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STUDIES OF ATMOSPHERIC PREDICTABILITY

ABSTRACT

The range at which good forecasts of the weather are
possible is limited by the rate at which separate solutions
of the governing dynamic equations diverge from one another,
Studies aimed at determining this réte have thus far employed
a dynamical approach, an empirical approach, or a dynamical-
empirical approach. A comparison of these three approach
points to a value of about three days as the best estimate
of the average doubling time for small differences between

solutions.

In separate sections of the report each approach is

presented in detail.
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FOREWORD

The behavior of the atmosphere is governed by a set of physical
laws., These laws may be formulated as a system of differential equa-
tions, The problem of weather prediction may be identified with the
problem of discovering, by one means or another, the particular solu-
tion of these equations whose initial conditions represent the current

state of the atmosphere,

In the strictest sense the laws are not deterministic; in any
event they are not precisely known. Furthermore, the current state
of the atmosphere cannot be measured without error., These considera-
tions imply that perfect weather prediction is not possible, It is
apparent, however, that they do not necessarily preclude the possib-
ility of good weather forecasts at either short or long range, since
similar considerations apply to the prediction of such other natural
phenomena as oceanic tides and solar eclipses, which can be predicted

far in advance with considerable accuracy.

The distinguishing feature of the atmosphere is its instability;
i.e,, two time~dependent solutions of the governing equétions originating
from slightly different initial conditions will diverge from one another
and eventually become unrecognizably different., This consideration,
together with the impossibility of formulating the laws and measuring

the current state exactly, place a limit upon the range at which good

forecasts can be made,




The ''Statistical Forecasting Project' at M.I.T. has been
sponsored by the Air Force Cambridge Research Laboratories continu-
ously since 1955 under a succession of contracts. During its early
years the Project was concerned primarily with methods of prediction,
As the work progressed, interest was turned toward the problem of the
extent to which prediction is possible, Under the present contract
we have been particularly concerned with the EEEE at which the time-
dependent solutions of the dynamic equations diverge from one another;
this rate determines the time required for typical errors of observa-

tion to amplify to the point where they become intolerably large.

To date three basic approaches to the problem have been pro-
posed. The first is dynamical, and consists of comparing separate
solutions of the dynamic equations obtained by numerical means. The
second is empirical, and consists of identifying states of the atmos-
phere which resemble one another, and comparing the atmospheric
behavior subsequent to the occurrence of these states. The third is
partly dynamical and partly empirical; dynamic equations governing
differences between states of the atmosphere are derived, but the
numerical values of the coefficients in these equations are based upon

observations. We have pursued the second and third approaches.

Article I of this report, which is also to appear in the

Bulletin of the American Meteorological Society in a slightly differ-

ent form, compares the three approaches, and presents our principal
conclusion, namely, that the average doubling time for small differ-

ences between separate solutions of the equations is about three days,

S




Each of the remaining articles deals with one particular approach in

greater detail.

Article II does not represent work performed under this contract;
it is included so that the report may contain a detailed presentation
of each approach to the problem. It is an excerpt from a report entitled

t

"The feasibility of a global observation and analysis experiment,'' sub-
mitted by the Panel on International Meteorological Cooperation to the

Committee on Atmospheric Sciences of the National Academy of Sciences.,

Articles III and IV, which are expected to appear in the

Journal of the Atmospheric Sciences and Tellus respectively, represent

original work performed under this contract. To our knowledge they are
the only completed studies in which these approaches have been taken.
Needless to say, neither study represents the final word. 1In particular,
the last article is directed more toward the general problem of fluid

predictability than the specific problem of atmospheric predictability.

We regret that this Final Report for Contract AF 19 (628)-5826
is also the Final Final Report for the Statistical Forecasting Project.
We have approached our objective of determining the doubling time for
small differences between solutions of fhe equations, but much work

remains to be done before our values can be accepted with confidence,
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I. THREE APPROACHES TO ATMOSPHERIC PREDICTABILITY

ABSTRACT

Since errors in observing the state of the atmosphere are in-
evitable, the accuracy of extrapolation into the future ié limited
by the rate at which separate solutions of the governing equations
diverge from one another. Three basically different methods for

investigating the growth rate of errors have been exploited.

The dynamical method compares numerical solutions of special
systems of equations. ©Small errors appear to double in less than a
week, the growth rate decreasing when the errors become large. The
empirical method examines naturally occurring analogues. Moderately
large errors amplify by nearly ten per cent in one day, but extrapo-
lation of the results suggests that small errors would double in less
than three days. The dynamical-empirical method uses derived equa-
tions for the errors, with observed spectral properties of the atmos-
phere appearing as coefficients. Only the last method treats smaller-
scale features explicityly. Small-scale errors appear to grow very
rapidly, meanwhile inducing errors in the larger scales, which then
double in two or three days. The dynamical method probably overesti-
mates the doubling time because of special numerical approximations

used to suppress computational instability.

An absolute maximum range of a few weeks for predicting a

particular day's weather is indicated. The outlook for major im-

brovements in short-range forecasting is favorable.




1. Introduction

The belief that man can make useful even if not perfect pre-
dictions of the weather must have first been inspired by the obser-
vation that there is some regularity in the sequence of weather
events; for example, in some regions dark clouds often foreshadow
a heavy shower. Today we are more inclined to base our belief in
predictability upon the premise that the atmosphere is governed by
a set of physical laws, which may be formulated in a manner express-
ing future states of the atmosphere and its environment in terms of

the present.,

It the laws can be so formulated, one may justifiably ask
whether perfect prediction may some day be realized. Three basic
reasons indicating that this is not the case may be cited. First,
the system of governing laws is not strictly deterministic. Next,
even if the laws were deterministic, perfect prediction would be
impossible in practice because the laws are not perfectly known.
Finally, even if the laws were perfectly known, perfect prediction
would not be attainable because the current state of the atmosphere

and its environment cannot be perfectly measured.

Although it would be an interesting task to determine what
limitations are placed upon predictability by Heisenberg's Principle
of Uncertainty, the problem is purely academic because of greater

limitations due to other obvious uncertainties. Among these are

the effects of biological activity, and, in particular, human




g et e

activity, which for our purposes must be considered nondeterministic.
Local cumulus convection, for example, may be affected by fires,
while if one wishes to make exact predictions at very long range he

must anticipate the creation of large lakes by the construction of

dams.

For the present, however, these intrinsic uncertainties in
the governing laws may be overlooked, because they are of minor
importance compared to the uncertainties arising from our incomplete
knowledge of the laws. We do not completely understand, for example,
what determines when a cloud consisting entirely of minute water
droplets will become converted into a cloud containing many larger
drops, which will then fall out as rain., On a world-wide basis,
such lack of knowledge places far greater limitations upon predict-
ability than any uncertainty as to the locations of fires or lakes

or other man-made features.

Perhaps one can visualize the day when all of the relevant
physical principles will be perfectly known. It may then still not
be possible to express these principles as mathematical equations
which can be solved by digital computers. We may believe, for ex-
ample, that the motion of the unsaturated portion of the atmosphere
is governed by the Navier-Stokes equations, but to use these equa-
tions properly we should have to describe each individual turbulent

eddy — a task far beyond the capacity of the largest computer., We

must therefore express the pertinent statistical properties of



turbulent eddies as functions of the larger-scale motions. We do not
yet know how to do this, nor have we proven that the desired functions

even exist.

Supposing, however, that we some day master the problem of
formulating exact equations, we still cannot make perfect forecasts
from imperfectly observed initial conditions. We cannot even make
good forecasts at extended range, unless our equations possess the
property that separate solutions, differing only slightly at some
initial time, will continue to differ only slightly as time progresses,

Empirical evidence indicates that this is not the case,

If we suppose instead that we can some day learn to observe
the atmosphere without error, but if we acknowledge that our equations
must forever contain some imperfections, we find that shortly after
the initial moment the state of the atmosphere is imperfectly known,
Jjust as surely as the initial state is imperfectly known if our obser-
vation system is imperfect. Again, the divergence of separate solutions
of the equations assures us that we cannot make good forecasts at

sufficiently long range.

Knowing that we cannot predict into the indefinite future, we
face the question, "How accurately can we some day predict the weather
at any specified range?' The answer to this question depends upon

how rapidly separate solutions of the atmospheric equations diverge

from one another.




Let us refer to the difference between two states of the at-
mosphere, or between two solutions of the governing equations, as
an error. The case of most obvious interest occurs when, at some
initial time, one state is the true state of the atmosphere, and
the other is the state of the atmosphere as it has been observed.
There is no necessity, however, to restrict our attention to errors
resembling those errors of observation which would be likely to be

made in practice.

2. The dynamical approach

How, now, are we to determine the typical growth rate of small
errors? The best known line of approach is a dynamical one, and it
is based upon special systems of differential equations designed to
resemble those which govern the atmosphere. In short, two or more
solutions of the equations, originating from slightly different initial
conditions, are obtained by numerical integration, whereupon the rate
of amplification of the differences between the solutions is readily

evaluated.

During the early stages of planning for the Global Atmosphéric
Research Program, it was recognized that the tendency for small errors
to amplify might place a limit upon the range of practical predictab-
ility, and that too rapid a growth rate could conceivably render some

of the objectives of the program unattainable. It thus became essen-

tial to establish a reasonable estimate of the growth rate. At that




time there were in existence three rather extensive working mathe-
matical models of the general atmospheric circulation, namely those
developed by Smagorinsky (1963), Mintz (1964) and Leith (1965).
Each model possessed its own distinctive features, but the models
were alike in representing the state of the atmosphere by several

thousand numbers,

Following a special conference, each of these investigators
decided to use his model to study the growth rate of small errors.
The results obtained from the separate models did not agree. Mintz
found that after an initial period of adjustment, small errors tended
to double, in the root-mean-square sense, in about five days.
Smagorinsky deduced a considerably slower growth rate, while Leith
obtained no systematic growth at all. It appeared, however, that
leith's atmosphere was varying nearly periodically, so that little
growth was to be expected. In Smagorinsky's and Mintz's models, the

growth rate subsided as the errors became larger,

In their report concerning the feasibility of a global obser-
vational system (sze Article II of this report), Charney et al. (1966)
corclude that a reasonable estimate of the doubling time for small
errors is five days. If this conclusion is accepted, it is not un-
reasonable to entertain the possibility that good day-to-day forecasts
up to two weeks in advance may eventually be produced. Such an achieve-

ment would of course demand a better obserxrvational system than the one

currently existing.




Subsequent numerical experiments performed with more and more
elaborate numerical models seem to confirm a doubling time of some-
what less than a week, However, even the most recent models share
certain shortcomings with the earlier ones, Specifically, the equa-
tions of a model can never be the exact equations of the atmosphere,
I1f thus becomes important to seek other means of estimating the

growth rate,

3. The empirical approach

Such means are afforded by a second line of approach, which is
empirical, and is based upon the natural occurrence of analogues, i.e.,
similar weather situations. We certainly cannot repeat the procedure
of the numerical experiments, using the real atmosphere, for even
though we might succeed in introducing a disturbance, and study the
behavior of the disturbed state, we should then not know how the un-
disturbed state would have behaved. However, in principle, if we wait
long enough, we may expect to encounter a state which rather closely
resembles some state which has previously occurred., Either state is
then equivalent to the other state, plus a small error, and the growth

of the error may be studied by observing the behavior of the atmosphere

subsequent to the two states,

In practice this procedure may be expected to fail, because of

the high probability that no truly good analogues will be found within

the recorded history of the atmosphere, Accordingly, we note that




moderately large errors may in general be expected to amplify at a
slower proportional rate than small errors (cf. Lorenz, 1968). By
studying mediocre analogues, i.e,, states bearing only a moderate
resemblance to one another, we may hope at least to obtain a maximum

estimate for the doubling time for small errors.

We'have now completed a study of this sort (see Article I11),
Our basic data have been the heights of the 200~, 500-, and 850-millibar
surfaces at a grid of 1000 points over the northern hemisphere, for
the years 1963-1967. We have compared each state of the atmosphere
with each other state occurring within one month of the same time of
year, but in a different year, thereby comparing altogether about
400,000 pairs of states. As a measure of the difference between two
states, or the error, we have taken the ratio of a weighted root-mean-
square height difference to an estimate of the normal value of this

weighted difference for the time of the year,

There are indeed no truly good analogues. In fact, the small-
est error encountered is more than half as great as the average error,
The smaller errors do indeed grow more rapidly, with larger-than-average
errors tending to decrease rather than increase. The smallest errors
amplify by nearly ten per cent in one day; thus it may be inferred
that truly small errors would double in not more than eight days -~

a result which, incidentally is in agreement with the numerical exper-

iments.




Presumably, however, the doubling time of small errors is
considerably less than that of the smallest encountered in the study.
If we introduce the postulate that the principal nonlinear processes
are represented by quadratic terms in the dynamic equations, we can
extrapolate the results of the study to obtain a doubling time for

truly small errors. This turns out to be between two and three days.

4, The dynamical-empirical approach

In both the dynamical and the empirical procedures the state
of the atmosphere is represented or described by numerical values of
the weather elements at points separated by several hundred kilo-
meters., The errors which are indicated as doubling in several days
are therefore errors in representing the larger-scale features of
the atmosphere., It seems likely that errors in smaller-scale features
will double much more quickly. An error in estimating the intensity
of a thunderstorm, for example, should amplify at least as rapidly
as the thunderstorm itself, doubling in perhaps twenty minutes., At
the same time, this error may be instrumental in producing errors in
the larger scales. A third line of approach explicitly takes this

possibility into account.

The new approach is partly dynamical and partly empirical,
A system of equations whose dependent variables describe the spectral

distribution of the errors is first derived from the original atmos-

pheric equations, Numerical values of the coefficients appearing in




the new equations are based upon the observed spectral distribution

of atmospheric energy.

In the only study of this sort so far completed (see Article
IV), we have used as dependent variables the contributions of twenty
different scales of motion to the mean-square error. Each scale
covers an ‘octave of the spectrum, so that wave lengths from 40,000
kilometers down to 40 meters are included. In place of the actual
atmospheric equations, we have used the equations for two~dimensional
incompressible flow, The coefficients are based upon an estimated

spectrum of atmospheric kinetic energy.

When the initial error is confined to the smallest scale of
motion, it is found to grow very rapidly, at the same time inducing
errors in slightly larger scales., These in turn grow slightly less
rapidly, and induce errors in still larger scales. In the course of
half an hour, errors in the cumulus-sized scales have become appreci-
able, while after two days the errors have invaded the synoptic

scales. Large errors in all scales are present after two weeks,

If small-amplitude initial errors are instead contained in
the medium or larger scales, they quickly induce errors in the small-
est scales, which then proceed to behave as if they had been present
from the beginning. Thus, regardless of the initial spectral dis-
tribution of the errors, the errors in the most rapidly amplifying
scales, i.e., the smallest, will soon dominate the field, and only

somewhat later will they succeed in inducing further errors in the

-10-




larger scales. It follows that if the initial-error amplitude is
small enough, a further reduction in the amplitude by a fac£$r of
two will increase the range of predictability of all scales, and
hence of the atmosphere as a whole, only by the doubling time for

the smallest scale present, perhaps a minute or two.

Indeed, we may extrapolate our results to the case where still
smaller scales are admitted. We then conclude that the atmosphere
possesses an intrinsic range of predictability, of perhaps three weeks.
Presently we are far short of our goal of making the best possible
forecasts, and our observation system requires major improvements,
However, if the hoped-for improvements are some day realized, no
further improvements will ever appreciably increase the range of

predictability.

We must be quick to note that our conclusion is based upon
a number of assumptions which cannot be rigorously defended. We
are a long way from incorporating the true atmospheric equations
into our procedure. Nevertheless, we believe that the evidence

favoring our conclusion is substantial,

We must also observe that our conclusion applies only to
prediction of the conditions on a specific date. Nothing is stated,
for example, about the possibility of saying whether next summer
will be a warm one or a cool one. We maintain that it is not possible
to say which days during the coming summer will be the warmer ones

or the cooler ones.,

-11-




5., Further considerations and conclusions

One result of our computations to be noted is that once the
errors in the synoptic scales have become noticeable but not large,
further doubling, in the root-mean-square sense, requires somewhat
more than two days. This doubling rate is consistent with the one
deduced by the empirical procedure, but it is appreciably more rapid
than that indicated by the dynamical studies., We must therefore

note a particular shortcoming of the dynamical approach.

In the earlier days of numerical simulation of the atmosphere,
it was found that the numerical solutions, after behaving in a rea-
sonable fashion for perhaps several weeks, would suddenly go into
wild oscillations. This phenomenon was eventually recognized as a
type of nonlinear computational instability by Phillips (1959), who
also accounted satisfactorily for its presence. Various computational
schemes, which by no means duplicated the manner in which the real
atmosphere is prevented from blowing up, were eventually devised to

overcome the instability.

It seems likely that these schemes, which prevent certain com-
putational errors from becoming unduly large, may also have a damping
effect upon real errors, and thereby raise the doubling time above
its proper value, We have tested one scheme for this effect. The
scheme was devised by Arakawa (1966), and was used by Mintz in his

study of error growth.

~12-




In short, we have repeated the dynamical-empirical procedure,
using new values of the coefficients in the equations, which are the
values which the coefficients would assume if the Arakawa computation
scheme were a part of the equations governing the real atmosphere,

We have assumed in addition that scales of motion too small to be
resolved by the computational grid used in the numerical experiments

are completely absent.

Using the coefficients compatible with the Arakawa computation
scheme, we find that small-amplitude errors should double in five
days. This is almost exactly the doubling time actually obtained by
Mintz. With the more appropriate coefficients, small-amplitude errors

are indicated as doubling in about 2.5 days.

The effect of the Arakawa computation scheme is to deemphasize
the smallest scales actually retained, while treating the larger
scales in an essentially correct manner. We venture the guess, then,
that if Mintz's computations were to be repeated with a considerably
closer grid-point spacing, so that the smaller synoptic scales would
no longer be the smallest scales retained, a doubling time of three
days or less would be found. Of course, substantially decreasing
the grid-point spacing would enormously increase the required amount

of computation.

It thus appears that all three approaches lead to nearly the

same result, namely, that small errors in scales large enough to be

-13-




resolved by conventional grids should double in somewhat less than
three days, in the root-mean-square sense. Once the errors have
attained a moderate size, they will grow less rapidly. In the scales
too small to appear in conventional analyses, the errors may grow

very rapidly indeed.

Are these results encouraging or discouraging? Certainly they
must be discouraging to those who may have hoped that the often men-
tioned figure of two weeks could actually be pushed closer to a month,
They do not even offer encouraging prospects for predicting the posi-
tions of migratory cyclones and anticyclones two weeks ahead., 1In

another respect, they are rather promising.

In the numerical solutions obtained in the dynamical-empirical
procedure, we have found that the spectra of the errors at intermediate
stages of the computation tend to resemble the initial spectra of errors
which would be present if the observational data were confined to a
regular network of points. The larger scales are almost free of error
and the smaller scales are completely dominated by errors, while there
is rather narrow band of intermediate scales where the errors are
medium sized. We are thus led to postulate a sort of additive law

for predictability.

Specifically, if the largest scale of motion not resolved by

the observational network has an intrinsic range of predictability

of, say, three days, introducing a fine enough network to resolve

—-14-




all scales of motion (an impossible task, of course), would increase
the realizable range of predictability of all the larger scales by
just three days. Likewise, improving the network so that the largest
remaining unresolved scale has an intrinsic range of predictability
of one day, instead of three days, would increase the realizable
range of predictability of the larger scales by two days. Systems
unresolved by the present network are probably intrinsically predict-
able at least three days shead; reducing this figure to one day by

improving our network does not seem to be beyond our capabilities.

To be able to forecast 16 days in advance as well as we now
forecast 14 days in advance would not be a particularly spectacular
achievement, To be able to predict three days ahead as well as we
now predict one day ahead would be a major accomplishment. Indeed,
it is altogether possible that one of the practical outcomes of
current efforts to improve our observational network will be a new

level of excellence in short-range forecasting.
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II1. ATMOSPHERIC PREDICTABILITY AS INDICATED

BY NUMERICAL EXPERIMENTS

NOTE

The following article does not represent work performed under
Contract AF 19(628)-5826. It is included to provide a description of

the numerical experiments upon which some of our conclusions are based.

The article is an excerpt from a report (Publication 1290, National

Academy of Sciences) entitled "The feasibility of a global observation
and analysis experiment', prepared by the Panel on International Meteo-
rological Cooperation for the Committee on Atmospheric Sciences of the
National Academy of Sciences. The report also appears in the Bulletin

of the American Meteorological Society, Vol., 47, pp. 200-220 (March

1966). The members of the Panel on International Meteorological Cooper-
ation were Jule G, Charney (Chairman), Robert G. Fleagle, Vincent E.

Lally, Herbert Riehl, and David Q. Wark.
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8. Theoretical limits of predictability

A basic problem in long-range forecasting is concerned with the theo-
retical limits of predictability of the atmosphere as a determinate
system. If one knew the laws of motion with perfect accuracy, had
accurate initial grid data for all the atmosphere, qnd could reduce
truncation error to negligible proportions, it would still be impossible
to make determinate forecasts for arbitrarily long time intervals. This
limitation is not a matter of quantum indeterminacy or of thermo-
dynamic fluctuation; it derives fundamentally from the continuous
character of the turbulence spectrum and the limitations of any ob-
servational net. As long as some turbulent energy remains at the
mesh scale, then, no matter how much the observational net is refined,
part of this energy will inevitably appear under an alias as energy of
the large-scale flow, i.e., as an error of observation. This will remain
true until the mesh size is reduced to the smallest eddy size permitted
by viscosity. It will then obviously have become impossibly small.
Thus it appears that errors of observation are inevitable even when
they are not strictly instrumental. In practice, instrumental errors
will be appreciable and will have to be reckoned with (they, too, are
related to the existence of turbulence).

The question of predictability may now be asked in a more realistic
manner. Given the inevitable small errors, will these remain small
or will they grow, and, if they grow, how fast will they grow? How
long will it be before the error has grown beyond acceptable bounds?
These questions were asked by Lorenz! who related them to the ques-
tion of the stability of a dynamical system with a finite number of
degrees of freedom. If the system is represented by a point in a phase
space and occupies a bounded volume in this space, it must pass
arbitrarily close to the same point on more than one occasion. If the
system 1s stable, in the sense that a small perturbation of the system
in the phase space will remain small, it is easily seen that it must be
periodic or almost periodic. Conversely, if it is not periodic it must
be unstable. Figure 1, taken from Lorenz’s article, illustrates this

1. (1963b) 17




situation. Lorenz also showed that if a solution is nonperiodic, it 1s
not only unstable but the neighboring solutions must eventually be-
come as far separated as two randomly chosen solutions. He carried
out numerical experiments with a very simple atmospheric analogue
containing only 28 degrees of freedom and was able to obtain steady,
periodic, and nonperiodic solutions.

There is every indication that the actual atmosphere is aperiodic
and therefore unstable, although it contains periodic or quasi-periodic
components such as the lunar and solar tides. The question is, then,
how fast will a given error, interpreted as a perturbation of the atmos-
pheric flow, grow before the perturbed motion differs from the un-
perturbed motion by as much as two randomly chosen flows. To
estimate the limit of predictability in this sense, a series of numerical
experiments were performed by Drs. C. Leith, Y. Mintz, and J.
Smagorinsky, at the Livermore Laboratory of the University of Cali-
fornia, the University of California at Los Angeles, and the Geo-
physical Fluid Dynamics Laboratory of the U.S. Weather Bureau,
respectively. Numerical predictions were performed with each of

FIGURE 1. Schematic

b
diagrams illustrating
predictability. Z i

c d

a
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their models for so long a period that the starting conditions had
ceased to have any discernible effect. At this time a sinusoidal “error”
perturbation in the temperature field was introduced and a predic-
tion was made for at least 30 additional days. This prediction was
then compared with the evolution of the unperturbed flow for the
same period. The individual models will now be described.

(a) The Leith model? This model is global in extent. The grid
divides the atmosphere into six pressure levels in the vertical and
covers the globe with a horizontal grid spacing of about 500 km.
Heating is due to incoming solar radiation, the release of heat of
condensation, and small-scale convection. Infrared radiative transfer
is included by specifying a cooling rate as a function of pressure alone.
The surface temperature is a fixed function of latitude and longitude,
and the ground is flat. Vertical and horizontal diffusion of heat and
momentum by turbulent eddies are provided for by linear diffusion
laws with constant eddy coefficients. We note especially that the hori-
rontal diffusion coefficient, D, is given the unusually large value
101 cm? sec! in order to ensure computational stability. This results
in a dissipation half-life of L2 log,2/8 #2D = 5.2 days for a sinusoidal
disturbance whose wavelength, L, is 6,000 km in both the zonal and
meridional directions.

(b) The Mintz-Arakawa model.® This model is also global in ex-
tent. The grid divides the atmosphere into two pressure levels in the
vertical and covers the globe in 9° intervals of longitude and 7° inter-
vals of latitude, except in small regions near the poles. The heating
due to incoming solar radiation is fixed in space and time; the heat
of condensation is brought in parametrically and rather unrealisti-
cally only to keep the lapse-rate of temperature from exceeding the
moist-adiabatic; heating by small-scale convection is allowed at the
lower level; and the infrared cooling rate at both levels is given as
an empirically determined function of the temperature at the lower
level. The ocean temperatures are fixed, but the land temperature
1s permitted to vary in accordance with the temperature at the lower
grid level. These features do not differ significantly from those in
Leith’s model except for the variable land temperature and the
absence of large-scale precipitation. There are two additional fea-
tures, however, in which the model does differ significantly: first,
owing to the employment of a completely stable difference scheme
devised by Arakawa, it was not necessary to assume so large a hori-

2, (1965). -19-
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zontal diffusion coefficient; and second, orographical variations are
taken into account.

(c) The Smagorinsky model.* The Geophysical Fluid Dynamics
Laboratory’s current nine-level model could not be used in this test
because of the prohibitive amount of computation that would have
been required. An earlier two-level model was used instead. In this
model the flow is bounded by vertical walls at the equator and at
latitude 64.4°. The grid is a square net on a Mercator projection,
with a mesh size varying from 555 km at the equator to 240 km at the
north boundary. The earth’s surface is flat and homogeneous. The
thermal structure of the atmosphere is characterized by a single vari-
able temperature at an intermediate level and a constant static sta-
bility. Diabatic heating is given as a linear function of the tempera-
ture. Surface friction is treated as a boundary layer phenomenon, and
lateral eddy diffusion of momentum is assumed to take place with a
coefficient of viscosity dependent on the deformation tensor, so that
strong momentum diffusion occurs only when the deformation field
is large.

In each of the models a temperature perturbation of the form
AT ~ sin 6) cos 11¢ was introduced. Here ) is the longitude and ¢
the latitude, giving six waves zonally and six from pole to pole.

Graphs showing the time variation of the root-mean-square (r.m.s.)
temperature deviation,

1/2

1N
— 2
NZl AT ’

averaged over all the grid points (n =1, 2, . . . N), are presented in
Figures 2, 3, and 4 for the Leith, Mintz-Arakawa, and Smagorinsky
models, respectively. The perturbation temperature amplitudes were
taken to be 2.0°, 0.5°, 0.1°, and 0.02°K in the Smagorinsky model
and 1°K in the others. The r.m.s. errors were calculated separately
for each hemisphere and each level in the Mintz-Arakawa model, and
for the whole atmosphere in the others.
The initial temperature errors were chosen so small that it was
thought that they could be regarded initially as linear perturbations
| on the finite-amplitude time-variable flow. It was expected that they
would at first grow exponentially until they reached a finite-ampli-
| tude nonlinear stage and would then grow at a decreasing rate. It

4., (1963) -20-



FIGURE 2. Root-

mean-square tem-
perature error in

Leith model.
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will be seen from the figures that this expectation was borne out only
in the Mintz-Arakawa model. In the Leith model the r.m.s. error
started at 0.50°K and, after undergoing a transient oscillation, leveled
off at 0.11°K. The calculation was terminated after 20 days because
of a computational instability associated with the condensation
process. The flow at the upper levels became nearly a constantly
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Ficure 4. Root-
mean-square tem-
perature error in
Smagorinsky model.
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translating wave pattern of small amplitude. The cause of this upper-
level stability is probably the excessive eddy viscosity and the weak
coupling with the surface.

In the Smagorinsky model the temperature amplitude of the unper-
turbed flow was, in the first calculation, no greater in order of magni-
tude than the imposed perturbation of 2°K. This placed the per-
turbation immediately in the nonlinear range. However, even when
the amplitude was reduced to 0.5°K the error growth exhibited a
similar behavior. In both cases it will be seen from Figure 4 that the
r.m.s. error varies in a quasi-periodic fashion with a period of about
2 weeks and a slowly increasing mean value. The variations parallel
each other for about 30 days and then begin to depart. The smaller
error disturbances, of amplitude 0.1°K and 0.02°K, show a slow but
continuous growth until after about 30 days, when the doubling time
reaches the value of 6 or 7 days. An examination of the actual flow
patterns revealed that the motion was primarily periodic, with a
small aperiodic component. In accordance with what has béen said
about the stability of dynamical systems, it might have been expected
that the instability would appear as a slow growth superimposed on
a periodic fluctuation. After about 30 days the vacillating regime
changed to a more aperiodic behavior, and at that time the error
grew more rapidly with a doubling time of 6 or 7 days. This behavior
does not resemble very well the usual condition of the atmosphere in
which strong instabilities appear always to exist.

The only model exhibiting the strongly aperiodic behavior of the
atmosphere was the one of Mintz and Arakawa. Integrations had
been performed with this model for upwards of 284 days with the sun
constantly at the Northern Hemisphere winter solstice. A sequence
of sea-level pressure charts at 2-day intervals for days 229-243 are
shown in Figures 5, 6, 7, and 8. It will be seen that the flows are
realistic at middle and high latitudes, with the traveling disturbances
and the quasi-permanent centers having typical locations and intensi-
ties. The zonally and time-averaged temperature distributions shown
in Figure 9 are also seen to correspond well with observations for the
winter season. We may therefore be justified in assuming that the
statistical properties of the error growth will be realistic.

The primary deficiency of the model is its unrealistic treatment of
the condensation process; this deficiency is indicated most markedly
in the tropics by too broad a low-pressure trough and the absence
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FIGURE 5. Sea-level-
pressure maps as
computed for days
229 and 231. The
isobars are at 5-mb
intervals and the
small circles, con-
nected by thin lines,
show the positions
of the low and high
centers in the pre-
ceding two days.

FIGURE 6. Sea-level-
pressure maps as
computed for days
233 and 235.
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FiGURE 8. Sea-level-
pressure maps as
computed for days

computed for days
241 and 243,
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FiGURE 9. Meridional cross sections of the zonally averaged and time-averaged
temperature, in degrees centigrade, for Northern Hemisphere winter and Southern
Hemisphere summer. The upper figure is the 30-day mean (from day 256 to 285)
computed in the numerical experiment. For representational purposes, the zonally
averaged surface temperature is shown at the 1,000-mb level, except over Antarc-
tica. The lower figure shows the observed field, according to Burdecki (1955) .

of the normal tropical disturbances, as well as in a distortion of the
subtropical high-pressure pattern. This is shown in Figure 10. How-
ever, the principal error growths are associated with strong middle-
latitude cyclogenesis, and since cyclogenesis is far less frequent and
usually less intense in the tropics, especially in the Northern Hemis-
phere winter, the lack of realism in the tropical motions cannot have
affected the statistical results significantly. The lack of condensation
in the extratropical developments is probably more serious, but since
it is not the primary cause of cyclogenesis, it is not thought to have a
dominating effect.

The results of the predictability calculations with the Mintz-
Arakawa model are summarized in Figures 3, 11, 12, 13, 14, 15, and 16.
The first of these figures shows the growth of the r.m.s. temperature
error from day 234, when the sinusoidal error was inserted, to day
264 for each of the two temperature levels in the model and for each
hemisphere. The temperatufe levels, 1 and 2, vary somewhat in ele-
vation and have means of 400 and 800 mb, respectively.
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Ficure 10. Surface pressure reduced to sea level, for Northern Hemisphere winter
and Southern Hemisphere summer, in mitlibars. (The broken lines are intermediate
2.5-mb isobars.) The upper figure is the 80-day mean (from day 256 to 285) com-
puted in the numerical experiment. The surface pressure was reduced to sea level
using the computed surface temperature and a subterranean temperature lapse
rate of 6°C/km. The lower figure shows the normal January sea-level pressure,
according to O’Conmer (1961), 90°N-15°N; Riehl (1954), 45°N-45°S; and van
Loon (1961), 15°8-90°S

Since the wind field was not disturbed initially, the initial decrease
in the r.m.s. temperature error most likely represents a transformation
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from perturbation potential energy, associated with the perturbation
temperature fluctuations, to perturbation kinetic energy during the
process of the quasi-geostrophic adjustment of the wind to the pres-
sure field. The evidence from another calculation indicates that little
gravity wave energy was generated.* The subsequent growth is seen
to be approximately exponential, with a doubling time of about 5
days in each hemisphere and at each level. Since the pressure and
wind fields are hydrostatically and geostrophically related to the
temperature fields, the relative r.m.s. error growth in these fields should
be essentially the same as that of the temperature field after the initial
adjustment period.

Figure 11 shows the r.m.s. error growth for a random temperaturc
disturbance modulated by the factor cos ¢ cos 6¢, and Figure 12 shows
the growth for an initial disturbance confined to the region 21-63°N,
157-208°W. Again, we see that after the initial adjustment period
the growth becomes near-exponential with a doubling time of about
5 days.T In the former case the initial error is large, and the non-
linear range is reached sooner. In this range the growth rate first

* It may be seen from Figure 12 that the gravitational wave energy gencrated
by a perturbation placed initially in the Northern Hemisphere invades the Southern
Hemisphere within a day or two, and that at this stage it is three orders of magni-
tude smaller than the initial energy.

+ A similar doubling time for an initially random disturbance in a two-level
model was obtaincd theorctically by Thempson.®

5. (1957) -28-
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diminishes and then levels off to an irregular fluctuation, at which
time the perturbed flow ceases altogether to resemble the unperturbed
flow. All deterministic predictability is lost when the r.m.s. errors
become comparable to those obtained by diflerencing two random
Hlows. Estimates of these magnitudes were obtained by differencing
temperatures for the days 261 and 260, 262 and 259, 263 and 258, etc.
The resulting r.m.s. temperature differences are shown in Figures 13
and 14 as functions of the time-difference in days. It will be seen that
beyond 3 days the resemblances are so weak that the pairs may be
considered essentially random. (Three days is therefore the upper
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limit for a “persistence” forecast.) Referring to Figures 13 and 14
and Figures 3, 11, and 12, we note that all predictability in the North-
ern Hemisphere is lost at 26 days for the wave perturbation, 19 days
for the random perturbation, and 29 days for the localized perturba-
tion.

We note from Figure 4 that the behavior of the random and local-
ized disturbances in the Smagorinsky model resembles that of the
Mintz-Arakawa model after the first 25 days, but with a slightly lower
growth rate.
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Ficure 15. Root-
mean-square tem-
perature error in
Mintz-Arakawa
model.
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It may seem at first surprising that the logarithmic rate of growth

of the r.m.s. error is approximately independent of the nature of the

initial error. An explanation of this phenomenon is suggested by

Fourier analyses of the error along zones of latitude at middle lati-

tudes. One finds for the case of the sinusoidal wave perturbation,

whose wavelength corresponds roughly to disturbances of cyclone scale,

Icure 16. Root-
mean-square tem-
perature error in
Mintz-Arakawa
model.
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that the spectral energy quickly spreads in such a manner that after
5 days two other peaks in the spectrum appear in the wavenumber
range 1 to 4 and 8 to 12 but that the maximum energy remains
near wavenumber 6. This is the spectral behavior that would
characterize the interactions of the most unstable of the normal per-
turbation modes of the finite-amplitude time-variable flow with the
finite-amplitude flow itself. It is what one would expect if the error
growth were essentially a baroclinic instability appearing as cyclone
development in a band centered near wavenumber 6. The first-order
interactions of this perturbation mode with similar or larger scales of
the finite-amplitude flow would produce the peaks of perturbation
energy near wavenumbers 3 and 10. Since each of the error disturb-
ances considered (and any that would be likely) has energy at either
the long, intermediate, or short scales, its first-order interaction with
the finite-amplitude flow will produce energy in the cyclone-scale
mode, which will then dominate the development by its rapid growth
and give rise to the characteristic r.m.s. growth rate.

We may infer from the correspondence of the space and time scales
that the finite-amplitude irregular flow of the atmosphere is unstable
in much the same way as the idealized baroclinic zonal flows which
have been studied theoretically, but that, because of the irregularity
of the basic flow, the unstable perturbation modes are themselves so
irregular that it would require a very special initial disturbance in-
deed not to excite them.

An important conclusion concerning data requirements may be
drawn from the above considerations. Since errors om any macro-
scale will ultimately grow by instability or by nonlinear interaction,
one is not spared the necessity of defining the entire spectrum in the
macro-range by means of the observational system. The conjecture
that the need for defining the smaller scales of motion is removed by
extension of the forecast range is wrong on two counts. In the first
place, one cannot measure the long-wave components without measur-
ing the shorter ones as well, for if the shorter components have appre-
ciable energy, a large part will appear under an alias as energy of the
long waves. In the second place, the errors in the neglected shorter-
wave components will immediately affect the long-wave components
through nonlinear interaction.

If one accepts a doubling time of 5 days as the rate of growth of
the r.m.s. temperature difference and (from Figure 14) 8°K as the
r.m.s. temperature difference between randomly chosen flows at 800
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mb in the Northern Hemisphere winter, then a flow whose tempera-
tures are determined within an r.m.s. error of 1°K will remain deter-
ministically predictable for about 5 logz 8 or 15 days. If the error were
random with an amplitude of 1°K its r.m.s. value would be 1/ V3,
and the flow would remain predictable for some 4 days longer. An
indication of how the rate of error growth varies with the synoptic
situation was obtained by inserting the initial sinusoidal error per-
turbation at days 244 and 250 (see Figures 15 and 16). The integra-
tions show doubling rates which vary from 4 to 5 days in the early
stages of the prediction in the Northern Hemisphere winter and which
decrease in the later stages, just as for the first case where the initial
time was day 234. In the Southern Hemisphere summer the rates are
somewhat less: the doubling time varies from 5 to 7 days at r.m.s.
amplitudes below 1°K, and may be as long as 15 days at r.m.s. ampli-
tudes about 1°K.

CONCLUSIONS

We may summarize our results in the statement that, based on the
most realistic of the general circulation models available, the limit of
deterministic predictability for the atmosphere is about 2 weeks in
the winter and somewhat longer in the summer. We have assumed
that the observational system defines the initial state of the atmos-
phere globally and that the temperature error is random and not
greater than, say, \/3°K, with the errors in pressure and wind having
hydrostatically and geostrophically corresponding values in middle
and high latitudes. Observational systems of the kind contemplated
in this report can be expected to determine temperatures to within
this error.

Finally, it should be stated that, in principle, prediction of certain
statistical quantities might be made for longer periods. It remains to
be seen whether there are predictable statistical quantities which vary
significantly and yet more slowly than the individual dynamical
parameters. Surface interactions due to heat storage in the mixed
layers of the oceans, variable snow cover, etc., may act as gOVernors
regulating these changes. However, it would appear from the rapid
growth rates due to the basic instability of the atmosphere that the
slower surface interactions will not appreciably change the limit of
deterministic predictability, i.e, the limit of predictability of the
individual motions.
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