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ABSTRACT

We note that certain questions regarding climate may be answered either affirma-
tively or negatively, according to the precise manner in which climate has been
defined. We consider the merits and shortcomings of a number of possible defini-
tions of climate, each one formulated in the spirit of the saying, “Climate is what

you expect.” We construct a simple dynamical system, with which we illustrate the

problem of choosing an appropriate definition.




1. Introduction

Many of you will recognize the title of my talk as the leading half of an old aphorism,
which I have encountered on various occasions but have been unable to trace back
to its origin. Together with its other half, “Weather is what you get,” it has often
served to explain to the lay person or the neophyte the distinction between climate
and weather. I should like to propose in this talk that the statement does a good
deal more; instead of merely saying something about climate, it may offer as good

a colloquial definition of climate as can readily be formulated.

Of course some qualifications are needed. Climate is certainly not what you
expect tomorrow, when the weather forecast, which is often rather good, specifies
what is expected. Perhaps one should say that climate is what you expect, or better
yet what you ought to expect, when you are not in a position to make a skillful

weather forecast.

There are many questions regarding climate whose answers remain elusive.
For example, there is the question of determinism; was it somehow inevitable at
some earlier time that the climate now would be as it actually is? Specifically,
have the quasi-permanent features of the atmosphere and the underlying oceans
and land masses—the composition of the atmosphere, the shapes of the continents,
etc.—together with the external influences—solar output, vulcanism, etc.—uniquely
determined the climate that we presently experience, in accordance with the physical

laws that govern the changes in the less permanent or transient features—individual
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storms in the atmosphere, ice in the ocean, etc.? To some the obvious answer is yes;
what else can play a role? An affirmative answer seems to be implicit, for example,
in accounts of regional climate found in some climatology textbooks, which purport
to explain the various local peculiarities. Other climatologists have preferred to
assign a role to some “chance” state at some “initial” time, on the grounds that two
or more distinct climates may well be compatible with the same external conditions.

Today there is a widespread tendency, when seeking to elucidate some phys-
ical phenomenon, to turn at some point to the computer, and perform numerical
computations aimed at establishing quantitative results. If we are to approach the
climate problem in this manner, it becomes apparent that, even though we may feel
that we know what constitutes climate, the answers to various questions such as our
question regarding determinism may depend upon precisely how climate has been
defined. It is quite conceivable that one definition, acceptable to some, will demand
an affirmative answer, while another definition, equally acceptable to others, will
lead to a negative one. Before embarking on a search for an ideal definition, if one

exists, let me express my conviction that such a definition, when found, must agree

in spirit with the statement, “Climate is what you expect.”




2. Definitions of climate

In considering such problems as climatic change and climate determinism, we may
be confronted by two tasks—deciding what climate is, and finding out what the
climate is. That is, we must first formulate a suitable definition of climate. Having
done so, we may wish to determine what, according to this definition, the values
of various climatic elements are, or have been or will be, locally or over the whole

globe, in reality or in specific mathematical climate models.

We are at once faced with a problem. Presumably our practical interest is in
what is going to happen, so that climate ought to be defined in terms of future states
of the climate system—the atmosphere, the ocean, and the upper layers of the land.
If, however, we are to state with any certainty the values of the climatic elements—
average temperatures and temperature variances, average seasonal rainfall, etc.—we
are forced to turn to past states of the system. Perhaps we can look forward to a time
when climate models will allow us to dispense with observations, but the diversity of
results from even the best of today’s models suggests that this time has not arrived.

We may also wish to use our definition in purely theoretical studies, possibly in
the context of a climate model but without necessarily invoking numerical solutions
of the model. We shall find that the definitions that are most convenient for theo-
retical work need not be the ones that most readily permit quantitative evaluation

of the climatic elements.

One possible definition of climate is the set of all infinite-term statistical prop-
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| erties of the atmosphere and its surroundings. Individual climatic elements are
defined as averages or other statistics over time intervals extending indefinitely into
the future, or indefinitely into the past, or both. Such a definition lends itself rea-
sonably well to the estimation of climatic elements from observational data, if the
records are sufficiently long. It also is especially convenient in theoretical studies
in which the climate system is treated as a dynamical system—a system whose
evolution is governed by precise laws, or, more frequently, by equations that rep-
resent such laws. The climate then becomes identifiable with the attractor of the
dynamical system—the set of all states that can occur or be closely approximated
again and again as time progresses, after possible transient effects introduced by

the choice of initial conditions have died out.

Even, and perhaps primarily, in theoretical studies this definition has the dis-
advantage that the climate so defined may not be unique. Stated otherwise, the
dynamical system may have more than one attractor. Averages and other statistics
extending from some initial time to infinity will then depend upon the state assumed
to exist at the initial time. Examples of multiple attractors in meteorological or
fluid-dynamical contexts are not uncommon. In the familiar ultra-simple climate
models of Budyko (1969) and Sellers (1969), with certain values of the constants
the climate will ultimately become somewhat like the one that we currently enjoy,
or else the earth will become completely and permanently ice-covered, according to

the choice of an initial state. In some of the “dishpan” experiments of Fultz et al.
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(1959), where water in a rotating cylindrical vessel is heated near the vessel’s rim
and cooled near the center, a circumpolar jet stream with a chain of five waves may
develop and persist forever, while, with precisely the same rotation and heating
rates but with different initial conditions, a jet stream with four waves may persist
forever. Swinney (1983) has described a laboratory experiment involving Couette-
Taylor flow—flow between two cylinders rotating at different rates—where there are
more than a hundred flow regimes, any one of which, once established, will persist
forever. Here, unless one performs a multitude of experimental runs, one is likely

to conclude that the results are not repeatable.

One can eliminate these difficulties by defining the climate as the set of infinite-
term statistics evolving from some specified initial state, such as a state that has
actually been observed. There remains, however, another difficulty that most of
today’s climatologists would consider far more serious; if the definition is accepted,

climatic change is by definition impossible.

For a modified definition that remains convenient for dynamical-systems stud-
ies, we may let the climate be the set of all infinite-term statistics that would exist,
following some specified initial state, if all external influences were to remain fixed as
they are now. Climatic changes would then occur whenever the external conditions

changed; in effect, every climate change would have an identifiable cause.

Some difficulties remain, however. We cannot readily estimate climatic ele-

ments, so defined, from past observational data, because we do not know when in
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the past the external conditions have changed. Even if we did, the time since the
most recent change might be too short for the sample of observations to be repre-
sentative. Moreover, the climate would by definition change abruptly at the same
time that the external conditions changed, but actual temperatures, rainfalls, and
the like sometimes take many years to complete their response. “What you expect”
a few years after an external change, which may be what really interests you, need
not be “what you expect” many years afterward when conditions have stabilized
again, which is how the climate would be defined. Finally, internally produced

climatic changes would still be impossible, by definition.

An obvious alternative modification would be to replace infinite-term statistics
by averages and other statistics over some rather long but finite time interval.
Climatic changes would then be possible, and, indeed, the climate would probably
be varying continually. The choice of the length of the interval poses some problems;
too short an interval may not capture representative conditions, while too long an
interval might span some changes that would normally be considered climatic, in
which case two or more climates would be averaged together. With the interval
length decided upon, however, it is hard to see how any other meaningful definition
could render the evaluation of climate from observational data, or from simulated
data produced by models, more convenient. The new definition would not be so
convenient for purely theoretical work, since no theory of finite-term properties

of dynamical systems has been developed as fully as the theory of infinite-term
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properties.

We are thus led to a different sort of modification; we replace infinite-term
or long-term statistics by ensemble statistics. To produce our ensemble we start
with a single state of the atmosphere-ocean-earth system. We then construct a
large number of states—in theory an infinite number but in practice a large finite
number—by perturbing the original state a large number of times. Each perturbed
state is supposed to resemble the unperturbed state so closely that if, for example,
the unperturbed state is the present state as observed, incorporating the inevitable

observational errors, any perturbed state might happen to be the true present state.

We now produce a new ensemble by letting each state evolve, according to
appropriate physical laws, for a fixed amount of time—perhaps a year, perhaps less
or more. Because of the chaotic nature of the system, the states will shortly begin
to diverge, so that the make-up of the new ensemble may be rather diverse. We

then define climate as the set of all statistical properties of the new ensemble.

Such a definition is useless if we wish to evaluate the climate from observations;
we can introduce one perturbation if we wish, but we cannot observe the behavior
following each of several perturbations. When we work with models, however, the

new definition eliminates some of the disadvantages of the earlier ones.

Some qualifications are still needed. The fixed time interval through which we

extrapolate cannot be one day, or one week, for then we would simply be dealing

with an ensemble of weather forecasts. At first a month might seem sufficient,



unless we wish to deal with the climate at different seasons of the year, in which
case we would need a succession of time intervals stretching over a year. We must
recognize, then, that some weather elements are predictable more than a month in
advance, at least in the sense that most weather situations—even some that might
well appear several years from now—are almost certain not to appear a month or

two from now.

Among the most prominent features with some extended-range predictability
are those associated with the El Nifio-Southern Oscillation (ENSO) phenomenon.
Probably the best documented of these features is El Nifio itself—the current of
exceptionally warm water that appears every few years, at irregular intervals, off
the coast of South America. Although we cannot say with any confidence what the
phase of the oscillation will be several years from now, we can be fairly certain that
if an El Nifio is not present now, it will not be fully developed a month from now,

while, if it is strong now, it will not disappear within a month.

Ideally, then, our time interval should be longer than the range of predictability
of ENSO, but not so long that changes of climate, or changes ordinarily perceived
as climatic if climate is yet to be defined, are likely to have intervened. Perhaps
four years is a good compromise. What is not necessary is that the interval be long
enough for an individual member of the ensemble to contain a representative set of

states; the size of the ensemble is supposed to eliminate any unrepresentativeness.

Here it is necessary to emphasize that we are looking at climate as something
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that persists over a number of years or decades, and are regarding the sporadic
El Nifio episodes as regular features of the climate. A change in climate could
be marked, for example, by a change in the average frequency with which an El
Nifio appears. Others have looked at climate as something that endures over much
shorter intervals, and they might say that the climate has changed when an El Nifio
appears, and has changed again, possibly to what it was before, when the El Nino
disintegrates. If we take this view of climate, the time through which we need to
extrapolate the members of the ensemble will be much shorter.

Since in any case the climate at one time will be defined in terms of an ensemble
of states at a single time, a change in climate will be indicated if the properties of
the ensemble, obtained by perturbing one state and then extrapolating forward,
differ from those of another ensemble, produced by perturbing an earlier state and
extrapolating. The same or different external conditions may be used in the two
extrapolations, so that either internally produced or externally produced changes
are possible.

In the following section we shall introduce a special model, simple enough to
enable us to make a large ensemble of extrapolations, each extending over a long time
interval, without excessive computational effort. Subsequently we shall determine
or estimate the climate of the model, or some key climatic element, according to
the various definitions of climate that have been proposed, in the hopes of further

revealing some of the strong and weak points of the definitions.
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3. The model

Mathematical models that have been used to study climate have assumed various
forms. In some the climatic elements themselves—average temperatures and the
like—serve as the dependent variables. The day-to-day weather does not appear
explicitly, although its assumed influence on the climate is taken into account.
In other models the variables are instantaneous values of the weather elements,
and of corresponding ocean and land conditions. Extended numerical solutions are

obtained, and climatological statistics are compiled from the numerical output.

The model that we have selected for examining the variously defined concepts of
climate is of the latter type. It possesses some physics, although none of the physics
of real weather. It is simply the end result of applying a number of modifications

and refinements to a very simple model that exhibits almost-intransitivity.

An almost intransitive system is one that can undergo two or more distinct
types of behavior, and will exhibit one type for a long time, but not forever, af-
ter which it will switch to another type, again for a long time but not forever.
Almost-intransitivity is distinguished from mere low-frequency variability by the
absence of any gradual transitions from one regime, i.e., one type of behavior, to
another; typically there is no obvious warning that the regime is going to change
until very shortly before the change takes place. A system where several regimes
are dynamically possible, but transitions from one to another are impossible rather

than infrequent, is called intransitive. We have already noted a few examples.
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There is an old game called Bull in a China Shop; it also is or has recently
been available in toy stores under the name of Skittles. The action takes place in a
rectangular wooden box, open at the top, and partitioned into two or perhaps more
compartments. In each compartment a number of wooden pins stand. A wooden
top is given a rapid spin in one compartment, often by a string that is wound around
its stem and given a strong smooth pull. As the top bounces rather wildly from
wall to wall in its compartment, it may knock over some pins, receiving an indicated
number of points for each pin. A narrow doofway in the partition allows the top,
if it is moving in just the right direction, to pass into the next compartment, where
it will receive higher scores for the pins that it knocks down there. The game is

illustrated schematically in Fig. 1

The game affords one of the simplest examples of almost-intransitivity in a
physical system, although considerably simpler examples defined only by mathe-
matical equations exist (see Lorenz, 1975). The variables of the system consist of
the position and velocity components of the center of gravity of the top, and, strictly
speaking, the rate of spin of the top and the direction in which it may be leaning
away from the vertical. Transitions from one regime to another occur when the top
passes through a door. The top will move with ease within a compartment, but,
particularly if it is moving somewhat irregularly, there may be little indication of
a coming transition until just before the transition occurs. With a few alterations

the game will serve as our model.
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How can such a game have any relation to climate? The global weather is
characterized by the continual passage of migratory storms and other circulation
systems, at irregular intervals but typically with one or a few storms passing a
given location each week. In due time a succession of these systems may bring
about a major change in some feature with a longer characteristic time—perhaps a
circumpolar westerly wind current or a globally averaged temperature. If the time
scale of this feature is long enough, the change will likely be regarded as climatic.
The irregular motions of a top within a compartment will serve as an analogue of
the irregular progressions of migratory storms; in due time they will lead to a change
of regime, as they lead the top to and through a door. Regime changes may or may
not be considered “climatic,” according to their typical frequency of occurrence.
Note that in selecting an almost intransitive system as an analogue, we are making
no claim that the climate system itself is almost intransitive. Almost-intransitivity
ensures the presence of two or more time scales, which the climate system certainly

possesses.

In formulating equations for the behavior of the top, it is simplest to disregard
the fact that the top is even spinning, much less precessing, and to treat it as
a particle that will move in a straight line at a constant speed until it strikes a
wall. It will be assumed to leave the wall at the same speed, its paths before and
after impact making equal angles with the wall. This simplification introduces some

undesired features; in effect, it makes the behavior too regular. If the compartments
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are rectangular, as in Fig. 1, and if we know the position and direction of motion
of a particle, we can easily determine far in advance just when it will pass through

a door.

To make the behavior less predictable, we shall replace the rectangular com-
partments by ones whose sides bulge inward. The curved walls will render the
motion of the particle chaotic, i.e., two slightly different paths will after several
encounters with the wall become quite different, and prediction of the time when
the particle will pass through a door will be rendered impractical until very shortly
before the passage. We have created another problem, however; a simple door will
not join two compartments with inwardly bulging sides. We therefore turn to the
arrangement shown in Fig. 2. An infinite chain of circular arcs, bulging downward,
is placed close to a similar chain in which the arcs bulge upward. Instead of doors in
the arcs there are narrow passages between downward and upward bulges, while the
wide spaces between consecutive narrow passages serve as compartments. Particles
will move around easily within a compartment but will encounter more difficulty
in passing from one compartment to another, so that, to this extent, the system is

almost intransitive.

In a model where we wish a quantitative measure of how rapidly, on the average,
two solutions will diverge from one another, the arrangement in Fig. 2 can lead
to difficulties. A particle striking a wall just to the left of a point where two arcs

intersect may leave the vicinity of the point in a considerably different direction from
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one striking just to the right; in short, the equations may possess discontinuities. It
turns out that this is not the case if the angle at which the arcs intersect is a divisor
of 180°. This result may be verified by the simple experiment of looking into a pair
of vertical mirrors that make an angle with each other; the image of your face will
ordinarily be broken, but it will be continuous if the angle is 90°, 60°, 45°, etc. In

Fig. 2 the circular arcs are 120° in length, so that they intersect at 60° angles.

For a coordinate system we shall let the z-axis be the line midway between
the chains of arcs. We place the origin at the center of one compartment, and let
r assume even-integer values at the centers of the remaining compartments, and
hence at the intersections of arcs, and odd-integer values at the narrowest points of
the passages, as indicated in Fig. 2. The values of y where the arcs are closest to

the z-axis will be +b, and b will be a parameter of the model.

The four variables of the model are the position coordinates  and y of a
particle, and the velocity components u and v. Since u? +v? is held constant, there

are effectively three independent variables. For definiteness we shall let u? +v? = 1.

At those times when the particle crosses the z-axis, the state is determined,
except for the sign of v, by z and u alone; moreover, because of the symmetry of the
system, the sign of v at these times does not affect how z and u will subsequently
vary, so that the values of z and u at one crossing determine the values at the
next. In looking at the model as an analogue of a true climate model, we shall

be primarily interested in the behavior of z, whose variations will prove to have
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something in common with those of the globally averaged temperature.

There remain some shortcomings. First, unlike the real climate system, the
model is conservative rather than dissipative. In a dissipative system, arbitrarily
chosen init‘ia.l states generally represent transient or “unreasonable” patterns, and
will subsequently be avoided in favor of a few “reasonable” states, which form the
attractor. Examples of unreasonable states of the real climate system are those
with preposterously high or low temperatures, and those where the winds blow the
wrong way about the low-pressure centers. In a conservative system, all states are
reasonable; any chosen initial state can be approximated again and again.

Perhaps more seriously, if a particle leaves its initial compartment, there is
nothing to assure us that it will ever return. If it has traveled far to the right, it is
no more likely to proceed leftward than if it had traveled far the to the left. Thus
the long-term mean value of r—our analogue of the global mean temperature—
will not converge as the length of the term continually increases, and nothing will
correspond to a climatological mean value, defined as an infinite-term mean.

Both of these shortcomings can be removed by letting the direction of motion
of the particle, but not the speed, change abruptly, according to a specified rule,
at certain times. We shall let these times be the ones when the particle crosses the
z-axis. If 8 is the angle between the path and a line perpendicular to the z-axis,

before the crossing, and 6’ is the angle after the crossing, we let

tanf' = ktand — [f(z), (1)
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where
f(z) =z —z". (2)

Here k, the damping constant, is between 0 and 1, while [, the restoring constant,
is positive, and z* is the desired climatological mean value of z. We shall refer to
this model as Model A.

Note that tan@ = u/v, while sin§ = u. We have used tan § rather than sin6
or simply 6 in (1) in order to make the system invertible; that is, Eq. (1) can be
solved for 6 in terms of 6’ and z, and the system can be run backwards in time.

It is not immediately obvious that the introduction of the term containing
z* will have the desired effect. Certainly the particle is more likely to be directed
toward z* just after crossing the z-axis than just before, but in most instances it will
soon strike a wall and change its direction. It is only thrbugh numerical computation
that we have assured ourselves that z* does indeed serve as an approximate infinite-

term average of z. With the indicated modifications, the model is ready for use.
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4. The climate of the model

In general one can anticipate that the behavior of a model with several controllable
parameters will be highly dependent on the values of the parameters. In the present
study we shall not be particularly concerned with the nature of this dependence.
Instead we shall vary only z*, and use just one value of each of b, k, and [, rec-
ognizing, however, that different values should lead to quantitatively and possibly

qualitatively different behavior.

We let b = 0.05, the value used in drawing Fig. 2, while k = 0.25 and [ = 0.10,
and in the leading computations we let z* = 0. Figure 3 shows the path of a particle,
starting on the z-axis, with z = 0.2, v = 0.5, and v > 0, and continuing for 20 time
units. The path soon approaches the narrow passage to the left, but fails to pass
through, and returns to the right, where it soon nearly but not exactly repeats its
past behavior, this time passing through to the next compartment. This is perhaps
more easily seen in Fig. 4, which shows time series for z and y for the same period.
The value of z oscillates about 0 for a while, and then about —2, while y has no
choice but to oscillate about 0. The oscillations appear chaotic. Consecutive major
maxima or minima of y, and of = within a compartment, are typically separated by

about 2 time units.

In drawing an analogy between the model and the real climate system, we
shall identify the fluctuations of y, and the higher-frequency fluctuations of z, with

variations that accompany the passage of circulation systems, say with pressure
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variations at one location. Noting that in some regions the systems tend to pass by
at intervals of about a week, we shall let our time unit represent 3 days. Thus the

series in Fig. 4 extend over 2 months.

We could easily make a case for letting the time unit represent 2 days or even
less. On the other hand, computations indicate that small differences between two
solutions tend to amplify about sixfold during one time unit, or 3 days, so that the
doubling time for these differences is about 1.2 days. This is somewhat shorter than
the 2.0 or 2.5 days thought to be characteristic of the atmosphere. Hence we could
also make a case for letting the time unit represent 5 days or even more. Perhaps

3 days is a good compromise.

Figure 5 extends the series for z to 2 years. Evidently the particle, after waiting
only a month before traveling through the narrow passage to the left, ‘Waits about
a year before returning. Figure 6 extends the series to 25 years. The fluctuations
are patently irregular. The details of the short-period fluctuations are no longer
resolved, but the passages from one compartment to another stand out clearly, and
one year seems to be a typical time for the particle to remain in one of the three
central compartments. The rare visits to the compartments centered at —4 and 4
are more brief. There is a strong suggestion that the series is long enough to have

captured the representative behavior of z.

Figure 7 is a probability density function for z, as estimated from a 300-year

run. The range of z from —5 to 5 has been divided into 1000 equal intervals, and
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the number of occurrences of z in each interval, at those times when the particle is
crossing the z-axis, has been counted. The curve has then been normalized so that

the area under it is unity.

Values of z in the central compartment are considerably more common than
those in the two adjacent ones, while the remaining compartments represent rather
rare events. The slight asymmetry and the short upward and downward spikes make
it evident that even 300 years of “data” are only a sample, but we regard Fig. 7 as
a good estimate of the climatological distribution of z, with “climate” defined by

infinite-term statistics.

Figure 8 shows the intersection of the corresponding attractor, as it exists in
a phase space with z, y, and u as coordinates, with the surface y = 0; that is, it
shows simultaneous values of z and u when the particle is crossing the z-axis. The
infinite set of quasi-parallel curves typical of strange attractors is prominent. Even
close to the center of the figure, most points selected at random would fall between
curves, thus representing states avoided by the model. This would not have been

the case with no dissipation, i.e., with k = 1.

Having documented the typical behavior of Model A when z* = 0, we change
z* to —1. Figure 9 shows the new attractor. It is similar in structure to the previous
one, but the new quasi-parallel curves do not quite superpose on the old ones, and,
as expected, the “center of gravity” of the plotted points lies near * = —1 instead

of z = 0. Clearly a change of z* from 0 to —1, an “external” change, produces a
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change of climate, as defined by infinite-term statistics.

We next consider the climate as defined by an ensemble of states at a single
time. We let z* = 0 again, and choose z = —1.8, y = 0, u = 0.5 as an “observed
state.” We then form an ensemble consisting of 10000 states, each rather close to
the observed state. Specifically, in each state we let y = 0, and let the points in
z-u phase space be equally spaced along the circumference of a circle of radius 0.01,
centered at the observed state. The values of z, being close to —1.8, are far from
z*, although, as we have seen in Figs. 6-8, not so far as to be uncommon.

We then perform 10000 numerical integrations, each terminating after 90 cross-
ings of the z-axis, which require about 60 time units, or 6 months, and we plot the
pairs of values of z and u so obtained in Fig. 10. Although the set so constructed is
not an attractor, it has the structure of an attractor at the resolved scales. A glance
reveals that its gross features are far more like those of Fig. 9, where 2* = —1, than
Fig. 8, where z* = 0, even though the curves in Figs. 9 and 10 do not superpose.
With the observed initial state, “what you expect” after 6 months, with z* = 0,
is almost like what you would expect in the far-distant future, with z* = -1. A
climatologist observing a change from something like Fig. 9 or 10 to something like

Fig. 8 would have no means of saying whether the change was brought about by an

external effect or simply by the passage of time.




5. The new model and its climate

In Model A, the variables undergo chaotic fluctuations, with periods comparable
to one week, as the particle bounces from one side wall to another. In due time
these fluctuations bring about changes in regime, characterized by passage of the
particle from one compartment to another. Thus larger-amplitude variations of =
with periods of about a year are produced.

As the model stands, there is nothing that can be expected to produce still
further varigtions with still longer periods. If we have chosen to define climate
in terms of statistics over decades or longer, we cannot expect any significant cli-
matic changes, except those produced by changing the “external” conditions, i.e.,
by varying z*.

We now turn to a second model, which we shall call Model B, designed to
support internally produced climatic changes. It will be defined exactly as Model

A, except that the function f appearing in Eq. (1) will be given by
f(z) = (z — 2*) — ctan™(z/c — z* /c)/ tan"!(1). (3)

As before, there will be a tendency for z to increase whenever f is negative and
to decrease when f is positive. Now, however, f vanishes at z* — ¢, z*, and z* + ¢,
instead of at z* alone, and f is negative where * < z* —cor 0 < z < z* + c and
positive elsewhere. Thus the particle tends to be driven toward the compartment

*

where z = z* — ¢ or the one where 2 = z* + ¢, and away from the one where

z = z*. It follows that in addition to the regimes corresponding to compartments,
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which persist for a year or so, there should be two superregimes, corresponding to
sets of compartments clustered about z* — ¢ and z* + ¢, persisting for considerably
longer. With climate defined in terms of statistics over decades, the superregimes

may represent alternative climates.

We begin by letting z* = 0 and ¢ = 5. Figure 11 shows a time series for z,
covering 25 years, again evolving from the state z = 0.2,y =0, u = 0.5. Within a
few months the particle leaves its original compartment, heading to the right, and
does not return for about 20 years, when it almost immediately departs again, to
the left. During the first 20 years z oscillates about 5; subsequently it oscillates

about —5.

Figure 12 extends the run to 100 years. During this time the particle passes
through the central compartment, centered at 0, a number of times, but the series
is fairly well approximated by two cycles of an oscillation with a 50-year period.
Clearly, with climate suitably defined, there are two rather different climates, and

the changes from one to the other are fairly abrupt.

Figure 13 shows the new probability density function for z. Bimodality, while
not extreme, is unmistakably present, while the asymmetry is much more evident

than in Fig. 7.

A climatologist examining a sample of real data resembling Fig. 12 might well
suspect a 50-year period in some external condition. To see whether, in our models,

external rather than internal influences might produce a curve like Fig. 12, we return
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to Model A, and allow z* to change its value every 25 years from —5 tb 5 or from &
to —5. A 100-year run is shown in Fig. 14. Probably one would not mistake Fig. 14
for Fig. 12; the climatic changes are too abrupt and the whole series is too regular.
This of course does not mean that externally produced changes are generally more
regular than those internally produced; external influences themselves may vary

irregularly.

When we return to Model B with ¢ = 5, but with z* still switching regularly
back and forth between —5 and 5, so that both externally and internally produced
long-term changes are possible, we obtain Fig. 15. Here the resemblance to Fig.
12 is much closer; there is nothing that is dearly the signature of regularly varying
external conditions. Fluctuations in real data often look superficially like Fig. 15.
A climatoiogisﬁ encountering them could not, on the basis of the data alone, say

whether the dominant cause of the changes was external or internal.

As for climate defined in terms of ensembles, we have constructed Fig. 16 in
the manner of Fig. 10, using Model B. We let z* = 0 and ¢ = 5, as in constructing
Figs. 11 and 12, and we let the observed state be given by z = —5.8, y = 0, and
u = 0.5. We forrn an ensemble of size 10000 in the same manner as before, and
perform 10000 numerical runs, each terminating after 360 crossings of the z-axis,
or about 2 years. The values of z are predominantly negative, and are centered not
toq far from —5. Positive values are not prohibited, but negative values constitute

most of “what we expect.” Certainly climate, so defined, is critically dependent on
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the present state.

6. Concluding ‘remarks

The two models that we have examined cannot possibly tell us how the real climate
system will behave. Their properties, including the presence of two preferred time
scales in Model A and three in Model B, have been purposely built into them.

What the models can do is illuminate some of the problems that we face when
we examine real climatic data, particularly if the data have properties similar to
those put into the models. Theyv can demonstrate that externally and internally
produced climatic changes may be hard to tell apart, and they can reveal some of
the advantages and disadvantages of various possible definitions of climate.

Simple models of this sort can presumably be helpful in answering numerous
other questioﬁs relevant to weather or climate. We close by offefing a single illus-
trative example.

It has frequently been suggested that when we cannot readily observe all of
the variables of some system, which is certainly the case when the system is the
atmosphere and its surroundings, we can sometimes recover all of the relevant in-
formation contained in the complete set of variables, at a single time, by dealing
with a subset of the variables, at a succession of times. We may even deal with
a single variable at a long succession of times. States of a system that has been
“reconstructed” in this manner underlie the much used procedure of Grassberger

and Procaccia (1983) for estimating a system’s fractional dimension.
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We turn to Model A, with z* = 0, and consider only those times when the
particle is crossing the z-axis, so that each state is given by just two variables, =
and u, aside from the sign of v, which does not affect the future behavior of z and
u. We then ask whether a knowledge of = alone, at two or more successive times,

is equivalent to a knowledge of both z and u at some particular time.

Our prpcedure will be to ask first what the simultaneous values of @ and u may
be at a particular time ty, given only that * = z' at some time t'. If o follows
t', we can in principle find the possible values of z and u by taking one point in
z-u-space at time t' with £ = z', i.e., one point on the vertical line = 2', and
integrating forward, obtaining a point (zq, ug) at time to; if instead ¢, precedes t',
we integrate backward. We then repeat the integration for each point on the line
g =z’ at t =1t'. Since the equations possess no discontinuities, the points (zg, ug)
so obtained should lie on a curve.

Given next that z = 2" at some other time t'', we repeat the procedure,

obtaining a second curve. The point of intersection of the two curves should then
mark the true values of z and u at to. The only problem is that the curves may

intersect more than once.

In that event, we may go through the integration procedure again, using a third
time t'"" and obtaining a third curve. The three curves must all pass through the
proper point (zg,ug), and it seems rather unlikely that they will all meet somewhere

else.
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Prepafatory to carrying out our procedure with the least effort, welet 11,70, %1
be three consecutive times at which the particle crosses the z-axis. At time t, we
let £ = 2o = 0.2 and u = ug = 0.5, the values used in constructing Fig. 3 and some
subsequent figures. We integrate backward and forward, obtaining the values z_,
at t_; and £, at ¢;. We then “forget” the value of ug and attempt to rediscover it

from two, or three if necessary, of the values x_1, 20, 1.

The simplest possible choice for #' is t; the resulting curve is simply the vertical
line z = zo. With ¢’ = ¢t_;, we obtain the curve in Fig. 17, shown with the line
¢ = z¢ superposed. Evidently the curves intersect in five points, so that uo is not

uniquely determined.

Letting t'" = t;, we obtain‘ another curve, shown in Fig. 18 with the curves of
Fig. 17 superposed. We now find only one point where the three curves intersect,
and it is the correct point (zo,ug). In this model, then, three successive values of
¢ suffice to determine the state at one time, and hence, through integration, at all

times.

Before translating our results to the real climate system, obviously with the
three successive values of one variable replaced by a much longer succession, we
must note that our investigation lacks one feature common to nearly all real-world
systems—the observational error. We can incorporate the effect of the error into our
model by assuming that the “true” values of z_;, 2o, z; differ from the “observed”

values—the ones used in producing Fig. 18—by no more than some quantity . Our
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curves will then be replaced by bands of finite width.

Letting ¢ = 0.05, we obtain Fig. 19 in place of Fig. 18. The correct point
(9, uo) must lie in all three bands, i.e., in the triply shaded area of Fig. 19. We see
that part of this area is far removed from the correct point (0.2,0.5), so that there
is considerable uncertainty as to the true state. The redeeming feature is that the
bulk of the area is near the correct point. Hence one might, for example, be able
to make a useful probability forecast by working with an ensemble of initial states
chosen randomly from the triply shaded area.

The situation becomes worse if we let ¢ become larger, since the bands in Fig.
19 become proportionally wider, and there are more regions of overlap. Likewise,
the situation is worse if we assume that “observations” of z are separated by several
crossings of the z-axis.

We should therefore not be too quick to conclude that we have all of the
information needed for one purpose or another when we have records, even if lengthy
ones, of only a few variables. This warning is consistent with what has been common
meteorological practice for many decades; most weather forecasters will not opt for

single-station forecasting when good synoptic charts are available.

Acknowledgment. This research has been supported by the Climate Dynamics Pro-
gram of the Atmospheric Sciences Section, National Science Foundation, under

Grants 8919099-ATM and 9318422-ATM.

29




REFERENCES

Budyko, M. 1., 1969: The effect of solar radiation on the climate of the earth. Tellus,

21, 611-619.

Sellers, W. D., 1969: A global climate model based on the energy balance of the

earth-atmosphere system. J. Appl. Meteor., 8, 392-400.

Fultz, D., R. R. Long, G. V. Owens, W. Bohan, R. Kaylor, and J. Weil, 1959:
Studies of thermal convection in a rotating cylinder with some implications for

large-scale atmospheric motions. Meteor. Monographs, 4, No. 21, 1-104.

Swinney, H., 1983: Observations of order and chaos in nonlinear dynamics. Physica

D., 7, 3-15.

Lorenz, E. N., 1975: Nondeterministic theories of climatic change. Quaternary Res.,

6, 495-506.

Grassberger, P., and 1. Procaccia, 1983: Measuring the strangeness of strange at-

tractors. Physica D., 9, 189-208.

30




CAPTIONS

Fig. 1. A schematic view of the game Bull in a China Shop, which serves, in altered

form, as the basis for Models A and B.

Fig. 2. A region bounded by two chains of 120° circular arcs that intersect at
60° angles. The z-axis lies midway between the chains. The y-coordinates of the
boundary points nearest the z-axis are £0.05. Models A and B describe particles

moving in the region.

Fig. 3. A sample path of a particle moving in the region of Fig. 2, in accordance

with Model A, with z* = 0.

Fig. 4. The variations of z (upper curve) and y (lower curve) with time, along the

path of Fig. 3. The 20 time units spanned by the path represent two months of

simulated weather.

Fig. 5. The variations of z with time, as in Fig. 4 but extended for 240 times units,

or 2 years.
Fig. 6. The variations of = with time, as in Fig. 4 but extended for 25 years.

Fig. 7. The probability density function for z, in Model A with z* = 0, as estimated

from 300 years of simulated weather.
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Fig. 8. The intersection of the attractor of Model A with z* = 0, as it would
be defined in z-y-u-space, with the plane y = 0, as estimated from 50 years of

simulated weather.
Fig. 9. The same as Fig. 8, but with z* = —1.

Fig. 10. A pseudo-attractor: the set in z-u-space into which the small circle
centered at (—1.8,0.5) is deformed after 90 crossings of the z-axis, when each point

moves according to Model A with z* = 0.

Fig. 11. The variations of z with time over a 25-year interval, as given by Model

B with z* =0 and ¢ = 5.
Fig. 12. The variations of z with time, as in Fig. 11 but extended for 100 years.

Fig. 13. The probability density function for z, in Model B with z* = 0 and ¢ = 5,

as estimated from 300 years of simulated weather.

Fig. 14. The variations of z with time over a 100-year interval, as given by Model

A, with 2* changing from 5 to —5 or —5 to 5 every 25 years.

Fig. 15. The same as Figs. 12 and 14, but with Model B with ¢ =5 (as in Fig. 12)

and z* changing as in Fig. 14.

Fig. 16. A pseudo-attractor: the set in z-u-space into which the small circle

centered at (—6.8,0.5) is deformed after 360 crossings of the z-axis, when each
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point moves according to Model B with z* = 0 and ¢ = 5.

Fig. 17. The vertical line z = z in z-u-space, and the curve into which the vertical

line £ = z_; is deformed after one crossing of the z-axis, with Model A with z* = 0.

Fig. 18. The line and curve of Fig. 17, together with the curve which is deformed

into the line z = z; after one crossing of the z-axis, with Model A with z* = 0.

Fig. 19. The same as Fig. 18, but with the vertical line z = zo, and the lines
r = z_; and ¢ = z; that are deformed into the curves of Fig. 18 by forward or

backward integration, replaced by bands of width 0.10 centered on these lines.
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