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The Interaction between a Mean Flow and Random Disturbances

i :

By EDWARD N. LORENZ, Massachusetts Institute of Technology?!
(Manuscript received October 7, 1952)
Abstract
The study of the statistical properties of ensembles of hydrodynamical systenis may be called 2

statistical hydrodynamics. It is recommended that statistical hydrodynamics be applied to
certain problems which have not previously been looked upon as statistical problems.

Statistical hydrodynamics is applied to the problem of the interaction between a mean flow %
an a superposed disturbance, in a two-dimensional homogeneous incompressible nonviscous :
fluid. The ensemble of all disturbances which may individually be superposed upon a given mean
flow is assumed to be random, in the sense that it is unaltered if each disturbance is subjected to
a change of sign, a translation in space, or a rotation. It is found that, ensemble-average-wise,
kinetic energy is transferred from the disturbances to the mean flow if the mean flow is of
small variance and coarse detail and the disturbances are on the average of large amplitude and
fine detail, while kinetic energy is transferred in the opposite direction if the opposite situation
exists.

This result is applied to the problem of the maintenance of kinetic energy in the earth’s
atmosphere against the dissipative effect of friction. There is some evidence that both the total
kinetic energy and the kinetic energy of the mean flow can be maintained through the addition
of new disturbances which form random ensembles, but that they can be maintained more
efficiently, and probably are maintained, by the addition of new disturbances with a systematic

lack of randomness.

I. Statistical hydrodynamics

There are many problems in which we seck
sxplicit values of certain hydrodynamical
quantities, perhaps locally or instantaneously,
or perhaps as functions of space or time. A
problem of this sort, familiar to the meteorol-
ogist, is the forecast problem. Here we seek
the space distributions of pressure, wind
velocity, or some other quantities at some
particular time, given the distributions of
these quantities at some previous time.

There are other problems in which we
seek not the actual values of these hydrodynam-
ical quantities, but rather the values of some

I The research resulting in this work has been spon-
sored by the Geophysics Research Division of the Air
Force Cambridge Research Center, under Contract No.
AF 19 (122)—I53. .

of their statistical properties. A problem of
this sort, nearly as familiar to the meteorolog-
ist as the forecast problem, and perhaps more
formidable, is the problem of explaining the
mean state of the general circulation of the
atmosphere. Here we deal with time averages
of space distributions of pressure, wind ve-
locity, or some other quantities. These average
distributions are not necessarily the same as the
instantaneous distributions of these quantities
at any time, but instead are statistical prop-
erties of the ensemble of all instantaneous
distributions which ever occur.’ .

Many problems of the latter kind have not
always been treated statistically. The concept
of the general circulation problem as a sta-
tistical problem may indeed be unfamiliar to
many meteorologists. Treatment of such prob-
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lems by statistical methods might yield profit-
able results.

The study of the statistical properties of
ensembles of hydrodynamical systems may
be called statistical hydrodynamics. It may be
contrasted to the study of an individual hydro-
dynamical system.

Since there are a number of fields of study
which deal with statistical properties of en-
sembles, there are available a number of pos-
sible methods for attacking problems in sta~
tistical hydrodynamics. One procedure which
naturally suggests itself is to follow the methods
of statistical mechanics. This approach has
recently been used by Onsacer (1949). An-
other procedure, which will be used in this
study, is to follow the methods of the sta-
tistical theory of turbulence. Indeed, this
theory would seem to be a particular example
of statistical hydrodynamics. Many of its
statistical concepts are applicable to motion
which is not ordinarily considered turbulent.
In particular, they are applicable to well-
organized large-scale atmospheric flow patterns.

. It is the writer’s opinion that statistical
~ cthods offer promising possibilities for re-
“séarch in many branches of hydrodynamics
where they have not yet been employed.
Possibly they may produce solutions to prob-
lems which have not yielded to other methods.
: In the present study a familiar problem is
treated by statistical methods.

2. Mean flow and disturbance flow

In this study we consider the problem of
the interaction between a “mean flow” and a
disturbance which is superposed upon it.
Particular attention is given to variations of
the partitioning of the total kinetic energy
between the mean flow and the disturbance.
This problem, applied to atmospheric flow,
has recently received considerable attention
(see Kvo, 19s51). Our study differs from
previous ones in that we treat the problem as
a problem in statistical hydrodynamics.

In connection with this problem it is natural
to consider a different but closely related
subject, namely, the stability of parallel flows.
In dealing with this subject, which has received
much attention for many years, one considers
a parallel flow, which by itself would constitute
a state of equilibrium. Upon this flow a
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perturbation of small amplitude is superposed.
The parallel flow is said to be unstable if the
amplitude of the perturbation increases as
time progresses. A rather complete discussion
of the stability problem, together with an
extensive bibliography, has recently been
presented by LN (1945).

The present problem, particularly as it
applies to the atmosphere, is distinguished
from the stability problem primarily in that
the disturbance is not assumed to be of small
amplitude. Instead, the total motion may be
of arbitrary form. The mean flow is obtained
simply by averaging the total motion along a
certain direction, and the disturbance motion
is simply the departure of the total motion
from the mean flow. Thus, although at times
the mean flow may be a close approximation
to the total motion, or at least a prominent
feature of it, at other times the mean flow may
be no more than a statistic of the total motion,
or perhaps may even vanish.

Since the disturbance may be large, it may
experience large changes in its kinetic energy
as it grows or weakens. The source or sink of
this kinetic energy is then a matter of im-
portance. If the motion takes place under
conservation of total kinetic energy, this
source or sink must be the mean flow. Thus
the mean flow also varies with time. From
these remarks one may well infer that the
motion under consideration is assumed to be
governed by nonlinear equations, in contrast
to the linearized equations frequently used in

studying the stability of parallel fows.

In spite of these distinctions, we shall find
it convenient to borrow some terminology
from the stability problem. Thus we shall say
that the mean flow is unstable when the kinetic
energy of the disturbance increases and that
of the mean flow decreases. We shall call the
mean flow stable when the opposite situation
prevails.

For simplicity we shall consider two-dimen-
sional motion which is completely described
by a strcam function ¥, which varies with
time £. The mean motion will be described by
its stream function ¥, and the disturbance
motion by its stream function o, so that
Y=Y +uy.

We shall assume that the average kinetic
energy per unit area is conserved during the
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motion under consideration. This kinetic
energy may be partitioned into two quanti-
ties—the average kinetic energy E of the
mean motion, per unit area, and the average
kinetic energy ¢ of the disturbances, per unit
area. It is the changes in this partitioning which
we propose to investigate. Since the sum
E + & is constant, it is suficient to investigate
the variations of E.

When the motion is governed by linear
equations, it is frequently possible to obtain
time-dependent solutions. It is then easy to
observe whether instability exists. Such a
procedure is usually not possible when the
motion is governed by nonlinear equations.
In this event, it may still be casy to compute
the initial value of the time derivative JE/ot,
given the initial distribution of ¥. In several
recent studies (CHARNEY, 1952; Kuo, 1953;
PLATZMAN, 1952) the initial value of 92E/dt2has
also been considered. In the absence of a time-
dependent expression for E, these two time
derivatives give certain information concerning
the behaviour of E. Thus we shall say that the
mean flow is unstable if dE/dt < o, or, in the
event that JE/dt vanishes, if 92E/dt* <o.

In general, the value and even the sign of

JE[dt are not determined by ¥ alone, but
depend also upon y. Thus, in studies where
changes of mean-flow kinetic energy are
computed, and where these changes are
assumed to be characteristic of the particular
mean flow, a judicious choice of the form of
the disturbance is essential. Granted that an
investigator can make such a choice, he still
may find it difficult to convince another in-
vestigator that his choice is wise.

We can eliminate the necessity of choosing
a suitable disturbance stream function by
treating our problem as a problem in statistical
hydrodynamics. Accordingly, we shall con-
sider an ensemble M, consisting of instanta-
neous stream functions ¥. An ensemble, such
as M, is nothing more than a collection of
functions. We can specify a particular ensemble
simply by listing its members, if the number
of members is finite. To specify an infinite
ensemble we may specify the properties which
characterize its members.

In the ensemble M, each stream function is
assumed to possess the same mean-flow stream

function ¥, but the disturbance stream func-

tions p are different for different members of

M. The ensemble consisting of the disturbance
stream function y will be denoted by p. It is
related to M in that each member of M differs
from a corresponding member of u by the

function Y.

Without computing JE/dt and J2E/d¢* for
particular stream functions, we may obtain
statistical averages of these quantities by
averaging over all members of M. These
statistical averages may depend upon the mean
flow, but instead of depending upon any
particular disturbance stream function, they
depend upon the statistical properties of the
ensemble containing the disturbance stream
functions. The task of judiciously choosing ¥ is
now replaced by the task of judiciously
choosing the statistical properties of u. It will
soon appear that the latter task is the more
straightforward one.

3. Properties of the ensemble

In this section we shall consider the statistical
properties of an ensemble of stream functions.
Since we propose to borrow a number ¢
concepts from the statistical theory of turbu~
lence, we shall frequently refer to this theory.
Some of these concepts appear in the more
general theory of stationary random processes,
and we shall also refer to this theory, or to
another special case of this theory, namely
stationary time series.

For simplicity we shall consider instanta-
neous stream functions which are defined over
an infinite plane with rectangular coordinates
x and y, and which remain finite as x and y
approach infinity. The statistical properties
of an ensemble y of stream functions y (x, y)
may be described by a set of probability
functions 2 (xh Y1, TP1), P2 (xb Vi X2 Y2, Y1,
¥,), etc. Here the differential

Pn (%1 Vi Xa¥ar -0 Xas Yus Wi Yoo Pu)
dyy, dps . .. dip,

is the probability that if ¢ is a member of u
chosen at random, its value will liec between v,
and v, + dy; at (xy, y.), between v, and
Yo + dy, at (xs, ¥), etc.

Such probability functions are rather cum-
bersome. For many purposes it is unnecessary
to use them. In the present study it is sufficient
to use certain statistical averages. We shall use
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square brackets to denote an ensemble average,
ie., the average value of a quantity over all
members of the ensemble.

The function [y (x, y)] is the ensemble
average of o at the point (x, y). It gives certain
specific information concerning 4. The func-
ton F (x, y, %', y') = [y (%, y) p (+', )] gives
considerable further information concerning
w. It will be called the ensemble correlation func-
tion for p. Its definition resembles that of the
correlation tensor introduced into the sta-
tistical theory of turbulence by von KARMAN
and HowaRTH (1038), and, in fact, its second
partial derivaties are components of a similar
correlation tensor. Here we can use a scalar
correlation function in place of a correlation
tensor simply because we can describe the
motion by a scalar stream function in place
of a velocity vector. Still further information
is given by the ensemble average of the prod-
uct of the values of v at three, four, or more
points, expressed as a function of the coordi-
nates of the points.

These ensemble averages may be rigorously
fined in terms of the probability functions;
clius

v (s Dl = Lvm s rwde (1)

Fooyoxs ) = L ww'psl y ¥y )
dydy'. (2)

The existence of sufficiently well-behaved
probability functions ensures the existence of
well-behaved ensemble averages. We shall be
concerned only with ensembles for which such
averages exist.

Our first problem is that of choosing a
suitable ensemble for study, or what s sufficient,
of choosing suitable ensemble averages [y(x, y)],
F (x, y, x', y), etc. We shall attempt to make
the ensemble as nearly random as possible, in
the sense of avoiding as far as possible any
preference for certain particular stream func-
tions above certain others. To this end, we
shall impose the following three conditions
upon u, which we shall call the conditions of
reversibility, homogeneity, and isotropy, re-
spectively:
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1) For any function 4 (x, y), the probability
that v (x, y) = A (x, y) equals the probabil-
ity that p (x, y) = — A (x, y)

2) For any function A (x, y) and any vector
(§, 7), the probability thaty (x, y) = A (x,y)
equals the probability that y (x, y) =4
(x + &y + 7).

3) For any function 4 (x, y) and any angle «,
the probability that v (x, y) = 4 (x, y)
equals the probability that y (v, y) = 4
(x cosa—ysine, x sin o + y cos ).

In the case of infinite ensembles, the proba-
bility that y (x, y) = A (x, ) is almost always
zero. The first condition should then be inter-
preted as meaning that the probability that
p (x, y) belongs to any given set of functions
equals the probability that y (x, y) belongs to
a second set, whose members are the negatives
of the members of the first set. The second and
third conditions should be interpreted anal-
ogously.

The reversibility condition evidently implies
that the ensemble average of the product of
the values of y at any odd number of points is
zero, and, in particular, that [y (x, y)] = o.
Attention will therefore be given principally
to the ensemble correlation function F (x, s
x’, y). The homogenecity condition implies
that F is invariant under a translation of coordi-
nates, so that it depends only upon differences
x — x" and y — y". Hence we may let F (x, y,
x,y)=f(x—x,y—y'). The isotropy
condition implies that f is invariant under a
rotation of coordinates. Hence we may let

Slx—x, y—9y) = fo(r) where r2 =

= (x —x)*+ (y — ¥’)*. The restrictions placed
upon the ensemble correlation function, or
upon its derived tensor, by the homogeneity
and isotropy conditions are evidently equiva-
lent to those placed upon the correlation tensor
in the study of homogeneous isotropic turbu-
lence.

The features of u in which we are most
interested can thus be specified by choosing
a single function f, (r) of a single variable.
Before choosing this function explicitly, we
must consider another type of average, a
space average. This average is defined not for
the ensemble but for each member of the
ensemble. We shall denote a space average by
braces. Space averages analogous to the en-
semble averages defined by (1) and (2) are
defined as follows:
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Yy X ’
lim I ‘

{ylx 7)) = X,Yewmf /w(x+§,y+n)
—Y —X

dé dn, (3)

lim

Y X
{ple, y) sy )= X Y>e I;Eff f
v Zx

(4)
Evidently {9 (x, y)} is actually a constant.

Since two stream functions differing by a
constant define the same field of motion, we
may assume, without loss of generality, that
{w (%, y)} = o for every member of u. Like-
wise, the function {y (x, y)(x',y")}, which we
shall call the space correlation function, actually
depends only upon the differences x — x" and
y—y'. We shall let {y (x, Yy ()}
g c—x, y—7)

In dealing with stationary time series, it is
frequently assumed that ensemble averages
and time averages are equal. Such an assump-
tion secems justified because in this case the
members of an ensemble are supposed to
arise from separate experiments performed
under similar conditions, and the results of
all the experiments are supposed to be statisti-
cally similar. Likewise, in the statistical theory
of turbulence, it may be justifiable to assume
that ensemble averages equal space averages,
if the ensemble is the result of several measure-
ments made under similar conditions.

Any such assumption would, however,
place serious restrictions upon the present
study. On the one hand, it would require that
spacc averages be equal for all members of an
ensemble. On the other hand, it would require
that ensemble averages be unaltered by transla-
tions in space. While either of these restrictions
might be desirable in some studies, and the
latter actually appears in this study because of
homogeneity, the former will not be made.
Thus, for example, we are free to consider
an ensemble where neither large-amplitude
nor small-amplitude disturbances are certain-
ties, but both have positive probabilities.

Although the two averaging processes are
not identical, they are evidently commutative
ie., {[A]} = [{4]], for any function 4 (x, y).
It follows, because of homogeneity, that

[4] = [{4}]. Letting A = v (%, ) v (<, 7),

p(x+& yrn) v (x'+E y'+n) didn.

EDWARD N. LORENZ

we find that
fle—xy—y) =lpl—xy =7 ()

Equation (s) replaces the assumption of the
statistical theory of turbulence that ensemble
correlation functions and space correlation
functions are equal.

We now introduce the concept of the
spectrum. The definition of the spectrum of a
stationary random process, such as a time
series, was made possible by the work of
WieNER (1930) on generalized harmonic anal-

sis. The spectrum of turbulence was first
defined by Tavror (1938), in terms of the
time series obtained from observing the turbu-
lence at a fixed point. The spectrum has more
recently been defined by regarding the turbu-
lent velocity as a stationary random function
of the space variables. A similar definition of
the spectrum is applicable to the stream func-
tions in . The motion need not be turbulent—
it may even be expressible by simple analytic
functions.

In the theory of stationary random processes,
spectral functions and correlation functions
are Fourier cosine transforms of each otht”
In the present study we may define the spectii

function y (a, b) by the relation

ya ) =5 [ [l cos (et + bn)den,

()
where & and # are dummy variables, whence
it follows that

@ (&)= ffmy (a, b) cos (a& + bn) dadb.

—00 — 00

The fact that @ (£,7) is a correlation function

assures us that y (a, b) = o for all values of a

and b (sec WIENER, 1930). .
Just as a time series may often be regarded
as a superposition of periodic functions of the
form cos of, so a stream function v may often
be regarded as a superposition of periodic func-
tions of the form cos (ax + by). Just as the
frequency w /27 equals the number of periods
of cos wt occurring per unit time, sO the
components a and b of the vector wave number
(a, b), when divided by 27, equal the number
of periods of cos (ax + by) occurring per
Tellus V (1953} ~
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unit distance in the x and y directions. The
spectral function 7 (a, b) measures the portion
of the variance of y due to each periodic
component as a function of its wave number
(a, b). More precisely, the variance of ¥, ac-
cording to (7), is given by

=9 (, o)=ﬁf°; (a, b) dadb. (8)

—_—00 — 0

The differential y (a, b) dadb is the portion of
{w°} due to periodic components with wave
numbers between (q, b) and (¢ + da, b + db).
A more detailed discussion of all the concepts
introduced in the preceding two paragraphs,
as they occur in the statistical theory of turbu-
lence, has been given by Acostint and Bass
1950).
( Ret)urning to the ensemble correlation func-
tion, we see from (s) and (7) that

FEn= [ [Ty (a b)] cos (ag + by) dadb
T ©)

The ensemble correlation function is, there-
fore, the Fourier transform of the ensemble
average of the spectral functions.

To take advantage of the isotropy conditions,
we express the vector (g, b) in terms of its
magnitude k = (a® + b%)": and its direction
o =tan~' bla. The periodic function cos
(ax + by) then becomes cos (kx cos o - ky
sin ). The scalar wave number k, when divided
by 27, equals the number of periods per unit
distance in the direction in which this number
is greatest. The wave length 27z/k is the distance
between successive maxima.

In terms of k and «, (9) becomes

o 2

fE& 77)=f f[y' (k, )] cos

(k& cose + kysin o) kedkdo. (10)
where " (k, o) =y (4, b). From the isotropy
condition it follows that [y’ (k, «)] is inde-
pendent of e, since there is no preference
within the ensemble for periodic components
with one orientation over periodic components
with another. We observe that

» Tellus V' (1953), 3
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ﬁ‘f cos (k& cos o+ kyy sin ) do = J, (kr), (11)

where J, is the familiar Bessel function of order
zero and r2= &2 + 52, Letting 277k [y (k)] =
= C (k), we find that (10) becomes

&0

S )= [ C (&) (kr) dk. (12)

The problem of choosing an ensemble corre-
lation function f, (r) has now been replaced by
the problem of choosing an ensemble spectral
function C (k). The choice of C is not com-
pletely arbitrary, since C cannot be negative.
Also, since the ensemble variance of pis given

by

Wl=fE)= fCOmd ()

the latter integral must be finite.

The function C (k) would seem to give a
clearer picture of the nature of the ensemble
than f, (r). If C is large primarily for large
values of k, and hence for small wave lengths
27/k, the variance of v is due primarily to
short wave lengths, according to (13), while
if C is large primarily for small values of k,
the variance of y is due primarily to long wave
lengths. We may describe these possibilities in
terms of the physical appearance of the fields of
motion by saying that in the former case the
stream functions are of fine detail, while in the
latter case they are of coarse detail.

It will also appear that by expressing f; (r)
in terms of C (k) we may greatly simplify the
computations.

It does not seem possible to make u any
more random by assuming a complete lack of
preference for any wave length. The choice
of a constant for C (k) might suggest itself. But
according to (13), such a choice would lead to
an infinite ensemble variance of y. We shall
therefore speak of a random ensemble, meaning
one which simply satisfies the conditions of
reversibility, homogeneity, andisotropy. When
no ambiguity arises, we shall speak of random
disturbances, meaning disturbances which form
a random ensemble. We must assume that
even in random ensembles, stream functions
of certain wave lengths are preferred, and we
must expect our results to be expressed in
terms of the preferred wave lengths.
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4. Computation of the stability

mean flow is completely described by it
In this section we shall consider an ensemble

stream function ¥ (y, f). The disturbance
of fields of motion, and investigate the be- motion is defined as the total motion min

haviour of [E], the ensemble-average mean- the mean motion, and is completely specifie
flow kinetic energy, by evaluating [E;] and by its stream function o (x, y, ). Hence
[Ex]. Here and elsewhere in this section, the w — @ 4 V. v ,
subscripts £, x, and y denote partial differen- Some properties of ensembles of disturb
tiation. As mentioned previously, we shall ances were developed in -the preceding sec-f . -
draw conclusions about the stability of the tjopn through the application of generalized § = -
mean flow from these values. ] harmonic analysis. Properties of the mean 3

We must first consider some properties of  fiow, as a function of y, may be treated simi-

individual members of the ensemble. For larly. Thus, analogously to (2) and (4), we %
maximum simplicity, we consider the motion  introduce a correlation function G (y, ) = 3
of a two-dimensional homogeneous incom- = (i (y) ii (y')}. Since # is independent of x, % ..
pressible nonviscous fluid in an infinite plane.  the space average is cffectively an average %,; 5
The motion consists of 2 mean flow and a  with respect to y only. Bvidently G (7, y) is H
superposed disturbance. The x-axis is chosen  determined by the difference y —’, and we %
parallel to the mean flow. It is convenient to H

I cnt may let G (y, y) =g (y —y). If we let
regard the positive x~ and y-axes as pointing

eastward and northward. 5
The motion is completely described by its D(l)== f g (n) cos Indn, (16)
stream function ¥ (x, y, £). The eastward and T
northward velocity components are given by .
4=—, and v = ¥,. We shall consider follows that

only those stream functions for which # and v )

temain finite as x and y become infinite. g ()= f D (I) cos Indl. (s,
The motion is governed by the vorticity S ‘

equation, which we shall write in the form

3 , ; The function D (I) is a spectral function for u,
=V (V- VY) (14 which expresses variance as a function of the
Here \/2 = 9?/dx* + 9*/dy? is the Laplacian wave number [. Although it is as easy to

operator, and \/~? is the inverse operator of specify a function #(y) at the outset as to
V2. The operator \/~* requires some explana- specify a function D (I), the latter function
tion. To say that A = \/72B is to say that brings out some of the properties of #, and
B = “/2A. The latter relation, regarded as an  also simplifies the computations.
equation for A, has many solutions when no The average kinetic energy of the mean
boundary conditions are specified. On the flow, per unit area, is given by E = 1 {u?},
infinite plane, which has no boundaries, at while the average kinetic energy of the disturb-
most one of these solutions remains finite as  ance, per unit area, is given by ¢ = § {92 +
x and y become infinite. We shall restrict our  + 43}, It is the sum E + ¢ which does not
attention to cases where this solution exists, vary with time. :
and use the operator /7% to refer to this We now consider an ensemble M of stream
solution. functions ¥, with its associated ensemble u of §
The mean flow, or more precisely the mean  disturbance stream functions p. We shall
eastward velocity, is defined as # (y, f). Here assume that at some initial time t,, each stream

the bar denotes an average with respect to x; function ¥ possesses the same mean-flow 2
ie., for any function 4 (x, y, ), stream function ¥. We also assume that at the 4°
X

i time f,, the ensemble 4 is random, in that it
5 i I tisfies the conditions of reversibility, homo- %
A, t)=Xs>0— [ A(x, y,t)dx. (1 Saush ; ¥ :
(r: 1) 2X (e 9 (13) geneity, and isotropy. Whether or not these 3
—X conditions hold at any other time depends
With our assumptions there can be no net upon how the members of M behave under 2
northward velocity, so that ¥ = o. Hence the the vorticity equation (14). 1
‘ Tellus V (1953). - %
o
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We may without ambiguity use square
brackets to refer to averages over either M or

. For example, we may write that [¥'] = ¥ +
+ [y]. We must remember, however, that
the homogeneity condition applies only to
4, and not to M. Thus, although [{4}] = [4]
if A is 2 quantity determined by v, this relacion
is not necessarily true if 4 is a quantity deter-
mined by Y.

Since E = 1 {ii*}, it follows that E, = {7, }
and E, = {B,2 + 4y}, To obtain expres-
sions for [E] and [E,] we first observe that
W = — (uv)y, since i represents the mean
eastward momentum, which can be altered
only by the convergence of the meridional
(northward or southward) flow of momentum.
This relation could also” have been obtained
through suitable manipulation of (14). We
next note that i = — P, ¥, = — P, Since
ensemble averaging and space averaging are
commutative processes, we find that

_ [Ef] = {u ["/’x"#v]y}a (18)
[Ee] = {[(=w)i]} + (it ]}, (19)

<€ last term in (19) being obtained through
Integration by parts. Because of homogeneity,
the space derivatives of [w«wy] vanish at the
initial time #,, and [E] = o. We shall therefore
base our conclusions concerning the behaviour
of [E] upon the initial value of [Ez).

The initial values of the two terms on the
right side of (19) will be called 7, and T;. They
have somewhat different properties, and will
be considered separately. The former term T,
is homogeneous of the fourth degree in the
disturbance stream function 9, and is inde-
pendent of the mean flow. It depends entirely
upon the initial convergence of the meridional
flow of momentum. The relation of the
pattern of this convergence to the existing mean
flow does not enter. The latter term T depends
upon both the disturbances and the mean
flow. We shall see shortly that it is homo-
geneous of the second degree in 9, and also

in ¥. It depends upon the development of
meridional flow of momentum. A positive
value results from the development of a flow
of eastward momentum from regions of
low to regions of high mean castward velocity.

Evidently T, is never negative, since it is
the ensemble variance of (#0),, the convergence

_ Tellus V (1953), 3
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of meridional flow of momentum. Since T,
is of fourth degree in v, it is not determined by
the ensemble correlation function, nor there-
fore by the ensemble’ spectral function. We
may therefore place the further restriction
upon u that (), is a quantity whose ensemble
variance does not vanish. Then T, > o.

Since T is of higher degree than T, in v,
T, is the dominating term for disturbances of
sutficiently large amplitude, and T, is the
dominating term for disturbances of sufficiently
small amplitude. Large amplitude disturbances
therefore favor stability. To determine the
effect of small amplitude disturbances, we
must examine T, in more detail.

From the vorticity equation (14), it follows
that

(] = — [# 72 (P, W — W7, +
VN (FNVY, — V)] (20)

To simplify (20) we introduce the auxiliary
function
S, 1, y) =
=—V [Tx (l]/yvz ¥ — b Ave )y +
V(PN — V)] (21)

where (x, y) and (x, y) are two arbitrary
points, ¥ stands for ¥ (x, ¥), ¥’ stands for
¥ (x, y'), and the operator \/ involves only
the variables x and y- It is evident that S (x, y,
%, y) = [uv].. From the relation ¥ — ¥ + w,
it appears that S contains terms of first, second,
and third degree in . Since the ensemble
averages of the first and third degree terms

vanish, and since ¥, also vanishes, (21) becomes

S (& y) = B
=-—\/"? [wo’c_ (lpyvz Yo — "/’xYZ yjy}y +
+ vy (P2 Ve — P\ ? TY)»”C] (22)

The second degree term —</ -2 Y (v 2p—
— P« \/? | has been omitted from (22),
since it wvanishes because of homogeneity.
Upon introducing the ensemble correlation
function F (x, ¥, %' ¥') = [py'], and noting

that F, = — F, and Fy, =-—F, we find
that
S (e y, x, y)=
=V (— 202 Fy— i,V F +
+ 2ty Fy+ 1y F)yy (23)
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We now introduce a second auxiliary
function

T(x, 7,5, y)={u'y S (x, y,x', ¥)} (24)
where u’ stands for # (y'). It is evident that
T (x, y, x, y)= T,. Upon introducing the

correlation function G (y, y') = {wi’}, and
noting that G,'= — G,, we find that

T(x,7,x,y)=V"2(2G,V2F, +
+ Gy VBF—2 Gy Fy — Gy Flax (25)

To simplify (23) further, it is convenient to
express F and G in terms of the spectral func-
tions C (k) and D (), by means of (12) and
(17). We first consider a special case, where
contains a single scalar wave number k, and
# contains a single wave number [. In this case

- (12) and (17) simplify, and F = CJ, (kr),
where 72 = (x — x)2 + (y — )%, while
G = Dcos I (y — y).

It is apparent that /2 F = —k2F and

G,y = — I G so that

T (x, y, %, y) =

= (P—Fk) V2 (2 G F, + G,F)xx (26)

We may write F in the integral form
2
F=C/2 ﬂfCOS (ksinoc (x — x") —
o

~—k cos a (y —9')) da. (27)

It then appears, after combining some terms
through alterations of the variable of integra-
tion, that

2G,F, + Gy, F=

27

CDj2x [ (2 kl cosa—I2) cos (ksin o (x — ') —
T (kcos o — 1) (y — y)dz.  (28)
It follows that
V22 GF,+ G, F)=
CD/2x f Zkz — 2kl cos o + [2%)-1
(—2 kI cosooc + 12) cos (ksin o (x — x') —

—(kcosoc—1) (y —y")) do (29)

EDWARD N. LORENZ

Upon differentiating twice with respect to s -
and then setting ¥’ = x and y’ = y, we find -
that

To= T (x,7.%7) = —3 & CDI (kI), (30f
where

k2

[ (2—2klcosa+12)1(—2 kl cos + 2§

I (k)=

Al =

72 (2 — k?) sin® oda.

Observing that

2r

},Eg-—g of(kz——z kl cos o + [2)=1 cos na dox = ; E
{(kz . 12)—1 (l/k)n lfk - l, 5 3
TUB—R) (kD) if >k, (Jz):
we see that —;

o ifk>1, .

I (k.) {(I_kz/zz)z HEGEE §
Hence I (k, ) is a function of the dimensionless$
quantity //k, which vanishes when I/k < 1, is-
continuous when Ifk = 1, and approac
unity asymptotically as I/k — oo.
We now introduce expressions for the
ensemble-average disturbance kinetic energy,
le] = % [¥3 + v2], and the variance off
vorticity of the mean flow, V' = {u2}. Since

[’P;C"/’x + vy V’Y] =_‘(Fxx + Fy) = k2F=; -

= ko (1),

it follows that

el = 3k (0) = 3 2C
Likewise, since

{uy uy} = — Gyy= PG = B¢ (y —y),

it follows that

V =g (o) = D
Thus

Ty, =—[e] VI(k, 1)

Therefore, for the simple case, T, equals the
product of [¢], V, and a dimensionless quantity
which vanishes if the disturbances are
shorter wave lengths than the mean flow, and
which lies between o and — 1 if the disturb3
ances are of longer wave length than the mean
flow. Hence T, is never positive. .

Tellus V (1953
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We now return to the general case, where
and # both possess continuous spectra. Here F
and G are given by (12) and (17). The com-
putation is similar to that of the simple case,
except that it must be carried out behind
integral signs. We find that

T,= — [ /3 &2C (k) D (1) I (k, 1) diedl, (33)
where I (k, 1) is still given by (33). In this case

] = /3 KC (R)dk and V = [ 2D (1) dl.

Thus °
Ty = — [¢] Vicp (36)

where Icp is a weighted average value of
I(k 1), the weighing factor being ¥ k2[2C

(k) D () [e]"*V-1. We may of course regard
(35) and (36) as together defining Ic,. Since
the weighing factor is never negative, it
follows that 0 < Icp < 1. Thus, T, again
equals the product of [¢], V, and a dimension-
less quantity between o and — 1, and is never
positive.

A few special cases are of particular interest.
uppose that all the wave lengths present in
se disturbances are shorter than all the wave
lengths present in the mean flow, so that the
non-vanishing portions of the spectra do not
overlap. In this case C (k) =oor D (I) =0 if
k< I, while I (k, [)= oif k=1 ThusIcp=o,
and T, = o. Since T;> o, the mean flow is
stable.

Another case of interest occurs when the
mean flow possesses a jet, i.e.,a rather narrow
region of rather strong flow. The narrower
and stronger the jet may be, the shorter the
wave lengths in the mean-flow spectrum which
account for a significant part of the variance.
Thus, for any particular ensemble of disturb-
ances, there will be some overlapping of
spectra provided that the jet is sharp enough.
In this case Icp > 0, whence T, << 0. Therefore
sharp jets tend to make the mean flow un-
stable.

We may now summarize the results of this
section. We consider an ensemble of stream
functions ¥, whose behavior is governed by
the vorticity cquation. At some initial time,
each stream function possesses the same mean-

fow stream function ¥. The ensemble of
disturbance stream functions v is random at
the initial time. We find that [E;] vanishes
7Tellus Vo(18:2.3 ’
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initially, and so assume that the mean flow is
stable if [E,] is initially positive and unstable
if [E,] is initially negative. We find that ini-
tially [Es] is expressible as the sum of two
terms T, and T, of which Tj is of fourth

degree in  and independent of ¥, and T, is

of second degree in  and also in . The term
T, depends upon the initial convergence of
meridional flow of momentum, and actually
equals the ensemble variance of this quantity.
Hence T, is never negative. It does not depend
upon the spectra of the disturbances and the
mean flow, and is positive rather than zero
for suitably chosen ensembles. The term T,
depends upon the development of convergence
of meridional flow of momentum, and equals
the product of the variance of mean-flow
vorticity, the ensemble-average disturbance
kizctic energy, and a dimensionless factor
lying between o and — 1. Hence T, is never
positive. It is determined by the spectra of
the disturbances and the mean flow, and is
negative rather than zero if and only if some
wave length in the disturbance spectrum is
longer than some wave length in the mean
flow spectrum.

It follows that stability is favored by disturb-~
ances of large amplitude and fine detail, and
2 mean fow of small variance and coarse
detail. Instability is favored by disturbances of
small amplitude and coarse detail, and a mean
flow of large variance and fine detail.

5. Maintenance of kinetic energy in the
atmosphere

A problem of fundamental importance in
the study of the general circulation concerns
the manner in which atmospheric motion i
maintained against the dissipative effect of
friction. This problem actually consists of
several more specific problems, each con-
cerning a specific form or component of
atmospheric motion. In this section we shall
touch upon two specific problems, namely,
the maintenance of the total kinetic energy of
the atmosphere against friction, and the main-
tenance of the kinetic energy of the mean
flow against friction.

In regard to the former problem, we can
state that the immediate source of the kinetic
energy must be some other form of energy,
presumably internal (heat and latent) energy
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and potential energy. In regard to the latter
problem we cannot make the same statement,
for the source of the kinetic energy of the
mean flow may be the kinetic energy of the
disturbances, rather than another form of
energy. Indeed, recent evidence (see Kuo, 1951)
points toward the disturbance kinetic energy
as an important source of the mean-flow
kinetic energy.

Accordingly, we shall base our conclusions
upon the assumption that the atmosphere
possesses a “kinetic energy cycle”, character-
ized principally by the following three steps:
a net conversion of internal energy and poten-
tial energy into disturbance kinetic energy, a
net conversion of disturbance kinetic energy
into mean-flow kinetic energy, and a continual
dissipation of both disturbance and mean-flow
kinetic energy by friction. We thus disregard
the possible conversion of internal energy and

otential energy directly into mean-flow
netic energy.

We may regard the physical processes (other
than frictional processes) which transform in-
ternal and potential energy into kinetic
energy, or vice versa, as creating new disturb-
ances, which become superposed upon the
mean flow and the already-existing disturb-
ances. For purposes of illustration, we shall
describe one of the many processes which
can create new disturbances. Suppose that the
lower layers of the atmosphere are heated over
a considerable area. The resulting expansion
tends to lift the column of air above this area,
causing a rise in pressure at upper levels. The
new horizontal pressure gradients cause new
horizontal accelerations, which lead to changes
in the flow pattern other than those which
would have occurred without the heating,
i.e., a new disturbance.

It is convenient to think in terms of new
disturbances instead of the physical processes
which create them. Thus we may describe the
first step in the kinetic energy cycle as a net
gain of kinetic energy through the addition
of new disturbances.

We shall now use the methods of statistical
hydrodynamics to study the kinetic energy
cycle. In particular, we shall try to determine
whether the new disturbances which ac-
company any given mean-flow pattern may
form a random ensemble, or whether instead
they must possess a systematic lack of rever-
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sibility, homogeneity, or isotropy, possibly
related to the mean-flow pattern. If we find
that the ensemble may be random, we shall
have described a mechanism capable of main-
taining the total kinetic energy and the mean-
flow kinetic energy; if not, our description
will be incomplete, for then we must sti
explain how the physical processes involved can
lead to a systematic lack of randomness.

In order to apply the results of the previous
section, we shall assume that the flow at some
representative upper level, such as the 500
millibar level, is governed by the vorticity
equation, except for the effect of friction and
the addition of new disturbances. We are thus
assuming that the second step in the cycle, the
conversion of disturbance kinetic energy into
mean-flow kinetic energy, is governed by the
vorticity equation.

We now allow the flow, and hence the
kinetic energy cycle, to proceed for an indef-
initely long period of time, so that individual
flow patterns, and in particular individual
mean-flow patterns, will approximately repeat

themselves indefinitely often. We assume that

corresponding to any already-existing flo
pattern the ensemble of all new disturbancs
is random, and that the same random ensemble
corresponds to each flow pattern. It follows
that this same ensemble corresponds to each
mean-flow pattern. We wish to see whether
this assumption is consistent with the assump-
tion that the total kinetic cnergy and the
mean-flow kinetic energy are continually
maintained.

At this point we should note that we intend
to apply results obtained for a nonrotating
infinite plane to a rotating spherical earth.
Such a procedure may lead to erroneous
results. A safer procedure would be to repeat
the work of the previous sections, replacing
the plane by the sphere. The correlation func-
tions would then be expressible as series of
Legendre functions rather fhan Fourier inte-
grals. The computation of [E,] would then
become rather awkward. To avoid this
procedure, we shall first assume that qualita-
tively the results obtained for the plane hold
also for the sphere. Later we shall consider the
effect of introducing a Coriolis parameter to
account for the rotation.

We first consider the maintenance of total
kinetic energy. The addition of anew disturb-
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nce may ecvidently either strengthen or
reaken the existing flow. However, because
he new disturbances are random, the en-
cmble-average total kinetic energy must
equal the already-existing kinetic energy plus
he ensemble-overage rew-disturbance kinetic
energy. Thus in the long run new disturbances
2dd their kinetic energy, and the total kinetic
energy may be maintained.

We now consider the maintenance of mean-
flow kinetic energy. Here we can apply the
results of the previous section. For any specified
random ensemble of new disturbances, either
stability or instability may prevail, ie., the
mean flow may tend to strengthen or weaken,
since [E,] may be either positive or negative.
A mean flow will be more likely to strengthen
if it is weak, or of coarse detail, and will be
“more likely to weaken if it is strong, or of fine
detail. Thus there would seem to be a mecha~
nism for maintaining a mean flow, whose
average strength and average fineness of detail
would depend upon the ensemble-average
strength and the ensemble-average fineness of
detail of the new disturbances.
=y We must remember, however, that the
~cw disturbances are superposed not upon a
mean flow alone, but upon a mean flow and
an already-existing disturbance. Hence we
must also consider the possible interaction
between a given old disturbance and a random
ensemble of new disturbances. This problem
may be treated analogously to the problem
of the interaction between a given mean flow
and the disturbances. It is found at a rather
carly stage that the contribution of this in-
teraction to [Ej} and [E] is zero. Only the
interactions involving mean flow need there-
fore be considered.

One might object that since [Ej] is zero for
random ensembles, the disturbances cannot
give up their energy to the mean flow, re-

semble of new disturbances which is random.
In rather crude language, we may say that
new disturbances become old disturbances as
~ newer disturbances are added, and then these
~ old disturbances give up some of their encrgy
*  to the mean flow. The ensemble of old disturb-
ances corresponding to a given mean flow is
therefore definitely not random.

In order to take the earth’s rotation into
account, it might seem desirable to introduce a
ellus V (1953), 3
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Coriolis parameter A, and use a vorticity
equation expressing the conservation of abso-
lute vorticity, the latter being the sum of the
relative vorticity and the Coriolis parameter.
Infinite values of 1 will be avoided if 4 is
chosen as a sinusoidal function of y. If the
work of the previous section is then repeated,
it is found that the non-vanishing terms of
[Ey] containing A arise only from disturbances
whose spectra have wave lengths longer than
the wave length of 4. On the carth the wave
length of 4, i.e., the distance along a meridian
covering one complete cycle of 1, is evidently
the earth’s circumference. Since wave lengths
in the earth’s atmosphere can hardly be longer
than the earth’s circumference, the introduc-
tion of A does not affect the results just ob-
tained.

We are therefore tempted to conclude that
random new disturbances are capable of
maintaining both total and mean-flow kinetic
energy. Nevertheless, we must not present
such a conclusion as an established fact, for our
discussion has been far from rigorous. We
have assumed that no mean-flow kinetic
energy but only disturbance kinetic energy is
obtained directly from conversion of internal
and potential energy. We have assumed that
changes of disturbance kinetic energy into
mean-flow kinetic energy, and vice versa, are
governed by the vorticity equation. We have
assumed that results obtained for an infinite
plane can be applied to a sphere. Finally, we
have based our results upon first and second.
time derivatives, rather than time-dependent
solutions. »

Although we have considerable evidence
for answering in the affirmative the question as
to whether random new disturbances can
maintain mean-flow kinetic energy, we have
done Little toward answering the question as
to whether such disturbances actually do
maintain the general circulation, as it exists.
It is difficult to answer the latter question
through an observational study, since we
cannot distinguish between a new disturbance
and an old one by examining an individual
weather map. Instead, it would appear neces-
sary to resort to numerical prediction based
upon the vorticity equation, and then compare
the predicted with the observed change, to
determine the new disturbance. To perform
this process enough times to obtain reliable
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information concerning ensembles of new
disturbances corresponding to various flow
patterns would be a formidable task, even
with the aid of the most rapid electronic
computing devices.

We can throw some light upon the question
by observing that even if random new disturb-
ances can maintain mean-flow kinetic energy,
they are not very efficient at doing so. That 1s,
weaker disturbances can maintain an equally
strong mean flow, or equally strong disturb-
ances can maintain a stronger mean flow, if
they form ensembles with a systematic lack
of randomness. To see that this is so, we recall
that in the expression (18) for [E.], only the
term T, can be positive. This term depends
only upon the initial convergence of momen-
tum flow due to the new disturbances. The
term T, which depends upon the development
of convergence of momentum flow, can also
be positive if the new disturbances are not
random. Indeed, even the first derivative [E]
can be positive if the ensemble lacks both
homogeneity and isotropy.

Recently, Kuo (1953) has investigated
disturbances of a particular form, which

lead to a development of momentum-flow
patterns closely resembling those found in
the atmosphere. These disturbances have a
systematic Jack of homogeneity, their ampli-
tude possessing a maximum in middle latitudes.
Kuo’s results suggest that the ensemble of all
new disturbances in the atmosphcre may have
a similar lack of homogeneity.

In view of these observations, there would
seem to be some doubt as to whether random
new disturbances do maintain the mean-flow
kinetic energy of the atmosphere, regardless
of whether such disturbances can do so. The
writer’s guess is that new disturbances are
introduced in some systematically non-random
manner, but that if they were introduced in a
random manner, the mean flow would merely
be weaker—it would not be absent.
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