errico
(1984), for example, has studied a model with several
thousand variables, with a single quadratic invariant.
Following initialization with Machenhauer’s scheme,
the flow remains essentially balanced for a month or
more, while the quasi-geostrophic modes approach
equi-partitioning, after which gravity modes intensify
for a year or so, until equipartitioning of all modes is
attained. This suggests the possibility that some other
initialization procedure might keep the gravity modes
undetectable forever, i.e., it might locate a point on
the slowest invariant manifold, but our procedure
would clearly be unsuitable, since most solutions of
the model equations, even without gravity waves, are
not periodic.

The most realistic atmospheric models, as well as
some rather unrealistic ones, include dissipation and
external forcing. In some of these models the dimension
of the attractor is less than the number of slow variables,
and, for most sets of values of the slow variables, any
accompanying values of the fast variables will produce
points not on the attractor. The corresponding orbits,
including any in the slowest invariant manifold, will
therefore represent transient conditions, and again any
procedure for finding the manifold cannot be limited
to a search for periodic orbits.

A more basic question is whether slowest invariant
manifolds even exist in more general models. Until
evidence to the contrary is found, it seems possible
that such manifolds may depend for their existence on
periodicity. On the other hand, the presence of dissi-
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pation may, by suppressing gravity waves, favor the
existence of a slowest invariant manifold, and it may
even make such a manifold truly “slow.”

In any case, the existence or nonexistence of a slowest
invariant manifold does not appear to depend upon
the convergence of a power series or a sequence of
successive approximations. Whether convergence
would somehow remove the fuzziness from the defi-
nition of the slow manifold, or whether it would merely
afford another means of finding the slowest invariant
manifold, remains to be investigated.
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