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ABSTRACT

We suggest that the atmosphere—ocean—earth system is unlikely to be intransitive, i.e., to
admit two or more possible climates, any one of which, once established, will persist forever.
Qur reasoning is that even if the system would be intransitive if the external heating could be
held fixed, say as in summer, the new heating patterns that actually accompany the advance of
the seasons will break up any established summer circulation, and an alternative circulation
may develop during the following summer, particularly if chaos has prevailed during the
intervening winter. We introduce a very-low-order geostrophic baroclinic “general circu-
lation” model, which may be run with or without seasonal variations of heating. Under
perpetual summer conditions the model is intransitive, admitting either weakly oscillating or
strongly oscillating westerly flow, while under perpetual winter conditions it is chaotic. When
seasonal variations of heating are introduced, weak oscillations prevail through some summers
and strong oscillations prevail through others, thus lending support to our original suggestion.
We develop some additional properties of the model as a dynamical system, and we speculate

as to whether its behavior has a counterpart in the real world.

1. Introduction

The large-scale wind, temperature, and moisture
patterns in the atmosphere, and the accompany-
ing conditions in the underlying ocean and land
surfaces, undergo variations on time scales
ranging from days to aeons. The longer-period
variations are frequently looked upon as changes
in climate. As possible causes for these changes,
climatologists have often invoked the presumed
variations of certain external influences. By now
there is considerable evidence that changing ex-
ternal conditions do play a significant role; this is
particularly true of the earth’s orbital parameters
(cf. Imbrie, 1982). However, much of this evi-
dence has only recently emerged, and the original
reason for attributing internal changes to external
changes must have been simply that external
changes appeared capable of producing internal
changes.

Recent numerical studies have uncovered a
multitude of self-contained dynamical systems
that undergo variations on a wide range of time
scales, without the aid of any varying external

influences. If apparent capability constitutes a
rationale for pursuing a line of investigation, it
behooves us to ask whether some climatic
changes may be internally rather than externally
produced, i.e., whether they are simply the
natural internal oscillations that one would ex-
pect to find in something as intricate as the
atmosphere—ocean—earth system. Of course the
activity of this system requires external heating,
ultimately derived from the sun, but this is not to
say that variations in the system require variations
in external heating. In this study we shall
examine a mechanism that in theory can produce
changes on time scales of years, with no
variations in external conditions other than the
normal seasonal cycle.

By a dynamical system, we sometimes mean
any system whose exact present state completely
determines its state at some time in the near
future, according to a set of rules, whence, by
extrapolation, in many instances at least, all
future states are completely determined. Systems
of this sort are most often defined by sets of
differential or difference equations. Sometimes
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we also include systems where the exact present
state only approximately determines a near-future
state; here there is no assurance that distant-
future states will be even approximately
determined. This extended definition admits
many real physical systems, whose behavior com-
monly involves at least some randomness or
uncertainty. Prominent among these systems is
the atmosphere plus its immediate surroundings.

Dynamical-systems theory is principally con-
cerned with infinite-term or very-long-term
typical behavior. Often this is determined by the
governing rules even when states at specific
future times are not. For the atmosphere—ocean—
earth system, which we may call the climate
system, this behavior is synonymous with the
climate.

Two properties that characterize some but not
all dynamical systems are chaos and intransi-
tivity. Neither property implies either the pres-
ence or the absence of the other. A chaotic
system is one that exhibits sensitive dependence
on initial conditions, i.e., where the approximate
present state is insufficient to determine approxi-
mate states in the distant future, whether or not
the exact present state determines the future. For
such systems, any approximate repetition of pre-
vious behavior will be of temporary duration, and
periodicity will not develop. Numerical values of
any variable at equal widely spaced intervals,
e.g., once-a-year observations of temperature at a
particular weather station, will have the appear-
ance of random numbers.

An intransitive system is one with a positive
probability of acquiring any one of several sets of
infinite-term properties. The particular set that
becomes established will depend upon some
initial state. In naturally occurring systems,
where often no “‘initial” time is readily identifi-
able, it may effectively depend upon chance.

The climate system is unquestionably chaotic.
It possesses obvious annual and diurnal periods,
but, when these and their overtones and all other
established or suspected periodic variations are
subtracted out, a strong signal still remains.
Further supporting evidence is the sensitive
dependence on initial conditions exhibited by
virtually all reasonably realistic atmospheric
models. We do not know whether the system is
intransitive, i.e., whether, if we could somehow
stop the circulation and then let it resume, a
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different climate could develop. Some highly
simplified atmospheric models are demonstrably
intransitive (e.g., Budyko, 1969; Sellers, 1969),
but the larger and more realistic models are not
obviously so.

Some time ago, we proposed that the climate
system was probably not intransitive (Lorenz,
1975). Our reasoning was as follows. Suppose that
the system would be intransitive, with two pos-
sible climates, if the march of the seasons could
be halted, say at northern-hemisphere summer.
Suppose that in reality the system, with its
seasons, develops a circulation compatible with
one of these climates during a particular summer.
This circulation will not persist, since the coming
winter with its totally different solar-heating
pattern will break it up. If the winter behavior is
chaotic, the state at the onset of the next summer
will effectively be selected at random, and the
circulation that then develops may well be
compatible with the alternative climate. The sea-
sonal variations of solar heating will then have
facilitated transitions from one climate to the
other, i.e., they will have rendered the system
transitive. What we will observe instead of
intransitivity will be pronounced interannual
variability.

The purpose of this paper is to demonstrate the
reasonableness of this proposition in the context
of a very simple model. We shall choose a model
where the external thermal forcing varies with an
annual period, and where chaos would prevail if
the forcing were fixed at its winter intenity, while
intransitivity would arise if it were fixed at its
summer intensity. Verification of the hypo-
thesis for the model will not, of course, tell us that
a similar process takes place in the real climate
system, but it will imply that any attempt to
demonstrate that the real system is intransitive
must not disregard the seasonal cycle.

2. The model

A model that we recently introduced as
perhaps the simplest possible “general circu-
lation” model (Lorenz, 1984; we shall refer to this
paper as L84) will serve our present needs. The
model equations are
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dX/dt=—-Y?—-Z>—aX+aF, (1)
dY/dt=XY—-bXZ—-Y+G, 2
dZ/dt=bXY+ XZ—-Z. 3)

The variable X represents the strength of a large-
scale westerly-wind current, and also the geo-
strophically equivalent large-scale poleward tem-
perature gradient, while Y and Z are the
strengths of the cosine and sine phases of a chain
of superposed waves.

The quadratic terms containing the factor b
represent the translation of the waves by the
westerly current, while the remaining quadratic
terms represent a continual transfer of energy,
except when X become negative, from the wester-
ly flow to the waves, which are assumed to tilt
westward with height. The linear terms represent
thermal and mechanical damping, and the con-
stant terms represent thermal forcing. The equa-
tions were constructed in a somewhat ad hoc
manner, but we noted in L84 that they could have
been derived by extreme truncation of a
geostrophic baroclinic model in spectral form.

We assume that a<1 and b>1. Two
additional coefficients that ordinarily would have
appeared have been reduced to unity by scaling ¢,
X, Y, and Z. With this scaling a reasonable time
unit is 5 days.

Since we found in L84 that egs. (1)—(3) possess
some chaotic solutions, we may suspect that only
special solutions can be found by other than
numerical means. For our present numerical inte-
grations, we have used a fourth-order Taylor-
series scheme, with a time increment At of 0.025
units or 3 h. With our chosen values of the coef-
ficients we have encountered no oscillations with
periods of less than 7 days, suggesting that our
chosen At is sufficiently small.

As is customary in working with dynamical
systems, we shall treat (X, Y, Z) as coordinates in
a three-dimensional *‘phase space.” A state of the
system, defined by the values of X, Y, and Z, then
becomes a point in the space, while a time-
dependent solution becomes a trajectory or orbit.
A point that is approached arbitrarily closely
arbitrarily often by an orbit as r— o0 is an
attracting point for that orbit. If a point is an
attracting point for each of a set of orbits that
together fill a finite volume, it is a point of an
attractor.

From egs. (1)—(3) we find that
d(X2+ Y+ Z?)/dr

=—[aRX - F)+ QY- G)* + (22)?
—(@F*+ G¥)))2. (4)

The right side of (4) vanishes on an ellipsoid E
and is negative outside E. It follows that if S is
any sphere centered at (0,0,0) and completely
enclosing E, all orbits passing through points
outside S will ultimately penetrate S and then
remain inside. Thus, as in many simple atmos-
pheric models, the attractors, if they exist, are
enclosed by an identifiable closed surface.

From (1)-(3), we also find that if V is the
volume of an infinitesimal region,

dVide =V div(d X/dt, dY/dz, dZ/dr)
=—V(a+2-2X). (5)

The right side is negative only when X <1+ 1a.
Thus, in contrast to many fully dissipative atmos-
pheric models, where dV/dr is always negative,
there is no assurance that small volumes will
shrink to zero, and, in particular, that attractors
will have zero volume. Likewise, there is no
assurance that, if the direction of time is
reversed, a small volume will expand toward
infinity.

3. The model without seasons

Prior to examining solutions of egs. (1)—(3)
where F or G varies with an annual period, we
shall consider solutions where F and G are
constants; these are intended to model *“perpetual
winter” or “‘perpetual summer” conditions. We
shall set a=1 and b=4. In L84, with F=8 and
G =1, we encountered chaos but found no
evidence of intransitivity. We shall see that if
instead F=6 and G = 1, the system is intransi-
tive but not chaotic.

Presumably F, representing the cross-latitude
external-heating contrast, is greater in winter
than in summer. We therefore identify F = 8 with
a winter condition, and F=6 with a summer
condition. We could argue that G, which can
logically represent the heating contrast between
oceans and continents, should change sign from
winter to summer, but we shall be content to vary
F only.
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Fig. 1. (a) The variations of X (dimensionless) with ¢
(months) in a numerical solution of egs. (1)-(3), with
a=0.25 b=4.0, F=6.0, and G=1.0 (summer con-
ditions). The initial state is (2.4, 1.0,0). (b) The same as
Fig. la, except that the initial state is (2.5,1.0,0).
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Fig. 2. (a) The same as Fig. la, except that F=8.0
(winter conditions). (b) The same as Fig. 2a, except that
the initial state is (2.5,1.0,0), as in Fig. 1b.

Fig. 1 shows the variations of X in two numeri-
cal solutions of (1)-(3) with F =6, originating
from the nearby points (2.4, 1.0, 0) and (2.5, 1.0,
0), and each extending for one year. During the
first month, the two solutions look about alike,
and each solution settles down after a few months
of somewhat erratic behavior to periodic oscil-
lations, but in the former case the oscillations
have a much smaller amplitude and a much
shorter period than in the latter. Extension of the
solutions indicates that each type of oscillation,
once established, is stable, and persists forever, so
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that the system is intransitive, while computa-
tions with other initial states reveal no further
types of long-term behavior. We shall refer to the
two types of activity as weak periodic oscillations
and strong periodic oscillations.

Fig. 2 shows two solutions originating from the
same states as in Fig. 1, but with F=8. By two
months the solutions have diverged, and they
subsequently appear to vary chaotically. Exten-
sion of the solutions reveals no obvious differ-
ences in their long-term typical behavior, so that
the system is presumably transitive as well as
chaotic.

Since both periodic solutions with F =6 are
stable, the two attractors, which we shall call the
weak attractor and the strong attractor, are
simply the closed loops that a point traverses
during a single period. The “weakness” of the
weak attractor is not confined to the variations of
X, nearby points are attracted to it relatively
slowly. In Fig. 3, Y is plotted against X + cZ,
with ¢=—0.14, for the two loops; this yields
oblique projections on the X-Y-plane, like
shadows on level ground when the sun is not
directly overhead. We show each loop as a double
curve, with the distance between the curves
increasing linearly with Z, and thus indicating
proximity to an observer above the X-Y-plane (if
the Z-axis points upward).

The weak attractor appears as a simple quasi-
ellipse, but in the more complicated strong
attractor Y undergoes four oscillations between
maxima and minima while X is undergoing one.
We have avoided the more natural orthogonal
projection (c = 0) because the weak attractor lies
almost in a vertical plane, and would show up as
a line segment instead of an ellipse.

The large dots mark the points where Z=0,
i.e., the intersections with the X-Y-plane.
According to eq. (3), points move upward
through the plane in the first and third quadrants
and downward in the second and fourth. We
note, perhaps surprisingly, that the two loops are
linked together.

When F =28, a projection of the attractor on
the X-Y-plane would completely fill a region, and
we show in Fig. 4 only the intersection of the
attractor with the plane; this is to be compared
with the ten dots in Fig. 3. The Cantor-set
structure typical of ‘‘strange attractors” is
apparent.
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Fig. 3. Oblique projections of the two attractors (closed
loops) of eqs. (1)-(3) on the plane Z=0 for a=0.25,
b=4.0, F=6.0, and G = 1.0 (summer conditions), ob-
tained by plotting Y against X +cZ, with c=—0.14.
Each curve is represented by a pair of curves, with the
distance between the curves of a pair proportional to
Z + 2.0, and the true projection lying midway between
the curves shown. Where two pairs of curves intersect,
the pair with the lower value of Z has been broken. The
large dots show the intersections of the attractors with
the plane Z=0. The arrows indicate the direction of
flow along the loops.

Since the attractors of Fig. 3 must have sepa-
rate basins of attraction, there must be a basin
boundary or separatrix. By choosing initial states
sufficiently close to the boundary, we could have
postponed indefinitely the onset of periodic oscil-
lations, thus producing an appearance of chaos.
Likewise, the attractor of Fig. 4 contains within
it a multitude of unstable periodic orbits, and, by
choosing initial states sufficiently close to these,
we could have postponed indefinitely the onset of
irregular behavior, thus producing an appearance
of periodicity and even intransitivity. The impor-
tant point is that most choices of initial states in
the regions covered by Figs. 3 and 4 will produce
variations like those shown in Figs. 1 and 2.

In our main experiment, to be described in the
following section, we shall allow F to vary
sinusoidally, with a one-year period, between a

T ST

o b bt v e b e

- [o) | 2 X 3

Fig. 4. The intersection of the attractor of egs. (1)-(3)
with the plane Z =0, for a=0.25, b=4.0, F=8.0, and
G = 1.0 (winter conditions), as represented by 20,000
successive intersections of a single orbit.

minimum below 6.0 and a maximum above 8.0.
If the types of behavior illustrated in Figs. 1 and
2 are to have any relevance to the experiment,
each type should be representative of a consider-
able range of values of F, rather than ceasing as
soon as F changes slightly from 6.0 or 8.0.

We are not particularly concerned with any
alternative type of behavior that occurs only
within a narrow range of F, since, in the main
experiment, such behavior will probably not have
time to become established before F moves out of
the range. We are definitely interested in the
moderately weak periodic behavior that replaces
the truly weak oscillations after the latter undergo
a period-doubling bifurcation at F=6.1. Fig. §,
which is like Figs. 1 and 2 except that F=6.9,
illustrates the behavior. The upper curve again
starts at (2.4,1.0,0), and the periodicity is fairly
well established after one year. The lower curve
starts at a point very close to the now unstable
weakly oscillating solution, and, after two
months, we see the even-numbered minima
becoming successively weaker while the odd
numbered minima become successively stronger,
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until the dominant period is 15 days instead of
7.5.

If we regard the new type of behavior as a form
of weak oscillation, we find that the intransitive
periodic behavior occurring when F=6.0 also
occurs nearly everywhere between 5.2 and 6.9,
while the transitive chaotic behavior found at 8.0
occupies the interval from 7.9 to 8.8. Below 5.2,
and between 6.9 and 7.6, transitivity prevails,
with only weak periodic fluctuations, while
between 7.6 and 7.9 intransitivity reappears, with
weak periodic or strong chaotic variations. A new
type of strong periodic oscillation appears above
8.8. We should carefully note that these findings
apply to the long-term behavior corresponding to
fixed values of F.

In view of these findings, the most logical
guess seems to be that the main experiment will
exhibit chaos during the winters and some sort of
periodicity during the summers. On the other
hand, perhaps none of the types of behavior
pictured in Figs. 1, 2, and 5 can become estab-
lished before F changes signficantly. As with
many nonlinear systems, there does not appear to
be a simple line of reasoning that will decide
between these alternatives, and, to determine
what will happen, we must turn to the experiment
itself.

4. The main experiment

As already noted, in our main experiment we
shall let F vary sinusoidally while holding G
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Fig. 6. The variations of X (dimensionless) with ¢
(months) in a 6-year numerical solution of egs. (1)-(3),
with 4=0.25, b=4.0, F=7.0+2.0 cos(2rt/t), and
G =1.0, where =12 months. Each row begins on
1 January, and, except for the first, each row is a
continuation of the previous one.

fixed. For extreme values of F we choose 5.0 and
9.0, while G = 1.0. Under the assumption that the
principal heating of the atmosphere comes from
the underlying ocean and land rather than
directly from the sun, while extreme conditions in
the ocean and land lag behind the solstices, we
could have let F assume its extreme values several
weeks after the solstices, but for simplicity we
shall let them occur at the beginning of January
and July.

Fig. 6 shows the variations of X during 6
consecutive calendar years. Each winter except
the sixth one begins with strong irregular fluctu-
ations. During the first four summers the oscilla-
tions remain strong, although they become less
rapid than in winter, but in the last two years
weak fluctuations set in during the spring and
persist into October. We shall refer to the two
types of summer as active and inactive summers.

The occurrence of the 2 inactive summers
could conceivably be a transient phenomenon,
appearing before the system settles down to a
regime where all summers are active, or perhaps
even where all are inactive. To check on this
possibility we have extended the solution to 100
years. A single quantity that readily distinguishes
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Fig. 7. The variations of ¢ (dimensionless) with ¢
(years) in a 100-year numerical solution of egs. (1)-(3),
for the conditions of Fig. 6, where ¢ is the standard
deviation of X within the period July through
September.

the active from the inactive summers is the
standard deviation ¢ of X within the 3-month
period July through September. In Fig. 7 we
show the 100 values of ¢. Almost invariably
6<0.2 or ¢>0.5; the distribution is clearly
bimodal. Evidently active summers are far more
frequent than inactive ones, and in one instance
there are about 13 active summers in a row. A
similar occurrence in the real world might easily,
by the time the thirteenth active summer arrives,
be interpreted as a climatic change.

Although we are dealing only with a model, we
can consider it more likely that the qualitative
results have some meaning if they continue to
prevail for somewhat different values of the
parameters. Accordingly, we have performed a
number of 100-year runms, in each case after
changing the mean value F, of F, the total range
F’ of F, or the fixed value of G.

We have started each run from the initial point
(2.0,1.0,0), and have defined an inactive summer
as one where ¢ < 0.3. With F” and G still equal to
4.0 and 1.0, and with F, equal to 8.0, 7.0, and 6.0,
the number of inactive summers was respectively
10, 24, and 24. With F, = 7.0 and G = 1.0, while
F =5.0, 4.0, 3.0, and 2.0, there were respectively
14, 24, 19, and 54 inactive summers. With
Fy=7.0and F’=4.0, while G=1.0, 0.9, 0.8, and
0.7, there were 24, 27, 62, and 93 inactive
summers.

Any preference for active over inactive
summers is therefore decidedly parameter-depen-
dent. However, as to whether, in the context of a
model, chaos and intransitivity can produce
interannual variability, the answer is conclusively
yes.
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Fig. 8. The same as Fig. 6, except that F = 8.0 from
October through March and F = 6.0 from April through
September.

5. The modified experiment

Although the occurrence of both active and
inactive summers in the main experiment may
not surprise us, there was nevertheless no assur-
ance, prior to the performance of the experiment,
that both types would indeed be found. By
making certain changes in the conditions of the
experiment, without altering the spirit of the
experiment, we can obtain rather similar results
that, with the aid of a few reasonable assump-
tions, could have been anticipated. Instead of
letting F vary sinusoidally, we shall simply hold F
fixed at 8.0 from October through March, and at
6.0 from April through September.

Fig. 8 is the counterpart of Fig. 6 for the new
experiment. Again the winters are_chaotic, and
both active and inactive summers occur. The
most notable new feature is the uniformity of the
variations during the latter parts of the active
summers; they are all virtually identical to the
strong periodic oscillations appearing in Fig. 1b.
The important feature distinguishing one active
summer from another is the phase of the
oscillation.

Fig. 9 is the counterpart of Fig. 7. Again both
types of summer continue to occur, with active
summers predominating. The principal differ-
ence is the relative lack of variability of ¢ among
the active summers.

Tellus 42A (1990), 3
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Fig. 9. The same as Fig. 7, except that F varies as in
Fig. 8.

To account for our results, albeit in a non-
rigorous manner, we assume first that by the end
of any 6-month winter period, the state will have
virtually reached the winter attractor. Any slight
uncertainty as to the particular point on the
attractor will result in an uncertainty in the phase
of any periodic oscillations that develop during
the following summer, so that the summer will
end with comparable uncertainty, which will then
amplify greatly during the ensuing chaotic
winter. Hence the state at the end of the follow-
ing winter will be virtually chosen at random
from the winter attractor. The probability of a
subsequent inactive summer should therefore
approximately equal the probability that a ran-
domly chosen point on the winter attractor lies in
the basin of attraction of the weak summer
attractor.

Since the loops that form the two summer
attractors are linked together (see Fig. 3), we can
expect that their basins of attraction will be
somehow intertwined. Fig. 10 is a rather low-
resolution picture of the intersections of the two
basins, which we may call the weak basin and the
strong basin, with the X-Y-plane; the weak basin
is shaded and the strong basin is unshaded. To
obtain the figure we have used each point of a
grid of 180 x 180 points as an initial state for an
integration with F=6.0, and have continued
each integration until one attractor or the other is
approached.

We find that the structures of the basins are
indeed complicated; this situation is apparently
not unusual (cf. McDonald et al., 1985). Although
each basin must form a connected set in three
dimensions, the intersection of the weak basin
with the plane contains several disjoint pieces.

In Fig. 11, a grid of 200 x 160 points covers a
smaller area than that in Fig. 10, so that the
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Fig. 10. The intersections of the basins of attractions of
the two attractors of eqs. (1)}-(3) with the plane Z =0,
for a=0.25, b=4.0, F=6.0, and G=1.0 (summer
conditions), as resolved by points at intervals of 0.045
in the X- and Y-directions. The basin of the weak
attractor is shaded and that of the strong attractor is
unshaded.

0
Fig. 11. An enlargement of a portion of Fig. 10, as

resolved by points at intervals of 0.015 in the X- and
Y-directions.

resolution is somewhat higher. It is apparent that
each basin possesses some fairly extensive
continuous regions with fairly smooth bound-
aries, but there are also three elongated quasi-
horizontal areas where neither plotted nor
unplotted points predominate. Here the bound-
ary, if it is smooth at all, can only be smooth on a
very fine scale.
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Comparing Fig. 4 with Fig. 10 or 11, we see
that the intersection of the winter attractor with
the X-Y-plane has points in common with the
intersection of each summer basin with that
plane. We would have obtained qualitatively
similar results if instead of the X—Y-plane we had
chosen other planes parallel to it; hence, in three
dimensions, each summer basin contains a finite
fraction of the points of the winter attractor. To
estimate these fractions, we have performed a
5000-day integration with F= 8.0, starting at a
point on the attractor, and have chosen the 1000
points occurring at 5-day intervals as initial states
for integrations with F=6.0, from which we
have determined the basin in which each of the
1000 points lies. We find that 154 of them are in
the basin of the weak attractor. For the ten
separate sets of 100 consecutive points that make
up the 1000-point set, the number of points in the
weak basin ranges from 8§ to 25.

Fig. 9, which exhibits 22 inactive summers, is
consistent with this result. It would also appear
that the 100 summers of Fig. 9 form an insuf-
ficient sample for a close estimate of the long-
term probability of an inactive summer.

6. The structures of the basins

In a model somewhat like the model of the
modified experiment, but where the basins of the
summer attractors are rather simple in structure,
separated, perhaps, by an infinite plane or an
ellipsoidal surface, it would be relatively easy for
the winter attractor to lie entirely within one
summer basin. In that case, the pronounced
interannual variations would not develop. It is
therefore of interest in the present case to look
more closely at the structures of the basins, and
the reasons why they are so complicated. In
explaining the structures we shall have to invoke
some dynamical-systems concepts that are not
needed for an understanding of the previous
sections.

Our first hint comes from Fig. 10, which
suggests that the entire weak basin may lie no
more than six units from the origin, so that all
distant points will be attracted to the strong
attractor. This proves to be the case. To demon-
strate that this is so, we observe first that the
system possesses a single fixed point P, where the
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Fig. 12. Orthogonal projections of eight orbits emanat-
ing from P, the unstable fixed point (5.9933, —0.0083,
0.0399) of eqs. (1)-(3) on the plane Z =0, for a = 0.25,
b=4.0, F=6.0, and G = 1.0 (summer conditions). The
orbits are shown as solid curves where Z > 0 and dotted
curves where Z < 0. The separate orbits become indis-
tinguishable near the strong attractor, which they ap-
proach. The heavy curve is an envelope of the
projections.

right-hand sides of (1)-(3) vanish simultaneously,
near (F,0,0). This point possesses a one-dimen-
sional stable manifold, consisting of two orbits
converging upon P from opposite directions, and
a two-dimensional unstable manifold U, made up
of the orbits that emanate from P in all directions
tangent to a particular plane. The manifold U lies
inside the sphere S (see eq. (4)), and is shaped
somewhat like the skin of an apple, but with the
area farthest from the stem rounded off, and with
the hole that contains the stem extending as a
tube into the core, where it continues to meander.
Fig. 12 is a special projection on the X-Y-plane.
Eight orbits, emanating from P at 45-degree
angles, are shown as thin solid curves where
Z > 0 and dotted curves where Z < 0. Each orbit
spirals outward from P, which is at the extreme
right, and then spirals into the hole at the left.
Using these orbits we have constructed the heavy
curve, which passes through extreme values of Y,
for given values of X, and also through extreme
values of Y within the hole. The hole soon
becomes very narrow, but maintains its existence
as a hollow tube throughout its infinite length.
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Fig. 13. The intersection of the unstable manifold of
the fixed point of eqgs. (1)-(3), with the plane Z =0, for
the conditions of Fig. 12, as resolved by the inter-
sections of 400 orbits emanating from the fixed point
(dotted closed curve), and portions of the intersections
of the basins of attraction of the weak and strong
attractors with the plane, as resolved by points at
intervals of 0.0005 in the X- and Y-directions (shaded
and unshaded areas).

With the resolution of Fig. 12, the separate orbits
that form the tube become indistinguishable as
they reach positive values of X and subsequently
approach the strong attractor. The distinctive
shape of the attractor (compare Fig. 3) is easily
discernible.

The significance of U is that since it is com-
posed of orbits, no other orbit can cross it. Orbits
coming from distant points therefore do not
approach the general vicinity of their attractors
from all directions, but must enter through the
tube.

In Fig. 13, which shows a rather small region
of the X-Y-plane, the shaded and unshaded
areas, like those in Figs. 10 and 11, are
intersections of the weak and strong basins with
the region. The points that form the closed loop
are the first intersections with the plane, within
the tube, of 400 orbits emanating from P. It is
apparent that although the tube passes rather
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Fig. 14. The intersection of the repellor of egs. (1)-(3)
with the plane Z = 0, for the conditions of Fig. 10, as
represented by 20,000 successive intersections of a
single orbit running backward in time.

close to the weak basin, it lies entirely in the
strong basin, and so therefore do all orbits inside
the tube. Orbits coming from distant points,
other than a single orbit that stops at P, therefore
all approach the strong attractor.

It follows that, if the direction of time is
reversed, orbits in the weak basin cannot escape
to infinity. What they do instead is to approach a
reverse attractor, or “repellor.” Fig. 14 shows the

"intersection of the repellor with the X-Y-plane,

obtained in the same manner as Fig. 4, but with
At=—0.025 and F = 6.0. Magnification, shown
in Fig. 15, confirms the Cantor-set structure,
whence the system with time reversed behaves
chaotically.

As for orbits in the strong basin, some will
escape to infinity if time is reversed, but some
will not. The latter will approach a repellor,
which proves to be the same as the repellor
approached by orbits in the weak basin, shown in
Figs. 14 and 15. Since orbits do not pass from one
basin to the other, it follows that there are points
of each basin arbitrarily close to each point of the
repellor. The basin boundary therefore contains
the repellor, in addition to the apparently smooth
portions appearing in Figs. 10, 11, and 13. Thus,
in the vicinity of the repellor, the two basins must
be intricately intertwined.
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Fig. 15. An enlargement of a portion of Fig. 14,
covering the same region as Fig. 11.

Comparison of Figs. 11 and 15, which cover
the same area, shows that the elongated regions
where neither basin appears to predominate coin-
cide precisely with the strange repellor. The
complicated structure of the basins is thus, in a
certain sense, accounted for.

We complete our description of the two-way
dynamical system by noting that the region at
infinity is effectively a second repellor. Just as the
boundary of the two basins of attraction contains
the repellor, so the boundary of the two basins of
repulsion, which consists of the manifold U and
any points approached by orbits in U, contains
the strong attractor.

7. Concluding remarks

We have constructed a simple atmospheric
model that may be integrated numerically with or
without seasonal variations of external thermal
forcing. When the seasonal cycle is omitted, the
system may be transitive or intransitive, and the
behavior may be periodic or chaotic, depending
upon the particular season that has been made
permanent, but there is no sign of pronounced
variations with periods of years or longer. When
the seasonal cycle is included, strong interannual
variations can occur, with irregular alternations
between active summers, when the zonal westerly
winds undergo strong oscillations, and inactive
summers, when the oscillations are minor.

The mechanism that produces the year-to-year
variations involves chaotic behavior during the
colder months, which assures us that a virtually
randomly chosen circulation pattern will be
present when the warmer months begin. This
allows one possible persistent circulation pattern
to develop during one summer, while an alterna-
tive pattern may develop during another.

In view of the extreme crudeness of our model,
it is reasonable to ask whether our results have
anything to do with the real climate system. We
believe that they may, although our reasoning is
necessarily speculative.

First of all, we think that the real climate
system would be chaotic if the external heating
could be held fixed with its winter distribution (or
that of any other season). We consider it far less
likely that the system would be intransitive if the
heating were fixed with its summer distribution
(or that of any other season). However, we
believe that it does not really matter whether
there are two summer circulation patterns, each
of which would persist forever if the heating
could be held fixed, or whether there are simply
two patterns that would be likely to persist for a
few months. In either event, what would finally
break up the summer circulation pattern would
be the new heating distribution that would arrive
with autumn. For that matter, it is immaterial
whether the winter behavior is truly chaotic, or
whether there is simply a tendency for irregular
oscillations to prevail for a few months before
periodic behavior sets in, as, for example, in the
first few months in Fig. 5a. In either event a
more or less randomly selected pattern will be
present when summer begins.

Real atmospheric circulation anomalies often
persist for many weeks, bringing heat waves or
cold waves, or floods or droughts, to particular
places. These places are different on different
occasions. It seems likely that, in some cases,
what is responsible for the eventual break-up of
the anomaly is the march of the seasons, which
brings new heating distributions with which the
present circulation anomalies are incompatible.
The seasonal variations of heating may therefore
play a role that is quite distinct from their
obvious role in producing different climatological
normal conditions at different seasons.

Wholly aside from matters of climatological
interest, we have found a rather striking
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Fig. 16. The intersections of the attractor (pieces
labeled A) and the repellor (pieces labeled R) of egs.
(1)-(3) with the plane Z=0, for a=10.25, b=4.0,
F=28.0,and G=1.25.

dynamical system that merits further study. It is
semi-dissipative, i.e., infinitesimal volumes can

either contract or expand, but in the long run
they undergo net contraction, so that the
attractors are sets of zero volume. Moreover, the
system remains semi-dissipative when time is
reversed; again there is net contraction, and the
repellor is a set of zero volume.

We have subsequently found some values of
the parameters for which both the attractor and
the repellor are strange; we offer Fig. 16 as an
example. We note that the attractor and the
repellor carefully avoid one another. The gener-
ality of this observation merits considerable
thought; according to Mestel (1987, private
communication), it may depend upon the manner
in which one chooses to define an attractor.
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