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1. Introduction

Turbulence is sometimes cited as an ideal example of what in stochastic theory
is termed a process. In the formal exposition of the theory, a process is iden-
tified with an ensemble of scalar or vector functions of time. A particular
function of time which conétitutes a member of the ensemble is termed a realization
of the process. The realizations of a given process are supposed to have certain
aspects in common; for instance, they may obey the same set of physical laws. An
example of a realization would be a particular field of turbulent motion.

A stochastic process is one possessing some realizations which are identical
to one another throughout the past but not in the future. In such a process the
past of a realization usually restricts the realization to a subensemble whose
future statistical properties differ from the properties of the total ensemble, but
it does not determine the future of the realization uniquely. A stationary process
is one where the statistical properties of the total ensemble do not vary with time.

Investigators who prefer to look upon turbulence as a stochastic process may
be interested in predicting the future statistical properties of developing or
decaying turbulence, or simply in determining the statistical properties of
stationary turbulence. At the same time they may have little interest in predict-
ing future states of particular realizations. Indeed, it is likely to be some
assumed basic unpredictability of individual fields of turbulent motion which has
made the application of stochastic theory attractive to these investigators.

There are nevertheless some instances where prediction of the behavior of
particular fields of turbulent motion is of considerable interest and importance.
This is notably true in the case of weather forecasting. The atmosphere is, after
all, a turbulent fluid; the migratory cyclones and anticyclones which bring us much
of our weather are among the more conspicuous turbulent elements.

Although one might offer a number of definitions of turbulence which would be
reasonably satisfactory in real physical situations, we shall in this theoretical
treatment regard turbulence as a process whose realizations are solutions of the
Navier-Stokes equations (or some similar system of partial differential equations).
This viewpoint is in keeping with much of the recent theoretical work. Our
characterization is actually too general, since laminar motion also satisfies the
equations. Perhaps a satisfactory definition would be an ensemble of nonperiodic
solutions of the Navier-Stokes equations. Ensenbles of solutions of simplified
or otherwise modified forms of the Navier-Stokes equations will not qualify as
turbulence; we shall instead regard them as models of turbulence.

It might then appear that turbulence so defined would be a deterministic

rather than a stochastic process, since the Navier-Stokes equations are formally
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deterministic. We shall not concern outselves in this discussion with the possi-
bility that, given an initial field of motion, the equations may not determine the
motion uniquely at all future times. Let us simply note the possibility that two
realizations which are nearly identical throughout the past may become unrecogniz-
ably different in the sufficiently distant future. This possibility can be verified
as an actuality in some special cases. If there is slight uncertainty as to the
present state of a realization, no system of prediction can choose rationally among
the various possible states in the distant future, and the process, although perhaps
formally deterministic, is for practical purposes stochastic. This effect is very
important in limiting the range at which useful weather prediction is possible,
since, even in the most populated regions of the globe,.there are wide open spaces
between weather stations, and therefore considerable uncertainty as to the state of
the atmosphere at any particular time.

Even if we could observe turbulent motion without error, we could not predict
its state in the distant future by any means presently available to us. We cannot
find exact solutions of the Navier-Stokes equations except in very special cases;
the best obtainable approximations are those yielded by stepwise numerical inte-
gration. To describe the observed or any predicted state with a computer we must
replace a continuous field of motion by a finite set of numbers; the partial
differential equations governing the motion must be replaced by a system of ordinary
differential equations, and subsequently by a system of difference equations before
stepwise numerical integration is possible. In short, we must use a model. Should
there be no error initially, there will still be a slight error after completion of
the first time step, and a larger one after the next. The errors which accumulate
during the early steps will subsequently amplify just as if.they had been present
initially.

Predictability is therefore limited by the growth rate of errors. Yet it may
be a serious oversimplification to talk about a single growth rate. 1In the
atmosphere, at least, errors in different scales of motion seem to have their own
growth rates. Doubling times are a few days for the largest systems, but only a
few minutes for thunderstorms. The author (1969) has discussed in detail the
possibility that the inevitable errors in the smaller scales, which soon become
large, will then induce errors in somewhat larger scales, which will in turn become
large and induce errors in still larger scales. This possible spreading of errors
from smaller to larger scales makes it highly desirable to study turbulence with a
model covering many octaves of the spectrum.

2. Realizations and ensemble statistics

The most straightforward way to investigate the predictability of turbulent
motion would be to choose a "basic' initial state, and a "perturbed" initial state
consisting of the basic state plus a small superposed "error', and then to examine

the subsequent behavior of each state by solving the appropriate equations. One

would thus be working directly with realizations. The amplification rate of the




197

error would depend upon the choice of the basic state and also upon the form of the
error, but the experiment could be repeated a number of times with different
choices, whence a typical growth rate could be established.

As we have already seen, this procedure cannot be carried out in an exact
manner, since we cannot solve the exact equations. We must be content to use a
model, With this restriction, the procedure has indeed been carried out on many
occasions.

Most investigations appear to have been performed with models which attempt to
simulate the atmosphere,with varying degrees of sophistication. An early study by
the author (1965) represented the state of the atmosphere by 28 numbers, and hence
solved 28 simultaneous equations; a recent study by Smagorinsky (1969) uses more
than 50,000 numbers. From the point of view of pure turbulence, however, the
studies are typified by one recently performed by Lilly (1971), who dealt with two-
dimensional turbulence, i.e., motion governed by the two~dimensional form of the
incompressible Navier-Stokes equations. These equations may be reduced to a single
partial differential equation representing, aside from the influences of viscosity
and external forcing, the conservation of vorticity at points moving with the flow.

Some theoreticians refuse to acknowledge such motion as turbulence, since, if
energy is fed into the largest scale of motion, it will not cascade to the smaller
scales. However, energy fed into intermediate scales will spread to both larger and
smaller scales, and much of the irregularity and apparent randommess characterizing
three-dimensional turbulence will be found.

Lilly used in essence an infinite plane in which the motion was restricted to
be periodic in each of two mutually perpendicular directions, with the same funda-
mental wave length in each direction. The complete flow was thus determined by the
flow within a fundamental square. This flow was represented in the model by the
values of the stream function at a uniform grid of 64 X 64 points. The partial
derivatives occurring in the Navier-Stokes equations were represented by finite
differences.

Herein lies the principal difference between turbulence and the model; scales
of motion too small to be resolved by the grid are not explicitly acknowledged by
the model, although their influence upon the larger scales may be partially
included through a judicious formulation of the viscous effects. The same limita-—
tion also characterizes the most elaborate models of the atmosphere; thunderstorms
and even considerably larger systems are commonly lost between grid points.

The principal factor limiting the number of grid points used in the computa-
tions was computer time rather than computer storage. With the fastest known
computation schemes, which make use of the fast Fourier transform, the amount of
computation per grid point per time step increases only slightly as the number of

grid points increases. However, when the resolution is doubled (twice as many

points in each direction), the time increment must be cut at least in half to avoid
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computational instability. Doubling the resolution therefore increases the labor by
an order of magnitude. Extensive experiments covering tem or more octaves seem to
be at best a thing of the future.

With 64 x 64 points, Lilly found that when the initial error was many orders
of magnitude smaller than the basic flow upon which it was superposed, the energy
spectrum of the error soon acquired a characteristic shape. Its subsequent growth,
as long as it was still small compared to the basic flow, was quasi-exponential.

The shape of the error spectrum differed somewhat from that of the basic flow, with
the result that errors in the smaller scales reached their limiting values in
advance of errors in the larger scales, It is difficult to say physically whether
the errors in the smaller scales actually spread to the larger scales, or whether
the errors in the larger scales simply took longer to mature.

A striking feature of the computations was the tendency for very large errors
to occur at a very small number of points, at any particular time. Maximum errors
exceeding ten standard deviations were not uncommon. The frequency distribution of
the errors was far from Gaussian.

It is not obvious how Lilly's results would have been modified if he had been
able to use higher resolution. The 64 x 64 grid gives some resolution down to wave
number 32, and offers a fairly good description of wave number 16 (four grid points
per wave length). Most of the energy of the growing error was contained in the well-
represented wave numbers less than 16. However, the majority of the enstrophy was
contained in wave numbers greater than 16, whence some significant information was
probably missing.

As an alternative to dealing with realizations, which, as we have seen, cannot
be too satisfactorily modeled, we may work directly with statistical properties of
the process. From the equations which govern the realizations, we may derive
systems of equations governing various ensemble statistics., These statistics may
include the statistics of differences between fields of motion, i.e., of the errors.

Here we inevitably encounter a closure problem. Normally we wish to include
ensemble averages of the velocity (or stream function, or vorticity) among the
statistics to be considered; the time derivatives of these contain averages of
quadratic quantities. Similarly the time derivatives of quadratic statistics
include cubic statistics, etc. In order to obtain a finite closed system of
equations we must introduce additional postulates. These generally take the form of
specifying ensemble averages of higher~degree quantities in terms of averages of
quantities of lower degree.

At this point the derived system of equations is far more complicated than the
original system. However, certain reductions, which would not be possible if real-
izations were being used, can now frequently be made. An ensemble which is initially

homogeneous will remain homogeneous if the forcing is homogeneous, and the number of

dependent variables may be greatly reduced. Isotropy, another self~-preserving
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property, allows further simplifications. But even then the derived system is
generally more complicated than the original system, if third-degree statistics
appear explicitly.

The greatest savings to be realized from working with statisties result from
the further assumption that these statistics are rather slowly varying functions of
their arguments, and may therefore be adequately described by their values for a
limited number of arguments., The spectral demsity function, for example, may be
satisfactorily depicted by three or four values per octave. As a consequence, the
required amount of computation will not increase by an order of magnitude for every
additional octave of resolution, but may simply be proportional to the number of
octaves, or to some low power of this number.

A typical study of this sort has been performed by Leith (1971). For a
clogsure scheme Leith used the eddy-damped Markovian approximation suggested by
Orszag (1970), which effectively specifies fourth-degree statistics in terms of
those of lower degree., Like Lilly, he dealt with two-dimensional turbulence which
was spatially periodic in two directions; however, he was not confined to six
octaves of the spectrum. Nevertheless, in view of his closure assumption, he was
dealing with a model of turbulence rather than with turbulence itself.

Leith also found that initial error spectra of differing shapes, if small in
amplitude, soon assumed a characteristic shape, and then grew with relatively little
change in shape until they became comparable in magnitude to the spectrum of the
basic flow. 1In some of his computations the basic flow was comparable in energy
and horizontal scale to typical atmospheric flows, and he found error growth rates
comparable to but somewhat more rapid than those which had generally been found from
working with realizations of atmospheric motion.

3. A low-order model

We could eliminate the problem of finding a suitable closure scheme By return-
ing to the use of realizations, but then we should reencounter the problem of repre-
senting sufficiently many scales of motion. The procedure which we shall summarize
in the remainder of this work represents an attempt to overcome the latter problem,
while not reintroducing the former. Naturally it may lead to other problems. We
shall describe the procedure for the case of two-dimensional turbulence, and, as in
the specific studies which we have described, we shall deal with spatially periodic
fields of motion, which are completely specified by their behavior in a fundamental
square.

The Navier-Stokes equations for two-dimensional incompressible flow reduce to

the simple vorticity equation
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where t is time, ')( and ’j/ are rectangular Cartesian coordinates, LP is a

>
stream function for the flow (whence V \P is the vorticity), )) is a coefficient
of viscosity, and F is an external forcing function which prevents the motion from

ultimately dying'out. Because of the spatial periodicity the vorticity may be

written 5 D—l T
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where 2T D is the length of a side of the fundamental square, & is a two-
dimensional vector with components()(.) y,) , and 9: runs overa all two-dimensional
vectors both of whose components are integers. Reality of v ¥  demands that
X-S = Xj , where the star denotes the complex conjugate. The mean kinetic

ene;gy Ewand the mean enstrophy \/ are then given by
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where J- denotes the magnitude of J . The summations in (3) and (4) are redun-
, . . ) I *
dant; i.e., identicalproducts XJ XJ and X-J X_J are added together.

Since the coefficients Xj'* define the vorﬁcit;, and hence the stream
function, they can serve equall;well as dependent variables. From (1) and (2) it
follows that
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where 6-7 bears the same relatiomn to F which XT bears to v \f) , and where
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Thus we may say that the vectors ,,9: . E . A‘: , or the variables )(3— . Xﬁ R
Xl'— , interact if T+ K +L=0. -

The difficulty in handling equation (5) as 1t stands is that of handling an
infinite system of equations. The customary simplification procedure is to omit
all reference to vectors 2 and the corresponding variables XT when either
component of \,3,: exceeds some prechosen integer. This proves towbe neither more or
less restrictive than representing Va"P by its values at a prechosen grid of
points; in either case the smaller scales of motion are not explicitly treated.

The procedure which we propose allows for representation of virtually all

scales of motion. It is based upon the assumption that if the terms in the

summations in (3) and (5) are arranged in a random order, one may be able to




201

estimate the total sum after summing only a few terms, more or less as one estimates
the outcome of an election after counting a few ballots.

As a preliminary step we choose a resolution factor o, . We divide the
spectrum into intervals, assigning the vector T and the corresponding variable
X5 to the P " interval if o(,"’ £ 740(.}“ . The number N of vectors in
th; j'th {nterval is then approximately ’n‘ 5) d, . We let Qiuz denote
the number of triples of 1nteract1ng vectors 5 . K , and L_ belonging respec-
tively to the ;.ﬂ‘ s ktk , and Q 1ntervals. In defining N and Q;hl we
regard J and -,'_)' as separate vectors.

The mean kinetic energy may then be written

X -a *

with an analogous expression for V , where in the second summation J— runs over

. th
all vectors in the 4 interval. Likewise equation (6) may be written
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where K and l_ run over all vectors in the k. and &  intervals. Ideally o

should be chosen small enough so that different variables in the same interval can
be expected to exhibit similar statistical behavior.

As the principal step, we now select from each interval a relatively small
number of vectors, and then omit reference to all vectors and the corresponding
variables except those selected. We let M,} denote the number of selected vectors
in the j‘tk interval, while Qihl denotes the number of triples of interacting

th th
s R

tively. Within each 1nterva1 the behavior of the selected variables is supposed to

. N k .
selected vectors 3’ . K and L_ in the 3 and £ intervals respec-

be representative of that of all the variables. Obviously the success of the pro-
cedure, if success is attainable at all, will depend upon a judicious selection.

We now let the mean kinetic energy be represented by
|
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with an analogous expression for \Y4 , where I runs over all selected vectors in

the }tk interval. Likewise we replace equation (8) by
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where K and L. run over all selected vectors in the R and ,l. intervals, and
A R —_—

j. denotes the interval in which J lies. The factor C)' has been included in
(9) to compensate as far as possible for the reduction of the number of terms in
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the second summation from N; to M} , while the factor b}kl in (10) is
intended to compensate for a reduction of the average number of terms in the
summation over E and k from Njﬂ Q;hl to MJ‘_A Pikl .
The additiona.l factor a.} is included in (10) to compensate for the possibility
that, given } , there may be integers R and % for which there are interacting
variables in the jtk . htk , and th intervals, but no interacting selected
variables. The remaining work in establishing the procedure consists of finding
suitable values for C_)- , bj.hL , and O

Such values depend upon the manner in which the terms in the various summa-
tions in (7) and (8) combine. If the terms in a sum are mainly of one sign, one can
estimate the total sum from the sum of a small number of terms, by multiplying the
partial sum by the ratio of the total number of terms to the number of terms already
summed. If however the terms tend to cancel, the sign of the total sum cannot be
determined from the partial sum, but an expected magnitude can be obtained by multi-
plying the partial sum by the square root of the above mentioned ratio. We shall
say that the terms combine systematically in the former case and randomly in the
latter.

In the second summation in (7), all of the terms are nonnegative, and thus
combine systematically. A suitable choice for C): is therefore the ratio M‘; N"' .

Likewise, if the terms in the second summation in (8) should combine system~

atically, a suitable value for b;'hl would be

-\ -
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If, however, the terms should combine randomly, a more appropriate value would be

NEN Va Yy -
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It is also desirable that bi”‘ be chosen so that the mean kinetic energy
E and the enstrophy V be conserved in the absence of viscosity and external
forcing. From (9) and the analogous expression for \/ , and from (10) and (5), it
follows that this will be the case if
i@y by =Cpapbyy = C. 0. beji

3 (13)

The proper choice for b}'kl therefore depends upon a} . For the time being, we
shall note that there are interesting cases where O.i , while not necessarily
equal to unity, is independent of 9 .
!
In these ca‘s/es we note that (13) is satisfied if bj.hl = b;‘kg , but not
if ba‘h‘ = bihi . Yet physically it seems more logical to assume that the

terms in the second summation in (8) combine randomly, in which case the choice

"
bi»h?-
by factors which do not systematically increase or decrease when 1 kR, and {

H
would be more appropriate. As a compromise, we choose 'b}‘h!- , multiplied
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are all increased by the same amount. Thus we let

i -2 M, '3
bi*‘-’- = b-jhl (C;’ S CL) (aé o“kai)
'i/l /

= P;‘m thi.

A satisfactory choice for Cl; is more difficult to find. Whereas the

selected interactions within a particular triple of intervals may be fairly repre-

X ‘5/6 ./6 "':'/3 ¥
S (CuCo) @y I (14)

sentative of the remaining interactions, there is little reason to believe that
interactions in those triples containing at least one selected interaction are rep-
resentative of interactions in triples containing none. Yet some choice other than
Q} | seems to be demanded. It would appear logical, given j , to let 0\.)
depend upon the ratio of the number of pairs R, £ for which the j,th s h‘tk , and
}Ztk intervals contain interacting variables to the number of pairs for which the
intervals contain interacting selected variables. This is not possible, however,
since the former number is infinite while the latter is generally finite.

A reasonably satisfactory solution is as follows. Given 3, , we let 3: be

. th
a selected vector in the 3 interval, and then let

T ggat\ogK)d(loal—)
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with the limits of integration to be presently specified. We now let ,'I° (}) be
the value of I when K and L. run over all pairs of values for which there exist
vectors K and L (whose components need not be integers) of magnitude K and Lo
which in;:’e\ract with M:[ . Likewise we let I|(}) be the value of T when K

and . satisfy the above conditions, with the further restriction that there be
selected interactions in the triple of intervals to which ;): . E , and ‘l::
belong. With the assumption that the terms in the first summatign in (8) combine
randomly rather than systematically, our choice for &4 is I. a-IOI/’. .

We briefly mention a few preliminary experiments which we have performed with
this procedure. We have chosen a particular scheme with o :r;_i , so that the
intervals are half-octaves, with four selected vectors per interval. Each set of
three consecutive intervals contains four triples of interacting selected variables;
these are the only selected interactions.

We have attempted to reproduce some of the results which Lilly (1969, 1971)
obtained with a 64 x 64 grid, by using similar forcing and similar resolution. We
can cover six octaves of the spectrum with 48 variables, as opposed to Lilly's 4096.
We obtain approximately the same mean kinetic energy and enstrophy. However, above
the forcing wave number, Lilly obtained energy spectra conforming to the -3 power
law, which incidentally agrees fairly well with what is found in the atmosphere,
while our spectra generally fall off at least as rapidly as the -4 power.

Nevertheless, it appears that we can produce almost any desired spectrum
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through a suitable choice of forcing. With a spectrum resembling a typical atmo~
spheric spectrum, our preliminary experiments have yielded growth rates of errors
comparable to those apparently prevailing in the atmosphere.
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