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Problems

1. The density of water is nearly constant under ordinary conditions. Show that

an object of arbitrary shape will float in water if and only if its mass is smaller than the

mass of the water that it would displace if completely submerged. This result is known as

Archimedes’ Principle.

2. Assume the Earth to be a sphere of mass M and radius R. Assume, further,

that the Earth’s atmosphere is an isothermal ideal gas of temperature T and homogeneous

composition, with mean molecular weight µ, and that the thickness of the atmosphere is

small compared to R. Take the atmosphere to be in hydrostatic equilibrium.



(a) If the pressure at the Earth’s surface is P0, determine the pressure, P (h), as a function

of the height, h, above the surface.

(b) Determine the total mass, ma, of the atmosphere in terms of M , R, T , µ, P0, and

constants of nature. To obtain a numerical value, take P0 = 1 × 105 Pa and assume for

simplicity that the composition of the atmosphere is 75% N2 and 25% O2 by mass.

(c) In terms of the same given quantities, determine the half-height, h1/2, of the atmosphere

(i.e., the height beneath which half of the atmospheric mass is contained). As in part (b),

obtain both an algebraic expression and a numerical estimate for h1/2.

(d) In reality, the temperature in the lower atmosphere (where most of the mass is con-

tained) usually decreases with increasing altitude. Describe qualitatively how the results

you obtained above would be affected if the temperature profile of the atmosphere were

taken into account.

3. A star is essentially a self-gravitating gas cloud in hydrostatic equilibrium.

Models for the mechanical structure of a star (i.e., the gas pressure and density as functions

of distance from the stellar center) can be readily constructed if the star is assumed to be

a polytrope, in which the pressure and density throughout the star are assumed to obey

the relation

P = Kρ1+
1
n , (1)

where K and n are constants, n being known as the “polytropic index”. For this purpose,

it is convenient to define the “gravitational potential” Φ as the gravitational potential

energy perunit mass. In analogy with the elctrostatic potential, we have

∇Φ = − →
g (2)

and

∇2Φ = 4πGρ (Poisson’s equation). (3)

(a) Start from the reasonable assumption that the equilibrium shape of a star is a sphere,

and place the center of the star at the origin. Rewrite equation (3) in the form of a
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second-order ordinary differential equation for Φ as a function of the distance, r, from the

origin.

(b) With the same assumptions, combine equations (1) and (2) with the equation of hydro-

static equilibrium to obtain a first-order differential equation involving Φ and ρ as functions

of r. Integrate this equation to obtain ρ as a function of Φ, K, and n only. The constant

of integration may be eliminated by setting Φ = 0 at the stellar surface (ρ = 0).

(c) Use your result from (b) to eliminate ρ from the equation you derived in (a). (Note that

with the relation derived in (b), Φ and ρ can be used interchangeably as the dependent

variable.)

(d) Now put this equation in dimensionless form by rewriting it in terms of new dimen-

sionless variables w ≡ Φ/Φc and z ≡ Ar, where Φc is the gravitational potential at the

stellar center and where you should choose A, as a function of G, K, n, and Φc, so as to

put the final dimensionless equation in the simplest possible form. The equation you have

now derived is known as the “Lane-Emden equation for index n”.

There are two boundary conditions on the Lane-Emden equation, both imposed at the

stellar center. From the definition of w, it follows immediately that w = 1 at z = 0.

The equation also has a singularity at the origin, so that for w to be finite at the stellar

center it is necessary that dw/dz = 0 at z = 0. With the specification of these boundary

conditions, the Lane-Emden equation can, inprinciple, be solved by specifying values for

K, n, and Φc and then integrating outward from the origin. The integration is completed

when Φ = ρ = 0 (the stellar surface). Once w is known as a function of z, Φ(r), ρ(r), and

P (r) are all specified through the polytropic relation (equation (1)) and the relations you

have derived above. In general, only numerical solutions can be obtained. However, for

a few special values of n, it is possible to obtain analytic solutions. Two of these special

cases are n = 0 (the case of an “incompressible fluid”: any value of P can be achieved at

a fixed value of ρ) and n = 1.

(e) Expand w(z) in a power series about the origin:

w(z) = 1 + w1z + w2z
2 + w3z

3 + . . .

Substitute this expansion into the Lane-Emden equation. The solution may now be found

by requiring that the coefficients of like powers of z be equal on both sides of the equation.

Obtain explicit analytic solutions for the cases n = 0 and n = 1. [Hint for the case n = 1:
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What does the power series expansion of the sine function look like?]

(f) Sketch your two solutions (w as a function of z) from the stellar center to the surface.

(4) Hydrostatic equilibrium is usually an excellent approximation throughout

the interior of a star. However, most real stars are not chemically homogeneous, due to

the effects of nuclear fusion reactions in the stellar interior. Suppose that a star is in

hydrostatic equilibrium and that the equation of state throughout is given by the ideal gas

law, but that there is an abrupt discontinuity in chemical composition at some distance

r0, from the stellar center, such that the mean molecular weight is µ1 for r < r0 and µ2

for r > r0. Since the fluid is in thermal contact, the jump in temperature, δT , across

the interface must vanish (otherwise, the heat flux across the interface would be infinite).

Determine the jumps in pressure and density (δP and δρ, respectively) across the interface.

(5) Due the chemical composition changes (albeit very gradual) and the con-

comitant changes in the structure of a star due to ongoing nuclear fusion, a star can never

be in exact hydrostatic equilibrium. For example, the hydrogen-burning reactions in the

interior of the Sun are presently causing it to expand at a rate that would cause its size

roughly to double in 1010 years.

(a) Apply Euler’s equation to a fluid element at the solar surface to determine the time

it would take for the radius of the Sun to decrease to 1/2 its present value if there were

no pressure gradient to balance the force of gravity within the Sun. To within a factor of

order unity, this time is the “dynamical timescale” of the Sun.

(b) Given the current rate of expansion of the Sun, estimate the magnitude of the accelera-

tion term in Euler’s equation compared to the other two terms (i.e., estimate, for the Sun,

the percentage imbalance between the gravitational-force term and the pressure-gradient

term in the equation of hydrostatic equilibrium).
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