Fluid Physics

8.292J/12.330J

Mid-Term Exam

Answer Sheet

1. Consider the problem of a two-dimensional (infinitely long) airplane wing traveling in the negative x direction at a speed c through an Euler fluid. In the frame of reference of the airplane, the steady flow around the wind looks like

[image: image1.emf]
The wing has width L and the flow over its upper surface can be characterized by a speed ut, while under the lower surface it has a speed ub. Since the upper surface is more curved than the lower surface, ut > ub. The flow has a uniform density 
[image: image2.wmf]r

and you may neglect gravity in this problem. 

a.) Derive an expression for the lift on the wing, per unit length in the y direction. (Hint: Consider the pressure acting on the lower and upper surfaces of the wing.)

Answer: The lift per unit length of the wing is just (pb-pt) L, where pb and pt are the pressures on the bottom and top sides of the wing, respectively. From the Bernoulli equation for an Euler fluid, 
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so the lift per unit length is just
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b.) In the limit that the flow speeds ut and ub are not very different from c, show that the lift per unit length is proportional to the circulation around the wing, with circulation defined, as usual, 
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where l is a unit vector along the wing surface. 

Answer: Let 
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. Then, using these in (1.1), we have
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If we assume that 
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 are small, then we can neglect the last two terms on the right side of (1.2) compared to the first term. Comparing what is left to the definition of the circulation, we get
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c.) The oncoming flow is irrotational. What can you deduce about the lift of an airplane wing moving through an Euler fluid? 

Answer: By Stokes’ Theorem, the circulation is just the area-integral of the vorticity of the flow. The oncoming flow is irrotational and, as this is an Euler fluid, it must remain so. Therefore, the circulation around the wing vanishes and there is no lift. We seem to have proven that airplanes cannot fly. 

The resolution of D’Alambert’s Paradox, as the above is called, has to do with the fact that real fluids always have some viscosity, allowing boundary layers to form on the surfaces of the wing. Vorticity can be generated in these boundary layers. The limit as the viscosity tends to zero is a singular limit; that is, the lift we get in this limit is not the same as we get by assuming that the flow is inviscid. We will examine this phenomenon later in the course. 

2. A tire is filled with an ideal gas of gas constant R and heat capacity at constant pressure of cp. Tension in the tire keeps this gas at a pressure ptire while its temperature is that of the ambient environment, Ta. The cap on the tire’s plug is removed and air flows out of the tire, acquiring the ambient pressure, pa. Assuming that the flow of gas through the plug is adiabatic and inviscid, write down expressions for the temperature and velocity of the escaping gas. How great must 

ptire be relative to pa to make the speed of the escaping gas equal to the (local) speed of sound? 

Answer: If the flow is adiabatic, then according to the first law of thermodynamics,
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Integrating this gives the temperature of the escaping gas:
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From the Bernoulli equation for the adiabatic flow of an ideal gas (and ignoring any small change in altitude),
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where we have made use of (2.1). Finally, the speed of sound in the escaping gas is given by
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Equating 
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above gives an expression for the maximum pressure one can have in the tire before the gas escape speed becomes locally supersonic:
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Note that for the Earth’s atmosphere, this critical pressure is about 1.9 times ambient pressure. 

3. Captains of ships that service the coast of Norway have long noticed that when they enter fjords from the open ocean, their ships mysteriously slow down, even when the wind and sea conditions remain the same and even though they do not change the power settings on the ship’s engines. Fjords are glacial valleys that have been invaded by the sea. They are typically about 10 km wide and can be as deep or even deeper than the open ocean outside the fjords. Meltwater from glaciers flows into the fjords from many sides and makes the fjord water somewhat brackish. (Freshwater is also less dense than saltwater at the same temperature; the saltwater in the fjords is also very cold.) 

Can you explain why the ships slow down? 

Answer: The freshwater runoff from the melting glaciers is lighter than the saltwater from the sea, and thus floats on top of the saltwater:

                       [image: image19.emf]
When the ship enters the fjord, it starts to make waves on the interface between the freshwater and saltwater, as well as on the surface, since there is a jump of density across the interface. Thus it loses energy not only to surface waves, but also to the internal waves, so it must slow down. 
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