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ABSTRACT

Owing to its relative expense, radiative heating is often not calculated for every time step in numerical
simulations of the atmosphere. This is justified when the radiation field evolves slowly in comparison to the
atmospheric flow. However, when the effects of variable water vapor and clouds are taken into account, the
radiation field can change rapidly, and the finite time between calls to the radiation scheme can introduce a
destabilizing time lag. In the worst case, this lag gives rise to an exponential numerical instability with a growth
rate proportional to the time interval between radiative calculations. In less drastic circumstances, in which the
radiation would damp oscillations of the real system, numerical instability occurs when the time interval between
calls to the radiation scheme exceeds a critical value that depends on the Doppler-shifted natural oscillation
frequency and the radiative damping rate. It is shown that this type of instability occurs in a single-column
model as well as in an idealized general circulation model. The critical frequency at which the radiative heating
rate should be computed is found to depend on several factors, including the large-scale circulation and the
model resolution. Several potential remedies are discussed.

1. Introduction

The calculation of radiative transfer is often among
the most time-consuming tasks in numerical integrations
of atmospheric models. It has become common practice
to calculate radiative heating at intervals of many time
steps and, in some cases, to calculate it on a coarser
mesh than is used for the model’s dependent variables.
The radiative fluxes are then held fixed until the next
time step, or simple corrections are made at every time
step until the radiation is next calculated. For example,
in the current implementation of the weather forecast
model of the European Centre for Medium-Range Fore-
casts (ECMWF), the radiation scheme is invoked every
3 h. Subsequent to each call to the radiation scheme,
the shortwave fluxes are corrected at each time step
according to the cosine of the solar zenith angle, while
the longwave fluxes are held fixed in time until the next
call to the radiation scheme. The full radiation calcu-
lation is performed on a coarse grid and interpolated to
the standard grid using a cubic interpolation scheme
(Morcrette 2000).
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There is some evidence that the temporal resolution
of the radiative transfer can affect model fields. Mor-
crette (2000) showed, using the ECMWF model, that
while temporal resolution of radiation had little effect
on standard measures of forecast skill at 10 days, it had
noticeable effects on seasonal forecasts and, especially,
on model climate sensitivity. Charlock et al. (1988) not-
ed that climate simulations using the National Center
for Atmospheric Research Community Climate Model
(CCM), in which radiation is calculated every 12 h,
exhibit more variability of outgoing longwave radiation
than is evident in satellite-based measurements. A de-
tailed analysis of the effects of infrequent calculation
of radiation on integrations using a cloud-resolving cu-
mulus ensemble model was undertaken by Xu and Rand-
all (1995). They showed that increasing the time inter-
vals between calls to the radiation scheme leads to in-
creasing distortion in the cloud vertical velocities and
domain-averaged precipitation.

In this paper, the sensitivity of numerical integrations
to the frequency with which radiation is calculated is
further explored using both simple linear models and a
single-column model with sophisticated convection and
radiation subroutines. In the following section, we use
simple linear models to investigate numerical instabil-
ities related to lagged radiation and to examine the char-
acter of the distortions that occur even in the stable
regime, when the time interval between application of
radiative damping is not very subcritical. The stability
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criteria are tested and the effects of infrequent calcu-
lation of radiation are further explored using the single-
column model in section 3, and in a general circulation
model in section 4. Possible remedies are described in
section 5.

2. Linear models and stability criteria

a. General case

Here we consider a linear system containing neutral
oscillations, in which the addition of ‘‘radiation’’ chang-
es the frequency of the oscillations or introduces some
damping. This system is described by the coupled equa-
tions

dM
5 2T, (1)

dt

dT
25 N M 1 R, (2)

dt

R 5 aM 2 bT , (3)n n

where N is the oscillation frequency in the absence of
radiation (R), and Mn and Tn are the values of M and T
at the discrete time step n. Although this is not meant
to be a physical system, we have in mind an atmosphere
in which the convective mass flux (M) is reduced by
increased the upper-tropospheric temperature (T) and
the temperature is in turn increased by convective mass
flux and by radiation (R). The constants a and b control
the amplitude and phase of the radiation and result either
in an increased frequency (for a . 0) or in a damping
(for b . 0) of the oscillation.

When the radiation given by (3) is evaluated contin-
uously in time, then the solution of (1)–(3) is

2b t /2M 5 e (M cosvt 1 x sinvt), (4)0

1
2b t /2T 5 e T cosvt 1 M 1 ax sinvt , (5)0 01 2[ ]2

where

2b bM T0 02v 5 N 1 a 2 and x 5 2 .! 4 2v v

This system behaves as a damped oscillator as long as
N 2 1 a 2 b2/4 . 0.

Now consider the system in which R is evaluated at
discrete time steps, as given by (3). Eliminating T be-
tween (1) and (2), and using (3), gives

2d M dM
21 N M 5 2aM 2 b (6)n2 1 2dt dt

n

in which the right-hand side is held constant over each
time interval between t 5 nt and t 5 (n 1 1)t. The
solution of (6) valid at time t where t is between time
t 5 nt and time t 5 (n 1 1)t is

M(t) 5 M [2d 1 (1 1 d) cosN(t 2 nt)]n

1 {2«[1 2 cosN(t 2 nt)]

1 dM
1 sinN(t 2 nt)} , (7)1 2N dt

n

where d 5 a/N 2 and « 5 b/N. Here t is the time interval
between two calculations of the radiative heating rates.
At t 5 (n 1 1)t this becomes

M 5 [2d 1 (1 1 d) cosNt]Mn11 n

1 dM
1 [2«(1 2 cosNt) 1 sinNt] . (8)1 2N dt

n

If we differentiate (7) with time and evaluate the result
at t 5 (n 1 1)t, we find that

dM
5 [2(1 1 d) sinNt]NMn1 2dt

n11

dM
1 [2« sinNt 1 cosNt] . (9)1 2dt

n

Now, combining (8) and (9) gives the difference equa-
tion

M 1 [d 2 (2 1 d) cosNt 1 « sinNt]Mn12 n11

1 [1 1 d(1 2 cosNt) 2 « sinNt]M 5 0. (10)n

The solution of (10) has the general form
n nM 5 c r 1 c r ,n 1 1 2 2 (11)

where c1 and c2 are constants determined by the initial
condition and r1 and r2 are given by

22b 6 Ïb 2 4c
r 5 , (12)

2

with b 5 d 2 (2 1 d) cosNt 1 « sinNt and c 5 1 1
d(1 2 cosNt) 2 b sinNt.

According to (11), M will amplify if | r1 | . 1
and/or | r2 | . 1. There are thus four possibilities, ac-
cording to whether or not each root is greater than 1 or
less than 21, also taking into account the possibility
that the argument of the square root is negative.

b. Undamped oscillator

For b 5 « 5 0, the continuous system is a linear
oscillator in which the radiation modifies the natural
frequency of the oscillator. When radiation acts to in-
crease the natural frequency (a . 0), the discretized
system is unstable for all values of t that are not an
integer multiple of 2p/N. In the limit of small t, the
leading terms in (12) are

1/2 2 2 3 3r 5 1 6 id Nt 2 d/4 N t 1 O(N t ). (13)

The norm is
2 2 3 3| r | 5 1 1 d/4 N t 1 O(N t ). (14)
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FIG. 1. Critical value of Nt between radiation calls as function of d (horizontal axis) and «
(vertical axis).

In the limit of small t, the system (1)–(3) exhibits a
growing oscillation. The frequency converges toward
the frequency of the continuous problem (1 1 d)1/2N,
but the solutions have an equivalent growth rate of ¼at.

When the radiation acts to increase the frequency of
the oscillator in the continuous case (a . 0), the neutral
oscillator is destabilized for any value of the time in-
terval over which the radiation is updated, with the ex-
ception of a set of special values of Nt. Conversely,
when the radiation acts to reduce the frequency of the
internal oscillator in the continuous case, infrequent cal-
culations of the radiation stabilize the neutral oscillator.

c. Damped oscillator

Suppose instead that the radiation tends to damp tem-
perature perturbations (taking a 5 0 and b . 0), so
that the continuous system is a linear damped oscillator.
The solutions of the discretized system are given by
(11), with

«
r 5 cos(Nt) 2 sin(Nt)

2

2«
6 sin(Nt) «[1 2 cos(Nt)] 1 sin(Nt) 2 1 .5 1 26! 4

(15)

A sufficient condition for instability, ensuring that | r |
. 1, is

2 N
21t . t 5 tan . (16)c 1 2N b

Here we will refer to tc as the critical value for the time
interval, albeit it is only as sufficient value for the in-
stability. Several limiting cases are of interest. First, in
the limit of the vanishing oscillation frequency, when
the exact solution (1)–(3) is simple exponential decay,
(16) gives

2
lim t 5 , (17)c bN→0

showing that even in the absence of any oscillations, the
interval between calls to the radiation scheme must not
exceed twice the radiative damping time scale. Second, in
the limit of a natural oscillation period much shorter than
the radiative damping time scale, we have

p
lim t 5 . (18)c N«→0

This implies that the radiation scheme must be called
at intervals no longer than half the period of the (fastest)
natural oscillation of the system in this limit. In most
of the atmospheric models of which the authors are
aware, the radiative time scales are much longer than
the relevant dynamical time scales, so that, in practice,
the limit given by (18) is usually approached.

Figure 1 shows the critical value of Ntc at which the
system (1)–(3) first becomes unstable as a function of
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the two nondimensional parameters d and «. We observe
that Ntc is smaller than p, indicating that (18) yields
only an upper bound for tc and does not guarantee sta-
bility. In agreement with the discussion in section 2b,
the worse case occurs for an accelerated oscillator,
which is unstable for any value of the time interval
between radiations.

These examples illustrate how infrequent radiation
calls can destabilize an internal oscillator. In a linear
oscillator, the time tendency of a given variable is out
of phase with this variable. By freezing the ‘‘radiative
heating’’ between the radiation calls, one introduces a
time lag in the heating rate. When this time lag results
in a positive correlation between ‘‘temperature’’ and
radiative heating, the oscillator becomes unstable. For
the accelerated oscillator, the radiation is out of phase
with the temperature in the continuous case: a small
time lag is sufficient to produce a positive correlation
between the radiative forcing and the temperature. In
contrast, for the damped oscillator, the perturbation is
in the opposite phase with the temperature in a contin-
uous case, and the system is destabilized only for a large
enough time lag, approximately half the natural period
of the oscillator. This also indicates that the destabili-
zation is not owing to the discrete aspect of the com-
putation of the radiative heating rates. Indeed, it is well
known that a linear oscillator is also destabilized by the
introduction of a small time lag in the restoring force.

3. Single-column model

To explore the effects of infrequent calculation of
radiation in a more realistic setting, we run a single-
column model from an arbitrary initial state and follow
its evolution toward radiative–convective equilibrium.
The model uses the convective parameterization of
Emanuel and Zivkovic-Rothman (1999) and the repre-
sentation of clouds developed by Bony and Emanuel
(2001). Shortwave radiative fluxes are calculated using
the scheme developed by Fouquart and Bonnel (1980),
while Morcrette (1991) is used for the longwave fluxes.
The clouds interact fully with the radiation. The model
levels are spaced at 25-hPa intervals in pressure up to
100 hPa, with nine additional levels above that. The
surface is represented by a 5-m-deep slab of water
whose temperature is calculated from the surface energy
balance. The model is driven by annual average solar
radiation at 388 latitude. For the control experiments
described in this section, the radiative heating of both
the surface and the atmosphere is calculated at even
intervals in time, t, and held fixed between calls to the
radiation scheme. Although no internal gravity oscil-
lations are possible in a single-column model, the con-
vective mass flux responds to changes in environmental
temperature in a manner similar to that given by (1),
while the environmental temperature responds to con-
vective mass flux as in (2). Of course, the radiation
scheme is not a simple Newtonian relaxation, and the

actual behavior of the convection scheme is far more
complex than is represented by (1)–(3).

Figure 2 shows the behavior of the precipitation evo-
lution for various values of t. We regard the solution
for t 5 1 h as essentially the same as if radiation were
called every time step; in fact, there is very little change
when t increases from 1 to 4 h. Note that the initial
adjustment consists of a strongly damped oscillation
with a period of around 1 day. The convective adjust-
ment itself is strongly damped, so it is not possible to
estimate a radiative relaxation rate from Fig. 2, though
it is likely to be much larger than 1 day. Application of
(16) would suggest that integration will be stable if t
, 4–6 h.

The system has not completely reached equilibrium
by the end of the integration. The small, sudden jumps
in the precipitation rate evident in Fig. 2a occur when
convection penetrates to a higher model level.

Comparing Figs. 2a and 2b shows a change in the
character of the solution between t 5 4 h and t 5 8 h,
and when t 5 12 h, there are strong, somewhat irregular,
oscillations with a period of around 3 days. In a sim-
ulation with t 5 24 h (Fig. 2c), very high frequency
fluctuations occur, as well as a lower-frequency mod-
ulation with a period of around 5 days.

Though nonlinearities in the model prevent instabil-
ities from becoming catastrophic, there is clear evidence
that the model is destabilized for t greater than some
critical value between 4 and 8 h. This is true even though
in the single-column model there is neither wave dy-
namics nor advection. Thus, these simulations are likely
to yield an optimistic value for the critical time interval
between calls to the radiation routine.

The noisy character of the numerical simulations
when t is too large may help explain certain disparities
between model simulations and measurements. For ex-
ample, it is possible that the larger-than-observed var-
iance of OLR noted by Charlock et al. (1988) may be
attributable, at least in part, to the fact that radiation
was calculated only every 12 h.

4. General circulation models

The interplay between large-scale flow, convection,
and radiation can produce a wide variety of oscillatory
behaviors that are not well captured in a single-column
model. The effects of the frequency of the radiation calls
are now explored in the context of an idealized general
circulation model (GCM). This model uses the same
physical parameterization as the single-column model
discussed above, while the dynamical core is based on
the Massachusetts Institute of Technology general cir-
culation model MITgcm (Marshall et al. 1997). For sim-
plicity, we consider only a two-dimensional (height and
longitude), horizontally periodic domain in the absence
of rotation. There are 40 levels, with a resolution of 25
mb, and 60 grid points in the longitudinal direction with
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FIG. 2. Evolution with time of the precipitation rate in a single-
column model, for t 5 (a) 1, 2, and 4 h, (b) 8 and 12 h, and (c) 24
h. The 1-h solution is also shown in (c) for comparison.

a 1.58 resolution. The sea surface temperature is held
constant at 300 K during the integrations.

a. Influence of the large-scale flow

In this model, cloud–radiative feedbacks generate lo-
calized precipitation bands that move with the mean
flow, as shown in Fig. 3. These bands are present even
when radiative heating rates are computed every time
step. Infrequent radiation calls generate a high-frequen-
cy oscillation in the precipitation rate as shown in Fig.
4. While this behavior is similar to that of the single-
column model, the oscillation is present even when the
radiation field is computed every 30 min, and only dis-
appears when the radiative heating rates are computed
at every time step. For an interval of 2 h between ra-
diation calls, the amplitude of the oscillation is about
20% of the mean precipitation, even though a 2-h in-
terval is sufficient to ensure stability in the single-col-
umn experiment. The stability requirement for the ra-
diation frequency depends on the large-scale circulation
patterns, with regions of enhanced convection being
more prone to the instability. While single-column tests
can be indicative, they do not ensure the stability of a
GCM.

A troubling feature of these simulations lies in that
the cloud–radiative instability has a strong impact on
the mean state of the atmosphere. Figure 5 shows the
total outgoing longwave radiation in the equatorial band
for various frequencies of radiation calls. The mean out-
going longwave radiation differs by about 15% between
the run with 6-h intervals between radiation calls and
the runs with more frequent updates. This decrease in
OLR is due to an increase in upper-level cloudiness: the
strong oscillations in the run with a 6-h interval produce
thick cirrus clouds at the tropopause that greatly enhance
the trapping of infrared radiation.

b. Doppler shifting and horizontal resolution

A second issue is to determine the extent to which
the numerical mode can be affected by the horizontal
resolution of the model, in a similar way as the dynam-
ical time step in a GCM is usually limited by horizontal
resolution and by the Courant–Friedrichs–Lewy crite-
rion. Consider a modification to (1)–(3) that allows for
horizontal advection by some constant background flow
U. Then the partial time derivatives in (1) and (2) are
replaced by a Lagrangian derivative:

] ]
1 U ,

]t ]x

where x is a coordinate in the direction of the mean
flow U. Assuming sinusoidal spatial structure with
wavenumber k, it can be shown by a procedure similar
to that followed in section 2 that the result is the same
except replacing N by N 6 kU. Since the growth rate
increases with the effective frequency, we will take the
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FIG. 3. Precipitation field after 20 days for a radiation frequency of 6 (solid line) and 2 h
(dashed line).

FIG. 4. Evolution of the precipitation field at one location, showing the precipitation rate for a time
interval between radiation calls of 6 h (solid line), 2 h (dashed line), and 30 min (dashed–dotted line).

greater of these two roots. Moreover, the highest wave-
number resolvable using a finite mesh is p/Dx, where
Dx is the grid length in the x direction. Thus, using the
definition

pU
V [ N 1 , (19)

Dx

the discussion of section 2 applies as well, with N re-
placed by V. We note, in particular, that when V k a
and taking N 5 0, we get

Dx
t , . (20)

U

This is the same criterion as that derived by Xu and
Randall (1995), although the latter divided this by 2 to
further enforce stability. This is a wise precaution as
using a value of t close to its critical value can distort
high-frequency phenomena and introduce spurious,
slowly decaying low-frequency modes. It should also
be remembered that, although (27) ensures stability
when the radiation acts as a damping terms on the os-
cillation, the undamped oscillator described in section
2a is destabilized even for the small time intervals be-
tween radiation calls.

This destabilization mechanism is tested in our nu-
merical model by reducing the horizontal resolution to
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FIG. 5. Time evolution of the zonal mean OLR for time intervals between radiation calls of 6 h (solid line),
2 h (dashed line), 30 min (dashed–dotted line), and 450 s (dotted line).

0.258 and imposing a uniform zonal wind of 5 m s21.
This zonal wind is kept constant in time and space. In
Fig. 6, we compare the results with a time interval be-
tween radiation calls of 1 and 4 h. While the precipi-
tation rate is uniform in the 1-h case, it exhibits high
wavenumber variations in the 4-h case. In addition, in
the Galilean equivalent case in which there is no zonal
wind but the surface moves at 5 m s21 relative to the
atmosphere, the high-frequency oscillation disappears.
(Note that as radiative heating rates are not advected,
the Galilean invariance is lost because of the discreti-
zation of the radiation calls.)

c. Wave propagation

Wave propagation rather than horizontal advection is
usually the limiting factor constraining the time steps
in numerical models. Interactions between gravity
waves and the cloud field could potentially lead to un-
stable oscillations as a result of infrequent radiation
calls. If this is the case, the time interval between ra-
diation calls must be shorter than the grid size divided
by the propagation speed of a gravity wave c:

Dx
t , . (21)

c

As the propagation speed of the gravity waves c is
usually large in comparison to the horizontal wind (at
least in the tropical atmosphere), this yields a very
strong constraint on the frequency of the radiation
calls. However, it is possible that gravity waves might
remain stable even for values of t much larger than
this critical value. This might occur, for example, be-
cause the convection scheme acts to dampen the grav-
ity waves. Alternatively, the discussion in section 2
indicates that if the cloud–radiative feedbacks act to
slow down a gravity waves, then infrequent radiation
calls would not destabilize the waves.

In our idealized model, we did not find any definite
evidence for the existence of an unstable ‘‘cloud grav-
ity’’ wave. Standing oscillations similar to that dis-
cussed in section 4a are present and generate propa-
gating gravity waves. The amplitude of the localized
oscillations increases with increased resolution or
with longer time between radiation calls, but we did
not find any indications that the gravity waves them-
selves were destabilized. As this might be a fortunate
coincidence resulting from the specific combination
of convection and cloud schemes, one cannot rule out
that for other parameterizations interactions between
clouds, radiation, and gravity waves might be the lim-
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FIG. 6. Comparison between the precipitation field for a supercritical (solid line, t 5 2 h) and subcritical
(dashed line, t 5 30 min) frequency of radiation calls, for a uniform zonal wind of 25 m s21 and a grid
resolution of 0.258.

iting factor on the time interval between radiation
calls.

5. Remedies
In the presence of cloud–radiative feedbacks, the ra-

diation field cannot be treated as a slowly evolving com-
ponent of the atmosphere, as infrequent calculations of
the radiative heating rates can produce unstable nu-
merical modes. It is clear from (20) that as the grid
spacing of models becomes smaller and smaller, the
required frequency of calls to the radiation routine be-
comes ever greater. In the case of cloud-resolving mod-
els, such as cumulus ensemble models, the requirement
becomes very severe and is routinely violated in cu-
mulus ensemble integrations with interactive radiation,
as noted by Xu and Randall (1995), who also illustrated
the types of errors that can occur in these integrations.

When it is impractical to perform full radiative trans-
fer calculations with a frequency that satisfies (20), it
would be desirable to implement some procedure that
minimizes the problems that typically occur. We suggest
here two alternative methods to do so.

a. Extrapolation
The numerical instability arises because the infre-

quent radiation calls introduce a time lag between the

cloud field and its effects on radiation. One remedy to
reduce the instability is to extrapolate the cloud field to
half a radiation time interval later. In the linear model,
this corresponds to replacing (3) by

M 2 M T 2 Tn n21 n n21R 5 a M 1 2 b T 1 .n n1 2 1 22 2
(22)

The additional terms ½(Mn 2 Mn21) and ½(Tn 2 Tn21)
are the corrections resulting from a linear interpolation
of the radiative forcing at time t 5 (n 1 ½)t. Using
(22) instead of (3) reduces but does not eliminate the
growth rate. More sophisticated algorithms such as a
high-order Adams–Bashforth scheme (Durran 1999) can
also be implemented.

We also warn the reader against using an averaging
method in order to remove the instability. By averaging
the radiative heating rates, one might hope to damp the
high-frequency oscillations. However, in the present
case, this is a very counterproductive approach that can
lead to further destabilization of the lower frequencies.
Indeed, replacing (3) by

M 1 M T 1 Tn n21 n n21R 5 a 2 b (23)
2 2
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FIG. 7. Solution for the accelerated oscillator using the instantaneous value of the cloud field [Eq. (3); solid
line], the predicted value of the cloud field [Eq. (22); dashed line], and the average cloud field [Eq. (23);
dashed–dotted line].

is equivalent to interpolating the radiative forcing to
time t 5 (n 2 ½)t. This increases the lag between the
cloud field and radiation, and leads to a further desta-
bilization of the oscillator.

The relative effects of extrapolation and interpolation
on the linear oscillator are shown in Fig. 7. While the
extrapolation method does not remove the instability, it
significantly reduces the growth rate. In contrast, the
averaging approach results in a more unstable system.

An important drawback of the extrapolation schemes
is that they destabilize the high-frequency modes. Using
(22) or one of its higher-order equivalents can only im-
prove the simulations of oscillation with a period sig-
nificantly longer that the time between two radiations
calls. As the complex convective and radiative param-
eterizations used in the GCM can potentially generate
a wide variety of oscillatory behaviors, the extrapolation
method would only improve the quality of the simu-
lations if one can be sure that all the high-frequency
modes are strongly damped.

b. Reduced calculation of radiative heating

Perhaps the best way to deal with this problem is to
perform some reduced calculation of the radiation at

every time step, or at least frequently enough to satisfy
(20). Charlock et al. (1988) suggested that a simple,
linear calculation of longwave fluxes be performed in
between calls to the full radiation routine. In an earlier
incarnation of the ECMWF forecast model, pseudoem-
issivities were calculated each time the radiation scheme
was called, by dividing the longwave fluxes by sT 4 in
each layer; these pseudoemissivities were then multi-
plied by sT 4 at each subsequent time step to estimate
the longwave fluxes until the next call to the full ra-
diation scheme.

If a linear tangent of the full radiation scheme as well
as its adjoint are available, one could calculate the sen-
sitivity of radiative heating at each level within a grid
column to all the relevant dependent variables at all the
other model levels (and the surface) each time the ra-
diation scheme is called. These sensitivities could then
be multiplied by the departures of these dependent var-
iables from their values at the time the radiation scheme
was last called, at each subsequent time step (or every
few time steps) until the full radiation is next calculated.
As a crude test of such a procedure, we modify the
simple linear model described in section 2 to include a
simple nonlinearity. (The procedure described here
would exactly reproduce the full solution of the linear
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FIG. 8. Application of damping at each time step, based on linearization of the damping term at
each damping interval t, for t approximately equal to (a) its critical value and (b) twice that value.
The ‘‘exact’’ numerical solution is shown in both (a) and (b) for comparison.

model.) Namely, we modify (14) to include a nonlinear
damping term:

]T
25 N M 2 b |T |T, (24)

]t

where b is a constant. Thus the damping increases with
the magnitude of the perturbation. As before, we cal-
culate the full damping term at time intervals t, but at
the same time, we calculate the linear sensitivity of the
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FIG. 9. Same as in Fig. 8a but for a simulation in which the calculated linear sensitivity is
replaced by a constant value (0.05).

damping term to small perturbations. Denoting the
damping term in (24) by D,

]D
5 22b |T | .

]T

Thus, in addition to applying the constant value of
the full damping term over the entire interval nt # t ,
(n 1 1)t as before, we also add, at each time step, the
quantity

]D
(T 2 T ), (25)n]T

where Tn is the value of T at the time the full damping
term is calculated and ]D/]T is held fixed through the
time interval t.

An example of the application of this procedure is
shown in Fig. 8. The ‘‘exact’’ solution of (24) (from
numerical integration, applying the full damping term
at every time step) is shown together with an approx-
imate solution for two values of t; one approximately
equal to its critical value, and the second twice this
value. [An exact critical value cannot be derived ana-
lytically owing to the nonlinearity of (24). For both
values of t shown, the solution is highly unstable if (25)
is not applied.] Note that both the period and the am-
plitude of the oscillations are handled well by the pro-
cedure, though phase errors develop early in the inte-
grations. One must expect distortions of high-frequency
temperature-dependent oscillations if the radiation
scheme cannot resolve them, but at least the long-term

behavior is captured, and, at least in this case, no spu-
rious low-frequency oscillations occur.

Application of this procedure to a full radiation code
would result in a matrix of sensitivities in each column
at each time the radiation scheme is invoked. This matrix
would then be multiplied by the departures of the rel-
evant model variables (e.g., temperature, specific hu-
midity, and cloud variables) from their values at the
time the radiation scheme was last called, at each model
level. Owing to the lack of an adjoint code, we have
not attempted to implement this in the single-column
model discussed in section 3.

An alternative to calculating the sensitivities every
time the radiation is calculated might be to use a cli-
matological matrix of sensitivities. We test this idea first
in the simple model described by (1) and (24), and then
in the single-column model. For the simple model, we
just replace ]D/]T in (25) by a constant, 2g. Otherwise,
the procedure is the same as before: the full damping
term is calculated every t time units and the linear
damping given by (25) is applied at each successive
time step. The result, for g 5 0.05 and t equal to its
(nominal) critical value, is compared to the ‘‘exact’’
solution in Fig. 9. The oscillatory behavior is distorted
compared to the case when the sensitivities are recal-
culated (Fig. 8a), and the decay to equilibrium is too
quick, but the instability that would occur without the
additional damping term is eliminated.

For the single-column model, we simply added a
Newtonian damping term at each time step that relaxes
the temperature and specific humidity back to their val-
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FIG. 10. Evolution with time of the precipitation rate in the single-column model, as in Fig. 2,
but with linear damping applied according to (25) with a constant damping coefficient. Each curve
is for a different value of t, shown in the upper right of each panel.

ues at the last time the full radiation scheme was called,
very similar to what was done in the case of the simple
model just described. In the first set of experiments, this
damping time scale was fixed at 1.5 h. The results are
shown in Fig. 10, as a function of the time interval

between calls to the radiation routine. Compared to the
case where the linear damping is not applied (Fig. 2),
there is little improvement and perhaps some degrada-
tion of the simulations when t is 4 h or less. When t
is 8, 12, or 24 h, the character of the quasi-steady portion
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FIG. 11. As in Fig. 10 but for simulations in which the damping coefficient is inversely
proportional to t.

of the time integration is much improved, but at the
expense of serious distortions of the higher-frequency
variability at the beginning of the integration. In par-
ticular, the higher frequencies are damped, as one would
expect, though small perturbations occur at the times
the full radiation scheme is invoked.

Figure 11 shows what happens if the linear damping
rate is made inversely proportional to t (such that the
damping time scale is 1.5 h when t is 6 h). The sim-
ulations are, in this case, almost independent of the value
of t. (An experiment with t 5 24 h eventually produced
a steady state, but was very noisy near the beginning
of the integration.) These solutions do not, however,
resemble the ‘‘exact’’ solution (see Fig. 3); indeed, the
limit t → 0 is singular since the linear damping term
remains finite in this limit.

Based on these limited results, it would appear that
using ‘‘climatological’’ values of the sensitivity to lin-
early damp the model variables back to their values at
the last call to the radiation scheme might buy a factor
of 2 or so for the value of t, at the expense of distorting
the high-frequency response. This may be acceptable if
interest is focused on the lower frequencies, or (in the
case of a single-column model) if the desired result is
the steady equilibrium. It would be of interest to com-
pare these results with those obtained by calculating the
matrix of sensitivities each time the radiation scheme
is called.

A limitation for such a linearized approach lies in that
the cloud–radiative effects are highly nonlinear, as they
correspond to large variations of the emissivity at any

given level associated with the appearance and disap-
pearance of clouds. An alternative would be to compute
the radiative transfer with a high-end algorithm every
few hours, and then used a simpler, less accurate version
to compute the evolution of the radiative heating rates
on shorter time scales.

6. Summary

While it has been known for some time that numerical
integrations can become distorted if the radiation is cal-
culated too infrequently, here it is demonstrated that the
time interval between the radiation calls act as a time
lag that can destabilize oscillatory modes. We have
shown that infrequent radiation calls produce spurious
oscillations in a single-column model and in an idealized
GCM. In the worst-case scenario, corresponding to the
case where the cloud–radiative feedbacks act to increase
the frequency of oscillations when called every time
step, the artificial amplification rate is proportional to
the square of the time interval between radiation calls.
Experiments with various models show that high-fre-
quency distortions and artificial, weakly damped low-
frequency variability can occur for a time interval be-
tween radiation calls of a few hours, and that these
oscillations can significantly alter the mean state of the
atmosphere.

These distortions will usually be small under clear-
sky conditions, where the variability of the radiative
heating contributes little to most natural variability at
these frequencies, but may be larger where radiation
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interacts with clouds. In any case, to prevent artificial
excitation of the high-frequency variability, some type
of filtering should be applied. One possibility is to use
the adjoint of the radiation code to calculate the matrix
of linear sensitivities of the radiative heating to all the
relevant model variables at each model level, each time
the radiation scheme is called. These sensitivities can
then be used to damp the model variables back toward
their values at the last call to the radiation scheme. If
this is not practical, the instabilities can be filtered by
using climatological sensitivities in the same way.

As the destabilization mechanism is a result of the
lag between the instantaneous value of the cloud field
and its radiative effect, a similar instability can be pro-
duced by introducing a prognostic equation for the cloud
cover. The cloud lifetime acts as a time lag between the
convective activity and the radiative impact of the cloud
cover. If such process plays an important role in deter-
mining the organization of convection, it is definitely
preferable to have it explicitly included in the physical
parameterization rather than to have it arise as a by-
product of numerical discretization.
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