MATLAB Scripts for Processing Track Files (including script definitions)
Version 6.5
September, 2021
Copyright WindRiskTech, L.L.C.

Note: We recommend using the m_map routines, which is the default behavior as determined by the
variable MapOverride in the params.m file.

Secondary eyewalls accounted for as of version 4.0.

No longer need to re-run prep.m to choose different best-track years, as of version 5.0.
Can specify different units for wind and rain in graphs, via the params.m file.

As of version 6.4, prep.m and its variants can read WindRiskTech netcdf files.

The behavior of the scripts is controlled using the file params.m. It is a good idea to be familiar
with this script.

Please see Scripts section below for detailed description of individual scripts.
Useful utility scripts are described in the new User’s Guide.
Preparation:

Unzip the zip file containing the MATLAB scripts (scripts_verN.M.zip) into a single initially empty
directory.

Add this new directory (including its subdirectories) to your MATLAB path.

If you have and wish to use the MATLAB mapping toolbox, (note recommended), go to
http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html and download the shapefile version of the
GSHHG data into the (initially empty) shapefiles directory created in the first step above. Unzip the
GSHHG zip file. (After you have done this, you may want to discard the GSHHG zip file.) You should now
have two subdirectories in the shapefiles subdirectory.

Place the MATLAB track file <trackname>.zip that you acquired from WindRiskTech into the subdirectory
event_sets. DO NOT UNZIP!

Run the script initialize.m. This may take a few minutes, but you only need to do this once. All this script
does is read in some map background .jpeg files, convert them to MATLAB binary format, and write
them out so that they can be quickly read into certain scripts. Note that the output files can be quite
large. No need to re-run initialize.m for new event sets.

There are options to create graphical output in Google Earth (the free version is fine). To use these, you
must of course have Google Earth, and you must also install the free MATLAB KML toolbox available at

MATLAB central file exchange: http://www.mathworks.de/matlabcentral/fileexchange/34694-kmil-
toolbox-v2-1 . Note that all the available scripts in Google Earth have equivalents that use mapping

routines provided as part of the set of scripts.

In each plot, the variable on the x-axis is always called x, that on the y axis is called y, and for contour
plots, the contoured variable is called z. For x-y plots with more than one y, the second variable is called
y2, the third y3, etc. A few graphs have multiple x values: x, x2, x3, etc, and some best track contour
plots have z2 as the contoured variable.

Before you can use most of the scripts, you must first run prep.m. When prompted, enter the event set
file name (without any directory name and without the “.zip”). Note that running prep.m produces no
plots, but just produces some temporary files (temp.mat and sorted.mat) that are in turn read by the
various plotting scripts. It need never be run again until/unless a new event set is used. There is an
alternative script, prepfilter.m, that prepares subsets of the specified event set that include events that
pass through a circle of a specified radius centered at a point of interest, or through any of a set of line
segments specified in a ‘poly.in’ file, or (in the case of a global data set) that is confined to a particular
ocean basin, or that includes only a subset of years and/or months. Poly.in is just an ascii file consisting
of 4 columns containing, respectively, the longitude and latitude of the beginning point of each line
segment, and the longitude and latitude of the end point of each line segment. The segments can be,
but need not be, contiguous. If they together form a closed polygon, the filter will also include storms
whose entire tracks are within the polygon. An easy way to create a poly filter is to do so using Google
Earth; see the entry for the script ge_to_poly.m under Main utilities below.

It is important to note that running prep.m produces several new variables that can be quite valuable.
These include vnet.mat, the maximum ground-relative wind in each event, including the effects of
background flow, and vmax.mat, the maximum ground relative wind at the point of interest (if there is
one) or along the line segments specified in poly.in.

Some of the scripts below require best track data in MATLAB binary format. These can be obtained from
ftp://texmex.mit.edu/pub/emanuel/HURR/tracks/ and should be placed in the best_tracks subdirectory
and updated annually.

Almost all of the parameter values used by the scripts are set in the single MATLAB script params.m. You
may find it convenient to keep this script open in its own window so that the parameters can easily be
modified. The default values of the parameters are also indicated here.

A few of the scripts (e.g. pointplot.m) require radial profiles of wind. The user has a choice of several
published profiles, but recent research shows that the outer dimensions of tropical cyclones are
lognormally distributed in nature. The scripts provide an option (the parameter randfac) to draw
randomly from an empirically determined log-normal distribution; if that option is activated, then the
results will differ each time the script is invoked, corresponding to a different overall storm diameter or

randomly drawn set of storm diameters, for scripts that use more than one event. A warning message to
this effect appears in a MATLAB dialog box.

Scripts:

[Convention: In the descriptions below, the index n refers to the event number, while the index m
refers to the 2-hour records of each event. For example, latstore (n,m) is an array containing n tracks
each of which has m two-hour observations. (The arrays are padded with zeros between the end of each
track and the end of the file.) A full description of the arrays is provided at the end of this document.]

a. Parameter script

params.m: This file simply sets the parameter values used by the various scripts; this is the place to
adjust them. The parameters are briefly described, and their default values are listed.

b. Main utilities:

prep.m: Reads in the main track file and calculates the full wind speed, including the effect of storm
translation. It also calculates the lifetime maximum wind speed of each event, the maximum
wind speed at a point of interest, if the tracks have been filtered to pass within a certain
distance of that point, or the maximum wind speed in the storm as it passes over any of the line
segments specified in ‘poly.in’, of the tracks have been filtered to pass through such line
segments. The “point of interest” is read from the master binary file, but can be specified
independently if desired. This script need only be run once, until/unless a new event set is used.
It produced temporary files, temp.mat and sorted.mat, that are read by the other scripts.

prepfilter.m: This is the same as prep.m except that it prepares a subset of the main track file that
consists of tracks that pass through any of a set of line segments in a user-specified file of the
same structure as ‘poly.in’, or that pass within a specified radius of a given point, or that occur in
a specified ocean basin, or that occur within a given set of years and/or months. This is useful
for examining subsets of the main track file, for example, those tracks that make landfall in the
u.Ss.

Function [vs2,dir,dayk,v,f,rp] = windpdfx(POI,cal): This function creates time series of tropical cyclone
wind speed and direction at a specified set of geographic points for each event in the set and
also creates annual exceedance frequencies for peak winds at the specified points. Because it
operates on all the events, it can be slow when many geographic points are specified.

Please type doc windpdfx at the MATLAB prompt for detailed instructions on using this function.

Function [rainrate,rain,dayk,rx,f,rp] = rainpdfx(POI,cal,rmin,rmax): Like windpdfx but creates time series
of rainfall rate at each of a specified set of geographic points as well as annual exceedance
frequencies of storm total rainfall. Type doc rainpdfx at the MATLAB prompt for detailed
instructions on using this function.

Function [x,y,windspeed] = windfieldx(nt,monthplot,dayplot,hourplot): This function creates a gridded
set of wind speeds for a particular storm at a given date and time. The grid can be specified or
automatically generated by the function using parameters from the params.m file. Type doc
windfieldx at the MATLAB prompt for detailed instructions on using this function.

Function [x,y,rainrate] = rainfieldx(nt,monthplot,dayplot,hourplot): Like windfieldx, but creates a gridded
set of rainfall rates for a particular storm at a given date and time. Type doc rainfieldx at the
MATLAB prompt for detailed instructions on using this function.

Function [x,y,maxwind] = windswathx(nt): Creates a gridded set of maximum surface winds speeds
experienced at each of a gridded set of points during the passage of a particular tropical cyclone.
The grid can be specified or automatically generated by the function using parameters from the
params.m file. Type doc windswathx at the MATLAB prompt for detailed instructions on using
this function.

Function [x,y,netrain] = rainswathx(nt): Like windswathx but creates a gridded set of storm total rainfalls
for a particular tropical cyclone. Type doc rainswathx at the MATLAB prompt for detailed
instructions on using this function.

Function [] = ge_to_poly (infilename,outfilename): Creates a poly file from .kml format files created
using Google Earth. To use this, first open Google Earth and use its add path tool to create a
series of line segments. You should create a set of separate .kml files each containing a
contiguous set of line segments and you must name each file according to the convention
<name>1.kml, <name>2.kml....., where <name> is any name you choose. For example,
pathl.kml, path2.kml, path3.kml. Note that the line segments in, say, path2.kml need not be
contiguous with those in pathl.kml or path3.kml. In creating the paths, use discrete mouse
clicks to create a series of straight line segments; holding down and dragging the mouse will
create a series with a potentially large number of nodes, slowing down the filtering scripts. Once
created, find the files in the left-hand column in the Google Earth “Places” pane, right-click, and
save each to the main directory where the WindRiskTech scripts are stored. Then run
ge_to_poly (infilename, outfilename), where infilename is the name you gave the path files (e.g.
path in the example above) and outfilename is the name you wish to call the resulting poly file.
(Both names should be in single quotes.) Note that this poly file is a single file that contains the
data in all the .kml files used. In the special case of a single closed polygon, which is treated
differently by the filtering scripts, you should manually edit the poly file to insure that the very
last lat-long point is identical to the first.

Function [] =geoback (xmin,xmax,ymin,ymax): Reads in various shapefiles that provide map
backgrounds for maps produced using the MATLAB Mapping Toolbox. The parameters give the
longitude and latitudes of the bounding box of the map.

Function [pass,xint,yint,jint,kint,kfrac] = seq (xtrack,ytrack,xa,ya,xb,yb): This function determines
whether a set of n tracks (given by coordinates xtrack,ytrack) intersects a series of m-1 line
segments whose end points are given by xa(m), ya(m), xb(m), yb(m). Pass=0 means no
intersection; pass=1 means intersection.

The quantities xint and yint constitute the intersection points, along the line segment numbered
jint and the kint'th point along the track. kfrac is the fraction of the distance between track
points i and i+1 that the intersection occurs.

Note that pass is a vector of length n, where n is the number of tracks, and the other quantities
are matrices of dimension (n,maxtimes), where maxtimes is the specified upper limit on the
number of times a particular track may intersect the set of line segments.

Function [ut,vt,jmax] = utrans (lat,long): Given 2-hour latitude and longitude positions along a track, this
returns the west-eat and south-north components of the storm translation velocity. The
function assumes that the lats and longs are two-D arrays whose first index is the event number
and whose second index is the 2-hour position for the event. It also returns jmax(n), where n is
the number of events. This marks the last 2-hour position of the track; the translation speeds
are padded with zeros from the end of each track to the end of the file. Some smoothing is
done to the translation speeds; the mount of smoothing is adjustable using the parameter
smfac.

Function [ut,vt,uinc,vinc] = utransfull (lat,long,vstore,u850store,v850store): Returns translations speeds
as in utrans.m but also returns zonal and meridional increments (knots) to maximum circular
wind speed based on storm translation and an additional baroclinic correction. The additional
inputs are the arrays of maximum circular storm wind (knots) and environmental zonal and
meridional flow (knots) at the storm positions.

Function [ut,vt,jmax] = utransbest (latstore,longstore,monthstore,daystore,hourstore): Similar to utrans,
but requires month, day and hour information. This is ideal for historical tracks whose data
points may be unevenly spaced in time.

Function [transfactor] = transfunction(latitude): This function calculates the fraction, transfactor, of
the translation speed to add to the circular storm wind speed. This fraction may be a function of
latitude.

Function [nint,xint,yint,jint,kint] = boxm (long,lat,xa,ya,xb,yb): Given 2-D latitude and longitude
positions along a track (as in utrans), and j-1 line segments whose end points are given by xa(j),
ya(j), xb(j), and yb(j), this function returns the intersection longitude and latitude (xint(n) and
yint(n)) of each track with the set of segments. Nint is 0 or 1 denoting no intersection or an
intersection of the track with the set of line segments. Note that in the event that a track
intersects the array of line segments more than once, only the first intersection point is
calculated. The last point of the set xa(j), ya(j), xb(j), and yb(j), may equal the first, in which case
one has a closed polygon. In this case, the routine also checks for tracks that lie entirely within
the polygon. For this reason, the segments must be specified going CLOCKWISE around the
polygon. The quantities xint and yint constitute the first intersection point, along the line
segment numbered jint and the kint'th point along the track. In the case of a closed polygon, if
the track is entirely within the polygon, jint is set equal to -1 and xint=yint=0.0.

5

Function [nint,xint,yint,jint,kint,vint,kfrac] = boxmv(xtrack,ytrack,vtrack,xa,ya,xb,yb): Same as boxm.m,
but also interpolates input wind speed to the intersection point of the track with the relevant
line segment. Interpolated wind speed given by vint.

Function [vs, dir, dayk] = pointseriesn (latstore, longstore, vstore, rmstore, vsestore, rmsestore,
monthstore, daystore, hourstore, uinc, vinc, jmax, plat, plong, timeres): This function takes the n
X m matrices for the latitudes, longitudes, radii of maximum winds, dates, times, and translation
speeds and, using the latitude (p/at) and longitude (plong) vectors of a set of points of interest,
calculates the time series of wind speed and direction at the points of interest. A wind profile,
calculated in windprofilem.m, is fitted to the maximum wind speeds and radii of maximum
winds (including any secondary maxima present) to calculate the wind speeds and directions at
the points of interest, and the translation speed contribution to the net wind is accounted for.
The routine utransfull. m should be run before this one to provide the velocity increments uinc
and vinc. Note that when this routine is called by prep, the point of interest is taken to be the
center of the circle, if circular filtering has been used to generate the track set.

Function [vs, dir] = pointshortn(latstore, longstore, vstore, rmstore, vsestore, rmsestore, uinc, vinc, jmax,
plat, plong): Same as function pointseries above, but omits calculation of date/time and is thus a
little faster.

Function [w] = pointwfield(latstore,longstore,vstore,rmstore,ut,vt,us,vs,plat,plong,h,hx,hy): This function
takes the nn X 400 'store' matrices and, using the latitude (plat) and longitude (plong) vectors of
points of interest, calculates the spatial distribution of vertical velocity centered at plong, plat.
The routine utrans.m should be run before this one to give the velocity increments ut and vt.
The arrays us and vs are the vertical shears (m/s) used to estimate the baroclinic components of
the vertical motion. The matrices h, hx, and hy contain topographic heights and their derivatives
inxandy.

Function [w] = pointwshortn(latstore, longstore, vstore, rmstore, vsestore, rmsestore, ut, vt, us, vs, plat,
plong, h, hx, hy, timeres): This function take the nn X 400 'store' matrices and, using the
latitude (plat) and longitude (plong) vectors of points of interest, calculates time series of
vertical velocity at the points of interest. The routine utrans.m should be run before this one to
give the velocity increments ut and vt. The arrays us and vs are the vertical shears (m/s) used to
estimate the baroclinic components of the vertical motion. The matrices h, hx, and hy contain
topographic heights and their derivatives in x and y.

Function [w,dayk] = pointwn(latstore, longstore, vstore, rmstore, vsestore, rmsestore, monthstore,
daystore, hourstore, ut, vt, us, vs, plat, plong, h, hx, hy, timeres): This function take the nn X 400
'store' matrices and, using the latitude (plat) and longitude (plong) vectors of points of interest,
calculates time series of vertical velocity at the points of interest, storing the date and time in
the date number array dayk. The routine utrans.m should be run before this one to give the
velocity increments ut and vt. The arrays us and vs are the vertical shears (m/s) used to estimate
the baroclinic components of the vertical motion. The matrices h, hx, and hy contain
topographic heights and their derivatives in x and y.

Function [wq] = pointwshortnq(latstore, longstore, dgq, vstore, rmstore, vsestore, rmsestore, ut, vt, us, vs,
plat, plong, h, hx, hy, timeres): This function take the nn X 400 'store' matrices and, using the
latitude (plat) and longitude (plong) vectors of points of interest, calculates time series of
vertical velocity multiplied by saturation specific humidity at the points of interest. The routine
utrans.m should be run before this one to give the velocity increments ut and vt. The arrays us
and vs are the vertical shears (m/s) used to estimate the baroclinic components of the vertical
motion. The matrices h, hx, and hy contain topographic heights and their derivatives in x and y.
The matrix dg contains the saturation specific humidity at 900 hPa.

Function [wq,dayk] = pointwshortnqdx(latstore,longstore,dq,vstore,rmstore, datestore,
vsestore,rmsestore,ut,vt,us,vs,plat,plong,h,hx,hy, timeres,wrad): Same as pointshortng but also
returns dayk, a matlab datenumber array corresponding to the time series of wg. In this case,
plat and plong can be either scalars or 1-D vectors. Note that datestore is the input matlab
datenumber array corresponding to the dates and times of the other variables.

Function [wq,dayk] = pointwq(latstore, longstore, dq, vstore, rmstore, vsestore, rmsestore, ut, vt, us, vs,
plat, plong, h, hx, hy, timeres): This function take the nn X 400 'store' matrices and, using the
latitude (plat) and longitude (plong) vectors of points of interest, calculates time series of
vertical velocity multiplied by saturation specific humidity at the points of interest, storing the
date and time in the datenumber array dayk. The routine utrans.m should be run before this
one to give the velocity increments ut and vt. The arrays us and vs are the vertical shears (m/s)
used to estimate the baroclinic components of the vertical motion. The matrices h, hx, and hy
contain topographic heights and their derivatives in x and y. The matrix dg contains the
saturation specific humidity at 900 hPa.

Function [rain,rainrate,dayk] = raingen(plat,plong): This function acts on the active event set (as
contained in temp.m) and for specified latitudes p/at and longitudes plong returns the storm
total rainfall (rain, in mm) and times series of rain rate (rainrate, in mm/hr). The matrix dayk
contains the matlab datenumbers corresponding to the rainrate matrix. plat and plong can be
scalars or 1-D vectors containing the latitudes and longitudes of the point(s) of interest. Note
that this function can take a while to run if plat and plong are long vectors.

Function [V] = windprofilem(vm, rm, vm2, rm2, r, wp): This function return radial profiles of azimuthal
wind, V, given matrices containing the maximum circular wind speed, vm, the radii of maximum
wind, rm, the maximum circular wind speed of any secondary eyewalls present (0 if not
present), vm2, the radii of maximum winds of any secondary eyewalls present (0 if not present),
rm2, the distances r of each event from the points of interest, and the wind profile wp (see
below; must be equal to 1, 2 or 3).

Function [V] = windprofiles(vm, rm, r, wp): This function return radial profiles of azimuthal wind, V,
given matrices containing the maximum circular wind speed, vm, the radii of maximum wind,
rm, the distances r of each event from the points of interest, and the wind profile wp (see
below; must be equal to 1, 2 or 3). This function does not account for secondary eyewalls (see
windprofilem above).

Function [pass vmax] = best_filter (vsm, latm, longm, city_radius, clat, clong): Thus function finds those
best tracks that pass within city_radius of [clat, clong] and also finds the maximum wind speed
(vmax) within that circle. Pass= 1 if track meets the criterion, 0 if it does not. Use best _filter_poly
if line segment filtering is desired.

Function [pass vmax]= best_filter_poly (latm,longm,vsm) Filters tracks that pass through line segments
specified in the file ‘poly.in’, and also finds the maximum wind speed of storms at the nearest
observation time prior to passing over the line segment.

Function [pass vmax]= best filter _poly us (latm,longm,vsm) Filters tracks that pass through U.S. Gulf
and east coastal line segments specified in the file ‘polynet.in’, and also finds the maximum
wind speed of storms at the nearest observation time prior to passing over the line segment.

Function [pdiland, jland] = landfallpdi(lat, long, v, jmax): Determines power dissipation summed on first
land fall points, using bathymetry data set.

Function [landtemp] = landcalc(x,y): Calculates whether a point (x,y) is over land or ocean based on a
bathymetry/topography data set.

Function [polytype passi passe xint yint jint kint kfrac] = polyfilter(lat,long): This script finds whether
storm tracks cross line segments given in ‘poly.in'. Passe= 1 if track meets the criterion, 0 if it
does not. Also finds whether each point on a track lies entirely within a set of line segments if
they constitute a closed polygon. If so, passi is set to unity, otherwise to zero. (Note that passi =
1 by default if line segments are not a closed polygon. Also note that passi is a 2-D matrix and
that passe is a 1-D vector.)

Polytype is 'closed' for closed polygons, 'open' otherwise.

The quantities xint and yint constitute the intersection points, along the line segment numbered
jint and the kint'th point along the track. kfrac is the fraction of the distance between track
points i and i+1 that the intersection occurs.

Note that passe is a vector of length n, where n is the number of tracks, and the other quantities
are matrices of dimension (n,maxtimes), where maxtimes is the specified upper limit on the
number of times a particular track may intersect the set of line segments.

Function [rfac] = outer(n,m): This uses the Chavas and Emanuel (2010) work to make a random draw
from a suitable log-normal distribution to rescale the outer radius. The output non-dimensional
factor rfac is the outer radius scale factor, which has a mean of 1. Scale all outer radii by this
random number, and all radii of maximum winds by this number squared (according to Emanuel
and Rotunno, 2011, but first power seems more reasonable). Note that parameters are specified
here rather than in params.m.

Function [g900 q600] = gs900(T600): Calculates saturation specific humidity at 600 hPa and saturation
specific humidity at 900 hPa given 600 hPa T (K) and assuming a moist adiabatic lapse rate.

c. General graphics control menu

gmenu.m: This opens up a menu window from which one can summon most of the graphics packages
described below. Be aware that some of the packages ask for input from MATLAB dialog boxes.
Also note that many of the parameters controlling the graphs must be set within the script
param.m.

d. Plotting and other scripts (in alphabetical order)

Note: The designation (mt) in some of the scripts denotes the presence of an equivalent script that uses
the MATLAB Mapping Toolbox.

Note: For these scripts, the variable on the x-axis is always called x, that on the y axis is called y, and for
contour plots, the contoured variable is called z. For x-y plots with more than one y, the second variable
is called y2, the third y3, etc. Some plots have more than one x or z as well.

The documentation below is also accessible by clicking on the link ‘doc’ at the lower left side of each
plot (except for Google Earth plots).

alltrge.m: Plots multiple storm tracks in Google Earth. The tracks can be specified in the order they were
produced in, ordered by their lifetime maximum wind speed, or ordered by the maximum wind
speed at a point of interest or at the intersection points of a specified set of line segments in a
poly file.

alltrmap.m: This plots multiple storm tracks on a map background provided by any of a limited set of
supplied image files. (One can provide one’s own image, but it must be an equirectangular
projection.) The tracks can be specified in the order they were produced in, ordered by their
lifetime maximum wind speed, or ordered by the maximum wind speed at a point of interest or
at the intersection points of a specified set of line segments.

alltrbestmap.m: Same idea as alltrmap, but plots historical tracks whose source is described in the
introduction.

allbestovermap.m: Overlays historical tracks onto track maps created using alltrmap, which must be run
directly before this script is executed. The historical tracks must be as described in the
introduction.

alltrplot(mt).m: Same as alltrmap, but the map background is supplied using the MATLAB Mapping
Toolbox, or if absent, the m_map routines, which have to be installed for this script to work (see
introduction).

alltrbestplot.m: Same idea as alltrplot, but plots historical tracks whose source is described in the
introduction. (Note: This script does not have an equivalent that uses the MATLAB mapping
toolbox.)

allbestoverplot(mt).m: Overlays historical tracks onto track maps created using alltrplot, which must be
run directly before this script is executed. The historical tracks must be as described in the
introduction.

annual.m: Makes a bar chart of the number of storms in each month, with the first track point
determining the month of formation.

annualbesterr.m: Compares the frequency of storms from synthetic sets to those of best track data. The
former can be normalized to the best track annual frequency. The script annual must be run
immediately before this, and the script must have access to best track data (see introduction).
There is an option to add 90% confidence limits based on an assumption that the best track
storm count in each month has a Poisson distribution.

bestplot(mt).m: Plots tracks and intensities of historical storms, which must be available in MATLAB
binary format, as described in the introduction.

bestproc.m: Reads in a processes best track data, interpolating them from 6 to 2 hour intervals. It also
applies the same spatial filters as used in prep.m, which must be run first.

genpoints(mt).m: Scatter plot of genesis points for the whole track set, with genesis defined as the first
point of each event with maximum winds exceeding a specified threshold. The events may be
filtered to include only those whose maximum lifetime wind speed, or maximum wind speed at
a point of interest, exceeds a specified threshold. The MATLAB Mapping Toolbox must be
installed, or the m_map routines are required for this (see introduction).

genpointsbest(mt).m: Overlays a scatter plot of best track genesis points on the map created by
genpoints.m, which must be run first. The same filters are used as in genpoints.

gendensity(mt).m: Contour plots a map of the spatial density of genesis points in the whole track set,
with genesis defined as the first point of each event with maximum winds exceeding a specified
threshold. The events may be filtered to include only those whose maximum lifetime wind
speed, or maximum wind speed at a point of interest, exceeds a specified threshold. Either the
MATLAB Mapping Toolbox or the m_map routines are required for this (see introduction).

gendensitybesttrack(mt).m: Contour plots a map of the spatial density of best track genesis points as in
gendensity.m, which must be run first. The same filters are used as in gendensity.

p_to_v.m: This function estimates maximum 1-minute (circular) winds (m/s) at 10-m altitude from
surface central pressure, using equations from an idealized zero saturation potential vorticity
model with assumed constant surface relative humidity from the environment inward to the
radius of maximum winds.

pdimap(mt).m: Creates maps of the power dissipation index. The parameter mres specifies the
resolution of the maps. Either the MATLAB Mapping Toolbox or the m_map routines are

required for this (see introduction).

pdimapbest(mt).m: Creates maps of the power dissipation index from best track data, as in pdimap,
which must be run first.

pointplot.m: Plots time series of wind speed and direction at a given point of interest, specified by
maximum lifetime wind, by maximum wind at the point of interest, or by track number.

10

rainfield(mt).m: Contours the rain rate associated with a specified event at a specified time. The radial
wind profile used in the calculation is calculated in windprofilem.m. One may also plot the track
of the event up to the specified time.

rainpdf.m: Return period of rain rate and accumulated rainfall at the default or specified point of
interest.

rainseries.m: Time series of rain rate and accumulated rainfall at the default or specified point of
interest.

rainswath(mt).m: Contours the accumulated rainfall associated with a specific event.

rdoubletime.m: Plots the radii of maximum wind, including those of secondary maxima (if present), and
an outer radius, all associated with a specific event. The outer radius is defined in terms of a
threshold value of the circular component of surface wind; this value can be set at the beginning
of the script.

return_period.m: Uses normalized cumulative distribution functions to plot return periods from
synthetic tracks, and fits a theoretical function to the results. These are return periods of
maximum winds within city_radius of the point of interest, if shape ='circ’, or of maximum winds
along the intersection of line segments, if shape="poly’.

return_best.m: Overlays the return periods calculated from historical tracks onto the results of
return_period, which must be run first. Historical data must be in matlab binary format, as
described in the introduction. (These are defined such that, if the best track data are drawn
from the same distribution as the synthetic track data, 5% of the samples should lie to the left of
the left error bar, and 5% to the right of the right error bar.)

sestats.m: Plots six key statistics of secondary eyewalls (SEs). The first plot just shows the probability of
storms with the number of SEs given on the x axis. The second plot shows the mean and
standard deviation of lifetime maximum wind speed among the events with the number of SEs
given on the x axis. The third plot shows the mean and standard deviation of wind speed
integrated over the life of each event, among the events with the number of SEs given on the x
axis. The final three plots are identical to the first three except that they show statistics of
“primary eyewall replacements” (PERs), which occur when a new eyewall forms inside an
existing eyewall and eventually replaces it. This phenomenon happens during the decay phase
of some simulated tropical cyclones.

swath(mt).m: This contours the maximum winds (knots) experienced at each point in a specified area
associated with a particular storm. Either the MATLAB Mapping Toolbox or the m_map routines
are required for this (see introduction).

time_series.m: For data sets that contain multiple years, this script plots time series of various quantities
such as annual frequency of all events, frequency of hurricanes of various categories, power

dissipation, etc. This script accesses best track data.

trackdensity(mt).m: Contours the number of tracks per unit area in the whole event set. Units are
number per year per one degree latitude square.

11

trackdensitybest(mt).m: Contours number of best track per degree latitude square per year, as in
trackdensity, which must be run first.

trackstats.m: Calculates histograms of 6-hour west-east and north-south displacements along all the
tracks in an event set and compares them to similar displacements in best-track data sets. The
script must have access to best track data in MATLAB binary format (see “Preparation” section).

trmap.m: Plots a single tropical cyclone track on a map background provided by an image file; the image
must be a map in equirectangular projection. The track can be specified by maximum lifetime
intensity, by maximum wind speed at a point of interest or the intersection points of tracks with
a specified set of line segments, or by track number. The intensity of the storm can be shown on
the map, together with daily 00 GMT positions. Other graphs show the evolution over the life of
the storm of several quantities of interest.

trplot(mt).m: Same as trmap, but the map background is supplied using either the MATLAB Mapping
Toolbox or the m_map routines, which have to be installed for this script to work (see
introduction).

trplotge.m: Same as trmap, but includes options to plot tracks in Google Earth or with map backgrounds
as in trplot (see introduction).

v_to_p.m: This function estimates surface central pressure from maximum 1-minute (circular) winds
(m/s) at 10-m altitude, using equations from an idealized zero saturation potential vorticity
model with assumed constant surface relative humidity from the environment inward to the
radius of maximum winds.

vdoubletime.m: Plots a time series of maximum ground-relative wind, including that of secondary wind
maxima if present, associated with a specific event.

vhisto.m: This makes an annual exceedence frequency chart for lifetime maximum wind speeds or
maximum wind speeds within city_radius of a point of interest or at intersection points of
supplied line segment set using all the events in a track set.

vhistobest.m: Compares annual exceedence frequencies of synthetic track data to those of best-track
data. The script vhisto must be run directly before this, and the script must have access to best
track data in MATLAB binary format (see “Preparation” section). There is an option to add 90%
confidence limits based on an assumed Poisson distribution. (These are defined such that, if the
best track data are drawn from the same distribution as the synthetic track data, 5% of the
samples should lie above the upper error bar, and 5% below the lower error bar.)

windfield(mt).m: Contours the wind speed associated with a specified event at a specified time. The
radial wind profile is calculated in windprofilem.m. One may also plot the track of the event up
to the specified time.

windpdf.m: Plots return periods of storm peak wind speed at the default or user-specified point-of-

interest (POI) using the entire event set.

12

Contents of MATLAB event set files (in alphabetical order)

[Convention: In the descriptions below, the index n refers to the event number, while the index m refers
to the 2-hour records of each event. For example, latstore (n,m) is an array containing n tracks each of
which has m two-hour observations. (The arrays are padded with zeros between the end of each track
and the end of the file.)]

bas (character scalar): The ocean basin for this track set.

city_radius (scalar): Used for circular filtering, this is the distance, in kilometers, from a specified point of
interest that tracks must pass within to be included in this set. Not used in line-segment or
polygon filtering.

clat (scalar): The latitude of the point of interest, used in circular filtering.
clong (scalar): The longitude of the point of interest, used in circular filtering.
daystore (n x m array): The day of the month of 2-hour points along each track.
factor (scalar): (not currently used).

freq (scalar): The annual frequency of all the events in the event set. For all subsets of size x, the annual
frequency of the subset is just x/n.

gmeth (character): The genesis method used for this track set. clim denotes genesis by random draws
from a best-track-based genesis climatology, while rand denotes random seeding and natural
selection.

hourstore (n x m array): The Greenwich Mean Time of 2-hour points along each track.
latstore (n x m array): The latitude of 2-hour points along each track.

longstore (n x m array): The longitude of 2-hour points along each track.

monthstore (n x m array): The calendar month of 2-hour points along each track.

pstore (n x m array): The central surface pressure (hPa) of 2-hour points along each track.

rhstore (n x m array): Relative humidity (%) of the environment at 600 hPa at each 2-hour point along
each track.

rmstore (n x m array): The radius (km) of maximum circular wind of 2-hour points along each track.

rmsestore (n x m array): The radius (km) of maximum circular wind of any secondary wind maxima
present (0 if absent), of 2-hour points along each track. Set to zero of there are no secondary
eyewalls.

13

shape (character): The filtering type used for this track set; circ denotes circular filtering, while poly
denotes series of line segments or closed polygon.

shearstore (n x m array): The magnitude of the 850-250 hPa environmental wind shear (m/s) at each 2-
hour point along each track.

T600store (n x m array): Temperature (K) of the environment at 600 hPa at each 2-hour point along each
track.

u850store (n x m array): The zonal component of the 850 hPa environmental wind speed (knots) at each
2-hour point along each track (not provided in all event sets).

v850store (n x m array): The meridional component of the 850 hPa environmental wind speed (knots) at
each 2-hour point along each track (not provided in all event sets).

vmax (1 X n array): This array is produced by running prep.m and can be subsequently accessed by
loading temp.mat. It contains the maximum 10-m ground relative wind (including the effects of
background flow) in knots, at the point-of-interest when a circular filter is used, or the maximum
along the set of line segments in poly.in if a poly filter is used. But of the radius of the circular
filter is greater than 2000 km, typical of basin-wide event sets, then vmax is the same as
vnetmax, described below.

vnet (n x m array): This array is produced by running prep.m and can be subsequently accessed by
loading temp.mat. It contains the maximum 10-m ground relative wind (including the effects of
background flow) in knots. One should use this variable, and not vstore, for maximum surface
winds comparable to best track data.

vnetmax (1 x n array): The maximum along each track of vnet.mat described just above. Created by
running prep.m.

vpstore (n x m array): The potential intensity (knots) at each 2-hour point along each track.

vstore (n x m array): The maximum circular wind speed at each 2-hour point along each track. Note that
this is not the maximum 10 m wind speed, only the circular component. One needs to use vnet
for the maximum surface winds (see entry above).

vsestore (n x m array): The maximum circular wind speed of maximum circular wind of any secondary
eyewalls that may be present, at each 2-hour point along each track. Set to zero of there are no
secondary eyewalls. Note that a fraction of the translation speed is generally added to this to
define the actual maximum wind speed, interpreted as a one-minute average at 10 m altitude.

yearstore (1 x m array): This file is only present in event sets spanning multiple years. It contains the
year of the first datum of each event.

14

