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Abstract

When the dynamic equations are to be used to further our understanding of atmospheric
phenomena, it is permissible to simplify them beyond the point where they can yield acceptable
weather predictions. Through the use of double Fourier series, and with the omission of all
but the largest scales of motion, the barotropic vorticity equation may be reduced to a system
of three ordinary nonlinear differential equations. The analytic solutions of these equations are
elliptic functions of time. The equations may also be solved rapidly by numerical integration.

Particular solutions of the equations picture the motion of finite disturbances on a zonal flow,
with exchanges of kinetic energy between the zonal flow and the disturbances accompanying
the meridional transport of zonal momentum by the disturbances. Other solutions picture the
initial growth and eventual cessation of growth of small disturbances on an unstable zonal
current. Still further solutions picture the destruction of a stable zonal flow by large disturbances,
and lead to a plausible hypothesis concerning index cycles in the atmosphere.

Less extreme simplifications of the dynamic equations may be used when more complicated

atmospheric phenomena are to be studied.

1. Simplification of the dynamic equations
and the initial conditions

The various phenomena which are observed
in our atmosphere, and the changes in the
state of the atmosphere from one time to
another, are supposedly governed by a set of
physical laws. The dynamic meteorologist
does not usually regard the discovery of these
laws as one of his tasks, being willing to
concede that the laws have already been
established, at least in approximate form, by
workers in other fields. Instead, he includes
among his problems the prediction of future
states of the atmosphere by means of these
laws, and the explanation of typical observable
phenomena in terms of these laws. He ordi-
narily finds it convenient to express the laws
as a set of mathematical equations.

1 The research resulting in this work has been sponsored
by the Geophysics Research Directorate of the Air

Force Cambridge Research Center, under Contract No.
No. AF 19 (604)-1000,
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In order to make the best attainable forecast
of the future weather, it would be desirable
to express the physical laws as exactly as pos-
sible, and determine the initial conditions as
precisely as possible. Yet the ultimate achieve-
ment of producing perfect forecasts, by
applying equations already known to be
exact to initial conditions already known to
be precise, if such a feat were possible, would
not by itself increase our understanding of
the atmosphere, no matter how important it
might be from other considerations. For
example, if we should observe a hurricane,
we might ask ourselves, “Why did this
hurricane form?” If we could determine the
exact conditions at an earlier time, and if we
should feed these conditions, together with a
program for integrating the exact equations,
into an electronic computer, we should in
due time receive a forecast from the computer,
which would show the presence of a hurricane.

We then might still be justified in asking why
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the hurricane formed. The answer that the
physical laws required a hurricane to form
from the given antecedent conditions might
not satisfy us, since we were aware of that
fact even before integrating the equations.

It is only when we use systematically imper-
fect equations or initial conditions that we
can begin to gain further understanding of the
phenomena which we observe. For if we omit
the terms representing specified physical
processes, such as friction, from the equations,
or if we fail to include certain observable
features, such as cloudiness, in the initial
conditions, we may, by comparing the mathe-
matical solutions with reality, gain some in-
sight concerning the relative importance of the
retained and omitted features. Of course, in
so doing, we forgo the opportunity of simul-
taneously making the best attainable forecast.

Our present methods of weather observation,
and also any foreseeable future methods, yield
systematically incomplete initial conditions,
and our present mathematical techniques do
not allow us to solve the dynamic equations
without previous systematic simplification,
whether or not the equations may originally
be expressed in exact form. Beyond these
unavoidable inaccuracies, further simplifica-
tions have so far been necessary for the sake
of economy. Thus it is that the recent studies
in numerical weather prediction, besides
yielding creditable although not optimum
forecasts, have made vast contributions to our
understanding of common weather phenom-
ena. It should be added that these contribu-
tions are no accidental by-product; the inves-
tigators were concerned with explanation as
well as prediction.

The customary simplifications of the dynam-
ic equations are of two kinds. First, we omit
or modify certain terms. By doing so, we
neglect or alter certain physical processes
believed to be of secondary importance. For
example, the omission of terms representing
the release of latent heat has become familiar,
and the introduction of the filtering approxima-
tions, which prohibit the propagation of sound
and gravity waves, has been one of the im-
portant recent advances in dynamic meteorol-
ogy.

Further simplifications are then demanded
by our present inability to solve the partial
differential equations. Accordingly, by finite
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difference methods or otherwise, we convert
each partial differential equation into a specified
finite number of ordinary differential equations.
These equations generally become algebraic
when finite differences in time are also intro-
duced. In this process, phenomena of such a
small scale that they are lost in the differencing
process are automatically excluded. There 1s
no theoretical limit to the number of alge-
braic equations which may be handled, but
for reasons of economy and convenience the
number must be restricted. Several hundred
equations is typical in short-range dynamic
forecasting. ‘

The simplifications of the initial conditions
are analogous to those of the dynamic equa-
tions. First, we may omit or modify the
description. of certain observable quantities.
For example, it may be logical to omit the
field of humidity altogether, when the con-
densation process is not included in the dynamic
equations.

Further simplifications are then demanded
by our present system of observations, which
yields values of observable quantities only at
specified locations. Thus the true state of the
atmosphere with its nearly infinite number
of degrees of freedom is replaced by a stat
with a specified finite number of degrees of
freedom. Again, phenomena small enough to
be lost between observing stations will not be
described. For reasons of economy and con-
venience, the number of degrees of freedom
retained is often far less than the maximum
number allowed by the observations.

When the problem is finally ready for solu-
tions, it is logical that the finite set of quantities
describing the initial conditions should be
the finite set of dependent variables in the
modified equations.

Although in meteorological practice the
most common method of handling partial
differential equations has been the use of finite
differences, other methods are possible. An
alternative method is the analysis of the
field of a dependent variable into a series of
orthogonal functions. Usually these orthogonal
functions are eigenfunctions of a conveniently
chosen equation (not the dynamic equation
itself). A familiar example of such an analysis,
in one dimension, is the Fourier series, in which
the orthogonal functions are sines and cosines.
The coefficients of these orthogonal functions
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become the new dependent variables. The
number of dependent variables and ordinary
differential equations is then made finite by
omitting reference to all but a finite number
of variables. When the eigenfunctions can be
arranged in the order of their eigenvalues, to
represent features of successively smaller scale,
this method also excludes the small-scale phe-
nomena.

If our interest is confined to furthering our
understanding of the atmosphere, we may
simplify the equations and initial conditions to
the point where good predictions can no
longer be expected. In this study, we shall
illustrate some of the advantages to be gained
by simplifying the equations to the greatest
extent possible, while still retaining the desired
physical features. After simplifying the dynam-
ic equations and initial conditions by omitting
or modifying certain physical processes and
features, we shall expand the equations and
initial conditions into series of eigenfunctions.
We shall then retain as dependent variables
the coefficients of a minimum number of
eigenfunctions, corresponding to features of
the largest scale. As we shall see, in some cases
“he resulting set of ordinary differential
cquations is simple enough to be solved analyt-
ically. If this is not the case, we may convert
- the equations to algebraic equations by a finite
difference approximation in time.

It should be evident that these remarks need
not have been confined to the atmosphere.
Similar remarks apply to a wide class of phe-
nomena, which, in particular, includes control-
led hydrodynamic experiments as well as such
natural phenomena as oceanic flow.

2. The minimum hydrodynamic equations

As an illustration, we shall begin by letting
the dynamic equations governing the atmos-
phere be simplified until they reduce to the
familiar vorticity equation

(%Vzw= ~k- vy x v(v2y), (1)
where ¢ is time,  is a stream function for two-
dimensional horizontal flow, V is a horizontal
differential operator, V2=V -V is the
horizontal Laplacian operator, and k is a
unit vertical vector. Equation (1) is equivalent
to the barotropic vorticity equation, which
Tellus XII (1960), 3
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approximately governs the vertically-averaged
horizontal flow in the atmosphere. Equation
(x) also governs the motion of a general
two-dimensional homogeneous incompressible
nonviscous fluid, and states that the vorticity
of each material parcel of fluid is conserved.

We shall apply equation (1) to flow in a
plane region, in which y is doubly periodic at
all times, i.e.,

w(x + 2mfk, y+2xfl, =vp(x, p, 1), (2)

where the x and y axes point eastward and
northward, respectively, and k and 1 are
specified constants. In this way we have
distorted the geometry of the spherical earth,
but we have retained the important property
that the effective area is finite but unbounded.
We have also neglected the horizontal varia-
tions of the Coriolis parameter, although
equation (1) is still consistent with a constant
Coriolis parameter.

In such a plane region, the eigenfunctions
of the equation

Viy =cy (3)

are trigonometric functions, or equivalently,
complex exponential functions, of the variables
mkx + nly, where m and n are integers, and the
corresponding eigenvalues ¢ are the quantities
- (mzi2 + n2[%). Hence a series of eigenfunc-
tions is in this case simply a double Fourier
series. An expansion of v2y in such a series is

[ee] o]

-3y

m=0 n=ng

+ By, sin (mkx + nly)]

[Aun cos (mkx +nly) +

(4)

where A, and B, are real coefficients (and
Age = 0), and the lower limit #, in the second
sum is ~ccif m >0and o if m=o0, orin a
more concise notation,

v2w=§CMeiM~R (s)

where M = imk + jnl and R =ix + jyare
the vector wave number, or wave vector,
and the radius vector, i and j are unit vectors
parallel to the x and y axes, m and # assume
all integral value from - oo to oo, and

Cy=Com =§ (Aun — i Bo) 6)
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Here the bar (-) denotes a complex conjugate.
The corresponding Fourier series for ¢ is

p=-Z(M-M)Cué™ R ()

From (5), with the dummy index M replaced
by L, and (7), with M replaced by H, it
follows -that

k. vy x v(viy) =
=3 (k-H x L) (H.H)-1CyCpe H+D R (g)
H, L

Replacing H + L in (8) by M, and substituting
(5) and (8) into the left and right hand sides,
respectively, of (1), we find that

dCM K-HxM
"2 EE Cnlen 0)

H

Equation (9) is the Fourier transform of
equation (1), and is actually the infinite set of
ordinary differential equations which we
sought to determine. The coefficients Cy are
the dependent variables.

For the surface of a sphere, the eigenfunctions
of equation (3) are spherical harmonics. An
expansion of the vorticity equation into a
series of spherical harmonics has been used by
SILBERMAN (1954).

The final step in simplification is the
omission of reference to all but a finite number
of variables Cy, corresponding to a specified
set of values of m and n. If these values are
small, only large-scale features will be retained.
The summation in (9) then becomes a finite
sum, but the equations are otherwise unaltered.

Under equation (1), two integral quantities,
namely, the mean kinetic energy and the
mean square of the vorticity, remain un-
changed with time. Since equations (1) and
(9) are equivalent, equation (9) must also
conserve these values. According to (s) and (7),
the mean kinetic energy is given by

g=X CmC-m

2 M-M’
M

(z0)

while the mean square of the vorticity is given

by
V=3 CuC-m. (11)
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According to (9), the time derivatives of E
and ¥ each involve sums of terms containing
products CzCm-uC-m. In these sums each
product occurs six times, corresponding to
the six permutations of Cy, Cm-m, and Cy,
and the sum of the six coetficients may be
readily verified to equal zero.

It follows that if all reference to specified
variables is omitted, any specific product Cy
Cm-u C-m will cither be omitted altogether
from the expressions for dE/dt and dV/dt or
else it will occur six times, and the sum of
the six coefficients will still vanish. Hence
the simplified equations (o) still conserve the
mean kinetic energy and the mean square of
the vorticity, although the definition of these
quantifies has now been modified, in that the
sums in (10) and (11) are now finite sums.
Equations (9) are no longer able, however, to
conserve the entire statistical distribution of
vorticity. Equations (10) and (11) are two
first integrals of (9).

Equation (9) may be regarded as describing a
nonlinear interaction between the components
whose coefficients are Cyg and Cym-_n, to alter
a third coefficient C-m. Let us seek the maxi-

mum simplification of (9) which still describe: .

this process. Clearly at least three terms witl.
different eigenvalues must be retained.

A simple system may be formed by retaining
only those eight significant terms for which
m and # each assume a value of 1, 0, or —1I
(the term m = n = o is superfluous). Then (4)
reduces to

V2 = Ay cos kx + Ay cos ly +
+ Ay cos (kx +ly) + Ay, -1 cos (kx —Iy) +
+ By sin kx + By sin Iy + By, sin (kx + Iy) +

(12)

Further simplifications appear when it is noted
that if By Boi, Bi1, and By, —; all vanish
initially, they will remain zero, and if, in
addition, A, _;= - A, initially, 4, _, will
remain equal to - A;;. Letting Ag =4,
Ao = F, A, .;=G, we obtain, as the ulti-
mate simplification of the vorticity and the
stream function,

+ By, -y sin (kx - Iy).

v2y=A cos ly + F cos kx +

+ 2G sin ly sin kx, (13)
Tellus XII (1960), 3
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p= A cosly—’—;cos kx -

12

—kzi—_”z sin Iy sin kx. (14)
The governing equations, obtained either
from (9), or by substituting (13) and (14) directly
into (1), are

A < I I (1)

i F‘W)MG’

dF (1 1
i <1‘ - k“:z‘) kL AG,

dG 1/1 1
The coefficients of FG, AG and AF are actually
determined by the ratio k/I. The mean kinetic
energy and the mean square of the vorticity,

1 /A F?2  2G?
Py (FrErmen) 09
an
- § (42 + F? + 2G¥), (19)

.E're readi)ly seen to be conserved under equations
15—17).

In the remainder of this work we shall be
primarily concerned with the simplifications
appearing in equations (13—17). These equa-
tions presumably contain the minimum num-
ber of degrees of freedom required to picture
nonlinear barotropic phenomena. We shall
call this set of equations the minimum hydro-
dynamic equations, or sometimes simply the
minimum equations.

In equation (14), the first term on the right
is independent of x, and therefore represents
the zonal flow. Because there are so few
degrees of freedom, the latitudes (y = z/2l,
3mf2l, — — —) of the zonal wind maxima are
fixed, but the intensity A/l may vary. Thus
the variable A agrees with the meteorologist’s
concept of the zonal index.

The remaining terms represent disturbances
super}t))osed on the zonal flow. Together they
describe a wave of a single wave number, but a
variable shape, and, except at certain latitudes, a
variable phase. Again because there are so few
degrees of freedom, the shape of the wave
depends upon the phase, so that the model
Tellus XII (1960), 3
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cannot picture the motion of disturbances
without change of shape. It can, however,
picture the nonlinear interaction between the
zonal flow and the superposed disturbances.

In general, a set of nonlinear differential
equations must be converted into a set of
algebraic equations, by replacing time deriva-
tives by finite differences, before a solution
can be obtained. The minimum hydrodynamic
equations (15—17), however, may be solved
analytically. Either by eliminating two varia-
bles through the first integrals (18) and (19),
and solving the remaining equation, or simply
by observing that 4, F, and G are three quanti-
ties, each of whose derivatives is proportional
to the product of the remaining two quantities,
we find that the solutions of (15—17) are
elliptic functions of time. The particular elliptic
functions depend upon the ratio o = kfl, and
the ratio V/E which is determined by the
initial conditions.

If @ >1, and if V/E <2k? we find in
view of (18) and (19) that A, F, and G have
maximum values A%, F*, and G* given by

AX2 = A2 4 -4 F2
FR=Fta(1-a %) 1G?

(20)

G* =G+~ (1-a Y

The solutions of (16—18) are then
A=A*dnh(t~t*)
F=F* sn h(t —t*)
G=G*cn h(t-t*)

(21)

where the modulus &, of the elliptic functions
is given by
2 F*G*

k3 (22)

h is given by

2( 2
h2=_1.‘f(_?_I)A*2’
2 o2+1

(23)

and ¢* is the time when A = A*, F = o, and
G = G*, given by the elliptic integral

0
ht*=f e
VI - k2sin2 @

tan™ ' Fo/Go

(24)
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The solution is periodic of period 4K /h, where
K is given by the complete elliptic integral

T e
K=ff7—:—<
Vi-Esinz @
0

With different initial conditions, or a different
ratio «, the elliptic functions dn, sn, and cn may
correspond to different permutations of A,
F, and G.

When a numerical solution is desired, it is
often simpler to solve equations (15—17) nu-
merically than to use a table of elliptic func-
tions. To convert the differential equations
into algebraic equations which may be solved
numerically, we choose a fixed time interval
At, and let A, F,, and G, be the values of A,
F and G at time ¢, + nAt. We may then use
the centered difference formula

dA
App1=A5-1t2 (E)ndt’

(25)

(26)

with analogous equations for Fy.; and Gy 1.

At the first time step, we cannot use a
centered difference formula. Accordingly, we
may obtain a first approximation Ag) to A,
by the uncentered difference formula

dA
A(l) = Ao + (}E) At, (27)
0

with analogous formulas for Fyy and Gy.
We then obtain the final value A4, by the
formula

1[/dA dA
A, =4+ 5 [<%)0 + (E>(1)] At, (28)

with analogous formulas for F; and G;.
When partial differential equations are
integrated numerically through the use of
finite differences in space and time, the pheno-
menon of computational instability may arise.
In order to avoid such instability, the time
interval A¢ must be chosen to be not too large
compared to the space intervals Ax and
A y. The corresponding condition for compu-
tational stability, when orthogonal functions
are used, is that At be not too large a fraction
of the period of oscillation of the most rapidly
oscillating variable. Thus, whichever method
is used, the smaller the scale of the phenomena
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which are admitted, the smaller A¢ must be
in order to avoid computational instability.

The phenomenon of computational in-
stability is easily recognized when it arises,
and may be eliminated by decreasing At. In
the case of the minimum hydrodynamic equa-
tions, where only phenomena of very large
scale are admitted, A¢ may be moderately
large.

3. Particular solutions of the minimum hy
drodynamic equations

We have seen that the minimum equations
(15—17) preserve the average kinetic energy.
At the same time, since they admit variations
of A, they allow the kinetic energy of the
zonal motion to vary, and hence allow ex-
changes of kinetic energy between the zonal
flow and the disturbances. In actual barotropic
flow, such exchanges can only accompany a
net transport of momentum by the disturbances
to or from the zones of maximum flow. In
our first numerical example, we shall show that
this phenomenon is adequately described by
the minimum equations.

The quantity 2z/l is the distance between
successive zonal wind maxima, while 2m/k |
the wave length of the disturbances. Let us
choose 27/l = 10,000 kilometers and 27/k =
5,000 kilometers, so that « = 2. In so doing
we shall be choosing systems of a size com-
parable to the large-scale flow systems in the
earth’s atmosphere. Equations (15—17) then
become

A=-—FG
10
R
F= —S—AG (29)
G=_-2AF
4 J

where a dot denotes a time derivative.

The unit of time may be conveniently
chosen equal to 3 hours, so that the unit of
vorticity is (3 hours)~1, or approximately the
value of the Coriolis parameter in middle
latitudes.

For initial conditions, let us choose A =
0.12 units, F = 0.24 units, and G = o. The
initial maximum zonal wind speed, occurring
where y = 3m/2l, is then 64 kilometers per

Tellus XII (1960), 3
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hour, while the initial maximum vorticity,
occurring where x = 0, and y = o, is 0.36
time the Coriolis parameter. Since F = 24,
the zomal kinetic energy and disturbance
kinetic energy are initially equal.

Applying equations (20—25), we find that
the analytic solution of equation (29) is

A=0.1342 dn(0.147¢+ 11.03)
F=0.2400 51 (0.147t+ 11.03)
G=0.1643 cn(0.147t+ 11.03)

(30)

where the modulus of the elliptic functions 1s
ko = 0.2, while the period is 44.1 time units,
or 132.3 hours.

Instead of consulting tables of elliptic func-
tions, we may solve equations (29) numeri~
cally. If time interval At is chosen to be 6
hours, or 2 time units, the algebraic approxima-
tions to (29) are

Aps1=Ay-1 - 0.4F,G,
Fn+1= Pn-l + 6-4Ancn
Gn+1= Gn-l - 3~0AnFn

(31)

with appropriate modifications for the first
time step.

The numerical integrations of (31) may be
carried out with a desk computer, or even a
slide rule, at a computation rate comparable
to one minute per time step. The computa-
tions are presented in table 1.

The products FG, AG and AF, which occur
on the right hand side of (31), are included in
the tabulation.

249

From the numerical point of view, we
observe that F becomes zero, and A and G
reach maxima, after about § % time steps, or 33
hours, while A and G reach their original
values after about 11 steps, after which the
previous history must be repeated, except that
F and G have opposite signs. The full period
is therefore about 22 steps, or 132 hours,
which agrees closely with the analytic solution,
while the maxima of A and G also agree
closely with A* and G* as determined by (20).

From the physical point of view, the ini-
tially symmetric disturbance is distorted by
the zonal flow so as to transport momentum
into the zones of maximum zonal winds,
thereby increasing the zonal kinetic energy, at
the expense of the disturbance kinetic energy.
Eventually, the wave becomes distorted to a
shape where it transfers momentum out of the
zonal wind maxima, and the zonal kinetic
energy decreases again to its original value.

From the synoptic point of view, the stream
function field initiaﬁy consists of alternate
zones of high and low values of y, crossed by a
series of troughs and ridges with axes oriented
N—S, as shown in the first map in fig. 1.
The troughs and ridges are carried eastward
in the eastward flow, and westward in the
westward flow, so that the axes acquire a
NE—SW orientation across the latitudes of
high 9, and a NW—SE orientation across the
latitudes of loww, as shown in the second map,
which follows the first by 18 hours. As describ-
ed by Starr (1948), eastward momentum is
carried northward where the troughs and
ridges tilt NE-—SW, and southward where

Table 1. Numerical integration of the minimum equations, with the indicated initial conditions,
for the case x = 2, with time steps equal to two time units.

n 4, F, G A,F, 4,G, F,G,
o 0.120 0.240 0.000 0.0288 0.0000 0.0000
1 0.121 0.232 — 0.043 0.0281 -— 0.0052 -— 0.0100
2 0.124 0.207 — 0.084 0.0257 —- 0.0104 —0.0174
3 0.128 0.165 - 0.120 0.021I — 0.0154 — 0.0198
4 0.132 0.108 — 0.147 0.0143 -— 0.0194 — 0.0159
5 0.134 0.041 — 0.163 0.00535 — 0.0218 — 0.0067
6 0.135 — 0.032 — 0.163 — 0.0043 — 0.0220 0.0052
7 0.132 — 0.100 — 0.150 ~—— 0.0132 — 0.0198 0.0150
8 0.129 — 0.159 — 0,123 — 0.0205 — 0.0159 0.0196
9 0.124 — 0.202 — 0.088 — 0.0250 -— 0.0109 0.0178
10 0.122 — 0.229 — 0.048 — 0.0279 ~— 0.0059 0.01I0
II 0.120 — 0.240 — 0.004 — 0.0288 — 0.0005 — 0.00I0
12 0.122 — 0.232 0.038 — 0.0283 0.0046 — 0.0088

Tellus XII (1960), 3
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Fig. 1. Stream function patterns for the “solutions of the minimum equations

given in table 1. Upper left: o hours; upper right: 18 hours; lower left: 30 hours;

lower right: 36 hours. Streamlines are drawn at intervals of 0.070 units. Dashed lines
represent trough lines.

they tilt NW-—SE, so that in this case east-
ward momentum is carried into the zones of
castward flow, in agreement with the increasing
zonal index. After 30 hours, as seen in the third
map, each center of high or low y breaks into
two centers. Still later, the NE lobe of each high
center departs from the SW lobe altogether,
and merges with the SW lobe of the next
high center to the east, while the low centers
perform a similar process, so that, shortly
after 36 hours, as seen in the fourth map,
the streamline patterns become the mirror
image, in the line x = 37/2k, of the map at
30 hours. Patterns after 36 hours become the

mirror images of patterns before 30 hours,
and, shortly after 66 hours, the pattern regains
its initial appearance, except that it is displaced
by one-half wave length. After 132 hours,
the full cycle has taken place.

The solution presented in table 1 suggests
that the zonal flow is stable, since the disturb-
ances show no tendency for exponential
growth. However, a stable flow strictly
speaking is one which can exist by itself, and
which does not tend to become further
disturbed after being slightly disturbed. In a
numerical study of stability we should there-
fore choose initial conditions where the

Tellus XII (1960), 3



MAXIMUM SIMPLIFICATION OF THE DYNAMIC EQUATIONS

disturbance kinetic energy is small compared
to the zonal kinetic energy.

According to the linear theory, in which the
variable A is replaced by a constant, equations
(16) and (17) will govern a stable zonal flow
if the coefficients of AG and AF have opposite
signs, so that the solutions for F and G are
trigonometric, and they will govern an un-
stable flow if the coefficients have the same
sign, so that the solutions are exponential.
Examining these coefficients in (16? and (17),
we see that the zonal flow is stable if &> 1,
and unstable if & < 1. In particular, the zonal
flow in the previous example is stable. A
similar condition for stability holds even when
an infinite number of orthogonal functions
are present in the series for y and V2, as
shown by FjorTorT (1953).

Let us see what the nonlinear equations tell
us about stability. Let us choose two cases,
one where o =1.05, and one where o =0.95.
The corresponding sets of differential equa-
tions are

= —0.453 FG
= 0.551AG
= —0.049 AF

(32)

and
= —-0.553 FG

= 0.451A4G
= 0.051 AF

(33)

O O
i

We shall integrate these equations numerically
by the same procedure as that used previously,

251

again choosing 3 hours as our unit of time,
and 6 hours as the length of a time step. In
each case the initial eddy kinetic energy is
about one per cent of the zonal kinetic energy.
The integrations are presented in table 2.

In the first case, there is no tendency for the
disturbance to grow. It simply progresses, with
a period of about 18 time steps, or 108 hours,
while the fluctuations of the zonal flow are very
small. The solution differs only slightly from
the trigonometric solution of the linearized
equations.

In the second case, the disturbance begins to
grow exponentially (F resembles a hyperbolic
cosine, while G resembles a hyperbolic sine).
Likewise, the rate of decrease of A increases
exponentially. The exponential increase of F
and G does not proceed without limit, how-
ever, as in the linear case, but is inhibited as
A becomes smaller, and ceases altogether
when A reaches zero.

Thus, as might have been expected, the
linearized equations describe the changes of
the system very well while the disturbances
remain small, but not after they become com-
parable in size to the zonal flow itself.

The unstable solution throws considerable
light upon the whole phenomenon of instabil-
ity, which is not apparent in considering the
linear equations. Instability itself is pictured
here as a nonlinear phenomenon. The growth
of F is due to the nonlinear interaction of A
and G, while the growth of G is due to the
nonlinear interaction of A and F, or, taken
as a whole, the disturbance grows because of

Table 2. Numerical integration of the minimum equations, in the case of a disturbed stable zona I
flow (o = 1.05), and a disturbed unstable zonal flow (x = 0.95).

stable case, a = 1.05 unstable case, & = 0.95
n
A, F, G 4, F, G,
o 1.000 0.I00 0.000 1.000 0.100 0.000
1 1.000 0.094 — 0.0I0 0.999 0.105 0.0I0
2 1.002 0.078 — 0.018 0.998 0.118 * 0.021
3 1.003 0.054 — 0.025 0.994 0.143 0.034
4 1.004 0.023 ~— 0.029 0.987 0.179 0.050
5 1.004 — 0.010 — 0.030 0.974 0.232 0.070
6 1.004 — 0.043 — 0.027 0.95I 0.302 0.096
7 1.002 — 0.070 — 0.02I 0.910 0.397 0.129
8 1.00I — 0.089 —o0.013 0.838 0.514 0.170
9 1.000 — 0.099 — 0.003 0.717 0.654 0.217
10 1.000 — 0.096 0.006 0.524 0.795 0.266
11 1.001 — 0.086 0.016 0.249 0.908 0.303
12 1.003 — 0.061 0.023 — 0.085 0.931 0.312
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its nonlinear interaction with the zonal flow.
Eventually the disturbance ceases to grow,
and begins to decay, also because of its non-
linear interaction with the zonal flow. The
source or sink of disturbance kinetic energy
during the entire process is the zonal kinetic
energy.

We have seen that the minimum equations
are capable of picturing the motion of disturb-
ances in a zonal current, and the stability or
instability of a zonal current. Another related
atmospheric phenomenon is the index cycle,
i.e., the tendency for the mean strength of the
middle-latitude zonal westerly winds to undergo
rather marked fluctuations in intensity, usually
with periods of a few weeks. It is interesting to
see what light may be thrown upon the index
cycle by the minimum equations.

In the example appearing in table I, the
zonal index A undergoes fluctuations, but not
the violent fluctuations of an index cycle.
Moreover, the constraints of the model require
some fluctuations of A4 if the disturbances are
to move at all. With different initial conditions,
even though « > 1, the fluctuations of A need
not be so weak. From (18) and (19), we
observe that if V/E<2k? and a>1, 4 can
never become zero, but if V/E > 2k?, there is
no apparent reason why A cannot become
zero. For a =2, the condition V/E = 2k?

implies that G? = ~12—5 A2, Accordingly, we shall

integrate equations (I5—17) numerically for

EDWARD N. LORENZ

two cases of large disturbances, one case where
I 1
G2< ES- A?, and one where G2 > —22 A2, We

shall choose all quantities except the initial
conditions as in the first example. The solutions
appear in table 3.

In the first case, where initially G = 5/2 4,
the solution is qualitatively like the example
in table 1, although the fluctuations of the zonal
index are more pronounced. In the second
case, where G = 10/3 A initially, the situation
is different. Here the zonal index changes sign,
so that easterlies occupy the region where
westerlies were originally present. Moreover,
G does not change sign, so that the disturbances
do not continue to progress in one direction,
but move back and forth, according to the
sign of the zonal index. The index shows a
period of about 26 time steps, or 6% days.

Separating these cases there is a discontinuity
in the amplitude of the fluctuations of A.
Either the total range of A is not greater than
A*, if V/E <2k?, or it is twice A%, if V/E >
2k2. We shall say that A undergoes minor
fluctuations in the former case, and major
fluctuations in the latter. It seems reasonable
to identify major fluctuations with an inde
cycle. It should be noted that, in contrast to-
the solution in table 2, the major fluctuations
do not result from the instability of the zonal
flow with respect to small disturbances. It is
only because the disturbance is large that
major fluctuations can occur.

Table 3. Integration of the minimum equations for o = 2, in the case of a subcritical disturbance
(G, = 5/2A,) and a supercritical disturbance (G, = 10/3 A,).

subcritical case supercritical case
"
4, F, Gy, A, F, G,
o 0.120 0.000 0.300 0.120 0.000 0.400
I 0.117 0.115 0.290 0.114 0.154 0.386
2 0.107 0.217 0.260 0.096 0.282 0.347
3 0.094 0.293 0.221 0.075 0.367 0.305
4 0.081 0.350 0.179 0.051 0.429 0.265
5 0.069 0.386 0.136 0.030 0.451 0.239
6 0.060 0.410 0.099 0.008 0.475 0.225
7 0.053 0.424 0.062 — 0.013 0.463 0.228
8 0.049 0.431 0.031 — 0.034 0.454 0.243
9 0.048 0.434 — 0.00I — 0.057 0.410 0.274
10 0.049 0.431 ~— 0.031 — 0.079 0.354 0.313
IX 0.053 0.424 — 0.064 — 0.101 0.252 0.358
I2 0.060 0.409 — 0.099 -—0.II§ 0.122 0.38¢g
13 0.069 0.386 —0.138 — 0.120 — 0.034 0.400
14 0.081 0.348 — 0.179 — 0.1I0 —0.185 0.377
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MAXIMUM SIMPLIFICATION OF THE DYNAMIC EQUATIONS

This solution suggests a plausible hypothesis
for the existence of index cycles in the at-
mosphere, which we shall now describe.
According to this hypothesis, the ratio V/E
of the variance of vorticity to the kinetic
energy is usually subcritical, so that only
minor fluctuations of the zonal index take place.
These fluctuations may occur within a high-
index or low-index regime. Occasionally, as
the result of a baroclinic process, the ratio VV/E
will become supercriticai and the index will
change from high to low, or low to high.
The index change itself will be a barotropic
effect, even though the cause of the supercritical
value of V/E will be baroclinic. Because of
dissipative effects, the ratio V/E will soon
become subcritical again, after which the
index will undergo minor fluctuations about
its new value, until another baroclinic process
makes the value V/E supercritical again. If
the time required for dissipative effects to
make V/E subcritical, after it becomes super-
critical, is about one-half of the natural period
of a major fluctuation of the index, the result
will be a change from a high to low, or low
to high, index regime.

Although this hypothesis may appear plau-
Jible, it cannot be claimed that the solution
presented in table 2 is any more than a piece
of evidence in its favor. To place the hypothesis
on a firmer basis, it is necessary to integrate
less drastically simplified systems of equations,
to see whether major fluctuations still appear
in the solutions. In addition, it is necessary to
perform a careful observational study, to see
whether changes in the zonal index actually do
follow large increases in the ratio V/E, or in
some equally significant parameter.

Nevertheless, this example demonstrates
unmistakably how a plausible hypothesis,
capable of being tested by further study, can
be formulated on the basis of a dynamic
equation which has been simplified far beyond
the point where it will yield an acceptable
short-range forecast.

4. Further applications of simplified equa-
tions

We have shown that it is possible to simplify
the dynamic equations governing the atmo-
phere to the point where they may either be
solved anmalytically, or else be integrated nu-
Tellus XII (1960), 3

253

merically with very little effort, while still
retaining the nonlinear character of the
equations. At the same time, these simplified
equations are realistic enough to describe
qualitatively some of the important physical

henomena in the atmosphere, and even to
fead to plausible hypotheses concerning phe-
nomena as yet not fully explained.

The degree of simplification which we are
permitted to use depends upon the particular
phenomena which we wish to investigate. For
example, the belts of westerly winds pictured
in fig. 1 do not resemble the atmospheric jet
stream, since winds of nearly maximum
strength occupy a large fraction of the belt.
In order to study the behavior of a jet under
barotropic flow, and in particular to observe
such phenomena as the splitting of a jet into
two streams, we must retain considerably more
terms in the Fourier series, capable of picturing
narrow bands of very strong flow.

Again, if we wish to study simple baroclinic
flow, we may use one of the two-layer nume-
rical prediction models in place of the baro-
tropic vorticity equation. The maximum
allowable simplification would then retain
three degrees of freedom for the flow in
each layer, or a total of six dependent variables.
With such a system, the instability of zonal
baroclinic flow, among other phenomena,
could be studied.

As a final example, if we are interested in
studying forced baroclinic flow, such as that
which characterizes the general circulation of
the atmosphere, we may again use the same
six dependent variables, and modify the equa-
tions by appending terms representing non-
adiabatic heating and friction. If, however, we
wish to describe the increase in static stability
which must accompany the conversion of
potential and internal energy into kinetic
energy through the sinking of cold air and
rising of warm air, we must add at least one
dependent variable, the space-averaged static
stability. Such a system with seven degrees of
freedom has been integrated by Bryan (1959).
Among other phenomena, the system is
capable of duplicating the appearance or lack
of appearance of waves superposed upon the
symmetric flow occurring in the dishpan ex-
periments (FULTZ, 1953), according to whether
the external heating is weak or strong. Further
refinements introduced by Bryan include the
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spherical geometry of the earth, whereupon
thirteen degrees of freedom are sufficient.
There is virtually no limit to the number of
phenomena which one might study by means
of equations simplified according to the manner
we have described. In each case, the simplified

equations may seem to be rather crude ap-
proximations, but they should clarify our
understanding of the phenomena, and lead to
plausible hypotheses, which may then be tested
by means of careful observational studies and
more refined systems of dynamic equations.
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