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NONLINEARITY, WEATHER PREDICTION, AND CLIMATE DEDUCTION

ABSTRACT

The equations governing the atmosphere are nonlinear.
¥Yeather prediction is identified with determining particular
solutions of these equations, while climate deduction is identified

with determining statistics of the general solution.

The nonlinearity gives rise to small~scale motions and non-
periodicity. The nonperiodicity makes analytio solution of the
equations unfeasible. Particular solutions must therefore be
determined numerically, and the small-scale motions cannot be
properly included. 7The range at which accurate detailed forecasts

can be produced is thus limited.,

The nonlinearity also prevents the dor1vnt16n of closed systems
of equations with statistics as unknowns. The statistics must there~
fore be estimated from particular numerical solutions, which are merely

samples.

Fumerical methods are not required when onlj upper and lower
bounds of the atatistics are sought. The need for numerical methods
when precise values are desired is illustrated with a simple quadratio

difference equation, while the process of establishing upper and lower

bounds is illustrated with s simple partial differential equation.




.NONLINEARITY, WEATHER PREDICTION, AND CLIMATE DEDUCTION

1. Consequences of nonlinearity

The physical laws which govern the behavior of the atmosphere nﬁy
be &xprolned a8 a iy-tcn of mathematical equations. These equations, or
various convenient approximations to them, have formed the basis otv
numerous theoretical studies. Among these studies some have dealt with
weather prediction, while others have been concerned with various asﬁéctn

of the climate.

In principle the problem of weather forecasting may be idanti?ié&
with that of determining particular time~dependent solutions of the equa~
tions, starting from specified initiasl conditions. Likewise, the prﬁblém
of doducinz the climate may be identified with thet of finding the loné;
term statistical properties of solutions of the equations. To the latter
problem there are alternative approaches; we may £ixst deteramine explioit
solutions of the equations, and.thon evaluate their statistical properties,
ot we may derive an auxiliary system of equations whose unknowns aro-fho ﬁ

!
desired stetistics, and then solve these new equations.

It is common experience that we do not yet produce vonther_torqqastn
of sufficiently high quality to satisfy the general public. Likewise,
therq are many atmospheric phenomena ~ tropical hurricenes, for example. —
wvhose very existence has not yet been satisfactorily explained. In short,
peither the problem of weather prediction nor that of climate deductioﬁ

is close to a complete solution.
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A characteristic fesature of the governing equations is their non- '
linearity. In this study we propose that virtually all of the difficulty
encountered in attacking the problems of woather prediction and climate
deduction as mathematical problems arises because of the nonlinearity of
the equations. There may be other contributing factors, but these by

themselves would not be insuperable if the equations were linear.

Although a number of physical factors give rise to nonlinear terms
in the equations, one of these -~ the process of advection ~ is especially
prouinent. Ve further propose that advection by itself is sufficient to
give rise té the difficulties which can be specifically assigned to none
linearity, although, if advection could be suppressed, some of the other
nonlinear processes might well have an equally disturbing effect. The
procoin of advection is simply the displacement of the various properties
of the atmosphere — heat, momentum, and moisture .. by the motion of the
atmosphere. Since the field of motion is ordinarily nonuniform, different
portions of the field of any property will receive different displacements,
and the field as a whole will be distorted as well as displaced. iIn thé
governing equations the conpon§nts of the motion are among the dependent
variablea, so that the terms representing sivection are Quadratic, contain=-
ing products of the motion with the doyendont‘varlables representing tho

various advected properties,

let us look at the various aspects of nonlinearity. First of all,
the atmosphere is a forced dissipative system. The foroing is due to heat

received from the sun, while the dissipation is both thermal and mechanical.
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The foroing is periodic in time; it consists of & large constant component
with superposed annual and diurnal variations. The horizontal pattern of
the forcing is large-scale; a nanr portion of it consists of a.contrast
botween summer and winter hemispheres, day and night hemispheres, and
oceanic and continental areas. If the atmosphere behaved ab a quasi-linear
systen, wo might expect that the circulation would consist entirely of

periodically varying large-scale features.

Such is not the case. A time-space spectral enalysis of the atmo~
sphere cqrtuinly reveals pronounced periodically-varying large-scale mo-
tions, but superposed upon these are wotions which are decidedly nonperiodic,
ranging in scale from the large circumpolar currents through cyclones and
anticyclones, thunderstorms and smaller cumulus clouds, to the smallest
turbulent eddies. The general nonperiodic behavior and much of thée small-

scale structure are direct results of nonlinearity.

. The equitions governing the atmosphere presumsbly have pariodic""
solutions, possessing only the annual and diurnal periods (and their éﬁéf-
tones). Indeed, equations otherwise like those governing the atmosphere
but with constant forcing possess steady-state solutions. Such steady~ -
state or periodic solutions might be found by analytic means - perhaps by
a pover-geries scheme. But since the observed behavior‘ot the atmosphere
is nonperiocdic, these poriodic.lolutibna are presunably unstable with -
respect to small perturbations, and are not the solutions in which we are

primarily interested.



For the problem of deducing the climate, as opposed to forecasting
the weather, there is the alternative procedure of dorivinz.new equations
whose unknowns are the statistics themselves. In the case of linear govern=-
ing equations, this method has proven highly fruitful. However, with non-
linear governing equationas it 1; 1mpossible'to close the now system; there
are always more unknowns than equations, and any attempt to introduce addi~
tional equations containing the unknowns already present will add still more
unknowns .

Some of the most promising recent work in the theory of turbulence
has attacked the closure problem by combining hypothesized relstions between
the unknownsg with the relations already available, to render the system
closed (cf. Kraichnan, 1963). In the present instance, where the "turbulence'
may include eddies as large and as non-random &8 cyclones, the appropriate
form for the additional relstions is not at all apparent. We must therefore
return to the original equations, and determine time~dependent solutions,

ivom which statistics may be compiled.

There is no readily available analytic method for obtaining the
general solutions of nonlinear equations, and, in any event, nonperiodic
functions are not generally expressible in analytic form. We are therefore
forved to introduce certain aspproximations. The best abproximnto solutions
to nonlinesx equaﬁions which we now know how to discover are obtained by
well-known numerical methods. Ordinarily we represent the field of each
dependent variable by its values at a standard grid of points, and replace

the partial derivatives by finite differences. But in so doing we must
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. omit the details of the small-scale features, which become lost between -
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the grid points. We can reduce the scale of features retained dy increasing
the number of points, but no digital computer available at present or
likely to be available in the near future will allow us to represent the

details of every thunderstorm, not to mention smaller cumulus clouds.

Thus the same nonlinearity which gives rise to small-scale features
.Iorcos us, by also giving rise to nonpefiodioity, to omit the details of
these features. But we must still try to incorporate their effects upon
the features of larger scale. This ve can do to some extent through co=
efficients of turbulent viscosity and conductivity; however, we certainly
do not know the proper values for these coefficients to within a factor
of two. To dotermine these covfficients theoretically would require -

solving the same nonlinear equations whoso intractability required our

il

determining the coefficients in the first place; to determine them
empirically would require the recording and processing of far more data

than we can readily accumulate and handle at present.

il

We must therefore be content to work with spproximate equations,
In the final report of an earlier contract under which the Statistical =

Forecasting Project oporaicd (Lorenz, 1963), we discussed some 0f the

i

implications of this state of affairs with regard to predictability,.

In'particular, we demonstrated that any nonperiodically varying system

ia unstable, in the sense that two solutions originating from slightly

different initial conditions must ultimately diverge from one another.

From this we conciuded that 12 nny errors wvhatever are present in observing




the initial conditions, no system of forecasting can give acceptable

predictions at sufficiently long range.

The sane situation occurs 1£.thero are sny oerrors vhatever in
formulating the governing equations. For even if the initial conditions
are known exactly, and the equations are integrated by a stepwise pro-
cedure, the conditions are no longer exsotly known after the first time

step.

Just as the earlier tinn;-rcport-vn- concerned mainly with the
extent to which the weather may be predicted, this report will be con-
cerned mainly with the extent to which the climate nay be deduced. We
hu&e noted that when the general nolﬂtion‘oi the equations is nonperiodie,
wve must obtain explicit solutions to the equations, and complle statistics
from fhon. rﬁrthernoro, the equations can at best be expressed in approx-

imate form, and the solutions must be obtained by numorical procedures,

The solutions will thon'loon'divargo from the appropriate lolut;ons
of the exact equation. This may not pose a serious problem, because the
exact solution and the diverging approximate solution may possess nearly
the same statistics. More serious is the fact that the numerical solution
is a particular solution, and its behavior may differ considerably from
.that of other particular solutions. Thus the statistics will be compﬁte&
from a sample, and will be subject to all the errors (except those due to

missing data) which arise when the climate of the real atmosphere is

computed from observational samples.
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It is commonly observed that no matter how long a period of actual
atmospheric records is chosen for computing climatological statistics, .
the statistics evaluated from a different period of similar length may
have considerably different values. We can therefore never be certain
that, in computing statistics from a numerical sollition, we have chosen

a representative solution,

The situation is less discouraging 1f we are content with qualita-
tive or semi-quantitative deductions. It is frequently possible to deduce
certain constraints upon the values which various statistics may assume,
even when exact numerical values canncot easily be found. 8uch constraints
uwight, for example, be duduced from an incomplete system of equations whoase
unknownﬁ are some of the statistics. It would appear easier to establish
such oﬁnstruinta for some of the large~scale over-all toatﬁras of the atmo-

sphere, than for some of the more local climatological properties..

For exaﬁplo, considerntion»of the rate of incoming solar energy

: estnbliahes an upper limit for the average amount of kinetic energy which

the satmosphere may contain, provided that cortain reasonable asgnmptiéns
concerning the rate of dissipation are accepted. Except instantaneously,
an atmoﬁphoro at rest is clearly incompatible with the incoming energy,
and it should be possible to deduce some lower bound for the kinetic
enorgy. If this lower bound does not ditt-r'too widely from the upper

bound, the order of magnitude of the kinetic energy will be determined.

The real atmosphere is an extremely complicated system. One of

the complicating factors is the presence of oceans and continents, with

n7u



their contrasting heat capacities and degrees of roughness. .Mountains,
hills, and smaller irregularities add to the asymmetry. A rigorous
dortvition of certain results for an atmosphere with a homogensous
underlying surface might iose its validity when the true nature of

the surface is considered. If however the results are of a semi~
quantitative nature — & demonstration, for example, that the low-latitude
gurface winds must be easterly and of moderate strength — they might be
nade rigorous for a non-uniforn earth by deﬁonstrating that the effect
of the asymmotries cannot exceed some critical value., Indded, it is
‘nuch,sqmi-quantativo results which seem to offer the best prospects of

ovqntually being rigorously established.

in the following sections we shall illustrate the problem of
climate deduction with two exgmples. The equations which we shall use
are not the equations governing the behaviox of the real gtmospharo,
but ere vastly simpler. They are, however, nonlinear, and serve to

illugtrate some of the complications which arise.

The 2irst example uses the simplest possible nonlinear equation -
a first order quadratic difference equation in one variable. This
equation does not govern any physical system resembling the atmosphere.

It serves mainly to illustrate the necessity for using numerical pro-

cédurel to determine prcéilevvalues of the statistics. The equation has

boen discussed in greater detail in a previous article (Lorenz, 1965),

which is included as an sppendix to this report.
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The second example uses one of the simplest nonlinear partial .
differontial equations in three independent variables. This equation
represents an idealized two-dimensional forced viscous flow. It is
used primarily to illustrate the process of establishing upper and

lower bounds for the statistics.

2. A sinple difference equation

In this section we consider a single dependent variable governed

by the quadratic difference equation

™
"y

X{h-l»\ = ‘Q“X'\r\ - >(v\ (;)

The equation is not intended to describe any real physical process.

Hore Xw and X Wi are the nth and (xu-].)‘:h terms of a leduance
)(9; X 'y \5’\f >, generated by equation (1), and O\ is a constant
lying in the range O & & £ Y . 1z X, lies within the

range OF W £ A , )(V\ will lie within this range for all

0
values of Y\ .

A detailed treatment of this equation has appeared as a published
article (Lorenz, 19656). Since this article is included in this report

@8 an appendix, only the principal results will be presented at this time.

Upon averaging both sides of (1), we find that

- — >
i;g:a,—;) X =X = 0 | (@
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where X  1s the average value of )(n over all values of "

and 7~ 4s the standard deviation of Xv\ . Equation (2) requires

w——

that X =0 it O % & € | } it restricts X to the
L oo « ek
interval O £ X & a -l 12 V£ a £ & .
For the interval = = o < | , the solution X, = O
is stable, whence, as already noted, X T0 . For | < o £ % ’
this solution is unstable, but the solution X, = @~ i stable,

and ¥ = &~} . Por 3 <0 g 2MET ) this solution is also
unstable, but a periodic solution of period 2 proves to be stable, with

¥ « =5 (& i'}, . For A =1 , the general solution is nonperiodic,

but symmetry arguments show that X = Rk .

For the range 3449 < a_ <4, and particularly for those values
of (A for which the general solution of (1) is nonperiodic, the value of
X 48 not readily determined by analytic means. The restriction

o

- AN < gn o | still holds, but to determine an exact or nearly

P
e

—.

exact value of ¥ it is necessary to solve (1) by numerical mesns, and

obtatn X by averaging the successive values of X .

The process of solving (1) numerically is extremely simple.

L

Figure 3 in the Appendix shows a graph of X as a function of A , for
the range 3.4 £ & % ¥ . The irregularity of the graph clearly
indicates that 32 is not an analytic funotion of O- , and it strongly
suggests that any attempt to obtain a closed system of equations, with

statistics as unknowns, by' adding hypothesized relations to equation (2)

would not yield the proper result.
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It is to a large extent this particular example which has led us

to conclude ih.t n-uuliy when -the general solution of a nonlinear equa-
tion is nonperiodic, the statistics of the solution of this oqu;t;on.o-m»
not be found except by first solving the equation numerically. >'1th the
development of faster and faster computing machines, it is becoming
possible to obtain reasonably accurate numerical solutions to more and
more complicated systems of equations. 1If, however, ome is interested
in a system of equations for which it is not possible or convontont to
»obtain a nuaerical lolution which represents a fairly lnrgo ltntintionl
ﬁlllpl., the most fruitful rn.oarch may be that which is devoted to "
obtaining upper and lower bounds tor?th. ltnttottc-; rather th;n pr‘oi;o

nulérzcnl values.

3. A simple partial differential equation

In this section we consider en idealised physical system governed

TP = T T - kT + kv T

The single dependent variable V) may be regarded as a streaa function
for a two-dimensional incompressible flow, whose vorticity is then given
N &
by V %ﬂ , V  being the Laplacian. The terms on the right represent
respectively the effects of advection, 'U_ " being the Jacobian with respect

to horizontal variables, friction ka being the coefficient of fricgtiom,

=lle
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%
and mechanical forcing, \{’ being a stream function for a hypothotical

prespecitied tlow, towvard which the existing flow would tend if advection
were not present.

Equations of this general form have been used to study the flow
in an ocean basin, when the forcing is due to wind stress (e.g., Veronis,
1963).

In this particular study the goometry of th-‘two-dinonltonal region
occupied by the fluid need not be completely specified, The region could

be a spherical shell or sn infinite plane, or it could be a bounded plane
region with no flow across the boundaries.
We shall be interested mainly in determining constraints placed

upon the motion by equation (1), rather than in explicit solutions. In

particular, we shall be interested in obtaining upper and lower bounds
for the mean kinetic snergy

E =35 VY v¥

4)

which may be expressed in terms of the known mean kinetic energy of the

"equilibrium” flow

P

i”"’"“""m» .
B = 4 7YY ®

~ Here the bars denote averagesiover time and space.

The simplest case occurs when the equilibdrium flow field is inde=-

pendent of time, and contains a single scale of motion, i.e., vhen
W

2, * =
vY¥Y= -¢ N (6)
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We shall confine our attention to this case. In this event, equation (1)
always possesses the steady-state solution \}’ - \f/*. Other solutions
always exist, since initigl conditions may be chosen nrbitrnrily, but in
some cases all solutions approach the known solution \P* : asymptotic-
ally. The long-term statistics of any solution are then the statistics
of the known solution, and the problem of determining the climate becones
trivial, In other cases the known solution \{‘* may be unsteble. The
general solution then need not be steady-state or even periodic, and its

statistical proporties may differ considerably from those of the known

solution.

For the general solution we shall let

Lpé.la.Lf’%i*“h ()

)

4 ) .
vhere the constant ¢A. is to be chosen so that ‘1)‘ is uncorrelated

NN
with \gv in spage-tinme, i.e,,

\V% Y, = O “ (8)

It follows upon multiplying equation (6) by \’P and averaging that

a = mf\}’“& . - ®

w .
In the special case where the solution ‘}’ 48 atable, <+ & _t, oy

end \P‘ vanishes. In the general case, A, must be regarded as an

unknown constant. With the aid of (7), equation (1) may be rewritten

)3




(10)

2 gy, = -Il4,74)-~T(, vw)-ww u)

2t
- RTY, + (-9 k 7 ‘* B

From (10) we shall derive a system of three algebraic odunum
whose unknowns are statistics of the solutions of (10). From our remarks
in the first section, we cen infer that there will be more unknowns than
equations; actuslly there vill be four unknowns, O-, E , V,, B 5

vhore

VM\F Y ) an

.......,.—-.

VyT 5 (VEK‘P') ’ o

B --3VHI(VI K

Multiplying (10) by ‘-P‘ and averaging, we obtain

2, = - PI,TH) - WT(WW aF TV 7%)
..wv% -.-o_-a)u«w e

To simplify this equation we note that time-space averages of tine derive~-
tives and Jacobians are £erc, we use equations (6) and (8), and we make

frequent use of integration by parts. Thus

~1de
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\-P.j‘(“f”vjm,: ‘f; 3_ ’\g;)vz?/*) -0 ,,.)
¥ )(w‘v"%)w TV WK =TTV W) =28

\:PT\?’E: S V\".‘V%} ""'"?‘Eu

[e——— W iy et

WP, VeX = -y g =0 .

Thus, upon dividing by two, (14) becones
~a 8 +R B, = O \ s)

2
| Multiplying (10) by -~ V \P\. » @veraging, and simplifying in a
similar manner, we obtain the seocond algebraic equation

- oai? + RV, = O - (16)

4

e
vhile, multiplying (10) by P , we obtain

%
i2 = (-eYk E =0 o an

Equations (18), (168), and (17) form our algebraic system,

From (18) and (16)

e JE
V"::c. b\ (18)

18-
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This implies that the flow field defined by ‘-P , contains the same average
scale as the known field defined be W* . The f1e1d defined by / om-
not contain just one scale, for then the advective terms in equation (1)
would drop out, and [ would vanish sltogether. Hence the fisld defined
by \P' contains & superposition of acales, some larger and some smaller

then the scale of the known field.

If the geometry is such that there is a largest possible scale = ©.g.,
i2 the domain is a spherical surface — and if this largest scale is the scale
of the known field, the omly possibility is for LP‘ to vanish., The solu=
tion \P* is then stable. If the scale of the knmown field is not the

largest possible scale, the known solution may be unstable.

Returning to (18) and (17) we find that

E, = (-2) e (19)

\
Bince E\ and E'*— are by their nature non-negative, (l -'a_) Z0

whence O £ o £ | « Yrom (7) it follows directly that
E = o*E" + E, (20)

whence, in view of (17),

-
E = a b . . (21)

Thus O- may be interpreted as the ratio of the kinetic energy to the kinetic
. —

energy of the equilibrium flow. 8ince at | , & _ 4s an upper bound

for E . The case & = O 4a not possible, since this would imply to

motion at all, a condition incompatible with equation (1).

-16~
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It seems reasonable, moreover, that a state of extremely weak

motion should also be incompatible with the governing equation. That

L

is, there should be some lower bound for \= considersbly greater than
gero. BSuch a bound may be obtained by referring to the definition of

@ , snd noting that, like E. and V‘ s it 18 quadratic in the

variabdle \P\ .

‘8quaring equation (11), we find that

g? = 4T \P.'S(w”%ﬂ

¢ LFEY TN H) '
£ XV, (V‘? ¥ ;(\7\51-?‘{’.)

)%
< v\ ME,

a2 *
where M is the maximus value of V‘}’ \V"P s and is thus
& known Quantity. Henoe |

géQME\ | (23)

LY

Combining (33) with (18), we find that A 2 Rk/&M , provided

that E‘ % O . Bincs o £ | in any case, we obtain the

slternative results N

a =\ 2 M M ao

MM & e e ) it M > Mo aw
where M,_ by k/c. | may be interpreted as a gritical value for Mo,

.17.




" Now [M\° 14 simply the maximum velocity occurring in the equilibrium

flow field. Equations (28) and (26) therefore Bay that 1f ‘the equilibrium
flow falls short of some oritical strength, it will be stable, and no other
flov will develop. 1f the equilibrius flow exceeds its aritical strength,
it may be unntnblo, but vill not noccilnrily be gso. 1f it is unstable, the

energy of the resulting flow will be less than that of the equilibriua flow,

but the iatio of the energy of the fldv to that of the equilibriua flow will

be at least as great as the ratio of the oritical strength to the actual

strength of the equilibrium flow.

In passing we note a distinction between the immediate end ultimate
eftects of sdvection, in the case when the equilibrium flow is unstable.
The immediate effect of advection upon the totsl kinetic energy is nil;
advection simply distorts the flow field without altering its total energy.
In this sense it is & conservative procola. The ultimate effect of advec-
tion, hovev-r, is to bring sbout a lower average kinetic energy than would
prevail if advection were sbsent, This it does by distorting the now |
field into a form where it makes less efficient use of the forcing proco-n

in maintaining itself sgainst dil-ipntion.

It must de strnllod that this conclusion npplios only to the ideal

iged system governed by equstion (1), Analogous conclusions may be valzd
for the atmosphere or other physical systems, but we have not demonstrated

that this is so.

o18=
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In summary, we have seen that when physical systems are governed by

partial differential equations whose solutions cannot be readily obtained,
it may still be possible to obtain useful qualitative or seni-quantitative
results. These results may appear in the form of upper and lower bounds
for certsin statistics. Rigorous determination'of these bourds appears
most fessible when the statistics are characteristic of the :rtire flow —
in the case of the stmosphere, when they are g2 zral-cirsulation parameters,

rather than features of the local climate.
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