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ABSTRACT

While there is a pressing need to understand and predict the response of tropical cyclones to climate
change, global climate models are at present too coarse to resolve tropical cyclones to the extent necessary
to simulate their intensity, and their ability to simulate genesis is questionable. For these reasons, a “down-
scaling” approach to modeling the effect of climate change on tropical cyclones is desirable. Here a new
approach to downscaling is introduced that consists of generating a large set of synthetic storm tracks
whose statistics are consistent with the large-scale general circulation of the climate model, and then running
a deterministic, coupled tropical cyclone model along each track, with atmospheric and upper-ocean ther-
modynamic conditions taken from the global climate model. As a first step in this direction, this paper
explores the sensitivity of the intensity of a large sample of tropical cyclones to changes in potential
intensity, shear, and ocean mixed layer depth, fixing other variables, including the space–time probability
distribution of storm genesis. It is shown that a 10% increase in potential intensity leads to a 65% increase
in the “power dissipation index,” a measure of the total amount of mechanical energy generated by tropical
cyclones over their life spans. This is consistent with the observed increase of power dissipation over the past
50 yr. Storms are somewhat less influenced by equivalent fractional changes in environmental wind shear
or ocean mixed layer depth.

1. Introduction

The relationship between global tropical cyclone
(TC) activity and global climate is of obvious interest,
both from a basic scientific and from a societal point of
view. Globally, 90 tropical storms develop each year,
with a standard deviation of 10 and no evidence of a
long-term trend (Emanuel 2005). There is at present no
understanding of what controls this number or why it is
so stable. There is some evidence that tropical cyclone
intensity is increasing as a result of global warming
(Emanuel 2005; Webster et al. 2005), as is the duration
of storms (Emanuel 2005). Regionally, there can be
large variability of both the number and intensity of
tropical cyclones. This is particularly well documented
in the Atlantic where it has been linked to such phe-
nomena as El Niño–Southern Oscillation (Goldenberg
and Shapiro 1996). The regional control of Atlantic
tropical cyclone activity, according to these studies, is
statistically linked to, and probably physically caused

by, variability in deep tropospheric wind shear and
tropical sea surface temperature. Trends in tropical cy-
clone intensity and duration are also well correlated
with tropical sea surface temperature (Emanuel 2005).

Modeling the response of tropical cyclones to climate
change has proven challenging. Global climate models
do appear to be capable of generating tropical cyclones
at approximately the correct rate, and in roughly the
right places (Broccoli and Manabe 1990), but attempts
to use global climate models to explore the sensitivity
of storm frequency to climate change have produced
such conflicting results (Broccoli and Manabe 1990;
Haarsma et al. 1992; Bengtsson et al. 1996; Sugi et al.
2002; McDonald et al. 2005) as to cast serious doubt on
their present utility for this purpose. At the same, time,
the horizontal resolution of the current generation of
GCMs is far too coarse to allow them to simulate
storms at their full, observed intensity. For this reason,
recent attempts to use models to explore the climate
sensitivity of tropical cyclones have used a downscaling
approach. This approach was pioneered by Knutson et
al. (1998) and furthered by Knutson and Tuleya (2004).
They integrated the Geophysical Fluid Dynamics Labo-
ratory (GFDL) hurricane model, a nested model with
horizontal grid spacing as fine as 9 km, subject to
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boundary conditions provided by a suite of GCMs, and
run using a variety of convective representations. In
their study, both the rate of genesis and the environ-
mental wind were held fixed. A robust result, valid
across the spectrum of models used for boundary con-
ditions and with the variety of convective schemes used,
is that the intensity distribution across many events
shifts to higher intensity in a warmer climate.

The present study constitutes an extension of the
work of Knutson and Tuleya (2004) to climate sce-
narios with variable wind shear and storm tracks, but as
in the Knutson and Tuleya study, we hold fixed the
space–time probability of genesis and examine the sen-
sitivity of tropical cyclone intensity to specified changes
in potential intensity, wind shear and ocean mixed layer
properties. To accomplish this, we run a coupled hur-
ricane intensity prediction model along 3000 synthetic
Atlantic storm tracks. This model has the advantage of
very high spatial resolution of the storm core and small
run times, so that it is possible to create a large sample.
In future work, we will take the same approach but
generate synthetic tracks and shears directly from the
output of GCMs.

In the next section, we briefly review our method for
generating synthetic storm tracks and our intensity
model, and we describe the experimental setup. Section
3 presents results of the study, and a summary is pro-
vided in section 4.

2. Synthetic tropical cyclone tracks and intensity
model

The means of generating synthetic tropical cyclone
tracks is the second of two methods described in detail
in Emanuel et al. (2006). Here we provide a condensed
summary of the technique.

Synthetic track origin points are generated simply by
randomly drawing from a smoothed space–time prob-
ability distribution estimated from the post-1970 best-
track Atlantic hurricane data (updated from Jarvinen et
al. 1984). In all the experiments described here, this
distribution is held fixed, lacking any generally ac-
cepted theory or modeling results for how such a dis-
tribution might change in response to global climate
change. (Note that we do not here permit the genesis
distribution to reflect natural interannual to interdec-
adal variability. While changes in the variability of gen-
esis locations may be an important component of global
climate change, we lack a clear understanding or pre-
diction of how such variability itself may change.)

Once a storm is generated, it is then moved according
to a suitably defined vertical average of the deep tro-
pospheric environmental winds, plus a correction for

“beta drift” (Holland 1983); this is sometimes referred
to as the “beta and advection model” (“BAMS”; Marks
1992). The track is continued until it reaches generously
defined geographical boundaries at high latitudes or
low longitudes; when the intensity model is subse-
quently run along each track, it usually predicts storm
dissipation well before the end of a track is reached.

One method for producing environmental winds for
determining each track would simply be to run a GCM
for a long time, launching TC tracks as appropriate.
This would necessitate the manipulation of a large data
file containing GCM winds at several levels globally for
a long time. Instead, we follow Emanuel et al. (2006) in
generating synthetic time series of winds at 250 and 850
hPa that conform in certain key respects to the statistics
of the GCM winds. Namely, we manufacture winds us-
ing discrete Fourier time series of random phase but
that have the same monthly mean, variances, and co-
variances among the two scalar wind components at the
two levels as the GCM winds, and that have an ��3

power spectrum, where � is frequency, to conform to
observed flows at synoptic and greater scales. Again
following Emanuel et al. (2006), we use winds only at
250 and 850 hPa to determine storm translation. The
synthetic winds at these levels are also used to calculate
vertical wind shear as input to the intensity model, as
described presently.

For the purpose of the present study, we use wind
statistics from the present climate, as determined from
the National Centers for Environmental Prediction–
National Center for Atmospheric Research (NCEP–
NCAR) reanalysis data (Kalnay et al. 1996). In one of
our sensitivity experiments, however, we will increase
all the vertical shears in the model by 10%.

The effectiveness of this technique is tested by com-
paring statistics of tropical cyclone tracks generated us-
ing these winds to the equivalent statistics from histori-
cal tropical cyclone tracks. In particular, we compare
the frequency distributions of 6-h zonal and meridional
displacements. This comparison, shown in Emanuel et
al. (2006), is quite good and gives us confidence in this
technique.

After the tracks are generated, the Coupled Hurri-
cane Intensity Prediction System (CHIPS) model
(Emanuel et al. 2004) is run along each track, as de-
scribed in Emanuel et al. (2006). This is an axisymmet-
ric atmospheric model, phrased in potential radius co-
ordinates (Schubert and Hack 1983), coupled to a
simple, one-dimensional ocean model that captures
most of the effects of upper-ocean mixing. Because the
atmospheric model is axisymmetric, it excludes any di-
rect effect of background vertical wind shear, and so
this is parameterized in a way that empirically gives
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good forecasts of the evolution of storm intensity
(Emanuel et al. 2004). The potential radius coordinates
allow fine resolution of the eye and eyewall using a
relatively small number of radial nodes. When used for
real-time intensity forecasts, the CHIPS model per-
forms comparably to other deterministic and statistical
intensity forecast methods (Emanuel et al. 2004). An
example of the performance of this model is shown in
Fig. 1, a hindcast of Hurricane Katrina of 2005. (The
advantage of a hindcast is that it uses the observed
rather than the forecast storm track and vertical wind
shear.) For the present purpose, input to CHIPS is in
the form of monthly mean climatological potential in-
tensity (which combines the thermodynamic control on
hurricane intensity of both the sea surface temperature
and the environmental atmospheric temperature pro-
file), ocean mixed layer depth, and thermal stratifica-
tion of the ocean below the mixed layer, all interpolated
to the position and time of the storm. The effect of
using monthly mean climatological potential intensity
instead of daily data was examined by Emanuel et al.
(2004) and found to be minimal in most cases. Landfall
and other effects are calculated using a high-resolution
bathymetry database. Vertical wind shear is provided
by the same synthetic time series used to generate the
storm track.

For this study, we generated 3000 synthetic tracks in
the North Atlantic region and performed four experi-
ments, all using this set of tracks. In the first, or control
experiment, we used normal values of potential inten-
sity, shear, and upper-ocean properties as described

above. The second experiment is identical to the first,
but the potential intensity is increased everywhere by
10% of its normal value. The third is also identical to
the first, but in this case the vertical wind shear, input to
the intensity model, is increased everywhere by 10%. In
the fourth and final experiment, the ocean mixed layer
depth is increased everywhere by 10%. Results are de-
scribed in the following section.

3. Results

a. Control experiment

Figure 2 presents a cumulative histogram of Atlantic
peak storm intensity1 from the control experiment, in
which all inputs assume their normal values, and com-
pares this to the record of Atlantic tropical cyclones
since 1970, when satellite coverage became good
enough to ensure that all storms were at least partially
observed. [This is identical to Fig. 3 of Emanuel et al.
(2006), except that a different random sample of tracks
was used, and here we used 3000 tracks instead of the
1000 used in the former study. The total number of
events used to construct Fig. 2 is less than 3000, because
a few storms fail to reach the minimum intensity of 40

1 As in Emanuel et al. (2006), we add 60% of the storm’s trans-
lation speed to the peak circular wind to estimate the ground-
relative peak wind speed.

FIG. 1. Hindcast of the maximum wind speed (kt) in Hurricane
Katrina (2005) using the CHIPS model (gray curve) compared to
the observations (black). The initialization period, during which
the model is aligned with the observations, lasts for the first 1.5
days.

FIG. 2. Cumulative frequency distribution, expressed as the
number of events per millennium whose peak wind speed (kt)
exceeds the value on the abscissa, for tropical cyclones in the
North Atlantic. The black bars are taken from Atlantic historical
tropical cyclone data, encompassing all 552 events from 1950 to
2004, while the gray bars are calculated by running the CHIPS
model on 3000 synthetic storm tracks. (Fifty-four storms failed to
achieve a peak wind speed of 40 kt.)
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kt.] The good agreement between observed and simu-
lated cyclone statistics suggests that our approach is
viable. The “power dissipation index” (“PDI”) was de-
fined by Emanuel (2005) as

PDI � �
0

�

Vmax
3 dt,

where Vmax is the maximum wind speed over the diam-
eter of the storm at any given time, t is time, and �
represents the storm’s lifetime. Here we average the
power dissipation over all 3000 storms in the synthetic
sample, and all 552 storms in the best-track data. The
average value of PDI for the synthetic storms is 2.38 �
1010 m3 s�2, while for the actual storms it is 2.40 �
1010 m3 s�2.

b. Effect of increased potential intensity

In this experiment, the CHIPS model was run over
the same tracks with the same evolution of vertical
wind shear, but the potential intensity was increased
everywhere by 10%. The resulting cumulative distribu-
tion of storm peak intensity is compared to the control
in Fig. 3. There is a large increase in the frequency
of high intensity events, and the sample PDI is 3.92 �
1010 m3 s�2, a 65% increase over the control. Figure 4
shows the number of events multiplied by the storm
peak wind speed cubed, binned in 10-kt intervals of
storm peak wind speed; this shows approximately how
PDI is distributed with respect to storm lifetime maxi-
mum wind speed. Higher potential intensity clearly

shifts the distribution toward more intense events. This
increase is commensurate with the observed increases
in PDI in several ocean basins over the past 50 yr
(Emanuel 2005). Looking more closely at the storm
statistics shows that wind speed averaged over the
storm’s lifetime increases 15%, while the average cube
of the wind speed increases by 60%, showing that the
increase in wind speed is not uniform with intensity
(which would have yielded a 50% increase in the aver-
age cube of the wind speed) but is skewed toward high-
intensity events. Total storm lifetime increases only
3%, but average duration at hurricane intensity, for
those storms that attain hurricane intensity, increases
by 15%. The percentage of all hurricanes whose storm
lifetime maximum wind speed classifies them as cat-
egory 1 on the Saffir–Simpson scale (Simpson 1974)
decreases from 43% to 34%, while the percentage that
are category 4 and 5 increases from 25% to 40%. These
changes are similar to those reported globally over the
past 35 yr by Webster et al. (2005).

The cumulative frequency distribution of observed
storm intensities normalized by potential intensity ap-
pears to be a universal, bilinear function (Emanuel
2000). This would predict that, all other things being
equal, a 10% increase in potential intensity should yield
a 10% increase in average wind speed, in contrast to the
15% increase obtained here. On the other hand, in do-
ing this experiment we may not have held fixed the
relevant nondimensional control parameters. For ex-
ample, a nondimensional shear could be defined as the
actual shear divided by the potential intensity. Increas-

FIG. 3. Cumulative frequency distribution of storm peak wind
speed, as in Fig. 2, but comparing the control experiment with an
experiment in which the CHIPS model was run using the same
3000 tracks but with the potential intensity increased everywhere
by 10%. All other input variables, such as shear and ocean prop-
erties, were the same as in the control.

FIG. 4. The number of events in 10-kt bins, multiplied by the
bin-mean storm lifetime peak wind speed cubed, as a function of
the bin-mean storm lifetime peak wind speed, from 45 to 175 kt.
The black curve is from the control experiment while the gray
curve is from the experiment with potential intensity increased
everywhere by 10%.
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ing the latter by 10% would decrease the nondimen-
sional shear, so defined, by about 10%. In the shear
experiment described in the next subsection, such a de-
crease yields a 3.4% increase in average wind; this
would explain much of the additional 5% increase in
average wind speed observed when the potential inten-
sity is increased by 10%. Similarly, although the actual
upper-ocean thermal structure was not changed in this
experiment, some nondimensional parameters relating
to upper-ocean properties may have changed with po-
tential intensity.

c. Effect of increased wind shear

Vertical shear of the horizontal wind is observed to
diminish hurricane intensity (DeMaria and Kaplan
1994). Although CHIPS cannot directly simulate the
effect of shear, as it is an axisymmetric model, it does
contain a parameterization of shear effects that has
been developed and tuned to optimize the performance
of the forecast version of the model. Use of this param-
eterization is critical to obtain reasonable forecasts of
hurricane intensity.

In this experiment, the shear was simply increased
everywhere by 10%, with other input variables assum-
ing their normal values. The effect on the cumulative
distribution of storm peak wind speeds is illustrated in
Fig. 5. Increased shear clearly diminishes peak winds,
and the PDI is correspondingly reduced from its control
run value of 2.38 � 1010 m3 s�2 to 2.10 � 1010 m3 s�2, a
reduction of 12%. This corresponds to a decrease of
3% in the average storm wind speed and a decrease of
11% in the average cube of the wind speed. (The
average storm lifetime decreases by less than 1%,
and the average duration at hurricane intensity, for

those storms that attain hurricane intensity, decreases
by 7%.)

The effect of increasing shear by 10% is substantially
weaker than the effect of increasing potential intensity
by the same percentage. On the other hand, the stan-
dard deviation of vertical wind shear is a large fraction
of its mean value in the Tropics, and it is possible that
climate change would lead to a larger fractional change
in shear than in potential intensity.

d. Effect of increased ocean mixed layer depth

Mixing of the upper ocean can have a large effect on
individual storms (Bender and Ginis 2000). It is there-
fore of some interest to explore the sensitivity of a large
sample of storms to changes in the thermal structure of
the upper ocean. In this set of experiments, we increase
the monthly mean ocean mixed layer depth (which is
variable in space and from month to month) by 10%
everywhere. The result is compared to the control run
in Fig. 6. There is a small but systematic increase in
storm intensity, with the per-storm PDI rising to 2.47 �
1010 m3 s�2 from 2.38 � 1010 m3 s�2 in the control
experiment, a rise of 4%. While it is not known how
upper-ocean thermal structure might evolve with cli-
mate change, there is some evidence of trends in upper-
ocean temperature over the past few decades (Levitus
et al. 2000).

4. Summary

A coupled atmosphere–ocean hurricane intensity
model was run along approximately 3000 synthetically
generated Atlantic tropical cyclone tracks, yielding a
statistically large record of storm intensities. For the

FIG. 5. Same as in Fig. 3, but with the vertical wind shear
increased everywhere by 10%.

FIG. 6. Same as in Fig. 3, but with the ocean mixed layer depth
increased everywhere by 10%.
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control experiment, using monthly mean potential in-
tensity and upper-ocean thermal structure, and variable
wind shear conforming to reanalysis climatology, the
cumulative frequency distribution of storm intensity is
in good agreement with the distribution determined
from historical tropical cyclone data. When the same
model is run over the same tracks but with the potential
intensity increased everywhere by 10%, there is a large
increase in the incidence of high-intensity events, and
the power dissipation index (PDI) increases by 65%.
Increasing the shear or the ocean mixed layer depth by
10% results in much smaller changes in the PDI, of
�12% and �4%, respectively. These results may serve
as a guide to more comprehensive investigations of the
effect of climate change on tropical cyclone activity.

An obvious next step is to create new sets of syn-
thetic tracks taking the necessary global wind field sta-
tistics from the output of global climate models rather
than from reanalysis data, as was done here. Likewise,
the potential intensity and upper-ocean thermal struc-
ture can be taken from coupled model output and used
with the new tracks to generate tropical cyclone wind
frequency distributions. This work is underway. A
sticking point in this approach is the estimation of the
space–time genesis probability distribution, as there is
still little by way of theory or observation to guide us on
this problem.
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