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ON THE BEHAVIOUR OF SYSTEMS OF COUPLED DYNAMOS
By D. W. ALLAN

Received 28 February 1962

ABSTRACT. The behaviour of a system of two coupled disk dynamos is studied in consider-
able detail. It is shown that in several cases the stability criteria and general behaviour are
closely related to those for the single dynamo studied by Bullard, which are resumed briefly.
Extended numerical investigations of the non-linear behaviour of the system are presented:
these show that a true ‘reversal of field’ may oceur.

1. Introduction. A series of papers in these Proceedings (1, 2, 3) have considered
the behaviour of homopolar disk dynamos, connected with each other and through
shunts in more or less complicated ways. The study of the matter was initiated by
Sir Edward Bullard (1), who had in mind that systems of simple disk dynamos,
together with electrical loads, might provide useful analogies to homogeneous fluid
dynamos. Such dynamos have been widely considered as likely sources of the ter-
restrial, solar, and stellar magnetic fields, especially since existence proofs (4, 5) have
banished the nagging doubt that they might, after all, be impossible to realize. Bullard
and Gellman (6) obtained a good deal of information on the properties of homogeneous
dynamos in the steady state, but almost nothing is known of their behaviour with
time when departures from the steady state have occurred. Some knowledge of their
time-behaviour would be particularly desirable both in view of suggestions that the
Earth’s main field may fluctuate considerably over periods of thousands of years,
even undergoing occasional changes of polarity (7), and also in hopes of removing some
of the mysteries from the properties of the variable magnetic stars observed by
Babcock (8). There is no guarantee, of course, that one can ‘lump constants’ for homo-
geneous dynamos in the way that is satisfactory for electrical circuits, but it does
seem likely that general similarities will exist, e.g. that if the currents in the coils of
a system of disk dynamos can change sign, then ‘reversals’ can occur in a homogeneous
dynamo. The results in this paper are also of some interest in the theory of non-linear
ordinary differential equations, as they present a fairly elaborate survey of the
behaviour of a type of autonomous system not treated elsewhere.

The paper by Bullard already mentioned (1) examined the behaviour of a single
dynamo (with and without a shunt) in considerable detail; his results will be reviewed
briefly, since they are necessary in interpreting the more complicated systems. He
found no phenomenon equivalent to reversal of field, but Rikitake (2), on extending
the discussion to a system of two similar dynamos, concluded from a numerical in
tegration that it was possible for the currents in their coils to change signs; in other
words, the fields produced could show reversals, at least initially. The results given in
the present paper are based on much more extended numerical integrations of the
dynamo equations, for a range of parameters and initial conditions, and have shown
that reversals can occur under a wide range of conditions. A remarkable result is that
there are reversals not only in the sense of a change of polarity, but also in the sense of
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a true reversal of behaviour corresponding to a change from oscillations about one
state of equilibrium to those about another (9).

2. The single dynamo. (a) The simple homopolar dynamo. Bullard (1) has discussed
very fully the self-exciting disk dynamo shown in Fig. 1: a disk rotates about its
axis in a field parallel to the axis, and current drawn from two brushes, one on the
periphery and one on the axle of the disk, passes through a coil to produce the said
magnetic field. The behaviour of this dynamo is governed by the pair of differential
equations

LI+RI = MuI, Co=G-MI. (1)

I and o denote the current in the circuit and the angular velocity of the disk, L is the
self-inductance and R the resistance of the circuit, M is the mutual inductance between
the coil and the disk, C is the moment of inertia of the digk, and G the couple driving it.

A
Applied couple

Fig. 1. The homopolar disk dynamo (self-regenerating: M positive).

When certain choices for the signs of the constants are made, these equations may
be put in the form
T+pr=zy, y=1-—z2 (2)

where the dimensionless parameter u is given by

R [CM
"=uJer )

and the new (dimensionless) variables z, ¥, t’ are related to I, w, t by
G GL CcL ,
I=JJTIx’ o= [er¥ t= laat (4)

We drop the prime on ¢* henceforth.
The critical points of (2) are

A4, (L,p) and A4, (—1,4) (5)

The characteristic equation for the linearized systems of equations with these points
as origins have pure imaginary roots, viz. +,/21, and therefore the linear systems do
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not settle the question of stability. However, the existence of an exact integral of (2),
e 14 +logz—da* = Hy—w*, (®)

which represents closed curves, shows that 4, and A4, are centres, i.e. the equilibrium
is stable.

Fig. 2 shows the phase-plane for the system (2). It is evident that x never changes
sign, i.e. a reversal of current cannot occur; otherwise, it is clear from equations (2)
that = 0 acts as a barrier which no solutions may cross. The full solution of (2)
requires another integration, which has to be performed numerically, and this is
carried out in Bullard’s paper. We recall only that when A is large the current occurs
in short bursts lasting for a small proportion of the time. The maximum value of
during these bursts is —,/(34); between them it falls to the minimum value e—4,

J)’j‘l‘

A=2
1 1 |l o 1 1 1 [l
0204 0-6081:0121-4)1-61-8]2:02224 | x

Fig. 2. Phase plane for the simple dynamo.

While the current is small, the angular velocity increases at a nearly constant rate
until the disk is well above the critical speed y = x; then the disk is suddenly stopped
and reversed by a burst of current, and the process repeats itself. We shall find com-
parable behaviour for the more complicated systems of dynamos to be discussed
shortly.

Finally, it should be mentioned that there is another possible form for the equations
(2); if one keeps to the convention that G and M are positive constants, the equations
for the second possible arrangement of the dyamo are

Li+RI = -MwlI, Co=G+MI2 (7)

(It is obvious that there are only two possibilities, to be had by exchanging the con-
nexions to the brushes; the dynamo in Fig. 1 is set up so as to obey equations (2).)
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These may be normalized to
Z+px=—xy, §=1+2%, (8)
for which a first integral is
34 +logx+ §2%+ Sy +u)? = 0. (9)
These are not closed curves, and whatever the initial values of the current and velocity,

the current eventually dies away, leaving the disk accelerating uniformly. The phase-
plane for the system (8) is shown in Fig. 3.
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Fig. 3. Phase plane, second coupling.

(b) The single dynamo with a viscous couple. If a viscous couple is introduced, the
single dynamo will be governed by the equations

LI+RI = Mol, Co+ko=G—MI? (10)
which can be put in the form
E4px=wxy, y+vy=1-2at (11)
where 4 is given by (3) and
k |GL (12)

=N
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As before, reversals cannot occur, for once x becomes zero, it remains zero and
¥y +vy = 1, whence

y = v+ (gp—vle). (13)
For vy > 1 there is only one critical point,
4 (0,v7Y),
while for vu < 1 there are three critical points,
4, and By, By (+4/(1—vp),p). (14)
6n
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Fig. 4. Stability regions for the single dynamo with a viscous couple. I, 4 a col, B, and B,

stable spiral points. II, A a col, B, and B, improper nodes. III, 4 the only singular point,
an improper node.

The nature of these singular points is easily determined: for the point A4, the roots of
the characteristic equation are
s=—v, vi—pu. (15)

Thus when vy < 1, one root is positive and one negative, which implies that 4 is a

saddle-point. When vg > 1, both roots are negative, and 4 is a stable node. For the
points B, and B,, the characteristic equation is

s2+ws+2(1—vu) =0,
whence s=—wt3Jp?2-8(1—wu)} (16)

Thus, when v2+ 8vu — 8 is positive B, and B, are stable nodes; when it is negative,
they are stable spiral points.

Fig. 4 shows how the values of the parameters # and v determine the nature of the
singular points: the first quadrant of the (v, #)-plane is divided into three regions
I ITand III. In I, vx < 1 and »?+8vu—8 < 0; A is a col and B, and B, are stable
spiral points. In II, vu < 1 and v2+8vpx—8 > 0; A is a col and B, and B, are stable
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nodes. In III, vu > 1; A4 is the only singular point, a stable node. The change in the
behaviour of solutions near B, and B, in passing from region I to region II is similar
to the change from underdamping to overdamping in a linear system with friction.
The passage from II to III satisfies the principle of exchange of stabilities.

(c) The single dynamo with a shunt. The last arrangement discussed by Bullard (1)
was a single dynamo with a shunt of resistance R, and inductance L, across the
external circuit; in this discussion a viscous couple will also be taken into account.
The behaviour of this dynamo is determined by

LI+RI = Mol, LI,+R,I = sz,} am
Co+kow=G-MI(I+1,).
These take the form
Tyt @y = Y2y, Ept g%y = Ayxl,} (18)
g+vy=1-2,(2,+,),
where M:]Lj—i JIlJTOG’ ﬂ1=§ lflI_CG’ /\=L£1. (19)

It is clear at once that reversals will not occur in this system for on the plane z; = 0,
x, Temains zero, x, dies away exponentially, and y settles to v—1. Thus solutions cannot

cross this plane. .
There are three singular points of (18)
A (0, 0, v1y,
o (5l ]
S\ NE V74 Ryl FEw A B & (20)

5 ([ 2 [l )
L+ Agafpa]” pa L1+ Apfpi]”
The characteristic equation at A has roots

S=—v, —fy Vi, (21)

Thus, for vg, < 1, 4 is unstable, while for vy, > 1 A is stable and is then the only
singular point.
For both B, and B,, the characteristic equation is

1+ Agty [

The Routh-Hurwitz conditions for this equation are v + x, > 0, which is automatically
satisfied, 1 —vu, > 0, which is already necessary for B, and B, to exist, and

1—-
(ot st [ 1mm ot (140 (o, )[s+2ma-mmn=0. (@2

#al 20(1 = vpuy) + Vg (v + po) ]+ ALpy (v — o) (1 — vpty) + pao(v + )] > 0. (23)

If v = 0, (23) reduces to Bullard’s result for stability ux, > x,. Again, if x, = 0,
A is the only singular point, and as one of the roots of its characteristic equation is
zero, its stability is not determined. On the other hand,if x4, = 0, the condition (23)
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is necessarily satisfied so that the points B, and B,, viz. (£ 1,0,0), are in this case
always stable, while A4 is always unstable.

The presence of four parameters makes a general analysis of the nature of the
singular points difficult, and further discussion will be limited to an illustration of the
way in which addition of a viscous couple may provide a tendency towards stability.

Examination of the case in which the shunt circuit parameters are similar to those of
the dynamo circuit, i.e.

A=1 p=p,=4p
shows that the condition (23) becomes

wr—vp+2 >0, (24)
while the condition 1 —w»x > 0 must still hold for B, and B, to exist; in this special

case they are simply
L (= 3 L= 3 B
—_ 2 ) - 2 2 .

Now values of v and g which satisfy 1 —vux > 0 always satisfy (24) as well, so that in
this case the points B, and B, are always stable. The exchange of stability between
A and B,, B, at the dividing curve vu = 1 still holds true as it did in (b) above.

3. Two stmilar coupled dynamos. Rikitake (2) first considered two dynamos coupled
so that the current from each feeds the field coil of the other. For two similar coupled
dynamos the behaviour can be characterized in terms of one dimensionless parameter,
and this means that there is some hope of using numerical methods to trace the change
in behaviour of the solution with changes in this parameter. This section will first
of all give the equations and their equilibrium states, then give some mathematical
discussion of the general behaviour of solutions, including a few special cases which
can be solved exactly, and finally present some results of numerical integrations of
the equations.

The system of two similar coupled dynamos obeys the four equations
LI, +RI, =w,MI, LI,+RI= szII,} o5
Cu, = Coy=G-MIL1I, (25)

The notation is as defined in §2, now with subscripts referring to the respective
dynamos. These equations can be reduced to the form

Zy+ Uy = YTy, Tyt U, = ?/2331’} (26)
h=Y=1-z2,
where p = (R/L) J(LC|MG), by the substitutions
G G
II=A/ﬂx1, I2=J1T1x2,
(27)

" " _ oL,
1= OMyl’ 2= CM Yo e

This is the scaling used by Rikitake.
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(@) The equilibrium states. A rigorous discussion of the nature of the equilibrium
states for the equations (26) is not a simple matter. One difficulty is that, regarded
as a fourth-order system, (28) is degenerate because of the form of the last two equa-
tions, in the sense that the equilibrium points in the four-dimensional space make up
cerfain curves rather than being isolated points. More specifically, the steady states

may be taken as
(@1, %2, Y1, Y2) = (k, k71, puk?, ple™®). (28)

These are evidently the parametric equations of a curve in four-space. It has two
branches, corresponding to positive and negative values of k. By analogy with
Poincaré’s classification in three dimensions, it seems that this curve can be regarded as
made up of equilibrium points whose nature can be classified in the terms appropriate
to three dimensions; to the first order, trajectories in the neighbourhood of the curve
lie in the three-spaces perpendicular to the tangents to the curve. It is thus possible
to regard the system as a three-dimensional one with a variable parameter k. Another
notation which has proved useful in this connexion is in terms of the difference of
angular velocities, which by the last two equations of (26) remains constant, and

we write as
Y1— Y2 = 0. (29)
The relation between the two notations is
wke—k2) = a, (30)

the inverse of this relation is, since we want real roots,

=g (3]

In Rikitake’s paper(2) he investigated the stability of equilibrium by obtaining
the characteristic equation for first-order variations about the state given by (28),
treating k as constant and then proceeding in the usual manner with the resulting
system of four equations. There is a slight error in his work at this point; the correct
form of the characteristic equation is

—p—s pk® k1 0
pk=2  —p—s O k

k1 & —s o |70 (32)
—k1 -k 0 -—s

or s(s+2u)(s2+k2+k72) =0,

so that the characteristic roots are
s=0, —2u, +i(k~2+k2) (33)

In this instance the existence of the zero root is merely a consequence of the existence
of the simple integral (29), and the problem essentially reduces to the determination
of stability for a third-order system which has a pair of purely imaginary character-
istic roots. Unfortunately there is no simple integral here, as there wasin § 2 (a) above,
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to settle the question. The numerical results to be presented shortly, as well as the
behaviour in the special case a = 0, suggest that there is stability in the neighbourhood
of the curve of equilibrium points, it being in fact a line of centres; but as this is based
on the inspection of a limited number of numerical calculations, it is a statement of
opinion, not of mathematical fact. From a physical point of view, it is not perhaps
overwhelmingly interesting, for the possible departure from or approach to equi-
librium is very slow near the equilibrium state, and it is more important to see whether
these subtleties still occur when viscous damping is introduced, or when the assump-
tion that the dynamos are exactly similar is dropped (see § 4).

If necessary, the linear solution corresponding to (33) could be expressed in terms of
the initial values of the variables. The characteristic vectors which would be needed
to develop this solution are of some interest: the matrix 7 formed by using the respec-
tive characteristic vectors as columns, in the order of the roots listed in (33), is

1 1 1 1
_ k—Z _ k 0 —_ k—3 + k—2(k2 + k—-2)2 — i/tk_l(kz + k—2) — k—3 + k-—2(k2 + k—2)2 + iﬂk—l(kz + k—2)
T ik (k® + k) kL ipk (e + k?)
o o 2+ i(k2 -+ k-2) 2u—i(k2+ k?)
Tt — k(e + k-2 T k(P + k2)
_ouls 0 2+ ik + k2) 2 —i(k?+ k%)
k(R + k) B ipk (e + )

In confirmation of previous remarks on the significance of the zero characteristic
root, it will be observed that the first characteristic vector, i.e. that corresponding
to s = 0, is in the direction of the tangent along the curve of equilibrium points (28),

viz. : ds = (dk, — k~2dk, 2ukdk, — 2uk-3dk), (35)

while the other three all lie in the three-space given by y; —y, = a.

It will now be shown that the introduction of equal viscous couples on the similar
dynamos makes the characterization of stability a more straightforward matter, as
was the case for the single dynamo, in the sense that it is no longer necessary to go

beyond first-order theory. The fundamental equations now are
LI, +RI, = Mo, L, LI, +RI, = Mw,I, } (36)
Co,+Vo,=G@-MLIL, Cay+Vwy,=G-—MILI,

and when put in terms of the previous non-dimensional variables these equations
now contain two parameters g and v:

Ey+ Uxy = Y1 g, Zy+ JTy = Ypy, } (37)
Yrtvy = 12125, Yp+vy, = 12,2,
where V /GL

V=GN oH

(39)
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The equilibrium points are the intersections of

wxy— Y%, = 0, KLy —Y2Ty = 0,} (38)
l—vy,—2,2,=0, l1—-vy,—z,2,=0.
One point is 4(0, 0, v, v~1), and there are only two others,
Bi(+4/(1-vp), +J(1—Vﬂ),ﬂ,ﬂ),} (39)
B2(—\/(1 _V/")’ —'\/(1 _Vlu):,u",”’)‘

These are the same values as for the single dynamo, and their stability turns out to
be determined by precisely the same criteria. For 4, the characteristic equation is

(s+v)2[(s+p)2—v2] =0, (40)
which has the roots

§=—v, —v, vi—u —vi—pu.

Thus A is stable if vx > 1 and unstable if vu < 1, as in §2(b). The characteristic
equation for B, and B, is (read the upper and lower, respectively)

pn—s )2 +(1—vp) 0
o —p—s 0 £A-vp) | (41)
TA(l=vp) FJ(1-vu) —v—s 0
FJ(l—vu) FJ(1-vp) 0 —v—s

which for both points reduces to
(s+v)(s+2p) [®+vs+2(1 —vu)] = 0.

The discriminant determining the stability of B, and B, is again (16), and the dis-
cussion of stability regions in the (v, #) plane given in §2(b) carries over quite un-
changed, i.e. Fig. 4 applies to the present case as well. It may be noted that if equations
(26) were to be regarded as the limit of (37) when v -> 0, the only equilibrium state of
interest would be that with k£ = 1 (¢ = 0); it will be shown shortly that a good deal
more can be said analytically about this case than about the general one.

(b) Some special cases. In examining the behaviour of solutions of a system such
as (2), an immediate clue may often be found by examining the Jacobian of the trans-
formation set up by the solutions. Let (x9,23,%9,%3) be initial values of the four
variables, and consider

0@y, T3, Y1, Y2)
J = 1>%2 J1> J2 . ( 42)
(a3, 23, 13, 42)
Now it may be shown, as in discussions of the Lagrangian notation in hydrodynamics,
or of Liouville’s theorem in mechanics, that

aJ
-~ i 43
n Jdivv, (43)

where Vv is the vector defined by the right sides of equations (26), i.e.

V = (—uxy + Y Tq, — Pp+ Yoy, 1 — 2125, 1 — 2, 75).
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Then divv = -2
so that J = Jye~H. (44)
This can also be proved directly by differentiating the determinant. Thus any element
of volume 0298220y} dy3 tends to zero as t->co. Of course the four-dimensional
volume may shrink to a three-volume, flatten to a plane, or split into several volumes
doing these things, but it is to be expected that after a few ‘half-lives’ whose length is
proportional to #~1, the behaviour will have settled down to some more or less regular
pattern not greatly dependent on the initial conditions, and this is certainly observed

in the numerical calculations. Similar relations to (44) can be obtained for more
complicated dynamo equations; thus, for equations (37),

J = Jye2et, (45)

A good guide to the meaning of (44) and (45) in the general case is to examine some
particular case which can be treated in detail. The case ¢ = 0 is useful in this respect,
through the fact that an immediate integral of the equation is then available, viz.

xi—a3 = Ce 2,

and this is the meaning of the exponential time-dependence of the Jacobian. Again,
for equations (37), there is an immediate integral

Y1—Ya=Ce™,
but there is no longer an integral relating x, and z,.

Case 1

A very specialized case where a complete exact solution is available will be con-
sidered first of all. This is @ = 0, # = 0. The equations to be solved are then simply

By =Yxo Ty =ymy, §=1-27, (46)
the first two of which give at once
22—k =C,
If C is positive, and equal to 42, say, a substitution which suggests itself is
z; = Acoshu, z,= Asinhu. (47)

If C is negative, the roles of x, and x, are interchanged, but the subsequent analysis
holds in either case.
The equations (46) now reduce to the second-order system

du _ dy -
y 1—A?sinhucoshu

dt, (48)

which possess the immediate integral

$y® = B+ 4u?— }A%cosh 2u. (49)
. For changing B, this represents a family of closed curves about the point
(u,y) = (4sinh~1(24-2), 0). (50)
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Through (47) and (49), the phase space of the solutions is completely known. The
situation in (x,, z,, y) space is that once more there is a two-branched curve of equi-
librium points, viz.

rnr,=1 y=0,
or parametrically (21, 75, 9) = (k, k71, 0). (51)

This may seem contradictory, in that a single equilibrium point is obtained by sub-
stituting k = 1, 4 = 0 in (5), but the point is one already encountered in considering
the effect of viscosity, namely, that there is a wider range of equilibrium states avail-
able for the equation with x set equal to zero than is obtained by considering lim y = 0.

20,
1o /\ /\ n
\ . 4 / |
ON—7/2, /AN A
/
\ J) \ / \\
\ x
/ \ 1
—10 —/ \\ / \ /
et S .'~.\\.,// e R

—20lL’ . .
Fig. 5. Dynamo oscillations (4 = 0-1, a = 0-2).

The existence of the integral (49) shows that the equilibrium curve is a line of centres,
i.e. the equilibrium is stable. Further, the trajectories can be described completely:
almost all are closed curves lying on members of the family of hyperbolic cylinders
22—} = + A% The set on any one such surface are nested about a centre, which is
the intersection in the (z,, z,)-plane of x,z, = 1 with 22 — 2% = + 42%. It is easy to see
by sketching the space that according to whether it is + A2, either z, or z, must always
keep the same sign, while the other current variable may or may not change sign,
depending on its amplitude.

The phrase ‘almost all’ has been used in its technical sense: there is one particular
set of trajectories, lying on the plane z, +x, = 0, which are not closed, being in fact
identical with the solutions of the second type for the single dynamo ((8) and (9) with
4 = 0; see Fig. 7). The solutions of the first type occur in z, —z, = 0. Almost all
solutions are bounded, the exceptions again being those on z, +z, = 0, but they are
not uniformly bounded in any sense, since the closer is the initial point to the excep-
tional plane, the greater is the subsequent excursion of the variables. When plotted
against time, the variables in this case must execute perfectly regular oscillations;
Fig. 5 provides an example of what their non-linear shape is like—actually this graph
is for small but non-zero values of g and @, but the solution just given is a good
approximation to the initial behaviour in this case.

Case 2
4 =0, a = 0 appears to be the only case for which an exact solution is available.
The natural ones to look at next are p = 0, @ & 0 and g + 0, @ = 0. The former has
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been examined in some detail by P. Swinnerton-Dyer (private communication),
using a method involving approximating the solutions by elliptic functions. He finds
that, apart from a few exceptional trajectories, the behaviour is roughly

%y = +4/(2at) +O(1), = —TyC082,(t—7T), Y, = Tosinz,(t—7), (52)

where 7 is a slowly varying function of £, and 7, is also slowly varying (order #t or
smaller).

Fig. 6 gives an example of a numerical calculation for this case. The qualitative
behaviour suggested by (52) is borne out. Because of the symmetry of the original
differential equations, the effect of changing the sign of @ would merely be to inter-
change the roles of ; and z, and of ¥, and y,.

2:0

1of

-1-0

—2:0

-30

—40

-50

—60

Fig. 6. Oscillations of similar coupled dynamos (# = 0, ¢ = 1-0). By, ——— Ly, --- Yq.

The existence of an asymptotic solution of this type shows that the equilibrium
state cannot be stable. The curve of equilibrium points being still given by (51), the
present result can be regarded as showing that the four-dimensional system (26) is
unstable when x = 0; our result that the line of equilibrium points is a line of centres
for @ = 0 merely defines a submanifold (the three-space ¥, = y,) in which equilibrium
is stable, but any variation making y, different from y, produces instability.

Case 3
It remains to investigate the effect of x + 0, which by (44) must have a convergent
effect on solutions. It has already been mentioned that in the simple casea = 0 (k = 1),
the convergence appears though the immediate integral
23 —a% = Ce 2, (53)
44 Camb. Philos. 58, 4
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This is obtained by eliminating y from the first two of the differential equations, in
this case . '
Ty + Uy = YTy, Tyt pudy =Yz, Y =1-2,7,. (54)

where y; = y, = y. Since k is fixed, there are two definite singular points, which will
be denoted as
Bl(l’ 1,/[,), Bz(_ls ——-1,[1,&), (55)

and the characteristic roots for (54) reduce to the three
§==2u, 2¢, —.2i.
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Fig. 7. Phase space (a = 0).

Evidently one can use (53) to reduce the system (54) to a second order one, but at
the price of losing the autonomous character of the equations. The reduced system
will assume an especially simple form under the substitutions

z; = Acoshue ™, z,=Asinhue#, (56)
This is taking C as positive and equal to 42 The system (54) now becomes

du_ dy -
y  1—1A4%sinh2ue—24

ds. (57)

This is directly analogous to (48), but possesses no simple integral as that did.
It is possible to consider the form solutions must take after a long time in terms of

substitutions u=put+loglU, u=—put+logV,

which lead to equations for U and V which tend with time to equations like those for
the first and second types of single dynamo. A more straightforward procedure may
be based on the fact that the relation (53) means that the variables must be tending
with increasing time to lie either on the plane z;, —z, = 0 or on z; +z, = 0. Asin a
previous case, the solutions on these respective planes are simply the single dynamo
solutions of the first and second type (see Fig. 7), i.e. closed trajectories on the first
plane and on the second plane trajectories tending to the régime with zero currents
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and constantly rising angular velocity. An analytic way of looking at this is in terms of
axes rotated to coincide with these planes; if

T+ Ty =U, T3—Ty=7, (58)
the integral (53) is
uv = Ce 24, (59)
so that either  or » must become small. The equations in these variables are
%=—putyu, O=—pw—yv, §=1l—udiod (60)

Evidently, when v is small equations (2) are recovered, while when  is small (60)
approximate to equations (8). That is, there is a tendency to the single-dynamo
solutions of the first and second type.

Fig. 8. Oscillations of similar coupled dynamos. (g =1, a=10). ——— @, --- @y, .
This argument does not, however, show that the trajectories must always tend
uniformly to the solutions on u = 0 or v = 0; there is a possibility of a ‘switch-over’
from the one type of solution to the other if the trajectory is in a region where both
« and v are small, i.e. near the y-axis. Fig. 8 shows that this can indeed happen: a
trajectory which starts quite close to the plane = 0switches over to the solution close
tov = 0 when z, and z, are near the y-axis. Furthermore, it switches back to the second
solution near » = 0 at the next current maximum (so that the currents appear to
split apart) and finally comes back to the oscillatory solution on % = 0. This solution
was carried much further than shown in the figure, and the splitting effect did not
occur again, the solution remaining on z, = x,, very nearly. Small errors in the
numerical integration when z, and z, are small could of course produce such an effect,
but the region of splitting was checked using a very fine integration interval, and the
effect appears to be genuine. One can investigate it a little further using the equations

44-2
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(60): for example, trajectories on » = 0 are unstable in the sense that any small incre-
ment in » must increase at large y. Again, these trajectories have v ~ exp (#%)atlarge ¢,
so that nearby trajectories will always eventually have » small enough for the switch-
over process to be possible with (59) still satisfied, whereas the trajectories nearly
onv = 0 will after a certain time be too far away from the y-axis for splitting to occur.
These heuristic arguments suggest, then, that almost all trajectories eventually settle
down towards the plane » = 0, approaching one of the closed orbits on that plane.
Those which began rather far away from B, and B,, or rather close to the y-axis, may
enjoy a somewhat complicated history before this occurs. Those which originate
sufficiently close to B, and B, simply spiral down to the plane x, = x, without incident,
‘and the equilibrium points are thus stable, and to be classified as centres.

! !
! I
- v \
kP | \ v ! \
! / ! v/ (W v/
3} Vi \ \ \ ! I
\ \ /7 { v \/ " I
v v v !
— 4} v v
1 1 1 1 1 1 | | L | 1 | | 1 1 1 |
20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56
Fig. 9. Dynamo oscillations (¢ =1, @ = 3-75). ——— 2y, --- Zp, Y.

(c) Numerical calculations. The rather subtle behaviour of trajectories for a = 0
described above would scarcely have been predicted a priori, and was in fact found
through the numerical integration presented as Fig. 8. A number of such calculations
have been carried out, on the University of Cambridge Mathematical Laboratory
computer EDSAC 2, covering a range of the parameters 4 and a, and Figs. 9-12
present some of these.

It is sometimes preferable to express the second parameter to be varied as & rather
than a: the relation between the two is given in equations (30) and (31). For example,
the period of small oscillations near equilibrium is most simply expressed in terms of k;

from the linear theory it is
T = 2m(k®+ k%)%, (61)

These periods are reproduced very accurately in the numerical integrations for initial
points near the equilibrium curve, i.e. the linear approximation is quite good in this
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neighbourhood (it breaks down for x = 0, though). In general the period 7' provides
a reasonable estimate for the periods of the non-linear oscillations as well.

When trajectories with initial values moderately far from equilibrium are examined,
quite startlingly non-linear features appear. It becomes clear that changes of sign of
the current (reversal of field) will occur for one or both coils under a variety of cir-
cumstances. A more sensational result is that these coupled dynamos may exhibit a
true reversal of behaviour, in the sense that they suddenly switch over from oscilla-
tions about one equilibrium point to completely similar oscillations about the other.
Fig. 10 affords an unusually striking example of this behaviour; the current variables
z; and z, are seen to change over while near zero to oscillations which are a mirror

1 | [ | N N S| | ] | | 1 | I J
74 76 78 80 8 84 8 8 9 92 94 96 98 100 102 104 106 108 110
Fig. 10. Dynamo oscillations (¢ =1, a = 3:75). ——— 2y, --- ,, Y.

image of those previously performed. It may be noted that this reversal is by no means
a perfectly regular phenomena; previous occurrences for this particular trajectory.
(the one originally considered by Rikitake up to ¢ = 4) were in the form of a single
excursion into the reversed values, as is shown in Fig. 9, an earlier portion of the same
trajectory.

This proof, by a specific example, that dynamos can reverse their behaviour is
obviously of great importance in connexion with theoties of the Earth’s magnetic field.
However, it is probably to be looked upon as an existence proof rather than an exact
specification of the behaviour of the Earth’s field. It will be seen later that rather
small values of x are characteristic of the models which may be analogous to the
terrestrial dynamo, and it is thus of interest to look at some numerical integrations
with small x. Although the special cases 4 = 0, a finite or zero, just considered give.
the initial behaviour for cases such as these, the relation (53) shows that even a very,
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small  must have a dominating effect on solutions after a sufficiently long time. There
may be complications depending upon how close to the equilibrium state the trajectory
originates, as has been demonstrated in the special case a = 0. Some of these features
are illustrated in Fig. 11: here a trajectory for small x and @ (each 0-1) with initially
large and quite irregular variations has by the time ¢ = 12 (2u¢ = 2-4) settled down to
a régime of alternate double revolutions about the two singular points. That it is
important how close one starts to the equilibrium point is shown by the previously
given Fig. 5 in which an oscillation of moderate amplitude with small x and a is still
close to the 4 = a = 0 solution by the time ¢ = 10. Swinnerton-Dyer’s solution would

1 | 1 1 1 | | 1 J

10 1 12 13 14 15 16 17 - 18 19
Fig. 11. Dynamo oscillations (4= 0-1, a = 0-1). ——— z; (X 2), --- =,

Y1

suggest that a trajectory for very small 4 which began with a fair difference between
¥, and y, would at first tend to behaviour like Fig. 6, but the integration just discussed
demonstrates that the steady growth of one current variable may be expected to
break down by the time ut ~ 1. The eventual nature of the solution cannot be investi-
gated numerically with much confidence for very small g, since the times required
are so large that integration errors may influence the solution strongly.

Although only about ten lengthy integrations have been carried out, it does seem
possible to give a tentative description of the general behaviour of the solutions. In
all those investigated, except for a few special cases, solutions which began relatively
far from equilibrium tend eventually to non-linear oscillations of several characteristic
shapes (covered reasonably well in the illustrations). These may involve changes of
sign of one or both of the current variables during each oscillation. They further often
exhibit what has been called a ‘true reversal’: this may appear every two or three
oscillations, with apparent regularity, or may also occur (for values of x and a not too
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far from 1) as the end result of a number of oscillations of one type of increasing
amplitude (the rate of increase of amplitude being more than exponential), with the
number of oscillations before a reversal following no apparent regular law. Invariably
the true reversal occurs when both current variables are small in magnitude. Although
trajectories originating moderately close to the equilibrium states exhibit the growth
of amplitude until a régime of reversal is reached, some integrations make it appear
that if one starts sufficiently close the growth is not observed.

The period of oscillations in the cases investigated is always a few times the unit
of time adopted; considering the limited range of the parameters investigated, this
is another way of saying it is of the order of magnitude of T for the linear approximation
(equation (61)).

Finally, it is conjectured that the equilibrium points remain centres in all cases
where x is non-zero (as they certainly are for a = 0), with the proviso that the size of
the region about a point for which trajectories simply spiral down to a closed curve
depends on x. Whether this surmise proves correct or not, the topology of the set of
all trajectories for these equations is certain to be very curious.

4. Coupled dynamo in general. There are several ways in which the theory of the
last section can be generalized: the one considered here is to remove the specialization
that the dynamos should be similar, as well as adding viscous couples. Another approach
would be to increase the number of dynamos interacting; the character of the equi-
librium states for an especially simple arrangement of # dynamos has been studied
in detail by Lebovitz (3). The discussion of a pair of dynamos given here will again be
divided into a study of the steady states and a brief examination of numerical
results bearing on the non-linear behaviour.

The equations (36) become when generalized to apply to a pair of dissimilar coupled
dynamos

LiI,+R,I = Q M, L,i,+R,I,= Q,NI,, } (62)
CQ+NVQ =G —MLIL, CQu+V,Q,=G,—NI I,
The singular points are given by
R L-MQL,=0, R,,-NQ,J =0, } (63)
VO, +MLL =G, V,Q+NLIL=G,.
One of these is clearly
Gy Gy
A(O’O’Vl’-V;)’ (64)

and the remaining ones will occur in pairs, i.e. with the currents alternately both posi-
tive and both negative. These may be obtained explicitly as follows; eliminating I
and I, from (63),

Wy, K 6, G WO KO, WVERER,
M N M N M

N ~ PNt (65)
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Hence, if s, and s, denote the roots of

G, @ V,V,R,R
2_f71_ 72}, Nite it
* (M N) = arne ~ O (68)
M N
then (9,,Q,) = (—17181, —17232),
M N
or (€, Q) = (71 8a, —7231)

The singular points are hence

. MG, VR, N2@, VR M N
s (elwpon o] g o ) o

where s, is taken to be the positive and s, the negative root.
The stability of A4 is determined by the characteristic equation

R, oM
L,7° I, 0 0
&N R,
172L2 —fz—s 0 0
” -0, (68)
-1
0 0 —5=s 0
|A
0 0 0 o
or 124 14 R, R R.R, G.G,MN
n 43 2 | it Lty 1fby Uy -
(”Gl)(”az)(”[f:ﬁ/: A VleLle) 0
hence

_ % W Y (R Ry [(R Rz)z 6,6, M. %}

=g g o (o) (@0 L) | @
Since the square root always isreal, there will be either four negative roots (stable node)
or three negative roots and one positive (node-saddle-point). It is easy to see that the

point 4 is unstable when
GGy MN > R, R, W} V,. (70)

It will be recalled that the corresponding relation for the similar dynamos was that

A was unstable when
1>vu, ie. GM > RV.

The stability of the points B; and B, can be shown to be determined in a rather
similar manner to that of the equivalent points for equations (36), i.e. there is an
exchange of stability from the point 4 to the points B, which exist only when (70) is
satisfied.

For these general coupled dynamos, it is necessary that there be some viscosity
present for finite equilibrium states to exist at all, as can be seen from the fact that if
¥, = ¥, = 0, thelast two hypersurfaces of (63) are non-intersecting. This is an indication
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that the original assumptions producing equations (62) are a little too far removed
from the physical problem in this case; when further self-inductance terms are intro-
duced, the equilibrium states are recovered.

A limited numerical study has been made of the equations (62), with the principal
purpose of verifying that reversals of field are likely to occur in the general system,
as they did in the particular one studied earlier. Solutions again may be expected to
converge in behaviour in some sense, for the Jacobian in this case satisfies

J = l’oe_Al7
where A=1i1+£2+5+1/% (71)
L 'L, L L,
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Fig. 12. Oscillations of general dynamos. ——— @, --- Z,,

Several numerical integrations of the equations have been carried out, and one of the
more interesting trajectories is presented in Fig. 12. Because a symmetric scaling of
the variables is not available here, the equations have been left unscaled and written
in terms of 10 parameters (scaling would have reduced the number to 7):

T+ D1 %) = 1 Y1 % Ty + P2%s = §2Y2 %2 } (72)
Gr+lYs = My — 12T, Yot laYy = Mp— Ny, T,

Here (x,, z,,9;,y.) have been written in place of (I, I,, Q,, €,) in order to conform to

the previous notation in the numerical work. In the particular integration shown in

the figure the values for the parameters are
(P1> D23 1> Gos by, bo; My, Mg; my, 1) = (1,355,105 0-1,0-2; 2, 4; 0-5,0-3).
The corresponding equilibrium states are
A(0,0,20,20), B(+3-71, +13-44,0-002, 14:0),

and the points B are stable, while 4 is unstable.
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An interesting feature of Fig. 12 is that there appear to be several characteristic
times associated with the oscillatory behaviour of these more general dynamos:
after a short irregular variation, the currents commence oscillations resembling those
of the similar dynamos in Figs. 9 and 10; then after three of these there is a switch-over
to oscillations vaguely like those in Fig. 11, in that they include double-peaked re-
versals of one current variable. From the positions of 4 and B given above, these
oscillations cannot be regarded as occurring about the equilibrium states, though the
observed gradual increase of y, suggests that such a régime may eventually be
established. '

5. Conclusions. The general nature of our results has been reviewed at the end of
§ 3, and although many subtleties remain for investigation, it is important that certain
types of behaviour, such as reversals, have been demonstrated to be possible. In
attempting to use intercoupled dynamos as analogues of the dynamo processes in the
earth’s core or in magnetic stars, we are no doubt justified in deducing fairly general
facts; for example, that changes of polarity must be associated with large-scale
fluctuations of amplitude of the field, or that a ‘ true reversal’ of behaviour comes about
only at a time when the fields are comparatively low.

More detailed attempts at modelling the homogeneous dynamo processes in terms
of coupled disk dynamo systems have not been very satisfactory, as Hide and
Roberts (10) have already remarked. For the earth’s core, # might be 10-2 or 103
and a crude estimate of other parameters gives a period of oscillation of only about
50 years. This is far too short to explain fluctuations of the main field. Bullard’s
suggestion (1) that the introduction of the Coriolis force could alter the periods con-
siderably, as is known to be the case for hydromagnetic waves, of course still holds
good. It is, however, becoming apparent from work such as that presented in this
paper that a further advance in understanding the time-behaviour of homogeneous
dynamos will require a return to the full partial differential equations of the problem,
and hence, recourse to large-scale numerical computations.
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