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Abstract

While many studies of the effects of global warming on hurricanes predict an increase in various
metrics of Atlantic basin-wide activity, it is less clear that this signal will emerge from background noise
in measures of hurricane damage, which depend largely on rare, high intensity landfalling events and
are thus highly volatile compared to basin-wide storm metrics. Using a recently developed hurricane
synthesizer driven by large-scale meteorological variables derived from global climate models, we
generate 1000 artificial 100-year time series of Atlantic hurricanes that make landfall along the U.S. Gulf
and east coasts, for four climate models and for current climate conditions as well as for the warmer
climate of 100 years hence under IPCC emissions scenario Alb. These synthetic hurricanes damage a
portfolio of insured property, according to an aggregate wind-damage function; damage from flooding is
not considered here. Assuming that the hurricane climate changes linearly with time, we create a 1000-
member ensemble of time series of property damage. Three of the four climate models used produce
increasing damage with time, with the global warming signal emerging on time scales of 40, 113, and
170 years, respectively. We point out, however, that probabilities of damage increase significantly well
before such emergence time scales and show that probability density distributions of aggregate damage
become appreciably separated from those of the control climate on time scales as short as 25 years. For

the fourth climate model, damages decrease with time, but the signal is weak.
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1. Introduction

Several lines of evidence suggest that anthropogenic climate change may have a substantial
influence on tropical cyclone activity around the world. Global warming generally increases the
thermodynamic potential for tropical cyclones (Emanuel, 1987) while changing atmospheric circulation,
humidity, and other factors affect both the probability of genesis and the subsequent evolution of the
storms (Emanuel, 2007, Vecchi and Soden, 2007). Strictly thermodynamic considerations lead to the
expectation that, globally, tropical cyclone frequency should diminish, but the incidence of high intensity
events should increase (Emanuel et al., 2008). There is already evidence that the fraction of high
intensity storms is indeed increasing (Webster et al., 2005, Elsner et al., 2008), although the global total
number of tropical cyclones has not so far exhibited any significant trend (Emanuel, 2005). In the North
Atlantic region, where tropical cyclone records are longer and generally of better quality than
elsewhere, power dissipation by tropical cyclones is highly correlated with sea surface temperature
during hurricane season in the regions where storms typically develop (Emanuel, 2005) and with the
difference between the local sea surface temperature and the tropical mean sea surface temperature
(Swanson, 2008, Vecchi et al., 2008). The author has argued that in the North Atlantic region, the
decadal variations of the sea surface temperature itself appear to be driven mostly by anthropogenic
changes in greenhouse gases and aerosols (Mann and Emanuel, 2006, Emanuel, 2008). Other studies
hold attribution of past changes in tropical cyclone activity to anthropogenic climate change to be

equivocal (Knutson et al., 2010).

Quite a few attempts have been made to use global climate models to make projections of the
response of tropical cyclones to global warming. One method simply detects explicitly simulated storms

in the models and notes how their levels of activity change with climate. This approach has been taken
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by numerous groups (e.g. Bengtsson et al., 1996, Sugi et al., 2002, Oouchi et al., 2006, Yoshimura et al.,
2006, Bengtsson et al., 2007) and is becoming more popular as the horizontal resolution of global
climate models improves. But even horizontal grid spacing as low as 20 km (Oouchi et al., 2006) cannot
resolve the critical eyewall region of the cyclones, and invariably the maximum wind speed of simulated
storms is truncated at relatively low values by the lack of horizontal resolution (Zhao et al., 2009).
Recent work by Rotunno et al. (2009) suggests that horizontal grid spacing of less than 1 km is needed to
properly resolve intense storms. A second approach to the problem is to use statistical relationships
between tropical cyclones and large-scale predictors to estimate tropical cyclone activity as a function of
variables that are resolved by climate models (e.g. Camargo et al., 2007a, Camargo et al., 2007b). One
potential drawback of this approach is that the statistics are trained largely on natural variability, much
of which is regional; it is not clear that such indices will perform well when applied to global climate
change. Another approach to quantifying the relationship between climate and tropical cyclone activity
is to “downscale” tropical cyclone activity from reanalysis or climate model data sets, as pioneered by
Knutson et al. (2007) and Emanuel et al. (2008). Such techniques involve running high-resolution,
detailed models capable of resolving tropical cyclones, using boundary conditions supplied by reanalysis
or climate model data sets. This combines the advantage of relatively robust estimates of large-scale
conditions by the reanalyses or climate models with the high fidelity simulation of tropical cyclones by
the embedded high-resolution models. As shown by Knutson et al. (2007) and Emanuel et al. (2008),
these techniques are remarkably successful in reproducing observed tropical cyclone climatology in the
period 1980-2006, particularly in the North Atlantic region, when driven by NCAR-NCEP reanalysis data
(Kalnay and co-authors, 1996). A recent comparison between storms produced explicitly in a high-
resolution global simulation and those downscaled from the same global model (Emanuel et al., 2010)

confirms that even at grid spacing of 14 km, global models truncate the important high-intensity end of
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the spectrum of tropical cyclones, and reveals substantial differences between the explicit and

downscaled storm activity.

The general conclusion from all of these studies is that while the global frequency of tropical
cyclones is likely to diminish, the frequency of high-intensity events will probably increase as the planet
continues to warm (Knutson et al., 2010). Since most wind-related damage is owing to high intensity
events, this would imply an increase in wind damage. On the other hand, there is large regional and
model-to-model variability in projections of climate change effects on tropical cyclones, so confidence in
any regional projections must be correspondingly low. For the North Atlantic, a downscaling of a set of
global climate model projections shows that five out of seven of the models predict substantial
increases in power dissipation over the 21* century (Emanuel et al., 2008), while a recent downscaling
using a comprehensive tropical cyclone model run on a 9-km mesh shows a near doubling of the
frequency of high intensity events (Bender et al., 2010). Thus the weight of current evidence suggests a
possibly substantial increase in damaging Atlantic hurricanes over the current century, though

uncertainty remains large.

While basin-wide metrics of tropical cyclone activity show statistically robust changes in the
aforementioned model-based projections and may already be evident in observations, there is little
evidence for a trend in tropical cyclone-related damage in the U.S (Pielke et al., 2008). This is not
surprising, as most wind-related damage is done by tropical cyclones that happen to be at high intensity
at the time they make landfall. This is a small subset of all storms over a relatively small fraction of their
typical life spans, thus the statistical base of potentially damaging events is small compared to that of
the basin-wide set of storms. These findings beg the question of how long it would take for any climate
change signal to emerge from background natural variability in damage statistics. This question was

addressed recently by Crompton et al. (2011), who concluded that it will take between 120 and 550
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years for such a signal to emerge in U.S. tropical cyclone losses. They arrive at their findings using a
relationship between normalized losses and Saffir-Simpson category derived from past events, and
applying that relationship to projected changes in Atlantic storm activity assuming that fractional
changes in the frequency of landfalling events in each category are the same as that of all storms in the
North Atlantic. Thus the technique cannot account for possible changes in the tracks of storms, which
may change the fraction of all events that make landfall as well as the specific locations of landfall.
Moreover, quantization of storms into only five categories, with most of the damage being done by
storms of the highest three categories, may alter the signal because it misses changes within categories.
(For example, an increase of intensity within category 5, which is open-ended, would presumably cause
increased damage even if the number of landfalling category 5 storms remained constant.) These
limitations motivate the present study, which applies somewhat different methods to the problem, as

described in the next section.

2. Method

Here we apply the tropical cyclone downscaling technique of Emanuel et al. (2008). Briefly, this
method embeds a specialized, atmosphere-ocean coupled tropical intensity model in the large-scale
atmosphere-ocean environment represented by the global climate model data. The tropical cyclone
model is initialized from weak, warm-core vortices seeded randomly in space and time, and whose
movement is determined with a beta-and-advection model driven by the flows derived from the climate
model daily wind fields. The thermodynamic state used by the intensity model is derived from monthly
mean climate model data together with current climatological estimates of ocean mixed layer depths
and sub-mixed layer thermal stratification; these ocean parameters are held fixed at their current
climatological values. Wind shear, used as input to the intensity model, is likewise derived from the

climate model wind fields. In practice, a large proportion of the initial seeds fail to amplify to at least



126  tropical storm strength and are discarded; the survivors are regarded as constituting an estimate of the

127  tropical cyclone climatology for the given climate state.

128 We apply this method to each of four climate models, applying enough seeds to produce 5000
129 U.S. landfalling storms in each case. The models are the CNRM-CM3 model of the Centre National de
130 Recherches Météorologiques, Météo-France; the ECHAMS5 model of the Max Planck Institution; the
131 GFDL-CM2.0 model of the NOAA Geophysical Fluids Dynamics Laboratory; and the MIROC 3.2 model of
132 the CCSR/NIES/FRCGC, Japan. We chose these four models from the set of seven models used by

133 Emanuel et al. (2008) which were in turn selected based on the availability of model output needed by
134  the downscaling technique; the four used here are broadly representative of the larger set of seven. We
135 apply the downscaling to simulations of the 20" century climate, using model output for the period
136 1981-2000, and to simulations of a warming climate under IPCC scenario SRES Alb, using model output
137  from the period 2081-2100. We use these synthetic events to construct 1000 stationary time series of
138 100 years length each, representing the climate averaged over 1981-2000 and over 2081-2100,

139 respectively. We construct the time series by randomly drawing, each year, from a Poisson distribution
140 based on the overall annual frequency of events in the set. The 1000-member ensemble is created by
141 repeating the process using different random draws from the Poisson distribution each year. Thus we
142 have 1000 100-year time stationary series for each of four climate models for each of two time frames.
143  As detailed below, we will use these time series to create 1000 100-year time series of damage in an
144  evolving climate by linearly combining the two stationary time series sets with a weighting that varies
145 linearly in time.

146 We note here that the intent is to distinguish climate change-induced trends from background
147 short-term random variability. We do not attempt to account for other sources of systematic climate
148 change, such as changing solar or volcanic activity, or long-period natural variability, such as the Atlantic

149 Multidecadal Oscillation (AMO); in this respect we use the same assumptions as did Crompton et al.
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(2011). We simply note that detecting any signal of anthropogenic climate change, not just one that
might be present in tropical cyclone statistics, requires one to account for other forced changes, and
that long-period natural variability, such as the AMO, cannot meaningfully be considered noise in this
context. If it exists and is important, its influence can, in principle, be quantified and accounted for; if it
cannot be quantified then one must give up on any exercise in climate change attribution on these time

scales.

Next, we allow the simulated storms to interact with a portfolio of insured property: the
Industry Exposure Database, produced by Risk Management Solutions Inc'. This consists of estimates of
total insured values for each zip code and county in the U.S. and for each postcode in Europe, using
sampled company premium information, census demographics and economics data, building square
footage data, and representative policy terms and conditions. These total insured values and other
variables are then aggregated into 100 zones distributed along the U.S. Gulf and east coasts, whose
locations are shown in Figure 12. These locations represent roughly the population-weighted
geographical centers of the zones. For simplicity, we model the damage in a given zone according to the
wind experienced at the position of the zone center. For each tropical cyclone event, we use a wind
damage function, described presently, to estimate the fractional loss of value at in each zone, and
multiply this by the total insured value of property in that zone. This gives an estimate of the total
amount of damage in U.S dollars caused by each event in each zone; the total insured damage from an
event is then the sum of this quantity over all zones. A drawback of this approach is that aggregating the
building values into zones represented by points will make the damage more volatile than it should be,

as some strong storms will pass between the zone centers and do little damage there, whereas in reality

! http://www.rms.com/Catastrophe/Models/us industry exposure.asp
? The original data is proprietary, and this aggregation was done by the provider to allow it to be used for the
present purpose.
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some of the insured property between zone centers will experience high winds. This increased volatility
will decrease the climate signal-to-noise ratio and make the damage probability density functions

broader than they ought to be.

Property damage from wind storms is observed to increase quite rapidly with wind speed.
Empirical studies relating wind to damage suggest a high power-law dependence of damage on wind
speed (Pielke, 2007) . For example, Nordhaus (2010) estimates that damage varies as the ninth power of
wind speed for wind damage in the U.S. In reality, most structures in the U.S. and many other countries
are built to withstand frequently encountered winds; it is highly unlikely, for example, that a wind of 20
knots would do any damage at all. Thus we consider a damage function that produces positive values
only for winds speeds in excess of a specified threshold. On physical grounds, we expect that damage
should vary as the cube of the wind speed over a threshold value. Finally, we require that the fraction of
the property damaged approach unity at very high wind speeds; in any event, we cannot allow it to

exceed unity. A plausible function that meets these requirements is

V3

F= 1+nv3’ W

where f is the fraction of the property value lost and

_ MAX[(V —vmsh),o]

Vn
Vhalf _Vthresh

with V' the wind speed, V., is the wind speed at and below which no damage occurs, and V, is the

wind speed at which half the property value is lost. This function is plotted in Figure 2, for

Vinresn = 90 Kts and two values of V, ;. These functions are highly idealized; in reality, property damage

depends on much more than the peak wind speed experienced during a storm; for example, the
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direction of the wind, its degree of gustiness, and the duration of damaging winds all influence the
amount of damage. Also, we do not consider damage from freshwater flooding or storm surge, though
the latter is, to some extent, also a nonlinear function of wind speed. The damage functions illustrated

in Figure 2 can be compared to damage functions derived from theory and from insurance claims data

as reviewed by Watson and Johnson (2004). By varying V, , we will explore the sensitivity of the

results to the damage function.

Using this damage function and the property values from the Industry Exposure Database in
conjunction with the two synthetic tropical cyclone events sets for each of the four models, we derive
1000 100-year time series of U.S insured property damage for each model and for each of the two
climates considered. Then, for each ensemble member, we blend the two 100-year time series
representing the two climates into a single time series by linearly combining the two damage amounts
assuming that the transition from one climate to the other occurs linearly over 100 years; thus the
damage in each year is a weighted average of the damage from each climate state, with the weight
varying linearly with time. This results in 1000 100-year time series for each of the 4 models, each
representing a transitioning climate. We use these time series to evaluate the emergence of global
warming signals. As in the work of Crompton et al. (2011), we assume that the noise against which the
global warming signal is measured is random variability on time scales ranging up to a few years
(including, for example, ENSO-related variability) but not natural multidecadal variability. We also
consider that changes in damage owing to changing distributions of property and property value are

quantifiable after-the-fact and thus do not constitute noise in the system.

3. Results

Figure 3 shows property damage each year for a single ensemble member of the GFDL 20™ century

climate simulation, using the damage function (1) with V,_, =150 kts . As expected, damage is highly

10
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volatile, ranging from a few million to 275 million dollars. Figure 4 again shows a single randomly chosen
ensemble member of property damage but for the blended time series in which the climate state
transitions linearly from its late 20™ century condition to its late 21 century condition under IPCC
emissions scenario Alb. In this particular case, an upward trend in damage seems evident, though the
trend is not large compared to the interannual variance. Figure 5 presents a different metric: damage
accumulated over every year from 2000 to the year on the x axis, for a single ensemble member in each
of the constant 20" century climate and the transitioning climate. (The standard deviations up and
down from the ensemble means are also shown for comparison.) Accumulating the damage has the
effect of smoothing over interannual variations and the difference in the trends becomes clear after a

few decades.

The probability densities of damage, derived using the 1000-member ensemble of accumulated
damage at various times, are shown for all four models in Figure 6. In most cases, the probability
densities of the warming climate are distinct from those of the current climate by 100 years out. Note
that in the case of the MIROC model, the probability densities shift toward lower damage amounts as

the climate warms.

We also calculate the time scale over which the global warming signal may be considered to have
emerged in time series of damage. Following Bender et al. (2010) and Crompton et al. (2011), we define
the emergence time scale as that time after which fewer than 5% of the linear regression slopes of
damage up to that time, amongst the 1000-member ensemble, are negative. In the case of the GFDL
CM2.0-derived damage time series, this occurs at 40 years. In the other cases, it does not occur within
the 100-year time frame of the time series. In these cases, we artificially extend the time series of each
of the 1000-members of the ensemble by extrapolating the linear damage trend forward another 100

years. Figure 7 shows an example of the fraction of regression slopes that are negative, as a function of

11
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the length of time over which the regression is carried out. It can be shown that if the interannual
variance of property damage (the “noise”) is Gaussian, and the underlying trend is linear, then the
fraction of negative slopes as a function of the length of the series should be a cumulative distribution
function (cdf) formed from a normal distribution; for this reason we also show a fit of such a cdf to the
data. With the time series extrapolated out to 200 years, the global warming signal in property damage
emerges from background noise in 113 years for the CNRM model and 170 years for the ECHAM 5
model. The negative signal present in the MIROC model does not emerge within the 200-year time

frame.

How sensitive are these results to the damage function used? As a first step in addressing this issue,

we repeated the analysis using V|, =110 ktSin (1), as illustrated by the dashed curve in Figure 2.

Figure 8 shows the result for the CNRM simulation; this should be compared to Figure 6¢c. Aside from the
obvious increase in the magnitude of the damage, the shape of the probability distributions and their
separation with climate change is hardly distinguishable. The emergence time scale remains identical at

113 years. This lack of sensitivity to details of the damage function pertains to the other models as well.

4. Discussion

For the three global climate models that produce increasing damage in the U.S., the time scales for
trends in damage to emerge from background noise range from 40 to 170 years, somewhat shorter than
those reported in Crompton et al. (2011). There are several potential reasons for this, including our use
of a different suite of global models and that fact that Crompton et al. (2011) assumed a proportionality
between basin-wide and landfalling activity and estimated changes in damages by changes in the

distribution of events within the limited 5-bin Saffir-Simpson categorization.
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We caution that the question of when a statistically robust trend can be detected in damage time
series should not be confused with the question of when climate-induced changes in damage become a
significant consideration. Policies and other actions that address U.S. hurricane damage on the time
scale of decades would surely distinguish the probabilistic outcome represented by, say, the 25 year
probability density of a warming climate given in Figure 6a from that of the steady climate at the same
lead time. Thus if climate change effects are anticipated, or detected in basin-wide storm statistics,
sensible policy decisions should depend on the projected overall shift in the probability of damage
rather than on a high-threshold criterion for trend emergence. This is particularly important in view of
evidence that suggests that an anthropogenic climate change signal has already emerged in Atlantic

hurricane records (Mann and Emanuel, 2006).

A number of caveats apply to the present analysis. First, we have held constant the distribution and
value of insured property, not accounting for changing demographics or adaptation strategies that
might reduce vulnerability to damage. We do not consider the effects of rising sea-level, which would
increase vulnerability to damage by storm surges. Nor have we taken into account any changing
incidence of freshwater flooding stemming from tropical cyclone rainfall. We have relied for this study
on a single projected emissions scenario, SRES Alb, and the results obviously depend rather sensitively
on the global climate model used to drive the downscaling. At the same time, the downscaling method
itself is, no doubt, an imperfect measure of the tropical cyclone climatology that would attend a

particular climate state.

5. Summary

We used a synthetic tropical cyclone generator to produce 1000 artificial time series of U.S.
landfalling Atlantic hurricanes, each of 100 years length for the climate of the late 20" century and for

the late 21% century, using four climate models. Some of the tropical cyclones affect properties
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contained in a portfolio of insured property, and a damage function was used to predict how much
damage each storm would do to these properties. This results in two 1000-member ensembles of 100-
year times series of property damage for each of the four models: one for the climate of the late 20"
century and one for the climate of the late 21* century under IPCC emissions scenario SRES Alb. These
two were blended together, assuming a linear variation of climate over the 21* century, to create time
series of property damage representing a transitioning climate. From these times series one can make
inferences concerning the effect of anthropogenic climate change on U.S. hurricane wind-related
property damage that also account for the high level of background noise inherent in the volatile

statistics of intense landfalling tropical cyclones.

For three of the four climate models downscaled, damages increase as a result of projected global
warming, but the fourth model shows a small decrease of damage with time. For the three climate
models that have increasing damage, the climate change signal emerges from background variability,
according to a recently published criterion, on time scales of 40, 113, and 170 years, respectively; the
decreasing signal of the fourth model is not clearly distinguishable from noise even after 200 years. On
the other hand, the probability distributions of damage in a warming climate become distinguished
from those of background climate in as little as 25 years, thus we argue that those concerned with
future U.S. country-wide tropical cyclone damage on decadal time scales would be well advised to

include climate change as a consideration.
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Figure Captions

Figure 1: Locations of zone centers (blue dots) used for estimating hurricane damage.

Figure 2: Fraction of property value lost as a function of winds speed using equation (1) with

Viresy =50 kts and V, . =150kts (solid) and V,, =110 kts (dashed).

alf

Figure 3: Property damage ($ millions U.S.) each year for a single ensemble member of the GFDL CM2.0

model with climate held fixed at its 1981-2000 mean condition.

Figure 4: Same a Figure 3 but for a climate transitioning linearly from its state at the end of the 20"

century to its state at the end of the 21* century.

Figure 5: Accumulated damage from 2000 to the year on the abscissa, from the same two ensemble
members presented respectively in Figures 3 and 4. The error bars shows one standard deviation up

and down from the ensemble mean.

Figure 6: Probability density of accumulated property damage, across the 1000-member ensemble at
various times as indicated, for the GFDL CM2.0 model (a), The ECHAMS5 model (b), the CNRM model (c)
and the MIROC model (d). Blue curves indicate constant 20" century climate, while the red curves

shows results for the warming climate.

Figure 7: Percentage of ensembles members with negative linear regression slopes, as a function of the
ending time of the time series, for the CNRM damage projections (blue). The red curve represents a fit
to the data of a cumulative distribution function based on a normal distribution. The emergence time
scale is defined as the time after which negative slopes constitute less than 5% of the total; in this case,

this occurs in year 2113.
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392 Figure 8: Same as Figure 6¢ but using the damage function given by (1) using v, =110 kts -
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397 Figure 1: Locations of zone centers (blue dots) used for estimating hurricane damage.
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406 Figure 3: Property damage ($ millions U.S.) each year for a single ensemble member of the GFDL CM2.0 model with climate
407 held fixed at its 1981-2000 mean condition.

22



408

GFDL CM2.0 Transitioning Climate
450 T . T .

400

350

300

250

200

150

100

Property Damage (Millions of U.S.Dollars)

154
o

0
2000 2020 2040 2060 2080 2100

Year
409

410 Figure 4: Same a Figure 3 but for a climate transitioning linearly from its state at the end of the 20" century to its state at
411  the end of the 21%* century.
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425 Figure 7: Percentage of ensembles members with negative linear regression slopes, as a function of the ending time of
426 the time series, for the CNRM damage projections (blue). The red curve represents a fit to the data of a cumulative

427 distribution function based on a normal distribution. The emergence time scale is defined as the time after which negative
428 slopes constitute less than 5% of the total; in this case, this occurs in year 2113,
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