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The equations governing two-dimensional turbulence are written as an infinite
system of ordinary differential equations, in which the dependent variables are
the coefficients in the expansion of the vorticity field in a double Fourier series.
The variables are sorted into sets which correspond to consecutive bands in the
wavenumber spectrum; within each set it is supposed that the separate variables
will exhibit statistically similar behaviour. A low order model is then constructed
by retaining only a few variables within each set. Multiplicative factors are
introduced into the equations to compensate for the reduced number of terms in
the summations. Like the original equations, the low order equations conserve
kinetic energy and enstrophy, apart from the effects of external forcing and
viscous dissipation.

A special case is presented in which the bands are half octaves and there is
effectively only one dependent variable per set. Solutions of these equations are
compared with conventional numerical simulations of turbulence, and agree
reasonably well, although the nonlinear effects are somewhat underestimated.

1. Introduction

Turbulence, or more specifically an ensemble of time-dependent fields of
turbulent motion, constitutes a process. A particular member of any such
ensemble constitutes a realization of the process. A characteristic feature of
turbulent motion is the simultaneous presence of eddies of many different sizes.
This feature renders it impossible, when treating turbulence by mathematical
techniques, to represent a realization by a relatively simple analytic function.
By contrast, certain statistical properties of a turbulent process, such as the
energy spectrum, often lack the irregularity of individual realizations and, if not
expressible by the more familiar analytic functions, may at least be represented
by rather simple smooth curves. Consequently many theoreticians concerned
with turbulence have confined their attention to ensemble statistics, as & means
of finding order within apparent chaos.

If we begin with the Navier—Stokes equations or some other equations which
are assumed to govern the flow, we may in principle use either of two approaches
in seeking the statistical properties. We may obtain a number of particular
solutions, each representing a realization, and then compile statistics from them.
Alternatively we may derive new equations whose unknowns are statistical
properties and then solve the new equations.

The former approach is rendered extremely cumbersome by the presence of
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motions of many scales. If the relevant motions cover s octaves of the spectrum,
at least 27 numbers are needed to describe a realization of n-dimensional turbu-
lence at a single instant (» = 2 or 3). Two-dimensional turbulence spanning twelve
octaves, or three-dimensional turbulence spanning eight, is therefore well beyond
the scope of today’s most powerful computers, yet studies encompassing fewer
octaves often cannot promise realistic results. In the atmosphere, for example,
which is a highly turbulent system, extratropical c¢yclones and cumulus clouds,
both of which exert considerable influence upon the total motion, differ by about
ten octaves in scale.

In the latter approach each pertinent statistical property can often be repre-
sented by relatively few numbers, thanks to its rather smooth behaviour. The
numerical deseription becomes particularly concise when the turbulence is homo-
geneous and isotropic. The main difficulty stems from the nonlinearity of the
governing equations, which inevitably causes any finite system of derived equa-
tions with statistical properties as unknowns to contain more unknowns than
equations. To increase the number of equations to the number of unknowns it is
necessary to introduce some closure approximation. One of the best known of
these is the quasinormal approximation, originally introduced by Millionsht-
chikov (1941), expressing fourth-degree statistical properties in terms of statisties
of lower degree. More refined closure schemes include the original direct-inter-
action approximation of Kraichnan (1959). These and other schemes have
recently been reviewed by Orszag (1970).

The basis for accepting or rejecting a closure approximation has frequently
been not any a prior: demonstration of suitability, but rather the results which
have eventually been obtained when the scheme has been put to use. The quasi-
normal approximation, for example, became discredited after Ogura (1963)
demonstrated by numerical integration that it would lead to the physically
impossible occurrence of negative kinetic energy in certain bands of the spec-
trum. Thus, when one obtains a result using some particular closure scheme, the
question always remains as to the extent to which the result has been deduced
and the extent to which it has been implicitly presupposed in selecting the scheme.

To eliminate the need for closure approximations one may return to the
former approach, and deal with realizations. This procedure is indeed becoming
more common, with the increasing availability of more powerful computers.
Lilly (1969), for example, has represented a two-dimensional turbulent field by
the values of a stream funetion at a grid of 64 x 64 points, and has obtained flow
patterns which seem fairly realistic. However, his six-octave span falls far short
of the ten or more octaves which one often wishes to cover.

It is the purpose of this study to devise a means for representing realizations of
turbulence with relatively few numbers while still retaining many octaves of the
spectrum and to establish systems of equations governing these representations.
The speed and capacity of present-day computers will then cease to be a limiting
factor. Needless to say, the representations will have to be unrealistic in some
respect other than the total spectral range.

In brief, we first represent a realization by a multiple Fourier series in space
whose coefficients are functions of time alone. These coefficients become the
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dependent variables in an infinite system of ordinary differential equations,
derived from the original governing equations. We next divide the wavenumber
spectrum into relatively narrow bands (e.g. half octaves). We then discard most
of the variables corresponding to each band, retaining only a small number whose
statistical behaviour is supposed to be representative of the behaviour of all the
variables in that band. We attempt to compensate for the reduced number of
terms in each equation by introducing suitable multiplicative factors. The author
(1971b) has recently proposed that a scheme of this sort could be of value in
investigating the predictability of turbulence, and has described some of the
ingredients of a particular scheme. Although we shall deal only with two-
dimensional turbulence in this study, there is no obvious reason why a similar
scheme could not be used in three dimensions.

2. The basic equations

We shall first introduce the basic equations, from which the special equations
of this study will be derived. Since the same basic equations have appeared in
numerous works, we shall simply state them, without detailed derivations.

Consider the mechanically forced motion of a two-dimensional homogeneous
incompressible viscous fluid of infinite horizontal extent. Such motion may be
expressed in terms of thestream funetion ¥ or the vorticity V2, and the governing
equation may be written as

%sz, = Vi x V(V2)) +»Va) 4+ F, (1)

where ¢ is time, v is the coefficient of kinematic viscosity and F is an external
foreing funetion, which will serve to maintain the motion against the effects of
viscosity. We use two-dimensional vector notation; V is the horizontal differential
operator and the cross product is a scalar, which would be denoted by the vertical
component of the cross product in three-dimensional notation.

Let % and y denote distances in mutually perpendicular directions and let the
motion be periodie in both the x and y directions, with a fundamental period
27D, where D is a large distance. The vorticity may then be expressed as the
double Fourier series

V& = 3 Xyexp (¢D1J.1), (2)
3

where r is the vector whose components are # and y, and the summation runs
over all vectors J whose components J, and J, are both integers. It follows that

¥ =—D2 ; J~2X exp (iD-1J.r), (3)

where J denotes the magnitude of J. We shall refer to J and J as the wavenumber
and the wave vector of X;. The physical necessity for ¥ and V) to be real
demands that
X ;= ? s (4)
35-2
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where the asterisk denotes the complex conjugate. We may likewise let
F =3 Fexp(tDJ.r), (5)
F]

where F ;= Ff. (6)

Upon substituting (2) and (5) into the linear terms in (1), and the complex
conjugates of (2} and (3) into the nonlinear term, we obtain the spectral form of
the governing equation:

%XI = KE{JCmX; X;f -_ VD—2J2XJ+.F'J, (7)

where the interaction coefficient Cygy, is given by
{—%(K*—L"“)KXL if J+K+L =0,
Crma = . )
0 if J+K+L 0.

The summation in (7) is written redundantly, i.e. terms containing X% X¥ and
X§ X are added together.

From (7) and (8) it follows that if a term containing Xg X§ appears with a non-
vanishing coefficient in the equation governing Xj, terms containing Xf X§ and
X7 X% generally appear in the equations governing Xg and X respectively.
Equation (7) thus depicts the evolution of the field of motion as consisting, apart
from the effects of forcing and viscosity, of a collection of inferactions of triples
of wave vectors (J, K,L) whose sum is zero, or, alternatively, interactions of
triples of variables (X;, Xg, Xy).

An alternative form of (8) is

CJKL = EJKL(K-2—L—2)A(J’K’L)7 (9)

(8)

where
A(J, K, L)y = }(J+ K+ L) (=J+K+L)(J-K+L)(J+K-L)} (10)
is the area of a triangle in wave-vector space with sides of lengths J, K and L, and
1 if J+K+L=0 and KxL <0,
€81, = 0 if J+K+L+0 or KxL =0, (11)
—1 if J+K+L=0 and KxL >0

It is evident that gy, is unaltered by a cyclic permutation of the indices, while
a transposition changes it sign. It then follows readily from (9) that

Cogr. = Coz (12)
Crer, + Cgrs + Cur = 0, (13)
J_2C.'I'KL+K—2OKIJ+L_2CLTK = 0. (14)

The principal advantage of (9) over (8) is that, except for sign, it expresses Cyg,
in terms of the (scalar) wavenumbers of the interacting variables.
The specific kinetic energy E and the enstrophy ¥V are given by

E =Ny vy, (15)
V= 3(V¥), (16)
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where the bar denotes an area average. In spectral form (15) and (16) become
E = §D* 3 J*X, X}, (17)
]

V=13 XXk (18)
J

Here also the summations are written redundantly, i.e. for a given J, terms con-
taining X; X¥ and X_; X*; (i.e. XT X;) are added together.

It is well known that in the absence of external forcing and viscous dissipation
equation (1), and hence (7), conserves both £ and V. However, it is evident from
(13) and (14) that in addition each interaction among three vectors J, Kand L,
together with the assured interaction among the vectors —J, —K and —L,
tndividually conserves E and V. The advantages of using wave-vector space in
dealing with two-dimensional turbulence stem largely from this familiar result.

3. Formulation of the low order equations

As a first step in developing a low order model we shall divide the spectrum
into bands, i.e. we shall sort the wave vectors J into sets S, S;, ... according to
their magnitudes. To do this we choose a resolution factor p > 1, and assign J or
X to the set S; if p*~% < J < p7*}. Tt is intended that p should be close enough to
unity so that separate variables in the same set will represent features of com-
parable scale, and may be expected to exhibit similar statistical behaviour.

Equation (7) may now be rewritten as

o 8,8
%X, -3 ;zn' Crp X XE —vD-2J2 X+ Fy, (19)

where the second summation runs over all wave vectors K and L belonging
respectively to S, and S;. An important derived relation is

© Sk S|
I, Xt = 5 % Cre(Xs Xg Xy + X XEXE)
dt k1=0 K,L

— 20D 22X XF + (X, Ff + X¥ Fy). (20)

Likewise, E and ¥V may be rewritten as

w S8
E=}D* S I, XY, (21)
=07
1 = 8
V=13 SX, X5 (22)
2,207

We shall denote the number of vectors J contained in S; by n;, and the number
of triples of interacting vectors (J, K, L) contained respectively in S;, §; and §; by
;- In defining n; and g, vectors J and — J are to be counted separately, as are
triples (J, K, L) and (- J, — K, —L). If two sets are the same, say if & = [, triples
(J, K, L) and (J,L, K) are to be counted separately unless K = L. Since ¢;;; can
exceed neither n; n;, nor mn;, nor n;n,, we may let

G = Tia(nymem)t, (23)
whence o, < 1.
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Given the sets S; and §;, the number of terms added together in the second
summation in (19) will differ for different variables Xjin the same set §;, but on
the average there will be n;1q,;, such terms. If §,k and [ are large this number may
also be large. Suppose that in evaluating the second summation in (19) we
accumulate these terms in a more or less random order. After we have added a
relatively small number of terms together, we may be able to estimate the sum
of all the terms, or perhaps at least the general magnitude of the sum, more or less
as one estimates the outcome of an election after a few votes have been counted.

Accordingly, we shall introduce subsets By, Ry, ... of §;, S;, ... . We shall denote
the number of vectors J contained in E; by m;, and the number of triples of inter-
acting vectors (J, K, L) contained respectively in R;, B, and R, by p;;;. We may
then let

D = Pyalmymym)t, (24)

whence p;;; < 1. We shall also introduce the ratios
r; = mjin;, (25)
i = Pd O jaa- (26)

As our principal modification, we now approximate (19) by

d © Ry, R,
55X = a4 ?/-10 b ;ELlomXﬁXf —vD- 22X+ I, (27)

where j is the index of the subset containing J, and approximate (21) and (22) by

') R
E=1D*Y ¢;3J2X; X%, (28)
j=0 7
1 o]
=5%¢ EX;XJ (29)

We thereby omit all reference to all wave vectors and the corresponding variables
except those contained in Ry, R,, ... . Within each subset E; the behaviour of the
retained variables is supposed to be representative of that of all the variables in
8;. The factor ¢; has been introduced into (28) and (29) in an effort to compensate
for the reduction in the number of terms in the second summation from »; to m;.
Likewise the factor b, in (27) represents an attempt to compensate for the
reduction in the average number of terms in the second summation from n;q;,
to m;p;;,;. The additional factor a; is included to compensate for a possible
reduction in the number of terms contributing significantly to the first sum-
mation, since, given j, there may be pairs (k,1) for which there are no interacting
variables in B;, R, and R, and hence an empty second summation, even though
there are interacting variables in S;, S and §. The remaining problem is to deter-
mine suitable expressions for a;, b;;,; and c;.

We cannot expect that the fluctuations of the retained variables in a particular
solution of the modified equation (27) will coincide with the fluctuations of the
same variables in any solution of the original equation (19), nor even that the
fluctuations of £ and V in two such solutions will coincide. The most that we can
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ask is that some of the statistical properties of the two solutions should be the
same. Our choices for a;, b;;; and ¢; should therefore depend upon the manner in
which we expect the separate terms in the summations in (7), (17) and (18) to
combine,

We can distinguish two extreme types of behaviour. If the terms in a summation
are all of one sign and thus have no tendency to cancel, we can make a good
estimate of the sum of all the terms by multiplying the sum of the retained terms
by the ratio of the total number of terms to the number of retained terms. If,
on the other hand, terms of either sign are about equally common, we cannot
readily estimate the total sum, but we can estimate the general magnitude of the
total sum by multiplying the sum of the retained terms by the square-root of the
above-mentioned ratio. We shall refer to the two types of behaviour as systematic
and random. The possibility of somewhat intermediate behaviour should also be
recognized.

We shall therefore let

c; =1y (30)

7

in (28) and (29), where we choose y = 1 if the assumed behaviour is completely
systematic, but y = } if it is completely random. It is doubtful that any value of
v is really appropriate for intermediate behaviour, but some value between 1 and
% is probably preferable to either extreme. Likewise, our tentative choice for by,
in (27) will be

b = (77 ) = 17 (ryrir)¥ 15, (31)

where the same considerations as determine y are to determine B. We shall
temporarily leave the exponentsy and f unspecified, so that the ensuing equations
will be applicable to a number of possible choices.

We also wish the modified equations to continue to conserve E and V in the
absence of external forcing and viscous dissipation. According to (27), (28) and
(29), this requires that

€550 ~2Cpga, + 3, 0, byg; K~2Cryg + 6 by L*Crag = 0, (32)
¢; ;b3 Crgr, + 0 2,0y Crr + 1 byjp, Gy = 0, (33)

for any three interacting vectors J, K and L contained in any three sets R;, B, and
R,. Comparing (32) and (33) with (13) and (14), we find that

The proper choice for b,;,; must then depend upon the choice for a;, whence the
tentative choice (31) cannot be suitable in all cases.

We shall presently offer a procedure for choosing a,;; meanwhile we shall assume
that a; neither increases nor decreases systematically as j increases. It is evident
that n; increases as p* for large values of j. We shall assume that the subsets &;
have been chosen so that m; increases as a lower power of p/, whence 7; also
increases as a power of p.

As a choice for b, which does not violate (34) and yet retains the essence of the

tentative choice (31), we take b}, multiplied by a function of a;, a,, ¢y and r,, 7, 7,
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Ficure 1. A portion of the k, [ plane. @, (4, 7); , K+ L = J (lower left), J+ K = L

(upper) and J + L = K (right), where J = p/, K = p*, L = pland p = /2. Small squares
formed by intersecting lines are of unit area, and the co-ordinates of central points of
shaded small squares are (j—2,j—1), (—1,5—2), (j—1L,5+1), (j+1,5—-1), (j+1,7+2)
and (j+2,j+1).

which neither increases nor decreases systematically asj, k and l increase together,
We can do this by letting

b = (a5 2oy )% (7 2 r)30-P by,
= a7 7Y (@0, )t (ryr B0+ . (35)

Choosing a; presents further problems. Whereas the separate variables within
a band can be expected to exhibit somewhat similar statistical behaviour,
variables in separate bands presumably cannot. Nevertheless, given j, if for some
k and I the interactions in (S;, S, S;) are not represented by any interactions in
(R, By, Ry), the only way in which their effects can be represented would seem to
be in terms of interactions in other triples of bands.

A reasonably satisfactory procedure for choosing a; is perhaps best described
with the aid of a diagram. In figure 1 the horizontal co-ordinates are k and I,
regarded as continuous variables. The central point is (4,7), where j is an integer.
The horizontal and vertical lines divide the k,  plane into squares of unit area, and
the co-ordinates of the centres of the squares are integers.

The equations of the heavy curves are p* + pt = pJ, pi + pl = p¥ and p? + p* = pl.
The region enclosed by these curves, which we shall call the interaction region,
therefore contains the values of £ and 7 for which none of the three quantities
P4, p* and p! exceeds the sum of the other two, and for which interacting vectors
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with magnitudes p?, p* and g can therefore exist. Figure 1 has been drawn with
p =42

The squares which intersect the interaction region are centred at those points
(k, 1) for which interactions in §;, S and S exist. We shall denote the number of
such squares by N;. The shaded squares, all of which interseet the interaction
region, are centred at those points (%,!) for which at least one interaction in
R;, By and R, exists. We shall denote the number of such squares by M. In the
particular case shown in figure 1, the squares are centred at (j—2,5—1),
(1—1,5-2), j—1,54+1), (j+1,j—1), (j+1,j+2) and (j+2,j+1), ie. all the
retained interactions ocour among triples of vectors oceupying three consecutive
bands.

Although M} may be finite, N is clearly infinite, and it is for this reason that
we cannot let a; depend simply upon the ratio N;/M;. However, under the
assumption that squares lying mostly outside the interaction region represent
rather few interactions compared with nearby squares lying mainly inside the
interaction region, we may let a; depend upon the ratio of the area of the inter-
action region to the area of the shaded portion of the interaction region.

We shall denote the latter area, which cannot exceed M, by M,. For any
particular case M; may be determined by direct measurement. Direct integration
reveals that the area of the interaction region (extending to infinity in each
direction) is

I = in%(In p)—2. (36)
We shall let
a; = (Mj—ll)a’ (37)

where the considerations which govern the choices of y and £ also govern the
choice of «. In the case illustrated in figure 1, I = 41-1 and M; = 5-8, whence
a; = (7-1)%.

A further modification, less drastic than those already introduced, is suggested
by the narrowness of the spectral bands. We replace J by p? and, in evaluating
¢yxr, We also replace K by p* and L by g If we now let

Yy =ddX;, Gy=diF, (38), (39)
we find that
] R;
B =30 S p¥ S, 5, (40)
i=0 J
1 ® Rj
V=:3 35Y§, (41)
2,507

while the governing equation (19) becomes

w Ry, R,
QYJ = ¥ 9uCin kZ lem Yi Y§ —vD 2%+ Gy, (42)
dt AT R 3 )
where Cia = (p7H —p=2) A(p7, p*, p) (43)

is a quantity which is evidently unaltered by adding the same integer toj, kand [,

and Gia = (a;ap00)% (r;r, )88 _")Tf’kl- (44)
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It is noteworthy that the second summations in the expressions for F and V are
now identical.

There remains the choice of the exponents «, £ and y. Turning to the summa-
tions in (21) and (22), we see that every term is positive. To this extent, at least,
the terms combine systematically. We therefore let y = 1. In (19) the various
terms in the second summation are in general complex, and considerations of
sign are insufficient to determine whether the terms cancel or not. We therefore
turn to the derived equation (20), where the terms are real. Here there is little
indieation that the terms are mainly of one sign, and we shall assume that the
behaviour is random. We therefore let # = }. Finally, we assume that the terms
in the first summation in (20), each consisting of an entire second summation,
combine randomly. Hence we let o = 1.

The system is now complete, assuming that the subsets B, E,, ... have been
specified. It must be admitted, however, that other choices of «, £ and y might be
preferable. In (22), for example, the viscous term is always negative; if a particular
variable Xj is not directly forced, and if the solution has reached statistical
equilibrium, positive terms must predominate over negative terms in the summa-
tions and the behaviour is not entirely random. Possibly values of o and £
exceeding 1 are indicated.

On the other hand, we may also demand that if two fields of vorticity are
identical to one another, except that one is equal to the other ‘seen through a
magnifying glass’ (features of equal magnitude but stretched horizontal scale),
the fields should behave similarly, in the absence of forcing and viscosity. This
implies that the low order equation (42) should be unaltered if j, ¥ and ! are
altered by the same integer. Assuming that a; does not increase or decrease with j,
this can occur only if the factor containing 7;r,r, in (44) drops out. The only
allowable values of £ and y for which this happens are § = 1 and y = 1. Values of
a exceeding 1 still appear permissible.

4. A very low order model

In order to demonstrate that appreciable savings in computation can result
from using the low order equations, we must show that it is actually possible, for
some appropriate resolution factor p, to choose reasonably small subsets By, R,, ...
of Sy, 8, ... while, nevertheless, retaining reasonably many interactions. We shall
do this by exhibiting a particular choice.

We have noted that n; is proportional to p% for large values of j. Possibly the
least drastic modification which would yet offer substantial computational
advantages would be one in which m; increases less rapidly with j, perhaps
as p7. In the scheme which we shall present, however, m; does not increase with j
at all.

In describing the scheme it will be convenient to identify each wave vector J
with the complex number J,, + ¢J,. We begin by introducing the complex numbers
2z = 1 and z, = 1+14, and, for j > 0, letting

Zjya = iy 12 (45)
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F1GURE 2. A portion of the complex plane. Points (J, J,) represent complex numbers
Jy+iJ,. @,i"Z;, forj = 0, ..., 6andm = 0, ..., 3, corresponding to retained wave vectors

in very low order model; ®, typical set of interacting vectors. Line segments connect
values of Z;, iZ;, —Z;, or —1Z; for consecutive values of j.

We then let R; econsist of the four vectors corresponding to the complex numbers
imz;, form = 0, ..., 3. We shall denote the variables corresponding to z; and iz; by
Y; and Y; those corresponding to —z; and —iz; will then be Y7 and Y*. We shall
likewise denote the values of Gy corresponding to z; and iz; by @; and G.

Figure 2 shows the points in the complex plane corresponding to the
vectors in the subsets R,,...,R;. The points are seen to arrange themselves
into four similar spirals. The points of each spiral are shown connected by line
segments.

To show that there is aresolution factor p consistent with our choice of By, By, ...,
we note that the explicit solution of (45) is

z; = aA] +bA, (46)
where A, and A, are the roots of the quadratic equation

A2 A—i=0 (47
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and a and b are constants chosen to make z, = 1 and 2, = 1 +4. If
Ay = 1+ (1 +44)3] (48)

is the root whose absolute value exceeds unity, the right-hand side of (46) is
closely approximated by its first term, for larger values of j. The appropriate
value of p is therefore

p= A = {14+ 1T+ [2(L + /1T = 1-443. (49)

This is close to the value /2 used in construeting figure 1. Since half-octave
resolution is very convenient, we shall make a further approximation by letting
p = /2 when computing the coefficients in (42).

It is evident from (45) that for any value of j the vectors corresponding to the
numbers z;,,, —2;,; and —1z; interact, as do the vectors corresponding to the
products of these numbers with ¢, — 1 or —4. From figure 2 it appears that there
are also four interactions each involving two vectors in Ry and one in R,, but we
shall omit these from our system, whereupon all the retained interactions are
among vectors in three consecutive bands. This is precisely the situation
illustrated in figure 1.

If now k =j+1 and I = j+2, it follows that p;; = 4 for all values of j. By
definition of the subsets, m; = 4. Hence p;;; = . The values of ¢;,; and »; and
hence ;;; may easily be found by a direct count, even for rather large values of j
if a fast enough computer is used. We find that o, approaches a limit of about
0-19 as j - o0, and we shall use this value for all values of j. Thus 7;, = 0-76. As
we noted in discussing figure 1, a reasonably satisfactory choice for a; for large
values of j is (7-1)* = 2-67, and we shall use this value for all j. It follows that
g = 234,

Againfork = j+1and! = j+ 2, it follows from (43) and (10) that Cj;; = £./7,
while Oy; = — 3Cj; and Cyyy, = 205, Finally, if J, K, and L are any interacting
vectors in K, R;, and B}, €y, = + 1. Assembling these results, we find that the
governing equation (42) may be written as

d (4 12 (4 13k 1 —

ZY; = o2V} Y,y 3Y Y, 4 ¥} Vte) - 29D+ G, (50)
d 14 ’ ! i ? t
Z¥} = o2V} )Y}y = 3%,V + Yo Yio) — 29DV 4 6, (51)

where a reasonably suitable value forcis ,ifa = 1. An otherwise unneeded factor
of 2 enters ¢ because the sums in (50) and (51) are not redundant. It is to be
understood that ¥; and Y vanish if j < 0.

We close this demonstration with a non-trivial special case of (50) and (51)
which is even simpler than the general case. Suppose that, for each j, G; and G
are real and equal, while ¥; and Y are real and equal initially. In this event ¥; and
Y remain real and equal. Physically this restriction implies that the flow pattern,
which is already periodic in » and y, is left unaltered by a rotation about the
origin through a right angle.

For this case alone it is convenient to let y; = 2Y; and g; = 2G;. The behaviour
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in the jth band is now represented by the singlereal variable y;, and E and V are
now given by

E = {D? ,%0 279y, - (52)
].‘=
12 5
V= 2 Yi, (53)
2j=0
while (50) and (51) reduce to
d ,
’(ﬁ% = 6y(2¢j—a¥j-1— 3Yj—1Yj1 T Yir1Yive) — 2vD 2y, +g;, (54)

where ¢, = 3¢ may be taken as . To solve (54) numerically we must further
truncate the system by letting y; = 0 when j exceeds some integer N, but £ and V
are still conserved by each interaction.

5. Comparison with an accurate numerical simulation

In order to gain some idea as to the adequacy of the low order models, we shall
compare some numerical solutions of the very low order equations with more
conventional numerical simulations of turbulence. The solution which we have
chosen for comparison represents decaying two-dimensional turbulence, and was
obtained by Fox (1972). The computational procedure, proposed by Orszag
(1971), involves representing the field of motion in wavenumber space, retaining
all components of scalar wavenumber less than 32, and also in physical space,
using a grid of 64 x 64 points. Within each time step the linear operations,
including inversion of V2, are performed in wavenumber space, while the
multiplications are performed in physical space. Between these operations one
transforms back and forth from one space to the other, using fast Fourier
transform procedures.

The particular numerical simulation which we shall attempt to reproduce uses
a relatively large viscosity vD~% = 0-01 units, and is considered ‘accurate’ in the
sense that the statistical properties of the solution are not affected by the trunca-
tion at a wavenumber of 32. That is, the bulk of the enstrophy dissipation occurs
at wavenumbers considerably less than 32 and, presumably, if still higher wave-
numbers had been retained, the corresponding variables would have remained
so close to zero that any interactions involving them would not have significantly
affected the lower wavenumbers.

To facilitate the comparison we have redrawn Fox’s spectra with an ordinate of
mean-square vorticity per half octave (on a logarithmic scale). Figure 3 shows
his spectra at ¢ = 0 and also at ¢ = 2-32, the time which he chose for discussion.
Also shown is the speetrum which would have resulted at ¢ = 2-32 if the nonlinear
terms had been absent; we shall call this the linear-decay spectrum. The difference
between the spectra at { = 2-32 represents the cumulative influence of the non-
linear processes, which clearly is a transfer of enstrophy from the intermediate
scales, which initially contain the bulk of the enstrophy, to the larger and smaller
scales.

In our attempt to reproduce these results with the very low order model, we
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Ficure 3. Initial spectrum (thin solid curve), spectrum at ¢ = 2-32 (heavy solid eurve)
and linear-decay spectrum at ¢ = 2-32 (dotted curve) in numerical simulation of decaying
turbulence by Fox (1972). Segments labelled 0, — 3, and — 6 indicate slopes which curve
would have if energy per wavenumber varied as 0, — 3 and — 6 power, respectively, of the
wavenumber.

¢ Yo Y1 Ya Ys Ya Ys Ys Yq Ys Yo Y10

0-00 0-13  0-27 0-56 172 468 668 531 1-:00 001 0-00 0-000
0-48 0-2¢ 0-61 1-81 .00 463 —-1.24 491 031 221 051 0093
0-96 03¢ —-015 1-62 —2-70 —0-89 —473 —2:18 —0-26 063 -0-10 —0-003
1-44 0-18 —0-61 1-65 1-66 —3-16 —2.70 249 —045 016 000 0-000
1-92 009 002 1-44 311 067 —2:09 1-67 —1.39 —-051 0-06 —0-001
2-40 019 048 1.88 038 3-34 -0-66 -0-61 —0-87 —0-18 0-05 —0-001
2-88 0-27 —0-10 1-38 —2:41 2-30 —045 —0-83 —0-41 004 0-00 0-000

TasrE 1. Particular solution of the very low order equations, with
vD~% = 0-01 and no external forcing

have used eleven variables ¥, ..., 9, representing wavenumbers from 1 to 32.
The initial values of y} were simply read from the initial-state spectrum; this gave
initial values of 1-86 and 49-5 for & and V, as compared to Fox’s values of 1-81
and 50-1. In our first experiment the initial values of y; were the positive square-
roots of y3. For time differencing we used the 4-cycle form of the N-cycle scheme
recently presented by the writer (1971a). The basic time inerement Af was chosen
as 0-12, after some experimentation showed that reducing Af to smaller values did
not appreciably affect the results. Table 1 shows the values of the eleven variables
at intervals of four time steps, up to the 24th step.
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F1cURE 4. Mean-square vorticity per half octave averaged from ¢ = 1-92 to ¢t = 2-76 {solid
circles), obtained from 16 different solutions of the very low order equations with ¢, = §,
compared with spectrum at ¢ = 2-32 (solid curve) taken from figure 3.

The squares of the values of y; at £ = 2-40 might be considered a first attempt to
reproduce the accurate spectrum for ¢ = 2-32. While there is some order-of-
magnitude agreement, the variation of 47 with j is obviously far too erratic. This
behaviour is to be expected in a model where one variable must singly represent
the behaviour of many components. In general the variables y; change sign as
time evolves, and it is likely that at any particular time some variables will be
near their zero crossings, while others will be near their peaks. Thus the value
y2 = 0-14 at ¢ = 2-40 falls far short of the appropriate value of 3-5 indicated in
figure 3, while the value y} = 11-2 exceeds the proper value of 4-0. To some extent
we can reduce this difficulty by averaging y? over several successive time steps,
but to perform a proper simulation with the very low order model we should work
with a collection of solutions.

Accordingly we have determined 16 solutions of (54). The initial values of 375,
and hence the initial spectrum, are the same in all cases, while the initial values
of y; form 16 different arrangements of positive and negative square-roots of 3.
Tor each solution we have averaged the values of y7 from the sixteenth to the
twenty-third time step; the central time is therefore ¢ = 2-34. Figure 4 shows the
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Ficurg 5. Spectrum averaged from ¢ = 192 to £ = 2-76 and averaged over 16 solutions
of the very low order equations with ¢, = ¢ (solid circles), and spectrum averaged from
t = 1-92 to ¢ = 2:80 and averaged over 16 solutions of the very low order equations with
¢y = % {thin solid curve), compared with spectrum at ¢ = 2:32 (heavy solid curve) and
linear-decay spectrum at ¢ = 2-32 (dotted curve) taken from figure 3.

16 average values of ¥} so obtained, forj = 1, ..., 7, and also the accurate spectrum
att = 2-32 for comparison. There is great variation from one solution to another,
in some instances by a factor of 100. Nevertheless, any reasonable method of
averaging the 16 solutions together would produce a spectrum, over the wave-
numbers appearing in figure 4, showing general agreement with the accurate
spectrum, although with too strong a peak at a wavenumber of 4.

The arithmetic average of the 16 spectra is represented by the solid circles in
figure 5, where it is compared with the accurate spectrum and the linear-decay
spectrum at ¢ = 2-32, taken from figure 3 (and drawn on a fourth-root instead of
a logarithmic scale to facilitate comparison over all wavenumbers). It is evident
that the very low order model has captured the effects of the nonlinear processes,
qualitatively. Nearly all the circles lie on the proper side of the linear-decay
spectrum. However, there are obvious quantitative shortcomings. In general the
nonlinear effects are underestimated; it is as if the circles were an interpolation
between the linear-decay spectrum and the accurate spectrum.

The principal failing is at the small scales, where our spectrum is too low by a
factor of nearly 10 at a wavenumber of 16 and nearly 100 at a wavenumber of 22.
This failing is readily accounted for, however, and could have been anticipated.

In the accurate solution, whent = 2-32, the enstrophy in the high wavenumbers
is decreasing only slowly with time, the rapid viscous decay being nearly, but not
quite, balanced by the nonlinear transfer of enstrophy from lower wavenumbers.
In the very low order model (but not in the general low order model) the nonlinear
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interactions are all local in wavenumber space; that is, they involve only adjacent
scales. In particular, the only nonlinear term in (54) affecting y,4is 2¢yg¥y,. It is
evident that if yg, y, and y,, temporarily assumed orders of magnitude demanded
by the aceurate solution, say yg = 0-4,y, = 0-2andy,, = 0-1, the gainin enstrophy
in the smallest scale, namely 2¢,ys¥y¥10 = 0-006, would be far less than the
dissipation of enstrophy, 21%D—2y%, = 0-1, and the proper magnitude would not
persist. Similar considerations apply to the maintenance of enstrophy in scales 8
and 9, although the imbalanceisless extreme. It followsalso fromsimilarreasoning
that in the accurate solution the enstrophy dissipation in the smallest scales must
be balanced mainly by interactions which are not local in wavenumber space.
Hence a model in which all the interactions are local will not produce an adequate
spectrum in scales at the high wavenumber end of the dissipation range.

At some of the remaining wavenumbers the discrepancy between our spectrum
and the accurate spectrum is insignificant, but it is especially noticeable at scale 4,
where it exceeds a factor of two. The general conclusion is that the nonlinear
effects in the very low order model are qualitatively correct, but notstrongenough.

The immediate suggestion is that we might improve the model by intensifying
the nonlinear effects. One obvious procedure which might accomplish this end
would be to use a larger constant ¢,. We can justify such a change by noting that
the constant « in (87), which we took to be 1, could be increased on the grounds
that the effects of the separate triples of scales containing interactions may
combine more or less systematically, even though the separate interactions
within a triple do not.

Accordingly, we have doubled the value of ¢y, to £, which corresponds to
o = 0-85, and we have obtained 16 more solutions, using the same 16 sets of
initial conditions as before, but reducing the time increment A¢ to 0-06 to avoid
excess computational error. The spectrum averaged over time steps 32 to 47
(average time ¢ = 2-37) and over all 16 solutions appears in figure 5 as the thin solid
curve. We see that there is appreciable improvement at nearly every scale, but
that perfection is yet to bereached. At the smallest scales, where the improvement
is greatest, the room for further improvement is also greatest. For good measure
we also obtained 16 solutions with ¢, = 1, which corresponds approximately to
o = 1, the largest allowable value. There was no appreciable difference between
these results and those obtained with ¢, = 3.

We conclude that the very low order model is capable of yielding a qualitatively
correct representation of the nonlinear effects. Quantitatively the effects are
fairly well represented, although somewhat underestimated, except in scales at
the high wavenumber end of the dissipation range, where the very low order
model, or any other model in which the interactions are local in wavenumber
space, is incapable if producing an accurate spectrum.

6. Concluding remarks
Even though the low order equations entail a considerable number of approxi-
mations, they nevertheless retain some of the features of the equations governing
two-dimensional turbulence. Like the latter equations, the former describe the
36 FLM 55
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behaviour of a collection of nonlinearly coupled dependent variables, and these
variables represent features of widely differing scales.

The identification of the separate variables with separate scales of motion is
not just a matter of labelling. First of all, the smaller scales are subject to much
greater viscous dissipation than the larger ones. More important, however, the
coefficients in the nonlinear terms are such that in the absence of external forcing
and viscous dissipation the equations possess two distinet quadratic invariants,
representing kinetic energy and enstrophy, with the larger scales contributing
much more heavily to the kinetic energy than to the enstrophy, while the opposite
is true for the smaller scales.

It may therefore be anticipated that individual solutions of the low order
equations will exhibit many of the properties of two-dimensional turbulence,
although certainly not all. The very low order equations, whose solutions we
compared with a more conventional numerical simulation, appear capable of
producing reasonably accurate spectra of decaying turbulence, except at rather
high wavenumbers.

Meanwhile, restricted collections of vectors possessing reasonably many inter-
actions are not limited to the one used in the very low order model, and the
advantages of less drastic simplifications should be considered. One shortcoming
of the very low order model was seen to be the local character of the interactions.
The equations cannot describe such processes as the conveyance of small-
scale details by large-scale currents. Another perhaps equally serious fault is
that the model effectively leaves too many tasks to be accomplished by too few
variables.

As a first step in remedying this situation we might, for example, let the subset
E; contain the four vectors corresponding to i™z;, defined as in the very low order
model, and the additional four vectors i™w;, where w; = (1+4¢)z;_,. The vectors
then form eight spirals in wave-vector space, and it is easily verified that whereas
there are twice as many variables as in the very low order model, there are five
times as many interactions, some of which are less local. The retention of still
more vectors might further improve the situation.

It remains to be seen whether low order models containing some non-loeal
interactions can produce correct spectra even at very small scales, and whether
any low order models can produce reasonable spectra of developing or stationary
turbulence as well as decaying turbulence. Nevertheless, our experience with the
very low order model must be considered encouraging.

During the development of these ideas the writer has benefited from a number
of discussions with Dr C. E. Leith, Dr D. K. Lilly and Dr S. A. Orszag. The writer
is grateful to Dr D. G. Fox for supplying him with the results of several numerical
simulations. This work has been supported by the Atmospheric Sciences Section,
National Science Foundation, under NSF Grants GA-10276 and GA-28203X.
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