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ABSTRACT: Potential intensity (PI) has been shown to have a linear sensitivity to sea surface temperature (SST) of about

8m s21 K21, which is close to the sensitivity of PI in simulations subject to aweak temperature gradient (WTG) approximation.

This suggests that most of the PI variance is associated with local rather than global SST variations. We verify that PI per-

turbations are approximately linear in SST, with slopes of 1.86 0.2m s21K21 in radiative–convective equilibrium (RCE) and

9.1 6 0.9m s21K21 in WTG. To do so, we simulate the sensitivity of both RCE and WTG states in a single-column model

(SCM) perturbed by changing in turn CO2 concentration, aerosol concentrations, prescribed SST, and surface winds speeds.

While PI is much more sensitive to SST in WTG than in RCE simulations, the SST itself is much less sensitive to radiative

forcing inWTG than in RCE because of the absence of strong atmospheric response. Using these results, we develop a linear

model, based on SST and midlevel saturation MSE perturbations, to partition SST and PI perturbations between local

components occurring under a WTG constraint and global components that are representative of an RCE state. This model

explains up to 95% of the variability of PI in reanalysis. The SCM-derived linear model coefficients are statistically indistin-

guishable from coefficients from a linear fit of reanalysis PI to SST and midlevel saturation MSE in most ocean basins. Our

model shows that North Atlantic PI variations are explained almost entirely by local forcings in recent decades.

KEYWORDS: Atmosphere; Tropical cyclones; Climate variability

1. Introduction

Potential intensity (PI; Emanuel 1986, 1988; Bister and

Emanuel 1998; Bryan and Rotunno 2009) is a theoretical

bound on the maximum achievable wind speed in tropical

cyclones (TCs). PI has been shown to provide fairly accurate

bounds on the maximum wind speed in TCs both in obser-

vations (Emanuel 2000) and in models (Rousseau-Rizzi and

Emanuel 2019) and can be seen as an indication of how fa-

vorable the thermodynamic environment is to the maintenance

of strong TCs. It is one of the main predictors of TC activity as

represented by the power dissipation index (PDI; Emanuel

2007), an indication of the total amount of energy dissipated by

all TCs over a given basin and a given TC season. In other words,

PI is an important predictor of the amount of power dissipated

by TCs and thus, of their destructive potential. For that reason,

understanding the causes of past PI variability is useful to help

predict future variability in TC activity.

TC intensity variability is often attributed to sea surface

temperature (SST) variability, and Vecchi and Soden (2007)

showed that PI correlates well with SST spatial anomalies and

that the slope of the linear regression is near 8m s21 K21. PI

can be expressed as

PI2 5
C
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D

T
s
2T

o

T
o

(h*s 2h*m) , (1)

(Bister and Emanuel 1998; Wing et al. 2015) where Ck and CD

are the surface exchange coefficients of enthalpy and mo-

mentum, Ts is the sea surface temperature, To is the outflow

temperature of the storm, h*s is the saturation moist static en-

ergy (MSE) at sea surface temperature, and h*m is the tropo-

spheric saturation MSE. Here we have made use of the fact

that, within the assumption of quasi equilibrium (Arakawa and

Schubert 1974) with a coupled boundary layer, hb 5 h*m, where

hb is the boundary layer MSE.

PI and SST changes result from global (e.g., Sobel et al.

2019) or from local (e.g., Mann and Emanuel 2006) forcing.

Global forcing is generally understood as influencing the whole

tropical region as if it were, on average, in a state of radiative–

convective equilibrium (RCE). In RCE, a positive forcing

causes an increase in sea surface temperature and h*s , which

tends to increase PI, and an increase in h*m, which mitigates the

increase in PI. However, the tropical atmosphere has large

Rossby radii of deformation, especially at low latitudes.

According to the weak temperature gradient approximation

(WTG; Sobel and Bretherton 2000), this means that h*m is al-

most horizontally uniform and can only change globally, not

regionally. The implication is that a local forcing that increases

SST also increases h*s but does not increase h*m since the ad-

ditional energy supplied to the atmosphere is exported in the

form of gravity waves. In the absence of a change in h*m, PI is

much more sensitive to SST changes in a column constrained

by WTG than to changes in RCE (Ramsay and Sobel 2011;

Emanuel and Sobel 2013). Ramsay and Sobel (2011) show that

the sensitivity of PI to SST in anRCE systemwith imposed SST

is around 1m s21 K21, whereas in a WTG-constrained column

it is near 8m s21 K21, which is much larger. The PI–SST re-

gression coefficient found by Vecchi and Soden (2007) in re-

analysis datasets is also close to 8m s21 K21, which suggests

that local forcings and their effects on SST dominate PI vari-

ability worldwide.Corresponding author: Raphaël Rousseau-Rizzi, rrizzi@mit.edu
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For this reason there is particular interest in understanding

the forcings responsible for local SST variability. Here, we

will be focusing on SST as a proxy for PI variability because

SST variability is well measured and studied. In the tropical

North Atlantic (TNA), SST multidecadal variability and the

concurrent effects on PI have been attributed to a variety of

causes such as the Atlantic multidecadal oscillation (AMO;

Zhang and Delworth 2006), sulfate aerosol forcing (Mann

and Emanuel 2006; Booth et al. 2012; Dunstone et al. 2013),

Saharan dust forcing (Strong et al. 2015, 2018), and surface

wind and cloud feedbacks (e.g., Evan et al. 2011, 2016). Some

of these explanations such as dust and cloud feedbacks are

complementary and some, like the AMO and anthropogenic

aerosols, are competing. Hence there exist multiple possible

mechanisms that can act to set the SST in the TNA and that

could help explain hurricane activity variability. Notably, the

‘‘hurricane drought’’ (decreased hurricane activity) of the

1970s and 1980s has resisted a single explanation (e.g., Villarini

and Vecchi 2013). In this paper, we attempt to introduce a linear

framework that can be used to compare and contrast these in-

fluences on SST and PI, using a well-known strong constraint on

tropical thermodynamics, WTG.

Objectives

In this paper, we aim to

1) show that PI perturbations are approximately linear in SST,

with different slopes in WTG and RCE;

2) show that SST perturbations can be partitioned between

local and global components, which allows one to partition

PI variations as well; and

3) evaluate the local and global contributions to PI variability

in the North Atlantic MDR and in other basins.

First, section 2 discusses the theoretical sensitivity of PI to

SST in RCE andWTG, then section 3 describes the SCM setup

and the data and reanalyses used in the study and section 4

describes and explains the results of the sensitivity experi-

ments. Next, section 5 introduces the linear model for PI and

obtains its coefficients, and section 6 applies the model to re-

analysis products. Finally, section 7 discusses the results and

section 8 summarizes and concludes.

2. Analytical estimates

Analytical estimates for PI sensitivity can be obtained fairly

easily forWTG-constrained columns. In such a system, the free

troposphere is constrained to a constant value of h*, a ther-

modynamic variable, but it is not an energetically closed sys-

tem. InRCE, themain constraint in the free troposphere is that

of energy balance, which is much more complex as it relates to

equilibrium climate sensitivity (ECS). For that reason, it is

easiest to approach PI sensitivity in WTG from thermody-

namic forms of the PI equation, and PI sensitivity in RCE from

energy balance forms of the PI equation (e.g., Emanuel 2007).

a. WTG PI sensitivity

We start by taking the derivative of the log of PI Eq. (1) with

respect to Ts, along with the assumption that the outflow

temperature is independent of the sea surface temperature

(dTo/dTs 5 0). In practice, outflow temperatures can vary up to

108C degrees on a seasonal time scale (Gilford et al. 2017) and

could influence long-term PI trends. However, statistically

significant influences on PI have not yet been found in re-

analysis data (Wing et al. 2015). We write
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where subscript s denotes the surface andm denotes any point

in the free troposphere. In the dilute limit, when the water

vapor mixing ratio is much smaller than one, we can write

saturation MSE as

h*5 c
pd
T1L

y
r*1F , (3)

where cpd is the heat capacity of dry air at constant pressure,Ly

is the latent heat of evaporation, r* is the water vapor satura-

tion mixing ratio, and F is the geopotential. Since r* is a

function of T and dry-air pressure pd, h* is a function of T, pd,

and F, and we have

dh*
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s
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Neglecting the sensitivity of latent heat to temperature and

using the equation of Clausius–Clapeyron, we have, within a

few percent,

›h*

›T
’ c

pd
1

L2
yr*

R
y
T2

, (5)

where Ry is the ideal gas constant for water vapor. At the

surface, dTs/dTs 5 1, and the geopotential is constant. We also

neglect the contribution of surface pd changes to saturation

MSE changes so that

›h*

›p
d

dp
d

dT
s

’ 0: (6)

In addition, if we neglect virtual effects, the WTG approxi-

mation implies that h*m does not change in response to local

SST changes. Hence, we can write
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and finally
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This allows one to estimate the sensitivity of PI to SST in a

column in quasi equilibrium (QE) and under a WTG constraint.

Typical values such as To 5 200K, Ts 5 303K, and PI 5 75ms21

yield r*5 27gkg21,h*s 5 3:753 105 J kg–1,h*m 5 3:563 105 J kg–1,

and a sensitivity of about 10.1m s21 K21, which is somewhat

higher than reported in the literature. Since the derivation
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relies only on QE and WTG assumptions, and the result de-

pends only on thermodynamic variables, a departure between

the PI sensitivity estimated from the thermodynamic state

using Eq. (8) and observed or modeled sensitivity must arise

from a violation of either QE or WTG assumptions. For ex-

ample, an environmental profile set by an entraining parcel

could result in a smaller-than-theoretical sensitivity. Next, we

consider the RCE problem, which is a bit more complicated.

b. RCE PI sensitivity

In RCE, PI sensitivity will again be assessed starting from

Eq. (2), but this time, contrarily to theWTG case, dh*m/dTs 6¼ 0,

so that the sensitivity of PI cannot be deduced simply from

thermodynamics. InRCE, and under the assumption of boundary

layer quasi equilibrium, the value of dh*m/dTs arises from the

radiative properties of the atmosphere and the surface, so the

sensitivity of PI relates to the climate sensitivity of the tropics.

Hence, no simple analytical solution is available and progress

can only be made by writing the surface thermodynamic dis-

equilibrium in terms of the energy balance at the surface.

Following Emanuel (2007), we write

F
s
1Q

oc
5 r

d
C

k
jV

s
j(h*s 2 h*m) , (9)

where Fs is the net radiative flux at the surface, Qoc is the

vertically integrated ocean heat flux convergence, and jVsj is
the magnitude of the environmental surface wind speed. The

RHS of the equation is a bulk formulation for the latent and

sensible heat fluxes from the surface in equilibrium. In a cli-

mate change scenario, the response of all of the terms in this

equation needs to be considered, as a change in global radiative

forcing might affect the surface wind speed and the ocean heat

flux convergence as well as the net surface radiative flux. In

equilibrium, we can write

F
atm

1Q
atm

5F
s
1Q

oc
, (10)

where Fatm is the net radiative heat flux integrated over the

whole atmosphere and Qatm is the net dynamical heat flux

convergence integrated over the atmosphere. Any study at-

tempting to assess the full impact of a global forcing on PI

would need to take into account changes in the large-scale

circulation. Here, we focus on the narrower topic of single

column RCE where the wind speed is imposed and there is no

atmospheric heat export. Then, when SST is determined by

energy balance, Qoc 5 0, and when SST is imposed, Qoc is

implied. Equivalently, one could specifyQoc to a nonzero value

and compute SST, again by energy balance. In single-column

RCE, with Qoc 5 0, we can think about the sensitivity of net

surface radiative flux in terms of net atmospheric cooling,

which is a function of the atmosphere radiative properties.

Hence, if we substitute Eqs. (9) and (10) into Eq. (2) and we

neglect changes in near-surface density, we have

2

PI

dPI

dT
s

5
1

T
s
2T

o

1
1

F
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s

2
1

jV
s
j
jV

s
j

dT
s

. (11)

Neglecting wind speed changes for now, we see that the

temperature sensitivity of the turbulent enthalpy (or MSE)

flux, at the surface is equal to that of the net column-integrated

radiative cooling of the atmosphere, Fatm. Obtaining an ana-

lytical estimate for dFatm/dTs is beyond the scope of this paper

but, using a combination of theory and modeling and ac-

counting for water vapor changes only (no CO2 changes),

Jeevanjee and Romps (2018) show that, in RCE,

1

F
atm

dF
atm

dT
s

’ 3%K21 . (12)

If we then take surface wind speed, exchange coefficients,

and density to be fixed and we substitute this in the formula for

PI along withTo5 200K,Ts5 303K, and PI5 75m s21, we get

dPI

dT
s

’ 1:5m s21 K21 , (13)

which is very close to the simulation estimate of Ramsay and

Sobel (2011). Interestingly, 1/4 of the total PI sensitivity comes

from that of the thermodynamic efficiency. This indicates that,

in the global atmosphere, hypothetical changes of outflow

temperature of the same order of magnitude as changes in

surface temperature could strongly enhance or mitigate the PI

sensitivity.

Now if the wind speeds are allowed to vary and we take the

mean wind to be 5m s21, and the associated sensitivity of SST

to wind speed to be approximately 21K sm21 [based on

Emanuel and Sobel (2013)], we get a contribution to PI sen-

sitivity of approximately 10% K21, or 7.5m s21 K21, due to

wind speed changes alone. This sensitivity is much larger than

that due to surface temperature changes at fixed wind speeds

because the fractional variation of wind speed is much larger

than that of net surface radiative heating, for a given temper-

ature change. This sensitivity is similar to that of PI under a

WTG constraint, which we will discuss in section 4. Since

tropical SST changes on the large scale are attributed mostly to

changes in radiative forcing, and not to large-scale changes in

wind speed, we can expect the observed large-scale PI sensi-

tivity to be closer to 1.5 than to 7.5m s21 K21.

3. Methodology

Next we obtain the sensitivity of PI to SST in simulations. We

use the Massachusetts Institute of Technology (MIT) single-

column model (Bony and Emanuel 2001), which uses the con-

vection parameterization of Emanuel and �Zivković-Rothman

(1999) and the radiation parameterizations of Fouquart et al.

(1980) and Morcrette (1991). The simulations use vertical pro-

files of cloud fraction that are fixed in pressure because allowing

the cloud fraction to evolve adds a lot of noise to the sensitivity

experiment results. That choice means that the altitude of the

cloud profile increases slightly when the air column warms.

Water vapor and its effects on radiation are allowed to evolve.

The ocean is a 2-m-deep slab ocean, to allow for sea surface

temperature to vary and to maintain energy balance in RCE,

except for the prescribed SST simulations. The small depth of

the ocean allows the system to reach equilibrium faster. In this

study we are not concerned with the time scales of the evolution

toward equilibrium, hence this choice does not affect the results.
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We run four series of experiments in RCE and three series

under a WTG constraint. To enforce the WTG constraint, a

large-scale vertical velocity profile is computed at each time

step above 850 hPa, such that the associated temperature and

moisture tendencies maintain the initial virtual temperature

profile exactly. Under the 850-hPa level, the virtual tempera-

ture is allowed to evolve freely. We test the sensitivity of the

RCE state to CO2 concentration, and we test both the sensi-

tivity of RCE columns and of WTG-constrained columns to

dust aerosol direct effect, to prescribed SST variations, and

to near-surface wind variations. CO2 is varied from 200 to

800 ppm, dust aerosol optical depth (AOD) is varied from 0 to

1, imposed SST is varied from 28.6 to 32.6K, and surface wind

speed is varied from 3 to 14m s21. The effect of imposing SST

can be likened to imposing some value of column-integrated

ocean heat flux convergence. The variety of sensitivity exper-

iments aims to confirm that the choice of dynamical constraint

(either RCE or WTG) has a more important influence on the

PI–SST relation than does the precise cause of the system

perturbation. These experiments are very similar to those of

Emanuel and Sobel (2013), who perturbed CO2, SST, surface

winds, and the solar constant in RCE and WTG simulations.

The main difference between our choice of experiments and

theirs is that where they modified the solar constant, we per-

turbed dust aerosol concentrations. Since dust is a fairly ab-

sorptive aerosol, it acts to heat the atmosphere as it cools the

surface.

All simulations are perturbed with respect to a control case

which we try to choose as representative of the mean state

over the TNA main development region (MDR) during the

August– October hurricane season (ASO). In RCE sensitiv-

ity experiments, the chosen control case broadly defines

the center of the parameter space to be explored and all

simulations are independent from one another. In the WTG-

constrained column however, the control case also deter-

mines the virtual temperature profile above the 850-hPa level

based upon which the WTG vertical velocities will be com-

puted. In reanalysis (NOAA 20CR), the mean near-surface

wind speed during ASO in the MDR is 4.8m s21, so we take

our control case to have a near-surface wind speed of 5m s21.

We will use a dust optical thickness of 0.3 as the ASO MDR-

averaged baseline based on Evan andMukhopadhyay (2010).

The control case has 360 ppm CO2, which is representative of

the near past.

In our simulations and in reanalysis data, PI is computed

using a nonlinear iterative algorithm developed by Bister and

Emanuel (2002), which takes as an input sea surface temper-

ature and vertical profiles of pressure, temperature, andmixing

ratio. The algorithm is used instead of Eq. (1) because it ac-

counts for cases where the atmosphere is stable to boundary

layer parcels [which Eq. (1) does not] and also accounts for the

pressure feedback within the TC. When the atmosphere is not

stable, the values and climate sensitivities of PI computed using

the algorithm of Bister and Emanuel (2002) are fairly similar to

those resulting from Eq. (1). Merlis et al. (2021) found the

relative departure of the PI values from both methods to be

just a few percent in Earth-like conditions, while the PI sen-

sitivities departed by about 17%. In any case, these differences

should not matter too much for us since the coefficients of the

linear model will be determined based on algorithm PI com-

putations and will be compared to data computed similarly. In

cases where the boundary layer decouples from the free tro-

posphere, PI can be multivalued. For example, an existing

storm translating into such an environment could be sustained

and strong (upper PI value), but a new storm could likely not

develop (lower PI value) in this environment. This decoupling

occurs when the outflow temperature (similar to the level of

neutral buoyancy) is very different for a boundary layer parcel

and for a parcel saturated at sea surface temperature and

eyewall pressure. When computing PI in simulations, we pur-

posely select the lowest of the possible PI values in the few

cases where the BL is decoupled because the sensitivity of the

high PI value is nonmonotonic across a decoupling of the

boundary layer and hence the low PI value is more appropriate

to the development of a linear model. A consequence of this

choice is that our model will be more appropriate for evalu-

ating PI for the purpose of weak or developing storms when

decoupling occurs. Situations where decoupling affects the

results will be discussed. In reanalysis data, we use the im-

plementation of the algorithm transcribed for Python by

Gilford (2020).

4. Sensitivity experiment results

Figure 1 introduces the results of the sensitivity experiments.

Each point in the figure represents either PI or Ts at equilib-

rium in one simulation, plotted against the corresponding

perturbed parameter.

a. CO2 sensitivity

In the CO2 panels, we can see PI leveling off as temperature

increases. This is partly due to the effect of high CO2 concen-

trations where the net infrared flux to the surface stops in-

creasing with temperature which causes the PI profile to flatten

even though SST keeps increasing (e.g., O’Gorman and

Schneider 2008). In addition, the fixed cloud profile used in the

simulations increases stability near the outflow of the TCs,

which prevents PI from increasing further. In our simulations, a

doubling of CO2 is associated with an SST change of 1.5–2K,

which is on the low end of the response expected from Earth’s

climate.

b. Imposed SST sensitivity

In the next experiment, SST is imposed, which is why the

SST plot has a unique slope of 1. The values are the same for

both RCE and WTG. The PI–SST relationship conforms

reasonably well with the literature, with a slope of about

1.6m s21 K21 in the RCE experiment, and a slope of about

9m s21 K21 in the WTG experiment. The RCE slope is very

similar to the 1.4m s21 K21 slope of Ramsay and Sobel (2011)

and small modeling differences, such as control simulation

background wind, can easily account for the difference. The

WTG slope is somewhat higher than the 7.6m s21 K21 in-

troduced by Ramsay and Sobel (2011), which may be due to

the fact that in our simulations, the boundary layer decou-

ples from the free troposphere at low temperatures, which
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causes a slightly sharper decrease in PI. These plots do not

provide much new insight, but confirm that the simulations

are not very different from results from the literature.

c. Aerosol sensitivity

Now looking at the sensitivity of SST to aerosol optical

thickness variations, we notice that the slope of SST inWTG is

much smaller than that in RCE (21K per unit AOD by

comparison to 28K). We surmise that this is due to the at-

mospheric heat transport by gravity waves implied by the

WTG parameterization, which prevents any strong feedback

between the atmosphere and the ocean and makes SST less

sensitive to aerosol forcing. An interesting consequence of this

difference in SST sensitivities to aerosol forcing is that the PI

sensitivity to aerosol forcing in RCE is larger than that in

WTG, even though the PI–SST slope is much steeper in WTG

(as will be seen in Fig. 2). Interestingly, this suggests that the

reason why PI variability is dominated by local variability is

that the local variability of forcings (like ocean heat flux con-

vergence or aerosol forcing) is much larger than the global

variability, and not because PI is intrinsically more sensitive

to a given forcing in WTG than in RCE (if anything, it is less

sensitive).

d. Wind sensitivity

The wind sensitivity experiments test wind speed variations

from 3 to 14m s21 in unit increments. In contrast to other pa-

rameters, which produce very different responses in RCE and

in WTG, the results of the wind sensitivity experiments are

similar in both cases. Not only are both SST–jVj relations

similar, the PI–jVj relations are as well, and both cases have PI–
SST slopes close to 9m s21 K21. One way to understand this

similarity is that, in RCE, if we neglect the change in longwave

radiation emitted by the surface and assume a constant Bowen

ratio, then the atmospheric properties remain identical as

surface wind speeds change, and the ocean temperature adjusts

to keep the turbulent heat flux constant. This lack of tropo-

spheric temperature change is very similar to what would

happen in a WTG scenario, and correspondingly, surface wind

perturbations in WTG do not cause large compensating ver-

tical velocities. In other words, under the assumptions men-

tioned above, both cases are equivalent.

5. Linear PI model

The idea we are pursuing here is to partition annual to

multidecadal potential intensity variations between global

perturbations to the state of the tropical atmosphere, approx-

imated to be in RCE, and local perturbations to that RCE

state, approximated to occur under a WTG constraint. To

achieve this goal, we start by showing that changes of PI in both

RCE and WTG can reasonably be assumed to vary linearly

with SST within the domain of observed SST variation.

Hereafter, we write PI5 PI01 dPI andT5T01 dT, where PI0
and T0 are climatological mean values in a given basin, and dPI

and dT are departures from that mean.

Figure 2 shows the change of PI for a given change in SST,

with respect to a reference state and for all sensitivity experi-

ments. The domain of the simulations plotted is restricted to

62K to outline realistic variations with respect to the control

FIG. 1. Sensitivity of (top) PI and (bottom) SST to changes in (left to right) CO2 concentration (black), aerosol optical depth (blue),

imposed SST (red), and near-surface wind speed (gray). All plots superimpose the RCE experiments (circle) to the WTG experiment

(squares), except for the CO2 experiment, which is only performed in RCE.
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case. As one can see, all the experiments fall more or less along

two distinct linear slopes (especially near the origin). The

shallower slope (1.8m s21 K21) is a regression of dPI on dT for

all RCE experiments plotted in this figure, except the wind.

The steeper slope (9.0m s21 K21) is a similar regression for the

aerosol, SST, and wind experiments inWTG that are plotted in

this figure. The wind experiment was excluded from the RCE

case because it behaves similarly to the WTG case, and that

remote wind changes should not impact PI much, by compar-

ison to remote SST or radiative forcing changes. The relation

between dPI and dT for imposed SST in WTG does not look

as linear, because a decrease in SST from the control case

leads to the uncoupling of the boundary layer from the tro-

posphere. Those regression slopes are similar to, if somewhat

larger than, the reanalysis PI sensitivity (Vecchi and Soden

2007) or other modeled relations (Ramsay and Sobel 2011).

To plot this figure and compute the regression, we have

selected a similar number of simulations for each sensitivity

experiment included, roughly equally spaced to span the dT

domain. More precisely, in RCE we have used CO2 values

ranging from 200 to 760 ppm in 40 ppm increments, SST

values ranging from 28.6 to 32.6 K in 0.5-K increments,

aerosol AOD values ranging from 0 to 0.5 in 0.05 increments,

and the wind experiment has not been included in the re-

gression. In WTG, we have used the same SST values as in

RCE, aerosol AOD values ranging from 0 to 2 in 0.3 incre-

ments and wind values ranging from 3 to 12m s21 in 1m s21

increments. The experiments are selected to span realistic

temperature variations without using simulations with im-

plausibly large environmental perturbations. For example,

even though the WTG aerosol experiment does not span the

full 62-K range, an AOD of less than 0 is impossible and an

AOD of more than 2 is implausible, hence we selected

simulations within the 0 to 2 range. We note that, as reported

in the literature (e.g., Sobel et al. 2019), there are differences

in the PI–SST relations between experiments in RCE. For

example, RCE PI is more sensitive to SST under an aerosol

forcing than under a CO2 forcing. However, this is not a

problem for our model since the difference between the RCE

and WTG cases is much larger.

This suggests that we can express PI as two linear functions:

one forWTG and the other for RCE perturbations. To achieve

this, we need to partition observed SST perturbations between

their RCE and WTG components. To do so, we consider the

fact that, in theory, under the WTG constraint, changes to the

midtropospheric saturation MSE (dh*m) should be due to

changes in the RCE state. To simplify the problem, we seek a

unique function relating dh*m to dTR, the SST change in RCE.

Figure 3 shows the RCE sensitivity experiments introduced

earlier, plotted in dT–dh*m space. The WTG simulations are

omitted as h*m does not change with SST in WTG. Second, we

note that most RCE simulations fall on a single profile that is

quite linear over the plotted domain. That profile does not vary

much between sensitivity experiments. The regression coeffi-

cient for dPI and dT for all RCE experiments but the wind is

about 2.28 3 1024 kgK J21. Finally, we note that h*m changes

nonmonotonically with SST in the RCE-wind sensitivity ex-

periment. This is due to the model transitioning between two

stable configurations and is a consequence of using a single

column model. Both configurations exhibit negative correla-

tions between dT and dh*m, which may be due to the fact that, in

the simulations, a wind increase leads to a decrease of SST

while increasing the moisture (and hence greenhouse gas)

content of the atmosphere. This in turn seems to lead to a

warmer atmosphere despite the colder surface. We circumvent

those considerations by noticing that local changes in winds are

much larger than tropics-wide changes (which is supported by

reanalysis) and by neglecting the wind contribution to RCE

FIG. 3. As in Fig. 1, but in dSST–dh*m space.

FIG. 2. Plot of dPI against dT for CO2 (black), fixed SST (red),

dust aerosol (blue), and surface wind (gray) sensitivity experiments

in RCE (circles) and in WTG (squares). Linear fit for the dPI–dT

relations in RCE (black) and in WTG (gray).

8674 JOURNAL OF CL IMATE VOLUME 34

Brought to you by MIT LIBRARIES | Unauthenticated | Downloaded 10/08/21 10:04 AM UTC



changes altogether. This leaves us with two linear slopes for the

dPI–dT relation in RCE and WTG and one for the dT–dh*m
relation in RCE.

a. A linear model informed by theory and a single-
column model

To develop a linear model for dPI as a function of dT and

dh*m, we first partition dT, the total SST change, between SST

changes in RCE, and a perturbation with respect to the RCE

state. We pose

dT5 dT
R
1 dT

W
, (14)

where dTR is the SST change inRCE, and dTW is the remainder

of the total SST change. Then, dTR can be related to dh*m by

posing

dT
R
5C

m
dh*m , (15)

wherem refers to themidtroposphere and, fromFig. 3, we have

Cm 5 2.28 3 1024 kgK J21 as a constant. Defined in that way,

the PI sensitivity to dTR should be the PI sensitivity to SST in

RCE. The remainder dTW, which is given by

dT
W
5 dT2C

m
dh*m , (16)

is not associated with any change in h*m and will control PI as if

in WTG, hence the subscript W. Adding in the linear coeffi-

cients for PI sensitivity in RCE and WTG from Fig. 2, we in-

troduce the fundamental partition we want to make:

dPI5C
R
dT

R
1C

W
dT

W
, (17)

where CR 5 1.8m s21 K21 and CW 5 9.0m s21 K21, corre-

sponding in theory to the sensitivities given by Eqs. (8) and

(12). The quantity dT can be readily retrieved from models or

observations. The quantity dh*m is a function of temperature

and geopotential on a given pressure level, and can also be

retrieved from reanalysis products. Combining the equations,

we obtain

dPI5C
R
C

m
dh*m 1C

W
(dT2C

m
dh*m) , (18)

where the first term on the RHS is the contribution to PI

changes from changes to the RCE state, and the second term is

the contribution from changes in the WTG state. Rearranging

to combine the predictors we get

dPI5C
m
(C

R
2C

W
)dh*m 1C

W
dT . (19)

Here the physical interpretation of the two terms changes to

provide further insight. Since CW . CR and Cm. 0, we can see

that the coefficient of the first term is negative, which reflects

the fact that a positive dh*m, in the absence of a compensating

increase in SST, will cause a decrease in PI. Conversely, the

second coefficient is the large positive increase in PI that occurs

when SST increases locally, while the midtroposphere remains

fixed. The coefficients for this form of the equation can be

obtained from both the SCM and from a linear fit based on

reanalysis data, and compared to verify the model.

b. Unsteadiness

We note that the component of SST or PI we called ‘‘WTG’’

is for now just a component that departs from the RCE state

and does not entail that the SST perturbation is local in space.

This will have to be verified using reanalysis data. Consider the

application of the linear model to the time-dependent evolution

of single-column simulation toward RCE. If our linear model is

correct, we should be able to reproduce PI variations based only

on the departure of dT and dh*m from the initial conditions. For

example, let us consider the evolution of the fixed SST simula-

tion where SST is perturbed by 22K. Initially, as shown by

Fig. 4, we have dPI5 CWdTW and the PI perturbation does not

reflect any RCE change. For this plot, we have arbitrarily taken

CW 5 8.2m s21K21 for best results. This is slightly smaller than

the value of the PI sensitivityCW obtained by regression over all

WTG simulations, but it is still within the confidence interval.

Our only goal here is to show that PI can be represented at each

point in the evolution by a linear model. As time goes on, the

RCE component increases and the transient component de-

creases. At the end, as the system has reached RCE, dPI 5
CRdTR, and there is no more departure from RCE.

In between the initial time and equilibrium, dTR increases

and dTW decreases, and if we substitute both time-dependent

values in Eq. (17), we can reproduce the evolution of PI as

captured by the Bister and Emanuel (2002) algorithm.

This means that a linear model cannot, on its own, distin-

guish between WTG perturbations and transience, but it can

identify the part of SST variations that is coherent with anRCE

state. To show that the remainder of SST variations corre-

sponds to a state inWTG, we need to apply the linear model to

reanalysis data, and show that the use of a tropical average

value of dh*m is sufficient to capture PI variations.

6. Application to reanalysis products

To verify that the linear model captures PI variations, we

apply it to ERA5 (Hersbach et al. 2020) monthly averaged data.

FIG. 4. Evolution of PI toward RCE in a fixed SST single-column

simulation, when SST is perturbed by 22K. Time series of algo-

rithm PI (black) and linear model PI (gray) and the equilibrium

(red) and transient (blue) components of linear model PI. The red

and the blue lines correspond respectively to the first and second

terms on the RHS of Eq. (17), respectively.
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The resulting linear model PI (LPI) variations are then compared

to a reference PI dataset computed using ERA5 data and pyPI

(Gilford 2020), a Python package for the nonlinear iterative al-

gorithm developed by Bister and Emanuel (2002). The PI dataset

was graciously provided by Daniel Gilford. In this dataset, which

is most appropriate for the study of the maintenance of TCs, the

highest value of PI is selected when a decoupled BL results in a

multivalued PI.Aswewill show, this causes linear PI variability to

be underestimated in ocean basins where decoupling occurs

frequently. To compute LPI for each basin, the saturation

MSE predictor dh*m, which is assumed to be uniform over the

tropics, is averaged over the 600-hPa pressure level from 208N
to 208S and at all latitudes, and the sea surface temperature

predictor dT is averaged over each tropical ocean basin sep-

arately. The averaging of PI and SST excludes land in all

basins. As shown in Fig. 5, we define five ocean basins in total;

the North Atlantic (NA), eastern North Pacific (EP), western

North Pacific (WP), northern Indian Ocean (IO), and a single

large basin for the Southern Hemisphere (SH), in the Pacific.

Tomake sure that the quantities computed are relevant to TC

activity, PI variations are computed from predictors averaged

over the tropical storm season of each basin respectively.

We then apply the linear model to the spatially and sea-

sonally averaged predictors to compute one value of PI per

basin per year. In the reference PI dataset provided by Daniel

Gilford, pyPI is applied to ERA5 monthly averaged SST and

vertical profiles of p, T, and r at each latitude–longitude point.

The PI dataset is also averaged over each basin and over the

corresponding tropical storm season. A comparison between

LPI and the algorithm PI allows one to evaluate the linear

model, but to ensure that our SCM-derived coefficients are

valid, we also compute a linear fit of the algorithmPI to our two

LPI predictors, dT and dh*m. This is equivalent to employing

Eq. (19), with the coefficients of both predictors determined

statistically rather than numerically. To sum up we are left with

three ways to compute potential intensity: LPI, algorithm PI,

and linear fit PI.

Figure 6a shows that, in the tropical North Atlantic main

development region (MDR), LPI captures very well the

variations of the algorithm PI (R 5 0.97) and is almost in-

distinguishable from the linear fit PI. This shows that dTs

and dh*m are a good choice of predictors, and also that the

SCM-derived coefficients are very close to the linear fit

coefficients (as we will see later). This suggests that we can

interpret past PI variations in light of the SCM-derived

coefficients, which provide physical meaning. In addition,

the excellent performance of the linear model in capturing

the interannual algorithm PI variations suggests that the

nonlinearities and the iterative process involved in the al-

gorithmic computation have a fairly small impact on PI

sensitivity (or cancel out), at least over the range of con-

ditions tested in this paper.

In Fig. 6b, we have used Eqs. (15) and (16) to partition the

variations of SST into WTG and RCE contributions in the

MDR. We can see that while the variations of dTR have been

smaller than those of dTW over the last 40 years, the magnitudes

are comparable. dTR exhibits a positive trend in time that is

likely due to global warming. The detrended variability in dTR

correlates well with theNiño-3.4 index (R5 0.67 with a 3-month

lag and R5 0.5 without any lag, not shown) because large-scale

ocean heat flux has an important influence on the tropical at-

mosphere. Determining the causes of dTW, or dPIW, variability

exceeds the scope of the present study and will be the topic of a

subsequent paper. Causes can include aerosol radiative forcings,

wind-induced surface heat exchange, and ocean circulations like

the Atlantic meridional overturning circulation.

FIG. 5. Tropical ocean basins for PI analysis plotted over a map of average PI in ERA5 from 1979 to 2018. SST is

averaged seasonally and over each basin: North Atlantic (NA; blue), east Pacific (EP; green), west Pacific (WP;

red), Indian Ocean (IO; yellow), and a large basin for the Southern Hemisphere (SH; magenta). The seasons are

defined as follows: the NATC season is August–October, the EP TC season is June–September, theWPTC season

is July–November, the IO TC season is April–November, and the SH TC season is January–May. Midlevel satu-

rationMSE is averaged over the area enclosed by the two black dashed lines and is averaged over the TC seasons of

each basin separately.
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Finally, in Fig. 6c we look at the partition of PI variations

into global (dPIR) and local (dPIW) contributions. Clearly, in

the MDR, the global contribution to PI variations is negligi-

ble compared to the local contribution, in the last 40 years.

However, even though dPIR is small, we still need to know dTR

in order to be able to estimate dTW and have an accurate es-

timate of dPIW, which dominates the variability. Note that the

fact that global effects on PI are small in the Atlantic MDR

does not mean that they are small poleward of the tropics.

a. Other basins

Figure 7 shows the coefficient of determination (R2) of the

linear model in all ocean basins; as we can see, LPI reproduces

algorithm PI well in all basins. The basin with the smallestR2 is

the eastern North Pacific with 80% of the interannual PI var-

iance captured by LPI. The maximum variance explained

by the model is 95%, in the North Atlantic. It is not surprising

that the linear model works best in the North Atlantic MDR

since the simulations from which the model coefficients are

derived vary around a control simulation designed to resemble

the conditions over that basin. Figure 7 also shows the fraction

of variance that can be explained by a statistical fit of PI to SST

and h*m. As we can see, the statistical fit improves little upon the

SCM-derived linear model, ranging from no improvement in

the NA to a 3% improvement in the WNP. This suggests that

the SCM-derived coefficients are close to the statistical fit co-

efficients, which will be verified in the next section.

To illustrate the relative roles of global and local influences,

Fig. 8 shows the partition of SST between local and global

contributions, in the four additional basins. Since the global

contribution to SST depends only on dh*m, which is averaged

over the whole tropics and is common to all basins, the only

difference between the dTR time series across different basins

is the averaging season. If two basins had the same TC season,

they would have the same dTR every year. In basins that have

much smaller SST variability than the NA, like the IO or the

SH, the local contribution to SST changes dTW is smaller than

dTR. In the SH basin dTR very clearly shows El Niño events,

notably in 1983, 1998, 2010, and 2016, because the averaging

includes themonths of January and February, during which the

events tend to reach peak magnitude. We have not included a

figure showing the partition between dPIR and dPIW for all

basins because the information can be retrieved by multiplying

dTR by CR 5 1.8m s21 K21 and dTW by CW 5 9.0m s21 K21.

The time series of dPIR is similar across all basins and is

everywhere smaller than dPIW with the difference being largest

in basins with large SST variability like the ENP.

b. Reanalysis coefficients

So far we have shown that LPI correlates well with algorithm

PI across all basins. Next, we want to show that the coefficients

derived from the SCM simulations have a physical meaning

FIG. 7. Coefficient of determination between algorithm PI and

LPI (black bars), between algorithm PI and a statistical fit based on

SST and h*m (dark gray bars), between algorithm PI and SST (pale

gray bars), and between algorithm PI and a statistical fit based on

mean SST and SST anomaly (white bars), for each basin.

FIG. 6. (a) Time series computed over the North Atlantic MDR

and ASO of ‘‘true’’ algorithm dPI (black), of dPI estimated using

the SCM-derived linear model (blue), and of dPI estimated using

an in-sample linear fit on dT and dh*m (gray). (b) Time series of SST

change (dT) over the MDR and averaged over hurricane season

partitioned between its RCE (red) and WTG (blue) components.

(c) Partition of dPI averaged over the MDR and ASO, between its

RCE (red) and WTG (blue) components.
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that can be used to interpret PI variations in reanalysis data.

To do so, we obtain linear fit coefficients by regressing PI on

dT and dh*m in ERA5. This yields a formula of the form

dPI5C1dT1C2dh*m. This linear fit PI is plotted in gray in

Fig. 6a and unsurprisingly also captures PI variation very well.

Comparison of the linear fit with Eq. (19) yields that, if the SCM

model assumptions are valid, then C1 5 CW and C2 5 Cm(CR 2
CW). Figure 9a shows coefficient CW derived from SCM simu-

lations (same as in Fig. 2) along with coefficient C1 5 CW for

each ocean basin, in black. The regression coefficients are

plotted with 95% confidence intervals where intervals are

computed using the Wald method. For example, our 95% con-

fidence interval on theWTG coefficient is given byCW6 s(CW)

t(120.05/2,n22) where s(CW) is the standard error of the estimate

of the coefficient, and t(120.05/2,n22) is the 97.5th percentile of the

t distribution with n 2 2 degrees of freedom (where n is the

number of points). This shows that, except for EP, the coeffi-

cients from all ocean basins are indistinguishable from the

SCM-derived coefficient. The reason why EP has a different

coefficient will be explained below. The red 3 markers denote

analytical estimates for coefficient CW, obtained from the con-

trol simulation and each basin, by applying Eq. (8). For both the

SCM simulation and the NA basin, the empirical estimates are

just slightly lower than the theoretical estimates, while for the

EP it is much lower. For the WP, IO and SH basins, both the

empirical and theoretical estimates are statistically indistin-

guishable. The analytical estimates are similar for all basins and

for the SCM simulation, with less than a 1m s21K21 difference

between the highest and the lowest value. The good agreement

between the SCM coefficient and the empirical and theoretical

coefficients over each basin suggests that, in both the SCM and

reanalysis data, the QE assumption is satisfied, or at least that

the departure from QE is not very climate sensitive. Figure 9b

shows the combination of coefficients Cm(CR 2 CW) derived

fromSCMsimulations alongwith coefficientC25Cm(CR2CW)

for each ocean basin.Although there is a lot of uncertainty on the

coefficients in some basins, like in the EP, all uncertainty bounds

overlap so that all coefficients are indistinguishable from a value

of about 21.5mkg s21 J21. The negative value implies that,

for an unchanged SST, if h*m increases, potential intensity must

decrease.

In Fig. 9a, we have also plotted a coefficient of linear re-

gression of PI on SST alone such that dPI ’ C3dT. Since dT is

positively correlated with dh*m (not shown), the coefficient C3

must be smaller than CW. If the correlation was perfect we

should have C3 ’ CR, so CR and CW are essentially lower and

upper bounds onC3. In our Fig. 9a, the SH basin, which has the

largest correlation between dh*m and dT has the largest differ-

ence betweenC3 andCR, and conversely for the EP basin, which

has the smallest correlation. This is worth pointing out because it

contextualizes the use of SST alone as a predictor of tropical

cyclone intensity: it only works well if that SST is independent of

midtropospheric conditions. To support this, we look at the co-

efficients of determination for SST alone in Fig. 7 and notice

they are always smaller than the R2 of the SCM-derived model,

which also includes dh*m. The difference is again largest in the SH

basin, where the correlation between dh*m and dT is strongest.

7. Discussion

Our results outline the importance of coefficient CW in de-

termining the magnitude of PI variations associated with a

given SST perturbation. In addition, Cm allows one to define

that perturbation based on the mean tropical state and is also

important. On the other hand, in the Atlantic, CR is not very

important up to multidecadal time scales because RCE PI

changes account only for a small fraction of the total. We want

to emphasize that this may not hold at longer time scales. The

local coefficients CW found here are larger than those pre-

sented in Vecchi and Soden (2007), which relied on fitting

FIG. 8. Time series of SST change (dT) averaged over each basin and the corresponding TC season partitioned

between their RCE (red) and WTG (blue) components for (a) the eastern North Pacific, (b) the western North

Pacific, (c) the northern Indian Ocean, and (d) the Southern Hemisphere basin.
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algorithm PI to a temperature anomaly computed with respect

to the tropical average at each time step. This method is the

equivalent to setting dTW 5 dT2 dT , where dT are tropical

mean SST changes. In addition, it assumes dPIR 5CRdT’ 0,

and we indeed have found dPIR to be small. So the main dif-

ference lies in the assumption that dT is representative of dh*m,

which depends not only on SST, but on the degree of coupling

of the sea surface to the atmosphere. We illustrate this as-

sumption in Fig. 10, where we show a time series dT averaged

over the tropical North Atlantic hurricane season, along with

Cmdh*m averaged over the same season. As we can see, in

general, dT } dh*m, with a correlation coefficient R 5 0.81. The

linear regression coefficient between both variables over the

last 40 years is (2.69 6 0.64) 3 1024 kgK J21, which is indis-

tinguishable from the value of the coefficientCm obtained from

the SCM simulations. This is interesting because the value of

Cm, and by extension that of CR, are expected to depend not

only on the atmospheric cooling rate, but also sensitively on the

level of coupling between the sea surface and the boundary

layer. We assumed this coupling to be fixed in the derivation of

Eq. (11) and in the computation of Cm and CR from simulation

results, where we left the wind experiment out of the regres-

sion. Hence this result suggests that large-scale changes in

coupling, for example due to global trade wind changes, were

not very important on multidecadal time scales in the last 40

years. It also suggests that the a priori assumption we made,

namely that changes in surface winds could be excluded from

the computation of Cm and CR, is valid, at least for the period

considered. However, we notice that fairly large departures

between dT and Cmdh*m occur during El Niño years, where

large changes in the pattern of SST are associated with changes

in the level of coupling between the ocean and the atmosphere,

on a large scale. Hence, on multidecadal time scales, the as-

sumption dT } dh*m seems a good one, but it seems less robust

when aiming to capture the effects of interannual variabil-

ity on PI.

Next, we compare methods based on tropical average and

perturbation to the method introduced here. In Fig. 7, we show

the fraction of PI variance that can be explained by a statistical

fit of PI to both mean SST (dT) and SST anomaly (dT2 dT).

As we can see, the linear model introduced here explains sys-

tematically more variance than the simple fit based on SST

mean and anomaly. However, we also note that the fit based on

SST mean and anomaly explains more variance than the fit

based on basin SST alone, which does not account for large-

scale changes. As expected, the difference is most important in

the SH basin, where basin SST is most correlated with tropical

mean SST.

a. The eastern Pacific

TheEP basin stands against an oceanic boundary with lots of

cold water upwelling, which causes the BL to decouple from

the free troposphere much more frequently than occurs in

other basins. This decoupling causes PI to be multivalued and

causes the high PI value to vary nonmonotonically in tem-

perature, increasing for a while as temperature decreases and

the boundary layer decouples, before decreasing again. This

nonmonotonicity results in a lower PI variability than pre-

dicted by the SCM linear model over the same range of

temperatures. In other words, this is the reason why the EP

FIG. 9. (a) Linear model coefficients CW derived from the SCM

simulations (blue; SCM label) and derived from ERA5 PI regres-

sion on both dT and dh*m (black; basin labels), analytical estimates

of CW using Eq. (8) (red3), and coefficient of ERA5 PI regression

on dT only (gray). (b) Combination of linear coefficients Cm(CR 2
CW) derived from the SCM simulations (blue; SCM label) and

derived from ERA5 PI regression (black; basin labels). The error

bars denote 95% confidence interval on the regression coefficients.

FIG. 10. Comparison between tropical mean SST (black) and an

estimate of SST representative of global changes by our linear

model (red). Both quantities are averaged over the North Atlantic

hurricane season.
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linear fit CW coefficient is considerably lower than the linear

model CW in Fig. 9a.

To show that this is the case, we consider that the PI

computation algorithm (e.g., Gilford 2020) is based on the

equivalence between thermodynamic disequilibrium and the

difference between environmental CAPE and saturation CAPE.

The algorithm also includes a nonlinear operation that specifies

that the environmental CAPE cannot be less than zero for the

purpose of the PI computation. This condition is usually applied

when the boundary layer decouples; when applied, it breaks the

equivalence between thermodynamic disequilibrium and the

difference of CAPEs. Hence, when the boundary layer decou-

ples, the square root of the thermodynamic disequilibrium be-

comes less correlated with PI computed with the algorithm. This

tells us that frequent boundary layer decoupling should decrease

the correlation between algorithm PI and the square root of the

thermodynamic disequilibrium, which we can test. Figure 11

shows this correlation for all basins and outlines that that the BL

decouples far more often in the EP than in other basins. Indeed,

the correlations are about 0.95 for all basins except the EP, where

it is 0.65.

b. Applications

The goal of this study is to provide a framework for quan-

tifying the causes of PI variability in the tropics. So far, we have

shown that PI variations are well captured by a novel linear

model based on two simple and intuitive predictors. This

linearity of PI, along with the fact that the model coefficients

have a clear physical meaning, constitutes the basis of our

framework. First, the linearity of PI will allow us to study the

different local influences on SST perturbations independently

from one another and then convert the SST perturbations

corresponding to each influence on PI perturbations. For

example, if it is known that dust aerosol forcing accounts for

twice as much TNA SST variability as ocean heat flux con-

vergence, then it also accounts for twice as much PI vari-

ability. Then, the physical meaning of the model coefficients

allows us to obtain information on the cause of PI changes

since SST and PI can be partitioned between an RCE com-

ponent, corresponding to large-scale changes to the tropical

atmosphere, and a WTG departure from those large-scale

changes.

The coefficient CW derives from Clausius–Clapeyron and

could apply to any departure from RCE, but the fact that the

tropical average h*m predictor greatly improves the linear model

confirms that these departures occur in WTG. Throughout all

basins, PI variations are dominated by WTG variations, at least

over the last 40 years, which suggests that changes in SST pat-

terns due to global change might be more important for PI and

TC activity than the changes in global mean temperature

themselves. This highlights that any small domain simulation or

idealized model that attempts to capture the response of SST

and PI to local parameter changes should be constrained by

WTG. The coefficient Cm, however, is a fundamental property

ofEarth’s atmosphere that can be related to atmospheric cooling

and indicates the slope of the relation between midlevel satu-

ration entropy and SST. This coefficient outlines why PI is rel-

atively insensitive to global warming over the period considered

in the study. Because the changes of surface coupling and

poleward energy transport were not large enough to greatly

influence Cm over the last 40 years, an SCM was sufficient to

estimate its value. However, to capture the response of PI to

global change over a much longer period a global climate model

is probably more appropriate, since the SCM can provide no

insight on surface coupling or poleward energy transport.

We note that those coefficients were derived from equilib-

rium simulations but do not actually require a steady state to be

applicable. For example, if large-scale oceanic fluxes like those

due to ENSO increase rapidly and heat up the atmosphere,

small remote basins like TNA will see a drop in PI before their

temperature adjusts, and an increase afterward. Conversely,

rapid changes in large coupled basin SST will result in large

basin PI changes before the atmosphere has time to adjust, and

moremodest ones afterward. For example, the 2015/16 El Niño
event is clearly visible in Fig. 8, where there is a large increase

in WTG-like perturbation temperature in the EP basin, and a

correspondingly large decrease in theWP basin. In those plots,

the fraction of SST that correlates with h*m is not very large,

outlining that the atmosphere has not adjusted yet to these

perturbed SSTs during the boreal summer. Early the next year,

during the averaging season of the SH in the austral summer,

we can see that the RCE temperature component is much

larger while the absolute anomalous component is much

smaller than in the two other basins, earlier in the year. This

suggests that the SSTs are closer to equilibrium with the at-

mosphere then, in the SH basin.

8. Conclusions

In this study, we introduced a new linear model for potential

intensity, based on SCM simulations and on the sensitivities of

PI to SST in atmospheres in RCE and under the WTG con-

straint. The model coefficients are derived from a control

simulation designed to be similar to Atlantic conditions, and

from a set of sensitivity experiments to CO2 in RCE and to dust

optical depth, imposed SST changes, and surface winds, in

RCE and under WTG constraints. The resulting linear model

allows us to partition SST and PI changes into local and global

components, and explains up to 95% of the interannual to

multidecadal basin-averaged seasonal PI variance. The basin

FIG. 11. Correlation coefficients between PI and the square root of

thermodynamic disequilibrium for each basin.
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where themodel works best is theNA, whichmay be due to the

fact that the control simulation was designed to have similar

conditions as the NA. The basin where the model captures the

least variance is the EP, which may be due to cold water up-

welling intermittently decoupling the boundary layer from the

midlevels, and decreasing PI sensitivity. Apart from the EP,

the linear model coefficients derived from SCM simulations

are indistinguishable in all basins from linear fit coefficients

derived using ERA5.

Future work will demonstrate applications of this frame-

work, including estimating the relative contributions of various

mechanisms to the historical PI variations, and quantifying the

thermodynamic effect of ENSO on Atlantic hurricane activity.

In addition, the results suggest that it would be interesting to

evaluate the sensitivity of PI and SST to direct and indirect dust

aerosol effects, and the associated cloud feedbacks, in WTG-

constrained cloud-resolving model simulations.
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