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ABSTRACT

We inquire whether an empirical weather forecasting scheme can profitably incorporate a possible non-
linear relationship between observed predictands and predictors.

We analyze a set of twice-daily hemispheric 500 mb height fields into truncated series of spherical har-
monics. From each set of spherical-harmonic coefficients, we predict the coefficients 24 h in advance by
integrating the barotropic vorticity equation in spherical-harmonic form.

We then establish linear regression equations for predicting the same coefficients, using as predictors the
coefficients which represent the observed height fields, and, in some instances, the numerically predicted
height fields. We find that the empirical schemes which incorporate nonlinearity by using the numerically
predicted fields perform considerably better than those which do not.

1. Introduction

Before the days of digital computers most opera-
tional weather forecasting was subjective. Ordinarily
a forecaster would obtain a sequence of synoptic maps,
each showing the values of the various weather elements
at a network of stations at a single time, and would
analyze the fields of weather elements into weather
. systems. He would then construct a prognostic map,
or “prog,” which would represent his estimate of the
arrangement of the weather systems at some future
time, say, 24 h ahead. From the prog he would estimate
the next day’s weather elements.

Sometimes the forecaster would base a prog partly
on physical theory. For the most part, however, he
would rely upon his familiarity with the manner in
which weather systems typically behave. It was
recognized at that time that objective methods of
forecasting were possible in principle, but the amount
of computing needed to implement them seemed to
render them impractical.

With the advent of computers, objective operational
forecasting became a reality. Among procedures based
upon physical theory, the commonest, generally called
“numerical weather prediction,” consists of stepwise
numerical integration of finite-difference approxima-

tions to the dynamic equations governing the at- -

mosphere. Empirical procedures, often called “statis-
tical weather prediction,” include the use of linear
regression, which requires the inversion of matrices of
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high order, or equivalent operations. Because nu-
merical and statistical weather prediction use rather
different mathematical techniques and because the
underlying philosophies differ considerably, somewhat
different groups of meteorologists have been attracted
to them, and differing opinions as to their relative
merits have been rife.

In an informal conversation in which the writer took
part about 20 years ago, the question arose as to how
the best system for producing an operational objective
24 h prog could be developed, if the system had to be
ready within one year. We more or less agreed that the
further improvements in numerical weather prediction
to be expected in a single year would be small, and
that the greatest immediate gains would come from an
empirical scheme, in which the numerically produced
prognostic charts or “numerical progs’” would enter as
predictors. Such a scheme was never established, per-
haps because, fortunately, where was no demand even
at the highest bureaucratic levels that a weather
forecasting technique be made final within a year.

Nevertheless, the formulation of a scheme of this
sort seemed to offer a good research topic. At that
stage of computer development, the work involved
in producing a large new set of numerical progs would
have been prohibitive, and the logical source for the
progs was the set already produced operationally in
Washington. Any intent of the writer to pursue such
research was abandoned when it was realized that,
because the operational numerical forecasting model
was being continually improved, no large collection
of progs produced by one and same model was available.

Perhaps the study which most nearly approached
the desired objective was one performed by Cooley
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(1958). Here the predictors for future 1000 and 500 mb
heights, in addition to present heights, were present
values of Jacobians of height with vorticity or tempera-
ture, as they would appear in a two-level, geostrophic,
numerical prediction model; using these as predictors
in a linear regression scheme was equivalent to using a
numerical prog produced with a single, uncentered,
forward time step. The available computer power
limited Cooley to a small number of forecasts, and the
improvements yielded by the nonlinear terms (the
Jacobians) were not obviously greater than those
expected by chance.

Cooley’s results seemed to support the claims of a
number of devotees of statistical forecasting that non-
linearity need not be considered explicitly. Such a
belief stemmed in part from a theoretical treatment of
nonlinear prediction by Wiener (1956), which was
apparently rather widely misinterpreted as implying
that the performance of any nonlinear formula could
be duplicated by a linear formula containing the same
predictors. The appropriate interpretation of Wiener’s
verbally expressed result, which Lorenz (1973) has
meanwhile converted into equations, is that by intro-
ducing a sufficient number of characteristic functions
(functions which always assume the value 0 or 1) as
new predictors, one can replace a nonlinear formula
by a linear formula. No comparison of linear and
nonlinear formulas using the same predictors is offered.

Recently the use of predictors chosen from numer-
ically produced progs has formed an essential part
of the Model Output Statistics (MOS) procedure
currently used operationally by the National Weather
Service (see Glahn and Lowry, 1972). Here also the
predictions are made by linear regression. The pre-
dictands are weather elements, such as temperature and
precipitation, at specific locations. An intermediate
step of constructing a prog by linear regression would
be superfluous. Whether the success enjoyed by the
method is due to the wonlinearity in the numerical
progs is not evident.

By now numerical progs are presumably better than
progs based upon a combination of dynamic equations
and linear regression would have been in the late 1950s.
It may still be true, however, that if one now had to per-
fect a procedure for producing progs within one year,
the best results could be obtained by basing an em-
pirical scheme on today’s numerical forecasts. During
the same years computers have become powerful
enough to produce economically a large number of
numerical progs for a specific research problem. The
purpose of this study is to reexamine the question as to
whether the performance of a linear regression scheme,
based on real weather data, can be improved by
introducing nonlinear functions of the original pre-
dictors as additional predictors and, in particular,
whether the appropriate additional predictors are the

EDWARD N. LORENZ

591

ones which would be suggested by commonly used
numerical forecasting models.

2. Linear regression

In predicting by linear regression, the standard choice
of a “best” formula is the one which minimizes the
mean-square prediction error.. This measure of good-
ness is chosen because other meaningful measures tend
to make the mathematical treatment rather awkward.
In practical weather forecasting there is no assurance
that the best formula in this sense will be the best from
the point of view of any specific user. However, the
mean-square error is reasonably satisfactory for this
study, whose principal purpose is not to develop new
operational forecasting procedures but to examine
the role of nonlinearity.

We desire formulas of the form

M
3’=Z axite, (1)

$==0

relating a predictand y to M predictors xi,...,2xm
and a prediction error e. We have included a constant
term ag in (1) in a concise form by introducing an
additional “predictor” xy whose value is always unity.
We wish to choose the coefficients ay,. . . o3 to minimize
(€%}, where the angle braces denote an expected value,
or an average over the joint population to which the
predictand and the predictors belong. The coefficients
would then satisfy the M+ 1 simultaneous equations

5 (i oy = (x13). @

7=0

In practice we do not know the statistics of the
population, and we generally estimate them by selecting
a sample (the dependent sample) consisting of N’
observed values of y and the corresponding values of
x1,- - -,xm. We then establish a formula

M
y=3 axite 3

=0
by choosing the coefficients ay,. ..,y to minimize &,

where the overbar denotes an average over the de-
pendent sample. The coefficients then satisfy the
equations

M

S 2w =x:y. “@

=0

Instead of solving (4) as it stands we may introduce
the predictors one at a time. To do this we let yo=1v
and ;0= x;, and then let vy, and x; xy1 be the errors
in predicting y and specifying x; by means of x4 and the
first % actual predictors #y,...,x (Algebraically a
specification is identical with a prediction, but phys-
ically a specification does not involve a time lag.) For
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additional conciseness we may denote the predictand
vy by xp41. The formula which replaces (3) and (4)
is then

Xik+1 =Xk — (xkkxik/x?ck)xkkv ' (5)

(We shall omit the comma between two subscripts
when each subscript is a single symbol.)
From (5) it follows that

2
%4, 4105, b1 = Xik%5k — Xkkik Kxrsk/ ik, (6)

Evaluation of successive values of x4, from (5)
requires evaluation of successive values #x; ri1%; 101
from (6), but evaluation of the latter does not require
evaluation of the former. Hence, if we have no im-
mediate plans to use a prediction formula, and are

interested only in how well it performs (ie., if we

care only about the values of y-lz, ﬁ,- -+), repeated
application of (6) is all that is needed.
Since xo is constant, y; is the departure of y from the

sample mean, and y,2 is the sample variance. The

quantities 3% --- are successive residual variances,
and the dimensionless quantity

—0/ye )

is often called the (sample) reduction of variance (using
k predictors).

Because the dependent sample is necessarily of
finite size, there may be within it a close resemblance
between the predictand and some combination of the
prédictors which is not characteristic of the population.
As a consequence, a strong physical relationship may
be inferred when a weak one or none at all exists. A
further consequence is that even if a physical relation-
ship does exist, so that the desired formula (1) would
perform acceptably when applied to new data, the
formula (3) actually derived, being different, may
perform poorly. The danger of inferring nonexistent
relationships or putting worthless formulas to use may
be reduced by choosing a second sample (the inde-
pendent sample) of N values of y and the corresponding
values of xy,...,%s, and using this sample to test the
formulas derived from the dependent sample.

pr= (32

For such a test we can compare the values of y?,

37_2-2. .., with 3715, y2,. .., where the double bar denotes
an average over the independent sample. From (6)
we find that

=
X5, k4185, 1= Xk X5k — XkkXik xkkx]k/ Xk

+ (xkkxik — XxxXik %c/ x—%k) (xk X5k — XkkX ik S—UE/

20/ %, (8)

The quantity y? is not strictly the variance of ¥ within
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the independent sample, since v, is the departure of ¥
from the mean of the dependent sample. We therefore
prefer to call the quantity

o= (P —yin)/y2, ©)

. formulated analogously to p, the reduction of error

(using & predictors).

Since the final term in (6) is always negative (or
zero) when i=j=M+1, the dependent-sample error
continually decreases (or does not increase) as % in-
creases. However, Eq. (8), in addition to terms re-
sembling those in (6), contains a final term which is
always positive (or zero) when i=j= M- 1, Hence the

independent-sample error may actually increase.

In the Appendix we show that under suitable assump-
tions, when all M predictors are used

(&) =[(V'—=M—=1)/N"e), (10)
while, to a close approximatio\n,
@=L -/ (V' -M-2X&. (1)

It is noteworthy that () is fairly well approximated
by the geometric mean of (¢%) and (¢?). The discrepancy

between ¢? and e? is likely to be inconsequential if M
is small, but as M /N’ approaches unity, the expected
error tends toward zero within the dependent sample,
while within the independent sample it tends teward
infinity. It is therefore essential in practice to limit the
number of predictors if the sample size cannot be
indefinitely increased.

A special variant of the procedure of Egs. (6) and (8)
is popularly called the screening procedure (cf. Miller,
1962). Instead of introducing the successive predictors
in their original order, we introduce at each step the
predictor which yields the greatest additional reduction.
of variance. Effectively we renumber the predictors,
letting «; be the predictor which maximizes p;—pj—;.
In the present study we shall insist that the first selected
predictor still be x, so that yl will still be the de-
pendent-sample variance.

The screening procedure offers a method of reducmg
M/N' by reducing M ; ideally we can terminate the
selection when the additional reduction of variance is
no greater than that expected by chance. The latter
amount, however, is difficult to estimate, since a
greater additional reduction of variance should result
from introducing the best remaining predictor than
from introducing a randomly chosen remaining pre-
dictor. We suggest circumventing this particular
difficulty by terminating the procedure when there is
no additional reduction of error.
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3. The data

Our data were derived from synoptic analyses of the
height of the 500 mb surface over the Northern Hemi-
sphere, prepared twice daily by the National Meteoro-
logical Center (NMC) in Washington. Prior to the
present study, Leith (1974) had analyzed the height
fields for 10 years 1963-72 into series of spherical
harmonics; these series took the form

Z()\,‘W):é i [Cm.n(t) COSM)\+Sm,n(t) Sinm)\]

n=0 m=0

X Pr(sing). (12)

Here A, ¢ and ¢ are longitude, latitude and time, re-
spectively, z is the 500 mb height, and P the associated
Legendre function (or Legendre polynomial, if m=0)
of degree » and order (or wavenumber) m, normalized
so that its global mean square is unity. The series were
truncated triangularly at L=18. Again we shall usually
omit the comma between two subscripts when each
is a single symbol or digit.

Since the original analyses actually terminated near
20°N, they were made hemispheric by linear inter-
polation to a constant value at the equator. The field
of z over one hemisphere does not determine C,, and
Smn uniquely, and the representations were made
unique by assuming the Southern Hemisphere to be a
mirror image of the Northern. This choice makes Cp,
and S vanish when #—m is odd. The cofficients Sy,
are undefined by (12), and may be equated to zero
or disregarded altogether. Thus each height field is
represented by 100 coefficients Cmy, and 90 coefficients
Smn-

For the present study the data were augmented by
500 mb heights for the single month December 1962,
similarly analyzed into spherical harmonics. From
the full data set we then extracted 10 “‘winter seasons,”
each consisting of 100 successive days beginning 1
December. The 380 000 numbers consisting of the 190
values of C,u, and S twice daily on each of the 1000
days constitute half of our data set.

The other half consists of numerically predicted
values of Cmn and Sy From each set of simultaneous
values of Cp, and S, we first estimated the values
Amn and B, in a spherical-harmonic analysis of the
vorticity field

’

VHOBD= 3 3 [Amn() cosmradBun () sinmr]

n=0 m=0
X Py(sing), (13)
by means of a form of the geostrophic equation
gV3z=2QV - (sing Vy). (14)

Here ¢ is a streamfunction, and g and Q are the accelera-
tion of gravity and the earth’s angular velocity.
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We then made numerical predictions of 4 .., and By,
24 h in advance, basing the predictions on the baro-
tropic vorticity equation

a3 (V) /ot= —J (¥, V) —2Q0¢/\, (15)

where @ is the earth’s radius and J denotes a Jacobian
with respect to X\ and sing. Finally we converted the
prognostic values of 4., and B., into prognostic
values of Cr. and S,,, by inverting the procedure used
to obtain 4., and B, originally.

Care must be taken in truncating the series (13) to
insure that the transformation (14) between height
and vorticity is reversible. Since z is an even function
of latitude and sing is odd, V% must be odd, whence
A nn and B, will vanish if z—m is even. To include
the proper number of coefficients 4., and Bn., we
must truncate at L'=L+-1.

From standard formulas involving spherical har-
monics (cf. Jahnke and Emde, 1945), we find that (14)
transforms, with an exception to be noted, into

Con= =7 (@mmi1dmpniit@mndma),  (16)
Smn= =7 (mn+1Bm i1+ Cmn Bmn)- (17)

Here y=g/(2a?%), and
C Qma=n2 A — 1) (n2—m2) (18)

is defined for #>0 and m< #.
For m>0, (16) and (17) are easily reversed. Since
Qm,m=0, we find that

(19)

after which Am mys, .. may be evaluated in succession,
while B, mt1,... are determined by analogous formulas.

For m=0, derivation of (16) with »=0, and hence
of (19), would involve divisions by zero. Physically
Coo represents the global average 500 mb height, while
A represents the solid rotation component of motion,
and there is no reason why these should be related
geostrophically, nor for that matter, why Cqo should
be related to any feature of the vorticity field. We there-
fore obtain reversible formulas by setting 4g,z41=0,
and using (16) to evaluate Ag,z_1,... in reverse order.
The vorticity equation thus yields no prediction for Cyy,
and in our 24 h progs we have predicted Cy to retain
its initial value.

There are a number of possible procedures for
integrating the vorticity equation (13) in spherical-
harmonic form. In our procedure we invert V2 and
perform the horizontal differentiation using standard
spherical-harmonic formulas. For the multiplications we
convert each spherical-harmonic series into Fourier
series at each' of L equally spaced latitudes in the
Northern Hemisphere. We then multiply the Fourier
series, truncate the products and convert back to
spherical harmonics. Comparison of our procedure with
other methods yielded results identical to six decimal
places. With a higher horizontal resolution it would

A m,m+1— _'chm/am,m+17
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have been more economical to convert the Fourler
series to grid-point values, multiply the latter and
convert back to Fourier series, than to multiply the
Fourier series.

For advancing in time we use the four-cycle scheme
introduced by Lorenz (1971), with a time increment
6t=90 min. Sample 24 h forecasts repeated with 45,
60 and 90 min increments yielded almost indistinguish-
able results. Completion of a 24 h forecast on the CDC
7600 computer at NCAR requires about 0.7 5.

There are three principal reasons why the numer-
ically predicted values of Cp», and S,., may differ con-
siderably from reality. First, the initial height fields
from which they are predicted have been subjected to
much interpolation and extrapolation, and in regions
where observations are sparse, considerable invention.
Second, the geostrophic equation used to transform
the heights to vorticities and the predicted vorticities
to predicted heights does not hold perfectly. Finally,
the barotropic vorticity equation is not the true
governing equation. It is therefore hardly to be ex-
- pected that the prognostic values of Cy and Sm, will,
without further modification, constitute good pre-
dictions. It is nevertheless hoped that they may contain
some of the proper nonlinear combinations of the
initial values of Co, and Sw, to serve as useful pre-
dictors in a linear regression scheme.

4. Results

Let us call the S00 mb height maps at 0000 and 1200
GMT on any given day the past-map and the present
map, respectively, and let us call the 24 h numerical
prognostic maps prepared from these maps the past
prog and the present prog. Let us call the height map
which follows the present map by 24 h the future map.

In the regression schemes which we shall examine,
the predictands will always be the 190 variables C.,
and Spm,, divided by 2% if m>0, taken from the future
map. The division makes the sum of the squares of
the predictands equal to the hemispheric mean-square
height. The predictors will be values of Cr, and S,.,
chosen from the present and past maps and the present
and past progs. In addition, the “predictor” xo=1
will be included.

In each scheme the values during the first seven
winter seasons will be chosen as the dependent sample,
while the last three seasons will comprise the inde-
pendent sample. Since there are no data available to

TaBLE 1. Hemispheric mean-square errors E’ for dependent
sample and E” for independent sample in 24 h prediction of 500
mb height, using special prediction schemes. Units are m2

Scheme Procedure £ E"
1 Climatology 10376 10080
2 Persistence 3908 3569
3 Numerical 4231 3879
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TaBLE 2. As in Table 1 except using schemes where predictors
are chosen from present map. M is the maximum number of pre-
dictors (besides %) per predictand. Units are m?

Scheme Procedure M yod £
4 All predictors = 190 1435 3137
5 Screening 2 2530 2440
6 Screening i2 2277 2413

predict for the first day in each season, N'=693 for
the dependent sample, while N'=297 for the inde-
pendent sample. When comparing our results with
Egs. (10) and (11) we must recognize that 99 successive
daily observations generally do not constitute 99
independent observations, whence, effectively, N’ is
less than 693.

Each predictand is predicted individually by a linear
regression formula. Expect when otherwise noted, the
results presented for each prediction scheme consist
of two numbers. The first of these is the sum over all
predictands of the mean-square-prediction errors for
the dependent sample; the second is the same sum for
the independent sample. The computations are all
based on Egs. (6) and (8), and the units are m?. The
second number is the best available indicator of the
relative usefulness of the corresponding prediction
formula derived from our data set. According to (10)
and (11), the mean of the two numbers is a possible
indicator of the usefulness of a formula which could be
derived by the same scheme if the data set were much
larger.

Table 1 gives the results of a few basic schemes
against which the remaining schemes may be compared.
Scheme 1, often called “climatology,” is a regression
scheme where the only predictor is x. According to
(3) and (4), the errors are those which would be made
by predicting that each predictand will always assume
its mean value over the dependent sample. The fact
that in this scheme, and some of the following ones,
the second number is actually smaller than the first
seems to indicate only that the last three seasons were
somewhat less variable than the first seven.

Schemes 2 and 3 use no regression at all. The future
map is simply predicted to be the present map in
Scheme 2, and the present prog in Scheme 3. We see
that persistence gives much better predictions than
climatology—a result which is typical for prediction
of large-scale features at a 24 h range. Perhaps sur-
prisingly, the numerical prog, used as a prediction,
is inferior to persistence.

Table 2 deals with a few regression schemes where
the predictors are restricted to the present map (and
%o). In Scheme 4, all 190 predictors are used for each
predictand. There is considerable improvement over
climatology and persistence, but the discrepancy
between the samples is striking and, in view of the large
value of M, should be expected.
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In Fig. 1 the upper curves show the successive mean-
square-prediction errors for the two samples as the
predictors are introduced one by one. Here the predic-
tors have been arranged in order, beginning with
Cqo, S0 that Cu, precedes Sy, Cmn and S, precede
Cmiz,n, and Coy and S, precede Cont1 0o Ci,nya. The
necessary continual decrease in dependent-sample
error is accompanied by an increase in independent-
sample error after about 90 predictors are introduced.
According to (10) and (11), the observed spreading
of the curves is consistent with an approximate ratio
M/N'=0.35; the 693 observations in the dependent
sample thus appear to constitute somewhat more than
500 independent observations.

The appearance of as many as 90 useful predictors
in the scheme may seem surprising, and it actually
results from the summing of errors. For a single pre-
dictand only a few predictors appear to be useful, but
different predictors are useful for different predictands.
In the lower curves in Fig. 1 the errors are summed
only over the predictands Cs and Ss. Again the dis-
crepancy between the samples shows a general growth,
but the errors in both samples drop suddenly when
.certain key predictors are introduced, notably Ca4, Saq,
Czs and S 26-

These observations strongly suggest that the screen-
ing procedure, applied separately to each predictand,
should yield favorable results. In Scheme 5 the screen-
ing procedure has been used, and has been terminated
after selecting two predictors (besides xp). Scheme 6
is similar except that 12 predictors are chosen; this
choice seems to maximize the reduction of error. It
is evident that screening has yielded far more useful
results than routine inclusion of all the predictors.
Continuing the procedure beyond two predictors seems
to yield genuine but rather small improvement.

The success of the screening procedure in this case is
apparently due to the presence of a few very useful
predictors, together with many virtually useless ones.
Some of the latter may appear to be good within the
dependent sample, but still not as good as the genuinely
good ones, so that the procedure will first select pre-
dictors which are genuinely good even if not genuinely
the best. In a data set where the useful predictors are
more numerous but make smaller individual contribu-
tions, the screening procedure would be more likely
to choose a poor predictor. Some selection method
based on physical considerations would then be in
order. Even in the present instance, physical considera-
tions not be disregarded.

If the earth had no geographical irregularities such
as continents and oceans, the probability of occurrence
of a particular sequence of weather situations would
presumably equal the probability of the same sequence
displaced through any given longitudinal angle. It
would then follow that the separate variables Cun
and S, would be uncorrelated with one another at

EDWARD N. LORENZ

595

10000

5000} -
E'" (INDEPENDENT)

2000k ALL PREDICTANDS
E' (DEPENDENT)

1000 .

500

200

100 €' (INDEPENDENT)

Cze AND Sop

E' (DEPENDENT) -

1
150 190

20 1 i
[0} 50 k 100

Fic. 1. Upper curves: hemispheric mean-square errors E’ for
dependent sample and E' for independent sample in 24 h predic-
tion of 500 mb height, as represented by 190 spherical-harmonic
coefficients, using 2 spherical harmonic coefficients chosen from
present map as predictors, as £ increases from 0 to 190. Lower
curves: similar mean-square errors E' and E” in predicting
coefficients Cs6 and Sis in spherical-harmonic representation of
500 mb height. Units are m>

any time lag, except for variables having the same
wavenumber index m. It seems likely that in the real
world the correlations between variables with different
wavenumber indices may still be weak. Good results
may therefore be anticipated when the predictors are
restricted to those having the same value of # as the
corresponding predictand. It is noteworthy that the
useful predictors found for Css and Ss¢ all had wave-
number index 2.

In the schemes in Table 3 the suggested restriction
on m is imposed. Scheme 7 uses all appropriate pre-
dictors for each predictand; the number varies from
18, when m=1 or 2, to 2, when m=17 or 18. The
results are every bit as good as those obtained by
screening among all predictors.

Schemes 8 and 9 show the results of screening among
those predictors with the appropriate value of m, and
terminating after two predictors, or after 12 (where 12
are available). These schemes are as good as Schemes
5 and 6, where all predictors are screened, but show no
obvious advantage over Scheme 7. Apparently the
restriction on  has already reduced M /N’ sufficiently.
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TasLE 3. Hemispheric mean-square errors E’ for dependent
sample and E"’ for independent sample in 24 h prediction of 500
mb height, using schemes where predictors have same wavenum-
ber index as predictands and are chosen from present map. M is
the maximum number of predictors (besides x;) per predictand,
n the degree index of predictor and ' the degree index of pre-
dictand. Units are m?.

Scheme Procedure M E' E”
7 All predictors 18 2410 2407
8 Screening 2 2544 2437
9 Screening | 12 2418 2402
10 n=n' 2 2571 2446
11 n=n orn' —2 4 2516 2416

S

In Scheme 10 the predictors are restricted to have
the same wavenumber index m and degree index #
as the corresponding predictand, so that there are
only two predictors (or one, if m=0) for each pre-
dictand. The results are comparable to Scheme 8
which screens for two predictors. Somewhat weaker
restrictions on # might produce superior results; as
one possibility in Scheme 11, we have allowed the
degree index of the predictor to equal that of the
predictand, or to be 2 less. The results compare well
with Schemes 7 and 9.

Although, among Schemes 5-11, some may be
genuinely superior to others, the principal conclusion
is that all give comparable results for the independent
sample. It seems unlikely that any other scheme using
predictors taken from the present map will perform
appreciably better.

Having established these initial results, we proceed
to the principal topic of this investigation—the use-
fulness of nonlinearity in a statistical weather forecast-
ing scheme. It is utterly impractical to introduce all
quadratic functions of the original predictors as addi-
tional predictors, let alone higher degree polynomials
or transcendental functions, even if screening is sub-
sequently to be used. Instead, as already indicated, we
introduce special nonlinear -functions by using the
coefficients Cpy and Sm. from the nonlinearly pro-
duced progs as predictors in a linear scheme. With
both the present map and the present prog available
together as predictor maps, it is computationally
inconvenient to use all 380 available predictors or to
screen from all of them. In view of our initial results,

TaBLE 4. As in Table 3 except that predictors are chosen from
present map and present prog.
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TABLE 5. As in Table 3 except that predictors are chosen from
present and past maps.

Scheme Procedure M E' E"
17 All predictors 36 1870 1879
18 Screening 4 2038 1902
19 Screening - 12 1922 1871
20 n=n' 4 2051 1894
21 n=n'orn'—2 8 2007 1878

’

we have confined our attention to prediction schemes
where each predictor has the same wavenumber index
as the corresponding predictand.

Tables 4-6 are similar in format to Table 3, and
differ only in the allowable predictor maps. In the first
scheme in each table, all predictors having the same
wavenumber as the predictand are used. The second
scheme uses screening, selecting twice as many pre-
dictors as the number of predictor maps, while the
third uses screening and chooses 12 predictors. The
fourth scheme uses all allowable predictors with the
same degree index as the predictand, while the fifth
allows the degree index of the predictor to equal
that of the predictand or fall short by 2.

In Table 4 the predictor maps are the present map
and the present prog. There is some variation among
the results of the different schemes, but as a group
they are in a completely different class from those
appearing in Table 3; it is inconceivable that some
combination of predictors chosen from the present
map alone, which we may have overlooked, could
yield mean-square errors for the independent sample
as small as those appearing in Table 4. We conclude
not only that the nonlinear terms are important in
short-range forecasting, but also that suitably devised
empirical schemes can capture the nonlinear effects.

Unlike numerical forecasting, the most effective
statistical weather forecasting schemes generally in-
clude both past and present observations as predictors.
Since the past is presumably nonlinearly related to the
present, use of the past and present should capture
some of the physical nonlinearity even in a linear
scheme. This observation seems to be partly responsible
for the belief that explicit nonlinearity is not needed.

Table 5 is like Table 4 except that the predictor maps
are the present and past maps; the present prog is

TaBLE 6. As in Table 3, except that predictors are chosen from
present and past maps.and present prog.

Scheme Procedure M E E" Scheme Procedure M E E"
12 All predictors 36 1421 1402 22 All predictors 54 1278 1291
13 Screening 4 1563 1421 23 Screening 6 1427 1313
14 Screening 12 1462 1398 24 Screening 12 1356 1284
- 15 n=n' ‘4 1603 1435 25 n=n' 6 1461 1298
16 n=n' or n'—2 8 1551 1398 26 n=n' or n'—2 12 1417 1280
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not used. We see that using the present and past maps
is indeed an improvement over using the present map
alone, but that the past map is no substitute for the
present prog. The mean-square errors in Table 5 are
fairly uniform, and again it does not appear that any
overlooked combination of predictors from the present
and past maps could have yielded errors as small as
those in Table 4.

Table 6, where the predictor maps are the present
and past maps and the present prog, shows improve-
ments over Tables 4 and 5, and thus reveals that the
useful information contained in the past map is dif-
ferent from that in the present prog. The mean-square
errors are uniformly low, and correspond to reductions
of both variance and error of about 879%. Our conclu-
sion that nonlinear effects can profitably be incor-
porated into an empirical scheme is reinforced.

5. Further investigations

In the results so far presented, all of the predictors
have been chosen from the present map, the present
(numerical) prog and the past (12 h old) map. Tt
seems reasonable that appreciably greater reductions
of error might be obtained by choosing some of the
predictors from additional maps. If this is so, the
appropriate maps have escaped our discovery, although
minuscule improvements are easily found.

A natural possibility would be to use the past prog
in addition to the present prog and the present and past
maps. Using predictors with the same indices as the
predictand, this plan succeeded in reducing the mean-
square errors of 1461 and 1298 m?, obtained in Scheme
25, only to 1444 and 1280 m?. Another possibility would
be to use the present and two past (12 and 24 h) maps
together with the present prog (reducing the usable
sample size from 99 to 98 days per season). This choice
replaced the values in Scheme 25 only by 1450 and
1298 m?.

The 100-day period beginning 1 December is not
uniformly wintry, and it might appear profitable to
remove the seasonal trend from the data before making
the forecasts. The trend during the winter alone is
probably fairly well approximated by a quadratic
function of time, and is therefore easily removed by
introducing into each regression scheme two additional
predictors x,=1¢ and %=1, where ¢ is the elapsed time
since the most recent 1 December. Table 7 compares
Schemes 1, 10, 15 and 25, as presented in Tables 1, 3, 4
and 6, with similar schemes where the seasonal trend
has been removed. Scheme 1a rather than Scheme 1
might properly have been called “climatology.” For
the dependent sample the improvement yielded by
%, and x; is small; for the independent sample it is
nonexistent. Apparently much of the seasonal trend
is captured without #, and #x; by virtue of being con-
tained in other predictions; what remains is weak,
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TaBLE 7. Hemispheric mean-square errors E’' for dependent
sample and E” for independent sample, in 24 h prediction of 500
mb height, using Schemes 1, 10, 15, 25, as presented in Tables 1, 3,
4, 6, and similar Schemes 1a, 10a, 15a, 25a where seasonal trend
has been removed. Units are m2

Scheme Predictors E E"

1 None (climatology) 10376 10080

1a  None (climatology) 9949 10004
10 Present map 2571 2446
10a  Present map 2557 2459
15 Present map, present prog 1603 1435
15a  Present map, present prog 1590 1443
25 Present map, present prog, past map 1461 1298
25a  Present map, present prog, past map 1450 1303

and does not behave in the last three years as in the
first seven.

The fact that the numerical prog, used as a predic-
tion instead of a predictor, performs more poorly than
persistence suggests that a better numerical forecasting
equation could have been chosen in the first place.
One such equation is the barotropic vorticity equation
with the so-called lambda correction (cf. Bolin, 1955);
this correction takes into partial account the influence
of divergence, and tends to slow down the numerically
predicted but unobserved rapid westward progression
of the longest waves.

In spherical coordinates the new equation may be
derived from the vorticity equation

a*d(Vi)/ot=—J (,V¥)

—2QaY/IN—2QV - (singpVX), (20)

the vertically integrated mass-continuity equation

920/ Ot= —HVX, (21)

and Eq. (14), where x is a divergent-velocity potential,
H an atmospheric scale height and z, the height of an
isobaric surface near the earth’s surface, say 1000 mb.
Assuming a linear relation between z, and z, the equa-
tion becomes

[ a?V — A2V -sing V (VV -sing Vi) ]/ 0t
= —J(, V) —2Q0¢/0\, (22)

where A is a dimensionless constant whose most suitable
value is near 10, and V~*is the inverse of V% Since the
nonlinear terms in (22) are the same as those in (15),
the numerical solution in terms of spherical harmonics
requires only slightly more computing time. From the
second map on each day of the 10 winter seasons, we
have produced an alternative numerical prog, using
the lambda correction with A=10.

With the new numerical prog as a prediction instead
of a predictor, we obtain mean-square errors of 3129
and 2756 m?, as opposed to 4230 and 3879 m? obtained
with the old numerical prog. Despite this striking im-
provement, the new prog performs very little better
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than the old one when used as a predictor. Thus, for
example, the values 1461 and 1298 m? in Scheme 25,
obtained when the predictors are the present and past
maps and the past prog, are reduced only to 1444 and
1291 m? when the lambda correction is introduced.
Evidently the errors which are partially removed by
the lambda correction, such as errors in longitudinal
phase, can be almost equally well removed by regres-
sion, after the prog has been produced. ‘

Our principal results may seem to conflict with those
of Cooley (1958) who found the nonlinear terms to be
of but minor value. We should recall, then, that
Cooley’s results refer to the nonlinear terms in the
instantaneous time derivative, rather than the nonlinear
influence upon the change over a finite time interval.
It is of interest to see, in the case of our data set, how
much is contributed by the first time derivative, as
given by (12), and also how much more is contributed
by a few of the higher time derivatives.

A convenient way to determine the derivatives is
to perform several successive, uncentered, forward
time steps. If the initial map is called map 0, and the
maps at the ends of the successive steps are called maps
1, 2, ..., the first derivative is a linear combination
of maps 0 and 1, while if the time step is not too large,
the second derivative is closely approximated by a
linear combination of maps 0, 1 and 2, etc.

Accordingly, using in turn the second map on each
day as map 0, we have computed maps 1-4 with a 90
min time step. Table 8 shows the result of using suc-
cessive maps, and hence successive derivatives, as
predictor maps, and letting the predictors have the
same indices as the predictand. We see that although
maps 0 and 1, and hence the present map and the first
time derivative, do not perform as well as the present
map and the present prog (Scheme 15), the time deriva-
tive is much more useful than in the case of Cooley’s
data. When map 2 is added, virtually all the useful
information in the present prog seems to be captured,
while the use of three or more time derivatives gives
superior results. Use of maps 04 and the past map
yields errors of 1411 and 1281 m?, as compared with
1461 and 1298 m? for Scheme 25.

TaBLE 8. Hemispheric mean-square errors E’ for dependent
sample and E" for independent sample, in 24 h prediction of 500
mb height, using schemes where predictors have same wavenum-
ber and degree indices as predictands and are chosen from succes-
sive maps produced by uncentered forward time steps. Units are
m2

Predictor maps E’ E"
0 (Scheme 10) 2571 2446
0,1 1740 1623
0,1,2 1566 1428
0,123 1519 1387
0,1,23,4 1505 1381
0, present prog (Scheme 15) 1603 1435
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Although a scheme with three time derivatives uses
more predictors, the numerical integration needed to
obtain the time derivatives, i.e., three time steps, is
small compared to the 16 steps used to obtain the 24 h
prog. As an operational procedure, with a more highly
refined model than the barotropic vorticity equation,
use of time derivatives rather than a numerical prog
would be far more economical, unless, as is the case in
most of today’s operations, the numerical prog is to
be produced in any case.

There is one more matter which requires careful
consideration. We have noted that the maps used to
prepare the progs have been subjected to much inter-
polation and extrapolation. These same maps are used
to verify the forecasting schemes.

In analyzing a map subjectively, a forecaster will
naturally base his analysis in a region of sparse ob-
servations upon what he thinks is happening there,
and when evidence to the contrary is absent, this is
likely to be his earlier forecast for the region. This
practice has been carried over into operational objec~
tive analysis procedures so that, where observations
are not plentiful, the analysis will be based upon a
combination of observations and earlier forecasts.
We must therefore consider the possibility that the
nonlinear terms have proven useful in our study not
because of any true nonlinear behavior but because
the verification map analyses are influenced by non-
linear forecasts. Certainly the NMC analyses are not
based upon forecasts made with the barotropic vorticity
equation, but some of the important nonlinear terms
in the operational model are similar to those in the
barotropic equation.

A sure test of this possibility would require a re-
analysis of the 500 mb charts by an objective scheme
not incorporating any forecasts. Such a task is beyond
the scope of this study. Meanwhile, we can compare
the performance of our linear and nonlinear schemes
in local regions where the data are plentiful, and where
the analyses are presumably fairly reliable. If the non-
linear schemes perform noticeably better than the linear
schemes there, our conclusion that the nonlinear terms
are useful should be on firmer ground.

We have therefore selected 10 grid points in middle
latitudes for local verification of the schemes. These
are listed in Table 9. Most of the points near cities
are in regions of dense observations; the oceanic
points, particularly those in the Pacific, are in regions
of sparser observations. As an auxiliary data set, we
have obtained the original (i.e., prior to the spherical-
harmonic analysis) 500 mb height at each selected
grid point, for the second observation on each day of
the 10 winter seasons.

In our first test, we predict the values of Crn and
Swmn, using various schemes where the predictors have
the same indices as the predictand. By suitably com-
bining the predicted values we obtain predicted heights
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TABLE 9. Grid points used for local verification of statistical
forecasts. A negative longitude is west.

Latitude  Longitude Nearby city or general

Point (°N) (°E) location

1 50 0 Le Havre, France

2 55 40 Moscow, U.S.S.R.

3 30 115 Hankow, China

4 35 140 Tokyo, Japan

5 40 170 W. Pacific

6 45 —150 E. Pacific

7 40 —105 Denver, U.S.A.

8 35 —80 Charlotte, U.S.A.

9 30 —55 W. Atlantic

10 50 —-30 E. Atlantic

at the selected grid points. We use the auxiliary data
set for verification only.

Table 10 shows the results of using Scheme 1 (clima-
tology) and Schemes 20 and 25, where the present map
and past map and then the present prog are intro-
duced as prediction maps. Only at the points in China
and Japan does the present prog fail to contribute
strongly to the prediction. The greatest contribution
1s in the eastern Atlantic, where the data may be sus-
pect; nevertheless, in the United States and particularly
in Europe the improvement yielded by the nonlinear
terms is comparable to that for the hemisphere as a
whole. We conclude tentatively that the predictive
capability of the nonlinear terms is real.

As a second test, we attempt to predict the grid-point
heights directly from the values of C., and Sy, without
the intermediate step of predicting future values of
Cmn and Sp,. Since there is no value of m or » asso-
clated with an individual grid point, we face the pos-
sibility of many useful predictors, and with a data
set of this size, must limit our choice by some procedure
such as screening.

One might expect this test to yield slightly greater
reductions of error than the previous one, since it
uses the auxiliary data set both in establishing the
formulas and in verifying them, while the former test
effectively uses grid-point heights which are recon-
structed from the spherical-harmonic analysis in
establishing the formulas. This expectation would
indeed be realized if all available predictors were used
in both tests. The tests would then, in fact, yield
identical results if the grid-point heights could be
perfectly reconstructed. However, the former test
actually restricts the predictors to those having the
same indices as the predicted coefficients, while the
latter restricts the predictors by screening.

Table 11 shows the results of predicting the heights
at grid-point 7, in the western United States, using
two schemes, one of which screens from the present
and past maps while the other screens from the present
and past maps and the present prog. We find that in
either scheme the reduction of error tends to level off
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TasLE 10. Mean-square errors E’ for dependent sample and E"
for independent sample at selected grid points, in 24 h prediction
of 500 mb height, using schemes where predictors have same wave-
number and degree indices as predictands, and are chosen from
indicated maps. Comparison values for hemisphere are from
Tables 1, 20, 25. Units are m>

Predictor maps
Present map Present map

None past map past map
(climatology) past prog
Point E’ E” E E" E E"
1 21595 24164 4212 4315 2752 2808
2 22758 19566 4131 3983 2606 2602
3 2895 2159 816 543 7719 547
4 12714 11594 2011 2169 1814 1954
5 24061 18660 5833 3891 4043 2615
6 31002 35578 8204 8551 6401 6590
7 11823 12136 2381 2335 1761 1715
8 14548 14288 2015 2714 2247 1934
9 7122 4307 1715 1301 1398 1022
10 39039 37529 6855 5796 4406 3480
Hemisphere 10376 10080 2051 1894 1461 1298

after about 30 predictors are selected (a much larger
number than when the predictands are Co, and S,.,),
while the proportional gain from including the present
prog among the predictors is as great as in the first
test. There is therefore no reason for abandoning our
conclusion that the nonlinear terms are useful. Tt is of
interest that in both schemes the first four selected
predictors are Cos, Si1, Cs,12 and Csg, but, while all of
these are selected from the present map in the first

TasBLE 11. Mean-square errors E’ for dependent sample and E”,
for independent sample, at grid-point 7 (40°N, 105°W), in 24 h
prediction of 500 mb height, using schemes where predictors are
screened from indicated predictor maps. Comparison values from
predictions of spherical-harmonic coefficients are from Table 10.
M is the number of predictors selected. Units are m2,

Predictor maps
Present map

Present map past map

past map present prog

M El EH El EII
0 11823 12136 11823 12136
2 7992 8482 7636 8007
4 6299 7004 5666 5727
6 5571 6945 4893 4929
8 4906 6559 4286 4689
10 4403 6192 3883 4220
12 4024 5482 3511 4048
14 3737 5170 3104 3872
16 3528 4865 2840 3816
18 3328 4654 2666 3703
20 3177 4422 2533 3593
22 3045 4223 2422 3422
24 2934 4378 2306 3218
26 2830 4295 2200 3222
28 2742 4151 2105 3082
30 2659 4184 2030 3119
Coeff. 2381 2335 1761 1715
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scheme, S17 and Cj, are selected from the present prog
in the second.

Further examination reveals that the errors level
off at values far above those obtained in the first test.
Evidently we have attempted to screen from a data
set where each of a large number of useful predictors
individually contributes a relatively small amount,
while in the first test each of a small number of useful
predictors contributes a large amount. In the present
test there is a greater probability that a poor or me-
diocre predictor will, within the dependent sample,
appear better than a good predictor and will be chosen
in its stead. We note also, by comparison with Fig. 1,
that the discrepancy between the samples when 30
predictors have been chosen by screening is as great
as when 100 predictors are chosen essentially at random.

We are forced to conclude that within a data set
of this size (and by usual standards our set is not small),
it is not possible to deduce the best obtainable formulas
for predicting future grid-point heights from present
spherical-harmonic coefficients, without = performing
some intermediate step. In our test this step has con-
sisted of predicting future spherical-harmonic coeffi-
cients. Perhaps equally good predictions could have
been made if it had consisted of reconstructing present
heights at judiciously chosen grid points to use as
predictors.

6. Conclusions

Our experiment has yielded positive results. Without
question, the linear regression formulas for predicting
tomorrow’s 500 mb heights, derived from a portion of
our data, and using today’s heights and suitably
chosen nonlinear functions of today’s heights as pre-
dictors, perform far better, when applied to the re-
mainder of our data, than do similar formulas where
the nonlinear functions are not included as predictors.
The improvement yielded by the nonlinear functions
may have been exaggerated by the map-analysis pro-
cedure but it nonetheless appears genuine.

Although the usefulness of the progs as predictors
in our experiment is consistent with the positive skill
(see, Klein and Glahn, 1974) of the MOS forecasts,
it was not on that account assured in advance. The MOS

method relies upon the screening procedure. As we

have just seen, if a set of predictors is replaced by
another set which includes some which are individually
more closely related to the predictand, the screening
procedure can yield better results, even if the new
predictors are linear functions of the old ones, We
cannot say without a further test whether the power
of the MOS technique results mainly from capturing
the nonlinearity or mainly from rendering the screening
procedure more effective. Qur own results are not so
closely tied to the screening procedure; the superiority
of Scheme 25 over Scheme 20, for example, where the
screening procedure is not involved, is not noticeably
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different from the superiority of Scheme 24 over
Scheme 19.

It is tempting at this point to maintain that our
prediction errors are so small that our procedure, based
upon a crude barotropic vorticity equation, performs
comparably to present-day operational procedures. A
word of caution is therefore needed. Our mean-square
errors are those in predicting only that part of the
height field which is represented by the spherical-
harmonic analysis, truncated triangularly at wave-
number 18. The portion of the field which is not resolved
by the spherical harmonics is not predicted at all; in a
fair comparison, we should add the total variance of this
portion to the mean-square errors which we have
tabulated. We should also note that since the circu-
lation is continually undergoing extended-period fluc-
tuations, it is dangerous to compare a numerical
mean-square error made by one procedure during one
period with one made by another procedure during a
different period. .

Beyond our principal result, we have uncovered
evidence suggesting that if a regression scheme using
numerical progs as predictors is to be made operational,
it might be profitable to use progs made for several
times which closely follow the present, thereby eliminat-
ing much of the computing otherwise needed to produce
the progs. Finally, our computations point toward
some conclusions which might have been anticipated.
First, if it is certain that the number of predictors is
small compared to the number of independent observa-
tions of each, an independent sample becomes less
essential. Second, the screening procedure is likely
to prove most satisfactory when just a few of the
predictors being screened can yield a nearly optimum
prediction, rather than when the optimum formula
contains many predictors, each making a small indi-
vidual contribution. Selection of the predictors on
physical grounds, when this can be done, is to be pre-
ferred to screening.
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APPENDIX A
Expected Mean~Square Errors

Let X, and X, be matrices of N/ and N”” rows and
M1 columns whose elements are the values of the
predictors (including xo) in the dependent and inde-
pendent samples, respectively, and let Y, and Y. be
matrices of N/ and N’ rows and one column whose
elements are the values of the predictand in these
samples. Let A; be a matrix of M+1 rows and one
column whose elements are the prediction coefficients,
determined from the dependent sample, and let E,



May 1977

and E, be matrices similar to Y; and Y, whose elements
are the prediction errors when the formula determined
from the dependent sample is applied respectively
to the dependent and independent samples. The mean-
square prediction errors are then given by

Nye=tr(E,TE), (A1)

N2’62 = fr(EgTEz), (AZ)

where the superscript T denotes a transpose and tr
denotes a trace or diagonal sum. Eq. (3), applied
to both samples, becomes

Yi=X:Ai+E,, (A3)
Y:=X:A+E,, (Ad)

while (4) becomes
- A= XTX) XY (A5)

We consider first the special case where there is no
true relation between the predictand and the predictors:
This would occur, for example, if the data had been
chosen from a set of random numbers. Without loss
of generality we may let (y)=0, using the angle braces
as in Section 2 to denote an expected value. Noting
first that the order of the operations { ) and tr is inter-
changeable, second that the trace of the product of
two or more matrices is unaltered by moving the first
factor in the product to the last position, and third
that the expected value of the product of unrelated
quantities equals the product of the expected values,
we find from (Al)-(AS) that

N'{et)=tr(YTY,)
— (X (XTXy) XTNYLYT)],

N"{@)=tr(YIY,)
—tr[(Xa XTX)XTX: XTX)XTNY.Y))] (A7)
If the separate members of the dependent sample

and also those of the independent sample are indepen-
dently chosen, -

(A6)

YaYD)=()y-, (A8)
(YY) = (51, (A9)

where the subscripts denote the order of the identity
matrix, whence :

@)/ (= WN'-M—1)/N, (A10)
@)/ 0P =[N+ gw e M+ DT/, (AL1)

where ¢n’,ar41 is defined by
(XTX))(XTX0)=gn srralarsr (A12)

Here we have substituted (XTX;) for (N//N")(X7X,),
after which the size N’/ of the independent sample
completely cancels out.
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The expected value of an inverse may be crudely
approximated by the inverse of the expected value,
in which case gn+ 4110 (A11) becomes unity. In certain
instances this approximation leads to a serious under-
estimate of (e?). The proper value of gy a1 depends
upon the joint probability distribution of the predictors.
In Appendix B we show that if this distribution is
Gaussian,
gN' MH1= N'/(N'-M-2), (A13)
whence

@/ (="' =1)/(N'=M—=2).  (Al4)

We consider (A14) preferable to (All) (with
gn'.my1=1) even when the predictors do not have a
Gaussian distribution. In any event, the formulas
differ appreciably only when M/N’ is not small, when
prediction should not be attempted anyway. Actually,
the factor N'—1 in (A14) should be replaced by the
inconsequentially smaller factor N'—1—(2/N’), be-
cause xo, being constant, cannot also be Gaussian.

For the general case we replace the assumption of no
true relation between y and the predictors by the less
restrictive assumption of no true relation between e
and the predictors. We replace Eq. (3) by

M
€=Z (a,-—ai)xi+e,

=0

(A15)

derivable from (1) and (3). The derivation of (A11) and
{A14) may then be repeated step by step, replacing
y and a;, or the matrices which represent them, by e
and ¢;—a;. The result is Egs. (10) and (11).

APPENDIX B
Expected Inverses of Covariance Matrices

Let n>m+1, and let X be an n-row, m-column
matrix whose elements are chosen randomly and
independently from a Gaussian distribution with mean
0 and variance 1. Let C=X"X. Obviously (C)=#l,,
while (CY)=r, ,I,, for some scalar 7, which we wish
to determine.

For m=1 the single element of {(C~1) is the expected
reciprocal of a quantity chosen randomly from a chi-
square distribution with » degrees of freedom, i.e.,

n, 1= 1/(”—2)- (Bl)

For m>1it is sufficient to determine the expected value
of a single diagonal element, say,

_ Co ... Com /Cu...Clm
CHu= . (B2
C=lc, Com|/ |Cmt ... Coum (B2)

Let H be an #X# orthonormal matrix, i.e.,
HH'=HTH=1,, (B3)

with the last (wth) column of H proportional to the
last (mth) column of X. The last column of HTH is
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then proportional to the last column of HTX, so that
H™X=Y+Z, (B4)

where Y contains only zeros except in its last row and
Z contains only zeros in its last row and its last column.
Thus

C= (XTH) (H™X)= A+ B, (B5)

where A=Y"Y is of rank 1 and B=Z"Z contains only
zeros in its last row and its last column. Hence for
i=1or 2, if l=m—1,

Ci ... Cim B
Cni ... Com Bu|

Because H is orthonormal the non-zero elements of
Z have the same statistical properties as all of the
elements of X. It follows from (B2) and (B6) that the
expected value of (C),; is the same as if X had had
#n—1rows and m—1 columns, i.e.,

BH...

=Amm
By ...

(B6)

"n,m= Vn—1,m—1- (B 7)
Repeated application of (B7) shows that
Fam=1/(n—m—1). (BS)

In the application to Appendix A, n=N’, m=M-+1,
n/Vm=qn 1, and X=X;. If the predictors are
originally correlated, they may be replaced at the
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start by uncorrelated linear combinations without
altering the mean-square errors.
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