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CONVECTION FROM LOCAL SOURCES

2.1 The similarity approach and definitions of thermals
and plumes

For certain simple fluid flows, a great deal of information about their char-
acter may be inferred from the various constant parameters associated with
the flow, without solving the governing equations rigorously. If, in particu-
lar, the flow is steady and the various dependent variables vary in a simple
way with the independent variables and the boundary conditions, the de-
pendent variables may often be related to the independent variables and
the boundary conditions with the aid of the governing equations simply
by requiring the dimensions of each side of the equality to be alike. The
analysis is particularly simple if there is reason to believe, a priori, that
the dependence of all the dependent variables on one or more independent
variables is similar. If we assume this to be the case and can find a solution
consistent with the governing equations, there is a reasonably good chance
that this similarity solution will correspond to experimental results.

Even before seeking a similarity solution, it is usually possible to find
certain important dimensionless parameters upon which the character of
the flow depends. The foundation for such dimensional analysis is the Buck-
ingham pi theorem, which is stated as follows:

Theorem: If the equation ϕ (q1, q2, q3, . . . , qn) = 0 is the only
relationship among the n q’s and if it holds for any
arbitrary choice of units in which q1, q2, q3, . . . , qn are
measured, then the relation ϕ (π1, π2, π3, . . . , πm) =
0 is satisfied where π1, π2, . . . , πm are independent
dimensionless products of the q’s. Furthermore, if k is
the minimum number of primary quantities necessary
to express the dimensions of the q’s, then

m = n− k.

If the governing equations are known, then the q’s are determined. Even
if the former are not known, it is sometimes possible to guess the q’s. As
an example of the application of the pi theorem, let us take the problem
of convection between two plates, the lower of which is held at constant
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temperature T0 and the upper of which is held at T1. The fluid between
the two plates is characterized by molecular coefficients of diffusion of mo-
mentum and heat ν and κ, respectively. The distance between the plates is
H, and the fluid is acted upon by a gravitational acceleration g. We have
a total of six dimensional quantities, two of which (ν and κ) are internal
properties of the fluid and four of which are external conditions. The q’s
then are

q1, q2, . . . , q6 = T1, T0, g,H, ν, κ.

There are three primary quantities: temperature, length, and time.
According to the pi theorem, we will be able to form three independent

dimensionless quantities from the q’s. There is no unique way of choosing
these, but we might use some physical intuition in making the choice. We
might suppose, for example, that some measure of the buoyancy is physi-
cally important:

B = g

(
T1 − T0

T0

)
.

By some experimentation, we can nondimensionalize the above by multi-
plying by the appropriate set of q’s. One possibility is

Ra ≡
BH3

νκ
= g

(
T1 − T0

T0

)
H3

νκ
.

This quantity is called the Rayleigh number. Another dimensionless quan-
tity might be

σ ≡ ν

κ
,

which is the Prandtl number. A third quantity might be simply T1/T0,
but on physical grounds we believe the temperature anomalies are only
important when coupled with gravity. As it turns out, the character of
the convection in this case is completely determined by the Rayleigh and
Prandtl numbers. How did we know that other properties of the fluid, such
as its heat capacities, were not important in this problem? We didn’t, we
simply guessed. Had we written down the governing equations, however,
we would have found that these quantities did not appear and also, for
example, that temperature only appears in the buoyancy term, where it
is coupled with gravity. In fact, if we scale the governing equations using
the q’s, the relevant dimensionless quantities appear as coefficients in the
dimensionless equations.

Similarity theory and dimensional analysis were first applied success-
fully to the investigation of simple convective flows by Schmidt (1941) and
Batchelor (1954). There followed a succession of studies in Britain, most
notably by Morton (1957); Morton, Taylor, and Turner (1956); and Turner
(1962, 1963, 1964, and 1969). The results of these analyses were supported
by experiments by Morton, Taylor, and Turner (1956), Richards (1961),
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Fig. 2.1 Sketches of various convection phenomena described in this chapter:
(a) plume, (b) thermal, (c) starting plume. The arrows indicate the direction of
mean motion. [From Turner (1973).]

Saunders (1961), Scorer and Ronne (1956), Scorer (1957), and Woodward
(1959).

Most of these investigations concern the convection of “plumes” and
“thermals” released from a point or line source of buoyancy in an ambient
fluid with simple stratification, where it is assumed that the ambient fluid
is at rest and is not affected by the convection. For the purposes of these
investigations, plumes and thermals are defined as follows:

Plume: Buoyant jet in which the buoyancy is supplied steadily from a
point source; the buoyant region is continuous.

Thermal: A discrete buoyant element in which the buoyancy is confined
to a limited volume of fluid.

Starting Plume: Plume with a well-defined, advancing upper edge.

These definitions are clarified in Figure 2.1.
In the following sections we describe some solutions for various con-

vective forms and extend similarity theory to convection in stratified fluids
and to laminar convection.

2.2 Turbulent plumes originating from a maintained point
source

A good example of turbulent convection whose properties may be deduced
from dimensional analysis is a plume emanating from a maintained source
of buoyancy in a semi-infinite, homogeneous fluid. If we may assume that
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the flow is fully turbulent, then it should be independent of the magnitude
of the molecular diffusivities. If the Boussinesq approximation is applicable,
then the only relevant dimensional parameter in the problem is the rate F at
which buoyancy is supplied by the point source! (As the source is regarded
as a point, it has no dimensions associated with it.) As the flow is driven
by buoyancy, there are no other fluid properties that are relevant to this
problem.

The buoyancy flux F has the dimensions of

F ∼ Buoyancy × Velocity × Area = L4t−3, (2.2.1)

where L stands for length and t stands for time. The mean properties
of the plume, such as its average vertical velocity and average buoyancy
(averaged over enough time that the averages themselves may be considered
time-independent), can depend only on F and on the altitude z above the
point source. Dimensionally, there is only one combination of F and z that
gives the right units for these variables:

w = c1F
1/3z−1/3 (2.2.2)

and

B = c2F
2/3z−5/3, (2.2.3)

where c1 and c2 are dimensionless constants. Thus the mean velocity de-
clines with altitude as z−1/3 while the buoyancy declines as z−5/3. We have
deduced this without really addressing the physics of the flow except insofar
as identifying the external parameter (F ) upon which everything depends.
By the same argument, the mean radius R of the plume must obey

R = c3z, (2.2.4)

where c3 is another numerical constant.
We can also say something about the dependence of the time-averaged

quantities on radius within the plume; namely, that quantities must depend
on r/R, where r is the distance from the axis of the plume and R is some
measure of the total radius of the plume. Thus, the time-averaged distri-
butions of vertical velocity, buoyancy, and plume radius should obey

w =
F 1/3

z1/3
× func

( r
R

)
B =

F 2/3

z5/3
× func

( r
R

)
R = αz,

where α is a constant. Note that the mass flux, which is proportional to
wR2, goes as z5/3; that is, it increases with height. This requires a tur-
bulent entrainment of mass in which the mean inflow velocity is linearly
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proportional to w. Yih (1951) obtained experimental results for turbulent
plumes in air confined to a large, closed room. His results are

w = 4.7
F 1/3

z1/3
exp

(
−96r2

z2

)
,

B = 11.0
F 2/3

z5/3
exp

(
−71r2

z2

)
,

R = 0.12z.

The latter shows the mean plume to have a conical cross section whose
boundaries lie at an angle of about 7◦ to the vertical. The streamlines and
isotherms corresponding to the above measurements are shown in Figure
2.2.

2.3 Turbulent plumes originating from a maintained line source

When the heat source is in the form of a line rather than a point, the
resulting plume will have the general form of a wedge, and the boundary
flux of heat will of necessity be defined per unit length along the line source:

F =

∫ ∞
−∞

wB dx,

where x is in the direction normal to the line. Again, the turbulent flow
cannot depend on ν or κ but only on F and the spatial variables x and
z. Assuming once again a separable spatial dependence, a similarity solu-
tion is easily obtained. Measurements by Humphreys (see Rouse, Yih, and
Humphreys, 1952) verify the similarity solution and indicate that w, B,
and R have the forms

w = 1.80 G (F, z) exp

(
−32x2

z2

)
,

B = 2.6 H (F, z) exp

(
−41x2

z2

)
,

R = 0.16z,

(2.3.1)

in which the functions G and H are the similarity solutions for the F and
z dependences; their derivation is left to the reader in Exercise 2.1.

A curious phenomenon occurs when convection is initiated by two par-
allel line sources. It appears that since the two plumes cannot continuously
entrain the ambient air that lies between them, they entrain each other and
become a single plume located midway between the sources. This plume
behaves as though a single line source were located beneath it (see Figure
2.3).
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Fig. 2.2 Mean isotherms and streamlines for the turbulent convection due to
a maintained point source. The isotherms are labeled with the values of (T −
T0)/T , while the streamlines are labeled with relative values of the Stokes stream
function. [(After Rouse, Yih, and Humphreys (1952).]

2.4 Turbulent convection from an instantaneous point source
(thermals)

When buoyancy is created instantaneously at a point in a fluid, a cloud of
buoyant fluid will be formed and will rise through the ambient fluid while
entraining the latter. If we regard time rather than height as the important
independent variable, many of the assumptions that are made concerning
the behavior of plumes may also be applied to thermals, that is:

1) The radial profiles of velocity and buoyancy are geometrically similar
at all times.

2) The mean entrainment velocity is proportional to the mean vertical
velocity.
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Fig. 2.3 Mean isotherms and streamlines for turbulent convection due to two par-
allel line sources located at the left and right boundaries. [(After Rouse, Baines,
and Humphreys (1953).]

3) The density perturbation in the thermal is small compared to the mean
density (Boussinesq approximation).

For turbulent convection in a neutrally stratified fluid, only one external
parameter enters into consideration, that is the amount of buoyancy re-
leased by the point source. We shall call this quantity Q and define it as
the volume integral of the buoyancy at the source at the time it is released:

Q ≡
∫ ∫ ∫

B0dτ.

If a quantity z is taken to represent the height of some center of the rising
thermal at time t, then dimensional analysis defines unique solutions for
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the vertical velocity, buoyancy, and radius (Batchelor, 1954):

w =
Q1/2

z
× func

( r
R

)
,

B =
Q

z3
× func

( r
R

)
,

R = γz,

where γ is a constant and R is some mean radius of the thermal. From
the first relation it is evident that the height of the thermal is proportional
to t1/2, while w and B vary as t−1/2 and t−3/2, respectively. The thermal
evidently traces out a conical cross section as it ascends and in this respect
behaves like a plume.

2.5 Turbulent starting plumes

Turner (1962) has obtained solutions for a starting plume in a neutrally
stratified fluid by assuming that the advancing cap of the plume behaves
like a thermal, while the body of the plume is similar to a full plume. The
solutions for a pure thermal and a pure plume are then matched across
the interface between them, with the important consideration that the rate
of advance of the cap is not as rapid as the vertical motion within the
center of the cap. Turner’s results together with some experimental data
show that the rate of advance of the cap is intermediate between the ascent
rate of a pure thermal and the vertical velocity within a pure plume, and
that roughly half of the total entrainment of ambient fluid is through the
advancing cap. The reader is referred to Turner’s work for a more complete
discussion.

2.6 Laminar plumes originating from a maintained point source

Consider the steady convection of a plume of fluid ascending above a main-
tained point source located at a horizontal boundary in a neutrally stratified
fluid, that is, a fluid in which the buoyancy is independent of height. We
will assume that the flow is laminar; that is, each fluid particle follows a
more or less regular, smooth trajectory. [In a turbulent flow, the path of
individual particles is highly irregular (nonperiodic) and only a statistical
average over time or space reveals a systematic velocity profile.] The flow is
considered steady and axisymmetric about the central vertical axis of the
plume.

As the flow is laminar, the only changes in momentum and buoyancy
result from the molecular diffusion of those quantities across the boundaries
of the plume, thus for laminar flow molecular diffusion must be included in
the governing equations. Introducing the potential temperature θ,

θ ≡ T
(
p0

p

)R/cp
,
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where p0 is a reference pressure and p is the actual pressure, the Boussinesq
equations may be written

Momentum:
dV

dt
= − 1

ρ0
∇p+Bk̂ + ν∇2V, (2.6.1)

Heat:
dB

dt
= κ∇2B, (2.6.2)

Continuity:

∇ ·V = 0, (2.6.3)

where the buoyancy is defined

B = g

(
θ − θ
θ

)
,

in which θ is the potential temperature of the plume and θ is the potential
temperature of the environment. The latter is constant in this example as
the fluid is taken to be neutrally stratified.

We now seek a similarity solution under the assumption that the radial
profiles of velocity and buoyancy are geometrically similar at all heights.
Here, this is an ad hoc assumption that cannot be justified on dimensional
grounds. Mathematically, this is equivalent to supposing that the vertical
and radial dependencies are separable, and that the radial dependencies of
each variable are the same, that is,

w = F1 (z)G (r) ,

B = F2 (z)G (r) .

Assume now that the vertical dependencies of buoyancy and velocity
are algebraic:

w = zmf
( r
R

)
(2.6.4)

B = znf
( r
R

)
, (2.6.5)

where R is a measure of the radius of the plume at height z, and is also
assumed to be proportional to some power of z, that is,

R ∼ z`. (2.6.6)

The relations (2.6.4) to (2.6.6) are merely guesses at the forms of the spatial
structures of w, B, and R. Can they satisfy the governing equations? We
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will try to determine m, n, and ` from the form of the governing equations
as follows:

First, assuming that the bulk of the heat diffusion occurs in the radial
direction, the steady form of the heat equation (2.6.2) may be written in
radial coordinates

1

r

∂

∂r
(ruB) +

∂

∂z
(wB) = κ

1

r

∂

∂r

(
r
∂B

∂r

)
,

where u is the radial velocity. The above is integrated over an entire hori-
zontal plane:∫ 2π

0

∫ ∞
0

1

r

∂

∂r
(ruB) r dr dθ +

∫ 2π

0

∫ ∞
0

∂

∂z
(wB) r dr dθ

= κ

∫ 2π

0

∫ ∞
0

1

r

∂

∂r

(
r
∂B

∂r

)
r dr dθ.

Due to the symmetry of the plume and its limited horizontal extent, it is
evident that u and ∂B/∂r vanish at r = 0 and r =∞.

The first and third terms of the above therefore vanish, and we have

2π
∂

∂z

∫ ∞
0

wB r dr = 0,

or

2π

∫ ∞
0

wB r dr = F, (2.6.7)

where F is a constant proportional to the heat flux supplied by the point
source. From (2.6.7) it is apparent that the quantity wBR2 must not be
a function of z. From the supposed forms of w, B, and R [(2.6.4)–(2.6.6)],
there follows

wBR2 ∼ zm+n+2`,

and therefore
m+ n+ 2` = 0. (2.6.8)

It is also required that the various terms of the vertical momentum equation
have the same z dependence, that is,

w2

z
(total acceleration) ∼ B (buoyancy) ∼ νw

R2
(viscous retardation),

or
2m− 1 = n = m− 2`. (2.6.9)

From (2.6.9) and (2.6.8) we have

` =
1

2
, m = 0, n = −1. (2.6.10)
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Fig. 2.4 An illustration of the behavior of a rising smoke plume over a cigarette.

Now the three parameters determining the character of the flow are F , ν,
and κ; according to the pi theorem, we can only create one nondimensional
parameter from a combination of these. We choose this to be ν/κ. The
dimensional forms of w, B, and R must then be

w =
F 1/2

ν1/2
× func

(
rF 1/4

z1/2ν3/4
, σ

)
,

B =
F

νz
× func

(
rF 1/4

z1/2ν3/4
, σ

)
,

R =
z1/2ν3/4

F 1/4
× func (σ) ,

where σ is the Prandtl number, ν/κ. Notice that w is independent of height
and B apparently is unbounded as z approaches zero. This is an artifact
of having used a point source of heat.

Laboratory experience as well as theoretical considerations reveal that
laminar flow will generally become turbulent when the Reynolds number
exceeds a critical value. The Reynolds number (see also page 12) is defined

Re ≡
U0L

ν
=
wR

ν
∼ z1/2F 1/4

ν3/4
.

For a laminar plume, the Reynolds number evidently increases as the square
root of the height; we would therefore expect the plume to become turbulent
at some height. This is demonstrated quite graphically in the behavior of
the rising plume of smoke above the tip of a lit cigarette (Figure 2.4).
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Fig. 2.5 “Top-hat” profile (left) and Gaussian profile (right). The latter has a

radial dependence of the form exp(−r2/R2).

It should be remarked that although a point source cannot be created
in the laboratory, the similarity solutions for a point source should nev-
ertheless describe the behavior of the plume at heights sufficiently large
compared to the actual dimensions of the source.

2.7 Turbulent convection in stably stratified fluid

The density stratification of the ambient fluid through which a plume as-
cends will influence the buoyancy of the plume; presumably a stably strat-
ified environment will eventually lead to a neutral or negative buoyancy
within the plume, while the plume may be expected to ascend more rapidly
in an unstably stratified environment.

When the ambient fluid is stratified, an additional parameter describ-
ing the stratification is necessary to fully describe the system. Here again,
dimensional analysis is insufficient to determine all properties of the sys-
tem, though certain aspects of the convection may be deduced from the
dimensions of the parameters above. Other assumptions are necessary to
define the system.

It will be convenient at this point to make more explicit use of the
governing equations, though simple similarity solutions do exist for the
case where the stratification of the ambient fluid is uniform and unstable
(see Batchelor, 1954). Following Morton, Taylor, and Turner (1956), we
will assume a particular radial dependence of the velocity and buoyancy,
and integrate the governing Boussinesq equations over a horizontal plane.
The particular form of the radial dependence we choose will only affect
the numerical value of the coefficients in the resulting relations for w and
B but not their dependence on z or the boundary flux of buoyancy. We
will choose for a particular problem one of two radial profiles: a “top-hat”
profile and a Gaussian profile (see Figure 2.5).

The primary assumptions made in the course of solving the governing
equations are borrowed from the self-similar solutions in unstratified flow:

1) The flow is steady.
2) The radial profiles of mean vertical velocity and mean buoyancy are

similar at all heights.
3) The mean turbulent inflow velocity is proportional to vertical velocity.
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Fig. 2.6 Incremental volume over which the vertical momentum equation is
integrated.

4) The flow is Boussinesq.

For the third assumption above, we take u = −αw where u is the mean
turbulent radial velocity and α is a constant which is proportional to the
fractional entrainment of mass. This is exactly true in the unstratified case,
but is an important assumption here.

In this example we assume a top-hat profile. Integrating the Boussinesq
mass continuity equation in radial coordinates over the horizontal area of
the plume, we find∫ 2π

0

∫ R

0

1

r

∂

∂r
(ru)r dr dθ +

∂

∂z

∫ 2π

0

∫ R

0

w r dr dθ = 0,

or, using the entrainment relation,

2παRw =
∂

∂z

(
πR2w

)
. (2.7.1)

This relation merely shows that the increase of mass flux with height is pro-
portional to the entrainment of mass through the boundary of the plume.

Now consider the steady form of the Boussinesq vertical momentum
equation in which, in this case, we neglect the perturbation pressure gra-
dient acceleration [the Froude number is assumed small; see Eq. (1.3.16)]:

dw

dt
= ∇ ·Vw = B.

The above is integrated over the incremental volume depicted in Figure
2.6: ∫ 2π

0

∫ R

0

∫ z+∆z

z

∇ ·Vw dτ =

∫ 2π

0

∫ R

0

∫ z+∆z

z

B dτ.

By the divergence theorem, the term on the left may be expressed as
a surface integral:∫ ∫

wV · n̂ dS =

∫ 2π

0

∫ R

0

∫ z+∆z

z

B dτ,
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where n̂ is the unit normal vector to the surface (S) of the volume of
integration. As w vanishes at the lateral boundaries of the plume, the above
becomes [

wπR2w +
d

dz

(
wπR2w

)
∆z

]
− wπR2w = BπR2∆z,

or

d

dz

(
πR2w2

)
= πR2B. (2.7.2)

Finally, we integrate the buoyancy equation over the incremental volume
shown in Figure 2.6

dB

dt
= 0 = ∇ ·VB,∫ ∫ ∫

∇ ·VB dτ =

∫ ∫
BV · n̂ dS = 0.

We shall use θ to denote the plume temperature, θ to represent the tem-
perature of the ambient fluid, and θ0 as a constant reference temperature.

Evaluating the surface integral over the top, bottom, and lateral sur-
faces in Figure 2.6, we find{
g

(
θ − θ0

θ0

)
wπR2 +

d

dz

[
g

(
θ − θ0

θ0

)
πR2w

]
∆z

}
− g

(
θ − θ0

θ0

)
πR2w

−2πR∆zαw

[
g

(
θ − θ0

θ0

)]
= 0,

or
d

dz

[
πR2w (θ − θ0)

]
= 2πRαw

(
θ − θ0

)
. (2.7.3)

Since, from (2.7.1),

2παRw =
d

dz
(πR2w),

(2.7.3) may be rewritten:

d

dz

[
πR2w (θ − θ0)

]
=
(
θ − θ0

) d
dz

(
πR2w

)
=

d

dz

[
πR2w

(
θ − θ0

)]
− πR2w

dθ

dz
,

or
d

dz

[
πR2w

(
θ − θ

)]
= −πR2w

dθ

dz
.
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The above is multiplied through by g/θ0 and we arrive at

d

dz

(
πR2wB

)
= −πR2wN2, (2.7.4)

where

N2 ≡ g

θ0

dθ

dz
.

N has the dimensions of (time)−1 and is called the Brunt-Väisälä or buoy-
ancy frequency. In a stably stratified fluid, N is the frequency at which an
infinitesimal sample of fluid oscillates if displaced vertically.

In summary, then, the following horizontally integrated Boussinesq
equations for mass, momentum, and heat will be used:

Mass:
d

dz

(
R2w

)
= 2Rαw, (2.7.5)

Momentum:
d

dz

(
R2w2

)
= R2B, (2.7.6)

Heat:
d

dz

(
R2wB

)
= −R2wN2. (2.7.7)

Note that if θ is constant (neutral stratification), then N2 = 0 in (2.7.7)
and R2wB = constant = F/π where F is the boundary buoyancy flux. The
remaining equations are easily solved by substituting solutions of the form

w = Azn,

R = Cz`,

with A, C, n, ` to be determined. One arrives at the horizontally integrated
form of the similarity solution (see Section 2.2).

Solutions are also readily obtained if the fluid is unstably stratified
(N2 < 0) and N2 is of the form

N2 = −Szp, (2.7.8)

when S and p are constants. Then by substituting solutions of the form

w = Azn,

B = Czm,

R = Dz`,
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it is found that

` = 1,

n = 1 +
p

2
,

m = 1 + p,

C =
S

4 + 3p/2
,

A2 =
S

(4 + 3p/2)(4 + p)
,

D =
2α

3 + p/2
.

Note that the vertical heat flux, proportional to wBR2 ∼ z4+3p/2, has
a surface value which is zero, infinite, or finite according to whether p is
greater than, less than, or equal to− 8

3 . When S = 0 and p = − 8
3 , the results

are identical to the similarity solution for a plume in a neutral environment.
Apparently, the solutions of the form (2.7.8) for unstable stratification are
not valid when p < − 8

3 . Also note that the plume once again has a conical
cross section (R ∼ z).

When the fluid is stably stratified (N2 > 0), one might expect that
the vertical velocity within the plume will vanish at some height above the
source as the buoyancy of the plume will become negative at some lower
height due to the decrease in density of the ambient fluid with height. In
this instance, simple similarity solutions of the type discussed previously
should not be expected to apply, and it will be necessary to solve explicitly
the governing radially integrated equations [(2.7.5), (2.7.6), and (2.7.7)].
A numerical solution has been obtained by Morton, Taylor, and Turner
(1956) who, however, used the set of equations integrated over an assumed
Gaussian form of the radial distributions of buoyancy and vertical velocity
(Figure 2.5). This is certainly a closer approximation to the actual radial
distribution than the top-hat profiles assumed heretofore. The resulting
equations differ only in the value of certain numerical coefficients:

Mass:
d

dz

(
R2w

)
= 2αRw, (2.7.9)

Momentum:
d

dz

(
R2w2

)
= 2R2B, (2.7.10)

Heat:
d

dz

(
R2wB

)
= −2R2wN2. (2.7.11)

The above equations are simplified somewhat by introducing new depen-
dent variables:

V ≡ Rw, U ≡ R2w, F ≡ R2wB.
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Then (2.7.9) to (2.7.11) become

dU

dz
= 2αV, (2.7.12)

dV 4

dz
= 4FU, (2.7.13)

dF

dz
= −2UN2. (2.7.14)

As boundary conditions, we take the width and momentum of the plume
to vanish at the source and require the buoyancy flux to equal that of the
source:

V = U = 0 and F =
2

π
F0 at z = 0,

where F0 is the boundary flux of buoyancy.
Only two external parameters, F0 and N2, exist and must therefore

determine the character of the plume. The parameter dependence of the
equations is simplified by nondimensionalizing the dependent and indepen-
dent variables as follows:

z∗ = 2−7/8π−1/4α−1/2F
1/4
0 N−3/4z,

V ∗ = 23/4π−1/2F
1/2
0 N−1/2V,

U∗ = 27/8π−3/4α1/2F
3/4
0 N−5/4U,

F ∗ = 2π−1F0f,

where the asterisks denote the dimensional values. The dimensionless forms
of (2.7.12) to (2.7.14) are then

dU

dz
= V,

dV 4

dz
= fU,

df

dz
= −U, (2.7.15)

subject to the boundary conditions

U = V = 0; f = 1 at z = 0,

Once U , V , and f are obtained, the dimensionless forms of the vertical ve-
locity, radius, and buoyancy may be recovered. These are portrayed graph-
ically in Figure 2.7. The vertical velocity is found to vanish at a dimension-
less height of 2.8, while the buoyancy first vanishes when z = 2.125.

The individual particles of fluid within the plume overshoot the level
at which their buoyancy first vanishes, then decelerate to zero velocity
while presumably spreading away from the central axis. The bulk of the
spreading should occur between the levels of vanishing buoyancy and zero
vertical velocity.
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Fig. 2.7 The height dependence of the dimensionless forms of the horizontal
extent (R), vertical velocity (U), and buoyancy (∆) for a turbulent plume in a
stably stratified ambient fluid. [(After Morton, Taylor, and Turner (1956).]

Analytic solutions may be obtained in the case of a turbulent thermal
in a stably stratified fluid. Following Morton, Taylor, and Turner (1956), a
spherical thermal of mean radius R is assumed, and the mean entrainment
velocity u is set equal to −αw. By employing procedures similar to those
used to drive the radially integrated plume equations, one may derive the
following conservation equations integrated over the volume of the thermal:

Mass:
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d

dt

(
4

3
πR3

)
= 4πR2αw, (2.7.16)

Momentum:
d

dt

(
4

3
πR3w

)
=

4

3
πR3B, (2.7.17)

Heat:
d

dt

(
4

3
πR3B

)
= −4

3
πR3wN2. (2.7.18)

In a neutrally stratified environment (N2 = 0), the quantity R3B will be
constant and the remaining equations may be easily solved by substituting
solutions of the form

R = Atn,

w = Ctm.

The solutions obtained thereby have the form of those derived from dimen-
sional considerations (Section 2.4).

In the case of a constant stable stratification (N2 = constant > 0), the
set (2.7.16) to (2.7.18) may also be solved analytically. It is first convenient
to rephrase the equations in terms of the following new dependent variables:

M ≡ R3w, V ≡ R3, F ≡ R3B.

If the cloud has zero radius and no momentum at the time of its release,
the boundary conditions at t = 0 will be

M = V = 0 and F = F0

(
=

3Q

4π

)
.

The resulting equations are conveniently rendered dimensionless by
the following scaling:

F ∗ = F0f,

M∗ =
3

4π
F0N

−1m,

V ∗ =

(
3

π

)3/4

α3/4F
3/4
0 N−3/2v,

t∗ = N−1t,

where the asterisks denote the dimensional values. The dimensionless forms
of (2.7.16) to (2.7.18) then become

dv4/3

dt
= m, (2.7.19)

df

dt
= −m, (2.7.20)

dm

dt
= f. (2.7.21)
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The height of the thermal may also be obtained by integrating the
equation dz/dt = w. For this purpose, z is scaled as follows:

z∗ =
1

4

(
3

π

)1/4

α−3/4F
1/4
0 N−1/2z.

In terms of the new dimensionless variables

dz

dt
=
m

v
. (2.7.22)

The boundary conditions are now

z = m = v = 0 and f = 1 at t = 0.

One physical problem arises if the governing equations are integrated
beyond the time when the vertical velocity first changes sign: As we assume
that the entrainment velocity is proportional to w, “negative” entrainment
would occur when w < 0. To remedy this unphysical formulation, we should
take

u = −α|w|.

Then for downward motion, (2.7.19) should be replaced by

dv4/3

dt
= −m when m < 0.

New boundary conditions must also be used to start the downward
motion.

Notice that (2.7.20) and (2.7.21) constitute a closed set for m and f
which may be easily solved analytically, whereupon the solutions of (2.7.19)
and (2.7.22) follow. If we define dimensionless forms of radius, vertical
velocity, and buoyancy as R, w, and B, respectively, then the solutions for
the first complete oscillation are

0 ≤ t ≤ π :

R = v1/3 = (1− cos t)
1/4

,

w =
m

v
=

sin t

(1− cos t)
3/4

,

B =
f

v
=

cos t

(1− cos t)
3/4

,

z = 4 (1− cos t)
1/4

,
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Fig. 2.8 The solutions for the dimensionless radius (R), height (x), buoyancy
(∆), and vertical velocity (u) of a thermal in a uniform stably stratified fluid.
[(From Morton, Taylor, and Turner (1956).]

π ≤ t ≤ 2π :

R = (3 + cos t)
1/2

,

w =
sin t

(3 + cos t)
3/4

,

B =
cos t

(3 + cos t)
3/4

,

z = 213/4 − 4 (3 + cos t)
1/4

.

This analytic solution can be continued, reversing the sign of m every
time t is increased by π, until z asymptotically attains the constant value
of 4.2, which is slightly higher than the level at which the buoyancy first
vanishes. The damped oscillatory behavior of the thermal is illustrated in
Figure 2.8.
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Fig. 2.9 Photographs of plumes in neutrally and stably stratified fluids. At left
is a plume in a neutrally stratified ambient fluid; at right are time exposures of
a plume in a stable stratified fluid at early and late stages in its development.
[From Morton, Taylor, and Turner (1956).]

2.8 Experiments and observations

Various laboratory experiments have been performed with the primary aim
of verifying the principal theoretical predictions of the behavior of plumes
and thermals. Most of these experiments involve the release of buoyant
fluid near the boundary of a tank containing a large amount of fluid that is
either homogeneous or very carefully stratified. These experiments strongly
support the theoretical predictions discussed heretofore.

Morton, Taylor, and Turner (1956) describe an experiment in which
light fluid is released in a tank containing heavier fluid in which there
is a stable density gradient. The stratification is produced by successively
adding concentrated layers of salt solution to the bottom of the tank, which
is about 1 m deep and 30 cm in diameter. Diffusion of the salt eventually
establishes a smooth density gradient. Care is taken to ensure that the
overall density difference is no larger than 15%, though the gradient could
be varied by a factor of 80.

In one version of the experiment, dyed fluid is released continuously
from a nozzle so that a plume is formed. The maximum height of the plume
is marked by the edge of the dye pattern. Figure 2.9 presents photographs
of the resulting plume in both neutral and stable conditions. Note that
the mean boundaries of the plumes delineate a conical cross section, as
expected.

It has been predicted (Section 2.7) that the maximum height of the

plume in stably stratified fluid will be proportional to F
1/4
0 N−3/4, where F0

and N are externally specified variables in the experiment. The experimen-

tally determined maximum plume heights are plotted against F
1/4
0 N−3/4

in Figure 2.10. The theoretical shape will depend on the radial depen-
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dence assumed. If, for example, we take a Gaussian profile of the form

exp(−pr2/z2), the slope of the h versus F
1/4
0 N−3/4 graph will depend on

p, as is illustrated in Figure 2.10. The value of p can be obtained from
the experiments by measuring the slope of the plume boundary, since by
equating the assumed radial dependence exp(−r2/R2) with exp(−pr2/z2),
it is seen that

R

z
= p−1/2 =

6

5
α.

The value of p in best agreement with experimental results is 80, corre-
sponding to α = 0.093, and the theoretical prediction based on this value
is seen to be in very close agreement with the experimental results. Note
that since the nozzle has a finite diameter (2.8 cm), the height of the plume
should not be measured from the nozzle, but rather from the point below
the nozzle at which the projection of the plume boundaries converge.

In another version of the experiment, discrete clouds of dyed, buoyant
fluid are released suddenly by removing the cover from the top of a small
reservoir that contains a known volume of light fluid. The ultimate height

of the ascending cloud is measured and plotted against F
1/4
0 N−1/2; the

theoretical (dimensional) prediction from Section 2.7 is that this relation-
ship is linear. The results of this experiment are illustrated in Figure 2.11,

which shows the ultimate cloud height as a function of F
1/4
0 N−1/2. The

regression line through the experimental data is

H = 2.66 F
1/4
0 N−1/2 − 4.51,

where H is the ultimate height in centimeters. The correlation coefficient

between H and F
1/4
0 N−1/2 is 0.98 and the slope 2.66 corresponds to α =

0.285 and a dimensionless ultimate height of 4.2, in agreement with the
theoretical prediction.

Scorer (1957) experimented with the convection of a discrete mass of
dense fluid released suddenly near the top of a large tank containing a
neutrally stratified fluid of smaller density. His photographs of the devel-
oping thermal are reproduced in Figures 2.12 to 2.14. A striking aspect of
these observations is the shape-preserving character of the thermals (Fig-
ure 2.14); this aspect is further illustrated by a trace of successive outlines
of the thermals (Figure 2.15). Scorer’s observations also seem to indicate
that the thermal behaves as a spherical vortex,1 as illustrated in Figure
2.16. By measuring the rate of descent of the thermals, Scorer was able to
determine experimentally an effective Froude number for the convection. If
C is the Froude number, then

w2 = CBR.

1 The spherical vortex, characterized by ascent along the central vertical axis and

descent around the periphery, is described in Lamb (1932).
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Fig. 2.10 Experimentally determined heights of maintained plumes in a stably

stratified environment. The heights are plotted against F
1/4
0 N−3/4; the theoret-

ical dependences are indicated by straight lines and correspond to various values
of p in the radial dependence exp(−pr2/z2). The solid line is the best fit and
corresponds to p = 80 (α = 0.093). [From Morton, Taylor, and Turner (1956).]

By comparing the above expression to the theoretical solution for a
thermal in a neutrally stratified ambient fluid (see Section 2.4), it is evident
that the Froude number is related to the entrainment parameter α by

C =
1

2α
.

Scorer found experimentally that C ' 1.44 corresponding to α = 0.35; this
may be compared to the Morton, Taylor, and Turner value of 0.285.
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Fig. 2.11 Measurements of the final height above the release point of a buoyant
thermal in a stably stratified ambient fluid. The linear regression line is drawn
in and the dashed lines represent twice the standard deviation. [From Morton,
Taylor, and Turner (1956).]

Woodward (1959) also performed experiments with laboratory ther-
mals and found that the thermals transverse a cone of half-angle 15◦ (cor-
responding to α = 0.27) and that about 60% of the mixing takes place at
the front edge of the thermal, with the remainder occurring at the rear.
She observes that particles characterized by terminal velocities greater than
about 1.6 times the rate of ascent of the thermal cannot remain within the
circulation of the thermal, whereas those with terminal velocities less than
the thermal’s vertical velocity will always remain within the thermal.

The behavior of thermals as they impinge upon a density discontinuity
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Fig. 2.12 Sequence of photographs showing the descent of a cloud of dense fluid
in a tank of fluid of smaller density. [From Scorer (1957).]

in the ambient fluid was investigated by Saunders (1962). His photographs
(Figure 2.17) clearly reveal the spherical vortex circulation of the ther-
mal. This circulation apparently reverses after the thermal penetrates the
discontinuity and suffers a reversal of buoyancy.

Various observations of cumulus clouds suggest that the upper sur-
faces of the clouds are made up of many small convective protuberances
that appear to behave like dry thermals. Attempts have been made to
estimate the ascent and expansion rates of these protuberances using time-
lapse photography. Saunders (1961) estimated that the half-angle of the
conical envelope of these protuberances is 11◦, with an experimental error
of about 10%. This corresponds to a Froude number of 2.5 or a spherical
entrainment factor of 0.2. This value did not appear to depend on the sta-
bility or relative humidity of the environment, or the phase state of the
water within the cumuli. Saunders obtained a second estimate of C by es-
timating the buoyancy within the cloud from a local sounding and deriving
vertical velocities and radii from photographs. This estimate is 1.5. Malkus
and Scorer (1955) estimated a Froude number of about 1.0 for expanding
thermals on the upper surface of cumulus clouds. The experimentally de-
rived value for α of 0.285 obtained by Morton, Taylor, and Turner (1956)
seems to be representative of most buoyant thermals.
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Fig. 2.13 View of a sinking thermal from above showing the hollowed-out rear.
[From Scorer (1957).]

EXERCISES

2.1 Using dimensional analysis, derive the functions G and H in (2.3.1)
and compare these functions to their equivalents for point sources of
heat.

2.2 It is not possible to create true point or line sources of buoyancy in
the laboratory, since all real sources will have some nonzero dimension.
How would you go about comparing the predictions of dimensional
analysis with real laboratory experiments of plumes and thermals?

2.3 A dictator has overrun a small, oil-rich country and threatens to set
fire to all the oil wells. Environmental specialists are worried that
smoke from the resulting plumes might enter the stratosphere, where
it could have long-term effects on climate. Do they have a good reason
to worry?

Assume the following in formulating your answer:
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Sideturn. Fig. 2.14 Successive photographs of a descending thermal, showing
that the shape of the thermal may persist while the volume increases several
times. [From Scorer (1957).]
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Fig. 2.15 Successive outlines of thermals traced from photographs. Below each
is a graph of z2 against t. [From Scorer (1957).]

(a) The oil production of the country is 107 barrels/day. (Note that
1 barrel ' 160 kg.)

(b) There are approximately 1000 active oil wells of roughly equal
production.

(c) The heating value of gasoline is about 4.7× 107 J kg−1.



CONVECTION FROM LOCAL SOURCES 43

Fig. 2.16 The distribution of radial (left) and vertical (right) velocities in a
thermal obtained by observing the motion of particles within a thermal. Velocities
expressed as multiples of the thermal ascent rate. [From Scorer (1957).]

(d) The surface air density is about 1.2 kg m−3 and its temperature
is roughly 300 K. The heat capacity at constant pressure of air is
about
103 J kg−1 K−1.

(e) The troposphere extends upwards to about 10 km and has an
average buoyancy frequency (N) of 10−2 s−1.

2.4 Estimate the height to which a cloud generated by a bomb will rise
through a calm atmosphere, which, to a fair approximation, may be
considered to have uniform stratification in the troposphere and a
greater but also uniform stratification in the stratosphere. Use sim-
ilarity theory and a bit of imagination to estimate this altitude, given
that

(a) The bomb explodes at the surface.
(b) The bomb may be considered an instantaneous point source of

heat.
(c) All the energy of the bomb goes into heat.
(d) Exotic effects such as breakdown of the Boussinesq approxima-

tion, plasma behavior, continued heating from radioactivity, and
condensation may be neglected.

Calculate the maximum ascent height for (1) a 1-megaton bomb, and
(2) a 100-megaton bomb, given the following conditions:

(a) Buoyancy frequency Nt of the troposphere = 10−2 s−1

(b) Buoyancy frequency Ns of the stratosphere =
√

2×Nt
(c) Height of the tropopause = 10 km
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Sideturn. Fig. 2.17 A sequence of time exposures (1 sec duration) showing the
penetration of a density discontinuity by a thermal whose initial buoyancy is
negative with respect to the upper fluid and positive in relation to the lower
fluid. [From Saunders (1962).]
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(d) Surface pressure = 1020 millibars

(e) Entrainment parameter = 0.285

(f) 1 megaton = 4× 1015 J

REFERENCES

Batchelor, G. K., 1954: Heat convection and buoyant effects in fluids. Quart. J.
Roy. Meteor. Soc., 80, 339–358.

Lamb, H., 1932: Hydrodynamics. Cambridge University Press, 738 pp.

Malkus, J. S., and R. S. Scorer, 1955: The erosion of cumulus towers. J. Meteor.,
12, 43–57.

Morton, B. R., 1957: Buoyant plumes in a moist atmosphere. J. Fluid Mech., 2,
127–144.

, G. I. Taylor, and J. S. Turner, 1956: Turbulent gravitational convection
from maintained and instantaneous sources. Proc. Roy. Soc. London, A234, 1–
23.

Richards, J. M., 1961: Experiments on the penetration of an interface by buoyant
thermals. J. Fluid Mech., 11, 369–384.

Rouse, H., C. S. Yih, and H. W. Humphreys, 1952: Gravitational convection from
a boundary source. Tellus, 4, 201.

, W. D. Baines, and H. W. Humphreys, 1953: Free convection over parallel
sources of heat. Proc. Phys. Soc., B, 393.

Saunders, P. M., 1961: An observational study of cumulus. J. Meteor., 18, 451–
467.

, 1962: Penetrative convection in stably stratified fluids. Tellus, 14, 177–
194.

Schmidt, W., 1941: Turbulent propagation of a stream of heated air. Z. angew.
Math. Mech., 21, 265–351

Scorer, R. S., 1957: Experiments on convection of isolated masses of buoyant
fluid. J. Fluid Mech., 2, 583–594.

, and C. Ronne, 1956: Experiments with convection bubbles. Weather, 11,
151–154.

Turner, J. S., 1962: The “starting plume” in neutral surroundings. J. Fluid Mech.,
13, 356–368.



46 DRY CONVECTION

, 1963: The motion of buoyant elements in turbulent surroundings. J. Fluid
Mech., 16, 1–16.

, 1964: The flow into an expanding spherical vortex. J. Fluid Mech., 18,
195–208.

, 1969: Buoyant plumes and thermals. Annual Rev. Fluid Mech., 1, 29–44.

, 1973: Buoyancy Effects in Fluids, Chapter 6, “Buoyant Convection from
Isolated Sources.” Cambridge University Press, 367 pp.

Woodward, B., 1959: The motion in and around isolated thermals. Quart. J. Roy.
Meteor. Soc., 85, 144–151.

Yih, C. S., 1951: Free convection due to a point source of heat. Proc. First U.S.
Nat. Cong. App. Mech., p. 941.


