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Abstract

Low-order models (LOM’s), which are systems of ordinary differential equations which
have been simplified by extreme reduction of the number of dependent variables, are often
capable of répresenting atmospheric processes in a qualitatively correct manner. With a LOM
it is generally possible to obtain a much more extended time-dependent solution, or a much
larger ensemble of solutions, than would be economically feasible with a larger model.

A general procedure for constructing LOM’s is described. A selection of LOM’s is
presented, to illustrate the many forms which these models may take and the many uses to
which they may be put. The step-by-step construction of a LOM is illustrated with a model
of the large-scale circulation of a moist atmosphere.

1. Introduction

Some forty years ago, soon after commencing
my meteorological education, I reached the con-
clusion that dynamic meteorology was a subject
with many equations and few solutions. In the
classroom we devected much time to the formu-
lation of equations governing the behavior of
the atmosphere. We also studied some special
solutions of simplified forms of these equations,
such as the familiar “Ekman spiral” solution for
the vertical variation of the wind near the earth’s
surface, but we never considered the nature of
the general time dependent solution. It appeared
that the principal aim of dynamic meterology
was to produce rational explanations for typical
weather phenomena rather than to predict the
future evolution of particular weather situations,
and we were never taught whether the equations
might be used for routine weather forecasting.

It is easy to understand why this situation
should have prevailed. The equations possess a
form of nonlinearity which makes it unfeasible
to determine the general analytic solution. The
particular solutions which may be found after
suitable simplifications have been introduced are
often steady-state solutions, and in any event
are rather specialized.

The most prominent nonlinear terms in the
equations, and the only ones appearing in some

of the popular simplifications, represent the ad-
vection of some variable quantity, such as tem-
perature or vorticity, by the wind, which is also
a variable quantity. The terms are therefore
quadratic, containing products of the advected
quantities with the advecting wind. They cannot
be removed by any transformations of the in-
dependent or dependent variables.

In the 1940’s and earlier, the standard pro-
cedure for obtaining approximate time-dependent
solutions of the equations was linearization. This
involves first finding a particular exact solution;
very often this represents a steady state. Small
departures from this solution are then governed
approximately by a system of homogeneous linear
equations. If the original solution is simple
enough, the coefficients in the linear system re-
duce to constants, and the solutions are ex-
ponential or trigonometric functions of time. It
should be noted that lineraization does not re-
move the effects of advection; it simply replaces
the product of two unknown quantities by the
product of an unknown and a known.

The miost justifiable use of linearization is the
investigation of the stability of the original solu-
tion with respect to small perturbations. How-
ever, since linearization formely afforded. the only
method for finding approximate time-dependent
solutions, these were often considered acceptable
even when their departures from the original
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solution could not logically be called “small”.

The appearance of computers a few years later
changed the situation completely. It soon became
obvious that computers could obtain approxi-
mate solutions to the meteorological equations
by stepwise numerical integration. The most spec-
tacular advance was “numerical weather predic-
tion”—the production of short-range forecasts
by obtaining time-dependent solutions originating
from observed intial conditions. This develop-
ment was soon followed by numeriacl simulation
of the general circulation, which is like numeri-
cal prediction except that the initial conditions
need not be drawn from real weather situations,
and the integrations are extended for weeks or
longer rather than days. The purpose of numeri-
cal situation, however, is the explanation of ob-
served features rather than the production of
forecasts, and in this respect it is more in keep-
ing with the original aims of dynamic meterology.

The advent of computers not only changed cur
procedures for solving the equations; it also
changed our way of thinking about them. The
analytic function of time had been the only
mathematically “true” solution; it incidentally
allowed one to express a final state directly in
terms of an initial one. The numerical solution,
where one advanced through a sequence of “ir-
relevant” intermediate states to obtain a final
one, had been a curious and wasteful approxi-
mation; suddenly it became the natural solution,
and, in some minds, the “true” one.

When computers were new in meteorology,
they were expensive, and unavailable to the ma-
jority of dynamic meteorologists. For those who
did have access, solution of an equation by com-
puter had to be preceded by many days of prepa-
ration. It presently occurred to me that if the
equations were sufficiently simplified, perhaps to
the point where they could not produce good
weather forecasts, but where they still might
qualitatively reproduce some features of the
general circulation, they might in the same num-
ber of days, or perhaps considerably fewer, be
solved by slide-rule or hand computation, using
the newly acceptable numerical procedures. This
proved to be the case; the highly simplified sys-
tems have since become known as low-order
models (LOM’s)—a term apparently introduced
by Platzman (1960).

It might seem that LOM’s would have proven
to be a temporary measure, to be abandoned
once computers became more powerful and more
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readily available. This was not the case. When-
ever computers have become big enough to do,
with detailed systems of equations, what they
could previously do only with simple systems,
there have always been still bigger jobs to be
done. Moreover LOM’s, even if originally con-
ceived as a means of bypassing the need for
computers, are ideally suited for computer solu-
tion. Thus, when computers were finally able
to make a 24-hour forecast in a few minutes
with a detailed model, they could simulate many
years of weather in the same time with a LOM.
When they could economically simulate many
years of data with a detailed model, they could
produce a large ensemble of many-year-long
solutions with a LOM.

In this review I shall present a selection of
low-order models, chosen to illustrate the wide
variety of ways in which they may be formu-
lated, and the wealth of uses to which they may
be put. To a considerable extent I shall be giving
an account of my own experience with LOM’s,
from one conceived a quarter century ago, and
solved by hand computation, to one still being
developed, and requiring a moderately powerful
computer. However, I shall include a fair number
of models developed by other investigators, in
order that this review may better serve its in-
tended purpose. Had 1 written this article some
fifteen years ago, I might have attempted an
exhaustive survey, but today it is altogether im-
practical to describe all LOM’s which have ap-
peared in the meteorological literature, or even
all of the important ones; there are too many.

2. Construction of a low-order model

In theoretical studies of the atmosphere the
governing equations, if they enter explicitly, are
invariably simplified in various ways before any
attempt is made to solve them. The most nearly
exact equations which we can formulate are far
too complicated. The choice of simplifications is
dictated by the particular problem to which the
equations are to be applied.

For example, when we are interested only in
the larger scales of motion, we ordinarily omit
the description of the superposed smalled scales,
and introduce the combined effect of the smaller
scales upon the larger scales into the equations
in terms of exchange coefficients. In addition
we usually replace the vertical equation of motion
by the hydrostatic equation. If instead we are
interested only in the smaller scales, we gener-
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ally specify in advance the larger-scale field on
which they are superposed.

In definitive studies of tropical circulations we
must recognize water vapor and liquid water as
atmospheric constituents, and evaporation from
the ocean and land as a fundamental process,
but, when we are interested only in the higher
latitudes, we often omit water altogether, and
treat the atmosphere as an ideal gas. In addition,
after expressing the horizontal velocity in terms
of its vorticity and divergence, we often replace
the divergence equation by a quasi-geostrophic
approximation.

Without a good description of the water vapor
and clouds we cannot accurately specify the
incoming and outgoing solar and terrestrial radi-
ation, and we sometimes replace this by New-
tonian cooling. In other instances we omit ther-
mal forcing and thermal and mechanical damp-
ing altogether. Additional simplifications in com-
mon use are the omission of mountains and
smaller orographic features, the replacement of
the ocean and land areas by a homogeneous
underlying surface, and the replacement of this
spherical underlying surface by an infinite or
bounded plane.

If we are now to solve the equations by com-
puter, we must make further modifications. We
must somehow represent the field of each of
the N dependent variables (wind components,
temperature, etc.) by a finite set of numbers.
Usually we first introduce a set of L horizontal
levels or layers, and replace each three-dimen-
sional field by L two-dimensional horizontal fields,
one for each level. Vertical derivatives or inte-
grals are replaced by finite differences or sums.
There are variants where different levels or dif-
ferent values of L are used for different depend-
ent variables.

Next, we introduce a set of M grid points in
each horizontal layer, and replace each hori-
zontal field by M numbers, one for each grid
point. Horizontal derivatives are replaced by
finite differences. There are variants where differ-
ent grid points are used for different horizontal
fields.

An alternative procedure which is being used
more and more frequently is to introduce a set
of M spatially orthogonal functions, and approxi-
mate each horizontal field by a linear combination
of these functions. The coefficients in the linear
combinations become the new dependent varia-
bles. Horizontal derivatives are expressed as line-
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ar combinations of horizontal derivatives of the
orthogonal functions, which in turn are approxi-
mated by linear combinations of the orthogonal
functions. There are variants where different sets
of orthogonal functions are used for different
horizontal fields.

Finally, we use some scheme to replace the
time derivatives by time differences. We can
then solve the resulting system of LMN differ-
ence equations by stepwise numerical integration.

The construction of a low-order model is the
same as that of a more general model, except
that L and M, and often N, are chosen to be
very small. The minimum allowable values de-
pend upon the phenomena being investigated.
For large-scale motion, L=1 may reveal the
barotropic processes, while L=2 may capture
the principal baroclinic processes. Grid points
tend to the unsuitable for LOM’s, since finite
differences are unlikely to afford good approxi-
mations to horizontal derivatives when M is too
small. Most LOM’s have therefore been based
on orthogonal functions. Some of the nonlinear
interactions which render the original equations
intractable may be captured when M=3.

In detail, a LOM may be developed as fol-
lows. Let the dependent variables in the hori-
zontally continuous equations, after the desired
physical simplifications have been introduced, and
after the vertical continuum has been replaced
by L levels, be X1,...,Xi, where K=LN, and let
the equations be

0X/0t=1, Aije(X;, Xi)+ 23 Bij(X)+Cq,
Js J
2.1

where ¢ is time, A is a quadratic operator
which is linear in X; and also in X, B; is a
linear operator, and C; is independent of Xj,. ..
Eq. (2.1) is not completely general, since in the
real atmosphere there are important nonlinear
processes, such as radiation and condensation,
which are not quadratic, but it includes many
familiar non-operational atmospheric models.
Corresponding to each variable X; chose a
set of M; orthogonal functions $im» for m=0,
.,M;—1, satisfying any boundary conditions
satisfied by X;, and satisfying the relations
imbin="0mn , (2.2
where the bar denotes an average over the hori-
zontal region in which X; is defined. We may

then approximate X; by

M;—1
Z Xim¢im >

m=0

Xi= (2.3)
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where

Xim=Xi¢im- (24)
It is often convenient to choose ¢i=1. In many
cases the same set of functions ¢m is chosen
for each variable X;. Frequently the chosen func-
tions ¢iyn are eigenvalues of some equation; for
" example, we may require that

Vz¢im= —xim¢im » . 5).
where /2 is the horizontal Laplacian operator.
Trigonometric functions satisfy (2.5).

Upon substituting (2.3) with suitable indices

into the right side of (2.1), multiplying by @im,
and averaging, we obtain the system

al;;im = j,p§'q Aimipka XjpXkq
—l—jZI:J bimjpXip+ cim (2.6)
where
dimjpkq =m ’ 2.7
bimiv= $imBir(Piv) , 2.8
cim = GimC: . 2.9

If K and M; are sufficiently small, Eq. (2.6) de-
fines a low-order model.

The derivation of equations like (2.6) from
equations like (2.1) is straightforward. What is
not so straightforward is the original choice of
physical simplifications, and the subsequent se-
lection of the set of orthogonal functions, or grid
points. Ideally these should be guided by the
particular phenomena in which the modeler is
interested, and the specific questions which he
hopes to answer.

For example, if we are simply interested in
some of the properties of geostrophic motion,
a quasi-geostrophic model, in which the streatm-
function and isobaric-height fields are identified
with each other, may be appropriate. If, on the
other hand, we wish to explain why the motion
tends to be geostrophic outside of the tropical
regions, we need a model whose physical formu-
lation allows the atmosphere to choose between
geostrophic and ageostrophic motion. A primitive-
equation model is then called for.

Guidelines of this sort have not always been
followed. In fact, many LOM’s have been con-
structed by modelers who were not seeking an-
swers to any preformulated questions at all. Such
models may nevertheless serve a useful purpose;
for example, they may illustrate some atmospheric
phenomenon in a more comprehensible manner
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than would be possible with a less simplified
model. Moreover, it sometimes happens that a
LOM provides answers to questions formulated
after the fact. Finally, a LOM constructed by
one investigator is often found by another investi-
gator to possess new potential uses.

3. Some models of conservative systems

Although the circulation of the atmosphere
owes its existence to thermal forcing, and is
tempered by thermal and mechanical dissipation,
much work in dynamic meteorology has been
based on systems of equations which have been
simplified by omitting forcing and damping al-
together. Such systems of equations are often
called conservative, since they effectively assume
that the total energy of the atmosphere does not
change. Among conservative systems were the
first models used for numerical weather predic-
tion. The rationale was that regardless of how
important past forcing and damping may have
been in bringing about the weather situation at
forecast time, the effect of the additional forcing
and damping during the next 24 hours or so
should be minor. Like the earliest numerical-
weather-prediction models, the first LOM’s were
conservative.

Probably most meteorologists would agree that
the simplest system of nonlinear partial differ-
ential equations derivable from the atmospheric
equations by physical simplifications consists of
a single equation, the barotropic vorticity equation

W2y /ot=—J(P, PP+ 1), 3.1

where ¢ is a stream function for the horizontal
velocity, f is the Coriolis parameter, and J is a
Jacobian with respect to horizontal variables.
In the simplest variant of (3.1), f is treated as
a constant and its gradient vanishes.

To derive (3.1) from the atmospheric equa-
tions we treat the atmosphere as a homogeneous
fluid, neglect all irregularities of the earth’s sur-
face, omit all forcing and damping, and suppress
all vertical variations of the horizontal velocity
field. We may take the earth’s surface to be
spherical, but it is simpler to treat it as an infinite
or bounded plane. Eq. (3.1) is a statement of the
conservation, at a point moving with the flow,
of absolute vorticity, or, with f constant, simple
vorticity, and as such it arises in a wide variety
of fluid dynamical problems. It is distinguished
by possessing two quadratic invariants—the Kine-
tic energy and the enstrophy. It has formed the
basis for many meteorological studies where sim-
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plicity has been deemed important, and it is a
natural starting point for the development of a
LOM.

Eq. (3.1) is a special case of (2.1). Since K=1,
the subscripts i, j, and k are superfluous, and we
shall omit them, but, for convenience, we shall
replace the subscripts m, p, and g by double
subscripts. If we define ¢ over an infinite plane,
and require that ¢ vary periodically in both the
eastward and northward directions, suitable ortho-
gonal functions satisfying (2.5) as well as 2.2)
are the trigonometric functions
3.2)

where m and n are integers, a and b are real
constants, x and y are eastward and northward
distances, and i is now the imaginary unit rather
than an index. Eq. (2.3) becomes

Sl’ = mZn ¢mn¢mn s

where ¢mn. may be complex, and ¢m. and
¢ —m» —n must be conjugates to make ¢ real.

In constructing what to our knowledge was
the first nonlinear meteorological LOM (see
Lorenz 1960), we restricted the values of m and
nto —1, 0, and 1, making M=9. We noted
further that ¢g is superfluous, while if o1,
@10, P11, and ¢; _y are initially real, they remain
real, and if ¢ =—¢: 1 initially, gu=—¢1 1
always, s> that effectively M reduces to 3. We
may then let

¢mn =ei(ma:v+nb1/) ,

3.3)

¢= A cos ax+ B cos by+C sin ax sin by,

3.4

and write the equations of the LOM as
dA/dt=aBC , (3.5)
dB/dt=fCA, (3.6)
dC/dt=71AB, 3.7

where the values of the constants «, §, and 7
depend upon a and b, and satisfy the relations

ata+b2f+ %(a2+b2)r=0 , (3.8)

1 .
ate+ b3+ ~—2—(a2+b2)27~ =0, 3.9
Physically B represents the strength of westerly
and easterly currents at alternating latitudes, and
A and C together define the amplitude and phase
of superposed waves.

Egs. (3.5)-(3.7) possess several interesting prop-
erties. First, the total kinetic energy E and the
enstrophy ¥V, where
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4E= a2A2+b2B2+%(a2+b2)C2, (3.10)

4V=a4A2+b4Bz+%(a2+b2)2C2 > G1D
are. quadratic invariants. More generally, it may
be shown that an invariant of any system of
partial differential equations will become an in-
variant of a spectrally derived LOM, provided
that the equations and also the invariant are
quadratic. This result greatly increases. the po-
tential usefulness of LOM’s in general

An immediate consequence of the invariance
of E and V is that (3.5)-(3.7) are easily solved
analytically. The solutions are elliptic functions
of time, and hence periodic, the particular elliptic
functions corresponding to 4, B, and C depend-
nig upon the ratio b/ and the initial conditions.
If b=a, C becomes constant, and the elliptic
functions degenerate to circular functions.

The LOM defined by (3.5)-(3.7) was derived
not to solve a particular problem, but to demon-
strate that LOM’s could be constructed in a
rational manner, and to illustrate various atmos-
pheric phenomena which are intrinsically non-
linear. We describe two of these.

First, when the large-scale waves, represented
by A and C, are superposed on a stable zonal
current, represented by B, they alter their shape
periodically, so as to produce alternate conver-
gences and divergences of momentum flux into
and out of the latitudes of the strongest wester-
lies, and the westerlies respond by alternately
increasing in strength. This decidedly nonlinear
phenomenon is also a property of Eq. (3.1), but
it cannot be illustrated by solutions of (3.1)
which can be determined analytically. Second,
if small-amplitude waves are superposed on an
unstable zonal current, they will amplify, in
agreement with linear theory, but in drawing
their energy from the zonal current they will
alter it to the point where it no longer supports
further growth. This process is ‘well represented
by the elliptic-function solutions.

The model is somewhat restrictive in that (3.4)
holds the cyclonic and anticyclonic centers at
specific latitudes and longitudes, while, at inter-
mediate latitudes, (3.5)-(3.7) do not permit the
longitudes of the troughs and ridges to vary
independently of their amplitudes. Platzman
(1960) noted that if, either on the plane or the
sphere, this restriction is removed by using four
real orthogonal functions instead of two to rep-
resent the waves, the solutions will still consist
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of elliptic functions. Subsequently Platzman
(1962) made a systematic study of all LOM’s
detfivable from Eq.(3.1) whose exact solutions
could be determined analytically. He found that
the LOM’s could contain as many as three inter-
acting complex orthogonal functions, and hence
up to six real variables. In all cases the solutions
were elliptic functions, except when they de-
generated to circular functions or constants.

Conservative LOM’s proved to have many uses
besides those which were originally visualized.
We mentioned first a work of Epstein (1969) in
which he introduced the idea of stochastic dy-
namic prediction. This involved deriving equa-
tions governing the evolution of ensemble means
and covariances rather than individual states.
The rationale was that since the initial state was
in any case uncertain, an ensemble-mean state
might have the greatest chance of being a good
forecast, while the variance would provide a
measure of the confidence to be placed in the
forecast.

As a system of equations to which first to

apply his method, Epstein chose the 3-variable’

LOM given by (3.5)-(3.7). He extended the inte-
gration for 10 days, and found, among other
things, that the variations of the ensemble mean
did not follow those of any particular member
of the ensemble.

Motivated by the same considerations, but
using a different approach, Paegle and Robl
(1977) followed the evolution of an ensemble
mean of solutions of (3.5)-(3.7) by computing
individual time-dependent solutions and then
averaging them. Even though each individual
solution was periodic, the periods of different
solutions were different, and the ensemble mean
decayed toward the long-term mean as the range
of the integrations increased.

A considerably different use for (3.5)-(3.7) was
found by Lilly (1965), who modified the system
by adding a fourth orthogonal function propor-
tional to cosaxcosby. He then used the model,
whose exact elliptic-function solution was known,
to test a number of frequently used time-differ-
encing schemes. ’

Conservative LOM’s need not be restricted to
barotropic flow. Sasaki (1967) formulated a model
of thermal convection, which is almost unique
amorig LOM’s in that it uses grid points instead
of orthogonal functions. Sasaki considered a sys-
tem which was invariant in one horizontal direc-
tion, and, in a vertical cross section, he chose
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"a grid of eight points, defining the temperature

at four of these, and the horizontal and vertical
velocity components each at two. His resulting
model possessed several invariants, including to-
tal energy. He obtained analytic solutions, which,
not surprisingly, were elliptic functions. Like the
earlier conservative LOM’s, his model was de-
signed more for illustration than explanation.
His solutions demonstrated the growth of con-
vective motions superposed on an unstably strati-
fied state, in agreement with linear theory, but
they also illustrated the deceleration and eventual
cessation of the growth.

4. Some models of forced dissipative systems

An advantage of LOM’s which was particu-
larly important when computers were slower is
the relative little labor needed to generate ex-
tended solutions, from which long-term means
and other climatological statistics may be evalu-
ated. Conservative models, which are quite ap-
propriate for some short-term problems, often
produce ludicrous weather ‘patterns when inte-
grated for too long, and in any case the statistics
which they generate are highly dependent upon
the chosen initial state. Thus there are occasions
when LOM’s of forced dissipative systems are
particularly appropriate.

Unlike the first conservative LOM’s, the first
forced dissipative LOM’s were conceived in order
to answer a rather specific question. This con-
cerned the potential value of certain empirical
weather-forecasting procedures. By the middle
1950’s numerical weather prediction was becom-
ing an established discipline, and was gaining
an increasing number of devotees. At the same
time a smaller but equally devoted group was
favoring statistical weather prediction, based on
empirically derived formulas. The most easily
established empirical formulas are linear, and,
among some of the latter group, the idea became
established that the performance of any non-
linear formula could be duplicated by a linear
formula, if the latter contained -as predictors
both present and past values of the quantities
appearing in the former. As one who had de-
voted some effort to both numerical and statisti-
cal forecasting, I doubted that this idea was
right, and [ proposed to test it by taking a
system of nonlinear differential equations and
solving it numerically. The time-dependent solu-
tion would then be treated as data, and would
be used to establish a linear empirical prediction
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formula- by standard procedures. Perfect non-
linear prediction of the data could be realized
simply by solving the equations again, and I
doubted that the linear formulas would even
be nearly perfect.

It appeared that while any system of non-
linear equations might suffice for the test, some
useful by-products might result from choosing
a system resembling the atmospheric equations.
Since the equations used in numerical weather
prediction were far too complicated to allow
sufficiently extended integrations to be performed
by the computers of that day, I proposed using
a LOM.

A model of thermally forced and thermally
and mechanically damped baroclinic flow was
subsequently constructed and made to run by
Bryan (1959). The model used spherical geome-
try, and its 14 dependent variables were the
coefficients of six spherical-harmonic functions
in each of two layers, plus a variable mean
temperature and static stability.- The model dem-
onstrated that models could be made to run
forever; it was the first meteorological model
to simulate a full year of data. It also afforded
a fair qualitative representation of some of the
principal features of the general circulation.

The model lacked one feature needed for the
proposed test; its solution was too regular, and
prediction of its future behavior was a trivial
matter. I subsequently sought a model which
would be no more complicated than Bryan’s,
but whose solution, even after the transient ef-
fects had died out, would vary aperiodically.
I eventually found one which differed from
Bryan’s principally in that the thermal forcing
varied with longitude as well as latitude (Lorenz
1962a). Upon establishing linear prediction for-
mulas from the numerical output, I found that
indeed they did not yield perfect forecasts.

In the model the stream functions in the upper
and lower layers were denoted ¢+ and ¢ —r,
and the potential temperatures were denoted by
f+c¢ and g—g, after which ¢ was identified
with 4 through the geostrophic relation. In the
final formulation ¢, z, 6 and ¢ were defined
over an infinite strip bounded on the south and
north by the lines y=0 and y=r/l, instead of
over a sphere. The chosen orthogonal functions,
satisfying the appropriate boundary conditions
for ¢ and ¢, were

$o=1,

¢1=2sinly cos kzx ,

@.1
@.2)
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$;=2sin Iy sin ka, 4.3)
$s=+"2 cosly, 4.4
$s=2 sin 21y cos kz, 4.5)
¢s=2 sin 2ly sin kzx , (4.6)
pe=+"2 cos2ly; “.7

¢ was expressed in terms of ¢i,....¢s 0 in
terms of do.. . ..d6 and ¢ in terms of ¢¢ alone.
If ¢ had been allowed to vary horizontally, the
equations would have been rather awkward to
solve.

The LOM which had taken so long to develop
proved to have many useful by-products. We
mention first its application to the laboratory
experiments of Fultz (1953), Hide (1953), and
others. In brief, a rotating cylinder or annulus
containing water is heated at the outer radius
and cooled at the center or inner radius. With
slow rotation, or with more rapid rotation and
either very weak or very strong heating, the
resulting flow is symmetric, i.e., independent of
“longitude”, but with more rapid rotation and
moderate heating a set of waves develops. These
may progress without changing their form, they
may vacillate, i.e., vary their form periodically,
or they may vary with an irregularity reminiscent
of the atmosphere.

We had previously hypothesized (Lorenz 1953)
that the wave regime would ensue when the sym-
metric flow became baroclinically unstable, and
furthermore that the stability of the flow under
strong heating, despite the large horizontal tem-
perature gradient and accompanying vertical
“wind” shear, resulted from the high static sta-
bility produced by the rapid large-scale over-
turning. The LOM appeared to be as good a
model of the laboratory experiments as of the
atmosphere, and, in view of its time-variable
static stability, it offered a means of testing the
hypothesis. ‘

In addition, if all the variables and constants
in the LOM with subscripts 4, 5, or 6 initially
vanish, they continue to vanish, and may be
discarded, so that the remaining system of eight
equations is also a complete LOM. It has by
now been truncated to the point where the waves
can no longer effect a net cross-latitude transport
of momentum, but they can still transport sensi-
ble heat, so that the model is still potentially
useful for studying baroclinic instability. The
reduced model was easily modified to apply to
a cylindrical region instead of a channel; the
only changes were in the numerical values of
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some of the constants. It proved to be easy to
solve analytically for the steady state, and to
determine its stability; the criterion for baro-
clinic instability showed excellent qualitative
agreement with Fultz’s experimentally determined
transition curve. Furthermore, when four more
variables were added to the model, so that waves
of two consecutive wave numbers were repre-
sented, analytic solutions for the wave-number
transitions closely duplicated the experimental
results (Lorenz 1962b). '

To study the phenomenon of vacillation we
returned to the 14-variable model (Lorenz 1963a).
We were also forced to return to numerical meth-
ods of solution. We found that, just beyond the
limits of baroclinic instability of the symmetric
flow, steady waves would develop (.e, steady
in a moving coordinate system), but, when these
limits were sufficiently far exceeded, vacillation
would set in. Moreover, the mechanism for vacil-
lation was indicated as being the barotropic in-
stability of the flow which consisted of the sym-
metric flow plus the superposed steady waves.
Without the waves the symmetric flow would
have been barotropically stable; the role of baro-
clinic instability in vacillation thus appeared to

_be the production of the waves.

In a final variation of the model (Lorenz 1965)
we increased the number of variables to 28, by
allowing the simultaneous presence of interacting
waves of three different wave lengths, but sup-
pressing the variations of horizontally averaged
temperature and static stability. We then made
a study of predictability, by first obtaining nu-
merically a “control solution” extending for 64
days, and then superposing numerous small per-
turbations at various times during the 64 days.
In each case we determined how rapidly the
perturbed solution would depart from the control
run. This was the first of many systematic studies
indicating that small differences between solu-
tions would double in a matter of a few days
(in this case, four days on the average), and
hence to imply that, while there might be con-
siderable room for improvement in one-week
weather forecasts, accurate forecasting a month
or more in advance was not possible.

Like conservative models, forced dissipative
baroclinic models soon found uses other than
those originally planned for them. We mention
one application.

In investigating stochastic dynamic prediction
and its relation to predictability, Fleming (1971)
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introduced the concepts of certain and uncertain
energy. Sometimes all that we may know about
a state of a system is that it is a member of
a particular ensemble. The ensemble-mean ener-
gy, if it is quadratic, may be resolved into
certain and uncertain energy—the energy of the
ensemble-mean state, and the mean energy of
the departures of individual states from the mean.
The latter affords a measure of uncertainty as
to the precise state. Both certain and uncertain
energy may be resolved into kinetic and available
potential energy. Fleming derived expressions for
the generation and dissipation of these forms
of energy, and the transformations among them.

As a case to which to apply these concepts,
Fleming chose the 28-variable model mentioned
above. He found that the major source of un-
certain energy was certain available potential
energy.

Thermally forced atmospheric circulations are
not restricted to those where the heating contrast
is horizontal. Small-scale convective systems
forced by heating from below or cooling from
above have also been popular subjects for mod-
elers. The forcing is ordinarily expressed in terms
of a. Rayleigh number.

One of-the first convective LOM’s was con-
structed by Saltzman (1962). Assuming uniformi-
ty in one horizontal direction, he expanded ver-
tical cross sections of the stream-function and -
temperature fields in truncated double Fourier
series, obtaining a seven-variable LOM, with
three variable representing motion and four rep-
resenting temperature, He obtained a number
of numerical solutions where the initial state was
a small departure from a state of steady con-
vection. For larger Rayleigh numbers the system
generally continued to oscillate. In one instance
all but three of the variables decayed to zero,
while those three continued to oscillate irregu-
larly.

Having noted this aperiodic solution, we fur-
ther truncated Saltzman’s model by retaining only
the three variables which did not decay, and
confirmed the aperiodicity (Lorenz -1963b). Al-
though too highly truncated to provide a good
representation. of convection, the new three-
variable model has attracted much attention from
mathematicians as a simple system which varies
aperiodically, despite its deterministic formula-
tion. Certainly no deterministic model with fewer
than three variables can undergo continual aperi-
odic oscillations.
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Recently Sutera (1980) added small-amplitude
random forcing to the three-variable convective
model. He obtained qualitatively similar aperiodic
behavior at Rayleigh numbers which would other-
wise have been subcritical. '

Seeking a system which would undergo a still
greater variety of regime transitions, Shirer and
Dutton (1979) constructed a model of moist
convection, in which they assumed that all up-
ward motion was saturated and all downward
motion was unsaturated. They found that six
variables were sufficient to produce a wealth of
regimes. Shirer (1980) subsequently extended the
study to all 11-variable model, in order to in-
clude the effects of a prespecific wind shear in
the environment. For suitable forcing the model
produced parallel cloud bands, whose orientation
was determined by the wind shear.

Even though the atmosphere is thermally
forced, it is possible to include forcing and damp-
ing in a barotropic model; the forcing would
have to be mechanical instead of thermal. One
of the first LOM’s of this sort was formulated
by Veronis (1963). The basic equation was still
the barotropic vorticity equation, but the model
represented flow in a square ocean basin, and
the forcing was identified with wind stress.
Veronis chose orthogonal functions of the form
sinmxsinny, and truncated the series for ¢ to
four terms by letting m and n equal 1 or 2.

For weak forcing Veronis found a single stable
steady solution, and in some instances two un-
stable steady solutions, but for stronger forcing
there was sometimes, in addition to the stable
steady solution, a stable but surprisingly com-
plicated periodic solution. This was one of the
first of many models found to possess two or
more distinctly different “climates.”

More recently, Charney and Devore (1979)
developed a three-variable forced dissipative baro-
tropic LOM, using the orthogonal functions ¢,
¢2, ¢3 defined by (4.2)-(4.4). Their model dif-
fered from earlier ones in that they included
mountains and valleys, with the form of ¢;.
For suitable forcing they obtained two stable
steady solutions, and were able to identify one
of these solutions with the occurrence of block-
ing in the atmosphere. The study thus supported
the hypothesis that geographical features play
an essential role in the blocking phenomenon.
Further support is afforded by a steady by Char-
ney and Straus (1980), who obtained similar
results with 12-variable baroclinic LOM with

E.N. Lorenz

263

mountains.

As a final example, we mention a 9-variable
barotropic primitive-equation model with forcing,
damping, and east-west mountain ridges (Lorenz
1980). The model illustrates the approach of an
initially unbalanced state to quasi-geostrophic
LOM may be derived. A striking feature of the
latter model is that although it represents baro-
tropic flow, it is identical to the three-variable
convective model (Lorenz 1963b) described ear-
lier. It therefore possesses aperiodic solutions for
suitable values of forcing, damping, and moun- |
tain height. It thus reveals another property of
LOM’s which increases their potential useful-
ness; a LOM, having been constructed to repre-
sent one physical phenomenon, may prove appli-
cable to a distinctly different one.

5. A model of a moist general circulation

We shall conclude our account with a descrip-
tion of a LOM which is still being developed,
and has not yet been applied to specific prob-
lems. It is a model of the large-scale circulation
of a moist atmosphere, and it includes thermo-
dynamic and radiative effects of water vapor
and liquid water, We present the model to illus-
trate the step-by-step construction of a LOM,
but also to indicate how certain difficulties which
have not arisen with previous LOM’s may be
handled, and to suggest possible future trends
in low-order modeling.

For several reasons the incorporation of large-
scale moist processes into a LOM is not straight-
forward. First, the nonlinear processes associated
with water are not quadratic, and the computa-
tions are not easily performed with orthogonal
functions. We shall handle this problem by using
orthogonal-function coefficients as basis variables,
and evaluating the spatial derivatives and advec-
tive terms as in dry models, but transforming
at each time step to grid points, evaluating the
remaining nonlinear terms at each grid point,
and then transforming back to orthogonal func-
tions. Obviously we must sacrifice some computa-
tional speed to do this.

Next, if orthogonal-function representations of
temperature and water-vapor content are trans-
formed to grid points, supersaturation may ap-
pear somewhere. We shall remove this possibility
by using some measure of the total water content
(vapor plus liquid) as a basic variable, and intro-
ducing an auxiliary formula to evaluate the
water-vapor content at each grid point.
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Finally, between the tropics and the polar re-
gions the total-water mixing ratio may vary by
one or two orders of magnitude. A highly trun-
cated orthogonal-function representation might
therefore transform to negative mixing ratios at

high-latitude grid points. Accordingly, we shall’

use total dew point (the value which the ordinary
dew point would assume if all the liquid water
were vaporized) instead of total-water mixing
ratio as the basic moisture variable; extreme
values of total dew point should not differ by
more than a factor of two. .

In formulating the continuous equations from
which the model will be derived, we shall choose
pressure p as the vertical coordinate, and let the
atmosphere be contained between the surfaces
p=0 and p=pe=1,000 mb; the height of the
1,000-mb surface will be variable. The under-
lying surface will consist entirely of ocean. The
system will be quasi-geotrophic.

Our basic dependent variables will be hori-
zontal velocity expressed in terms of a stream
function ¢ and a velocity potential y, individual
pressure change w, height z temperature 7T, to-
tal dew point W, and sea-surface temperature S.
Auxiliary variables will be the saturation mixing
ratios u, w, and s at pressure p and temperatures
T, W, and S, and the water-vapor mixing ratio
v; thus w will be the total-water mixing ratio.

The standard assumption for v is that it is the
minimum of # and w. Since in a LOM a single

- grid point represents a large area, we prefer
a formulation where a portion of the area may
be subsaturated while another may contain clouds.
A convenient formula which makes the liquid-
water mixing ratio w-v small when the degree
of subsaturation u-v is large, and vice versa, is

6.1

where y is a constant. Choosing y =174 makes
the relative humidity r=v/u=0.8 when w=u;
the remaining water is in the form of clouds.
We also note that choosing y =0 would reduce
(5.1) to the standard assumption; thus, in a set
of models with successively higher horizontal
resolution, successively smaller values of y might
be appropriate.
We shall relate u and T by the formula

5.2
where ¢’ is a constant and p=L/R,T* Here L
is the latent heat of condensation, assumed con-

stant, R, is the gas constant for water vapor, and
T*=273 K is a typical atmospheric temperature.

w—v(w—v)=7?,

u=c'Tep-t,
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Analogous formulas will relate w and W, and
s and S. Eq. (5.2) is a derivable from an approxi-
mation to the Clausius-Clapeyron equation in
which the factor T*T replaces the factor T2
An appropriate value for p is about 20.0, and
we shall choose p=20 exactly, since much com-
putation can be saved by evaluating integral
instead of fractional powers. In fact, since' in
the radiation formulas we must compute T? in
any case, we need only compute (T%)5.

Our basic diagnostic equations will be the
thermal wind equation

o¢/op=—(R/f)T/p, (5.3)

obtained by eliminating z from the hydrostatic
and geostrophic equations, where R is the gas
constant for air and f, is the constant average
value of the variable Coriolis parameter f, and
the equation of continuity

ow/dp=—VF?3y.
Our prognostic equations will be
oV ot= ~J(P, F2p+f)— fol X+ V2F,

5.4

5.5
d(cyT+Lv)/dt=RTw/p+H, (5.6
dw/dt=G , 5.7
ds/dt=E, 5.8

where ¢, is the specific heat of air at constant
pressure, F denotes the effects of friction, H
denotes the atmospheric “heating”, including the
gain of latent heat through evaporation from the
ocean, but not the effects of evaporation and
condensation within the atmosphere, G denotes
the effects of evaporation and precipitation, and
E denotes oceanic heating. The simplified form
(5.5) of the vorticity equation is consistent with
the geostrophic approximation. By writing the
thermodynamic equation (5.6)-in terms of specific
enthalpy c,T+ Lv, we include the thermodynamic
effects of water. We note that dv/dt may be
expressed of du/dt and dw/dt through (5.1), and
subsequently in terms of dT/dt, dW/dt and
through (5.2).

We next reduce the vertically continuous equa-
tions to a form of the two-layer model in which
we define ¢ at two levels but T at only one.
It is consistent with this formulation to define W
at only one level. We shall obtain the new equa-
tions by integrating (5.6) and (5.7) vertically
through the depth of the atmosphere, and (5.5)
through the upper and also the lower 500 mb,
or equivalently, through the upper 500 mb and
the entire 1,000 mb, instead of simply applying
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(5.6) and (5.7) at one level and (5.5) at two.
The advantage of this procedure is that the
vertical integrals F,G, and A of F,G, and H
contain only the fluxes across the ocean-atmos-
phere surface and the top of the atmospbere;
the integral F of F through the upper 500 mb
also contains the momentum flux across 500 mb.
To perform the vertical integrations we must
specify the vertical structure of the variables.
We shall assume that in each vertical column

T=To(p/po), (5.9

where 1 is a constant, whence, from (5.3) and
(5.2),

¢=¢o—(R/foZ)T0(p/Po)l , (5.10)

u=uo(p/po)**1. (5.11)
Noting that 2=0 would imply an isothermal
lapse rate, while 1=R/c,=2/7 would imply a
-dry-adiabatic lapse rate, we arbitrarily choose an
intermediate value 0.175. We shall also let the
relative humidity v/ u be constant in each column,
whence, from (5.1), w/u is constant, so that

w=wo(p/po)** 1, (5.12)

W=Woup/po)* . (5.13)
Finally, we let -

x=x0(2p/po—1), (5.14)
whence, from (5.4)

w=—F%x(p*/po—Dp) . (5.15)

When (5.9)-(5.15) are substituted into (5.5)-(5.7)
and the vertical integrations are performed, we
obtain the equations of the model, in which the
basic dependent variables are the surface values
o, To, y0, Wo, and §, and the forcing functions
are 7, F, G, H, and E. We can eliminate 9T,/
at from the thermodynamic and thermal-vorticity
equations, obtaining an @-equation expressed in
terms of yo, which although awkward, is tracta-
ble.

We shall make # and F proportional to ¢o and
Ty, evaporation and precipitation proportional
to s-v and w-v, and sensible heat flux propor-
tional §—T. Radiation is not so simple. A high-
ly sophisticated treatment would be pointless in
a model which has been so simplified in other
respects, so we shall represent some properties
of radiation crudely and others not at all.

We shall assume a fractional cover dependent
on relative humidity; in our first experiments it
equals r4. Solar radiation which strikes the clouds
will be totally reflected; that which misses the
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clouds will penetrate the atmosphere and heat
the ocean. We shall express solar radiation in
terms of a “planetary temperature” To.

We shall let the water-vapor spectrum possess
a window through which a fixed fraction a’ of
the radiation emitted by the ocean, proportional
to $%, and not striking the clouds, passes to outer
space. The remaining fraction 1-a’ is absorbed
by the atmosphere, as is all long-wave radiation
striking the clouds. The atmosphere radiates up-
ward and downward respectively at rates pro-
portional to T,* and T,% where T, and Ty are
the temperatures of the uppermost and lowest
0.3 mm of precipitable water; the radiation from
the cloud-free portion is diminished by the fac-
tor 1-a’.

To obtain a LOM, we shall express the fields
of ¢, To, Wo, S, and Tq in terms of the ortho-
gonal functions ¢o,. . .,¢e defined by (4.1)-(4.7),
and used in the vaciliation study. We may con-
sequently anticipate vacillating and irregular as
well as steady behavior. Since the constant term
in ¢p is meaningless, there are 27 prognostic
equations. As noted, at each time step we must
transform back and forth from orthogonal func-
tions to grid points.

Ideally the heat capacity of the ocean, or its
mixed layer, should be large, but equilibrium
states are approached more rapidly if it is set
to zero. Eq. (5.15) then becomes the diagnostic
equation E=0, and the number of prognostic
equations reduces to 20, making the output easier
to diagnose.

Our preliminary experiments have yielded some
interesting results. First, if Tq is horizontally
uniform, the system approaches a horizontally
uniform state of rest, but, for some values of
Tq near 275 K, there are two equibria—a very
cold one and a very hot one. This situation evi-
dently results from a cloud-albedo feedback pro-
cess. There is little evidence that it is realistic;
however, we do not really know how the atmos-
phere would behave if solar heating were uni-
form over the globe.

Next, when we allowed Tq to vary with lati-
tude only, so as to produce a Hadley circulation,
we first prOduced tropical temperatures above
the boiling point of water and polar temperatures
near absolute zero. We suspected an instability
associated with the assumption of a fixed lapse
rate, which would exceed the moist-adiabatic at
high enough temperatures, but we finally found
that the difficulty resulted from the choice of
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grid points, and that it disappeared when the
number of grid points in the y-direction equalled
the number of zonal orthogonal functions (g,
$3, and ¢g). We thus learned something about
constructing LOM’s with orthogonal-function to
grid-point transformations.

Finally, when we perturbed an established
Hadley circulation with a sufficiently strong cross-
latitude temperature contrast, we obtained waves
of reasonable amplitude progressing at a reason-
able speed, and the associated moisture and ver-
tical motion patterns were reasonable. We there-
fore believe that a low-order model of a moist
general circulation is feasible.

6. Concluding remarks

Low-order models of the atmosphere, origi-
nally conceived as a means of illustrating some
of the effects of nonlinearity, have proven useful
in investigating specific problems, some of which
could not readily be studied by other means. We
have described a considerable variety of uses to
which they may be put. We have seen that as
computers have become more powerful, and as
tasks which might have been considered appro-
priate for LOM’s have become suitable for larger
models, still larger tasks have become suitable
for LOM’s.

Despite the speed with which extended nu-
merical solutions of LOM’s can be generated,
we feel that there remain some tasks which will
not be easily performed with LOM’s until still
faster computers are available. Among these,
some may require extended runs with a more
slowly operating LOM, such as the moist model
which we have described. Others, which may
not involve the higher-degree nonlinearity of the
moist model, include the extension of a single
run for a long enough time to permit climatic
changes with the periods of ice ages, generation
of very large ensembles of solutions to obtain
fairly precise estimates of ensemble statistics,
and such specific tasks as the determination of
the normal modes of a system about a basic
state which is not steady, but which is under-
going a complicated periodic cycle.

7. Acknowledgment

The research resulting in the construction of
the low-order moist model, described in the fifth
section, has been supported by the Air Force
Geophysics Laboratory, Air Force Systems Com-
mand, under Contracts F 19628-78-C-0032 and

Journal of the Meteorological Society of Japan

Vol. 60, No. 1

F 19628-81-K-001.

References

Bryan, K., 1959: A numerical investigation of cer-
tain features of the general circulation. Tellus,
11, 163-174.

Charney, J. G., and J.G. Devore, 1979: Muitiple
flow equilibria in the atmosphere and blocking.
J. Atmos. Sci., 86, 1205-1216.

Charney, J. G., and D. M. Straus, 1980: Form-drag
instability, multiple equilibria and propagating
planetary waves in baroclinic, orographically
forced, planetary wave systems. J. Armos. Sci.,
87, 1157-1176.

Epstein, E.S., 1969: Stochastic dynamic prediction.
Tellus, 21, 739-757.

Fleming, R.J., 1971: On the stochastic dynamic pre-
diction: 1. The energetics of uncertainty and the
question of closure. Mon. Wea. Rev., 99, 851-872.

Fultz, D., 1953: A survey of certain thermally driven
fluid systems of meteorological interest. Fluid
models in geophysics, Proc. 1st Sympos. Models
in Geophys. Fluid Dynamics, Baltimore, Johns
Hopkins Univ., 27-63.

Hide, R.: Some experiments on thermal convec-
tion in a rotating liquid. Quart. J. Roy. Met.
Soc., 79, 161.

Lilly, D.K., 1965: On the computational stability
of time-dependent non-linear geophysical fluid
dynamics problems. Mon. Wea. Rev. 93, 11-26.

Lorenz, E.N., 1953: A proposed explanation for
the existence of two regimes of flow in a rotating
symmetrically-heated cylindrical vessel. Fluid
models in geophysics, Proc. 1st Sympos. Models
in Geophys. Fluid Dynamics, Baltimore, Johns
Hopkins Univ., 73-80.

. 1960: Maximum simplification of the dy-
namic equations. Tellus, 12, 243-254.

—  1962a: The statistical prediction cf solu-
tions of dynamic equations. Proc. Internat.
Sympos. Numerical Weather Prediction, Tokyo,
629-635.

, 1962b: Simplified dynamic equations ap-
plied to the rotating-basin experiments. J. Atmos.
Sci., 19, 39-51.

—— 1963a: The mechanics of vacillation. J.
Atmos. Sci., 20, 448-464.

————— 1963b: Deterministic nonperiodic flow.
J. Atmos. Sci., 20, 130-141.

——— 1965: A study of the predictability of
a 28-variable atmospheric model. Tellus, 1%, 321-
333.

——— —1980: Attractor sets and quasi-geostrophic
equilibrium. J. Atmos. Sci., 37, 1685-1699.

Paegle, J. N., and E. Robl, 1977: The time behavior
of the probability density function of some sim-
plified atmospheric flows. J. Armos. Sci., 34, 979-
990.



Fe! y 1982 . E.N. Lorenz 267

zman, G.W., 1960: The spectral form of the
‘vorticity equation. J. Meteor., 17, 635-644.
~————, 1962: The analytical dynamics of the
spectral vorticity equation. J. Atmos. Sci., 19,
313-328.

Saltzman, B., 1962: Finite amplitude free convec-
tion as an initial value problem—I. J. 4tmos.
Sci., 19, 329-341. _

Sasaki, Y., 1967: Some dynamical aspects of atmos-
pheric convection. Tellus, 19, 45-53.

Shirer, H.N., 1980: Bifurcation and stability in a

madel of moist convection in a shearing environ-
ment. J. Atmos. Sci., 8%, 1586-1602,

, and J. A. Dutton, 1979: The branching
hierarchy of multiple solutions in a model of
moist convection. J. Atmos. Sci., 86, 1705-1721.

Sutera, A., 1980: Stochastic perturbation of a pure
convective motion. J. Atmos. Sci, 87, 245-249,

Veronis, G., 1963: An analysis of wind-driven ocean
circulation with a limited number of Fourier
components. J. Atmos. Sci., 20, 577-593.

a KA FEEDIERE 5L

Edward N. Lorenz

Massachusetts Institute of Technology

RREBOREBECY) ) oDMIELTHE DL EMY HELD RTHhH5 k<51 (low-order model,
LOM) i1, LIELEREHSEOBBEY ERMCIEL < EH+2 - EHRTES, LOM ZHV5E, &5 EkH
I DET A CEEOCETRREAEEL D Mi%ﬁxk&bﬂ#%ﬁkbtéﬁ@%, REDCERDOBOT v v TRk

Boz BT L B,

LOM % 1F%—BiF IR >\ Cik~5, LOM @él’fé’i i, SEISERMELRFLRTIBR, Wi
70 LOM #EATHRET 5, REDH TARECEL aUAKOAEEERO =71 L v 5 LOM DORIEF

T %7753,





