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It has long been recognized that Jupiter’s visible surface is not a solid surface like that of the moon.
Rather it appears to be something drifting in the atmosphere, like a layer of clouds. Perhaps the surest
evidence for this conclusion is provided by its period of rotation, which varies with both latitude and time.
An outstanding feature is the so-called equatorial acceleration, a region extending several degrees north and
south of the equator whose rotation period is some five minutes shorter than that of the remainder of the
planet, and whose eastward speed is, therefore, some 100 m sec™! with respect to its immediate surroundings.

Astrophysical evidence suggests that the atmosphere may extend to great depths below the visible
surface. There is some evidence, based upon Jupiter’s observed low density, that the planet is composed
largely of hydrogen. The pressures at which hydrogen would no longer be gaseous could exist only at very
great depths. In this paper it will be shown that a simple consideration of Jupiter’s variable rotation period
also yields a rough approximation to the depth of the atmosphere below the visible surface.

For the purpose of computation, it will be assumed that between 12° N and 12° § the visible surface
has the so-called System I rotation period of 9 hr, 50 min, 30 sec and the remaining portion of the visible
surface has the so-called System II rotation period 9 hr, 55 min, 40 sec (see Shapiro (1951)). This
assumption is, of course, a great simplification, but the variations of rotation period which have been neg-
lected are of secondary importance compared to the variation which is taken into account. These periods
apply, of course, to the atmosphere and not to the underlying solid surface. They may therefore be inter-
preted as indicating different wind speeds in different portions of Jupiter’s atmosphere.

In the development which follows, these symbols appear:

horizontal distance, measured northward

vertical distance, measured upward

pressure

temperature .

eastward component of wind velocity, with respect to rotating solid surface
apparent acceleration of gravity, 2.59 X 10° cm sec™

molecular weight of atmosphere

universal gas constant

angular velocity of rotation of solid surface

Jupiter’s mean radius, 69,900 km

fE mImE gy R

¢ latitude, equal to y/a.
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It is natural to regard y and z as independent variables, and p, T and u as dependent variables; but it is
sometimes more convenient to treat y and p as independent variables, and z, T and u as dependent
variables. The subscripts y, z or p may be used outside partial derivatives to indicate which variable is
being held constant.

It seems impossible that the average pressure, temperature and wind fields on Jupiter are not approxi-
mately in equilibrium with each other. The hydrostatic equation, expressing equilibrium between the
vertical forces in the atmosphere, and relating pressure and temperature, may be written

(-3

provided that the atmosphere behaves as an ideal gas. The geostrophic wind equation, expressing equilibrium
between the horizontal forces, and essentially relating pressure and wind, may be written
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The thermal wind equation, relating temperature and wind, and obtained by combining Eqs. (1) and (2)
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These equations, or their equivalent forms, may be found in standard textbooks on meteorology, (see
Haurwitz (1941)).

u=—

may be written

It is evident that the definitions of w and u depend on the period of rotation of the solid core. Since
this period is not known, actual values of w and u cannot be determined. They may be determined, however,
and Egs. (1), (2) and (3) will still be equally valid, if the quantities are defined with respect to some standard
period of rotation, which need not be that of the core.

It is perhaps less obvious, but equally true, that the definitions of y and z depend on the period of the
core. On the earth, horizontal and vertical directions are defined as directions parallel and perpendicular
to the geopotential surfaces. The earth’s geopotential actually consists not only of a gravitational potential,
but also of a potential associated with the centrifugal force due to the rotation of the solid earth (not the
rotation of the atmosphere). Thus the geopotential surfaces are ellipsoidal. To determine Jupiter’s
geopotential similarly, the rotation period of the solid surface must be known. For example, if the core
rotated with the System II period, the geopotential surfaces would be ellipsoids of a certain eccentricity,
and if it rotated with the System I period, they would be ellipsoids of slightly greater eccentricity. A pair
of these hypothetical geopotential surfaces is illustrated in Fig. 22.

On the other hand, the definition of p is independent of the period of the core, and the form of the isobaric
surfaces can be precisely determined. From Eq. (2) it follows that if u = 0, the isobaric and the geopo-
tential surfaces coincide, a result which is almost self-evident. Therefore, within the region of the equatorial
acceleration, the isobaric surfaces coincide with the System I geopotential surfaces, since the wind there
would vanish if the core rotated with the System I period. Similarly, over the remainder of the planet, the
isobaric surfaces coincide with the System II geopotentials. A typical isobaric surface near the visible
surface, therefore, consists of portions of two ellipsoids, intersecting at 12° N and 12° S, as shown in Fig. 22,
From the geostrophic point of view, the kinks in the isobaric surfaces at latitude 12° are identical with the
abrupt changes of wind speed there. '
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System I
Geopotential
Surface
Fig. 22. An isobaric surface .
near Jupiter’s visible surface, Isobaric
composed of portions of two Surface
hypothetical ellipsoidal geopeo-
tential surfaces.
System II
Geopotential
Surface

The geostrophic wind equation (2) also shows that the ellipsoids in Fig. 22, which intersect at 12° N
and 12° S, are separated by 2.2 km at the equator, and by 49 km at the poles. The height, 2.2 km, of the
equatorial bulge of the isobaric surfaces will prove to bear an important relation to the depth of the solid core
below the visible surface.

In trying to determine the depth of Jupiter’s atmosphere, one must bear in mind the possibility of a
very shallow atmosphere, in which the winds just above a shaliow friction layer at the core are equal to
those at the visible surface. The winds at the top of the friction layer exert torques upon the core. The
law of conservation of angular momentum shows that the total angular momentum of the core plus the atmos-
phere must be constant, but it is equally true that over periods of several years, the angular momenta of the
core and the atmosphere must each remain nearly constant, since no progressive changes in the rotation
-periods have been observed. The total torque exerted on the core by the atmosphere must therefore be zero.
Under the assumption of a very shallow atmosphere, this can occur only if the core rotates with a period
intermediate to Systems I and II, so that the equatorial winds blow from the west relative to the core, and
try to drag the core ahead, while the remaining winds blow from the east, and try to hold the core back.

Since the region of the equatorial acceleration covers only one fifth of the area of the planet, the winds
within this region must be stronger than the remaining winds under the proposed balance of torques. The
balance requires a period of about 9 hours, 54 minutes for the core. Under such conditions, the average wind
speed at the top of the friction layer would be about 35 m sec ~%. It is this proposed average wind speed
which will be examined critically.

The wind speed just above the friction layer provides a rough measure of the rate at which kinetic energy
is dissipated by friction. In view of the well-known formula r = xpc® relating the frictional stress r at the
ground to the density p and the wind speed c¢ at some level within the friction layer (Taylor (1916)), it is
possible that the dissipation of kinetic energy varies as the cube of the wind speed. The ultimate source of at
least a large portion of Jupiter’s energy is the sun. The ratio of the energy dissipated by friction to the
energy received from the sun ie therefore a quantity of some interest. Perhaps it may be thought of as the
efficiency of Jupiter’s atmosphere, regarded as a thermodynamic engine doing work against the solid core.

It is easier to compare Jupiter to the earth than to compute this ratio directly. Jupiter receives about
1/27 as much solar energy per unit area as the earth, and, having a somewhat higher albedo, absorbs an
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even smaller fraction. If Jupiter and the earth have the same “efficiency,” Jupiter should have a much
smaller dissipation of energy per unit area, and hence have definitely weaker winds just above the friction
layer, although the exact ratio depends upon the unknown density of Jupiter’s atmosphere. The average
wind speed just above the earth’s friction layer may be 15 or even 20 m sec™’, but can hardly approach
35 m sec™!. The hypothesis that Jupiter has an average wind speed of 35 m sec™! near the core, therefore,

seems to be untenable.

The only remaining possibility is that the winds just above the friction layer are considerably weaker
than those at the visible surface, and may, as a first approximation, be considered negligible. One may then
compute from the thermal wind equation (3) the vertical distance necessary for the winds to decrease from
their speeds at the visible surface to zero, in terms of an assumed horizontal temperature gradient. Alterna-
tively, one may compute the vertical distance necessary for the equatorial bulge in the isobaric surfaces to
disappear. Such a computation will be carried out diagramatically with the aid of Fig. 23.

In Fig. 23, h = 2.2 km is the height of the equatorial bulge, and H is the distance between the visible
surface and the core, at the edge of the equatorial bulge. If T and T; are the mean temperatures throughout
the depth of atmosphere under consideration, at the equator and 12 ° of latitude, respectively, it is evident
from the hydrostatic equation (1) that

whence

_ T )
H“"(TI—T,

Thus the depth of the atmosphere below the visible surface is equal to the height of the equatorial bulge,
multiplied by the ratio of the absolute temperature to the temperature contrast associated with the
bulge. Computation directly from the thermal wind equation (3) yields the same result.

The magnitude of the temperature contrast is a matter of speculation. The absolute temperature
varies by roughly 10 percent across the earth’s jet stream, near latitude 30°. In view of the nearness of
Jupiter’s zone of temperature contrast to the equator, a smaller value, perhaps 2 percent, might be expected.
If the figure 2 percent is a correct guess, the depth of Jupiter’s atmosphere below the visible surface is 110 km.



127

This result, 110 km, is probably of the correct order of magnitude. Beyond this it must be regarded as
only an estimate, for it is obvious that some of the assumptions involved are not proven facts. First, an
agsumed temperature contrast greater or less than 2 percent would result in a computed depth smaller or
larger than 110 km. There may be some justification for assuming a smaller temperature contrast, since
the temperature may be nearly uniform at great depths, if little solar radiation reaches there directly. Next
it was tacitly assumed in Fig. 23, that the core rotates with the period of System II. A more rapid rotation,
making the lower curve in Fig. 23 concave downward, would result in a smaller computed depth, but would
also require increasing temperatures poleward from 12°, to remove the polar bulge. The more reasonable
assumption that the temperature decreases poleward from 12° would lead to a greater computed depth.
Finally, if the winds near the core are merely somewhat lighter than those higher up, the computed depth
should be decreased. If, however, as on the earth, there are equatorial easterlies near the core, the computed
depth should be increased. Together, these considerations suggest that the true depth may be considerably
greater than 110 km.

Even the rejection of the hypothesis that Jupiter has strong winds near the core may not be beyond
question. Perhaps Jupiter’s atmosphere is a more “efficient” engine than the earth’s, or perhaps heat from
Jupiter’s interior plays an important part. Nevertheless, the result that Jupiter’s atmosphere is at least
100 km deep seems as reasonable as any other conclusion which could be drawn from the same observations.

A complete discussion of the vertical extent of Jupiter’s atmosphere should say something about the
extent above the visible surface. No attempt will be made to define the top of the atmosphere; instead,
the atmosphere will be compared to the earth’s. For the earth, if the temperature is 273° K, the hydrostatic

equation becomes

For Jupiter, if the temaperature is assumed to be 150° K, and if the molecular weight has its smallest possible

value, that of hydrogen, the hydrostatic equation becomes
top 1
p oz 24km

If the molecular weight is greater, the pressure falls off somewhat more rapidly with elevation, but it
would require the improbably high molecular weight m = 6 for the pressure to fall off as rapidly as on
the earth. It seems safe to conclude, therefore, that J upiter’s atmosphere extends farther above the visible
surface than does the earth’s atmosphere above sea level, regardless of what definition one takes for the top
of the atmosphere.
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