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 ABSTRACT.

: Tt-is. proposed that ’deftain formally deterministic fluid systems which ‘possess many

. ~scales of. motion are observationally indistinguishable from indeterministic systems;
’ speclflcally, that two states of the system differing initially: by :a small-‘/observational

error” will evolve into two states differing as greatly as randomly chosen states of the .
systern ‘within a finite time ‘interval, which cannot be lengthened by reducing the

- amplitvide  of theinitial error. The hypothesis is investigated with a_ simple mathe:
- matzcal model. An equation whose: dependent variables are ensemble averages of the
“‘error energy’’ in:separate scalés of motion is derived from:the vorticity equation which

i ~ governs two-dimensional incompressible flow. Solutions of the equation are determined., -
*« by-numerical mtegratxon, for cases wheré the horizontal extent and total energy of the .
system are- ‘comparable to those of the earth’s atomsphere

: It is found that each scale of motion possesses an‘intrinsic finite range of predictabiz
iy, provlded that the total energy of the system:-does not fall -off too rapidly: with

decreasing wave length. With the chosen values of the constants,

“cumulus-scale’’

" motions can be predicted abotit one hour, “synoptic-scale” motions a few days, and the
“:largest scales a few weeks in advance. The applicability of the model to real physxcal

systems, mcludmg the.earth’s atmosphere, is considered.

Introductlon '

TI;e la,ws wh1ch gover L§he behavmr ofia
fluid system—the principles.. of . continuity : of.
mass, momentum, and energy—are often stated
in a form. which relates the present rate. of
oha.nge of the state of the system to the present
state.of the system and its environment: Taken

at, face va,lue, the laws expressed. in-this manner -
would imply, that. an_isolated. fluid. system is .

determlmstlc, ie., that the _exact. present state
of the System.completely determines the exact
sta.te at any, future time. It would follows as a
corolla.ry that if we knew the exact present state
of an Jisolated ‘'system, and if in.addition: we
knew the equations of fluid dynamies in their
exact form and possessed an exact method for
solving them, we. could ‘predict the entire future
of the system without error.

This ds not_to imply: that; fluid dynamlclstS':'

generally beheve that - real - fluid .systems. are
determmlstlc It is a fundamental principle of
qua.ntum mechanics, for example, that real
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systems -are indetérministic, and presumably

few. fluid dynamicigts ‘would "question the va- .

lidity of quantum mechanical principles merely

because they do not.customarily make use of.
them. More likely, they would simply take it-

for granted - that -their: equations. need :to be
idealized to some extent; in view of the complex-
ity of most. real fluid systems, and that proper-
ties of the exact equations which are not perti-
nent to the problem.under study need mot be
retained. In many familiar problems the ques-

tion of determinism or indeterminism-is of minor:
importance, and deterministic "equations will

yield acceptable results. It is often convenient

to look upon an idealized equation as the exact .
equation for a model of a real system. A model’

may of course be deterministic: by definition.

Tt is in problems-of prediction that the. ques-_
tion of determinism would seem to be of greatest...

importance. A familiar problem in this category
is the practical problem of :weather forecasting.
Here also the uncertainty demanded by Heisen-
berg’s Principle appears not to be very signifi-
cant, because of the much greater uncertainty
resulting from our failure to observe the state
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of the atmosphere and formulate the governing
equations with anything approaching perfection.

Without intending to pass judgment upon
Heisenberg’s Principle.of Uneertainty, we:shall
assume in this study, as ¢ working hypothesis,
that the systems with which we are dealing are
deterministic, and also that the exact equations
governing the systems are known. We shall ack-
nowledge that the state of a system cannot be
observed without error, but we shall assume,
again as a working hypothesis, that there is no
limit to how small ‘the erfor may be made. We
shall then produce evidence favoring the con-
clusion that the observable behaviour of certain
deterministic systems is indistinguishable from
that of indeterministic systems.

In order to study the errors in-prediction
which result entirely from an inadequate know-
ledge of the initial state of a system, we shall
consider arbitrary. pairs of solutions of the
governing equations, When we so_ choose, we
may at some initial time regard one sohition

as an exact state of the system, and the other -

solution as anestimate of the same state based
upon observations. In general we shall refer to
the difference between two solutions of a pair
as an erroi,; however, we need not restrict our
attention to those instances in which the initial

error resembles an error which one would be

likely to make in observing a real system.

If at some initial time an error is in some
sense small, it may-subsequently follow one of
several courses. We shall classify-the systems
under consideration into three categories, ac-
cording to thé general behavior of mltlally
small- errors.

1. At all future times the error remains com-
parable to or smaller than the initial error. The
error may- be kept arbitrarily small by maklng
the initial error sufficiently small.

2. The errer eventually ‘becomes much larger
than the initial error. At any particular future
time the error may be made arbitrarily small
by making the initial error sufficiently small,
but, no matter how small the initial error (if not
zero), the error becomes laroe in the sufficiently
distant future. :

3. The error eventually becomes much larger
than the initial error. For any particular future
time there is a limit below which the error cannot
be reduced, no matter how small the initial er-
ror (if not zero) is made.

Among real fluid systems whose behavior
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approximates that of ideal systems in the first
category is the flow of & liquid in a rotating
annulus, as obgerved in laboratory experiments
(cf. Fowlis & Hide, 1965), when the controllable
parameters are such that the wave patterns
either progress without changing their shape
or alter their shape in a periodic manner.
Systems which have often been assumed to fall
in the second category include the earth’s at-
mosphere, and also the flow in a rotating annulus
when the wave patterns vary nonperiodically.
It is those systems in the third category which
are observationally indistinguishable from inde-
terministic systems. We shall present evidence
that certain fluid systems possessing many sca-
les of motion fall in this category, and we shall
consider the possibility - that thls category in-
cludes the earth’s atmosphere.

Let us understand by the range of predwtabzl-
ity the time interval within which the errors in
prediction do not exceed some prechosen magni-
tude, which for practical purposes should be
considerably greater than the magnitude of
typical errors of observation but. less than the
magnitude of the difference between randomly
chosen states of the system. Systems in the first
category then have an infinite range of predict-
ability. Systems in the second category then
have a finite range, but: this range may be in-
creased indefinitely by reducing the observa-
tional errors. Systems in the third:category,
however, have an intrinsic finite range of predict -
ability,. which cannot be lengthéned by better-
ing the observations.

- Bince the earth’s atmosphere has perhaps been
subjected more-than any other fluid system to
man’s attempts to predict it, it is not surprising
that many studies of the range of predictability
have dealt specifically with the atmosphere,
and that among those studies not confined to
the atmosphere many have yet appeared’ in
meteorological journals. We shall briefly recount
some of the principal results so far obtained.

First of all, whether or not a system can
be predicted at infinite range depends upon
whether the-general behavior of the system is
periodic or nonperiodic,-as shown by the writer
(1963a, 1963b). This result is not restricted to
fluid systems. Application of the result to a
particular system - usually requires that one
observe the behavior of the system, unless one
can somehow determine whether or not the
general solution of the governing equations is
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periodic. In the caseof the atmosphere, whose
variations are-a superposition of periodic-and
nonperiodic oscillations, the periodic oscilla-
tions—prineipally the annual and diurnal varia-
tions and -their overtones—are predictable at
essentially .infinite range, but the range of pre-
dictability of the remaining oscillations is finite.

Studies aimed at quantitatively determining
the range of predictability of the atmosphere
have for the most part been based upon idealized
systems of dynamic equations. Pairs of solutions
originating from nearly identical initial condi-
tions. are obtained: by. numerical integration,
whereupon the growth rate of differences be-
tween solutions may be determined.

Among the-more realistic systems of equations
which. have subsequently-been used in predict-
ability studies are those of Smagorinsky ( 1963),
Mintz (1264), and Leith (1965). Each of these
systems governs-a model atmosphere whose
instantaneous state is represented by the values
of the atmospheric variables at a grid of a
thousand. points or more, .and each system, in-
cidentally, is.deterministic. The results of predi-
ctability studies based upon these models have
been described: by Charney et al. (1966). The
different models do not agre with one another,
but Charney et al. conclude that a reasonable
estimate of the time required for small -errors
to double, in the root mean square sense, is five
days. With present-day accuracy in observing
the state of the-atmosphere, the range of pre-
dictability would then be about two weeks. We
might. add that any system where small errors
continue to double in a fixed length of time
until they become large belongs in the second
category mentioned above. }

If small errors generally require about five
days to double, it-should be possible to increase
the range of predictability by five days simply
by reducing the initial field of errors to half its
size (although the task of effecting this reduc-
tion could be enormous). In actuality, for rea-
sons to follow, such a reduction may well in-
crease the range of predictability by a much
smaller amount.

A grid of a few thousand points covering the
surface of the globe cannot resolve features
having diameters of a few hundred kilometers
or less. Studies of predictability based. upon
model atmospheres have thus had the common
shortcoming of including only the larger scales
of motion explicitly as features of the state of
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the "atmosphere; “although they have acknow-
ledged the presence ‘of smaller scales. In a
typical model atmosphere, it is assumed that
only the statistical- properties of the smaller-
scdle motions influence the larger scales, and
that at any instant these statistical properties
are determined by the larger-scale motions upon
which the smaller scales are superposed. Usually
the particular statistical properties involved are
not even stated, and their effects are introduced
through coefficients of turbulent viscosity and
conductivity. Effectively a system consisting of
only the larger scales is assumed to be: deter-
ministic. '

In such a model the only errors in the small-
scale statistics are those resulting from an inade-
quate -knowledge -of the large-scale. motions
which determine them. That additional errors
in the smallscale statistics ought to appear.in
more realistic models is indicated by the follow-
ing idealized example. oo

Suppose that a region having a diameter of a-
fow thousand kilometers ¢contains about 10°® “‘ed-
dies”, which might perhaps be associated with
individual cumulus clouds. Although the statis-
tical properties of a typical eddy may very
well be determined by the large-scale: motion
in the region, each individual eddy possesses a
life history, consisting: of its generation, growth
to maturity, and eventual decay. At any instant
the separate eddies are at different stages of
their respective life: histories, and -therefore:
possess considerably different amounts of kinetic
energy. If, for example, the mean value and the
standard deviation of the kinetic energy of an-
eddy per unity mass are respectively 20,000
and 10,000 ergs per gram, and if the separate
eddies are at independent stages of their life
histories, the best estimate of the average eddy
kinetic energy over the region is 20,000 ergs per
gram, but this éstimate has an expected error
of 10 ergs pér gram. Similar. considerations
apply to other statistical properties. of the ed-
dies, including those properties which directly
influence the larger scales of motion.

It thus appears that even though large-scale
motions may determine expectéd values of
small-scale statistics, there remain uncertainties
in these statistics, and hence in their influence
upon the larger scales. The direct effect of errors
in one scale upon errors in a scale a thousand
times larger is apparently very small; but not
zero. The situation is quite different with regard
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to the direct effect of errors in one scale upon
errors in a scale only about twice as large. Here
so few eddies of the smaller scale can be super-
posed upon-a single: eddy. of the:larger scale that
the: uncertainties in :individual smallerscale ed:
dies. are’likely not to.cancel. Errors in eddies
with a diamieter.of one: kilometer may thus have
an important. direet effect in producing errors
in eddies with diameters of about two kilometers.

The. latter initurn may have an-important
direct, -effect--upon errors in eddies with" dia-

meters of three or four kilometers, which in their"

turn may influence the errorsin still larger scales:

Ultimately: the-errors:in the smallest scales of

motion may lead to errors in the largest, not
directly; but- by & continual - progressmn from
scale to-slightly larger scale::’

-Although the -five-day ‘doubling tlme sug-

* gested: by the model ‘atmospheres -may. be ‘rea-

sonable:for errors confined to the-larger scales,
it does: not appear-at all reasonable for errors

in the smaller scales. Consider;- for:.example;:

tworstates of the atmospere which differ slightly
in the structure of a-single thunderstorm, and
not at all otherwise. In view of the rapidity with
which . thunderstorms themselves develop,; it
seems likely that the errors in this instance will
double:in a matter of minutes rather than days.

- An-error in observing a thunderstorm, after
doubling. perhaps every fifteen minutes until it
becomes large, may subsequently lead to an
error-in-a larger scale of motion, which may then
proceed. to :double every five days. If this is

the case, cutting the original error in half would -

increase the range of predictability of the larger
seale’not by five days but by only fifteen minu-
tes. Considerations of this sort lead us to spe-
culate that reducing the error is estimating the

initial state of the atmosphere to half its size -

need- not increase the range of predictability by
five days, and that there may be:some systems
where a.reduction of the initial error will not
increase the:-range of predictability at all. °
-Bomewhat similar views have recently been

expressed by Robinson (1967), who.notes that-a -
fluid element of a given size ultimately loges’

1ts' identity as an-element, as a result of diffusion
by smallerscale motions. .He then adopts-the

premise that the dynamic equations do not allow -

one to predict the motions of a given scale over
a longer-time interval than:-'fluid elements of
this scale maintain their identities. On this basis
he deduces predictability times for various scales

of motion in the atmosphere, ranging from a few
days for synoptic:scale motlons to about an hour
for eumiilus-scale motions. -

If we wish to investigate the growth of uncer-
tainties in the very small'scales, and the subse-
quent progression of these uncértainties t6 very
large scales, we ‘need in principle-do no more
than modify the existing models of the atmo-
sphere by greatly increasing the number of grld
points. The many small‘eddies at various stages
of their life histories”will”thén be recognized
individually as features-of the atmosphere How-
ever, sinice the area of the earth is about 5 x 108
km?, the vast- number of -grid pomts'neededrf'qo
resolve ‘systems even of thunderstorm size, to-
gother with the need’ for a,dva,ncmg the compu-
tation in very small timé increrents ‘when ‘the
grid points are closely spaced; makes z any such
procedure” wholly unfea.sxble Wlth present day
computing machines.

Moreover, unless we ‘are interésted in the
individual smallscale eddies for their-owh sake,
such ‘8’ procedire would ‘be wastefil even if it
were feasible. If we are ¢oncernéd not with the
details of small-scale errors but merely with their
statistical ‘properties; and their effect in' pro-
ducing errors of larger scale, we can profit from
the assumption that systems of nearly the same
scale have nearly the sarfrie statistical propertles
To put this assumption to uss, wé may work
with new systems of equations whose dependent
variables are statistics.

Although statistical properties' may some-
times be conveniently defined in térms of aver-
ages over specified intervals of space or time,
the mathematical work may generally be simpli-
fied by introducing the notion of-an ensemble,
L.e., a collection of states of the system being
studied. -The desired statlstlcs may’ thén -be
defined in terms of averages over all members
of the ensemble. The ensemble ‘may oftér be
required to satisfy certain conditions of regu-
larity; for example, it may be assumed that any
two states of a system which are alike except for
a translation in space occur in the ensemble
with equal probabilities. New eqaations whose
variables are ensemble statistics may be derived
by averaging the’ original equations. -

This procedure was used’ by Thompson
(1957) in his statistical study of the growth rate
of small initial errors. As'a medsure of the differ-
ence between two fields of motion, Thompson
chosen the total kinetic energy of the hypothe-
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tical field obta;med by subtractmg one tleld of,

motion from the other——a~ ‘quantity, which:.we
shall call the error kinetic energy. He then derived
from the original governing equations expres-
sions for the initial first and second time deriva-
tives of: the ensemble-average error kinetic
energy. He concluded that with the existing

observational network, small errors in observing .

the earth’s atmosphere would tond to double in
about two days, but that the growth rate could
be considerably reduced b ¥ increasing the den-
sity of observations.

By introducing assumptions which are some-
what more drastic thmz.‘—:I‘hompson’s, it is pos-
sible to obtain expressions for the time deriva-
tives of error kinetic energy which are valid
for all times, rather than only initially. Also,
since the problem in which wo. are interested
involves the possible progression of errors from
one scale of motion to another, it is desirable
to modify Thompson 3 procedure by obtaining
expressions for the time derivatives of the error
kinetic energies of separate scales of motion. An
essential feature of these expressions is that they
contain ensemble averages not only of proper-
ties of differences between solutions but also of
properties’ of the solutions themsélves.
latter averages may be chosen at will, as for
example on the basis of observations of real
systems resembling the systems being studied.

In the following sections we shall deal with
ensembles of pairs of states of a simple fluid
system. With the aid of certain simplifying as-
sumptions we shall develop a system of equa-
tions whose dependent variables are ensemble-
average error kinetic energies of different scales
of motion. We shall then obtain solutions of
these eqations by numerical integration, for
different choices of initial errors, and different
choices of basic statistical properties of the
system under study. ‘From a study of these
solutions we shall draw certain conclusions re-
garding the predictability of the system. Finally
we shall consider the extent to which these
conclusions also apply to real fluid systems, in-
cluding the earth’s atmosphere.

Formulation of the equations

In- this section we shall apply our proposed
procedure to an ensemblo of -fields of two-
dimensional incompressible flow in an infinite
plane. Any such field is completely specified by
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a. stream:-function : y(x; g, t); ~where = ‘and y’
are.rectangular Cartosian ‘coordinates and. ¢ is:
time. We shall let the flow be gove"ned by the
voticity equation

Viy)jér = =y, Vi), (1)

where V? =g%/cu? +0*/dy® ard J denotes a Ja-
cobian with respect to 2 and y.

If y and y +¢ denote two separate flelds of
flow, their difference ¢ is governed by the equa-
tion

0(Vie)[ot = ~J(p, Vi) —J (g, Vp) —J (e, Vi). (2)
If furthermore the “‘error’” & can be'regarded &5
small compared to y, it will be governed approxi-
mately by the linearized equation

(Vie)fot = — I (y, Vi) —J (e, V2y) 3)
{or such time as it remnains small. We shall make
no further explicit use of (2), recognizing, how-
ever, that (3) is not -wholly appropriate when &
is large.

We shall consider an enzemble W, of stream-’
function fields y(x, y, #). Corresponding to each
v in M, we shall also consider an ensemble
mw of error fields.¢(z, 4, t). From these ensem- -
bles we shall form a grand ensemble -} whose
members are all pairs (y, ¢) for which ¢ is a
member of M, and ¢ is a member of the cor-
responding TH,,.

We shall require that at some initial time ¢,
the separate ensembles mw be ‘identical with
one another, i.e., that y and ¢ be statistically
independent within the ensemble . We shall
demand furthermore that at time ¢, the ensemble
™m, be homogeneous, i.e., that for any distances
& and 7 the field y(z + &, y +9, ¢,) shall oceur in
M, with the .same probability as the field
w(@, ¥y, t,). We shall likewise demand that each
ensemble mw be homogeneous at time &,.

It follows immediately that 7} is homogene-
ous at time ¢, It follows also from (1) and (3)°
that T, and M will remain homogeneous as ¢
increases. In particular, if a bar denotés an
average over all members of 7}, the means

w(z, y, t) and &(x, y, t) will be functions of ¢ alone,
and may without loss of generality be assumed

to vanish, while the covariances y(z,y,?)

wx+& y+n,t) and ez, v, t) elx + &, y -+, £) will
be functions only of & #, and ¢. It does not
follow, however, that the separate ensembles
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M, will remain -homogeneousas ¢- inerease, nor
that they wﬂl remain-identical with one another.

A quantlty of fundamental importance is the
ensemble-average kinetic energy per unit mass,

E=4Vy -V, ’ (4)

which we shall S1mp1y call the energy. According
to (1), E will not vary W1th time. The en@emble
average error kmetlc énergy

F=4Ve-Ve (5)

could be n‘se'd as a measure of the difference
between two fields, but- it will be more conve-
nient-to use the quantity -

G=3%Ve Ve, (6)
& being the departure of ¢ from its average
value over the ensemble M, (not ). With (3)
as:a governing equation, G will be time-variable.
In the remainder of this work we shall use the
expression error energy to denote G rather than
F. When ¢ exceeds t, only slightly, ¢ is hardly
distinguishable from F, but, if there is no pre-
dictability at sufficiently long range G—~E as
¢ » oo, while F > 2F.: Since -y is a -constant as far
as.averaging over the ensemble mw is concerned,
the governing equation for &’ is

3(Ve'))ot =

identical in form with (3).

“Since statisties over 71 do not differ from one
location to another, while it is to be anticipated
that different scales of motion in the field of &
will tend to grow at different-rates; ‘it will be
advantageous to transform equation (7) into
spectral - form. For this. purpose, we choose a
distance D, which is to be extremely large
compared to the dimensions of the largest im-
portant scale of motion in the fields of y and ¢’.
We then assume that-yp and ¢" vary periodically
in the directions of the coordinate axes, with a
fundamental wave length 2xD. We may then
let

- T
, w=§sx exp (1K), (8)
g = gex exp (iK-;E;, (9)

where r and K are two-dimensional vectors with
components  (z,y) and (K;, K,) respectively,

~J{yp, V2%') —J (e, Viy), (7)
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and- the sums'run over all vectors for whlch “the
products DK, and DK, are integers. The re-
quirement tha,t v and &’ be real demands that
S_x and e_g be the complex conjugates of Sk
and eg. -

The condition of homogenelty now demands

that SK and ex vanish while SK SL and eK ey, Vamsh
unless K +L =0. The energy and error energy
thus become

E-1SK'SS g T (10)

@=3>Klege g - (11)
where K2 =KK.

- Upon substituting (8) and (9) into (7) we

obtain the spectral form of (7), i

deK/dt“ EAKLSK LeLs 2 (12)

where )

Agr =K~

[(K-L)* L](KxL’ (13

Here K xL denotes the scalar K, L,-K LI,
which would be regarded as one component of
K x Lif K and L were three- dimensional vectors.

Having established (7) and subsequently (12),
we shall discard (1), although we shall still re-
qulre that the time derivative of y be quadratlc
We shall then have no governing equation for
p, and we shall assume instead that the ensemble
M, is stationary, i.e., that the statistical pro-
perties of y do not vary with time, and may be
prespecified. Statistical properties of &/, on the
other hand, will be govemed by equatlons to
be derived from (12). ) ]

We now séek a closed system of equations.in
which the dependent variables include the
quentities ege_g. From (12), ince A _g 1, = Axr,
it follows that

d(;;(_e—x)/dt = g Ax(Sg-vrere-x +SL-xe-Lex)
(14)

The right hand side of (14) contains joint
statistics of " and y. As already noted, we can-
not assume in general that y and ¢’ are statisti-
cally independent, except at time ¢,. For exam-

ple, if we assumed. that Sger em =Skerem for all
K,L,M, we would find, since Sgx=0, that
Skerey =0 for all K,L, M, whence, according to
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equation (14), exe_x would not vary with time.

We must therefore retain such statistics as

sg-rere-x as additional dependent variables.
Again from(12), we find that

d(Sk-reve-x)/di = (A Sk L/ db)eLe_k
+§ALMSK—LSL—M6M‘3—K
+ %AKMSK—LSM_KCLG—M
(15)

Additional joint statistics thus appear.

* Although we have seen that linear functions
of y and quadratic functions of & cannot be
statistically independent, wé shall now introduce
the less restrictive assumption that quadratic
functions of y and quadratic functions of &’
remain independenff, i.e., that

Sk SLemen =Sk Sr.emen (16)

for all K, L, M, N. This relation cannot be rigor-
ously ‘defended: on the basis of equation (12).
It ‘must therefore be regarded as simply a
working approximation.

Equation (16) could be derived from the
quasi-normal ‘approximation, which has somé-
times been used in theoretical studies of turbul-
ence 'to -express fourth-degree statistics in terms
of quadratic statistics, and which has not yield-
ed very realistic results. It is nevertheless
much less restrictive than the quasi-normal ap-
proximation, and need not possess. its objec-
tionable properties, since nothing is said about
fourthdegree functions. of y. alone, or & alone.
The assumption that quadratic properties of v
and quadratic properties of ¢ are independent
is unpealistie when ¢ becomes large; hence our
use of ¢’ instead of ¢. In view of the homogeneity
of the ensembles, it follows further that

Sk Sremen=SkLSmnSkS-keme-m  (17)

Because dSg_p/dt is assumed to be quadratic,
and because dSx_y /dt is assumed to vanish, the
first term on the right of (15) vanishes. Applying
equation (17) to the remaining terms, we find
that

d(SK~L6{J";—K)/dt = Sk-1SL-x

x (Agprepe-L+ Arkexe-x) (18)
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Since Sk 1.8k, is & known quantity, which does
not vary with time,; equations (14) and (I8)
form a closed system of. first-order linear equa-
tions. ) ' ~

Moreover, the quantities Sg_yex ey, are easily
eliminated. Differentiating (14) and substituting
from (18), we find that

@ (ege_g)/dt" =2 %SKvLSL—K
x (Agpepe-r + AxLArk exe-x)-
(19)

Although equation (19) is simpler than (12) in
that the coefficients are independent. of time,
the number of dependent variables is no less,
and the process of solving it in its present form
would involve an equally prohibitive amount of
computation. The principal simplifications to be
gained by using an equation in which the de-
pendent variables are statistics comes from the

further assumptions that SgS_g and exe_g vary
in a smooth manner with K, so that relatively
few values of K need be considered explicitly.
In order to incorporate these assumptions we
assume that the distance D is so large, and
hence that the values of L over which the sum-
mation in (19).is performed are so closely spaced,
that the summarion may be replaced by an
integral. We introduce functions X'(K) and
Z!(K) such that :

oo oo
E- f f X/(K)dK, dK,, (20)
-0 -0

- G=f f Z'(K)dK,dK,. (21)

Comparing (20) and (21) with (10} and (11), and
noting that there are D? terms in the summa-
tions in (10) and (11) for éach unit increase
of K, and K, we see that X'(K) and Z'(K)
are the limiting forms of 3D?K2SxS_gx and
31D*Krege_y as D—oco. Thus equation (19)
becomes »

d’Z’(K)/dt2=f f 4K-Ly X/ (K-L)

x [K*L™24%, Z'(L) + AxL A1k Z'(K)]dL,dL,.
(22)

We next introduce the assumption that M,
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i8 iéoﬁrdpie at time ?y, ‘i.e., that for any angle
0 the field y(x cos 6 ~y sin 6, a'sin § +y cos 0,
t,) occlrs in M, with the same probability as
the field y(z, v, t,). Likewise we assume that
each ensemble m,,, is isotropic at time #,. It then
follows that P is isotropic at all times, so6 that
at any time X’(K) and Z4K) depend only upon
the magnitude K of K. Actually the assumption
of isotropy is incompatible with equations (8)
and (9), when D is finite, but in the limit as
D ~ oo it leads to no inconsistencies. We might
add that the introduction of a distance D is
simply & means of avoiding the more rigorous
but more cumbersome procedure of deriving a
governing equation for the covariance

,(x’ Y, )sl(x +§a Yy +77’ t);
and " then  taking the Fourler transform of this
equationt
“Letting X(K) and Z(K) denote the energy
and the error energy per unit scalar wave num-
ber, multiplied by the wave number, i.e., ener-
gies per unit loga,mthm of wave number,

f X(K)d(log K, (23)

G- f Z(K)d(log K), (24)

whereupon X(K)=2xK*X'(K) iand Z(K) =
2nK*Z’(K). Denoting the magnitude of K —L in
(22) by M, we find it convenient to use log L
and log M in place of L, and L, as variables of
integration, thereby eliminating explicit refer-
ence to vector components. We note that

dL,dL, - (K xL)-iL:M*d(log L)d(log M),  (25)

while
K xL =2«(K, L, M) = 4[(K +L + M) (K +L - M)
B =L+ M)(~K +L+M)P, (26)

i. e, oz(K LM ) is the area of a triangle whose
sides are K, L, M. Introducing the values of
Agy, and” Ayy from (13) into (22), and including
an additional factor of 2 because, given K, each
pair (log L, log M) corresponds to two separate
pairs (L;,-L,), we obtain the governing equation

d’Z(K)/di*

= f [OL(K, L) Z(L) - C«(K, L) Z(K)]d(log L),

(27)

whére, for =1, 2,

) log (K+ L) o
Cy(K,L) = f By(K,L, M) X (M)d(log M),

log | K-L|

and where

By(K, L, M) = 87-M-L-*M* ~ L% (K, L, M)
(29)

By(K, L, M) ~8x-sM-*K~*(M?* —L*) (M? - K?)
x a(K, L, M). B £ )

By defining B,(K, L, M) and B,(K, L, M) to be
zero when one the quantities K, L, M is greater
than the sum of the other two, we may replace
the limits of integration in (28) by — oo and oo.

By choosing suitable analytic expressions for
X (M), we could evaluate the integrals in (28).
‘We shall not do this, since we shall be interested
in some spectral functions X(M) which are not
conveniently expressed analytically. In the fol-
lowing section we shall put equation (27) into a
form suitable for numerical solution. At that
point we can introduce the assumption that
X(K) and Z(K) are smoothly varying functlons
of K. : :

‘Meanwhile we can derive from A27) a.nd (24)
the general relation - e

a*q/de" = f fl - . 2M M- L
- 0 og
x Z(L) X(M)d(log M)d(og: L):~(31)

The impliations of equation (31)‘are of ¢onsider-
able interest. First of all, the integrand is nomn-
negative. Thus, in general, if dG/dt vanishes
initially, G will subsequently increase at an ever
increasing rate, for such time as ¢’ remains small
enough for the linearized equation to. be valid.
We note, however, that only those products
Z(LYX(M) for which L <M actually contribute
to the integral in (31). Thus the growth of G,
is favored by large-scale features in the field of
¢’ together with small-scale features in’ the field
of y. In the special case where all the features of
¢’ are initially of smaller scale than any of the
features of y, there will be no growth as long as
this condition prevails—a result also obtained
by Thompson (1957).

v i
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Arrangement of the equatlons for
numerical solution

In this section we shall explicitly mtroduce
the. agsumptlon .that . X(K) .and Z(K). vary
smoothly with K,.and may adequately be repre-
sented by relatively short: sequonces: Xy; .., X
and Z,,,....Z We. begin by noting that since
the energy E given by (23) is finite, X (K) must
approach. zero as: log K >~ co and also as log
K - co. We may therefore choose a wave number
N, so small that. X(K) is negligibly small when
K<N, o- We next choose :a resolution factor 0,
and let - Ny =¢*N.
integer: - large enough so that X(K) is again
neghgxbly small when K.>N,. ..

We now.let Z,, ..., Z, denote the error ener-
gies within: the n- resolumor} intervals, i.e.;

%
Zk’= -
AT IS

where @, ~log N,. If we then integrate both
sides of (27) between the limits a,_, and g, and
assume in evaluating the right hand side that
Z(K) = 06-1Z,, when log K lies between a;., and.
ay, where o =log g, we find that

Z(K)d(log K):, 7 (32)

. e Bl gty g oy .
a'z,/dt* = IZ CwnZi~-Cmmuy), (33)
- =1 B e PR
wh'e!"e'C(,)‘kl ”‘Urrlj“ - f’ ) Ci(K,L)d(lOg L)
PR - P - ak . 3 i H - Tl
xd(log K). (34)
We next let X, = o-1X(Ng), (35)
and approximate the integral in (28) by a sum

over the values a,, ... a, of log M. We then find
in view of (34) that

n
- Copu= 2 BpyumXm,- (36)
m=1

. ap - fay .
where B(,)k1m=a‘1f f ByK,L,N,)
. BT " |
xd(log L)d(log K).’ (37)

Since-(29) and (30) define B/(K, L, N,,) as known
analytic functions, the constants By, may be

evaluated once and for all from (37). After

Xy ..y X, are chosen, the constants Oy, may

Tellus XXT (1969), 3
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be evaluated from (36), whereupon equation (33)
may be solved numerically.

A few simplifications are possible. First, from
(29) and (30) it follows that

ByK,L, M) =M*B{K/M,L|M,1). (38)
Hence (36) may be replaced by
N
Cpm= 2 Bupr-mi-mnNnXn,

(39)

m=1

where  Byu= a‘IJ‘ f By(K",L’,1)
- . : -6V d-e
xd(log L’)d(log K’). (40)

The constants By, must be evaluated for

negative as well as positive values of k and i,

but still the iumber of these constants is far less-

thar the number ‘of constants B(y, -which

would otherwise be required. N
We may also let

Bk, (41)

By — 0 Z Boyem:

m= - o0

n
If we then let Oy = O Bi-mi-mNmuXm, (42)
g . m=1 .

we may replace the governing equation (33) by

: S
d“zk/dt” - Z CuZ;. (43)
The procedu.re for solvmg the system of n
equations (43) as it stands is strawhtforward
The equation is first replaced by a8 system of 2117 ]

firgt-order equations

dZ,/dt= Wy, (44)

n
dw, /dt = 2 CuZ,. (45)
A time increment At small enough to insure
computational stability is then chosen. A num-
ber of forward-difference or eentered-difference
schemes may now be used; we have chosen the
following simple secondorder scheme: - :

Zi(t+ 3 A1) = Zy () + AW, (2), (46)

Z,y (8 + Ab) = Zy(8) + AtW(i + 1 AD), (47)

with analogous equations for W,.

2: 86
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Fig. 1. Values of K’ and L’ (shaded area) for which
functions B,(K‘, L', 1) and B,(K’, L', 1) differfrom
Zero. Wlthm each small square K and ‘L’ vary by
factor of 2.

The reader may wonder why we have chosen
to define the variables Z, by (32), rather than
using the apparently simpler procedure of letting
Zyy ooey &y bo the values of Z(K) fr- n specific
values of K. In the latter case the constants
B jy; could be defined as the values of B;(K’, L,
1) for specific values of K’ and L’; and. it would
be unnecessary to perform the integrations in-
dicated in (40). Actually - the later procedure
would prove quite unsatisfactory, because of
the special properties of B, and B,.

In'Fig. 1, the coordinates are L’ and K’, on a
logarithmic scale. Within each small square L’
and K’ vary by a factor of two. The shaded
region covers those values of L’ and K’ for
which B,(K’, I’, 1) and B,(K’, L', 1) differ from
zero. On. the boundary of this region B, and B,
vanish, but their inward normal derivatives are
infinite, except at special points.

For a resolution factor g =2, the constants
By, as defined by (40) are proportional to the
average values of B,(K’,L’,1) over small
squares in Fig. 1. It is'evident that these aver-
ages may differ greatly from ‘the values of
ByK',L’, 1) at the vertices of squares. The
lower right portion of the figure, for example,
reveals that not only the squares on the main
diagonal (K’ =L’) but also the squares on the
two adjacent” diagonals intersect thé shaded
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region; although the areas of intersection be-
come very small.as L’ and L’ become large, the
values of B (K', L, 1) become large so rapidly.
that the values of B, ,_, and Bk w41 88 defined
by (40) and (41) also become large:

In the precedure which we rejected, the
constants B, would be proportional to the
values of B{K’, L', 1) at the vertices of small
squares. As K’ and L’ become large, only the
vertices on the main diagonal remain within ‘the
shaded region. Thus By, ,_, and By, K+t would be
zero for large values of k.

Physically, the procedure which we reJected
would have-allowed initial errors in the smaller
scales to propagate to the larger scales only
through the interactions of weave lengths differ-
ing by a whole number of resolution factors.
The possibly much greater direct influence of
one wave length upon a wave length which is
only a fraction of a resolution factor longer is
admitted by the procedure which we have
chosen. The influence of the longer wave lengths
within one resolution interval upon the shorter
wave lengths within the next resolution interval
is represented by the small areas of intersection
of the off-diagonal squares -with the shaded
area, in Fig. 1.

Incorporation of the nonlinear effects

The matrix formed by the coefficients €}, in
(43) possesses n eigenvalues 4}, ..., 45. Except in
the unlikely case that two of these sigenvalues
are exactly eéqual, there will exist n linear com-
binations

- .
-2 “kzZz, (48)
=1
or normal modes, such that the solution of (43)
for which dZ,/dt =0 when ¢ =t, may be written
Z, =Z, (t,) cos b A {t —t,) (49)
Unless the eigenvalue 1% is real and negative (or
zero), A, has a nonvanishing real part, and the
corresponding mode Z; will be indicated as in-
creasing without limit.

Actually, if an initially small error ¢ is subject
to amplification, it should ultimately become no
larger than the difference between two randomly
chosen stream-function fields. In that event, G
should become no larger than E, and, in fact,
for any value of K,Z(K) should become no

Tellus XXT (1969), 3
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larger than X(K). Thus (43) is applicable in its
present form only when each Z is small.

In general the different normal modes will
amplify at different rates. In some systems the
mqé,t Vrapidly growing modes represent features
of the smallest scales; in the atmosphere, for
example, the uncertainties in systems of cumu-
lus scale may double in a matter of minutes,
while those in synoptic-scale systems may re-
quire a matter- of days. It is evident, then,

that unless the initial uncertainties are heavily

concentrated m the most s’lowly"amplifying or

non-amplifying modes, the most rapidly ampli-

fying modes will reach their maximum allowable
size, and (43) will cease to be applicable, at a
‘time when the more slowly amplifying modes
have experienced almost no growth at all.

If (43)is to be made applicable to all scales
of motion, some modifications are needed. The
most 6bvious procedure would be to include the
original nonlinear terms, which, after all, are
responsible for the eventual cessation of growth;
ie., equation’ (2) could be used instead of (3).
The derivation of ‘an alternative equation to
(43) would, however, be g comphcated task.

We shall adopt a simpler procedure. We first
choose '

Yie= 38Xy + X00) (590)

as a measure of the energy in the kth resolution
interval, so that B may be approximated either
by X, or £ Y,. We then assume that for each
value of & individually, (43) holds as long as
Z, <Y, Once Z, acquires the value Y, it is
assumed to retain this value for the remainder
of time. ’

This procedure has obvious computational
advantages. Initially, to insure computational
stability, the time increment At must be chosen
smell enough so that the growth of the muost
rapidly amplifying variable from its initial small
value to its ultimate large value will require a
reasonably large number of iterations. Once
this variable has attained its final value, we
effectively deal with a system of 2(n — 1) non-
homogeneous equations instead of 2n homoge-
neous equations, and A¢ may be increased,
provided that it is kept small enough to acco-
modate the most rapidly amplifying remaining
variable. Each time a variable reaches its ulti-
mate value, At may be further increassed, so
that the ultimate growth of the most slowly
amplifying variable may take place in a reason-
Tellus ¥ %1 (1969), 3
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ably small number of iterations, rather than
the myriad which would be required if A¢ were
held fixed.

Introduction of numerical values

Before evaluating the constants B,;,, we must
choose a resolution factor ¢. In this study we
have chosen g =2, so that each “scale of motion”
covers.an octave of the spectrum.:

The double integral in (40) in somewhat awk-
ward ‘to evaluate. We have determined values
of By, by summing the values of the integrand.
By(K’, I’,1) at a large number of points within
the shaded portion of each square in Fig. 1.

It is not necessary to determine individual
values of By, since only sums of these valués
appear in (41). Obviously By, = By, if l+k.
From (40) and (41) and the formulas (29) and
(30) for B, and B,, it may be shown that

By if <0,
it S By it 1>0, (51)
k=1

i.e., if 1 >0, B} is to be chosen so that the sum
of the constants By, corresponding to a vertical
column of squares in Fig. 1 is zero.

We must next choose numerical valies for the
minimum wave number N, and the spectral
function X, in order to determine numerical
values of the constants C,,;. If we wish to com-
pare our model with real physical systems, we
must also specify ‘the units in which N, and X,
are measured.

It will be convenient to choose the units so
that N, =1 and £ =1. The units of distance and
time are then N,' and T =N;'E-} Alterna-
tively, we may. choose the units so that B, =1,
where K, is some typical value of .

Since we are particularly interested in at-
mospheric predictability, we shall choose dimen-
sional values of N, and E appropriate to the
earth’s atmosphere. Accordingly, we shall let
Ng' equal the. earth’s radius, 6.37 x10%m,
whereupon wave lengths greater than half the.
earth’s circumference contribute to ¥, and Z,,
wave lengths between one fourth and one half
the circumference contribute to Y, and Z,, ete.

The total kinetic energy of the atmosphere is
not precisely known. Estimates of the root-
mean-square wind velocity ¥ based upon large
collections of upper-level wind data (Oort 1964,
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Table 1. Mawimun wave length 2N " included in
scale k, and energy (dzmenswnless winits) in scale
kin’ Brxperimeénts “A,"B; C and Buwperiment D

k 2aN;'  Yu:Ex.A,B,C Y, Ex. D
1 40,000 km .0925 .0926

2 . 20,0007 - 1970 L1970
3 10,000 .1935 1935
4 5,000 .1566 .1560
5 2,500 .1160 .1160
6 1,250 0817 0694
T 625 . 0558 -:0299

8 312 L0373 0126
9 156 -.0246 ,0053
10 78 .0160 ,0022
1 39 0104 .000879
12 £19,581 m .0067 .000356
13 © 9,766 0043 000143
14 . 4,883 o .0027 .000057
15 2,441 © 0017 T .000022
16° 1,221 - 0011 000009
17 610 ¢ 50007, .000004
18 305 - +.0004 .. 000001
19 153 .0003 .000000
20 .76 L0002 - .000000
21

38 L0001 ~.000000

Krueger, et al. 1965) range from 16 m sec=' to
23 'm sec-!; these would lead to values of 7T
ranging from 5.6 x 10° sec to 3.9 x10° sec. It
will be convenient to use a time unit T =221 =
524,288 sec, or about 6 days, whereupon E =
148 m?® sec~? and V =17.2 m sec~!,

If the total kinetic energy of the atmosphere
is somewhat uncertain, the allotment of this
energy to different portions of the spectrum is
much less certain. We shall therefore simply
choose an analytic expression for X, which
makes X, =0, gives Y, a maximum in the long-
wave or synoptic scale (k=2.3,4), and allows
X, to.fall off according.to some power law for

Table 2. Values of coefficients Gy, for k, L =1, ..,

large values of . The “minus:five-thirds law”
for the energy per unit’ wave number, which
appears to be characteristic of certain turbulent
fluids, and which would make ‘the ‘energy per
unit logarithm of wave number vary as'the
~2/8 power of wave niumber, seems to place’a
reasonable amount of-energy in the“cumulus
scales (say k =13,14;15). Accordmgly, in our
first experiments we shall let

—2k3

X, =cle”. (52)

the fa,ctor c bemg chosen to ‘make E’ 1

Table 1 contains values of ¥, as determined
by formulas (52) and (50).. We see thvat, nearly
half of the energy is contained in the first three
scales, with wave lengths greater than 5000 km,
while about one per cent of the energy is con-
tained in wave lengths less than 10 km.

Table 2 shows the corresponding values of the
constants C,,. For brevity it.is confined to
values: of k and I from 1 to 9, but it reveals
several distrinctive features which also hold for
larger values. The negative numbers on. the
main diagonal, together with posmve numbers
off the diagonal, indicate that errors initially
confined to one scale of motion will spread to
neighboring scales. This spread will be most
rapid for the smallest scales, as indicated by the
larger numbers in the lower portion of the table.
The positive sum in each column indicates that
the error energy will grow.

The very small values in the upper ught indi-.
cate that there is virtually no direct effect of
small-scale errors upon larger scales, except
upon scales only slightly larger. The large num-
bers in the lower portion indicate a strong direct
effect of large-scale errors upon smaller scales.
From the point of view of a single small-scale
eddy, the total large-scale flow is virtually

9, used in Experiments A, B, c

O a=1 2 3 4 5 6 7 8 9

1 019 . 0.26 0.7 0.02 0.00 0.00 0.00 10.00 0.00
2 2.86 0.41 1.80 0.23 0.05 0.01 0.00 0.00 £0.00
3 1442 © 1022  -1.21 8.73 0.68 0.13 0.02 0 0.00° - 0.00
4 45.8 44.9 33.1 ~12.6 34.1 1.9 0.4 0.1 0.0
5 133.6 133.0 1304 - 1013 -6L8 117.8 5.3 “100 02
6 372.4 372.0 370.3 362.3 208.1  —237.1 375.1 14.1 2.5
7 1010 1009 1008 1004 983 851 — 804 1131 37
8 2686 2686 2686 2683 2670 2615 2373 2526 3280
9 7053, 7053 7053 7052 7044 7010 6864 6496 7538
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rectilinear, and simply displaces the eddy; thus

the magnitude. of the etror in predicting the
position of the eddy will depend upon the magn.-
tude of the large-scale error, but not upon its
distribution among the various scales, whence
the numbers in & given row in Tabls 2, to the
left of the main diagonal, are néarly cqual.

As for larger values of k and I, U, ,, is very
close 10 zero, Uy ; = 209,600,000, and Cyg 5 =
~366,900,000, for exampl>.

Numerical experiments.

In our first numerical integretion (Experi-
ment A), we consider the behavior of an error
which initially has & magnitude of 2-1%E and
is confined to the smallest scale of motion. The
initial root-mean-squeare velocity error is then
2-8Y, or about 7 cm sec~!. We know of no
method, incidentally, by which the smaller
scales of motion in real fluid systemo can be
observed with compa.rable accuracy.

We now encounter one difficulty. If the error
energy were initially confined to some inter-
mediate scale, éa,y,the mth scale, the total error
energy would shortly afterward increase, as
indicated by the positive sum of the numbers in
the mth column of Table 2, but the amount in
the mth scale would decrease and spread to
adjacent scales, as indicated by the negative
numbers on the main diagonal in Table 2 and
the positive numbers on the adjacent diagorials.
Subsequently some of the error energy which
has spread to scales m —1 and m +1 would
spread bacl_i to scale m. However, when the
initial ‘error is confined to the smallest scale,
the error énergy which should spread to even
smaller scales is ‘simply lost, and the total error
energy may decrease. This loss of energy is ficti-
tious, resulting entirely from not including
scales beyond n.

In the present instance we can resolve the
difficulty be retaining more scales than we
actually wish to study. Accordingly, we retain
21 scales, but assume that the results are valid
only for scales 1 through 20. Initially, then,
Zy= Dy =0, Zyo=2-1%"Z,, =0,

Through trial and error we have found that
a suitable initial time increment At is 2-18
units, or 8 seconds. As each Z, succissively
reaches its limiting value Y, we increase Af
by a fa.ctor 2‘1 1.5874, until, when only Z, has

Tellus XXI (1969) 3
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failed to attain its maxnnum, At ——2“ umts =
23 hours.

Experiment A was completed with 109 itera-
tions. After 22 iterations or 2.9 minutes, when
Z,, becomes as large as Y, only the variables
Z,, through Z,, have become appreciably greater
than zero. It was found, in fact, that throughout
the experiment not more than five of the variab-
les which had not attained their. maxima were:
noticcably different from zero. Subsequent ex- -
periments which capitalized on this result by’
varying only a few variables during each itera-:
tion were performed with as few as 20,000 arith-:

metic operations, in contrast to the 102 opera--
mons typical of many of the large general-circu-
lation experiments. In fact, if no digital com-
puter had been available, Experiment A could
have been performed with a desk calculator in &
fow days (excluding the time needed for the
original determination of the coefficients Cy;).

Whereas Z,, and Z,, oscillate to some extent
before reaching their maxima, all the remaining
variables increase in a monotone fashion. Actu-
ally cach variable passes its maximum in the
middle of a time step, and overshoots; it is then
sot back to its proper maximum value before.
the next iteration is begun. The time #, at which
Z, passes Y, is readily estimated by linear inter-
polation.

The values of #, for Experiment A appear in
Table 3. Errors in the smallest scales evidently
develop and reach their maximum intensity in
the course of a few minutes. The cumrilus scales
(13-15) have a range of predlctablhty of almost
an hour, while the synop'tic' scale motions, can
be predicted a few days ahead. Predictability
of the largest scale disappears after 16. 8 days.

Fig. 2 summarizes the results of Experiment
A. The error-energy spectra are shown at se-
lected times. In order to obtain sufficient detail
in the smaller scales, ‘and at the same time allow
equal areas in the diagram to represent equal
amounts of energy, we have plotted interpolated
values of the err or energy per unit wave number,
multlphed by the 5/4 power of wave number,

, K*Z(K), against K~ ¥ The heavy curve is
K*X(K) o

The area under & thin curve. represents the
total error energy ( at the indicated time,
while the area under the heavy curve represents
E. The error energy is seen to double very
quickly while it is confined to the smaller scales,
but by three days G has attained one half the
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Table 3. Range of predictability t, for scale k as
determined in Experiments A, B, D

kE e Ex A i Ex. B t: Ex. D
21 2.9 min 1.8 min 1.5 min
20 3.1 2.0 3.1
19 4.0 2.9 6.2
18 5.7 4.4 13.0
17.- 8.4 7.1 46.5
16 13.0 11.6 1.8 hr
15 20.3 18.8 3.3
14 32.1 -30.6 5.5
13- 51.1 49.5 7.6
12 1.3 hr 1.3 hr 10.7
11 2.2 2.2 14.5
10 3.6 3.5 19.4
9 5.8 5.7 1.1 day
8 9.5 9.4 1.4
7 15.7 15.6 1.8
6 1.1 day 1.1 day 2.3
5 1.8 1.8 2.9
4 3.2 3.2 4.2
3 5.6 5.6 6.5
2 10.1 10.1 11.1
1 16.8 16.7 17.6

value of E, and its subsequent growth is much
less rapid.

From a closer study. of Table 3 we can infer
what the result would have been if much
smaller scales of motion had been included.
Except for the smallest scales retained, where
the effect of omitting still smaller scales is
noticeable, and the very largest scales, where
X} does not conform to a —3% law, successive
differences &, —t, ., differ by a factor of about
271, If one chooses to reevaluate ¢, by summing
the terms of the sequence t, —¢,, ty—t3, ..., one
is effectively summing a truncated geometric
series. If n had been chosen larger, the series
would simply contain additional terms. Even
with n = oo, this series would converge to a
value only about 2 minutes greater than its
value for n =20. It thus appears that with an
arbitrarily small initial error, confined to an
arbitrarily small scale, the range of predict-
ability of the present model is still about 16.8
days. If we can trust the various assumptions
used in deriving and solving the equations, we
must conclude that the system falls in the third
category previously enumerated, and possesses
an intrinsic finité range of predictability.

In the second experiment (Experiment B),
whose results are also summarized in Table 3,
we have again chosen an initial error of magni-

tude 27, but we have confined the error to
the largest scale of motion. Thus initially Z, =
218, Zy=...=Z, =0. Although errors in the
larger scales do not amplify rapidly, they
quickly induce errors in the smaller scales. These
then behave in essentially the same manner as if
they had been present initially. As a result, the
two experiments indicate comparable ranges of
predictability for all scales of motion. Evidently
when the initial error is small enough, its spec-
trum has little effect upon the range of predict-
ability.

Our final experiment (Experiment-() using
the same spectral function X, is designed to
reveal how much predictability one may expect
to gain by reducing the initial error by a factor
of two. The experiment consists of eight sepa-
rate runs (Runs Cl,...,C8); in the jth run the
initial value of each Z, is 2°% Y. Thus the root-
mean-square veloecity error. in the jth run is
277y,

For Run Cl it was necessary to choose an
initial time increment At of 2-?1 units =} sec.
This was doubled each time the error in one
scale attained its maximum value. Successive
runs used successively larger initial time incre-
ments, increased during the runs by successively
smaller factors, until Runs C7 and C8 used the
same time-increment scheme as Experiments A
and B.

The results appear in Table 4. Turning first
to Run Cl, we note that even with an initial
root-mean-square veloeity error of ©/2, or nearly
9 m sec-!, the synoptic-scale systems have a
range of predictability of a day or more, while
the planetary scales retain some predictability
for more than a week. With the smallerscale
systems the situation is different. Systems with
wave lengths less than 40 meters have a range
of predictability of less than a second. This
possibly surprising result could nevertheless
have been anticipated without any computa-
tion; the uncertainty in the position of individual
small-scale eddies increases by about 9 meters
during each second, and therange of predictabil -
ity in this case is simply the time required for
this uncertainty to reach a quarter of a wave
length. .

In Run Cl, the range of predictability con-
tinually doubles as the wave length doubles.
The times #, in_this case do not represent times
required for small-scale errors to induce larger-
scale errors, but are simply the times required
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Fig. 2. Basic energy spectrum (heavy curve), and error-energy spectra (thin curves) at 15 minutes, 1
hour, 5 hours, 1 day, and 5 days, as interpolated from numerical solution in Experiment A. Thin curves
coincide with heavy curve, to the right of their intersections with heavy curve. Horizontal coordinate is
fourth root of wave length, labeled according to wave length. Resolution intervals are separated by ver-
tical marks at. base of diagram. Vertical coordinate is energy per unit logarithm of wave length, divided
by fourth root of wave length. Areas are proportional to energy. :

for the positions of successively larger scales run there is a point where doubling the wave
to attain quarter-wave-length uncertainties. length fails ‘to double the range. It is at this

In Run C2, the range of predictability is point that the spread of errors from smaller
about twice that in the first run, for all scales to larger scales becomes appreciable. Run C8 is.
except. the largest. Ultimately, however, there hardly’ distinguishable from C7 except in:the
is for each scale a point where cutting the initial smallest scales, ‘and ‘it appears. that -further
error in half fails to double the range of predict- reduction of the initial error would-not greatly:
ability, ‘and, indeed, fails to increase the range lengthen the range of predictability of any
by more than a few minutes. Likewise, in each  scale.

./ Table 4. Range of predictability t, for scale k as determined in Runs C1,..., C8 of Experiment C

k b, CL. = C2 Cc3 C4 Cs .. C6 : C7 C8
21 0.6 sec 1.6 sec 2.7 sec 5.5 sec 11 sec 23 sec 53 sec 1.8 min
20 1.2 2.6 5.0 10 21 C. 40 1.1 min 2.0
19 2.4 5.0 10 21 41 1.2 min 1.9 2.9
18 4.8 10 21 43 1.3 min 2.3 3.4 4.4
17 9 21 43 1.4 min 2.6 4.3 5.9 7.1
16 19 43 1.5 min 2.9 - 5.1 7.9 10.2 11.6
15 39 1.5 min 2.9 5.6 9.7 14.0 17.1 18.8
14 1.3 min 2.9 5.6 10.9 17.8 24.3 28.2 30.6
13 2.6 5.8 11.4 20.8 32.3 41.3 47.0 49.5
12 5.2 1.7 22.6 39.6 57.5 - 1.2hr 1.3 hr 1.3 hr
11 10.6 23.3 44.0 1.2 hr 1.7 hr 2.0 2.2 2.2
10 21.5 46.7 1.4 hr 2.2 2.9 3.3 34 3.5
9 42.6 - ‘1.5 hr 2.8 4.1 5.0 5.5 5.6 5.7
8 1.5 hr 3.1 5.2 7.2 8.5 9.1 9.3 9.4
7 3.0 6.0 9.6 12.7 14.4 15.2 15.5 15.6
6 6.1 11.9 17.8 22.3 1.0 day 1.1 day 1.1 day 1.1 day’
5 128 - . 238 l4day  l.6day 18 1.8 1.8 1.8
4 1.1 day 2.0 day 2.6 2.9 3.1 3.1 3.1 3.2
3 2.5 .0 4.8 5.3 5.5 5.6 5.6 5.6
2 5.7 8.0 © 9.2 9.8 10.0 10.1 10.1 10.1
1+ 10.7- 14.3 15.8 16.4 16.7 16.7 16.7 16.7
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The times ¢ in Run C8, incidentally, are
almost indistinguishable from those in Experi-
ment B. In summary, it appears likely that the
system considered in Experiments A, B and C
has an intrinsic finite range of predictability.

The coefficients €, appearing in-Table 2
depend strongly upon the spectral fuction X,
and so presumably do the results-of the experi-
ments just described. Our final.integration (Ex-
periment D) uses a different sprectral function.

The new spectrum follows a minus-seven-

thirds rather than a minus-five-thirds law, so

that X, varies as 2742 rather than 27 for

large values of k, whence there is far less energy
in the small scales. We have obtained new
values of X by retammg the old values for
k=0, ..., 5, and multiplying the old values by
successive powers of 2777, i.6., by 27~ V3 for
&'>5. The now valiies of ¥, are included with
the old in Table 1.

The initial conditions have been chosen as in
Experiment B. Again the values of ¢, appear in
Table 3. We note first that in Experiment I the
errors develop much less rapidly in the smaller
scales (except scales 18-21), the cumulus scales
having a range.of predictability. an order of
magnitude longer. Onee the errors have reached
the larger scales, however, they grow as rapidly
as in Experiment B, whence the range of pre-
dictability is only slightly longer.

As in the earlier experiments, one may also
in"Experiment D represent ¢, as the sum of the
differences- ¢, ~ ¢5, ty—12;, .... The series is again
geometric, except for the largest and smallest

scales, but successive terms differ by a factor -

of about 2% rather than 2°%. Including all
scales'of motion would appear to increase the
range of predictability by about three hours,
rather than two minutes.

. We note also that <1 in Experiment D.
If the values of X were all multiplied by 1.141,
to make E =1, the times #;, would all be multi-
plied by. 0.936 = (1.141)~%, whereupon the. range
of predictability would be reduced from- 17.6 to
16.5 days, which is nearly the value in Experi-
ment B. Indeed, it is possible that as long as a
system falls in the third category, the intrinsic
range of predictability may depend mainly upon
the total energy rather than on the details-of the
spectrum. Of course the range depends in addi-
tion upon the wave length of the largest scale
of motion; in dimensionless units (T =1), the
range seems to be about 2.7.

E. N. LORENZ

~We shall not present any further numerical

“ experiments. However, in view of those already

performed, we may hypothesize that if X
varies as 27 %% for large values of k, the suc-
cessive differences -tk 1 vary approximately

g 2~ ﬂ)k

It would follow that if the energy per unit
wave number obeys a minus-three or higher
negative power law, so that f>1, the series
for ¢, will fail to converge. In this case the
range of predictability may be made arbitrarily
large by making the. initial error sufficiently
small, and the system will fall in the second
category. -

Applicability to real fluid systems,

In the previous sections we have been con-
sidering idealized fluid systems. These systems
have been deterministic, in the sense that the
exact present state determines the exact state
at any future time. It appears nevertheless that
certain of these systems possess an intrinsic lack
of predictability; specifically, at any particular
range there is a definite limit beyond which the
expected accuracy of a prediction. cannot be
increased by reducing the uncertainty of the
initial state to a fraction of its existing size. In
this respect these-systems are like indetermin-
istic systems, differing only in that the latter
systems cannot be perfectly predicted even
when the uncertainty of the initial state is
reduced to zero. It is appropriate to ask at this
point whether real fluid systems possess a sim-
ilar lack of predictability. o

In attempting to answer:this question we are
immediately confronted by the fact that we do
not know the governing equations for-any real
systems. We need not invoke Heisenberg’s Prin-
ciple of Uncertainty to make such a statement,
nor do we even need to recognize that fluids
are’ collections of molecules rather than con-
tinua; there are processes of somewhat larger
scale which are not completely understood. In
the case of the earth’s atrnosphere, for example,
one process which profoundly affects the future
state is the transformation of clouds into preci-
pitation; we still have much to learn about how
such a process is initiated. What we can do is
to consider a number of idealizations or models
of & real system, each of which is in certain
respects more realistic than the previous one.

In studies where the time-dependent behavior
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of a system has been obtained by numerical
integration, the state of the system has neces-
sarily been represented by a reasonably small
collection of numbers. The effects of the smaller
scales of motion, if they are recognized, are
expressed parametrically.in terms of the larger
scales. Such models may indicate that small
initial errors will amplify, but there will be a
definite minimum time required for these errors
to double in size. For some of the atmospheric
models, this time appears to be about five days.
The models treated in this work, although
very crude in many respects, are more realistic
in that they explicitly contain motions of all
scales. As-a consequence, they indicate no mini-
mum time for the doubling of small errors. The
smaller the scale, the faster the growth may be.
The model in which the energy per unit wave
number falls off according to the minus-five-
thirds law as the wave number increases inde-
finitely could be made still more realistic. In the
atmosphere, for example, the minus-five-thirds
law is supposed to hold.throughout an inertial
subrange extending to wave lengths as short as
a few centimeters. At still shorter wave lengths
there should be a dissipation range, where the
energy falls off much more ra.pldly If we modify
our model by cutting off the energy at some
very “small wave length, as we were forced to do
in any event in our numerical solutions, we
a,gam find & 8 mmlmum doublmg time, albeit a
very short one.
~ If it is true that in eerta,m real systems—
possxbly the atmosphere—small errors of any
configuration require at.least a few seconds to
double, it would not be strictly correct to say
that there is an intrinsic limit to the s accuracy
with whlch predictions can be made. However,
a model - in which ‘such. an’ intrinsic . limit is
present would be much more realistic than one
which indicates a doubling time of several days.
It is thus a matter of great interest to deter-
mine the extent to which the results of this
study apply to the atmosphere. Although we
cannot formulate an exact system of governing
equations, we_can contmually modify the pre-
sent study by introducing more appropna,te
equations or more realistic statistical assump-
tions. In the mean time, we can try to anticipate
the results_ of such modifications.
We note first that the vorticity equatlon
used in our study is at best a very crude approx-
imation to the atmospherlc equations. It has
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nevertheless served as a basis for moderately
successful barotropic forecasts of the 500-milli-
bar flow pattern. One of its most obvious short-
comings is its. inability to predict the develop-
ment of cyclone-scale baroclinic systems, and,
on a smaller scale, the development of cumulus-
type convection. However, the use of an equa-
tion allowing for additional instabilities would
be expected to increase rather than decrease
the growth rate of small errors, and would thus
alter our results only quantitatively. We might
note also that the use of an atmospheric spectral
function determined from detailed observations
rather than from a simple formula should also
bring about only qualitative changes, although
one might well obtain a considerably longer
range of predictability. by including a spectral
gap sorhewhei'e betwireen the synoptic and cumu-
lus scales.

Probably a more serious shortcommg of the
vorticity equation is its omission of dissipative
effects. Viscosity may be unimportant, since we
have treated all scales of motion as part of the
flow. Consequently only molecular -viscosity
need be considered, and its direct effect is negli-
gible except on the smallest scales, where it
leads to the already mentioned cut off of energy
in the dissipation range. Similar considerations
apply to conductivity. Radiation, however, can
have a s1gn1flcant direct dissipative effect on all
scales of motion, and its omission may make
the model unrealistic. It would be desirable to
repeat the present study with a model where
temperature appears explicitly as a dependent
variable and where internal radiative heat ex-
changes and radiative heat exchanges between
the system and its environment are present.
Presumably these effects Would reduce the
growth rate. -

The effects of the’ varlous “statistical a,ssump-
tions used in the model are more difficult to
assess, and they may be much more serious.
The assumptions. of homogeneity and isotropy
are not realistic; the latter assumption does not
allow any chmatologlca,l mean motion, such as
& zonal Westerly current, while the former does
not permit variations of any chmatologlcal, pro-
perties from one location to another. Likewise,
the working hypothesis that. quadratic functions
of the errors and quadratic functions of the
flow upon which the errors are superposed are
statistically independent presumably does not
hold in the real atmosphere, and is possﬂoly the
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feature of our procedure most open to criticism.
In thls cotinection we should note that such

'systems as’ large cumuhis clouds are not ran-

‘domly distributed throughout the atmosphere,
but have s preference for regions containing
siich meso-scale systems as squall- lines and
fronts These in turn are not randomly distrib-
uted; ‘but” prefer certam locations relative to

larger-scale™ synoptlc “features. " It would bé

desirable to’ repeat the study using some set of
stat1st1cal assumptions which ‘takes this sort of
systemetlc nonrandomness into account

Desplte these shortcommgs, we fell that this
work suggests ‘that the éarth’s atmosphere may
possess a’ certain intrinsic lack of predictability.
Indeed, the evidence is strong enough to make
further investigation of the question virtually
mandatory. It is especially noteworthy that the
Tahges of predictability of the various scales of
motion obtained in our first three experiments
agtee’ remarkably 'Well'yvith the times deduced
by Robinson (1967).

“In an earlier paper dealing with predlctablhty,
the writer (1963d) quoted a meteorologlst whose
idéntify hé still eannot reécall, as having main-
thinéd’ somewhat dxsparagmgly that if the the-
ory of atmospheric 1nsteb111ty were correct, one
flap of a sea gull’s wings would foréver changé
the future’ course of the’ Wea,ther If we take
the results of the present study at face value,
we mlght ‘conclide ‘in addition ‘that such a
change would" be ‘réalized within ‘about seven-
toen days. Before accepting this conclusion, we
sliould ‘observe that we could equally well con-
elude from this study that one flap of a sea gull’s
wmgs would alter the beha,v10r of all cumulus
clouds withih about one hour, Since even' sound
waves cannot’ reach 'distant parts of the globe
iri so short & ‘tirne, it is'somewhat difficult to
accept the latter conclusion. It would seem more
logxca,l 6 seek some feature of the present
miodel ‘which renders it ma.pphceble to this
part1cular problem )

“From the point of v1eW of all but the smallest
scales of motlon, a d1sturbsnee created by a
sxngle flap of a so8 gull’s ngs 1s 8 pomt disturb-
ance. Let us suppose that after some small time
interval, the smaller-scalé errors resultmg from
an initial point disturbance have grown to “be-
come as large in amphtude as the smaller-scals
notions “upon which" they are superposed,
Wwithin a region near the initial disturbance, but
t_het ‘the errors are Stlll' ’undetecteble over most

of the globe. The error energy is then still very
small compared to the global kinetic’ energy in
the same scale, and in the procedure used. ini this
study the linear equations would be &ssumed
to hold. In actuehty, the errors will already
have entered their nonlinear pha; ‘of growth,
since they are large in those 1 ns whe

ons where
they exist at all, and they should no longer ‘be
a,mphfylncr except near the boundery of the
region which they occupy LT

It thus appeers ‘that our method of treatmg
the nonhnearlty greatly overestlma.tes the
growth rate when the initial errors are’ ¢on-
contrated at 'a ‘point, and con stitutes another
possible shortcommg of the procedure in ‘the
general case. If we should WlSh to study the
effect of the simultaneous acthlty of all’sea
gulls, our method mlght still be apphceble,
after the errors’ had progressed to & scale com-
parable to thé average dlstance between sea

gulls

Summar)r e -

We have proposed that certam formally de-
termmlstlc fluld systems possessmg many scales
of motion may be observatlons,lly mdlstm-'
gmshable from indeterministic’ systems, in that
they possess an intrinsic finite range of predie-
ta.blhty whrch ‘cannot be lengthened by. reduemg'
the error of observatxon t6 any value greater
than zero. We have then ‘sought o’ détermine
whether certain systems governed by ‘the two-’
dimensional vorticity equation fall “into this
categ wy We have not been able to prove or
disprove our con;ecture, gince in order to render
the appropriate equations tractable we have
been forced to introduce’ certa.m statigtical ‘as-
sumptlons Wthh ca,nnot be rlgorously d fended.
Nevertheless, we have seen that if our.
a.ssumptlons are ]ustrfled our conJecture is cor-
rect.’

In the ‘strictest sense ‘real ﬂuld systems are
not contmua, and our results do not apply to
them. Systems whose motion is hlghly turbu-
lent, liowever, are closely apprommated by the
ldea.hzed systems. Wl‘llch we have considered. It
appea,rs hkely, then, tha,t certa.m turbulent
systems, pos51bly mcludmg the earth 8 a.tmo-
sphere, possess for practical purposes a fmlte
range of predictability, which, once ‘the observa-
tions have been refined to & certa,m pomt can-
not be notlcea.bly extended by 1mprovmg the
observatlons st111 more )
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