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Numerical evaluation of moist available energy
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ABSTRACT

A numerical procedure for evaluating moist available energy (MAE), given the pressure,
temperature, and relative humidity of a representative set of atmospheric “parcels”, is presented.
The procedure determines a reference field by rearranging the parcels while preserving the
mass and entropy of each parcel, and subsequently subtracts the enthalpy of the reference

field from that of the given field to obtain the MAE.

Computations using the procedure agree reasonably well with the results of a previously
formulated graphical procedure. They confirm a finding of Wojcik (1977) that a small
temperature increase, with no change in relative humidity, will produce a large increase in MAE.

1. Introduction

In a recent paper (Lorenz, 1978), hereafter
referred to as “M”, we introduced a quantity which
re called moist available energy (MAE). Like the
more familiar available potential energy (APE), the
MAE of a given atmospheric mass field was
defined as the amount by which its potential plus
internal energy, or, equivalently, its enthalpy,
exceeded the enthalpy of a hypothetical reference
field. We required the reference field to be derivable
from the given field by rearranging the “parcels”
of the atmosphere while preserving the mass and
entropy of each parcel. Moreover, among all fields
derivable in this manner, the reference field was to
be the one possessing the least enthalpy.

In the usual definition of APE, which in M we
also called dry available energy (DAE), it is tacitly
assumed that adiabatic means dry-adiabatic. Thus,
in conserving its entropy each parcel also conserves
its potential temperature. In the definition of MAE,
adiabatic means moist-adiabatic or dry-adiabatic
according to whether or not the parcel in question
is saturated with water vapor. The parcel thus
conserves its equivalent potential temperature and
its condensation potential temperature (see M), but
it need not conserve its potential temperature.

In M we described a graphical procedure for
evaluating MAE, but we could offer no more than
suggestions for finding MAE numerically. The
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purpose of this note is to present a numerical
procedure. We regard this work as essentially an
appendix to M, and refer the reader to M for details
which are not included here.

2. The procedure

Our numerical procedure is based upon the
graphical method, although it is not a direct
translation of it into numerical steps. We represent
the given mass field by the pressure, temperature
and relative humidity of each of N parcels
P, ..., Py of equal mass. As in M, we indicate
the presence of liquid water by a relative humidity
exceeding unity. We assume that the parcels
together are representative of the portion of the
atmosphere between a pressure p, in the lower
stratosphere and a pressure p, near the earth’s
surface; we also assume that the contribution of the
remainder of the atmosphere to the available
energy is minor. In the example in M, appropriate
values of p, and p, would be 200 and 1000 mb.

To select the parcels, we select M vertical.

soundings S, ..., S,, which together represent the
atmosphere, and let N = LM. Setting n=IM + m,
where 0 £ ! < L and 0 < m £ M, we choose
parcel P, to lie on sounding S, while we choose
its pressure p, to be p, + nAp, where py = p, —

Ap/2 and Ap = (py — p)/N.
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In the reference field the pressures of the parcels
are again p,, ..., p,, but in a different order. We
let Py, denote the parcel whose reference pressure
is Pgny» 50 that K(1), ..., K(n) form a permutation
of 1, ..., n. The MAE of the atmosphere, per unit
mass, is then approximated by

N
" A=N"' 3 [hK(n)(PK(n)) - hK(n)(P,,)] (H
n=1

where in general #,(p) is the specific enthalpy
which parcel P, would possess when displaced
adiabatically to pressure p.

We may also wish to find the specific MAE (see
M) of each parcel. For Py, this is satisfactorily
approximated by

Agm = hK(n)(pK(n)) - hK(n)(Pn) - h,(pK(n)) + R (py

@
where #'(p,) = 0, and, in general,
1 n
h(p,) = 3 ZZ (gi— () + hg(P)
j=
- hK(j—l)(pj—- 2= hK(j)(pj— N (3)
1t then follows that
N
A=N"3 Ayp (€Y
n=]1

since the final two terms in (2) cancel when
summed over all parcels.

To determine the permutation K(1), ..., K(n),
we turn to Figs. (2) and (4) of M, and note that, if
p < p', any parcel P with reference pressure p must
have a higher equivalent potential temperature
than all the parcels with reference pressure p’, if it
is saturated in the reference field, or a higher
condensation potential temperature than all the
parcels with reference pressure p’, if it is un-
saturated. In the former case P will have a higher
virtual temperature T, when displaced adiabatic-
ally to p,, and in the latter case P will have a higher
virtual temperature T, when displaced adiabatic-
ally to pp, than will any parcel with reference
pressure p'.

It follows that P, ,, must be the parcel with the
highest T, or the one with the highest T,
Likewise, if K(1), ..., K(n) have been identified,
Pyt must have the highest T, or the highest
T,z of any remaining parcel. Accordingly, we
arrange the parcels in order of decreasing T, and,
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separately, in order of decreasing T}, That is, we
determine permutations I(1), ..., I(N) and J(1), ...,
J(N)of 1, ..., N such that P, has the highest T,
Py, has the next highest T}, etc., while Py, has
the highest T, etc.

To determine whether K(1) is I(1) or J(1), if
I(1) # J(1), we consider the possibility that
K(1) = I(1) and K(2) = J(1), and the alternative
possibility that K(1) = J(1) and K(2) = I(1). The
enthalpy increase which would result from changing
from the former alternative to the latter is

Ah = by (P + hyay (P — hyay(y) — hyeny(D2)
(%)

If Ak is negative, the change should be made.
Rearranging the terms in (5), we see that Py
should be the parcel, P, or P,,, which gains
more enthalpy in being displaced from p, to p,. For
practical purposes, this is the parcel with the higher
virtual temperature when displaced to pressure
(p1 + p)/2 (cf. egs. (17) and (18) which follow).
Likewise, when K(1), ..., K(n) have been deter-
mined, P, is the remaining parcel with the
highest T, or the highest T, ,—whichever has the
higher virtual temperature when displaced to
pressure (P, ., + Dy, .)/2.

3. Thermodynamic formulas

In order to write a computer program for
evaluating MAE, we need a means of determining
the enthalpy change which a parcel will undergo
in being displaced adiabatically from one pressure
to another, and the virtual temperature which it
will acquire. We recommend displacing the parcel
first from its initial pressure to its condensation
pressure, and afterward to its final pressure; each
displacement will then be entirely unsaturated or
entirely saturated. We shall need, then, a means of
determining the condensation point.

In this section we shall assemble the thermo-
dynamic formulas which will suffice for the compu-
tations. These formulas may be found, in one
notation or another, in various textbooks on
dynamic meteorology (e.g., Haurwitz, 1941).
Approximations to the formulas, such as those
used in constructing an adiabatic chart, may speed
the computations, but they must be chosen
judiciously, since the final result involves the sum
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of many terms which nearly cancel. Built-in tables,
with a suitable interpolation routine, would pre-
sumably speed things even more.

It is convenient to work with parcels consisting
of one mass unit of dry air and w mass units of
water, of which w units are water vapor and w — w
units are liquid water. The pressure p, partial
pressure p — e of dry air, and partial pressure e
of water vapor are then related by

ple+wy=(p—ele=elw (6)

where ¢ is the ratio R/R,,, and R and R, are the
gas constants for dry air and water vapor.

We assume that there is no liquid if w is in-
sufficient for saturation, and no supersaturation if
w is sufficient. Thus

w=w/r" ™
e=rel(T) 8

where r is the relative humidity (exceeding unity
if liquid water is present), r' = min(r,1) is relative
humidity as conventionally defined, "’ = max(r, 1),
and e(T) is the saturation vapor pressure at
temperature 7, given by an integrated form of the
Clausius—Clapeyron equation

R,Ine(T)=—(c—c,)InT—L(T)/T+R,lne,
)

Here ¢ and c,,, are the specific heats at constant
pressure of liquid water and water vapor, and

L(T)=—(c—~c, )T+ L, (10)

is the latent heat of condensation at temperature T.
The constants e, and L, may be obtained from
observed values of e,(T") and L(T) for one value of
T. Formulas (6)—(10) enable us to determine e, w,
and w when p, T, and r are given.

For each parcel w remains fixed. In the processes
under consideration specific entropy s is also fixed,
but, in using certain successive approximation
algorithms, we shall need to consider states with
different values of s. It is convenient to obtain
separate formulas for s, and for specific enthalpy
h, for the unsaturated and saturated cases. In the
former case we can disregard altogether the possi-
bility of condensation. Thus, if r < 1,

(I+ws=(,+wec,)nT—(R+wR,))np
" + const (11

(1 + whh = (c, + wc,,)T + const (12)

where ¢, is the specific heat of dry air at constant
pressure. In the latter case we may sum the
enthalpy or entropy of the dry air with that of w
units of liquid water, and add the gain which would
accompany the conversion of w units of water from
liquid to vapor. Thus, if r = 1,

(I+ws=(c,+we)lnT—RIn(p—e)+ wL/T
+ const (13)

(1 + wh = (c, + we)T + wL + const (14)

Eq. (13) is not valid for the unsaturated case, since
the assumed conversion from liquid to vapor would
be irreversible at temperature T and vapor pressure
e(xep).

We can obtain alternative formulas for s and A
which are valid for all values of r by summing the
enthalpy of the dry air with that of w units of water
vapor, and then subtracting the loss which would
accompany the conversion of w — w units of water
from vapor to liquid. Thus

(L+ws=(c,+wc,,)nT—RIn(p—e)
—wR,Ine— (w— w)L/T + const (15)

(1 + wh = (c, + we,, )T — (w— w)L + const
(16)

The significance of this formulation is that by
equating (15) with (13), and (16) with (14), we can
derive the Clausius—Clapeyron equation (9) and
the latent-heat formula (10). With the aid of
(6)-(10) we can with some effort assure ourselves
that % and s satisfy the fundamental relation

dh=Tds + adp W)
for all values of r, where

a=RT,/p (18)
is specific volume, and

T, =(1 +weT/(1 +w) 19
is virtual temperature.

Formulas (8)-(16) are reasonably exact. If
approximations are to be used, it is important that
they also satisfy (17) for a suitably defined &

To determine the condensation temperature 7,

we recommend first writing (11) and (13) in terms
of r instead of p. We find that for any value of r

(I+ws=(,+¢elc—c,)+wo)lnT
+ (6 + w/r")L/T— (R + wR )Inr' —RInr"
+ w(l — 1/r")(c — c,,) + const (20
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Setting p, T, and r equal to their initial values
pp T, and r,, we first evaluate s from (20). Since

= 1 at the condensation point, eq. (20), with
r = 1, becomes an equation to be solved for T,. It
may readily be solved by successive approxima-
tions. We note from (20) that

(1 + w)(3s/8T), = (c, + &(c — c,,) + wO)/T

— (e + W/rML/T? @n

We choose T, o = T, as the starting approximation
for T.. Having determined the kth approximation
T, welet

T,

c,

ko1 =Top+ (5—58)/57, 22)

where s, and s, , are the values of s and (ds/0T),
as computed from (20) and (22), with T = T,
and r = 1. The process may be terminated when
s — s, is sufficiently small; it converges rapidly.
With the final approximation T, we may compute
the condensation pressure p, from (8) with
e=e(T,), and h(p.) — h(p,) from (12) or (14).

We now let p., T, and r, denote the final values
of p, T, and r, with p. prespecified. It is simple
to find Ty if pp = p,, so that rp < 1, since (11) may
be solved to yield

Ty =T/pe/D.)" (23)
where
k= (R + WR,)/(c, + wc,, (24)

We then evaluate A(p;) —
T, (py) from (19).

If pp < p., so that r. > 1, we re-evaluate s from
(13), setting p and T equal to p, and T. With
P = Dp €q. (13) then becomes an equation for
T.. Again it may be solved by successive approxi-
mations. We note from (13) (or 17 and 12) that

(1 + w)(8s/8T), = (c, + we — wlc — c, W T
+ w(e + w)L¥(RT?)

h(p.) from (12), or

@3

We next choose T, = T, as the starting approxi-
mation for 7, Having determined the kth
approximation T ,, we let

Trpsr1=Tex+ (5 =557, (26)

where now s, and s;, are the values of s and
(0s/0T), computed from (13) and (25) with
T =T,, and p = p.. Again the procedure con-
verges rapidly. With the final approximation Ty we
may evaluate k(pz) — A(p,) from (14), or TV(pF)
from (19).
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4. Computations

As a first test we have applied our procedure to
the hypothetical mass field studied in M. We have
chosen p, = 200 mb, p, = 1000 mb, L = 8, and
M = 10, so that N = 80. We have located
soundings S, S, ..., S;pat x=0.05,0.15,...,0.95
in Fig. 1 of M, and have read the values of 7,
to the nearest whole degree, and r, to the nearest
percentage, from that figure. To evaluate DAE
we have used the same temperatures and have
replaced all the relative humidities by 0.01. (The
program fails if » = 0, since the condensation point
cannot be found.)

We obtain values of 497 and 384 J kg~ for the
average MAE and DAE per unit mass, respec-
tively. These compare with 400 and 320 J kg!
obtained graphically in M. The extreme values of
specific MAE are 2887 at x = 0.95, p = 995 and
3428 at x = 0.05 p = 405, which compare well
with Fig. 8 of M.

The considerable underestimate which the
graphical method appears to have yielded may be
due in part to the virtual impossibility of reading
the adiabatic charts with high precision. It may
also occur partly because the graphical method has
used temperature instead of virtual temperature.
Particularly for the warm humid parcels, the
virtual-temperature separation between the state
curve and the reference curve can be considerably
greater than the temperature separation.

However, the discrepancy certainly results partly
from choosing the parcels closest to the earth’s
surface to lie in the warmest regions. We have
confirmed this conclusion by repeating the compu-
tations, locating S,, ..., §;, at x = 0.95, ..., 0.05
in Fig. 1 of M. The new values of MAE and DAE
per unit mass, are 435 and 369 J kg~*.

We believe that the proper values are inter-
mediate to those which we have obtained. Compu-
tations with many more parcels should be less
sensitive to the locations of the parcels.

As an application, we have attempted to confirm
a result of Wojcik (1977) regarding the sensitivity
of MAE to average temperature. Using the
graphical procedure, Wojcik found that with r the
same as in Fig. 1 of M, but with T everywhere
2% higher, the amount of MAE would be increased
by 22%. This is in contrast to a simple 2% increase
in DAE which would occur. A small increase in T
of course requires a large increase in w to preserve
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Table 1. Values of moist available energy (MAE)
and dry available energy (DAE) per unit mass, in
J kg, corresponding to indicated values of the
temperature ratio (TR). See text for explanation

TR 0.96 0.98 1.00 1.02 1.04
MAE 412 443 497 601 739
DAE 369 376 384 392 400

r, but natural atmospheric processes appear to hold
r more nearly fixed than w at fixed locations. The
low mixing ratios typical of the polar regions, for
example, are not frequent in the tropics.

The appreciable gain in MAE results from the
concentration of the water-vapor increase in the
lower elevations of the warmer regions, which leads
to increased latent instability. Although the
presence of MAE does not necessarily imply that
such energy will be released, it seems reasonable
that greater amounts of MAE should favor more
vigorous activity. Wojcik’s result indicates that the
particular temperatures in the tropics, as opposed
to any temperature contrasts, may be instrumental
in maintaining the intensity of the circulation. The
result is suggestive of an earlier observation by
Palmeén (1948) to the effect that tropical hurricanes
do not readily form except where the ocean-surface
temperature is at least 26 or 27°C.

We have repeated our numerical computations
of MAE and DAE for several “temperature ratios”,
including Wojcik’s ratio of 1.02; the values appear
in Table 1. In each case the temperature of any
parcel is the temperature of the same parcel in
Fig. 1 of M, multiplied by the temperature ratio,
while the relative humidities are not changed. We
find in particular that increasing the ratio from 1.00
to 1.02 increases the MAE by 21 %, in remarkable
agreement with Wojcik’s calculation.

More generally, MAE is more sensitive to
temperature at higher temperatures; i.e., a curve of
MAE against the temperature ratio would be
concave upward. The DAE, on the other hand, is
simply proportional to the ratio.

5. Concluding remarks

We have presented a straightforward numerical
method for evaluating MAE, given a representative
set of atmospheric soundings. The procedure is
readily translated into a program for automatic
computation, which may be executed rapidly. It
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would thus be economically feasible to determine
daily values of MAE over an extended period.

In M (p. 21) we discussed a possible situation
where the straightforward graphical procedure
would fail to yield the correct reference field,
whence a modified procedure would be needed. The
numerical procedure also fails in such a case. As a
simple example, let M = 2. Let the L parcels of
sounding S, all be unsaturated, with identical
values of w and s, so that the lapse rate is dry-
adiabatic. Let the parcels of S, all be saturated,
with identical values of w and s, so that the lapse
rate is moist-adiabatic. Let S, and S, have equal
virtual temperatures at a pressure slightly higher
than (p, + pp)/2.

Our procedure will then assign reference
pressures p,, ..., p; to the parcels of S,, and p; .,
..Dyy to the parcels of S,. It is readily seen that
such a reference sounding is incorrect, since the
enthalpy may be reduced by interchanging the
parcels at pressures p, and p,, and
further reduced by interchanging those at p; _, and
Do 1 etc. In the correct reference sounding, the
parcels of S, are in the middle and those of §, are
divided between the top and bottom.

As noted in M, we believe that situations of this
sort are infrequent in the real atmosphere, but the
formulation of a numerical procedure which works
in all situations is a problem which deserves to be
solved.

Finally, it would be desirable in theoretical work
to have an analytic expression for MAE. Such an
expression has eluded us, except for expressions
explicitly containing the reference temperature T,,
or other variables characterizing the reference field.
Since we lack analytic expressions for T, etc., we
cannot currently express MAE in terms of
observable variables. It thus appears that there is
much to be done before we possess a reasonably
complete theory of moist available energy.
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YKMCAEHHASI OLIEHKA BJIAXHOM JOCTYITHOU DHEPIMU

IIpeanoxena YHCIEHHAS TIPOLEAYPa OLIEHKH BJIAXHOM
gocrymHoii sHeprun (B/ID) npu 3afiaHHBIX JABJICHUH,
TeMnepaType ¥ OTHOCHTEIILHOM BJIaXXHOCTH penpese-
HTAaTHBHOTO Habopa armochepubix ‘‘vactuu’’. Ilpo-
HeAypa OIlpene/sieT OTICYETHOE MOoJie MyTeM Tiepe-
pacnpefesicHHs] YacTHI[ IPH COXPaHEHMH MAaCChl H
SHTpOmMM B Kaxaoi wvacruue. Hanee BJD wo-
Jy4aeTcs BBIYMTAHUEM JHTAJBITHH OTCUETHOIO IOJIS
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M3 DHTANLNHMHM [JAHHOrO Ioff. BreruMcnenus ¢
HCMOJIb30BAHMEM JTOH TNpOUENyphl XOPOLIO corna-
CyloTCA C pe3y/ibTaTamy paHee MNpPEATOXEHHOR
rpaduueckoii npouenypbl. OHH NOATBEPXAAOT BbI-
Boj, Boiiupika 0 TOM, 4TO Mallblit pOCT TEMIEPATYPLL
6e3 M3MEHEHMI B  OTHOCHTENbHOH BIAXHOCTH
NPHUBOOMT K 3HauMTenbHOMY pocty BJD.






