1. Overview of extant and WindRiskTech methods

	 

	We here describe the methods we use to generate hurricane event sets. We apply a method to assess the probability distribution of hurricane tracks and then run a deterministic numerical model along each track to estimate storm wind magnitudes. The track generation begins by generating a large class of synthetic, time-varying wind fields at 850 and 250 hPa whose variance, co-variance and monthly means match NCEP re-analysis data and whose kinetic energy follows an  geostrophic turbulence spectral frequency distribution. Hurricanes are assumed to move with a weighted mean of the 850 and 250 hPa flow plus a "beta drift" correction, after originating at points determined from historical genesis data. The statistical characteristics of tracks generated by these two means are compared with historical track data.

	For a given point in space, a large number (~104) of synthetic tracks are generated that can be filtered to a particular ocean basin, to pass within a specified distance of a point of interest, or to pass through any of a number of user-specified line segments, which may or may not comprise a closed polygon. For each of the tracks, a deterministic, coupled, numerical simulation of the storm's intensity is carried out, using monthly mean upper ocean and potential intensity climatologies together with time-varying vertical wind shear generated from the synthetic time series of 850 and 250 hPa winds as described above. The tracks and the shear are generated using the same wind fields and are therefore mutually consistent. 

	The track and intensity data are finally used together with a vortex structure model to construct probability distributions of wind speed at fixed points in space. 

	Details of the method are described in two key references: Emanuel et al. (2006) and Emanuel et al. (2008). Comparison with historical hurricane data and the application of extant methods are described in these two references and in Emanuel (2006). Some applications of the method are given in a set of published papers  (e.g. Emanuel, 2010, Emanuel and Jagger, 2010, Emanuel et al., 2010, Federov et al., 2010, Gnanadesikan et al., 2010, Lin et al., 2010, Emanuel, 2011, Mendelsohn et al., 2012). 

Existing event set generation techniques begin with historical compilations of hurricane tracks and intensities, such as the so-called "best track" data compilations maintained by forecasting operations such as the National Oceanic and Atmospheric Administration's Tropical Prediction Center (TPC) and the U.S. Navy's Joint Typhoon Warning Center (JTWC). The records typically contain storm center position every six hours together with a single intensity estimate (maximum wind speed and/or central pressure) every time period. Early risk assessments (e.g. Georgiou et al., 1983, Neumann, 1987) fit standard distribution functions, such as log-normal or Weibull distributions, to the distribution of maximum intensities of all historical storms coming within a specified radius of the point of interest, and then, drawing randomly from such distributions, use standard models of the radial structure of storms, together with translation speed and landfall information, to estimate the maximum wind achieved at the point of interest. A clear drawback of this approach is that estimates of the frequency of high intensity events are sensitive to the shape of the tail of the assumed distribution, for which there is very little supporting data. This limitation was, to some extent, circumvented in the work of Darling (1991) and Chu and Wang (1998), who used empirical global distributions of relative intensity (the ratio of actual to potential intensity) together with climatology of potential intensity to infer local intensity distributions. A similar approach was taken by Murnane et al. (2000), who used global estimates of hurricane actual (rather than relative) wind intensity cumulative probability distributions. A somewhat different tack was taken by Vickery et al. (2000), who used statistical properties of historical tracks and intensities to generate a large number of synthetic storms in the North Atlantic basin. Six hour changes in direction, translation speed and intensity along each track were modeled as linear functions of previous values of those quantities as well as of position and sea surface temperature. The WindRiskTech method follows Vickery et al. (2000) in generating large numbers of tracks, but uses different techniques to accomplish this. 

	Most of the aforementioned wind risk assessment methods rely directly on historical hurricane track data to estimate the frequency of storms passing close to points of interest, and must assume that the intensity evolution is independent of the particular track taken by the storm (though Darling, 1991, accounts for the time elapsed after storm formation). Moreover, the relative intensity method must fail when storms move into regions of small or vanishing potential intensity, as they often do in the western North Atlantic. Return period estimation is particularly problematic in places like New England, which have experienced infrequent but enormously destructive storms but for which the historical record is sparse. 

	As a step toward circumventing some of these difficulties, we developed a technique for generating large numbers of synthetic hurricane tracks, along each of which we run a deterministic, coupled numerical model to simulate storm intensity. 


	Event set generation begins by randomly seeding a given ocean basin with weak tropical cyclone-like disturbances, and using our intensity mode to determine which one of these develop to tropical storm strength or greater. The storms move according to a weighted average of the ambient flow at 850 and 250 hPa plus a constant "beta drift" correction; this constitutes the so-called “beta-and-advection” model that is still used by professional hurricane forecasters as part of their suite of track guidance. The ambient flow used to determine the storm tracks is one that is randomly varying in time, but whose mean, variance and co-variances conform to monthly mean climatologies derived from re-analysis or global climate model data sets, and whose kinetic energy follows the  power law of geostrophic turbulence. We compare the 6-hour displacement statistics of such tracks to the corresponding statistics of historical tracks. 

	Tracks can be generated globally, or for a specified ocean basin, and filters can be applied to the track generator to select tracks coming within a specified distance of a point or region of interest (e.g. a city or county) or passing through any of a set of user-specified line segments. In filtering the tracks, a record is kept of the number of discarded tracks and this is used to calculate the overall frequency of storms that pass the filter.  

Once the tracks have been generated, a coupled hurricane intensity model is then run along each of the selected tracks to produce a history of storm maximum wind speed. This model uses monthly climatological atmospheric and upper ocean thermodynamic information, but is also affected by ambient environmental wind shear that varies randomly in time according to the procedure described in the previous paragraph. This wind shear is generated from exactly the same randomly varying wind fields as were used to generate the storm tracks; thus the storm motion and the vertical wind shear are mutually consistent. 

	The coupled deterministic model produces a maximum wind speed and a radius of maximum winds, but the detailed aspects of the radial storm structure are not used, owing to the coarse spatial resolution of the model. Instead, as a post-processing step, we use idealized radial wind profiles, fitted to the numerical output, to estimate maximum winds at fixed points in space away from the storm center. 

	For each point of interest, the intensity model is run many O(104) times to produce desired statistics such as wind speed exceedence probabilities for that point. Both the synthetic track generation method and the deterministic model are fast enough that it is practical to estimate exceedence probabilities to a comfortable level of statistical significance. We have compare such probabilities to those estimated using previously published techniques. 

	The following sections describe in greater detail the synthetic track generation technique and the simulation of storm intensity. 


2. Genesis technique

Our genesis technique consists in randomly seeding a given ocean basin with candidate disturbances, and then calculating the track using either of the track methods described in sections 3 and 4. Our coupled numerical hurricane intensity model is then run along each track, but beginning with a weak disturbance, whose maximum wind speed is 24 knots. The vast majority of such disturbances fail to achieve minimal tropical storm strength and are discarded, and the number of discards relative to the number of successful candidates is recorded. This ratio, when normalized by a suitable constant scaling factor, gives the overall frequency of genesis. Figure 1 shows an example of a genesis probability distribution generated using this technique. 
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Figure 1: Example of a probability distribution generated using the random seeding genesis method. In this case, we have applied the method to the climatology of the last 20 years of the 20th century from a simulation with a Princeton/GFDL global climate model, to highlight the technique’s independence of historical data. This particular map shows the genesis probability accumulated over an entire season. In this case, genesis in a small portion of the eastern North Pacific east of 100oW is also displayed. 


3. Track generation from synthetic wind time series

We use environmental winds derived from reanalysis or global climate model data sets to generate tropical cyclone tracks. This is possible, because, to a first approximation, hurricanes move with some weighted vertical mean of the environmental flow in which they are embedded (Holland, 1983) plus a "beta drift" owing to the effect of the vortex flow on the ambient potential vorticity distribution (Davies, 1948, Rossby, 1948). 

	So as to keep matters simple, we choose to use winds only at the 850 and 250 hPa levels. This choice is motivated by the finding of DeMaria and Kaplan (1994) that the wind shear between these two levels is well correlated with hurricane intensity change, and the shear between these levels is also used in the operational application of the coupled hurricane intensity prediction model described in the next section. The motion of each storm is then modeled as a weighted average of flow at these two levels, plus a beta drift correction. 

We begin by representing the zonal wind component at 250 hPa by its monthly mean plus a Fourier series with random phase, whose amplitude is the square root of the observed variance:


		




where  is the monthly mean zonal flow at 250 hPa interpolated to the date and position of the storm,  is its variance from the monthl y mean, and  is defined


		








where  is a time scale corresponding to the period of the lowest frequency wave in the series,  is the total number of waves retained, and  is, for each , a random number between 0 and 1. In (1),  is a slow time variable corresponding to the linearly interpolated variation of the monthly mean flow with time, while  is a fast time scale. The time series thus has the observed monthly mean and variance, while the coefficients in (2) are chosen so that the power spectrum of the kinetic energy of the zonal flow falls off as the inverse cube of the frequency, mimicking the observed spectrum of geostrophic turbulence. We do not attempt to model the effect on the storm of higher frequency environmental fluctuations as might, for example, be encountered in the mesoscale frequency domain, characterized by an  power spectrum. 





In practice, we take  = 15 days and use  = 15. Figure 2 shows an example of such a time series, with  and . 
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Figure 2: Example of random time series generated using (2) and (3)






The time series of the other flow components, ,  , and  are modeled according to

	 	




where the  are coefficients whose determination is discussed presently, and the  have the same form as (3) but with different random phase. Thus the different  are uncorrelated.  We can write (2) and (4) in matrix form


		





where  is a vector containing the velocity components,  is the climatological mean flow,  is the vector of uncorrelated time series of random phase (and amplitude of unity, as in (3)), and is a lower triangular matrix of coefficients that satisfies


		





where is the symmetric matrix containing the variances and covariances of the flow components.  In constructing the covariance matrix, we ignore any correlation between the zonal flow at 250 hPa and the meridional flow at 850 hPa and between meridional flow at 250 hPa and the zonal flow at 850 hPa. Because  is symmetric and positive definite, the matrix  can easily be found from  by Cholesky decomposition. 
                               
	Note that we do not explicitly model spatial correlations of the mean flow. In effect, we assume that the time scale over which a hurricane traverses typical length scales associated with time-varying synoptic-scale systems is large compared to the time scale of fluctuations at a fixed point in space. Notwithstanding this, each storm will, of course, feel the effects of spatial variability of the monthly mean flow and its variance. 

	Monthly means, variances, and covariances are calculated using 1 or more years of data from reanalysis data sets (e.g.  the NOAA NCEP reanalysis data set (Kalnay and co-authors, 1996)) or from global climate models. Given time series of the flow at 250 and 850 hPa, it is straightforward to calculated the magnitude of the 850-250 hPa shear, used by the hurricane intensity model described in the next section. Hurricane tracks were synthesized from a weighted mean of the 250 and 850 hPa flow plus a correction for beta drift:


		










where  and  are the vector flows at the two pressure levels, synthesized following (2) and (3) above,  is a constant weight, and  is a constant vector beta drift term. The weight  and the vector beta drift  are chosen somewhat subjectively to optimize comparisons of the synthesized and observed displacement statistics. The optimized values are  = 0.8, , and . 




	Given  from (6), we integrate  forward in time (using a 30 minute time step and a forward Euler scheme) to find the position vector  along each track. The re-analysis mean fields, variances and co-variances are then linearly interpolated in space and time to the new position (and new date), assigning the monthly mean to the 15th day of each month, and the position equation is stepped forward again.  We terminate the track if it travels outside a pre-defined latitude-longitude box or after thirty days, whichever happens first. For Atlantic storms, the bounding box is defined by latitudes 4o N and 50o N, and longitudes 5o W and 110o W. 

	Figure 3 shows an example of 1000 randomly selected tracks produced by this method applied to the ERA40 reanalysis, color coded by Saffir-Simpson intensity. The zonal and meridional 6-hour displacement statistics for 1000 tracks in a region of the North Atlantic bounded by 5o and 40 o N latitude are shown in Figure 4 and compared to the statistics of 352 historical tracks. The comparison is in general quite good.  
                    [image: C:\Users\Kerry\Documents\Riskproject\Figures\era40_1000tracks.tif]Figure 3: 1000 randomly selected tracks generated using statistics from the ERA40 reanalysis. Colors show Saffir-Simpson intensity. 
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                               Figure 4: Comparison of 6-hour west-east (a) and south-north (b) North Atlantic track displacements between HURDAT (blue) and WindRiskTech synthetic (red) tracks.

4. Deterministic modeling of hurricane intensity

	Once a synthetic track is produced, it is then necessary to estimate the evolution of storm intensity along the track. In principle, one could use a Markov Chain process to do this, making each increment of intensity (e.g. maximum wind speed) conditional on storm position, previous intensities, etc., as determined from historical storm data. A good way to do this would be in terms of relative intensity, pioneered by Darling (1991), with the climatological distributions as in Emanuel (2000). While such a procedure might work quite well in data-rich regions, the paucity of data in other regions (e.g. New England) and the fact that hurricanes moving out of the Tropics can still be quite damaging even though the local potential intensity is small or zero, places limitations on the application of such a method. 

Here we elect instead to run a deterministic numerical simulation of hurricane intensity along each synthetic track, using the model developed by Emanuel et al. (2004). This is a simple, axisymmetric balance model coupled to an equally simple, one-dimensional ocean model. Since the model is phrased in angular momentum coordinates, it yields exceptionally high resolution in the critical eyewall region of the storm. Given a storm track, the model is integrated forward in time to yield a prediction of wind speed. Since the atmospheric model is axisymmetric, it cannot explicitly account for the important influence of environmental wind shear, and this must therefore be represented parametrically. Bathymetry and topography are included, and landfall is represented by setting the surface enthalpy exchange coefficient to zero. The model is run quasi-operationally at NHC and JTWC and gives forecasts comparable in skill to the best statistical forecasts. 

Besides the storm track, the model requires estimates of potential intensity, upper ocean thermal structure, and environmental wind shear along the track. In this application, we use monthly mean climatological potential intensity calculated from NCEP re-analysis data, linearly interpolated to the storm position and in time to the date in question. As shown by Emanuel et al. (2004), use of real-time potential intensity offers only a marginal improvement over the climatological means. As in the quasi-operational model, we use monthly mean climatological upper ocean thermal structure obtained from Levitus (1982). On the other hand, Emanuel et al. (2004) showed that upper ocean thermal variability can have a significant influence on hurricane intensity in this model. Although we do not account for such variability here, we intend to include this in future versions of our model, using sea surface altimetry data to help quantify the climatological variability of the upper ocean. 

Vertical wind shear is an important influence on hurricane intensity, in this model as in nature. Here we apply the wind shear calculated from synthetic time series of winds at 850 and 250 hPa, as described in section 3. 




In the quasi-operational application of the intensity model, the integration is initialized by matching the time evolution of the intensity to that of the observed storm prior to the initialization time. Here we simply prescribe an initial intensity of  and an initial intensification rate of about . If and when the predicted maximum drops below , the storm is assumed to have dissipated and the integration is discontinued. In rare cases, the storm may reach the end of a track before this happens. 

The rate of genesis of tropical cyclones is taken from the random seeding technique, as previously described, and is independent of the wind field taken at the beginning of the synthetic time series whose generation was described in section 4. While it is unrealistic to assume that storms will be generated under conditions of large shear, the intensity model will quickly kill storms under these conditions. 

The intensity model takes, on the average, about 15 seconds of wall-clock time to run a single track on a typical workstation computer. Thus it is feasible to run a large number of tracks. 

To estimate wind speeds at fixed points in space, it is necessary to estimate the radial structure of the storm's wind field. While the intensity model does predict such structure, it is not particularly realistic and we elect instead to use a parametric form for the radial structure, fitted to the predicted maximum wind speed and radius of maximum winds. We offer several different parametric wind models, including those of Holland (1983), Emanuel (2004), and Emanuel and Rotunno (2011). 

To the axisymmetric wind field we add a fraction of the storm's translation velocity in the direction of the storm's motion. We find, empirically, that relatively good agreement with historical data is obtained using a fraction of the translation speed that is a weak function of latitude. 


	A weakness of the present approach is that dynamical interactions with extratropical systems are specifically excluded. Were such interactions linear, and were both the tropical cyclone and the extratropical systems with which it interacts quasi-geostrophic, then the wind fields of all the systems could be linearly superposed and the extratropical interaction would be accounted for to some degree by having added the translation speed to the wind speed. But extratropical transition is no doubt strongly nonlinear, and the circulation around the tropical cyclone may be expected, under some circumstances, to enhance the amplitude of extratropical potential vorticity anomalies, so one might expect that the present method would not deal adequately with extreme cases of extratropical transition. A case in point is the New England Hurricane of 1938, whose translation velocity at landfall is estimated to have been around  (Minsinger, 1988). It is hardly credible that such a velocity would result from the weighted mean of the 850 and 250 hPa flow used to calculate translation velocities by the track method presented here. To partially include this effect, we add another linear wind vector to the storm wind field that depends on the magnitude of the 250-850 hPa wind shear. 

	For each storm, we calculate the maximum wind speed experienced at a site of interest as well as the maximum wind speed experienced within a fixed distance from that site. As the model was tuned for maximum winds reported by NHC, we take these winds to represent 1 minute averages at an altitude of 10 m. By summing over the total number of events, annual wind exceedence probabilities, return periods, and other statistics can be estimated and these can be compared to estimates based directly on historical data such as HURDAT. 



	
5. Examples

	To illustrate the capabilities of the present approach, we have created three sets of synthetic hurricanes using NCAR/NCEP reanalysis data from 1980 to 2010. The first is random selection of 7064 storms affecting the North Atlantic as a whole. The other two are for two cities with very different hurricane climatologies: Pointe-á-Pitre (Guadeloupe) and New York. The former has a relatively rich record of storms, and storm affecting Pointe-á-Pitre have not usually undergone strong interactions with extratropical systems. New York, at the other extreme, has only had a handful of storms in its history, and many of those can be presumed to have been affected by interactions with extratropical systems. 


a. North Atlantic

	Figure 5 compares annual exceedence frequencies of storm lifetime maximum wind speeds achieved in 7064 WindRiskTech synthetic North Atlantic with 355 HURDAT storms recorded over the period 1980-2010. The ordinate shows the number of events whose wind speeds exceed the value given on the abscissa. 
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Figure 5: Annual exceedence frequencies of lifetime maximum wind speeds of 355 HURDAT events (blue) and 7064 WindRiskTech synthetic events (red), during the period 1980-2010. The green error bars show the limits within which 90% of the historical frequencies would lie were they drawn from the same distribution as the synthetic frequencies. 

	The histograms follow the bi-linear cumulative frequency distribution of hurricane maximum wind speeds discussed by Emanuel (2000). It is important to note that such distributions are bounded so that there is, in general, a maximum wind speed that can be experienced at any given place. In general, this corresponds to the potential intensity deep in the Tropics, but at higher latitudes the addition of the storm translation speed and baroclinic effects allows some maximum wind values to exceed the local potential intensity. As noted in the previous section, this accounts for part (but not all) of the effect of extratropical transition. 


    
Figure 6 shows the track of the most intense event in the 7064 synthetic storm sample, together with the evolution of certain key quantities, as an example of a complete synthetic storm. The minimum central pressure achieved in this storm is 863 hPa, though one should bear in mind that in calculating the pressure, the model assumes a fixed ambient sea level pressure of 1014 hPa. 

The number of occurrences of hurricanes within a 2.5 degree latitude-longitude grid from another set of nearly 3000 synthetic tracks is shown in Figure 7, together with a similar computation using all 399 post-1970 HURDAT events.  At first glance, there are noticeable differences between the two distributions,  but much of this is because of the relatively low number of HURDAT tracks. In Figure 7c we present the density of hurricane tracks calculated from a random sample of 399 of the synthetic tracks. This show how much difference the sampling can make to the calculated distribution. 
  b
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Figure 6: Track (a) of the most intense storm among the random sample of 7064 Atlantic tropical cyclones, together with the evolution (b) of maximum wind speed (blue), potential intensity (red), translation speed (green) and 250-850 hPa wind shear magnitude (aqua). The colors in (a) correspond to the Saffir-Simpson category, and the numbers are dates in August


(Bear in mind that not all storms reach Miami before their wind speeds fall below  and they are thus terminated.) 

















c
a
b

[image: hurdat_track_density][image: syn_track_density][image: 399_random_syn_tracks]
	Figure 7:  Number of hurricane tracks per 2.5 degree latitude-longitude box for (a) nearly 3000 synthetic tracks, (b) 399 HURDAT tracks from 1970 to 2005 , and (c) for a random sample of 399 synthetic tracks. 






b. Pointe-á-Pitre

	Pointe-á-Pitre on the Caribbean island of Guadeloupe, is an example of a city with a relatively high incidence of hurricanes. To produce annual exceedence probabilities for wind speed, we produced and event set of more than 20,000 tracks passing within 500 km of the city We then ran the intensity model over each track to accumulate wind statistics for Pointe-á-Pitre. 

To facilitate comparison with historical hurricane data, we first made annual exceedence distributions of the peak wind speed experienced anywhere within 500 km of downtown Pointe-á-Pitre in each storm. These are compared to the same statistic derived from HURDAT in Figure 8. In comparing the present results with HURDAT data, bear in mind that there are only 52 HURDAT tracks with maximum winds in excess of 40 kts, passing with 500 km of Pointe-á-Pitre during the period 1980-2010, versus 20,048 synthetic tracks used. 

	The track producing the highest wind speed within 500 km of Pointe-á-Pitre is displayed in Figure 9. This storm achieves a peak wind speed of 181 kts (and minimum central pressure of 860 hPa) as it recurves through the northeastern Caribbean. It retains tropical storm intensity all the way until final landfall in Brittany.         


                       [image: ]
                                  Figure 8: Annual exceedence frequencies of lifetime maximum wind speeds of 52 HURDAT events (blue) and 20048 WindRiskTech synthetic events (red), passing within 500 km of Pointe-á-Pitre, Guadeloupe, during the period 1980-2010. The green error bars show the limits within which 90% of the historical frequencies would lie were they drawn from the same distribution as the synthetic frequencies. 
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	Figure 9:  Track of the event that produces the highest wind speed at Pointe-á-Pitre, Guadeloupe, among the 20,048 events, as displayed in Google Earth. Colors indicate wind speed, and dates are shown at 00 GMT positions. 






c. New York City

	The power of our technique is most evident when applied to places that experience infrequent (but sometimes devastating) storms. In these cases, the historical record may be greatly insufficient to make reasonable risk assessments there from, yet there are still strong incentives to estimate risk. 

	The model used to predict intensity evolution has no explicit treatment of extratropical interactions, though some of this effect in surface winds may be captured, as discussed in section 4, by adding a fraction of the translation speed to the azimuthal winds and by accounting in a rough way for the presence of baroclinicity. 

	Probabilities of the maximum wind speed within 150 km of downtown New York are compared to those estimated directly from HURDAT in Figure 10. In this case we have chose to portray the wind risk in terms of return period, the inverse of the annual exceedence probability. The synthetic probabilities are based on 5022 events, whereas the historical probabilities are based on only 22 events during the period 1900 to 2010. As before, we create 90% confidence limits by subsampling the numerous synthetic events at the size of this historical event set. While the risk derived from the synthetic set is consistent with history, one can estimate far less probable (but potentially highly important) events.
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Figure 10: Return periods (inverse annual exceedence probabilities) of peak wind experienced within 150 km of New York City according to a WindRiskTech set of 5022 events, compared to those estimated from 22 HURDAT events in the period 1900-2010. The green error bars show the limits within which 90% of the historical frequencies would lie were they drawn from the same distribution as the synthetic frequencies. 










The track of the storm that produced the strongest wind in downtown New York is illustrated in Figure 11. As with most storms that produce very strong winds in New York and New England, this is a fast mover, traveling from Florida to Labrador in just two days. 

                    [image: ]
Figure 11: Track of the WindRiskTech synthetic event that produces the strongest peak wind in downtown New York.

Contours showing the peak wind speed experienced at each point near New York are displayed in Figure 12. Note that, as observed with such events, the strongest winds are to the right of the track of the storm. 

                              [image: ]
Figure 12: Contours of the peak wind experienced at every point, associated with the event illustrated in Figure 11. The bold black curve shows the track of the event. 




	The WindRiskTech model can also be used to provide estimates of rainfall and associated flood risk. Figure 13 shows a map of the accumulated rainfall associated with the New York City event shown in the previous two figures. This fast-moving storm did not produce extraordinary rainfall, but one can observe the modulation of the rain by the topography. 

                          [image: ]
Figure 13:  Contours of the accumulated rainfall (mm) associated with the event illustrated in Figures 11 and 12.

WindRiskTech couples our tropical cyclone events to hydrodynamic surge models, including SLOSH and ADCIRC. These can be used to estimate storm surge-related risks. Figure 14 illustrates the application of this technique to assessing storm surge risk at the Battery in New York City. Four separate climate models were downscaled using WindRiskTech methods applied to simulated climates of the late 20th Century, and the late 21st Century under IPCC emissions scenario A1b. 5,000 tropical cyclone events were generated for each model and each climate scenario. These in turn were used to ADCIRC and SLOSH surge models to calculate storm surges associated with each event. Mean sea level was assumed to increase by 1 m by the end of the 21st Century. These results illustrate the power of WindRiskTech methods to estimate surge risk and to perform such estimates not only for the current climate but for future climates. According to the GFDL model, for example, Hurricane Sandy’s (2012) storm surge of 3 m (not including astronomical tides) was a one thousand year event in the current climate, but will occur with a probability of once in 30-40 years by the end of this century. 
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Figure 14: Return periods of peak storm surge depths at the Battery (lower Manhattan) for the climate of the late 20th Century (black) and for the late 21st Century under IPCC emissions scenario A1b, with 1 m of mean sea level rise included (red and blue), as downscaled from four global climate models, CNRM, ECHAM, GFDL, and MIROC. The blue curves include an estimate of an expansion of storm diameters as the climate warms, and the shading represents an estimate of uncertainty. From Lin et al. (2012).

6. Tropical Cyclone Risk at a Nuclear Power Plant Site, Korea

	To assess tropical cyclone risk at the site of a nuclear power station in Korea, WindRiskTech generated 30,069 events that passed within 100 km of the site. 

	The WindRiskTech tropical cyclone events were generated by downscaling NCAR/NCEP reanalysis data for every year between 1979 and 2017, inclusive, with 771 events being generated in each year. To be included in the event set, tropical cyclones had to have peak 1-minute average winds at 10 m altitude of at least 40 knots at the time they passed within 100 km of the power plant site. The average annual frequency of such an occurrence over the entire 38-year period was 0.37; individual year frequencies ranged from a minimum of 0.079 to a maximum of 0.84. Random variability owing to undersampling accounts for about 9% of the year-to-year frequency variation, with interannual climate fluctuations making up the remainder. 

	The annual exceedance frequencies of peak wind speeds within 100 km of the power plant site are shown in Figure 15 for comparison with historical typhoon data. There are only 12 Joint Typhoon Warning Center (JTWC) events that pass within 100 km of the power plant site during the period 1979-2017. The same information is displayed in terms of return periods (inverse annual probabilities) in Figure 16. To the extent that it is possible to make a comparison, the WindRiskTech events are consistent with the historical data.  
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Figure 15: Annual exceedance frequencies of peak wind speeds (knots) encountered within 100 km of the nuclear power plant site, based on 29,728 synthetic events (red curve) and 12 best track (JTWC) events (blue dots) over the period 1979-2017. The blue shading shows the limits within which 90% of the historical frequencies would lie were they drawn from the same distribution as the synthetic frequencies.
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Figure 16: Return periods (inverse annual exceedance probabilities) of peak wind experienced within 100 km of the nuclear power plant site, according to a WindRiskTech set of 29,728 events (red curve), compared to those estimated from 12 best track (JTWC) events (blue dots) during the period 1979-2017. The blue shading shows the limits within which 90% of the historical frequencies would lie were they drawn from the same distribution as the synthetic frequencies.
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Figure 17: Return periods (inverse annual exceedance probabilities) of peak wind experienced at the nuclear power plant site itself, according to a WindRiskTech set of 30,069 events downscaled from NCAR/NCEP reanalysis data over the period 1979-2017.

	The annual probability (as expressed by its inverse, the return period) of peak 1 minute winds at 10 m altitude at the power plant site itself is shown in Figure 17. This shows that tropical cyclones producing at least 40 knots of wind at the power plant site occur about every 35 years. Return periods of hurricane force winds are around 200 years. Winds of greater than 100 knots may be expected at the power plant site with an annual probability corresponding to a return period of about 10,000 years, and the million-year event has a magnitude of about 150 knots. The wind swath of the storm that produces the strongest wind at the power plant site is shown in Figure 18. 
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Figure 18: Contours of the peak wind experienced at every point, associated with the event that produces the largest wind speed at the nuclear power plant site. The bold black curve shows the track of the event.

	The tracks and intensities of the 30 most powerful hurricanes to affect the power plant site are shown in Figure 19. Most of these intense events approach from the south. 
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Figure 19: Tracks and intensities (colors) of the 30 events that had highest intensity at landfall among the 30,069 WindRiskTech events that affect the nuclear power plant site. Dots show the genesis locations. 

Rainfall attributable to tropical cyclones may also be of some concern at the nuclear power plant site.  Figure 20 show the return periods (inverse annual probabilities) of storm total rainfall amounts (mm) at the power plant site. The return period of 50 mm of rain is around 4 years, and that of 100 mm is around 10 years. 500 mm of rain has an annual probability of around one in 3,000 years. Yet much larger tropical cyclone rainfall may occur in the mountainous terrain west of the plant, as shown in Figure 21. This particular storm, which produced a little more than 700 mm of rain at the site, produced more than 1400 mm just inland, illustrating a risk of strong freshwater flooding in the region. 


	                                     
                  [image: C:\Users\Kerry\Documents\WRT\KEPCO\2019\fig20.png] 
Figure 20: Return periods (inverse annual probabilities) of storm total rainfall at the Nuclear Power Plant, based on 30,069 WindRiskTech tropical cyclone events. 

                                 [image: C:\Users\Kerry\Documents\WRT\KEPCO\2019\fig21.png]
[bookmark: _GoBack]Figure 21: Accumulated rainfall near the track of a tropical cyclone that produced about 700 mm of rainfall at the power plant site. 
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