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ABSTRACT

By means of truncated Fourier-Bessel series, a two-layer geostrophic “numerical-prediction” model
with heating and friction is reduced to a set of eight ordinary nonlinear differential equations in eight
dependent variables. These equations allow the presence of disturbances of a single wave number. They
permit the occurrence of baroclinic but not barotropic instability. They possess appropriate energy in-
variants if heating and friction are temporarily suppressed.

The simplified equations are applied to the flow of a liquid in a symmetrically heated rotating basin.
Exact solutions are determined for the steady Hadley and Rossby regimes, and the criterion for the stability
of the Hadley regime is obtained. For high rotation rates the criterion for the disappearance of an estab-
lished Rossby regime differs from the criterion for the onset of a Rossby regime.

The equations are modified to allow for the presence of several wave numbers simultaneously. Each wave
number interacts with the zonal flow, but the interactions between wave numbers are omitted. The criteria
for the transitions between wave numbers are then obtained.

The solutions agree qualitatively with Fultz’s experiments in that with slow rotation there is no Rossby
regime, with more rapid rotation the Rossby regime occurs with intermediate heating contrasts, and within
the Rossby regime a smaller heating contrast leads to a higher wave number, It is concluded that the simpli-
fied equations are suitable for the study of baroclinic flow, and that the changes of regime are fundamental
properties of the forced flow of a rotating fluid. It is suggested that the transitions in the experiments and the
transitions described by the equations are manifestations of baroclinic instability having similar physical
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explanations.

1. Introduction

There are numerous instances of forced hydrodynamic
flow in which purely quantitative changes in the forcing
can lead to qualitative changes in the resulting circula-
tions. The thermally forced motion of a liquid in a
rotating cylindrical vessel is a flow of this sort. Such
flow has been studied experimentally as a possible ana-
logue of the motion of a planetary atmosphere. It has
also received the attention of theoretical hydrodynam-
icists, to whom it may present a more tractable prob-
lem than that of atmospheric motion.

In this study we shall consider the flow occurring in
certain laboratory experiments. In some of the earlier
experiments of Fultz and Long (Fultz, 1953), a dishpan
containing water was rotated about its axis, which was
vertical, and was subjected to symmetrically distributed
heating near its rim. Certain combinations of heating
and rotation gave rise to a symmetric flow, which might
have been anticipated in view of the symmetric heating.
However, with more rapid rotation or weaker heating,
the resulting flow became unsymmetric, and possessed
somewhat irregular large-scale traveling waves, re-
sembling those on an upper-level weather map. The

1 The research reported in this work has been sponsored by the

Geophysics Research Directorate of the Air Force Cambridge
Research Center, under Contract No. AF 19(604)-4969.

symmetric and unsymmetric regimes of flow are called
the Hadley regime and the Rossby regime, respectively.
That the Rossby regime bears more than a superficial
resemblance to the atmosphere was demonstrated by
Starr and Long (1953) in their study of the flux of
angular momentum.

In a somewhat similar set of experiments, Hide
(1953a, 1953b, 1958) studied the flow in an annular
region, rather than a simply-connected circular region,
which was heated at the outside wall and cooled at the
inside wall. Under suitable conditions, Hide obtained
a Rossby regime characterized by waves which pro-
gressed at a uniform rate without changing their shape.
Under other conditions, the waves, in addition to their
progression, underwent regular periodic changes in their
shape. Hide called the latter phenomenon wvacillation.

Subsequently Fultz (1959) found that symmetric
flow could also be produced with very weak heating,
and, in a carefully controlled series of experiments, using
an annular region, obtained quantitative criteria for
the transition between the Hadley and Rossby regimes,
and the transitions between different wave numbers
within the Rossby regime. His results were summarized
by a diagram, which we have reproduced as Fig. 1.
The abscissa is proportional to the square of the rate of
rotation, while the ordinate is the thermal Rossby
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Fic. 1. Spectrum diagram of transition curves obtained by
Fultz in experiments where, at a constant rotation rate, the radial
temperature difference was raised slowly from zero. Abscissa is
proportional to the square of the rotation rate and ordinate is the
thermal Rossby number. Numbers refer to wave number.

number, which, for a given rotation rate, is proportional
to the temperature contrast.

Fultz also found that the criteria obtained for certain
transitions as the temperature contrast increased dif-
fered from the criteria obtained for the reverse transi-
tions as the temperature contrast decreased. Thus, the
area just above the dashed curve near the top of Fig. 1
represents conditions under which either a Hadley
or a Rossby regime may exist. Such “hysteresis” effects
also marked some of the transitions between wave num-
bers within the Rossby regime.

Following the initial performance of these experi-
ments, a number of investigators, notably Davies
(1953, 1956) and Kuo (1953, 1954), attempted to
explain some of the observed phenomena on theoretical
grounds. In an attempt to account for the existence
of more than one regime, the writer (1953) assumed that
symmetric flow was mathematically possible for all
combinations of heating and rotation, but that for cer-
tain combinations it was unstable with respect to per-
turbations of small amplitude, so that these perturba-
tions would grow until they formed a substantial part
of the total flow and symmetric flow would not be ob-
erved. The thermally forced flow was obviously baro-
clinic, and the instability was assumed to be baroclinic
instability.

Studies of the stability of baroclinic flow (e.g.,
Charney, 1947; Eady, 1949) have indicated that a
strong vertical shear favors instability. Since a strong
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heating contrast should force a strong temperature
contrast, and hence, in accordance with the thermal
wind relation, a strong vertical shear, the transition
from Hadley to Rossby flow as the heating contrast
is reduced from high to intermediate values seems para-
doxical. The paradox was resolved by noting that, ac-
cording to these same studies, a high static stability
favors a stable flow. By forcing warm upward currents
near the rim and cool downward currents near the center,
the strong heating contrast should also force a high
static stability, which should be sufficient to stabilize
the symmetric flow.

In attempting to make these arguments quantitative,
however, the writer, following the procedure of Davies
(1953), was able to deal only with the leading terms in
power series expansions, and there was little evidence
that the power series actually converged. The inevitable
difficulties in dealing with nonlinear equations were
intensified by the complicated boundary-layer structure.

In subsequent studies, both Kuo (1957) and Davies
(1959) obtained criteria for the transitions between wave
numbers which bore striking resemblance to Fultz’s
experimental criteria, but not without introducing cer-
tain physical assumptions. In particular, Kuo postulated
a relation between the vertical and the horizontal tem-
perature contrast, while Davies postulated that, among
different wave numbers satisfying certain necessary
conditions, the one accomplishing the greatest heat
transport would be preferred.

Recently the writer (1960a) has proposed the use of
highly simplified equations to investigate certain compli-
cated phenomena. The suggested procedure consists of
first omitting certain physical features or processes
believed to be of secondary importance, then expanding
the field of each dependent variable in a suitable series
of orthogonal functions, and finally discarding all but
a small number of these functions. The coefficients of
the retained orthogonal functions become the new de-
pendent variables, and the new equations are ordinary
differential equations, each explicitly expressing the
time derivative of one of the variables.

Such equations have the obvious advantage that
they may be integrated numerically with relatively
little effort, and in some cases may be solved analytic-
ally. In addition, by deliberately omitting certain physi-
cal features and processes, they may tell something
about the relative importance of the retained and
omitted features. The writer found that some of the
more important barotropic phenomena were described
by solutions of a set of three ordinary differential
equations. A slightly less simplified set of equations
would seem to be capable of describing baroclinic
phenomena.

The flow in the rotating-basin experiments offers
perhaps the simplest available example of baroclinic
flow, and seems ideally suited to investigation by the
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suggested procedure. In this paper we shall derive a
set of eight ordinary differential equations, suitable for
studying baroclinic flow. We shall then apply these
equations to the flow in the experiments, and see to what
extent the experimentally observed results are approxi-
mated by solutions of our equations.

Our purposes will be twofold. First, we are interested
in the experiments for their own sake. We wish to
obtain a better understanding of some of the observed
features. Second, we are interested in the simplified
equations for their own sake. We wish to know to what
extent the equations may be stripped of their details
and still adequately describe a given class of physical
phenomena.

2. The simplified equations

In this section we shall seek a simple set of equations
which may be applied to the experimentally observed
circulations. If our hypothesis concerning the change of
regime is correct, the equations must describe variations
of vertical wind shear and also of static stability. These
considerations place some restrictions upon the allow-
able simplifications.

Accordingly, we shall first simplify the problem by
choosing the equations of a suitable “numerical-predic-
tion” model with variable stability as the governing
equations. One of the simplest of such models is the
geostrophic form of the two-layer model recently de-
scribed by the writer (1960b). The model, as presented,
applies to the atmosphere. However, it is equally ap-
plicable to a liquid if the variable 6 is taken to represent
temperature instead of potential temperature, and if a
suitable form of the thermal wind equation is used.

Like all geostrophic and quasi-geostrophic models,
this model ignores the presence of sound waves and
gravity waves. It also omits the transport of momentum
by the vertical motions, and by the divergent part of the
horizontal motions. In particular, it omits the net
transport of momentum by mean meridional circula-
tions. We therefore cannot expect to reproduce phe-
nomena whose existence depends upon such transport.
The transport of heat by the total horizontal and verti-
cal motions has been left intact.

Since we are dealing with a thermally forced flow, ad-
ditional terms must be appended to represent the effect
of heating. Terms representing frictional damping will
also prove to be necessary. With a two-layer model
we cannot describe the complicated boundary-layer
phenomena which occur in the experiments, or in the
atmosphere. Instead we shall parameterize the bound-
ary-layer effects in the form of coefficients of heating
and friction. We shall introduce a frictional drag at the
underlying surface, proportional to the flow in the lower
layer, and also a drag at the surface separating the
layers, proportional to the difference between the flows
in the layers. Similarly, we shall introduce a heat
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exchange between the lower layer and the underlying
surface, proportional to the difference between the
temperature of the lower layer and a preassigned fixed
temperature field in the underlying surface, and also a
heat exchange between the two layers, proportional to
the difference between the temperatures of the two
layers. In a model of the atmosphere we should also
include a loss of heat to outer space, but in a mathe-
matical model of an experimental model, this feature
seems unnecessary. The nature of the thermal forcing
is expressed in terms of the temperature field in the
underlying surface. Exchange of heat and momentum
through the side boundaries is omitted.

In formulating the two-layer model, it was found
convenient to denote the temperatures in the upper
and lower layers by 8+ and 68— ¢, the stream functions
for the nondivergent flow in these layers by ¢4 and
¥—r, and the velocity potentials for the divergent
flow in these layers by —x and x. The variables 0, o,
¥, 7, and x were then chosen as dependent variables.
If the coefficients of friction at the underlying surface
and the surface separating the layers are denoted by
2k" and k', and if the coefficients of heating at these
layers are denoted by 2k’ and &'", the governing equa-
tions of the model become

AV /ot=—J (Y, V)~ J (r,V*r)
— KRV, (1)

oVir/at=—JT (Y, Ver)—J (r, Va0 + [V
SRRy — (R428)VEr,  (2)

00/3t=—J(Y,0)—J (r,0)+ V- (eVx)
— WO I s+ 18, (3)

do/ot=—J(,0)—J(+,0)+V8-Vx
+10— (W20 Ve — BT, (4)

where ¢ is time, J denotes a Jacobian with respect to
horizontal coordinates, f is the (constant) Coriolis
parameter, and 6* is the preassigned temperature in
the underlying surface.

The appropriate form of the thermal wind equation
for a liquid becomes

Vir=1f-1gDV%), )

where € is the coefficient of thermal expansion, g is
the acceleration of gravity, and D is the depth of the
liquid.

The remaining simplifications are obtained by ex-
panding the field of each dependent variable in a series
of suitable orthogonal functions, and then omitting
reference to all but a small number of terms in each
series. For flow in a circular cylindrical region, a Fourier-
Bessel expansion is appropriate. A variable G which is
constant on the circumference of a circle of radius a



|
|
|
|

42 JOURNAL OF THE

may be formally expanded in the series

G= GOO+ Z GOmF0m+ Z (Gannm+Gnm,anl), (6)
m=1 m,n=1
where
Fon=J5 (j1m)To(fin?0), (7
From=V2J i1 (.7 nm)] n (.7 nmro) cosng, (8)
anl =\/2_Jn-—1—1 (jnm)Jn (jnmro) Sinnd’- (9)

Here ro==r/a, r and ¢ are polar coordinates, J, is the
Bessel function of order #, and j.n is the mth positive
root of the equation J,=0. The constants in (7)-(9),
have been chosen to make the average values of Fon2,
F..2 and F,,? within the circle ro=1 each equal to
unity. The coefficients Goo, Gom, Gum, and G’ may be
determined from G by the method of least squares. A
symmetric configuration occurs when Gun==Gnn'=0
for n>0.

The functions Fy, expressing the symmetric part of
the field of G are convenient in that their average
values within the circle 7o=1 are zero, but they are not
the only orthogonal Bessel functions which could appear
in an arbitrary expansion. However, if equations (1)
and (2) are averaged over the entire region, the
Jacobians and the divergence term fV?x drop out, and
there remain two homogeneous linear equations in the
two dependent variables V& and V27, the averages of
V%) and V?7. Since the eigenvalues of this system of
equations are both negative, V& and V2r must approach
zero. Values of V2 or V2 other than zero can only be
transient phenomena. It follows that the circulation
about the circle 7o=1 vanishes, whence the normal
derivatives of the symmetric parts of ¢ and r vanish.
The functions Fy. are the only orthogonal Bessel func-
tions whose normal derivatives vanish on the circle
ro=1, and so are a logical choice for the expansions of
Yand .

We shall approximate ¥ and r by Fourier-Bessel
series containing only the orthogonal functions Foy,
Fa1, and F.y, for only one value of n. We cannot use
such an approximation for x, since nonvanishing coef-
ficients of Fn1 and F..’ would then imply flow across
the boundary of the cylinder. Instead, we shall use an
approximation of this sort for V2x, which is proportional
to the individual pressure change. The series for ¢ will
also contain a constant term. We shall simplify o
still more drastically, by retaining only the constant
term, so that ¢ becomes a function of time alone. -

The products of orthogonal functions which will
enter the nonlinear terms of the governing equations
are themselves expressible as Fourier-Bessel series,
which must be similarly truncated. Specifically,

azj(FObFﬂl): —'YnFnll+ Sty (10)
GZJ(FDI,FnII) =Yl a1t -, (11)
GZJ(FM,FM’) =—y o+, ’ ‘{12>
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where

1
Yo=— 2nc / Jol (C)Jn_f—2(jn1)
0
XJ1(ero)J (farro)drs  (13)
and ¢= j;1=3.832. This definite integral does not reduce
to a simple familiar function, but it is readily evaluated
by computing the integrand for a sufficient number of

arguments, and averaging suitably. Values of 7,; and
v. appear in Table 1, for small values of #.

TasLE 1. Values of constants entering the governing equations.

n Jnt Yn Qn Ba

1 3.832 9.63 0.656 0.000
2 5.136 16.02 1.091 0.443
3 6.380 20.76 1.414 0.639
4 7.588 24,51 1.669 0.745
N 8.772 27.61 1.881 0.809
6 9.936 30.25 2.060 0.851
7 11.086 32.55 2.217 -0.881
8 13.354 34.59 2.356 0.902

For large values of %, v, may be estimated from the
approximations

Fu~nA1.856m14 - -, (14)
Fn?n~n+0.809734 - - - (15)

where 7, is the value of 7, for which J,(j.170) assumes a
maximum value (cf., Jahnke and Emde, 1945). Since
the area under the curve 27,1 2(Jn1)Ja2(fnrro) is
unity, and since most of this area is concentrated near
ro=7n, where the value of —ry /5 (c)J1(cro) is ap-
proximately ¢r,~1(1—7r,), the approximation for vy, is

Ya~nclr (1 —7,)~15.4n8, (16)

Finally, the new equations will be simpler if we choose
dimensionless quantities for the new variables. Ac-
cordingly, we shall let

V=02 f(YaF o +YxF ity rFa’), Y

7=¢20f (1 4F o1+ 7F mit7LFn1'), (18)

V2= f(waFotwgFatwiF ), (19)
§=4e-1g D122 2

KABo+04F 014+0kF n1+0.F o), (20)

o=4e7g D¢ 20 f2q. (21)

At the same time we shall let 4= f# be a dimensionless
measure of time, and introduce dimensionless constants
k=k"/f, kE'=k"/f, h=h"/f, and k' =h""/ f. The series
for the preassigned temperature 6* will be similar to
the one for 6.

With this choice of variables, the thermal wind equa-
tion assures us that r4=04, Tx=0k, and 7.=0;. When
expressions (17)-(21) are substituted into Eq. (1)-
(4), we obtain the governing equations of the model:
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Ya=
\LK: _Bnan(‘pL‘//A'*‘oLoA)
1= Bneta (Y sy x+040%)
6A=

—wa

Ox=—Buan(Oa+¥104) — 1 —Bn)wr+ kY x— (k+ak )k
br=B0,O0¥xt¥ir) —(1—Bn)or+kpr— (ktak’)0L

éo—_—-

ba=—a.(0x¥r—¥rIL) -Foowa
Ox=—a.(0Ya—y104) —+owr
0r=—an(@a¥x—¥49x) +owr

o0=—04ws—0gwx—0rwy,

where a dot denotes a derivative with respect to ¢, and
where a,=c¢%y, and B,=1—¢%j. % The variables
w4, Wk, and wy, are easily eliminated from the pairs of
governing equations for 64, 0k, and 8 and the equation
for gy, so that, in essence, there are eight equations in
eight dependent variables. Values of a, and B, also
appear in Table 1. The distribution of 6* has been as-
sumed symmetric, so that 85* and 6.* vanish.

The constant 6,* may be eliminated by letting 6y—6¢*
replace 6, as a dependent variable. The intensity of the
thermal forcing is therefore determined by 64* We
shall consider only the case of heating at the rim and
cooling at the center, whence 8,4*>0.

The horizontal flow pattern as represented by Eq (17)
has been so restricted that the trough and ridge lines,
i.e., the lines where dy/d¢ vanishes, are simply meri-
dians. This restriction prevents the occurrence of vacil-
lation, characterized by periodic changes in the orienta-
tion of the troughs and ridges. Moreover, the nonlinear
terms in (22) and (25), which would represent a net
radial transport of angular momentum by the disturb-
ances, are conspicuously absent. Direct exchanges of
kinetic energy between the mean zonal flow and the
disturbances are therefore impossible, and the phenome-
non of barotropic instability has been suppressed. The
trough and ridge lines in the field of 6, although also
meridians, have not been constrained to coincide with
those in the field of ¢, so that a radial transport of heat,
as indicated by the nonlinear terms in (29), (30), and
(31), is possible, and baroclinic instability may occur.
Although barotropic instability is often of prime im-
portance, it also is often absent, and it is legitimate to
investigate changes of regime in a model where baro-
tropic instability does not occur. A slightly less simplified
set of equations, such as those used by Bryan (1959),
will allow for both barotropic and baroclinic instability.

The special two-layer model which we have used was
designed largely to study the energetics of large-scale
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—k(Wa—04) (22)
—k(Yx—0x) (23)
—k@r—01) (24)
+hpa— (k2504 (25)

(26)

27)
— Mo+ hootHo* (28)
—~ha  +hoa* (29)
—~ Mg (30)
~hfy, (31)
+hfo— (h+28")o0— Hs* (32)

circulations. In the absence of friction and heating,
Eq (1)-(5) possess certain integral invariants. Some of
these invariants remain even after the variables are
replaced by truncated Fourier-Bessel series. Thus, if
E, ', h, and I/ are temporarily set equal to zero, the
following quantities appearing in Eq (22)-(32) are
found to have time derivatives equal to zero: ¢4, pro-
portional to the total angular momentum; 6, propor-
tional to the average temperature;

ont=0d+042+0g>+017, (33)
proportional to the variance of temperature; and
E=} a0, +3 (1B
X W2+ Y 4+0) —00,  (34)

proportional, aside from an additive constant, to the
total energy. From (33) and (34) it follows that

A+K=(ont00) (042402 +0:1)+3 (a2 +0.47)

+3 Q=) @2 +H0x+¢240.7),  (35)
which is proportional to the sum of available potential
energy and kinetic energy, is also conserved in the ab-
sence of friction and heating.

3. The steady Hadley regime

One of the anticipated advantages of using highly
simplified equations is the possibility of solving them
analytically. In this section we shall solve Eq (22)-(32)
for the steady-state Hadley circulation. This approach
is consistent with the hypothesis that a symmetric
circulation is always mathematically possible.

We observe that if yg, 0k, wg, ¥1, 0L, and wy all
vanish identically, Eq (23), (24), (26), (27), (30), and
(31) are satisfied. With the time derivatives set equal
to zero, the remaining equations are readily solved for
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the remaining variables. We find that

Ya=0,, (36)
wa=—2k"04, (37
oo= (k'/1)8.%, (38)
Bo=80*+ (B'/1')8.4%, (39)

while 64 is the single real root of the cubic equation

04+ (2F2/h" )43 =0.4*. (40)

Perhaps the most striking feature of this solution
is the ease with which it was obtained. In this respect
it should be contrasted with the painstaking work of
Davies (1953), who used a far more realistic but vastly
more complicated set of governing equations. Even
our simple solution, however, captures some of the
nonlinearity.

Eq (36) tells us that the zonal flow in the lower layer

vanishes. This feature is necessary in such a simple
model, to avoid a net torque upon the fluid. Eq (37)
and (38) show that there are a direct meridional circula-
tion and a positive static stability. Eq (39) shows that
the average temperature exceeds the average equilib-
brium temperature, while (40) tells us that the hori-
zontal temperature gradient falls short of the equi-
librium gradient. It is noteworthy that in this model
none of these conclusions except the first would be
valid with k'=0, i.e., with no internal friction. It should
also be noted that the Hadley circulation is independent
of & (except that k must not be zero), and does not de-
pend upon the absolute values of £/, &, and %, but only
upon their ratios.
[ The dimensionless quantities whose values describe
the Hadley regime are related to certain familiar dirnen-
sionless numbers. First, since the zonal velocity is given
by &¢/dr, it follows from (17) that ¢4 is proportional
to the ratio of the zonal velocity to the absolute velocity
of rotation, and hence is proportional to the Rossby
number. In the same way, 64 may be interpreted as a
measure of the thermal Rossby number, the ratio of a
vertical shear to an absolute velocity, while 64* is
proportional to the imposed thermal Rossby number, a
value which the thermal Rossby number would ulti-
mately assume if there were no circulation.

There is some question as to whether 64 or 6.4* is the
better analogue of Ror*, the thermal Rossby number
used by Fultz et al. (1959). If in the experiments the
temperatures are measured well away from the thermal

23 —(S+DE (S+DE

Ox 1 Sk —(25+1)k
Jn| SHL|(SH+DBs  (S+1)fabs
6z BS—1)abs (BS+1)aya
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boundary layers, within the region where the thermal
wind relation may be expected to apply, the proper
analogue is 64. If the temperatures are measured suffi-
ciently close to the boundary, the proper analogue is 84*.
Possibly some intermediate value is the most realistic.

The quantity oo is, aside from a factor, equivalent
to the stability factor Sz* discussed by Fultz et al. (1959),
and used extensively by Kuo (1956) and others. It is
also proportional to the product of the square of the
Rossby number and the Richardson number. Thus Eq
(38) implies that the steady Hadley regime is charac-
terized by a single Richardson number.

The coefficients k, &', &, and &’ were made dimension-
less by dividing the unscaled coefficients ", k', k",
and /4"’ by the Coriolis parameter f. Within a series of
experiments covering a wide range of rotation speeds,
the Coriolis parameter will presumably vary far more
than the coefficients of friction and heating. It thus be-
comes more logical to interpret the dimensionless coefh-
cients as measures of the rate of rotation. In the re-
mainder of the study, we shall fix the ratios of
these coefficients, and more or less arbitrarily let
W=k =h/2=k/2. The unscaled coefficients of friction
and heating will then be assumed constant, and the
quantity &' will become a measure of the rate of
rotation.

In a diagram such as Fig. 1, then, 272 may be used
as the abscissa. The ordinate may be 6,4 or 64*.

Although the steady Hadley circulation correspond-
ing to a given value of ,4* is unique, there remains the
possibility of an unsteady Hadley circulation, i.e.,
one in which the variables continue to oscillate without
approaching limiting values. It may be shown that if
the values of ¥4, 6.4, 8o, and o, are altered slightly from
their equilibrium values, they will ultimately return
to equilibrium. We shall not attempt to determine
whether an unsteady symmetric regime can result if
the equilibrium values are altered by a large amount.

4. Stability of the steady Hadley circulation

In this section we shall test the steady Hadley circu-
lation for stability with respect to unsymmetric dis-
turbances of small amplitude. We shall proceed with
the conventional perturbation method. We shall find,
however, that some of our intermediate results remain
applicable after the disturbances have acquired finite
amplitude. .

We observe upon eliminating wg and wr that ¥g,
0k, ¥1, and 1, are governed by four linear homogeneous
equations, which may be written, in matrix form,

= (S+1)Bapa  —(S+1)Baba) (Y&

—(BS—1Dabs —(BSH+Daya|]| 0k 1)
—(S+1k (S+1)k YL
Sk —(25+Dk J Le,
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where S=(1—8.,)"00, and the subscripts have been
omitted from e, and B,. The elements of the matrix
of coefficients, which we shall call M, depend upon the
variables characterizing the Hadley circulation. Small
perturbations superposed on the Hadley flow will grow
if M has at least one eigenvalue with a positive real
part, and will die out if all the eigenvalues of M have
negative real parts.

The eigenvalues of M are the roots N of the charac-
teristic equation, obtained by equating the determinant
of M—X\I to zero. Because of the special form of M, its
eigenvalues are the eigenvalues of M1+ My, and their
complex conjugates, the eigenvalues of M,—M,
where M1 and M, are the second order matrices forming
the upper and lower left-hand corners of M.

Since the sum of the eigenvalues of M is the trace of
M, which is negative, M must have at least one pair of
conjugate eigenvalues with negative real parts. The
criterion for stability is therefore that the other pair of
conjugate eigenvalues be pure imaginary (or zero), in
which case M1+My and M—Moi each possesses a
single pure imaginary eigenvalue.

With ¢ 4=804, the characteristic equation of M+ M4
is

(SHDNHLES+2)k— (285+1+B)af4i A

FL(S+1)E2—280%04— (55+1)BkaBai]=0. (42)

It is readily shown that if 4, B, C, E, and F are real,
and A and B are positive, the condition that the
equation

Ax?+ (B+Ei)xs+ (C+Fi)=0 (43)
have one pure imaginary root is
AF?—B(BC+EF)=0, (44)
in which case the roots are
x1=—A"'B+ (B-'F—A'E)1, (45)
x3=—B~F1. (46)

Moreover, both roots have negative real parts if the
left side of (44) is negative, while one real part is posi-
tive if the left side of (44) is positive. Upon identifying
(43) with (42), we find from (44) that M has two pure
imaginary eigenvalues, and two with negative real
parts, if

E04=0a,"'Gr(00). 47)
Here

G.2(o0)
953+21524+165+4
B[~ 5653+ (3—68)S*+ (11— 66)S+(6—6)]
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In this case the eigenvalues of M are

35+2  BS*H(Q3+B)S+(2+8)

)\1,)\2= - k4 aﬁAt, (49)
S+1 (3S+2)(S+1)
5541

A he= = Bab 41 (50)

These results do not hold if =1, since 8:=0, and
G1(oo) is not defined. But in this case the left side of
(44) is always negative. Hence wave number one will
never develop.

We shall henceforth assume that #=2. In this case
0<B,<1, so that G,? is positive and G, is real for
sufficiently small positive values of S.

Since go=04% for the entire steady Hadley regime,
the criterion for stability of the Hadley circulation
with respect to unsymmetric perturbations becomes

kl=a,"047G (0.4 =0. (51)

For small positive values of 84, there is a single cor-
responding value of k=1, Moreover, k' — o« as 84— 0,
or as 04 approaches the limiting value for which G.(642)
is real, so that in general two values of 04 lead to the
same value of k1. For the case of two waves (n=2),
the critical curve is shown as the heavy curve in Fig. 2,
in which the coordinates are k72 and 64, on a logarithmic
scale. The concave side of the curve, where the left
side of (51) and hence of (44) is positive, represents
the unstable Hadley circulations. The results are in
agreement with the experiments, to the extent that
when £~ is sufficiently small, the Hadley circulation
must be stable, but when 27! is larger, the circulation
is stable for small and also for large Rossby numbers,
but unstable for intermediate Rossby numbers.

5. The steady Rossby regime

The simplest type of Rossby circulation is a steady
Rossby circulation, i.e., one in which the zonal part of
the flow does not vary, and in which the waves progress
at a uniform speed without altering their amplitude
and shape. In this section we shall obtain expressions
for the steady Rossby circulations.

The equations governing ¥4 and 8, tell us that in any
steady flow, whether Hadley or Rossby, y4=604 and
6o=0¢*+0o. We shall see that the results of the previous
section, based upon the equations governing ¥k, 6x,
V1, and §1, lead to a single relation between 64 and oy,
and also determine the disturbance variables yx, 0x,
Y1, and 01, except for a constant amplitude factor. This
amplitude, and the remaining relation between 64 and
oo, will be determined by the equations governing 6,
and go.

We have seen that for certain values of 2~ and 6,4*,
unsymmetric disturbances of small amplitude will grow
when superposed upon the steady Hadley circulation.
More precisely, the matrix M will have two eigenvalues



46 JOURNAL OF THE ATMOSPHERIC SCIENCES

with positive real parts and two with negative real parts.
The eigenfunctions corresponding to the former eigen-
values will begin to grow exponentially, while those
corresponding to the latter will begin to die out. Since
the equations governing ¥x, 0x, ¥, and 6, are linear
in these variables, they govern finite as well as infinitesi-
mal perturbations. However, the coefficients in these
equations depend upon ¥4, 64, and ¢y, which are altered
by the action of the growing waves, in accordance with
the remaining equations. Hence M, and so its eigen-
values and eigenfunctions, will be altered, so that the
disturbances will not continue to grow exponentially, and
will cease growing -altogether if Y4, 64, and oo reach
suitable values. Since ultimately Y4=04, (42) is still
the characteristic equation for M+ M, and condition
(47), which prevails when the remaining waves are
neither growing nor decaying, is valid for the entire
steady Rossby regime as well as the critical Hadley
regime. Eq (47) is the first relation between ¢4 and .

The existence of an eigenvalue A of M+Mq with
a negative real part implies that there is a complex
linear combination

L= (p—qi) @r+¢1i)— (0x+011) (52)

which decays exponentially, so that ultimately
Or=p¥xtqbL, (53)
Or=—qbgt+pér. (54)

The coefficients p and ¢ thus characterize the vertical
configuration of the ultimate disturbance. The condition
that L be an eigenfunction of M1+ M i, with the eigen-
value A1, as given by (49), may be reduced to

25+1 BS+1
(p—gi) (k+PBaBai)+ <mk— maﬁd)
_35+2 A+ (3+B)S+(2+8)
S+1 (3S+2)(S+1)

whence, with the aid of (47),

b, (55)

p= (1+62G2)-1(1+ (56)

2
)
3S5+2
S43
g=(1+8G*)"—6G. 57)
3542
Thus p and g are both determined by .S. Evidently ¢
is always positive, so that the temperature field lags
behind (upstream from) the field of .
The undamped portion of the disturbance possesses
the pure imaginary eigenvalues A; and A4 as given by
(50). Hence, ultimately,

Y= B cos[ (35+2)~1(55+1)Bab 4 (fo— too) ],
Yyr=B Sln[(3S+ 2)—1 (5S+ 1);80104 (to— loo)],

(58)
(59)
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where fog is arbitrary. Eq (58), (39), (53), and
(54), together with the auxiliary definitions (56), (57),
and (48), express the disturbance portion of the Rossby
regime in terms of the zonal portion and an as yet
undetermined amplitude B. It remains to relate B and
the zonal flow to the controllable parameters k! and
64*.

When we eliminate w4, wg, and wy, from the governing
Eq (25), (29), and (32) for 64 and oo, using (30) and
(31), we obtain the pair of equations

04(04—04%)— (P*+ @) B=04, (60)
k(0a—04%)—aqBi=Fkoof4. (61)
It follows that
Bi=¢1G 042 (R—1)(1—H) (62)
and
04 =04[14+09(R—H)(1—H)1] (63)
where
q P+¢ —BS3H(3—66)S*+(11—-98)5+6 64)
q9G 3534145241756
is a function of ¢q alone, and
R=0¢/042 (65)

is proportional to the Richardson number.

Together with the auxiliary definitions (48), (64),
and (65), Eq (62) completes the description of the dis-
turbances in terms of the zonal flow, while Eq (47)
and (63) express the controllable parameters 4! and
64* in terms of the resulting quantities 84 and oo, and
so implicitly determine 64 and o in terms of %2~ and
64*. However, the physical appearance of the Rossby
regime is not immediately obvious, at least to the writer,
from an inspection of the formulas, even though the
functions involved are algebraic. A few features can be
directly deduced.

From (64), it follows that H < 1. It then follows from
(62) that R>1 for the Rossby regime. We have already
seen that R=1 for the Hadley regime (when %#'=#’).

Next, if any fixed value of ¢, is chosen, and succes-
sively higher values of R (and hence higher values of
k™ and lower values of 84) are chosen, it follows from
(63) that successively higher values of ,* must eventu-
ally correspond, until finally there is reached a value of
64* which is higher than the highest value of 84* on
the critical curve defined by (51). In other words, there
are corresponding rotation rates and imposed heating
contrasts for which a stable Hadley regime and a well-
developed Rossby regime are alternative possible equi-
librium circulations.

This feature is more clearly brought out by the re-
mainder of Fig. 2, in which the thin curves are isopleths
of 4%, as determined numerically from (40) for the
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Hadley regime and from (47) and (63) for the Rosshy
regime, and the dashed curve marks the extreme values
of 84* for values of 22, The lines of constant ¢o (not
shown) are horizontal for the Hadley regime, and, in
accordance with (47), all have a slope of —% for the
Rossby regime, as does also the asymptote to the lower
portion of the heavy curve. For sufficiently low rotation
rate, there is no Rossby regime. For somewhat higher
rotation rates, and for a given imposed heating contrast,
there is either a stable Hadley regime or a single Rossby
regime. For sufficiently high rotation rates, there are
heating contrasts for which a stable Hadley regime and
either of two Rossby circulations (with the same #)
are possible equilibrium states.

We may next inquire whether both of the steady
circulations may be observed experimentally, i.e.,
whether they themselves are stable with respect to
further small-amplitude perturbations. We observe that

08 0.8

1 |
log k™2 ! 2

Fic. 2. Criterion for stability of the Hadley regime (heavy
curve), and isopleths of logfs* within the Hadley and Rossby
regimes (thin curves), for the case of two waves (n=2). Coordi-
nates are Jogk™2 and logf4. Heavy dashed curve indicates extreme
values of 64* for corresponding values of &2, for the Rossby
regime.

if any Rossby circulation above the dashed curve in
Fig. 2 is perturbed by increasing 8. slightly (a vertical
displacement on the graph), it will arrive at a point
where a smaller value of 04* would be sufficient to
maintain the value of 64, so that §4 may be expected
to increase further. It is therefore natural to assume
that the dashed curve is a critical curve, separating
unstable Rossby circulations (above) from stable
Rossby circulations (below). However, such gualitative
arguments are not without danger, and we shall examine
the question in more detail.

Suppose that a system containing N dependent
variables X3, ---, X» and a controllable parameter
X* is governed by the equations

X‘i.=q>j(X1;"';XN;X*)’ ]=1) "'?‘ZV' (66)
If X; and X;+3X; are the values of the variables for
neighboring steady state solutions corresponding to the
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parameters X* and X*486X*,

N dP; a%;
b= 3 —dX At —BX*=0, (67)
m=1 aXm aX*

For any equilibrium solution where X* has an extreme
value (the dashed curve in Fig. 2), 6X*=0, whence (67)
requires that the Jacobian must vanish:

0%;
] aX,,.

=0. (68)

If, on the other hand, the variables are subjected to
small perturbations i, ---, %y, without altering X*,
the perturbations are governed by the time dependent
equations

= 3 (69)

=Y, —%m.

g m=1 aXm "
The determinant of the coefficients is the product of
the eigenvalues of the matrix of coefficients, so condition
(68) is also the condition that at least one eigenvalue
should vanish, and is presumably a critical condition
separating a positive from a negative eigenvalue.

This result cannot be immediately applied to the
steady Rossby circulations, since there are moving
waves, and the time derivatives do not vanish. However,
we may obtain a system in which the time derivatives
do vanish by rewriting the equations for a coordinate
system which moves with the waves. The above result
is therefore applicable, and the Rossby circulations
above the dashed line in Fig. 2 are unstable.

There remains the question as to whether, in the
equations governing small perturbations superposed
on the Rosshy circulation, some other eigenvalue has a
positive real part, in which case an unsteady Rossby
circulation will develop. If this situation occurs, it is
independent of the preceding considerations. We shall
leave this question unanswered, noting, however, that
in the actual annular experiments, there is evidently
no such eigenvalue, since regular flow is observed,
while in the open dishpan experiments, the eigenvalue
evidently is present, since irregular flow occurs. Whether
the eigenvalue is present in our equations would then
seem to depend upon whether we have simplified the
equations to the point of eliminating the eigenvalue.
The stability of the Rossby circulations corresponding
to points below the dashed curve in Fig. 2 is probably
best determined numerically, either by computing
eigenvalues, or by integrating the time-dependent
equations.

Fig. 3 is a transformation of Fig. 2, in which 4™ is
now the ordinate. The dashed curve in Fig. 2 has become
the heavy dashed curve in Fig. 3. The thin lines are
isopleths of 84, drawn as solid lines for the supposedly
stable Rossby and Hadley circulations and dashed lines
for unstable Rossby circulations. The threefold multi-
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Fic. 3. Criterion for stability of the Hadley regime (heavy
curve), and isopleths of logd 4 within the Hadley and stable Rossby
regimes (thin solid curves) and the unstable Rossby regime (thin
dashed curves), for the case of two waves (#=2). Coordinates are
logk™? and logfs*. Heavy dashed curve indicates extreme values
of 8a* for corresponding values of k72, for which the Rossby regime
can exist. Multiplicity of curves between heavy dashed curve and
heavy solid curve shows the possibility of either a Hadley or a
Rossby regime.

plicity of 64 is evident in the upper right portion. A
part of the heavy curve in Fig. 3 corresponds to the
dashed curve labeled “2-symmetric” in Fig. 1, and is a
criterion for the stability of the Hadley regime, but
not for the disappearance of an established Rossby
regime.

Our simplified equations have told us that baroclinic
instability of a Hadley circulation is a criterion for the
appearance of waves, but that for high rotation rates,
the waves, once established, have a different criterion
for disappearance (the uppermost curve in Fig. 3). This
result is in agreement with the experiments of Fultz.

6. Several wave numbers

In spite of the resemblance between Figs. 2 and 3
and Fultz’s diagram (Fig. 1), there are certain features
which have been excluded. Notably absent are the
changes of wave number, which have been intentionally
eliminated by restricting # to a single value. These
changes may be reintroduced by altering the truncated
Fourier-Bessel expansions to include the functions 7.,
and F,, for several values of #. At the same time, the
physical simplifications may be modified to include the
interaction of each wave number with the symmetric
flow, but to exclude the interaction of one wave number
with another.

Accordingly, we shall replace the expansion (17) for

¥ by

1/z=c‘2a’f[¢AFm+f: (WxaF1int¥raF1a)],  (70)
n=2
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with analogous expressions for 7, V2x, and 8. Wave
number one is omitted, since it will not develop upon
any zonal circulation.

The equations for Y4, §o, 64, and 6, are unchanged,
except that the nonlinear terms now contain summa-
tions over #. The equations for Y&, 6xn, ¥ra, and 8y,
are the same as those for ¥k, 0k, ¥r, and 6z, with
the addition of some subcripts “n.”

In the absence of waves, the governing equations are
completely unchanged. Hence the original solution for
the steady Hadley regime still holds.

The equations for Yxs, 6xs, ¥1x, and 6z, now
form an infinite set, and the matrix of coefficients has
four eigenvalues corresponding to each value of #. The
critical Hadley circulation occurs when one or more of
these eigenvalues is pure imaginary (or zero), and the
remaining eigenvalues have negative real parts. Ac-
cordingly, the criterion becomes

71
(72)

k04—, G (00)=0 for some n,
E 04—, G (00) =0 for all n.

The critical curve is therefore composed of segments of
curves which are critical for individual values of #,
and is shown as the heavy curve in Fig. 4, where, as
in Fig. 2, the coordinates are k2 and 64, on a logarithmic
scale. The asymptotic expression (16) for v. as »
becomes large indicates that the slope of the lowest
portion of the critical curve is —$%, as opposed to a
slope of —% for the critical curve for an individual
wave number.

Analogously to the case of a single wave number, the
entire Rossby regime is characterized by Eq (71) and
(72), which characterize the critical Hadley regime. For
those values of 64 and ¢ satisfying (71) for only one
value of #, the Rossby circulation is identical with

that determined in the previous section.

Large
Wave
Numbers

log

1
3

| [
log k2 ! 2

F16. 4. Criterion for stability of the Hadley regime (heavy
curve), and criteria for transitions between wave numbers (thin
curves), when all wave numbers are allowed. Coordinates are
logk™ and logf 4.
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When (71) is satisfied for two values of %, say n=g

and #=yv, we find that

a,1Gu(00) =a,71G, (00), (73)
which is an equation in the single variable ¢o. Hence
therc are only certain discrete values of ¢, for which
the symmetric flow is neutral with respect to two wave
numbers, By examining individual curves for G,(og)
when #» is small, and from the asymptotic form when »
is large, we find that if y and » are not consecutive
integers, Eq (72) will not be satisfied for the inter-
vening values of #.

In Fig. 4, the thin lines, which all have slopes of —3,
are isopleths of oo, for values of oy satisfying (73)
when »=p-+1. For values of ¢4 not on one of these lines,
the steady Rossby regime will contain a single wave
number. A similar dependence of # upon ¢¢ has been
found by Kuo (1956).

Fig. 5 is a transformation of Fig. 4 in which the
ordinate is now logf4*. Since 8, and S increase as #
increases, it follows from (63) and (64) that when o
satisfies (73), with y=pu+1, the value of 64* when n=»
is smaller than the value of 4* when n=p, unless R=1.
Hence each of the critical curves op=constant in Fig. 4
transforms into a pair of curves in Fig. 5, the upper
curve of a pair corresponding to the lower wave number,
In Fig. § the area between the curves forming such a
pair is shaded.

For values of 6, within a shaded area, the Rossby
flow with only the lower wave number is unstable with
respect to perturbations with the higher wave number,
and vice versa. It is therefore natural to assume that
both wave numbers will occur together. That this is

P
~ -
-~ T
/s
fo) I8
i
Numbers
Vo9
o
1 | |
log k2 ! 2 3

F16. 5. Criterion for stability of the Hadley regime (heavy
curve), and criteria for transitions between wave numbers (thin
curves), when all wave numbers are allowed. Coordinates are
logk™2 and logda*, Heavy dashed curve indicates extreme values
of @4*, for corresponding values of 472, for which the Rossby
regime can exist. Shaded areas indicate the existence of two wave
numbers together.
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the case may be shown by again considering the govern-
ing equations for 84 and ¢o. If we let

¢KM2+¢LM zruBzA (74)
¢Kv2+‘l/Lp =rvB2 (75)

where y=u~+1 and r,4+7,=1, Eq (60) and (61) are
replaced by

0404*—04)—[ru(p2+02) 4. (p 242 1B =0, (76)
k(04*—04)— (ruaugutr.onq)Bi=kaoba.  (77)
The imposed heating 64* is then given by
0% =041+ 0o(R—Hu)(AI-Hw)™],  (78)
where
T (;ﬁf+qﬁ)+n(ﬁ3+q3). (19)

r.9:G.+1.0.G,

Eq (78) is identical in form with (63), and reduces to
(63) in the event that 7, or 7, vanishes. From the form of
H,,, it appears that 64 increases in a monotone fashion
as 7, increases from 0 to 1, or 7, decreases from 1 to O,
so that the relative intensities of wave numbers u and
#~+1 depend upon the position within the shaded zone.

The sequence of the equilibrium flow patterns which
will be encountered as 64* is increased quasi-statically
from a low to a high value, and then decreased quasi-
statically to its original low value, while 47 is held
fixed, may now be summarized as follows:

Yor sufficiently low rotation, the Rossby regime does
not occur.

For a somewhat higher rotation, the Hadley regime,
which occurs when 6,* is very low, becomes unstable
as 04 crosses its lower critical limit, and a high wave
number develops. As 6,* enters a transition zone, the
now-established Rossby regime becomes unstable with
respect to the next lowest wave number, which then
grows, and alters the zonal flow until it is neutral with
respect to both wave numbers. As 8,* leaves the transi-
tion zone, only the lower wave number remains. This
process is repeated as 64 continues to increase, until
wave number two is established. The amplitude of
wave number two approaches zero as 64* approaches its
upper critical limit, and when 84* crosses this limit, the
Hadley regime is again established. This sequence is
repeated in reverse as #4* decreases to its original value.

For a somewhat higher rotation, the same sequence
occurs as 04% increases, until wave number two is
established. In this case the amplitude of wave number
two remains finite as 6,4* approaches its upper critical
limit (the dashed line in Fig. 5), but, as 04 crosses this
limit, the existing zonal flow again becomes stable and
the Hadley regime is established. As 64* decreases
again, wave number two does not reappear until 6,4*
reaches a somewhat smaller upper critical limit (the
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solid line in Fig. 5), whereupon the Hadley flow becomes
unstable, and wave number two redevelops. The re-
mainder of the sequence is like the one previously
described.

For still higher rotations, the same sequence occurs
as 0,% increases. But, as 6,* decreases again, wave
number three, or some even higher wave number, first
becomes established after 64* crosses its upper critical
limit.

The process by which wave number three becomes
established with decreasing 64*, as opposed to the se-
quence of equilibrium flow patterns, may be described
as follows: When 8,4* crosses its upper critical limit (the
solid line in Fig. 3), the existing Hadley circulation
becomes unstable first with respect to wave number two,
but stable with respect to higher wave numbers. Wave
number two then grows, and alters the zonal flow. Before
the zonal flow becomes neutral with respect to wave
number two, however, it becomes unstable with respect
to wave number three. Wave number three grows, and
further alters this zonal flow so that it becomes stable
with respect to wave number two. Wave number two
then decays, and the flow becomes and remains neutral
with respect to the well-established wave number three.

If the rotation is high enough, the flow will become
unstable with respect to wave number four before be-
becoming neutral with respect to wave number three,
and wave number four, or a still higher wave number,
will ultimately prevail.

7. Summarization

The results of the previous sections enable us to give
qualitative explanations for the transition between the
Hadley and Rossby regimes and the transitions between
wave numbers within the Rossby regime, as they occur
in the mathematical model, in terms of baroclinic in-
stability. We may then speculate as to whether these
explanations also apply to the transitions observed in
the experiments.

In the mathematical model the zonal part of the flow
is characterized by a static stability, and a horizontal
temperature gradient which is identified through the
thermal wind equation with a vertical shear. A high
static stability favors baroclinic stability, while a strong
shear favors instability, with respect to superposed
disturbances. Frictional and thermal dissipative proc-
esses tend to suppress the disturbances.

When the heating contrast exceeds a lower critical
value, the effect of the forced vertical shear becomes
sufficient to offset the dissipative effects, When the
heating contrast exceeds an upper critical value, the
effect of the forced static stability becomes sufficient to
suppress the effect of vertical shear.

Once the disturbances have become established, they
alter the temperature gradient and the static stability
by transporting heat. Further development or decay
then depends upon the stability of the resulting zonal
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flow, rather than the stability of the flow which would
have occurred if the disturbances had not altered it.
Hence the critical heating contrast for the disappearance
of large disturbances need not coincide with the critical
heating contrast for the growth of small disturbances.

The transitions between wave numbers are repre-
sented by curves which are not extensions of the curve
separating the Rossby and Hadley regimes, and consti-
tute a separate phenomenon. The critical conditions for
the growth of a disturbance depend upon the wave
number of the disturbance, in such a way that a curve
of growth rate vs. wave number is always concave down-
ward. Hence a zonal flow which is neutral for two dif-
ferent wave numbers is unstable for all intervening
wave numbers, and stable for the remaining wave
numbers, so that a flow in which the disturbances have
ceased to grow or decay must contain disturbances pos-
sessing only one wave number, or two consecutive
wave numbers.

Before deciding how well this description of the
mathematical model also applies to the experiments,
we should consider some of the differences between
theory and experiment. It is noteworthy that although
we have ostensibly studied the flow in a circular region,
the experiments whose results we have approximated
involved an annular region. The analogous experiments
performed in a circular region possessed Rossby regimes
with an irregular quasi-random appearance. The central
core in the annulus experiments acts as a constriction
upon the flow, and evidently suppresses certain modes of
oscillation which could otherwise develop. The regular-
ity of the Rossby regime in the mathematical model
can be ascribed to the extreme truncation of the Fourier-
Bessel expansion, which suppresses certain modes of
oscillation by simply refusing to acknowledge them.
Presumably we should have obtained qualitatively
similar results with an annular region or even an infinite
strip, if we had truncated the series of orthogonal func-
tions to the same extent.

We should next note that wave number one was ob-
served experimentally. Its absence in our solution can
be ascribed to our particular choice of orthogonal
functions, which suppresses the nonlinear terms in
the vorticity equation for wave number one.

Although we have found separate criteria for the ap-
pearance and disappearance of the Rossby regime, we
have not duplicated the hysteresis effects marking the
transitions between wave numbers. It is interesting to
speculate as to whether a different choice of orthogonal
functions, or possibly the inclusion of the interactions
between wave numbers, would have led to hysteresis.

Finally, we note that it is not Fig. 4 but Fig. 5, where
64* is the ordinate, which more closely resembles Fig. 1.
In Fultz’s experiments, however, as opposed to Hide’s
the temperature gradients were measured within the
fluid, so that 84 would appear to be the better analogue
of Ror*. The writer can offer no immediate explanation
for this discrepancy.



JanuAry 1962

At this point we may ask just what is to be learned
from any investigation based upon equations which
have been so drastically simplified. Specifically, do we
gain information concerning the experiments, or in-
formation concerning the simplified equations?

Tt would appear that unless the results of an experi-
ment and the explanations for these results are com-
pletely unknown, or else perfectly known, we can learn
something about both the equations and the experi-
ments. In the present study, the general qualitative
resemblance between the experiments and the solutions
of the equations indicates that highly simplified equa-
tions like those used are suitable for studying simple
baroclinic flow. Some of the limitations are indicated by
the discrepancies.

The study anticipates one minor physical feature,
namely, the kinks in the transition curve separating
the Hadley and Rossby regimes, which apparently
have not been noted in the experiments, but might be
capable of detection. If they are found to exist, they
would lend support to thehypothesis that the transition
curve is composed of segments of transition curves for
individual wave numbers.

More significantly, the study suggests highly plausible
qualitative explanations for the transition between the
Hadley and Rossby regimes and the transitions between
wave numbers within the Rossby regime. Finally, it
implies that these transitions are fundamental proper-
ties of the forced flow of rotating fluids, which are not
suppressed even when the governing equations are
stripped of their details.

The pathway to our ultimate understanding of a
natural phenomenon sometimes becomes obstructed
when either of two physical processes could by itself
bring about the same observed physical result. The
situation is especially confusing when actually both
physical processes are taking place together. The time
is then ripe for the development of extreme antagonism
between two investigators, each defending his own
hypothesis which he feels has been confirmed by ob-
servation and theory. Since each investigator has pre-
sumably somehow suppressed the physical processes
deemed important by his adversary, he has in essence
used a simplified form of the governing equations in
reaching his conclusions.

Our study has yielded plausible qualitative explana-
tions for the experimentally observed transitions. Since
we have used simplified equations, we cannot exclude
the possibility of other equally plausible explanations.
Perhaps, for example, qualitatively similar transitions
could occur as a manifestation of some form of baro-
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tropic instability, which we have suppressed. Neverthe-
less, we should regard our study as evidence strongly
favoring the explanations which we have presented.
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