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ABSTRACT

The instability of the atmosphere places an upper bound on the predictability of instantaneous
weather patterns. The skill with which current operational forecasting procedures are observed to
perform determines a lower bound. Estimates of both bounds are obtained by comparing the
ECMWF operational forecast for each day of a 100-day sequence at one range with the
operational forecast for the same day at another range, and with the analysis for that day. The

estimated bounds are reasonably close together.

Predictions at least ten days ahead as skilful as predictions now made seven days ahead
appear to be possible. Additional improvements at extended range may be realized if the one-day
forecast is capable of being improved significantly.

1. Introduction

Although many years ago Richardson (1922)
formulated a rather sophisticated procedure for
numerical weather prediction, the first moderately
successful 24-hour numerical forecast, which had
to await the advent of the computer, was based on
nothing more complicated than the barotropic
vorticity equation (Charney et al., 1950). During
the three decades which have subsequently elapsed,
as computers have become more and more power-
ful, and the equations to which they have been
applied have been made more and more realistic,
numerical weather forecasting has progressed from
an experimental to an operational procedure, and
the range of operational forecasts has been leng-
thened several fold. At the European Centre for
Medium Range Weather Forecasts (ECMWF),
numerical forecasts from one to ten days in
advance are now prepared every day for opera-
tional use. It is the ECMWF analyses and forecasts
which will form the basis of the present study.
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During these same decades it has become
reasonably well established that prediction of
instantaneous weather patterns at sufficiently long
range is impossible. This state of affairs arises
because of the instability of the atmosphere with
respect to perturbations of small amplitude; i.e.,
two or more slightly different states, each evolving
according to the same physical laws, may in due
time develop into appreciably different states. Since
meterological observations can never determine the
state of the entire atmosphere exactly, we cannot
tell which of a multitude of nearly identical states is
the true present state, and we therefore lack a basis
for predicting which of a multitude of considerably
different states will occur at some reasonably
distant future time.

The lack of complete periodicity in the at-
mosphere’s behavior is sufficient evidence for
instability (Lorenz, 1963), but it does not reveal the
range at which the uncertainty in prediction must
become large. Most estimates of this range have
been based on numerical integrations of systems of
equations of varying degrees of complexity, starting
from two or more rather similar initial states. It has
become common practice to measure the error
which would be made by assuming one of these
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states to be correct, when in fact another is correct,
by the root-mean-square difference between the two
fields of wind, temperature, or some other element,
and to express the rate of amplification of small
errors in terms of a doubling time.

The first systematic study of error growth was
performed with a “low-order” model (Lorenz,
1965), in which a state of the atmosphere was
represented by only 28 numbers, and its evolution
was governed by 28 ordinary differential
equations. The growth rate proved to be highly
dependent upon the synoptic situation, but, on the
long-term average, small errors in wind or tem-
perature doubled in about four days. With present-
day accuracy in observations, this would imply that
reasonably good one-week forecasts should be
attainable, while one-month forecasts would be out
of the question.

The results of such a simple model could not be
considered definitive, but the implications were
important enough to imply that similar studies
ought to be made with the most realistic models
possible. The available models then were those of
Smagorinsky (1963), Mintz (1964), and Leith
(1965); predictability studies which they subse-
quently performed with these models were de-
scribed by Charney et al. (1966), who concluded
that a reasonable estimate of the doubling time was
five days.

As more refined models were developed and
applied to the predictability problem, estimates of
the doubling time tended to become smaller. A
landmark study was that of Smagorinsky (1969),
who used a nine-level primitive-equation model
containing moist processes and other features
which earlier models had omitted. His numerical
integrations indicated a three-day doubling time for
the smallest errors. As was the case with other
models, the growth rate subsided as the magnitude
of the errors increased; obviously the systematic
growth must cease when the separate solutions lose
all resemblance to one another, since, from that
time onward, they are effectively solutions chosen
at random.

It might have appeared at this point that the
range of acceptable weather forecasts could be
extended by three days simply by reducing the
observational errors to half their present size—a
rather costly but not impossible task. However, the
models which have indicated a doubling time of
several days do not explicitly contain smaller-scale
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features ranging in size from squall lines and
thunderstorms to dust whirls, whose amplitides
should double in hours or minutes or less. The
effects of these features upon the larger scales
appear in the models, in parameterized form, but
the uncertainties in these features do not. It is
hardly to be expected that the details of the
smaller-scale features will ever be revealed on a
global basis by a regular observing network. A
study by Lorenz (1969a) indicated that even if the
larger scales could be observed perfectly, the
inevitable uncertainties in the smaller scales would
after a day or so induce errors in the larger scales,
comparable to the larger-scale initial errors which
presently result from inadequate observations. The
induced errors would then grow as if they had been
present initially.

It therefore seems likely that the possible
accuracy of forecasts at some short range, say one
day, is strictly bounded by the existence of
smaller-scale features, although presumably we are
still a long way from the day when no further
improvements can be made. The quoted doubling
times of three days or so may therefore be logically
interpreted as the doubling time after the first day,
but before the errors have become too great.

If the accuracy of one-day forecasts is really
bounded, a doubling time effectively places an
upper bound upon the extent to which prediction a
few days or weeks in advance is possible. Many
predictability studies have, in fact, implicitly been
concerned only with upper bounds. Lower bounds,
although often neglected, are perhaps of equal
interest. It is possible to establish a lower bound to
predictability by determining how well a particular
forecasting procedure regularly performs.

The purpose of this study is to use the output of
the ECMWF operational model to obtain esti-
mates of upper and lower bounds to atmospheric
predictability, at ranges between a day and about
two weeks. We shall not be concerned with climatic
or other long-range predictability, which should
exist if certain features of the atmosphere can still
be predicted when most of the atmosphere cannot.
Neither shall we deal explicitly with predictability
at ranges shorter than a day.

Since the ECMWF model is not perfect, and
since we do not possess the ultimate observational
system, our estimated upper and lower bounds may
be expected to differ considerably. Future studies
should aim at establishing a smaller upper bound
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and a larger lower bound. When the established
bounds have essentially converged upon each
other, another chapter in the study of atmospheric
predictability will have been completed.

2. The data

Forecasts from one up to ten days in advance
are prepared daily at ECMWE. The operational
model used for these forecasts is a 15-level global
primitive-equation model with moisture and
orography. Fields of various meterological ele-
ments at various levels are contained in the
output, but in our study we have used only the
analyzed and predicted 500-mb height fields. We
shall refer to these as the analyses and prognoses;
we may also refer to an analysis as a zero-day
prognosis.

The model is a grid-point model, but, before the
500-mb data are archived, they are transformed
into global spherical-harmonic sequences, tri-
- angularly truncated at wave number 40. Each

“height field z(1, @), where 4 is longitude and ¢
is latitude, is therefore represented by a set of 41 x
42 = 1722 spherical-harmonic coefficients 4, or
B, according to the formula

40 40
z(A,¢)= Y ¥ (4,,cos mi+ B,,sinmi)

m=0n=m

x P™(sin ¢), (D
where P} is the associated Legendre function of
degree n and order m, suitably normalized.

For our data set we have chosen the 100-day
period from 1 December 1980 to 10 March 1981,
and we have used the 0,1, . . ., 10-day prognoses for
the above dates. Our complete data set therefore
consists of 100 x 11 x 1722 = 1,894,200 numbers.
Prior to our computations these were placed on a
single tape in the form of 1100 records each
containing two indicator numbers and 1722 data
values.

We may normalize the spherical harmonics so
that the average square of P9 is unity, while, for
m > 0, the average squares of P™ cos md and
P™ sin mA are each unity. The coefficients B, are
not defined by the field of z, and may be set equal to
zero. The data are then especially convenient for
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statistical studies in which global mean squares are
to be evaluated, since it follows from (1) that

40 40
Sy 22, dS =3 3 (42, + BL,),

m=0n=m

0

where S is the area of the earth, dS is an element of
area, and the integration extends over the earth’s
surface. An analogous result holds if the height field
z(4,¢) in (2) is replaced by the difference between
two height fields.

We may question the accuracy of the analyses,
since there are large regions of sparse data,
particularly in the Southern Hemisphere. In such
regions the analyses are not only questionable, but
the initialization procedure is likely to bias them

"toward the previous prognoses. Estimates of the

model’s performance must be viewed with these
considerations in mind. The prognoses, on the other
hand, do not need to constitute accurate forecasts;
it is sufficient that they tell us accurately what the
model has predicted.

3. The first experiment

Our initial experiment represents an attempt to
update the results of earlier predictability studies,
using the ECMWF operational model, which seems
to be as up-to-date as any model available. As in
the earlier studies, we compare two or more
solutions of the same system of equations having
somewhat similar initial conditions, and observe the’
growth rate of the difference between the solutions.
It turns out that most of the computing has already
been done for us, in the course of preparing the
ECMWEF operational forecasts.

Specifically, the analysis for a given day,
regardless of its accuracy, and the one-day prog-
nosis for the same day represent two states which
do not differ too greatly. One-day forecasts made
from these two states are simply the one-day and
two-day prognoses for the following day. Thus, by
comparing the average difference between one-day
and two-day prognoses for the same day with the
average difference between analyses and one-day
prognoses, we can obtain an estimate of the
average one-day amplification of moderately small
errors.

To obtain the average two-day amplification we
need only compare two-day and three-day prog-
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noses for the same day, and, in fact, we can
continue this procedure up to nine-day amplifica-
tions. Likewise, to obtain amplifications of some-
what larger initial errors we may, for example,
compare the average difference between one-day
and three-day prognoses with the average dif-
ference between analyses and two-day prognoses,
or more generally, the difference between j-day and
k-day prognoses with the difference between
analyses and (k — j)-day prognoses.

We have made such comparisons with our data
set, If z,,(4, ¢) is the j-day forecast for the value of
z(4,¢) on the ith day of the sample, and E, is the
root-mean-square difference between j-day and
k-day prognoses for the same day, averaged over
the globe and over all N (=100) days of the sample,

EjszN_lS—l % fs [Zij(’la ¢)“sz('1, ¢)]2dS. (3)
i=1§

Recalling eq. (2) we see that

N 40 40
Ejzk=N~1 Z Z Z [(Amn,ij“Amn,lk)2 + (an,ij
i=1m=0n=m
— Bun, 1)’} @
where 4, ; and B, . are the coefficients in the

spherical-harmonic sequence for z;;.

Fig. 1 shows the results. Root-mean-square
differences E,, in meters, for j < k, are plotted
against k; values of (j, k) are shown beside some of
the points. The heavy curve connects values of E,,
and its upward slope as k increases represents the
rate of increase of the model’s forecast error with
increasing range. This is the rate at which solutions
of two different systems of equations—the true
atmospheric equations and those of the model—
diverge as time progresses. The thin curves, on the
other hand, connect values of E; having like values
of k — j, and their upward slope as k increases
represents the rate at which two solutions of the
same system of equations—those of the model—
diverge. This is the rate which is generally sought in
predictability experiments.

We observe that the smallest value of Ej,
namely 25 m, requires about 3.5 days to double.
Larger errors amplify less rapidly, and show signs
of leveling off. Apparently the growth rate is
determined by the magnitude; i.e., to a fairly close
degree, the thin curves differ from one another only
by a horizontal displacement.
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Fig. 1. Global root-mean-square 500-mb height dif-
ferences Ej,, in meters, between j-day and k-day forecast:'" -

made by the ECMWF operational model for the same =~

day, for j < k, plotted against k. Values of (j,k) are
shown beside some of the points. Heavy curve connects
values of E,. Thin curves connect values of E; for
constant k — J.

If the analyses and prognoses possessed the
same time means, and the same variances about
these means, the heavy and the thin curves ought to
level off at the same value, which would equal the
root-mean-square difference between randomly
chosen analyses or prognoses. Actually the prog-
noses and analyses have different means, the
discrepancy increasing with the range of the
forecast, and consequently the thin curves level off
below the heavy curve, at roughly 110 m.

The doubling time quoted in most predictability
studies is the doubling time for errors of very small
amplitude. To estimate this time from Fig. 1 we
should have to extrapolate the thin curves back-
ward until they approached zero—a rather dif-
ficult task. The task becomes easy, however, if we
introduce one assumption, In an earlier study of
predictability (Lorenz, 1969b), based entirely upon
analyses, we found that reasonable, although not
readily verifiable, results could be obtained by
assuming that the nonlinear terms in the equation
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governing the growth of E,, for constant k — j,
were quadratic. That is, we assumed that

dE/dt = aE — bE?, &)

where ¢ is time. We shall make the same assump-
tion now.

The constant @ measures the growth rate of small
errors. The quadratic term must be negative if a is
positive, since it is the only thing that can halt the
growth. If E is normalized so that the value which

it approaches as t — oo is unity, b = a. The
solution of (5) is then

E/(1 — E) =exp la(t - 1)), (6)
where ¢, is the time at which E = 4, or,
equivalently,

E =4 + $tanh [4a(r — 1,)]. @)

The thin curves in Fig. 1 do seem to resemble
segments of hyperbolic tangent curves. According
to (6), the time required for E/(1 — E) to double is
independent of ¢, so that the doubling time for small
errors is also the time required for E to increase
from 4 to 4, or 4 to % From Fig. 1, we find that about

~“4ve days are required for Ej, with k —j =1, to

. ncrease from 4 to § of its limiting value, whence our
preliminary estimate of the doubling time for small
errors is 2.5 days. This is entirely consistent with
the results of earlier studies.

The rate at which separate solutions of the model
diverge is supposed to approximate the rate at
which separate solutions of the true atmospheric
equations diverge. If it does, and if, at some time
during the forecast, the model could suddenly be
replaced by the true equations, the remainder of the
heavy curve would follow one of the thin curves.
The excess slope of the heavy curve over that of an
intersecting thin curve may therefore be regarded
as a measure of the maximum amount by which the
model may still be improved. Even without further
improvement in one-day prediction, the perform-
ance of the perfect modet should then be given by
the lowest thin curve in Fig. 1 and its extrapolation
to the right, and skilful forecasts more than two
weeks ahead should ultimately be expected.

This is the optimistic view. The pessimistic view
is that, as the model is continually made more
realistic, the estimate of the doubling time which it
yields will continue to decrease. In that event, as the
top curve in Fig. 1 drops, the bottom curve will
move upward, possibly approaching it at a level
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closer to the present top curve than the present
bottom curve. Further improvements in extended
range forecasting will then not be spectacular.

In any event, the two curves can never com-
pletely coincide. The small-scale weather features
which assure us that by one day there will be a
considerable error also assure us that beyond one
day a model cannot perform perfectly.

In Fig. 2, we present the relevant material of Fig.
1 in an alternative form. For each of the 45 one-day
segments of the thin curves in Fig. 1, we have
plotted, as large dots, the increase in root-mean-
square error y = E; , ,., — E, against the average
root-mean-square error x = E, + y/2. Thus we
have plotted a finite difference estimate of dE/dt
against E. Likewise, for each of the nine one-day
segments of the heavy curve we have plotted, as
crosses, ' = E;,, o — Ejyagainst x' = Ej, + y'/2.

We see first of all that there is no tendency at all
for the crosses to fall among the cluster of dots; in
fact, they would come closer to doing so if the
values of y' were divided by two. We conclude, as
before, that considerable further improvement in
forecasting is possible.

If E were really governed by (5), the dots would
lie on a parabola. We feel that, although the vertical
spread of the dots is obvious, they come remark-
ably close to doing so, in view of the limited size of

the data set.
There is probably no unequivocal definition of

the parabola y = ax — bx? which best fits the dots.
We have chosen to minimize a weighted mean

ISE s

m}

Global

o] ! L " N
(o] 50 100 m

Fig. 2. Increases in global root-mean-square 500-mb
height differences, E;, , ,,, — E,,, plotted against average
height differences (E,, , ,,, + E;)/2, in meters, for each
one-day segment of each thin curve in Fig. 1 (large dots),
and increases E,,,, — E, plotted against average
differences (E, ., + Ey)/2, for each one-day segment
of heavy curve in Fig. 1 (crosses). Parabola of “best fit” to

-large dots is shown; see text.
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square of y — (ax — bx?); our weighting function is
the product of two factors. The first factor,
1/(ax — bx?), is included because we feel that the
ratio of the heights of the dots and the parabola is
important even when both heights are small. The
second factor, a — bx, is included to give greater
weight to individual dots in the left portion of the
figure, where the density of dots is smaller. The net
effect is a weighting function 1/x. The resulting
parabola, shown in Fig. 2, corresponds to a limiting
error of 109.9 m and a doubling time of 2.40 days.
We might add that the parabola is not very
sensitive to the weighting function; without it the
limiting error and the doubling time would be
110.2 m and 2.42 days.

4. Further experiments

In the coming years, as new operational models
with additional refinements replace the present
ones, and as these new models are applied to new
data samples, it should be possible to construct new
diagrams similar to Fig. 1, with the slopes of the
heavy and thin curves more nearly equal, or to Fig.
2, with the crosses closer to the parabola. In the
meantime, we can even now make some changes in
the ECMWF model which will improve its perfor-
mance, and which will enable us to construct the
desired diagrams without further numerical inte-
gration. We can do this by replacing the prediction
X for a predictand Y, where X stands for any
spherical-harmonic coefficient 4, or B, in a
prognosis, and Y stands for the same coefficient in
an analysis, by the linear function

X' =4 +BX (8)

of X, where A and B are to be chosen so that X'
possesses the same temporal mean and standard
deviation as Y. A considerable sample of data is
needed to obtain good estimates of A and B, and in
the present study we have used the same sample
used subsequently to evaluate the root-mean-square
errors.

1t is easily seen that if we should set B = 1,
choosing 4 to make only the mean of X’ equal to
that of Y, the model would perform better in the
root-mean-square sense. On the other hand, when
we make the variance and hence the standard
deviation of X' equal to those of Y, we may
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actually increase the mean square of Y — X; this is
especially likely to be so if X has a smaller variance
than Y, and if X and Y are not highly correlated.

We do not believe that in this event we would
make a poorer forecast by making X’ have the
proper variance. We believe instead that the
possibility of an increased mean square points to a
serious shortcoming of the mean-square error, or
root-mean-square error, as a general measure of the
goodness of a forecasting procedure.

One property of numerical-weather-prediction
models which is considered desirable and possibly
essential is that the prognostic maps which they
produce should look like real weather maps. In
order for these maps to possess migratory synoptic
features of the proper intensity, the variables must
possess the proper variances. One could eliminate
the migratory systems by choosing, as a pre-
diction, the climatological normal weather map
plus some very weak superposed random pattern.
At a range of six days, such a prediction would be
superior to the ECMWF model, in the root-mean
square sense, but it is doubtful that any serious
numerical modeler would accept it as a replace-
ment for the ECMWEF model. -

We suggest that a more satisfactory measure oi
the goodness of a forecasting procedure is afforded
by the root-mean-square error gfter the predictions
have been modified by replacing the predicted value
of each element by the linear function of itself
which possesses the correct temporal mean and
variance. Evaluated in this manner, the ECMWF
model, at ranges up to ten days, is definitely
superior to “climatology” plus infinitesimal super-
posed noise. (Climatology without superposed
noise possesses a zero variance, and attempts to
choose 4 and B to correct the variance would result
in attempts to divide by zero.) A persistence
forecast, incidentally, is superior to climatology
plus noise and inferior to the ECMWF model.

Having suggested this measure of goodness, we
must point out that correcting the variance of each
spherical-harmonic coefficient is not equivalent to
correcting the variance at each grid point. We
suspect that either procedure would produce a
prognostic map resembling a real weather map.
Correcting the variance of each coefficient and the
covariance of each pair of coefficients is equivalent
to correcting the variances and covariances of
grid-point values. With a much larger data sample
it should be feasible to do this after first replacing
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the set of coefficients, or grid-point values, by a set
of uncorrelated linear combinations.

Strictly speaking, the modified ECMWF model
is not a suitable model for evaluating error growth.
What one should do is to integrate the equations for
one day, modify the one-day prognosis according
to (8), integrate for a second day from the modified
conditions, modify the prognosis again, etc. The
advantages and disadvantages of such a procedure
have been discussed by Leith (1978). In the present
study, in order to obtain answers without per-
forming additional costly numerical integrations,
we shall have to assume that the result of
integrating for j days, and then modifying once
according to (8), does not differ too greatly from
the result of making j modifications at one-day
intervals.

Fig. 3 is like Fig. 2, for the modified model. The
parabola of best fit corresponds to a limiting error
of 104.1 m and a doubling time of 2.16 days. The
crosses are noticeably lower than in Fig. 2,
indicating that the modified model does indeed
perform better. On the right side of the figure the
crosses are especially close to the dots, implying
that any further improvement in the model in the
seven-to-ten-day range must be something which
improves it at shorter range.

At the same time, it appears that the original
model has over-estimated the doubling time. Fhe
optimistic view mentioned in the previous section
is therefore a bit overoptimistic; if a figure similar
to Fig. 1 were constructed, the upper curve would
become less steep, but the lower curve would
become slightly steeper.

Incidentally, we do not recommend the correc-
tion procedure as a permanent step in the continual

Global
. Modified

o L " s " 1 " L " i i ]
o 50

Fig. 3. Same as Fig. 2, but for the modified ECMWF
model.
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improvement of the ECMWF or some other model;
it is too likely to lead to a dead end. We feel instead
that it provides an excellent means of demon-
strating that improvements are possible; pre-
sumably these can ultimately be realized by
representing the physical processes more
realistically, or using superior mathematical tech-
niques for solving the equations. Improving the
physics or mathematics may very well yield
improvements beyond those which the correction
procedure would reveal to be possible, If a
correction procedure is to be built into a model, it
would seem best to remove it completely before
introducing any physical or mathematical refine-
ments, possibly reintroducing it afterward.

In a final attempt to bring the crosses and the
parabola closer together, we have -effectively
improved the ECMWF model without actually
altering it at all; we have simply evaluated its
performance for the Northern Hemisphere (NH)
alone, again applying the correction (8). Since a
good prognosis requires a good analysis, the model
behaves like a better model in regions where the
data are more plentiful, i.e., extratropical regions of
the NH, provided that these are not too closely
coupled with the regions where the data are sparser.
It seems possible that during forecast intervals of
ten days or less, the initial errors in one hemi-
sphere do not contaminate the forecast in the other
hemisphere too greatly. At the same time, the
contribution of possible poor prognoses in the
tropics has been minimized by measuring the error
in terms of the 500-mb height, whose variance in
the tropics is rather small.

It is a simple matter to verify for the NH alone
without transforming from spherical harmonics to
latitudes. We replace each Legendre function P7,
where n — m is odd, by

Q7=ZJP7P}"P/'", )
where the summation is over values of j for which
J — m is even, and the bar indicates an average over
the NH, P7 and PP having been renormalized so
that their mean squares are unity. Thus Q7 and P}
will be equal in the NH, but will have opposite signs
in the Southern Hemisphere (SH). When Q7, given
by (9), is substituted for P in (1), new coefficients
of the even functions may be evaluated and used in
the subsequent computations. Effectively we re-
place the analyses and prognoses by analyses and
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prognoses which are unchanged in the NH, but
which treat the SH as a mirror image of the NH;
this is allowable since we are verifying for the NH
only.

The results appear in Fig. 4, which is similar in
format to Figs. 2 and 3. The parabola corresponds
to a limiting error of 112.6 m and a doubling time
of 1.85 days. We believe that the further lowering
of the doubling time occurs not because the
2.16-day value is an over-estimate, but because the
period of the data is NH winter, when the NH
weather systems are most activee. We would
anticipate slower NH error growth in NH summer,
again assuming that the two hemispheres are not
too strongly coupled.

Again the crosses have moved closer to the dots.
They would fit well in the cluster of dots if their
heights were reduced by only 25 %.

To further compare the performances of the
three “models”, relative to the best possible
performance, we have constructed Fig. 5 by
superposing the parabolas and the points marked
by crosses in Figs. 2—4, after first altering the
horizontal and vertical scales so that the three
parabolas coincide. Effectively we use the limiting
error as the unit for measuring the error, and the
doubling time as the unit of time. We see that each
model represents an improvement over the previous
one.

Accepting the modified ECMWF model, applied
to the NH, as a state-of-the-art model, we find that
we have established upper and lower bounds to
atmospheric predictability which are reasonably
close together. Assuming that we have correctly
estimated the doubling time, we find that, even

* Hemispheric
M . Modified

0o 1 L I 1 ] 1 . n i L "
o 50 100 m

Fig. 4. Same as Fig. 2, but for the modified ECMWF
model, for the Northern Hemisphere only.
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Fig. 5. Superposition of points marked by crosses in
Figs. 24, after horizontal and vertical scales have been
altered so that parabolas coincide. Curves labelled
“global”, “global modified”, and “hemispheric modified”
connect points from Figs. 2, 3 and 4 respectively.

without further improvement in one-day fore-
casting, we may eventually make ten-day forecasts
as good as present seven-day forecasts, and
13.5-day forecasts as good as present ten-day
forecasts. Cutting the one-day root-mean-square
error in half should add another two days to the
range of predictability; possibly we may cut this
error in half more than once.

5. Conclusions

The instability of the atmosphere with respect to
small-amplitude perturbations places an upper
bound upon the atmosphere’s predictability. A
lower bound is afforded by the established skill of
forecasting procedures which have already seen
operational use. The current state of the art places
the two bounds reasonably close together.

For example, on the average, in Northern
Hemisphere winter, the time during which the
root-mean-square error in predicting the 500-mb
height field, with the best possible forecasting
procedure, will remain below one seventh of its
limiting value is no less than one day; the
additional time during which this error will remain
below six sevenths of its limiting value is no less
than seven days nor more than ten days. Un-
fortunately our study does not yield an upper
bound for the time required for the error to reach
the level which it presently reaches in one day.
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There are a number of reasons why our results
cannot be looked upon as the final word. First, we
have examined only 500-mb height data. It seems
probable that strongly coupled elements will have
similar ranges of predictability, so that our con-
clusions may well also apply to middle-latitude
tropospheric temperature and wind prediction, but
they may be quite unrealistic for such elements as
tropical cloudiness and rainfall.

Second, the analyses by which the performance
of the ECMWF model has been evaluated are far
from perfect. The points on the upper curve in Fig.

- 1, and the crosses in Figs. 2—4, are perhaps not
properly located. Next, the initial errors whose
growth we have studied are rather specialized. They
presumably are somewhat like typical prediction
errors, and we might have preferred typical analysis
errors. Next, we may have relied too heavily upon
the assumption that the growth of root-mean-
square errors satisfies a quadratic equation. There
are curves other than parabolas which would fit the
dots in Figs. 2—4 about as well.

Finally, and perhaps most importantly, our
conclusions are based upon a rather small data
sample, consisting of only 100 consecutive days.
Other winters, not to mention summers, may be
marked by more, or less, predictable weather.
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Nevertheless, we believe that our conclusions are
sufficiently well founded to be regarded as indi-
cators of the most promising avenues for future
forecasting research. Better-than-guesswork fore-
casts of instantaneous weather patterns nearly two
weeks in advance appear to be possible, and efforts
to establish numerical-prediction models which are
potentially capable of making such forecasts, and
observing systems which enable the models to
realize their potentialities, should continue. Skilful
forecasts of instantaneous patterns a month or
more ahead still appear to be out of the question,
and attempts to predict at these longer ranges
should be confined mainly to predictions of
properties which appear to be predictable, such as
weekly, monthly, and longer-period averages and
other statistics.
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