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ABSTRACT

Understanding the predictability limit of day-to-day weather phenomena such as midlatitude winter storms

and summermonsoonal rainstorms is crucial to numerical weather prediction (NWP). This predictability limit

is studied using unprecedented high-resolution global models with ensemble experiments of the European

Centre for Medium-Range Weather Forecasts (ECMWF; 9-km operational model) and identical-twin ex-

periments of the U.S. Next-Generation Global Prediction System (NGGPS; 3 km). Results suggest that the

predictability limit for midlatitude weather may indeed exist and is intrinsic to the underlying dynamical

system and instabilities even if the forecast model and the initial conditions are nearly perfect. Currently, a

skillful forecast lead time ofmidlatitude instantaneous weather is around 10 days, which serves as the practical

predictability limit. Reducing the current-day initial-condition uncertainty by an order of magnitude extends

the deterministic forecast lead times of day-to-day weather by up to 5 days, with much less scope for im-

proving prediction of small-scale phenomena like thunderstorms. Achieving this additional predictability

limit can have enormous socioeconomic benefits but requires coordinated efforts by the entire community to

design better numerical weather models, to improve observations, and to make better use of observations

with advanced data assimilation and computing techniques.

1. Introduction

Weather forecasting has improved dramatically since

the introduction of numerical weather prediction (NWP)

nearly six decades ago (Bauer et al. 2015). This has been

accomplished through ever-increasing computing power,

improved models running at ever-increasing resolution

with more accurate representation of atmospheric physical

processes, and more sophisticated four-dimensional data

assimilating algorithms that can better ingest ever-

increasing volumes and quality of in situ and remotely

acquired observations (WMO 2015). A widely used mea-

sure of global NWP forecast quality is the anomaly corre-

lation coefficient (ACC) of 500-hPa geopotential height

between the forecasts and observations. In practice, 60% is

usually used as a threshold for measure of skillful synoptic-

scale weather forecast. Examining the evolution of ACC

(Fig. 1), useful deterministic forecasts by arguably the most

advancedNWPmodel at theEuropeanCentre forMedium-

Range Weather Forecasts (ECMWF) could at best be

made up to around 10 days: this number was 7 days 30 years

ago (Simmons and Hollingsworth 2002; Bauer et al. 2015).
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More improvements can be seen in the Southern Hemi-

spherewhere the traditional observingnetwork is sparser but

which has now been densely covered by satellite

observations.

Improved NWP can have significant socioeconomic

benefits by better predicting the occurrence of natural di-

sasters, saving lives, and protecting property. For example,

improved NWP is largely credited with the dramatic im-

provement in tropical cyclone prediction worldwide. The

present tropical cyclone track forecast accuracy at theU.S.

NationalHurricane Center on average has gained almost a

day lead time per decade (e.g., Zhang andWeng 2015): the

yearly averaged 5-day lead-time track forecast error for the

Atlantic basin in 2016 is smaller than the 2-day lead-time

forecast error in 1990, which may have saved billions of

dollars (Katz and Murphy 2015).

Yet improvement of NWP has limits. From the per-

spective of predictability, this concept of ‘‘atmospheric

predictability limit’’ can be grossly categorized into

intrinsic versus practical predictability (Lorenz 1996;

Melhauser and Zhang 2012). As discussed in Ying and

Zhang (2017), intrinsic predictability refers to ‘‘the

ability to predict given nearly perfect representation of

the dynamical system (by a forecast model) and nearly

perfect initial/boundary conditions, an inherent limit

due to the chaotic nature of the atmosphere and cannot

be extended by any means’’ (Lorenz 1963, 1969; Zhang

et al. 2003, 2007; Sun and Zhang 2016). Practical pre-

dictability, also commonly referred to as our weather

prediction skill, is ‘‘the ability to predict given realistic

uncertainties in both the forecast model and initial and

boundary conditions’’ (Lorenz 1982, 1996; Zhang et al.

2002, 2007). This practical predictability can be ex-

tended through reduction in key limiting factors of the

forecast errors, including initial-condition errors,

boundary condition errors, and model errors. All these

factors, especially the initial-condition errors, have been

greatly and could be further reduced with better NWP

models ingesting high-accuracy observations using ad-

vanced data assimilation approaches along with ad-

vanced computing power (e.g., Zhang et al. 2009; Zhang

and Weng 2015; Emanuel and Zhang 2016). Neverthe-

less, given our desire for better weather forecasting at all

temporal and spatial scales, it is natural to ask whether

an intrinsic predictability of the midlatitude weather

exists. If yes, what is this inherent limit given nearly

perfect NWP models with nearly perfect initial condi-

tions? This is a crucial question that meteorologists

have sought to answer ever since the beginning of

NWP (e.g., Thompson 1957; Lorenz 1969; Leith

1971). Answering this question could provide guidance

to society in decisions to enhance observing networks,

improve models, and better assimilate observations into

the forecast models.

Excellent work on this subject area has been pioneered

by Lorenz, who first introduced the concept of ‘‘butterfly

effect,’’ which described the existence of the intrinsic

predictability limit using a spectral turbulence model

(Lorenz 1969). Lorenz showed that, for flow whose

spectral slope is shallower than23, error-doubling time

decreases with decreasing scales, which led to an upscale

error spreading and could provide an effective intrinsic

FIG. 1. Annual evolution the ECMWF NWP deterministic control forecast performance in

terms of anomaly correlation of 500-hPa-height predictions. Shading indicates the different

forecast skill between NH and SH, which has almost disappeared in recent years. This plot is

directly adapted from ECMWF official website (https://www.ecmwf.int/en/forecasts/charts/

catalogue/plwww_m_hr_ccaf_adrian_ts).
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limit to the predictability of the flow. For flow with a

slope steeper than23, unlimited predictability might be

achieved. This butterfly effect concept also inspires

many subsequent studies using a hierarchy of turbulence

models, which further confirmed Lorenz’s theory (e.g.,

Leith and Kraichnan 1972; Rotunno and Snyder 2008;

Durran and Gingrich 2014). While it remains unclear

how these turbulence model results relate to our real

atmosphere, it is widely accepted that the real atmo-

sphere very likely also has an intrinsic limit of predict-

ability (Palmer et al. 2014).

Estimates of this intrinsic predictability limit for a

deterministic forecast can be made based on numerical

integrations of model equations from two (identical-

twin experiments) or more rather similar or even iden-

tical initial states (Lorenz 1963, 1969). The limit will

occur at a time when the spread between these nearly

identical runs starts to saturate and becomes as much

as the spread among some randomly selected, but dy-

namically and statistically possible states. The accuracy

of this kind of estimate is dependent on the accuracy of

the forecast model used (Lorenz 1996). Earlier studies

have usedmodels of increasing complexity to investigate

this intrinsic predictability and the error growth behav-

ior of our atmosphere (e.g., Leith 1971; Daley 1981;

Zhang et al. 2003, 2007; Mapes et al. 2008; Morss et al.

2009; Ngan et al. 2009). While these studies all agree on

the existence of an intrinsic predictability limit for the

respective weather systems, detailed error growth be-

havior differs among different models and different

weather systems being studied. For example, in addition

to an error cascade from smaller to larger scales (upscale

growth; e.g., Lorenz 1969; Morss et al. 2009), some re-

cent studies also show errors could grow spontane-

ously at all scales (up magnitude) without saturating at

smaller scales (e.g., Mapes et al. 2008; Durran and

Gingrich 2014).

Given that there is a degree of model dependency,

many studies now tend to explore atmospheric predict-

ability under more realistic frameworks with either re-

gional (e.g., Zhang et al. 2003, 2007; Selz and Craig

2015; Ying and Zhang 2017) or global (e.g., Simmons

and Hollingsworth 2002; Tribbia and Baumhefner

2004; Froude et al. 2013) NWP models. Regional

models, which require boundary conditions, generally

constrain longer-termerror growth andpropagationwithin

the domain boundaries. Previous global predictability

studies, on the other hand, usually do not have sufficient

model resolutions to explicitly resolve mesoscale pro-

cesses and moist convections, which have been shown to

be critical for the initial error growth (Zhang et al. 2003,

2007; Selz and Craig 2015; Sun andZhang 2016). Indeed,

there has been increasing evidence that mesoscale error

growth shows similarity with the turbulence case under

the shallower25/3 kinetic energy spectrum, which is not

well simulated in most coarse-resolution global NWP

models (Augier and Lindborg 2013; Sun and Zhang

2016; Weyn and Durran 2017).

With recent advancement in computing capability,

we now have entered a new era of global convection-

permitting NWP models (Putman and Suarez 2011;

Skamarock et al. 2014). Mapes et al. (2008) examined

the predictability behavior of the atmosphere using

global 7-km aquaplanet identical-twin simulations,

with a focus in the tropics. Judt (2018) studied the at-

mospheric predictability through a pair of convection-

permitting identical-twin simulations with the newly

developed global Model for Prediction Across Scales

(MPAS; Skamarock et al. 2014). Building on the findings

of previous theoretical and modeling studies, our work

here seeks to estimate the intrinsic limit of day-to-day

weather predictability using ensemble simulations with

the most advanced global NWP models at both

ECMWF and U.S. NOAA.Our particular emphasis will

be synoptic-scale weather systems dominated by baro-

clinic instability in the midlatitudes, where most of the

world population resides. In particular, we showcase

the practical versus intrinsic predictability limits of the

global midlatitude weather during two periods in boreal

winter and summer, respectively. These periods also

endured two recent hazardous regional weather events:

a wintertime cold-surge event affecting northern

Europe in early January 2016, and a summertime

rainfall-flooding event in China during July 2016. The

choice of these two events are rather subjective and

somewhat random with the intent to represent the typ-

ical midlatitude predictability while in the meantime

covering some notable weather events in recent years.

Nevertheless, neither of these two cases fall into

the ‘‘forecast bust’’ cases using the criteria identified by

Rodwell et al. (2013). Moreover, to the best of our

knowledge, there were no severe weather outbreaks

during these two periods in the midlatitude atmosphere

of the Southern Hemisphere whose predictability will

be simultaneously examined and compared with the

Northern Hemispheric midlatitudes that have notable

weather events.

Section 2 of this paper introduces the experiment

design of our work, including the model we used and

the perturbations added for each ensemble. Analysis

for the ensemble spread from different perspectives

are given in section 3, physical interpretation based

on the results and hence the estimated predictability

limit is also provided. Discussions on the limitations of

current work and concluding remarks are presented

in section 4.
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2. Experimental design

This study adopted established methodologies intro-

duced in the introduction for studying atmospheric

predictability using perfect-model, identical-twin ex-

periments where the ensemble members with minute

initial-condition differences are explored. A series of

ensemble simulations with the state-of-the-science

global NWP model at ECMWF [viz., the Integrated

Forecast System (IFS)], and U.S. Next-Generation

Global Prediction System (NGGPS) with finite-volume

cubed-sphere dynamical core (FV3) are designed to ad-

dress the following two key questions: 1) What is the

intrinsic predictability limit of multiscale midlatitude

weather assuming a perfect model with nearly perfect

initial conditions? 2) Howmuch longer can the practical

predictability be increased by reducing initial-condition

uncertainties to different degree of accuracy?

a. Model details

1) ECMWF/IFS MODEL

The IFS control and ensemble forecasts presented

herein uses the latest upgrade (cycle 41r2) of ECMWF,

the highest-resolution-ever (;9 km) global operational

NWP model. More details of this model upgrade can

be found on the official website of ECMWF (http://

www.ecmwf.int/). Different from previous versions,

this new ECMWF IFS model implements a cubic oc-

tahedral reduced Gaussian grid (with spectral trunca-

tion denoted by TCO1279) instead of the linear reduced

Gaussian grid. With this cubic reduced Gaussian grid,

the shortest resolved wave is represented by four rather

than two grid points. The octahedral grid is also glob-

ally more uniform than the linear reduced Gaussian

grid. In the vertical, the ECMWF model has 137 levels

and a model top at 0.01 hPa. This corresponds to over

900 million grid points in total after this resolution

upgrade.

In addition to resolution increase, the realism of the

kinetic energy spectrum is also significantly improved

with more energy in the smaller scales due to a reduc-

tion of the diffusion and removal of the dealiasing filter,

enabled by the change to using a cubic truncation for

the spectral dynamics. The semi-Lagrangian departure

point iterations used to solve the primitive equations

are also increased in the new model to remove nu-

merical instabilities. The integration time step upgraded

accordingly to 450 s. As intrinsic predictability implies

the upper limit for our weather prediction given a

nearly perfect model, no perturbation is applied to

any model parameter and no stochastic physics scheme

is adopted.

2) U.S. FVGFS SYSTEM

The newly developed Geophysical Fluid Dynamics

Laboratory (GFDL) FV3 with Global Forecast System

(GFS) physics (fvGFS) modeling system (Zhou et al.

2019; Hazelton et al. 2018; Chen et al. 2018) is used

to further cross-examine the sensitivity of multiscale

predictability to different model parameterizations and

resolutions under future global convection-permitting

NWP. This system was built during the NGGPS phase

II, using the nonhydrostatic FV3 coupled to physical

parameterizations from the National Centers for Envi-

ronmental Prediction’s GFS (NCEP/GFS). The GFDL

FV3 was recently chosen as the dynamical core for the

U.S. NGGPS as detailed in an online report (https://

www.weather.gov/sti/stimodeling_nggps_implementation_

atmdynamics); a report on this NGGPS development can

also be found in Voosen (2017). In this study, we used the

global uniform 3-km fvGFS configuration without ocean

coupling. This model has 63 vertical layers and the model

top is set at 0.6hPa. The physical parameterizations include

theRapidRadiative TransferModel forGCMs (RRTMG;

Iacono et al. 2008) and the GFDL 6-class single-moment

microphysics scheme (Chen andLin 2011, 2013;Zhou et al.

2019). No cumulus scheme is adopted.

b. Ensemble experiments: EDA and EDA0.1

We first perform two types of ensemble experiments

(denoted as EDA and EDA0.1, with explanations later

in this subsection) with the current operational 9-km IFS

model, running 10-member ensembles for 20 days be-

ginning at 6 different times (3 consecutive days of 24–

26 December 2015 and 3 consecutive days of 24–26 June

2016). All simulations are initialized at 0000 UTC. The

initial condition and perturbations for the EDA en-

sembles are derived directly from the first 10 of 21

available operational ensemble four-dimensional vari-

ational data assimilation (4DVar) analyses (Bonavita

et al. 2012) that represent the current realistic initial-

condition uncertainties by the best-performing global

NWP model (i.e., IFS at ECMWF). The design of the

EDA ensemble using realistic initial-condition uncer-

tainties is to explore more on the practical predictability

side of the atmosphere as an assurance that the model

used for this study could capture synoptic-scale dynamics

and has typical predictive skills during the event periods

selected for this study.Note that theEDAsystemuses the

covariances derived from a coarser-resolution (TCO639;

;16 km) ensemble forecast and thus small scales

are not strongly constrained by observations. When

initializing themodel at higher resolutions, there would

be a transient adjustment process (within hours; see

Skamarock et al. 2014) to the small-scale energy
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spectrum. This adjustment process will potentially

excite a spurious cascade, whichmight bring faster initial

error growth at these smaller scales. However, the im-

pact of this process is expected to be small at synoptic

scales and will be neglected in particular for the current

study with a perfect-model assumption.

In comparison, the initial conditions for the EDA0.1

ensembles are perturbed with only 10% of the initial

perturbations in the corresponding EDA ensembles cen-

tered at the control operational analysis of the IFS.

With perturbation kinetic energy error only 1% of the

current-day state-of-the-science analysis uncertainties, the

EDA0.1 ensembles can be regarded as using nearly perfect

initial conditions. The use of nearly perfect initial condi-

tions, alongwith the use of the samemodelwithout physics

perturbations, is in the spirit of perfect-model identical-

twin experiments, which are designed to understand the

intrinsic predictability limit of the atmosphere. Although

the number of ensemble runs is still limited, to the best of

our knowledge, this is the first time such a high-resolution

global-model ensemble performing at the convection-

permitting resolution is used for exploring the intrinsic

limit of atmospheric predictability.

For the NGGPS FV3 model experiment, at 3-km grid

spacing, computational costs permit us to run only one

pair of identical-twin simulations starting at 0000 UTC

24December 2015 for the Northern Hemispheric winter

event: one initialized with the control member from the

IFS model and the other initialized with the same initial

perturbations as in member 1 of EDA0.1.

Although only one pair of identical-twin 3-km FV3

simulations can be afforded computationally for this

study, it does offer a direct comparison of the error

growth to the same pair of identical-twin simulations

using the operational IFS model that has a different

dynamical core and different resolution. In the mean-

time, for typical midlatitude synoptic systems of 5000km

in horizontal wavelength, there are about 5–10 such

concurrent synoptic weather events in either hemisphere.

In essence, this single pair of identical-twin experi-

ments could represent a predictability estimate of multi-

ple events under more general global statistics.

3. Predictability limit

To exemplify the limit of intrinsic predictability of

day-to-day weather, we first select the January 2016

cold-surge event during which most areas of northern

Europe experienced temperature anomalies below258C,
as shown in the observational analysis (Fig. 2a). Near-

normal temperature is observed over most of the contigu-

ousUnited States andCanada except for amoderate warm

anomaly over the Great Lakes region. The corresponding

15-day control forecast (Fig. 2b) by the ECMWF 9-km

operational model IFS initialized at 0000 UTC 24

December 2015 failed to predict the northern Europe

cold anomaly while it underpredicted the surface

temperature over most of contiguous United States

and overpredicted temperature over most of Canada.

A 10-member ensemble (EDA0.1), constructed by

perturbing the control forecast with minute initial per-

turbations that are an order of magnitude smaller than

the current analysis uncertainty, produced drastically

different 15-day forecasts, each of which is nearly in-

distinguishable from a random sample of the climatology

of this day. For example, member 1 of this reduced-

perturbation ensemble (Fig. 2c) initialized also at

0000 UTC 24 December 2015 predicted a slightly above

normal temperature (instead of the observed cold surge)

over northern Europe while forecasting extremely cold

conditions over most of the contiguous United States

(instead of the observed normal to slightly warmer

anomalies). The differences in predicted synoptic flow

patterns between EDA0.1 member 1 and the un-

perturbed control forecast are comparable to the dif-

ferences between the control run and the observational

analyses represented by the sea level pressure maps in

Fig. 2, except for the quasi-stationary planetary low

pressure centers over the northern Atlantic and Pacific

Oceans typical of climatological mean patterns. Failure

of the control forecast (compared to observational

analysis) and drastic forecast divergence between the

control forecast and EDA0.1 ensemble member 1 that is

perturbed with hypothetical minute initial perturbations

(likely beyond the reach of future analysis accuracy)

suggests a complete loss of predictability at the 15-day

lead time (i.e., the intrinsic limit of day-to-day midlati-

tude weather predictabilitymay not be extended beyond

2 weeks, at least in this case).

a. Evolution of ensemble spread

As mentioned in the introduction, the forecast un-

certainty and the limit of predictability can be more

systematically quantified by the evolution of the spread

between the ensemble members and the time when it

starts to saturate. Figure 3 shows midlatitude mean en-

semble variance of the 500-hPa winds (a measure of

ensemble kinetic energy spread) from two ensemble

hindcasts initialized on three consecutive days (24–26

December). The choice of 500-hPa winds is because that

it is directly linked to the kinetic energy spectrum,

which will be discussed later. Nonetheless, metrics using

geopotential height give very consistent results (not

shown here). The EDA ensemble sets in Fig. 3 are ini-

tialized with the current realistic analysis uncertainties

represented by the ECMWF ensemble of 4DVar analyses,
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while EDA0.1 ensemble sets are initialized with nearly

perfect initial conditions (initial kinetic energy error is

1% of that in EDA). As shown in Fig. 3a (normalized

results shown in Fig. 3c), the spread of the EDA en-

sembles with realistic initial-condition uncertainties

grows nearly two orders of magnitude larger before

saturating at approximately 10–12 days, while the spread

of the EDA0.1 ensembles, with minute initial pertur-

bations (i.e., nearly perfect initial conditions), grows

nearly four orders of magnitude larger before saturat-

ing at the same level as the EDA ensemble around

14–15 days (as a strong indication of the intrinsic pre-

dictability limit).

Similar quantitative statistics, representing intrinsic

versus practical predictability limits assuming perfect

model, can also be inferred from the same pairs of

ensembles for the Southern Hemisphere (Fig. 4), as well

as frompairs ofNorthernHemispheremidlatitude 20-day

10-member global ensemble (Figs. 3b and 3d) initialized

from three consecutive summer days (24–26 June) in

2016. During the 20-day simulation period in June, vast

areas of the Yangtze River basin of China observed his-

torical flooding (NASA; https://earthobservatory.nasa.gov/

NaturalHazards/view.php?id588467). Moreover, calcula-

tion of the ACC between the ensemble forecast and the

observations over the global midlatitudes also gives quan-

titatively similar estimates for both the practical and in-

trinsic predictability limits (Fig. 5), with correlation

dropping to 60% at around 10 days for the EDA en-

semble and 13–15 days for EDA0.1 ensemble.

The growth of the ensemble variance, representative

of the forecast error, fits surprisingly well with the simple

FIG. 2. Sample 15-day numerical weather predictions vs observations. The 2-m surface

temperature anomalies (color shading) and the sea level pressure (contoured every 4 hPa)

and valid at 0000 UTC 8 Jan 2016 for (a) the ECMWF observational analysis, (b) the 9-km IFS

15-day-lead-time control forecast initialized at 0000 UTC 24 Dec 2015 with the unperturbed

EDA analysis, and (c) 15-day forecast from a member of the ensemble (EDA0.1) perturbed

with 10% of the EDA ensemble perturbations that the current level of uncertainty in the EDA

analysis. The temperature anomalies are calculated from a climatology based on a 20-yr,

10-member ensemble reforecast dataset using the same model with a 15-day lead time.
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error growth model that was originally proposed in

Lorenz (1982), modified later (Dalcher and Kalnay 1987;

Reynolds et al. 1994) and here as

d«(t)

dt
5 [a«(t)1b][12 «(t)] . (1)

Here «(t) is the normalized error where « ; 1 means it

reaches themaximum or becomes saturated, and a is the

synoptic-scale error growth rate. Previous studies (e.g.,

Magnusson and Källén 2013) usually use b as a measure

for model error. Given that we are comparing between

different ensemble members using the same forecast

model, b here represents the error growth rate induced

by the intrinsic upscale error propagation such as from

small-scale moist processes (e.g., convection) even when

we have nearly perfect initial condition (Sun and Zhang

2016). Figures 3c, 3d, 4c, and 4d show the evolution

of normalized error averaged for both the winter and

summer cases, respectively, as well as the fitted error

growth curves from Eq. (1).

Figures 3 and 4 show that exponential error growth

(quasi-linear line in the logarithmic plot) dominates the

first few days of the EDA ensembles, with a growth rate

determined by a. The b term has little impact on the

error growth curve for the EDA experiment due to

relatively large initial-condition error. However, com-

pared with EDA, much faster initial error growth is

observed for the EDA0.1 ensembles. We can also de-

duce that the error growth rate (slope of the error

growth curve in Figs. 3 and 4) in EDA0.1 will increase

with decreasing «, implying that there will eventually be

diminishing returns from further reducing the initial-

condition errors. This ‘‘superexponential’’ initial error

growth in EDA0.1 is caused by the presence of the

b term (representing the intrinsic upscale error growth

and propagation from small scales) in Eq. (1). For ex-

ample, the green line in Figs. 3c and 3d shows the

FIG. 3. (top) Evolution of forecast uncertainty growth in terms of ensemble variance of 500-hPa wind energy

averaged over the NH midlatitudes (408–608N) for three ensemble simulations with current-day realistic initial-

condition uncertainties (red symbols) and the corresponding ensembles with minute (1%) initial-condition errors

(blue symbols) initialized on (a) 3 consecutive days for thewinter (24–26Dec 2015) and (b) 3 consecutive days in the

summer (24–26 Jun 2016). (bottom) Evolution of normalized error variances (gray symbols) averaged for the

(c) winter and (d) summer cases, as well as the fitted error growth curves (red for EDA, blue for EDA0.1) from

Eq. (1). The units for a and b are day21.Green lines in (c) and (d) show the error growth curve according to

the fitted Eq. (1) if the initial-condition error is further reduced to 1 3 10210. Note the log scale of the

perturbation energy.
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predicted error growth curve derived from Eq. (1) when

the initial-condition error is reduced to 1.03 10210. It is

nearly identical to the blue line, whichmeans there is not

much more room for improvement. In other words, if

Eq. (1) holds, further reduction in the initial-condition

or model error would not help extend our forecast lead

time much longer (maybe only in hours or even

minutes).

The errors in EDA0.1 grow to an amplitude similar to

the EDA initial ensemble spread in 3–4 days. Subse-

quent error growth and saturation in the EDA0.1 en-

sembles mimic those of the EDA ensembles except for a

3–4-day delay in forecast lead times. The overall refer-

ence error kinetic energy saturates (« ; 1) at around

10–12 days for all the EDA ensembles and 14–15 days

for all the EDA0.1 ensembles. This remains true for

FIG. 4. As in Fig. 3, but for SH (408–608S).

FIG. 5. Anomaly correlation coefficient of 500-hPa heights averaged over the NorthernHemisphere midlatitudes

(308–608N) for (a) the January 2016 case and (b) the July 2016 summer case. The blue line shows the ACC for all

of the EDA members, and the red line shows the results for EDA0.1 members.
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different initialization times and for both the winter and

summer days of the Northern Hemisphere and the

Southern Hemisphere.

These unprecedented high-resolution 9-km global

ensembles of a state-of-the-science NWP model, ini-

tialized with both realistic and nearly perfect initial-

condition uncertainties, suggest that the ultimate limit of

midlatitude day-to-day weather predictability is about

2 weeks, but there is still a potential of 3–5 more days of

additional forecast lead time to be gained through im-

proving the current practical predictability, which is

about 9–10 days. Such improvements may be gained

from reducing initial-condition and model uncertainties

through better observations, better data assimilation,

and better forecast models running at higher resolution

with ever-increasing computing capability.

b. Spectral analysis

While 3–5 days serves as the estimated potential for

extended weather forecast lead time, the atmospheric

predictability limit is also scale dependent. For example,

small-scale thunderstorms are much less predictable

than the synoptic system in which they are embedded.

Therefore, it is important to examine the scale depen-

dence of predictability limit. Spectral decomposition of

perturbation kinetic energy across all zonalwavenumbers

averaged over the midlatitudes (408–608N) for both

winter and summer periods are displayed in Fig. 6. The

corresponding spectra for the Southern Hemisphere

midlatitudes (408–608S) are shown in Fig. 7.

The kinetic energy spectrum here is calculated as in

(Skamarock 2004). We have chosen to compute the

one-dimensional (1D) spectrum of the velocity fields

along zonal direction. The advantage of this 1D spec-

trum is that we could fully utilize the periodicity of the

global model in the zonal direction while focusing on the

midlatitude only. Let ui,j,n and yi,j,n denote the zonal and

meridional velocity components for the nth ensemble

member, subtracting the ensemble mean fields first if we

are calculating the kinetic energy spectra for the per-

turbations. For the spectra in Fig. 8, the differences be-

tween the perturbed run and the unperturbed run are

used. The Fourier transforms of the velocity compo-

nents ûj,n(k) and ŷj,n(k) are then computed along the

zonal direction for each ensemble member and all the

meridional j indices. Then the kinetic energy spectra

density can be written as

E
j,n
(k)5

Dx

2N
x

[û
j,n
(k)û

j,n
* (k)1 ŷ

j,n
(k)ŷ

j,n
* (k)], (2)

where Nx is the number of grid points along the zonal

direction of the model. The asterisk denotes the com-

plex conjugate. We can then average Ej,n(k) over j and

n to get the kinetic energy spectrum for the full en-

semble and the latitude band of interest (408–608N for

the midlatitudes; the results are not very sensitive to this

choice; the 308–608N average give very similar plots).

When the spectrum of the perturbation kinetic energy

(amplitude of ‘‘noise’’) at a given wavelength reaches

the reference background spectral kinetic energy (signal

to be predicted), it is saturated, after which no single

deterministic forecast will have any predictive skill.

Consistent with Fig. 3, Fig. 6 also shows that it takes

slightly more than 3 days for the perturbation kinetic

energy in the reduced-perturbation ensemble (EDA0.1)

FIG. 6. Forecast error growth and saturation for different horizontal scales. Evolution of ensemble-mean error

spectral kinetic energy (colored lines) averaged over NH midlatitudes (408–608N) for three 9-km, 10-member

ECMWF IFS global ensemble simulations with minute (1%) initial-condition errors (solid gray lines) initialized on

3 consecutive days for (a) the winter period and (b) the summer period. The reference background kinetic energy

spectra are derived from the respective 20-day mean spectra of the control forecast (dark dotted line). The

corresponding initial spread of the EDA ensemble with realistic analysis uncertainties are shown for comparison

(light-gray dotted lines). The two straight dotted line segments denote the spectral slopes of 23 and 25/3.
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to grow two orders of magnitude across all resolvable

wavelengths to a level comparable with the realistic

analysis uncertainty represented by the EDA for the

periods of the winter and summer events, respectively.

Also, Fig. 6 shows that the perturbation spectral kinetic

energy from the EDA0.1 ensemble saturates at the

amplitude of the reference kinetic energy across all

synoptic scales by 15 days, again consistent with the

overall intrinsic predictability limit estimated from Fig. 3.

Moreover, saturation time for different scales is dif-

ferent. With reduced initial-condition uncertainties,

as in EDA0.1, forecast error first saturates at smaller

scales, then subsequently grows rapidly in magnitude

and in scale, consistent with past regional modeling

studies (Zhang et al. 2007; Selz and Craig 2015; Sun and

Zhang 2016). A simple estimation from Fig. 6 shows that

the forecast error saturation time (and thus intrinsic

limit of predictability) is less than 3 days for horizontal

scales less than 200 km, less than 5 days for horizontal

scales less than 400km, and less than 10 days for hori-

zontal scales less than 1000km. Also worth noting, Fig. 6

illustrates the synoptic-scale predictability in terms of

500-hPa horizontal winds. Much more limited predict-

ability is expected for vertical velocity and instanta-

neous precipitation rate forecasts (Bei and Zhang 2007,

2014), which possess very different reference energy

spectra.

c. Sensitivity study using U.S. NGGPS model

Although we could only afford to perform one pair of

10-day forecasts using the U.S. NGGPS model based on

the FV3 dynamical corewith 3-km convection-permitting

FIG. 7. As in Fig. 6, but for SH (408–608S).

FIG. 8. Sensitivity of error growth and saturation with the 3-km FV3 model. Evolution of perturbation spectral

kinetic energy between two forecasts (one initialized with the control EDA analysis and the other perturbed with

the same initial perturbations as in EDA0.1 ensemble member 1 performed with the 3-km U.S. FV3 model for

(a) NH and (b) SH. Computational costs permit us to run only one pair of 10-day simulations starting at 0000 UTC

24Dec 2015 for the winter event. Thin lines show results for ECmodel calculated based on the differences between

10 perturbed EDA0.1 members and the control run. The FV3 results lie well within the 10 ensembles produced by

the EC model. Note at small scales, different with the perturbation kinetic energy spectra in Fig. 6, the difference

spectral kinetic energy has a saturation level that is twice the background spectrum.

1086 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 76



horizontal grid spacing, the results (Fig. 8) show that

for both winter- and summer-hemispheric midlatitudes,

such limits are rather insensitive to the forecast model or

resolution, and likely arise from the intrinsic dynamics

of the atmosphere (Zhang et al. 2007; Rotunno and

Snyder 2008; Sun and Zhang 2016). Due to the use of a

higher horizontal resolution, the NGGPS FV3 model

better resolves the small-scale atmospheric motions as

can be seen by the extended background energy spec-

trum at smaller scales (Fig. 8). Yet the evolution of the

forecast error in the NGGPS FV3 model, as reflected by

the perturbation kinetic energy spectrum at 500 hPa,

does not show significant differences with that in the

ECMWFmodel. Once again, we find that after 3–5 days

the differences between two initially nearly identical

runs is comparable with our current operational analysis

uncertainty (Fig. 8).

This consistency between two completely different

models (with different dynamical cores, different phys-

ics, and different resolutions) also strengthens our con-

fidence that these two state-of-the-science NWPmodels

are ‘‘appropriate’’ to assess the intrinsic predictability

limit, at least for the periods examined in this study. It is

safe to say that minute uncontrollable initial-condition

uncertainties originating from convective andmesoscale

instabilities can grow upscale and will eventually limit

the predictability of variousweather systems at increasingly

larger scales. The impacts of the background governing

dynamics and instabilities on the limits of intrinsic pre-

dictability may also be inferred from the differences in

Eq. (1) fitted values of a (synoptic-scale error growth

rate likely controlled by synoptic instabilities such as

baroclinicity) and b (upscale error growth rate likely

controlled by small-scale instabilities and moist physics

including convention). As denoted in Figs. 3c and 3d, a

larger value of a and a smaller value of b are derived

from the winter cold-surge event than those derived

from the summer flooding event. This is consistent with

stronger baroclinicity and weaker convective instability

in the winter than in the summer, although more re-

search is needed to further quantify such relationships

(Reynolds et al. 1994; Magnusson and Källén 2013).

d. Possible dynamic processes

Given both models agree on the forecast lead time we

could gain from reducing initial-condition uncertainty,

the question then arises, What dynamic processes con-

trol the error growth and eventually limit the predict-

ability of midlatitude weather? While this is surely an

important question and needs future research (Rosinski

and Williamson 1997; Magnusson 2017), some details on

the evolution of the ensemble spread during specific cases

may give us some insights and guidance into this question.

Figure 9 shows the evolution of the ensemble spread

of 500-hpa meridional winds for the first 3 days in

EDA0.1 integrated from 0000 UTC 26 December 2015,

especially focused on a developing extratropical cyclone

over the west coast of the United States. The blue con-

tour is the 500-hPa geopotential height and the gray

contour is the regionwith 12-h precipitation greater than

0.1mm. We can see that, at day 1 the ensemble spread

first shows up in the precipitating region. Then the

spread increases and moves with the synoptic system,

propagating both upstream and downstream in the

meanwhile. After 3 days, the ensemble spread could be

found anywhere in the midlatitude bands, although

with a maximum in the synoptic storms. The key idea

that minute perturbations will first generate errors in

small-scale moist convective systems and the errors then

grow upscale is consistent with previous studies (Zhang

et al. 2007; Sun and Zhang 2016). We could also take a

first look at the propagation of the ensemble spread

using the Hovmöller diagram, which is plotted in Fig. 10

for the EDA0.1 ensembles initialized at 0000 UTC

24 December 2015. As marked subjectively by different

type of arrows, there exist at least three characteristic

pathways for the error to evolve and grow through

time globally. The dotted ones, mainly shown up in the

first few days, have an approximate eastward speed of

FIG. 9. Evolution of the ensemble spread of 500-hPa meridional

winds (color-shaded) for the first 3 days in EDA0.1 integrated from

0000UTC26Dec 2015. Blue contours are the 500-hPa geopotential

heights, and gray contours indicate the regions with 12-h precipi-

tation greater than 0.1mm. Red circles imply the movement of the

developing low pressure synoptic storms.
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10–15ms21 and are consistent with the phase speed of

individual synoptic weather systems. The double-dashed

arrows that have an approximate eastward speed of

25–30ms21 likely follow the downstream energy prop-

agation of different baroclinic wave packets, and the

thick solid arrows with a slow westward progression

signal the error enhancement near the quasi-stationary

planetary-scale low pressure centers. These error growth

pathways expand beyond the multistage error growth

mechanisms identified in a previous regional-scale pre-

dictability study (Zhang et al. 2007) and will be examined

in more detail in our future study.

4. Concluding remarks

The promising finding of the current study is that,

assuming the current-generation state-of-the-science

NWP models could capture the most essential physical

processes in the real world, we can further improve the

forecast accuracy of day-to-day weather events such as the

ones we discussed, by up to 5 days, if we reduce the initial-

condition uncertainties by a factor of 10. In particular, we

examined the predictability of weather forecasts in two

showcase studies, and we have looked at the multiscale

midlatitude error evolution across different spatial scales.

Our study suggests thatwe are currently still quite far from

the ultimate limit of predictability, and it is apparent that

we have ample room for further improvement in the day-

to-day weather predictability likely for decades ahead.

More quantitatively, it can be inferred from Figs. 3

and 6 that reducing the current initial-condition error

represented by EDA by about 20% (;40% smaller in

error kinetic energy) can potentially lead to a gain of one

more day, and reducing by about 50% for a gain of two

more days of additional predictable forecast lead time.

Achieving this additional predictability limit can greatly

benefit society by saving lives and property but requires

continued coordinated efforts by the entire meteorology

community and beyond to design more accurate NWP

models performing at refined resolutions, improve and

enhance the observing techniques and networks, and

make better use of observations with advanced data

assimilation and computing techniques.

It is possible those two individual local weather events

(cold surge and floods) have slightly different predict-

ability than more typical weather patterns but our

findings here are based on mean error growth statistics

of the global midlatitudes averaged over many wave-

lengths and multiple initialization times, not just the

regions of the localized hazardous events. Additional

calculations that exclude these two local events show

consistent results (Fig. 11), as do the calculations in

the opposing hemispheric midlatitudes that have no

FIG. 10. Longitude–time Hovmöller diagram for the mean en-

semble spread in terms of root-mean-square difference of kinetic

energy (m s21) derived from the 9-km, 20-day, 10-member ECMWF

IFS global ensemble initialized at 0000 UTC 24 Dec 2015 as a dem-

onstration of different modes of error propagation that lead to the

error saturation and intrinsic predictability limits (see text for details).

FIG. 11. As in Figs. 3c and 3d, but separating the error statistics in the hazardous-event region vs the rest of the

midlatitudes. Red and blue curves are the same fitted curve as in Fig. 3, implying the global averaged results. The

plus signs represent the hazardous-event region (608-longitude width), and the circles represent the nonhazardous-

event region (3008-longitude width).
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remarkable severe weather events during the same pe-

riods examined. Nonetheless, further research is needed

to extend the findings to more case studies during all

seasons, and preferably with further refined, convection-

permitting model resolutions to capture more realistic

rapid initial error growth from small-scale moist physics

including convection. Although limited sensitivity ex-

periments suggest that the predictability horizon of the

day-to-day midlatitude weather is controlled by dy-

namics and instabilities of the atmosphere and are not

particularly dependent on the specific numerical models,

it remains possible the estimates may change if future

improved models have different perturbation growth’s

characteristics. While it remains possible that the incor-

poration of additional unresolved scales and phenomena

could actually lead to an increase in the upper bound of

predictability (Lorenz 1982), it is generally acknowledged

that improved models will resolve more smaller-scale

instabilities and thus the error growth is likely to further

increase, at least in smaller scales, in which case the cur-

rent estimate of intrinsic predictability limit may be on

the optimistic side.

Also, despite the use of ensembles, the current study

focuses on whether a limit of deterministic forecast

longer than 2 weeks can be reached if we concentrate

on the instantaneous weather that we experience every

day. If we define the ‘‘forecast skill horizon’’ as the lead

time when ensemble forecasts cease to be, statistically,

more skillful than a climatological distribution, the

predictability horizon can be longer than 2 weeks for

some variables at large synoptic and planetary scales

and with longer periods and lower frequencies (Buizza

and Leutbecher 2015; Shukla 1998; Palmer 2017). It is

beyond the scope of this study to determine the in-

trinsic limit of the probabilistic prediction. It is also

beyond the limit of the current study to determine the

predictability horizon for lower-frequency oscilla-

tions such as the Madden–Julian oscillation (Madden

and Julian 1971; Zhang 2005; Zhang et al. 2017) or the

background-mean weather regimes that potentially

have predictive skills at the seasonal-to-intraseasonal

time scales and beyond. Moreover, even at the

convection-permitting resolution, the current sets

of ensemble experiments might be insufficient to fully

reproduce multiscale tropical waves coupled with moist

convection, and thus future studies on the error growth

dynamics and predictability limits for tropical systems

and their interactions with midlatitude systems (e.g., Ying

and Zhang 2017) are warranted.
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