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Coupled Model Design

e Atmospheric Component: ( )

— Gradient and hydrostatic balance

— Potential radius coordinates give very fine (~ 1 km)
resolution in eyewall

— Interior structure constrained by assumption of moist
adiabatic lapse rates on angular momentum surfaces

— Axisymmetric

— Entropy defined in PBL and at single level in middle
troposphere

— Convection based on boundary layer quasi-equilibrium
postulate

— Surface fluxes by conventional aerodynamic formulae

— Thermodynamic inputs: Environmental potential
intensity and storm-induced SST anomalies


ftp://texmex.mit.edu/pub/emanuel/Papers/behave95.pdf

e Ocean Component

(Schade, L.R., 1997: A physical interpreatation of SST-feedback.
Preprints of the 22nd Conf. on Hurr. Trop. Meteor., Amer. Meteor.

Soc., Boston, pgs. 439-440.)

- Mixing by bulk-Richardson number closure
- Mixed-layer current driven by hurricane model

surface wind

Al




Ocean columns integrated only
Along predicted storm track.
Predicted storm center SST
anomaly used for input to ALL
atmospheric points.

Present Yosition

Constant potential radius curve



eData Inputs:

—Weekly updated potential
intensity (1 X 1 degree)

—Official track forecast and
storm history (NHC &
JTWC)

—Monthly climatological
ocean mixed layer depths
(1 X1 degree)

—Monthly climatological
sub-mixed layer thermal
stratification (1 X 1 degree)

—Bathymetry (1/4 X 1/4
degree)



Initialization:

« Synthetic, warm core vortex specified at
beginning of track

* Radial eddy flux of entropy at middle
levels adjusted so as to match storm
intensity to date

« This matching procedure effectively
initializes middle tropospheric humidity as
well as balanced flow



Comparison with same atmospheric model coupled to 3-D ocean
model; idealized runs:
Full model (black), string model (red)

Maximum sustained winds
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km from storm’s center

Mixed layer depth and currents

Full physics coupled run ML depth (m) and currents at t=10 days
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10 days

Independent column coupled run ML depth (m) and currents at t
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km from storm’s center
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SST Change

Full physics coupled run A SST (°C) at t=10 days
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km from storm’s center

Independent columns coupled run A SST (°C) at t=10 days
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(a) Mixed-layer depth on the axis of the storm’s motion (m)
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Landfall Algorithm:

« Enthalpy exchange coefficient decreases
linearly with land elevation, reaching zero
when h =40 m

« This accounts in a crude way for heat fluxes
from low-lying, swampy or marshy terrain
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Overall Forecast Performance:
2002 Atlantic Intensity Errors
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Hurricane Gert occurred in a low-shear environment
and moved over an ocean close to its climatological

mean state.
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Gert, 1999

3] (o]
o o
\ \

Maximum surface wind speed (m/s)
S
o

30 |
= QObserved
20 Initialization period ~— Model |
~
10 ‘ \ ‘ | |
12 14 16 18 20 22

September

24



80

Same simulation, but with fixed SST:

Gert, 1999
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Sensitivity to initial intensity error and length of matching period:

Gert, 1999
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Sensitivity to size of starting vortex

Gert, 1999
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Model performs poorly when substantial shear
Is present, as in Chantal, 2001:

Chantal, 2001
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Shear (m s'l)

850 — 200 hPa environmental shear:
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Add “ventilation” term to model equation
governing middle level theta_e. Coefficient
determined by matching model to long record
of observations:
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Result:

Chantal, 2001
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But model sensitive to shear: This shows the results of varying
Shear magnitude by +/- 5 kts and +/- 10 kts:

Chantal, 2001
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Presence of shear also makes model sensitive to initial conditions.

Here the initial intensity is varied by +/- 3 m/s and +/- 6 m/s:
Chantal, 2001
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Some storms are influenced by
upper ocean anomalies from
monthly climatology. An example
Is that of Hurricane Bret of 1999,
which passed over a warm eddy in
the far western Gulf, as seen in
this satellite image:
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This shows model hindcasts with and without the ocean eddy,
as estimated from sea surface altimetry data:

Bret, 1999
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Mitch was also influenced by an ocean eddy. The red curve used TOPEX
altimetry modified by de-aliasing the estimated peak amplitude:

Mitch, 1998
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A good simulation of Camille can only be obtained by assuming that
it traveled right up the axis of the Loop Current:

Camille, 1969
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Effect of standing water can be seen in these idealized

simulations of storm landfall over dry land and over
swamps with indicated depths of standing water:
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Hurricane Andrew, with and without the effect of the Everglades,
as represented by a elevation-dependent heat exchange coefficient:

Andrew, 1992
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Some storms may have large internal fluctuations (e.g. Allen). CHIPS
may predict the existence of these, but not their phase:

Hurricane Allen, 1980
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Summary

* Tropical cyclone intensity appears to be
controlled by storm history and environment

* Internal fluctuations usually of secondary
Importance



Environmental factors critical
to intensity prediction:

Potential intensity along track
Upper ocean thermal structure
Environmental wind shear
Bathymetry

Land surface characteristics



Major sources of uncertainty:

 Uncertain forecasts of vertical shear

* Shear reduces predictability

* Little real-time knowledge of upper
ocean thermal structure



