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ABSTRACT. We raise the question as to whether the atmosphere should be
treated as deterministic or stochastic, for the purpose of investigating
atmospheric dynamics most effectively. Because the atmospheric
equations are nonlinear; all but special solutions must be sought
numerically. The range of scales which numerical models can handle
explicitly is limited, and the influence of smaller scales must be
introduced through parameterization. The most realistic
parameterizations contain stochastic terms in addition to the
deterministic ones. However, since realistic atmospheric models
ordinarily possess aperiodic general solutions with or without their
stochastic terms, they tend to yield similar results in either event.
The choice between a deterministic and a stochastic formulation of the
equations can therefore be dictated by convenience.

1. INTRODUCTION

Among the many questions which have inspired considerable debate among
4 meteorologists, one in particular has also attracted some prominent
mathematicians: Should the weather be treated as a deterministic or a
stochastic process, for the purpose of making the best attainable
weather forecasts? The differences of opinion have led to the
development of two rather different objective methods of weather
forecasting, popularly known as numerical and statistical weather
prediction. 1In the former method one attempts to predict future
atmospheric states by integrating formally deterministic systems of
differential or integro-differential equations which represent the
governing physical laws, using observed values of atmospheric variables .
as initial conditions. In the latter one attempts to establish formulas
which minimize the expected mean-square error in prediction, using
observations of past weather to determine the numerical values of the
coefficients in the formulas. Former champions of the two methods
include John von Neumann and Norbert Wiener [1].

One should not conclude that practitioners of numerical weather
prediction believe that the atmosphere is deterministic. The assumption
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is simply that, despite any possible randomness, a formally 5
deterministic approach will produce acceptable forecasts. Likewise, tha
use of statistical weather prediction does not presuppose any &
randomness. The assumption is simply that the laws, even if
deterministic, may not be perfectly known or may be too difficult to
apply, and that empirical procedures offer an acceptable alternative.

It might be added that the equations generally used in numerical “
weather prediction, even though formally deterministic, are not derived
exclusively from the physical laws, but contain some empirically
determined functions and coefficients. Likewise, the selection of
predictors to be used in a statistical forecasting scheme is often
guided by a knowledge of the physical laws.

Since we shall be dealing with the general topic of atmospheric
dynamics, let us pose the following more general question: Should the
atmosphere be treated as deterministic or stochastic, for the purpose of
investigating atmospheric dynamics most effectively? Our ensuing
discussion will be directed toward reaching a suitable answer to this
question. o

We must immediately note that the system in whose deterministic or i
stochastic nature we are interested is actually not restricted to the .
atmosphere, but includes also those portions of the underlying oceans
and continents which influence the atmosphere, and which in turn are
significantly influenced by the atmosphere. It therefore includes at
least the upper layers of the ocean and land, and the sea ice and
continental snow and ice cover and soil moisture. We shall nevertheless"
find it convenient to refer to this system as the atmosphere.

We should also point out that neither question is equivalent to
asking whether the atmosphere actually is deterministic or stochastic.

We shall not dwell at length on the determinism of the atmosphere, and
simply note that it is influenced to some extent by human activity,
particularly when that activity consists of clearing large forests or
building dams to create large lakes. Even on rather short time scales,
intentional or inadvertent weather modification through cloud seeding or -’
setting large fires sometimes occurs. Any claim that the future of the
atmosphere is predetermined would therefore imply a claim that human
activity is predetermined. However, our concern in this discussion is

not whether the behavior of the atmosphere involves some randomness, but
whether it is important to take any such randomness into account.

2. OBSERVATIONS AND PHYSICAL LAWS

To deal effectively with the dynamics of any time~dependent system,
whether it is a spiral galaxy, a planetary atmosphere, a glacier, or a
small waterfall, we need a set of observations and a set of governing
physical laws.. Observations are needed first of all to make us aware of
the system's existence, and subsequently with some degree of precision
to reveal the system's typical structure and behavior. The goal of
dynamical studies is to explain the observed features in terms of the
physical laws, and sometimes to anticipate or predict additional
features which have not yet been observed.
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At this point we may ask why the roles of observations and laws

d not be reversed, i.e., why the goal of dynamical studies should
pot be to deduce the physical laws from the observations. The answer is
rhat this might well be the goal in dealing with certain systems. In

o historical times the discovery of the laws of motion was facilitated by

observations of the motions of the planets. In the case of present—day
studies of systems like the atmosphere, we can still deduce rules, some
of which may be useful for weather forecasting or other practical tasks,
put we tend to think of the physical laws are something more basic than
Specialized rules; possibly an extensive set of rules could be analyzed
into basic laws. We also assume that the most basic laws—-the laws of

motion and thermodynamics——are already known with sufficient precision.

Turning to the atmosphere, let us enumerate a few observed
features., Some of the qualitative features are revealed by casual
observation; quantitative measurements may require sophisticated
instrumentation.

First, the atmosphere consists mostly of a gas, with small amounts
of liquid and solid matter. Readily noticed properties are the wind and
the temperature; these vary from one location to another, and at any
location they vary from one time to another. The pressure and density
vary similarly, although the changes at ome elevation might go unnoticed
in the absence of instruments. Most of the gaseous constituents occur
in nearly constant proportions, the most notable exception being water
vapor. At high levels, variations in ozone content are significant,
while over long periods the carbon dioxide content appears to undergo
progressive changes. Liquid and solid water occur in the form of
droplets and small crystals which are suspended as clouds, and larger
drops and flakes which fall out as precipitation. Dust and other solid
matter also occur in variable concentraticns. The state of the
atmosphere may be expressed in terms of the spatial and temporal
distributions of wind components, temperature, pressure, density, mixing
ratios of the various phases of water, and concentrations of other
substances such as dust.

Observations also show that the atmospheric variables are not
randomly distributed, but that certain spatial and temporal
distributions are highly favored over others, so that the atmosphere
tends to be organized into identifiable structures, each having a
typical size and shape, and life span and life history. A partial
listing of these structures, arranged in order of decreasing size, could
include circumpolar westerly wind belts, migratory extratropical
cyclones, tropical cyclones, squall lines, thunderstorms, fair-weather
cumulus clouds, tornado funnels, individual wind gusts, hailstones, snow
crystals, and cloud droplets. Separate occurrences of a particular
structure, other than a cloud droplet, are generally not exact
repetitions, but they tend to have much in common.

The laws governing the atmosphere include the basic laws of motion
and thermodynamics, and some more specialized laws involving such
processes as the absorption, emission, and scattering of radiation by
atmospheric constituents and the changes of phase of water. The latter
are complicated by the occurrence of water in the form of cloud droplets
and ice crystals, and the presence of hygroscopic particles. The laws
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are commonly expressed as a system of mathematical equations. A typical
equation may be written

dx/dt = F, (1)

where t represents time, x represents the value of an atmospheric
variable, such as temperature or a wind component, and F represents the
sum of the physical processes which change x.

As originally formulated the laws apply to a fixed mass. Because
the atmosphere is a fluid whose different parts move at different
velocities, an initially concentrated mass tends to be stretched and
twisted, so that tracing a particular mass may prove difficult. It is
thus more convenient to introduce a coordinate system which is fixed in
the atmosphere, and to rewrite eq. (1) to apply to fixed locations. The
result is

9x/ot = - v . Vx +F, (2)

where v represents the three-dimensional wind vector.,

3. APPLICATION OF THE PHYSICAL LAWS

The difficulties encountered in applying eq. (2) directly to the
atmosphere become apparent when we ask what we mean by a point, at which
eq. (2) is to be applied. Certainly we do not mean a geometrical point,
which would be smaller than a molecule, whence the velocity and
temperature at the point would not even be defined. The use of the
gradient operator in eq. (2) implies that we are treating the atmosphere
as a continuum, and any “point" must actually be large enough to contain
many molecules. Similarly, except in clear air, any point must be large
enough to include many cloud droplets. Values of the variables at such
a point must actually be averages over a region with a diameter of at
least a centimeter.

Further difficulties appear when we note that we do not have
observations spaced at one-centimenter intervals, and, except in
data sets gathered for special studies, we do not even have observations
at ten~kilometer intervals. To apply the equations to globally
distributed observational data, we must therefore interpret “values at a
point” as meaning averages over regions with horizontal extents
comparable to 100 kilometers. For dealing with the internal dynamics of
individual structures, such as thunderstorms, the regions may be
considerably smaller.

These requirements might seem to disappear when we apply the
equations to idealized rather than observed distributions of the
variables, but here another practical difficulty arises. The advective
term -v . Yx in eq. (2) contains the product of one variable, v, with
the gradient of another variable, x, and is therefore inherently
nonlinear., Of course, the function F might also be nonlinear, as in the
case when it represents the effect on temperature of radiative heating
and cooling. Analytic solutions of nonlinear equations generally
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represent specialized cases, with different properties from the general
solutions, and, particularly since the advent of high-speed computers,
it has been customary to seek approximate solutions using numerical
methods. Even the largest computers have their limitations, and at
present it is not practical to solve the equations when the state of the
atmosphere, or of the individual atmospheric structure which is being
studied, is represented by more than about one million numbers. Even
restriction of the data to four physical variables and ten elevations
would allow only 25000 regions at each elevation, and for global
coverage the diameter of a region would still have to exceed 100
kilometers.

It appears, then, that eq. (2) should be replaced by an equation
governing changes of the average values of the variables over rather
extensive regions——-regions which may actually contain many of the
smaller individual structures. One way to do this is to use the
equation of continuity of mass,

dp/ot = -V . (pv), (3)
where p represents density. When combined with eq. (3), eq. (2) becomes

3(px)/ot = =V . (pxv) + ¢F ; (4)
the quantities px and pF are values per unit volume when x and F are
values per unit mass. When averaged over a region, eq. (4) becomes

3 px/ot = =V . (px ¥) = V . (px)'v' + oF, (5)

where a bar over a quantity denotes a regional average, and a prime
denotes a local departure from a regional average. In addition to terms
obtained simply by replacing quantities in eq. (4) by their averages, we
find a new term which depends on variations within the region.

The averaging process which produces eq. (5) entails two new
practical difficulties., First, the regional averages which may be
computed from observational data are generally averages of rather small
statistical samples, and may therefore contain sampling errors. If the
observing stations in a particular region had been established at
slightly different locations, the computed averages at any time would
presumably be somewhat different. A region might contain a single
thunderstorm, and the computed average temperature, wind, and water
content will depend upon whether the thunderstorm coincides with an
observing station. Thus, for example, a realistic processing of a data
set, instead of concluding that the average temperature over a region is
18°C, might more realistically conclude that it is 18°C plus an error,
whose expected absolute value is 1.2°C.

The second difficulty involves the term -V . (px)'v' in eq. (5).
This term includes the transport of the property represented by x across
the boundary of the averaging region by the circulations associated with
structures of smaller spatial scale than the region itself. If, for
example, the regions are 200 kilometers square and 2 kilometers deep,
the term includes the exchange, between vertically adjacent regioms, of
heat and water and possibly momentum by cumulus—cloud circulations. If
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the region is considerably smaller, it may still include transports by
individual wind gusts.

Since these transports often account for important fractions of the
total change of a variable, it is important that the equation which we
finally use in our investigations should not disregard them altogether,
It is presently standard practice to include the effects through
parameterization [ZJ. That is, we assume that the effects can be
expressed reasonably well as functions of the averaged variables which
now appear as dependent variables in our equations.

For example, we might assume that the number and size distribution
and typical structure of cumulus clouds in a region is fairly well
determined by the average temperature, moisture, and wind velocity in |
the region, and the manner in which these averages vary from this region 1
to the regions immediately above and below. From the assumed
cumulus—cloud statistics we could evaluate the amounts of heat,
moisture, and momentum carried upward or downward by the cloud
circulations. We would then include expressions for these amounts, in
terms of the averaged quantities, as additional terms in our equations,

It has been found through experience that systems of equations
which parameterize the effects of unresolved processes can perform
considerably better than those which merely disregard the effects.
Nevertheless, the distribution of cumulus clouds or other small-scale
structures contained in any region or influencing the region at any
instant constitutes at best a statistical sample drawn from the set of
distributions which could conceivably have been present. A cloud which
occupies a region may move out of the region within a few minutes, or it
may alter its shape considerably, during which time the average
properties of the region may not have detectably changed. We therefore
face a sampling problem again; in addition to a deterministic term,
which represents the "expected” or most probable effect of the
unresolved structures, the equations should contain a stochastic term,
representing the distribution of departures from the expected effect.

It appears that this uncertainty in the equations far outweighs any
possible uncertainty due to unpredictable human behavior.

We thus find that averaging produces two types of uncertainty, one
in estimating the initial state, and one in formulating the governing
laws. The effects of these uncertainties on operational weather
forecasts appear to be far from negligible,

Instead of introducing regional averages we may expand the fields
of the variables in series of orthogonal functions, such as spherical
harmonics if the investigation is global, or multiple Fourier series if
it is local. The coefficients in the series then become the new
dependent variables. However, in order to retain a finite system, we
must discard all but a finite number of coefficients in each series;
ordinarily these represent features of small spatial scale., We find
that the difficulties introduced by averaging, although perhaps
slightly alleviated, are by no means eliminated. After all, a Fourier
coefficient is nothing more than an average of the product of a variable
and a trigonometric function, and statistical sampling problems remain.
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It would thus seem that the atmosphere might best be treated as a
stochastic system. That this is not necessarily the case will become
evident after we consider in detail the phenomenon of chaos.

4, CHAOS

The term “"chaos” has been used in mathematical and physical works with a
number of meanings [3]. Often it is used as a synonym for randomness or
lack of complete determinism, so that, in this sense, any stochastic
process would be chaotic. More recently the term has been used to
describe any system which varies aperiodically, or perhaps more often
any system of equations where, in some sense, almost all solutions are
aperiodic [4]. Under the category of periodic solutions we include not
only those which exactly repeat themselves, but also those which
eventually acquire a state arbitrarily close to some previous state,
provided that the evolution following the near repetition remains
arbitrarily close to the evolution following the original occurrence.
We also include any other solutions which asymptotically approach those
solutions which we have already included as periodic.

The distinction between the concepts of chaos more or less
disappears if we confine our attention to finite systems of linear
ordinary differential equations, since the solutions of these equations
are generally periodic if the equations are deterministic, and not
exactly periodic if stochastic terms are added. The concepts differ
when we turn to nonlinear equations, which often have aperiodic general
solutions even if they are deterministically formulated.

Some investigators prefer to reserve the term "chaos” for those
aperiodically varying systems which are governed by formally
deterministic equations. Others liberalize the definition to include
stochastic systems, provided that it appears that the system would
remain aperiodic even if the stochastic part of the governing equations
were eliminated. This modification makes it possible to include real
physical systems, whose actual determinism is likely to be in doubt.

The feature of aperiodically varying systems which has earned them
the designation of "chaos™ is their sensitive dependence on initial
conditions [5]. If a system possesses a finite number of variables, and
if each variable continues to oscillate between fixed upper and lower
bounds, the system will in due time necessarily assume a state
arbitrarily close to some previously encountered state. By definition,
if the system is aperiodic, the evolution following the near repetition
cannot forever remaln arbitrarily close to the evolution following the
original occurrence., If there is no semblance of periodicity, the
evolutions following the two occurrences will ultimately go their own
ways. Thus two states which are nearly alike will ultimately evolve
into two states which lack any resemblance. If, for example, the system
is a chaotic atmosphere and the observations are anything but exact,
there will be no basis for choosing among a number of possible
evolutions, and weather forecasting at some sufficiently distant range
will be impossible.
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The idea that deterministic equations may have aperiodic general
solutions is not particularly new. For a long time, investigators of
fluid turbulence have worked with deterministically formulated systems,
and have assumed that the turbulent motion which satisfies these
equations is non-repetitive. What is relatively new is the general
realization that systems consisting of very few simple nonlinear
ordinary differential equations may have aperiodic solutions.

The possibility of studying chaos with small systems, together with
the general availability of high-speed computers, has made it feasible
to examine the attractors of chaotic systems [AJ. An attractor is
actually a kind of multidimensional graph, and it is most easily
described in terms of the phase space of a system. This is a Euclidean
space with as many dimensions as the number of variables, and these
varibles serve as coordinates. An instantaneous state is thus
represented by a point in the phase space, while a time-variable
solution is represented by an orbit.

A particular point which is approached arbitrarily closely,
arbitrarily often, by a point traversing a given orbit is an attracting
point for that orbit., A point which has a greater-than-zero probability
of being an attracting point for a randomly selected orbit is a point of
the attractor set. This set may be connected, or it may consist of a
number of disjoint connected sets, in which case each of these is an
attractor,

If almost all solutions of a system of equations approach a single
repeating solution asymptotically, the attractor is simply the closed
orbit representing this solution. If the system is chaotic, the
attractor set is generally more complicated. When the system in
question is the atmosphere, points on the attractor set represent states
which are likely to be approximated again and again as the weather
continues to evolve, i.e., states which are compatible with the
climate. For example, hypothetical states where the poles are warm and
the equator is cold, where the surface winds are everywhere of hurricane
strength, or where the winds blow the wrong way around most of the high
and low pressure centers are represented by points which are not on the
attractor set, T

To obtain an approximate picture of an attractor, we may select an
arbitrary initial state and perform an extended numerical integration.
We discard the leading part of the solution as possibly representing
transient conditions, and assume that the remaining part lies as close
to the attractor as the resolution will allow [6]. Unless the system
consists of only two equations, an actual picture is likely to be the
projection of the attractor on a plane, or the intersection with a
plane.

A procedure which is equally good in concept although more
difficult to approximate in practice consists of taking a small sphere
centered at an arbitrary point, and finding the successive shapes into
which the interior of the sphere is deformed as each point in the
interior moves along its orbit. Ultimately the deformed sphere should
look like an attractor, or perhaps several attractors connected by
infinitesimal threads. If the system is dissipative, the volume of the
deformed sphere will shrink toward zero. If it is also chaotic, with
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sensitive dependence on initial conditions, the maximum diameter will
grow. If the sphere is initially very small, it will for a while be
deformed into an approximate ellipsoid. The long-term average rates of
stretching or compression of the axes of the ellipsoid are called the
Lyapunov exponents, and the condition for chaos is that at least one
exponent should be positive [4]. If the equations are differential
rather than difference equations, one exponent will also be zero,
indicating that two points within the sphere moving along the same orbit
will tend to maintain their initial separation. If the system is
dissipative, the sum of the exponents will be negative.

As the deformation continues, the ellipscidal shape will be lost.
In the case of a dissipative chaotic system of three ordinary
differential equations, the deformed sphere will come to resemble a
strip of paper, which is continually becoming thinner but increasing in
area. As the strip is stretched, it is bent and twisted so that it
continues to fit within a reasonably confined volume. In due time
different parts of the strip will be brought close to one another, so
that locally two and then several sheets of paper will appear to be
pressed together, although they will never actually merge. In the limit
there will be an infinite number of sheets, which an ordinary picture
might resolve into several. A transverse line will intersect these
sheets in a Cantor set. An attractor with such a Cantor—set structure
is called a strange attractor [7].

The above arguments may be generalized to systems of more than
three equations. It would be difficult to draw a picture of a chaotic
attractor, or even visualize its shape, in a high-dimensional system, so
mathematicians who are principally interested in the topology of
attractors have tended to use small systems as illustrative examples.
Obtaining a picture of an obviously strange attractor is often an
effective way of convincing oneself that a given system is chaotic.

5. EXAMPLES OF CHAOS

For a first example we shall choose one of the simplest possible
nonlinear systems—-the quadratic difference equation

Xnel = (xp = 2)2 (6)

in the single variable x. Starting with an initial value x( of x, with
0 < xp £ 4, we let x, be the value of x after n applications of eq.
(6). It is evident that O $ % £ 4 for all values of n.

If %y 1s an even integer, the sequence xg, x|, . . . soon becomes a
repetition of 4's, while if x; is an odd integer, it becomes a repetion
of 1's, but, for most non-integer values of x;, the sequence is
aperiodic. Special values of x; where the sequence is periodic but not
steady_include xg = (3 + ¥5)/2 = 2.618, when x alternates between
(3 +vV5)/2 and (3 - ¥5)/2.
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Table I shows values of X when xg = 0.5. The lack of periodicity
k i ak arent. These values are compared with values when x§ = 0,5001,

i id Ege differences are also tabulated. The continual although
aon—uniform increase in the difference, until it becomes large, is
Eypical of the sensitive dependence on initial conditions exhibited by
aperiodically varying systems.

To demonstrate that the solutions are truly aperiodic, we let y,
be one of the solutions of the equation

xy = 2(1 + cos (2my,)), 7

with O { yn < 1. It follows from eq. (6) that

Xn+l = 2(1 + cos (4myp)), (8)

so that eqs. (6) and (7) can be satisfied for all values of n, with 0 <  i‘

yn < 1, if |
Y+l = 2yp(mod 1) . 9

Table I. Values xp' and x,'' of x, determined by

successive iterations of eq. (6) from initial values X' and
1t

Xg'', and difference e = x,"'-x,'.
n xn' Xp'' €n
0 0.5000 0.5001 0.0001
1 2.2500 2.,2497 -0,.0003
2 0.0625 0.0624 ~0.0001
3 3.7539 3.7545 0.0006
4 3.0762 3.0782 0.0020
5 1.1582 1.1626 0.0044
6 0.7087 0.7013 -0.0074
7 1.6676 1.6866 0.0191
8 0.1105 0.0982 -0.0123
9 3.5701 3.6169 0.0468
10 2.4653 2.6143 0.1490
11 0.2165 0.3774 0.1609
12 3.1809 2.6329 -0.5480
13 1.3945 0.4006 ~0.9939
14 0.3667 2.5582 2.1915
15 2.6677 0.3116 -2.3561
16 0.4458 2.8506 2.4048
17 2.4155 0.7236 -1.6919
18 0.1726 1.6292 1.4566
19 3.3394 0.1375 -3.2019
20 1.7940 3.4689 1.6750
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1f yp is expressed in binary notation, eq. (9) simply shifts the bits

of yn one place to the left and drops the leading bit. The sequence

yos Yi» « + -, and hence the related sequence Xg, X1, = « =« is
therefore periodic or aperiodic according to whether the bits of yg are
arranged periodically or aperiodically, i.e., according to whether or
not yg is a rational fraction. Thus almost all choices of yg, and hence
of Xy, lead to aperiodicity. For example, the value xi = 1/2 of Table I
corresponds to yg = (1/2m) cos'l(—3/4), which is not a rational
fraction.

It will not surprise anyone to learn that one can obtain aperiodic
solutions of a discontinuous equation simply by choosing an aperiodic
infinite sequence of O's and 1l's and continually shifting left and
removing the leading member. What is not so obvious until the above
analysis is performed is that the possibility of doing so implies also
that one can find aperiodic solutions of simple continuous equations,
with simple rational numbers as initial values.

Eq. (6) does not possess an attractor with a Cantor-set structure,
because it is not dissipative. In fact, the attractor is the entire
interval 0 < x £ 4, and it is only because two distinct values of xp
can produce the same value of xp4] that a small one-dimensional
sphere, i.e., a segment, is not stretched to infinite length. The
single Lyapunov exponent is log 2, i.e., on the average, the length of a
small segment doubles with each iteration,

The more general equation

Xp+] = (xp - ¢)? (10)

possesses aperiodic solutions for some values of c between l.4 and 2.0,
although in most cases it cannot be converted to an equation like eq.
(9) by a trigonometric transformation. Identification of the
transitions from periodic to chaotic and from chaotic to periodic
behavior which occur ‘as ¢ continually increases constitutes an
interesting problem in dynamical-systems theory.

For examples of chaos more closely related to the atmosphere we
turn first to a system of 12 ordinary differential equations which we
introduced about 25 years ago for the specific purpose of obtaining a
meteorological model with an aperiodic general solution [8]. As we have
noted, even a million numbers governed by a million equations would give
a somewhat incomplete picture of the atmosphere, so a l2-variable model
must be very crude indeed. The model was obtained by representing the
horizontal wind components by a stream function, expanding the fields of
the vertically averaged stream function and the vertically averaged
temperature in orthogonal functions, and then truncating each series to
six terms. Vertical variations of the wind were identified with
horizontal temperature gradients through the geostrophic relation.

Other variables were inferred implicitly or disregarded altogether. The
equations assumed the general form

dxj/dt = I ajjkxjxk + L bijxy + ci , (11
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with xj representing a stream function if 0 < i_< 6 and a temperature
if 6 < i £ 12. In each equation at most four coefficients ajjk and at
most two coefficients bjj differed from zero.

We integrated the equations numerically, using six~hour time steps, . :

for a total of about 20 years. Fig. 1 shows the varlations of X1,
representing the strength of the globally averaged westerly wind

current, during a typical 18-month interval. Although no true :
periodicity is apparent, we see a succession of episodes, each lasting a ;

month or somewhat longer, and each bearing a fair resemblance to the
others. Each episode is marked by a rapid rise from very weak to very

strong westerlies, followed by a somewhat less rapid fall to weak
westerlies. The episode is completed by oscillations with periods of a
week or two, generally about low values of X), but occasionally, as from
days 140 to 170 and 380 to 410, about rather high values. The
appearance of pronounced regularities, which, however, fall short of
exact repetitions, is a typical feature of chaos which is
deterministically generated. The succession of episodes may be regarded
as a model of the atmosphere's index cycle, although the true index
cycle is less regular [9}.

Some of the properties of the 12-variable model are more easily
illustrated by turning to a 3-variable model, which may be derived from

0 60 120 180

180 240 300 360

| ] I i
360 420 480 days 540

Fig. 1. Variations of the variables X1 in the 12-variable
model governed by eq. (11), representing the strength of the
globally averaged westerly wind, during a particular 18-month
interval.
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the larger model by replacing the 12 variables by 12 linear
combinations, and then performing additional truncations [10]. As might
be expected, the new model is an even cruder approximation to the real
atmosphere than the old one, yet it retains some of the real
atmosphere's properties.

The equations of the new model are

dx/dt = -y2 - 2% - ax + aF s (12)
dy/dt = xy -~ bxz -y + G , (13)
dz/dt = bxy + xz - z . (14)

Here x denotes the strength of the globally averaged westerly current,
which is identified through the geostrophic relation with the
cross~latitude temperature contrast, while y and z denote the cosine and
sine phases of a chain of superposed waves, whose troughs and ridges are
constrained to tilt westward with increasing elevation. The waves
transport heat poleward, thus reducing the temperature contrast, as
indicated by the —y2 and -z% terms in eqs (12). The energy thus removed
from the zonal current is added to the waves, as indicated by the xy and
xz terms in eqs. (13) and (14). The waves are also carried along by the
current, as indicated by the -bxz and bxy terms. The linear terms
represent mechanical and thermal damping, while the constant terms

L ! !
360 420 480 days 540

Fig. 2. Variations of the variable x in the 3-variable model
governed by egqs. (12)-(14) with a = 1/4, b= 4, F = 8, and

G = 5/4, representing the strength of the globally averaged
westerly wind, during a particular 18-month interval
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represent thermal forcing. The time unit equals the damping time for
the waves, which is assumed to be five days.

For suitable choices of a, b, F, and G, eqs. (12)-(14) produce
chaos. Such choices include a = 1/4, b = 4, and F = 8, with G some
number between 0.85 and 1.3. Fig. 2, which is like Fig. 1, shows the
variations of x for a typical 18-month interval, when G = 1.25. Again
we see aperiodic variations, but with certain preferred types of
behavior. The oscillations may again be regarded as modeling the
atmospheric index cycle, but a six-month sequence produced by eq. (11)
would probably not be mistaken for one produced by eqs. (12)-(14), nor,
Presumably, would a sequence produced by either model be mistaken for a
real atmospheric index-cycle sequence,

A simple measure of the difference between two states is the
distance in phase space. Fig. 3 shows the growth of such a difference,
during a 12-month interval. The two initial states are the initial
state of Fig. 2 and the same state with a small perturbation added.
Eventually the difference becomes large, but the significant increases
seem to be confined to the phase of the index cycle when the westerlies
are approaching a maximum, and there are intervals as long as three
months with no growth at all. The Lyapunov exponents prove to be (.18,
0.00, and -0.52; the first exponent indicates that, on the average,
small differences double in about 3.6 time units, or 18 days. We might
add that by real atmospheric standards this growth is unreasonably slow,
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Fig. 3. Variations of the root-mean-square difference between
the solution given in Fig. 2 and a second solution obtained by
adding 0.00001 to the initial value of each variable, during )
the first 12 months of the 18 month interval of Fig. 2.
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Fig. 4. The intersection of the attractor of eqs. (12)-(14)
with the plane z = 0, when a = 1/4, b= 4, F = 8, and G = 5/4,
as represented by 15000 successive intersections of a single
orbit with the plane z = 0. '

One feature of the 3-variable model which is easily examined is its
attractor set. Fig. 4 shows the intersection of the single attractor
with the plane z = 0, as approximated by 15000 successive intersections
of a single orbit with the plane; these took place during about 160
years. The points appear to be concentrated on a few dozen curves, and
nearby curves are approximately parallel., Between the curves are large
areas which are avoided. 1In particular, the line y = 0 is avoided,
indicating that states where y = z = 0, i.e., where the flow is
independent of longitude, are never approached.

Fig. 5 shows an enlargement of a portion of Fig. 4, while Fig. 6 is
an enlargement of part of Fig. 5. Additional curves are resolved.
Further enlargements, not shown, reveal further curves, and it seems
evident that a line cutting across all the curves would intersect them
in a Cantor set, i.e., that the attractor is strange.
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Fig. 5. An enlargement of a portion of Fig. 4, as represented
by 8000 successive intersections of a single orbit with the
included portion of the plane z = 0.

For our next example of chaos we proceed from one of the smallest
possible “global circulation models™ to one of the largest yet
constructed. This is the operational forecasting model of the European
Centre for Medium Range Weather Forecasts (ECMWF). The principal
dependent variables of the model are horizontal wind components,
temperature, and water—vapor mixing ratio; other variables are
determined from these by auxiliary diagnostic formulas. The variables
are independently defined at 15 elevations, and, in a recent version of
the model, each horizontal field is represented by more than 10000
spherical~harmonic coefficients. The model thus consists effectively of
more than 600000 ordinary differential equations in as many variables.,

The model contains such physical features as orography. The
effects of structures which are unresolved by the model, such as cumulus
clouds, are included via parameterization. The intent is to make the
model as good an approximation to the real atmosphere as is practical,
in view of today's observation and computation systems. Diagnostic
studies are regularly performed to determine how closely the climate
produced by the model resembles the real atmosphere's climate, and
significant differences generally lead to further research aimed at
eliminating the discrepancies.

As the name of the Centre might imply, the principal purpose of the
model is to produce weather forecasts at the "medium range” extending
from a few days to a week or two. The present operational routine
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Fig. 6. An enlargement of a portion of Fig. 5, as represented
by 6000 successive intersections of a single orbit with the
included portion of the plane z = 0.

involves preparing, every day, a ten—day forecast of the global
atmospheric state, using the present day's state as initial conditiomns.
Since the equations are solved by stepwise integration, forecasts for
intermediate ranges are automatically produced, and one-day, two—day,

. « +, ten-day forecasts are routinely archived and made available for
further research. However, forecasts more than ten days in advance are
not generally prepared, and anything like an 18-month time series,
comparable to Fig. 1 or 2, is unavailable.

Since the climate of the model differs from that of the real
atmosphere, initial states determined from the real atmosphere need not
lie on the model's attractor, and, since transient effects may well take
more than ten days to die out, not even one point on the model's
attractor set is known, let alone an entire attractor. That the model
behaves chaotically rather than periodically is best determined by
examining it for sensitive dependence on initial conditions.

We have performed a detailed examination of this sort. It would
have been computationally expensive to perform many additional rums, in
which the operationally used initial states were slightly modified.
Instead we have capitalized on the fact that the model produces rather
good one—day forecasts, so that the state predicted for a given day, one
day in advance, may be regarded as equal to the state subsequently
observed on the given day, plus a relatively small error. By comparing
the one-day and two-forecasts for the following day, the two-day and
three—-day forecasts for the day after that, etc., we can determine how
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rapidly the error grows. Moreover, there are no practical barriers to
averaging the results over a large sample of forecasts.

Fig. 7 presents the principal results. Points labeled i,j, where i
and j are integers, indicate the globally averaged root—-mean—square i
temperature difference at the 500-millibar level between i-day and j~day
forecasts for the same day, averaged over 100 consecutive days beginning i’
1 December 1984. A O-day forecast is simply an initial analysis.

The upper curve, connecting points labeled 0,3, for different
values of j, therefore measures the model's performance, and indicates
how rapidly the difference between two states, one governed by the model
and one by the real atmospheric equations, will amplify. The lower
curve, connecting points labeled i,j, with j — i = 1, indicates how
rapidly the difference between two states, both governed by the model,
will amplify.

The lower curve clearly indicates sensitive dependence on initial
conditions. Extrapolation of the curve to very small differences
suggests a doubling time of about 2.5 days. Detailed forecasting of
weather states at sufficiently long range is therefore impractical.
However, the difference between the slopes of the two curves indicates
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Fig. 7. Root-mean-square differences between i~day and j-day
forecasts of the 500-millibar temperature for the same day,
made by the ECMWF operational model, averaged over 100 days
beginning 1 December 1984. Numbers i, j appear beside
selected difference values, which are plotted against values
of j.
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that there is still considerable room for improvement in forecasting,
and implies that we may, for example, some day produce one-week
forecasts as good as today's three—day forecasts. Fig. 7 closely
resembles a figure constructed from an earlier version of the ECMWF
model [11], and both studies tend to confirm the results of earlier
studies performed with less elaborate models [12].

Our final example of chaos is the weather itself. In contrast to
the case of large atmospheric models, our evidence for chaotic behavior
is mainly the absence of any tendency for exact repetitions, and the
accompanying presence of continua in the many available variance
spectra. We cannot perturb the atmosphere and observe what happens, and
at the same time know what would have happened if we had not introduced
the perturbation. In principle we could wait for an atmospheric state
which closely resembles a previous state, and regard the new state as
equal to the old state plus a small perturbation, but in practice we
would have to wait too long. We recently estimated that we would have
to wait 140 years to obtain one pair of states with a difference of one
half of the difference between randomly chosen states [13].

Frequently we observe atmospheric states which closely resemble one
another over limited regions; for example, two extratropical cyclones
may look very much alike. After a few days the local resemblance will
be much weaker, but it is not certain whether this is so because of
local amplification or because of the influence of more distant regions
where the states are quite different.

Probably our confidence in the chaotic nature of the atmosphere is
fortified by the fact that the various large global models exhibit
behavior resembling that of the real atmosphere fairly closely, and all
of these models show sensitive dependence on initial conditions and
agree fairly well as to the rate of error growth. We may also be
influenced by our familiarity with baroclinic instability, where
perturbed states will depart from unperturbed states.

6. CONCLUSIONS

We may now return to our question as to whether, in investigating
atmospheric dynamics, we ought to treat the atmosphere as a
deterministic or a chaotic system. The possibly surprising answer is
that for most investigations it does not matter. The system of
equations which we will be using to study the atmosphere will
necessarily involve some approximatioms, and it may be regarded as a
model. Provided that the model is realistic enough to produce a chaotic
atmosphere with essentially correct gross features, its behavior will be
about the same whether or not it contains some stochastic terms. Here
we are assuming that the magnitude of these terms is not completely out
of proportion with the actual randomness present in the laws governing
the atmosphere.

Our choice between a formally deterministic and a stochastic model
will therefore be one of convenience., If our reasoning can be
facilitated by the knowledge that our equations contain no randomness,
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we should use a deterministic formulation. If explicit randomness will
aid our investigation, we should introduce it.

As with most general conclusions, there are particular exceptions,
If we are studying the growth of the difference between two atmospheric¢
states, using a model in which the smaller scales have been i
parameterized, and if the initial difference is very small, it will groy
quasi-exponentially and require a number of days to become appreciable,.
if the parameterization is deterministic. With a stochastic
parameterization the difference, even if it is initially zero, will
quickly become appreciable, possibly during the first day. The latter
type of behavior seems more realistic, since it appears that if the :
small scales could be carried explicitly, uncertainties in these scales
would rapidly spread to the larger scales [14], [15]. Once the
differences in the resolved scales have become appreciable, it matters
little whether the parameterization is deterministic or stochastic.

We are not maintaining that a system of equations with no random
terms, and the same system with random terms added, can produce
quantitatively identical results. Qualitatively the results may be
nearly indistinguishable, or they may be quite different if some of the
constants in the system are close to their bifurcation values. In the
latter event, the addition of small random terms may still be nearly
equivalent to making small alterations in the numerical values of the -
constants.
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