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Intercomparison of regional loss estimates
from global synthetic tropical cyclone
models
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Tropical cyclones (TCs) cause devastating damage to life and property. His-
torical TCdata is scarce, complicating adequate TC risk assessments. Synthetic
TC models are specifically designed to overcome this scarcity. While these
models have been evaluated on their ability to simulate TC activity, no study to
date has focused on model performance and applicability in TC risk assess-
ments. This study performs the intercomparison of four different global-scale
synthetic TC datasets in the impact space, comparing impact return period
curves, probability of rare events, and hazard intensity distribution over land.
We find that the model choice influences the costliest events, particularly in
basins with limited TC activity. Modelled direct economic damages in the
North IndianOcean, for instance, range from40 to 246billionUSD for the 100-
yr event over the four hazard sets. We furthermore provide guidelines for the
suitability of the different synthetic models for various research purposes.

The powerful impact of tropical cyclones (TCs) disrupts societies in
many coastal regions in the tropics and subtropics. For example, the
2017 Hurricanes Harvey, Irma, and Maria, caused total damages
exceeding 260 billion USD1. The last, Maria, impacted several coun-
tries, including Dominica, Dominican Republic, Guadeloupe (FRA),
Haiti, Martinique (FRA), Puerto Rico, United States of America, Virgin
Island (US), and Virgin Island (UK). The losses in Dominica alone
totaled 1.5 billion USD—estimated at over 200% of its Gross Domestic
Product (GDP)2. It is, therefore, crucial to support risk mitigation
efforts and increase societal resilience towards such events with reli-
able TC risk assessment. Such assessments, however, are complicated
as reliable TC records are scarce. Additionally, only a small number of
the TCs make landfall every year3, and when they do, a relatively small
stretch of coastline is affected4. The resulting impacts are higher in
urban areas than in rural or uninhabited regions, yielding a hetero-
geneous picture of TC damage. Moreover, reliable, global-scale doc-
umentation of past TCs is only available since the 1980s, which means

that there might not be a single event on record for many coastal
locations in the observational dataset. This substantial lack of infor-
mation on the potentialmagnitude and probability of TCs complicates
risk assessment and risk management efforts.

A common practice to overcome this data scarcity is synthetic
modeling, in which larger datasets of TC behavior (theoretically pos-
sible in given climate conditions) are created. Prominent methods are
purely statistical techniques5,6 and coupled statistical-dynamical
models7–9. The fully statistical methods use autoregressive formulas
to simulate both the track and intensity of a TC6. The statistical-
dynamical approaches use a dynamical model (beta-and-advection
model10) for the track generation, and simulate intensity changes along
the track using a dynamical model7,8 or an autoregressive model using
physics-based drivers9. This dynamical downscaling of TC tracks from
climate model output is not limited to current climate conditions but
has also been used to model future TC characteristics8,9,11–18. Note that
TCs can also be partially resolved by high-resolution global climate
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models with a horizontal scale of 10–25 km and may be studied with-
out further downscaling19–21. However, the convergence on intensity is
not achieved until grid spacings are in the range of 1–2 km22 and the
number of TCs generated in these simulations is not large enough to
conduct a risk assessment.

The synthetic modeling approaches described above provide us
with insights into synthetic TC tracks and intensities, which often form
the input hazard datasets in catastrophe models. Translating this
hazard into risk also requires information on social and economic
variables23. Catastrophe models integrate hazard, exposure, and vul-
nerability data to compute risk and quantify socioeconomic impacts24.
The risk froma catastrophemodeling perspective is often expressed in
expected annualdamages (EAD) or similarmetrics and visualizedusing
impact return period (RP) curves, showing the inverse of an excee-
dance probability and being evaluated at the spatial unit of interest
(e.g., countries, cities, or insuranceportfolios). In this study, we use the
open-source, peer-reviewed CLIMADA (CLIMate ADAptation)24 plat-
form to simulate direct economic damage in the formof impact on the
built environment from a given TC hazard set. Note that we only
consider wind as the driving physical hazard for the resulting socio-
economic impact.

Past comparisons of synthetic TC models have been limited to
the hazard component6,25,26 and have not evaluated differences in
risk estimates. We hypothesize that the models which predict TC
climatology may not cover the full range of important metrics and
views in TC risk assessment and loss estimation. Hence, we over-
come this research gap and evaluate how the choice of hazard
models influences the estimation of losses rather than the estima-
tion of TC climatology. In this study, the most influential (acade-
mically available/non-commercial) synthetic TC hazard models are
compared in their function to serve as input for TC risk modeling.
More specifically, we couple the following sources of tropical
cyclone tracks with CLIMADA to evaluate their performance on an
impact and risk level: (i) historical TCs from the International Best
Track Archive for Climate Stewardship (IBTrACS)27; (ii) probabilistic
events obtained from historical TCs by a direct random-walk pro-
cess (IBTrACS_p)28; (iii) synthetic tracks from a fully statistical
model, the Synthetic Tropical cyclOne geneRationModel (STORM);6

and synthetic tracks from the coupled statistical-dynamical models
(iv) developed by Emanuel et al. (2006, 2008) (hereafter the MIT
model)7,8 and (v) the Columbia HAZard model (CHAZ)9. After
assessing these models at an impact- and risk level, we can use our
results to link some of the intermodel differences to key TC model
characteristics and provide guidelines for other researchers to
determine the applicability of each dataset depending on the
research objective. Such insights will support risk assessment
efforts both in the public (e.g., academia, policymakers, and non-
governmental organizations) and the private sectors (e.g., con-
sultancy and (re)insurance companies).

Results
Comparison of tropical cyclone intensities
The impact model used in this study is driven by the TC’s intensity
expressed as a maximum 1-minute sustained wind speed experienced
at any land point. To support the interpretation of economic impacts,
we first evaluate the distribution of the TC intensity over land across
the five TC datasets.When solely looking at TC intensity as reported in
the synthetic datasets, we find an average relative deviation from
synthetic to historical frequencies across the categories of 28.4%.Next,
to translate these TC intensities to impact, we couple the same para-
metricwind fieldmodel29 to allfive sources of TC tracks. Aside fromTC
intensity, parametric wind models also depend on the reported radius
ofmaximumwinds (RMW), which is often poorly documented outside
of the North Atlantic (if at all). Therefore, our wind fields often rely on
statistical estimates of the RMW. Still, the agreement of TC intensity in

the synthetic datasets with the observational records does not change
significantly if we use the estimate based on the wind fields (25.4%)
instead of TC intensity values directly from the synthetic track datasets
(see Supplementary Fig. 1).

Therefore, and because the hazard component of the CLI-
MADA impact model used in this study consists of the 2D-wind
field, we only contrast the intensities from the wind fields in the
following paragraphs. Across all basins and datasets, the agree-
ment with IBTrACS for weak (Cat. 1 or weaker) TCs is better than for
major (Cat. 3-5) TCs. There are only very few exceptions, like CHAZ
in Western Pacific (WP) where the agreement is comparable.
Overall, the average relative deviation for major TCs (19.6%) is
much higher than the average relative deviation for weak TCs
(8.0%). The larger disagreement of intense TCs highlights the
challenge for reliable TC risk assessments to generate TC datasets
with a realistic representation of the major TCs (Cat. 3-5). This is of
particular importance because the highest impacts are often dri-
ven by intense TCs30.

More and larger differences between the differentmodels emerge
when comparing the results across the different basins. The region
with highest intermodel differences and intra-model uncertainties is
the North Indian Ocean (IO), where observational data is particularly
sparse (average of 5 TCs per year31). In this region, the relative varia-
bility in each TC intensity bin (see Methods) is large for all TC cate-
gories and track sets, with the largest variability found for the MIT
dataset, amounting to a factor 5 for the Cat. 5 TCs (Fig. 1). The STORM
and CHAZ datasets stand out with notablymore Cat. 3-5 events than in
the other synthetic datasets, amounting to 27.58% (±10.77%) and
24.25% (±5.62%), respectively (compared with 10.13% (±3.70%) and
12.39% (±4.26%) in the other datasets).

The relative variability within each dataset is generally highest for
the MIT tracks with regional standard deviations ranging from 0.16 to
0.62 (IBTrACS_p 0.04–0.21, STORM 0.15–0.39, CHAZ 0.11–0.27). Only
for Cat. 5 TCs in the Southern Hemisphere (SH), the STORM model
shows a substantially larger relative variability than the other track
sets, with a standard deviation of 0.39 (IBTrACS_p 0.04, MIT 0.16,
CHAZ 0.11).

Overall, theWP is predominantly the regionwith themost intense
TCs, consistently across all datasets: In the case of IBTrACS, the
average TC (including tropical storms) in the WP has a maximum
wind speed of 41.5m/s (North Atlantic/WP 34.2m/s, IO 34.7m/s, SH
36.0m/s). The only exception is theMIT dataset, where the average TC
in the SH has higher maximum wind speed (41.0 ± 1.0m/s) than in the
WP (39.6 ± 0.6m/s) (Fig. 1).

Impact analysis
To move from TC hazard to impact and risk requires additional
information on the exposure of assets or populations and their specific
vulnerability to the hazard23. However, the specific objective of the
analysis determineswhat (hazard) input data is required for the impact
calculation. If one is interested in estimating impacts from a historical
event, the hazard component canbe retrieved fromobservational data
directly (i.e., IBTrACS). More specifically, synthetic datasets are
unsuitable for such cases, as they do not contain actual historical
events. For example, by coupling IBTrACS to CLIMADA, we find that
damages from Hurricane Maria (2017) are estimated to be 77 billion
USD. This estimate is in line with the reported damage of 90 billion
USD at a 90% confidence range of 65–115 billion USD32. A compre-
hensive evaluation of how modeled losses in CLIMADA compare to
reported losses can be found in Eberenz et al.33.

Another impact-related analysis consists of determining the
probability of a certain impact in a location or region. This information
is of particular importance for the implementation of adaptation
measures, aimed at reducing the impacts of TC events34. Such mea-
sures often follow protection standards, which are given in terms of a
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probability of exceedance; the inverse being the RP (in years). How-
ever, adequately calculating such RPs and corresponding impacts
requires hazard data with a temporal range exceeding the RP of
interest. Observational datasets are therefore generally unfit for
answering such questions, as their spatial and temporal distribution is
sparse, particularly when assessing extreme events. Synthetic TC
tracks, on the other hand, provide a wealth of information on a wide
range of possible TC events in any region of interest, thereby over-
coming the limitations imposed by historical data. We can therefore
use the different synthetic datasets to derive impact RP curves for each
of the four study regions (Fig. 2). Note that RP curves are shaped by the
intensity and frequency of events. The latter is modeled differently
across datasets, and, most notably, needs to be bias-corrected for the
CHAZ hazard set (see Discussion and Methods). We also plot the RP
curves of the historical IBTrACS for reference including records from
the recent time period since 1980 because there is no globally con-
sistent, reliablemeteorological information onhistorical (high-impact)
TCs that occurred in the pre-satellite era27,35. Up until the 39-year RP,
the historical impact RP curves are well within the range of the impact
RP curves of the synthetic tracks. However, we refrain from suggesting
the IBTrACS impact RP curves as a modeling benchmark for synthetic
datasets since our impactmodel depends onunreliable stormsize data
(see Methods).

We observe that, generally, STORM tends to produce fewer low-
impact events and more high-impact events than the other synthetic
models. For high-frequency/low-impact events, CHAZ stands out as
the dataset with the lowest RPs over all regions. This finding is not
mirrored in the distribution of hazard intensities as shown in Fig. 1, but
it results from the interplay of hazard, exposure, and vulnerability that
feed into the impact calculation. In other words, part of the model
differences in estimating impacts are driven by the underlying

exposure rather thanhazard alone (Fig. 1 and Supplementary Fig. 1). To
demonstrate the sensitivity of our results to exposure, we plot the
impact RP curves and values for EAD, 100-yr and 1000-yr events on a
normalized exposure layer without the spatial heterogeneity of asset
values on land in the Supplementary Tables 3 and 4.

At fixed RPs, estimated direct economic damages in the North
Atlantic/Eastern Pacific (derived from themedian impactRPs; solid line
in Fig. 2) range from 169 to 359 billion USD for the 100-yr event over
the four synthetic hazard sets (see Supplementary Table 2). Compar-
able values were also computed for the 100-yr events in theWP, where
only the IBTrACS_p diverges from the other synthetic track sets and
are estimated to be at approximately one-fourth to one-third of the
STORMandMIT andhalf theCHAZdamages. The estimated impacts in
the SH arebelow the 100billionUSDmark for IBTrACS_p andup to 295
billion USD for CHAZ. In the IO, the highest impacts for RPs of more
than 1-in-100 years result from the STORM hazard set (246 billion
USD), followed by CHAZ (109 billion USD) and MIT data (106 billion
USD), and the least damage for the IBTrACS_p (40 billion USD). Gen-
erally, the 90% confidence interval (CI) around the 100-yr events ran-
ges from approximately 30 to 60% of the median 100-yr loss estimate.
This 90% CI can be viewed as ameasure of uncertainty and it increases
for almost all calculated 1000-yr events, meaning that the estimated
impacts deviate more strongly with increasing RPs. The widest possi-
ble impact rangeon the 90%CI for eventswith RPs of 1000years stems
from the MIT hazard set in the North Atlantic/Eastern Pacific region
(185%) and the STORM (143%) and MIT (231%) data in the SH. In these
cases, the CIs span a much larger impact range than for the other
hazard sets (~40–100%). The impact RP curves are also particularly
beneficial to deduce the probability of certain high-impact events. For
Hurricane Maria, we can infer that a Maria-like event in the North
Atlantic basin has an RP of ~12, 6, 24, and 6 years for the IBTrACS_p,

Fig. 1 | Regional distribution of tropical cyclone intensities for the five track
sets. a–d Compare the relative frequency of tropical cyclones (TCs) belonging to
each category of the Saffir-Simpson HurricaneWind Scale across the five track sets
(IBTrACS, IBTrACS_p, STORM, MIT, CHAZ), separately for the four regions a North
Atlantic/Eastern Pacific, b North Indian Ocean, c Southern Hemisphere, and
d Western Pacific. The mean and standard deviation (black error bars) over all the
subsamples in each category (see Methods) of the frequencies are shown in the

upper part of each plot while the lower part displays the relative variability in each
intensity bin (as box plots with a line at the median, a box denoting the inter-
quartile range (IQR) andwhiskers extending 1.5-times IQR; points are outliers).Note
that the frequencies of Cat. Five TCs are shown on a secondary y axis in log scale.
The wind speeds of each TC event are taken from the modeled wind fields over
land. The same plot withwind speeds taken directly from the track data is provided
in Supplementary Fig. 1.
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MIT, STORM, and CHAZ simulations, respectively. We do note here
that the RP is inherently dependent on the spatial scale atwhich the RP
is computed36. While high-impact events such as Hurricane Maria may
occur on average every few years in the North Atlantic basin (as shown
through the RP estimations), the chances of such events occurring in a
specific country or coastal region are lower, resulting in higher RPs.

Aside from estimating impacts for individual events and at certain
RP levels, another commonly used metric is the EAD (in USD). Math-
ematically speaking this is the integrated value of impacts across all
probabilities. The EADprovides a quantification of risk and is therefore
commonly used as a proxy for risk-based insurance premiums37 in
catastrophe modeling. Comparing the EAD calculated from the dif-
ferent synthetic datasets and historical IBTrACS in the four regions, we
find values all within one order of magnitude difference in the North
Atlantic/Eastern Pacific region, amounting to 25.65 to 82.47billionUSD
(see SupplementaryTable 1). In the other three regions, the intermodel
differences are larger, exceeding one order of magnitude. Particularly,
we note the high EADs for CHAZ compared to the other synthetic
datasets. This difference is likely driven by CHAZ overestimating the
impacts of frequent (low RP) events (Fig. 2). Moreover, in all regions,
the MIT dataset exhibits the largest variance over subsamples (see
Methods) around the mean EAD with a standard deviation of 5–10%,
IBTrACS_p, and CHAZ the smallest (3–5%).

Most expensive tropical cyclone events
Understanding the frequency of occurrence of the most expensive
(costliest) and rare events is vital for the design and implementation
of risk reduction strategies. The three costliest U.S. TC events on
record all exceeded the 100 billion USD mark, Hurricanes Katrina
(2005), Harvey (2017), and Maria (2017)38. However, this sample size
of historical observations is too small to adequately assess the
probability of such rare events; synthetic models, on the other hand,
are specifically designed to capture these rare TCs. The probability
density of impacts exceeding 100 billion USD (referred to as tail risk
in this study) shows that the shape over almost all models is com-
parable in most regions (Fig. 3). However, for the IO and SH, we
observe that IBTrACS_p is unsuitable for such analysis due to
the low-intensity bias in this dataset. Additionally, we also note
that in the IO, ~3% of all TC events in STORM exceed the

100 billion USD threshold, compared to 0.3–0.4% in MIT and CHAZ.
This directly follows from STORM’s overestimation of intense
(Cat. 4-5) TCs in this basin (see Fig. 1), which are the predominant
drivers of high impacts. For the other basins, we find a good
agreement in tail risk distributions between STORM,MIT, andCHAZ.

The shape of the probability density also reflects some intermodel
differences. The STORM and CHAZ simulations contain the highest
absolute number of TCs (see Methods) and thus result in a smooth
shape of the violin plots. In contrast, the MIT dataset exhibits some
distortions at certain impact values and a slightly lower fraction of tail
events. This follows from our subsampling routine during which we
draw some of the events in the MIT dataset multiple times (see Sup-
plementary Methods). Despite this difference in shape, we conclude
that STORM, CHAZ, and the MIT model all contain a sufficiently large
and distributed set of tail risk events to assess the long-term TC risk
robustly and reliably.

Guidance on tropical cyclone track set application
Depending on their question and goals, users may be looking for dif-
ferent properties of TC datasets and models. The key qualitative
properties of the five sources of TC tracks compared in this study are
compiled in the Methods Section and model versions are specified in
the Data Availability Section. We link these TC model characteristics
with the suitability for distinct applications to guide the TC track set
choice, complementing the TC risk views across different datasets as
presented in the previous results sections.

When studying historical TC events like damages from Hurri-
cane Maria, only the historically recorded IBTrACS are fit for pur-
pose. The compilation of observed TCs in the best-track archive27 is
the most complete global set of historical TCs available. These data
can be used to study past hurricane seasons39 or to hindcast and
evaluate early warning protocols such as those used by the Red
Cross 51040. However, historical data are also characterized by
spatial and temporal data scarcity, making them unsuitable for
analysis requiring large sample sizes.

Synthetic models are specifically designed to overcome the spa-
tial and temporal limitations imposed by historical records, making
them a good choice for robust risk assessment of TC impacts, both on
larger scales (see previous results sections) as well as for small

Fig. 2 | Impact return period curves for the five tropical cyclone track sets.
Return periods up to 1000 years for the synthetic track sets (IBTrACS_p, STORM,
MIT, CHAZ) and 39 years for the IBTrACS record (black solid curve) are shown in
the four regions aNorth Atlantic/Eastern Pacific, b North Indian Ocean, c Southern

Hemisphere, d Western Pacific). We use a subsampling approach on the synthetic
track sets to calculate the median (colored solid curves), and the 90% confidence
intervals of the impact distribution over 1000 years.
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regions41. Our analysis did reveal the importance of the synthetic
model type or robust TC risk assessment. The different synthetic
modeling approaches discussed here all exhibit different limitations
and in this study, we discover two distinct cases where the synthetic
modeling type is clearly important. First, a notable finding from the
impact RPs curves (Fig. 2) is that IBTrACS often did not lie within the
90% confidence range of IBTrACS_p. Prima facie, this may seem sur-
prising because each track in IBTrACS_p is directly generated from a
single IBTrACS record. IBTrACS_p contains each of the observed
IBTrACS TCs together with 99 derived tracks. However, the explana-
tion for the bad fit lays in the modeling approach of IBTrACS_p. In the
design of this simple interpolation method, the TC track is perturbed
using a random-walk algorithm21,24,28. While this is a very efficient
approach to generate a regular track density field and spatially extend
the historical data, this method does not vary the TC intensity along
the track, introducing a low-intensity bias in IBTrACS_p compared to
IBTrACS. The second prominent case where robust TC risk assessment
is limited by the TC trackmodeling approach is for the STORMdataset
in the IO, predominantly in the Bayof Bengal36. Thedifferencebetween
STORM and the other models is presumably related to STORM’s fully
statistical nature combined with specific environmental conditions in
this basin, resulting in too many high-intensity landfalling TCs
(see Supplementary Discussion for an extensive discussion on this). As
such,wedonot recommend theusageof STORMhere, but instead, use
CHAZ or MIT for impact assessments in the IO.

Tail risk assessments particularly require a large sample set of
reliable simulations of highly destructive TCs. As was discussed
previously, three historical events exceeded the 100 billion USD
impact threshold in the USA, a too small sample size to adequately
calculate the RPs and distributions of such events. Generally
speaking, all synthetic datasets have the required size for reliable
TC tail risk assessment. However, our results revealed the influence
of the model specifications on the distribution of these extreme
events: the IBTrACS_p hazard sets capture a limited set of tail risk
events in most regions due to the low-intensity bias (discussed

previously), which hampers their suitability for tail risk assessment.
In contrast, MIT, STORM, and CHAZ hazard sets are all fit for the
purpose of a tail risk assessment.

The availability of models and data is a crucial aspect for many
applications, particularly when developing climate services to support
risk reduction, adaptation, or risk financing policies. This guarantees
transparency and reproducibility and it facilitates the exchange of
climate information as demanded by the Global Framework for Cli-
mate Services42. The model and data availability of the four synthetic
models can be found in the Data Availability statement and may be
considered as another critical discriminator depending on the appli-
cation and context in which TC risk assessment is performed.

Discussion
Our analysis shows that differences between hazard sets are most
pronounced when analyzing rare TC events; being either extreme
(high-impact) TCs or in regions rarely hit by TCs. In particular, we find
the largest variability and highest uncertainty over different risk
metrics for the IO. For this region, themaximum values of TC intensity
over land (Fig. 1) show high relative variability over the entire range of
intensities and the CIs of the impact RP curves (Fig. 2 and Supple-
mentary Fig. 2) are all relatively wide. One explanation for this very
high variability is the low number of TCs that form in the IO (~5 TCs per
year31). That is because the IO is a small basin, which leaves limited
space for TC formation in thefirst place. Furthermore, there are noTCs
during the monsoon period, when the vertical wind shear is too high
and prevents TC formation, thus reducing the months during which
TCs typically form31. Finally, not only the number of TCs but also the
data quality of these records is substantially lower in the IO than in the
other regions. For example, in the WP there were reconnaissance
flights from the 1980s until 1987 and several countries produce best-
track datasets for the region (China, US, Japan, Philippines35,43; see
Methods). Hence, this leaves the IO with a very limited database to
study TC risk but also to inform and calibrate synthetic TCmodels and
the resulting large uncertainty is not surprising. In contrast, regions

Fig. 3 | Tail risk assessment of the synthetic tropical cyclone datasets across
regions. Probability density of impacts exceeding the 100 billion USD impact for
the four synthetic datasets (IBTrACS_p, STORM, MIT, CHAZ) in our four study
regions a North Atlantic/Eastern Pacific, b North Indian Ocean, c Southern Hemi-
sphere, d Western Pacific). Percentages printed above each probability density
indicate the fraction of all impacts in the corresponding dataset above the

100 billion USD threshold. Note, the width of the violin plots indicates the prob-
ability density of tropical cyclones exceeding a given damage value (symmetric
along the y axis). Also, in the Southern Hemisphere, there is only one event in the
IBTrACS_p dataset, which exceeds the 100 billion USD threshold, displayed as a
horizontal line in b).
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with high TC activity like the WP (~26 TCs per year44) are better con-
strained, which is reflected in the narrow CIs (Fig. 2) and the least
relative variability of TC track and hazard intensities; except for the
STORM Cat. 5 tracks (Fig. 1 and Supplementary Fig. 1). Furthermore,
the costliest events that constitute the tails of probability distributions
are rare by definition. The increasing variability of these high intensity,
low-frequency events are mirrored in the increasing range of the 90%
CI of 100-yr and 1000-yr events reported in Supplementary Table 2.
These infrequent events are the ones that have the potential to be the
most destructive and it is therefore particularly crucial to tailor TC risk
assessment toward a robust representation of tail risk.

In the context of how the different synthetic TCmodels work, the
small sample size of the input dataset is not equally relevant across
models. It presumably plays aminor role inMIT and CHAZ simulations
as they use global atmospheric fields to seed TCs (see Methods). For
STORM, however, this small sample size does have a substantial effect.
It is apparent that there is a limit to capturing complex physics with
statistical factors and regression coefficients. In cases when data is
scarce (like in the IO), statistics need to be aggregated over larger
areas, thereby omitting spatial heterogeneity within the basin. For a
full discussion of these limitations, please refer to the Supplementary
Discussion.

To understand further intermodel differences in TC impacts we
need to study the different components that drive the impact cal-
culation. We find that a part of the intermodel differences in TC
impacts arises from the inhomogeneously distributed asset values:
The intermodel differences from the impact RP curves, EAD, 100-yr
and 1000-yr events calculated for a normalized exposure layer
omitting all spatial heterogeneity on land (Supplementary Fig. 2 and
Supplementary Tables 3 and 4) are in general lower than the ones
reported in the results section, which are computed on a spatially
explicit representation of asset exposure value (LitPop)45. However,
we note that the inhomogeneously distributed assetsmay also cancel
some of the variability in the hazard set out and not only increase it.
Our results also show that the hazard component alone may yield an
incomplete picture of TC risk. Specifically, from the comparison of
TC track and hazard intensities (Supplementary Fig. 1 and Fig. 1) we
would expect impacts to be largest for the CHAZ and STORM data-
sets because these two hazard sets have the largest share of severe
TCs (Cat. 3 andmore). However, the impact RP curves (Fig. 2), impact
values (Supplementary Table 2), and results for the long-term risk
(Fig. 3) do not support this hypothesis. Conversely, the MIT hazard
sets do not stand out with particularly high intensities but yield
similar results in impact as the other hazard set. We thus conclude
that TC impacts are largely driven by the specific interplay of indi-
vidual tracks with assets on land and that studying TC track and
hazard intensities alone draws an incomplete picture of TC risk for
coastal communities and economies.

The impact calculation is not only driven by uncertainties intro-
duced from the exposure data but also linked to differences in the
provided synthetic data. The first inconsistency arises from the various
degrees of information that accompany each track set. The STORM
data contains a comprehensive set of 13 physical variables6. The CHAZ
model, however, outputs fewer variables, implying that we needed to
calculate other relevant variables suchas the radius ofmaximumwinds
and TCpressure through dependencies on the known variables. Lastly,
the fullMIT dataset consists of TC track information as well as 2D-wind
fields. However, to consistently compare the different synthetic data-
sets here, we solely use the track datasets and couple them with the
Holland et al.29 parametric wind field model. This may result in
potential differences in our impact estimates compared to using the
MIT wind field directly. On a related note, we want to mention that
the synthetic trackmodels depend on IBTrACS to varying degrees. The
MIT track model is completely independent of historical tracks, the
downscaling of CHAZ too but its genesis frequency is fit to IBTrACS

records. In contrast, the STORM model is largely based on IBTrACS
statistics. The second source of uncertainty stems from the choice of
the wind model. We acknowledge that the Holland et al. (2008)29 used
here has been motivated by and calibrated for North Atlantic hurri-
canes and might perform less well elsewhere. There is a multitude of
other parametric wind models available46–49, and it would be an inter-
esting avenue for future research to extend the comparison to differ-
ent windmodels. However, suchmodels often do require a substantial
amount of input variables that go beyond what most syntheticmodels
can provide.

Furthermore, the different synthetic model types and varying
degrees of information provided by the TC track sets is the reasonwhy
CHAZ requires the post-processing step of a frequency bias correction
(see Methods). The MIT model technique includes a basin-wide cali-
bration to determine the TC frequency: for our analysis, we applied the
calibration factor asprovidedwith the event set. This factor isobtained
by combining the fraction of initial TC seeds that intensified tobecome
TCs with the actual number of TC tracks in the dataset to match
observations. Still, the model is known to exhibit regional biases even
after taking this factor into account50. STORM is designed to follow the
IBTrACSTCgenesis frequency6 and thus requires no further frequency
correction.

Besides, we suggest investigating the uncertainty and sensi-
tivity of the TC impact model to the numerous input variables;
including, but not limited to, the different TC track sets. This may
be achieved by applying readily available uncertainty and (global)
sensitivity analysis software51–53. The resulting insights can guide
where the next improvements in TC impact modeling can be
achieved. We propose significant advances may be realized by
better constraining the exposure and vulnerability components
rather than the hazard part alone.

A suggestion for the future of synthetic TC track modeling is to
institute a larger base of TCmodels of all types, from fully statistical to
fully dynamical. Our study has demonstrated that the model choice is
largely dependent on the research question and that all model types
come with certain limitations. Hence, we advocate for more, and
access to more, TC track models of all types to constrain TC risk more
reliably in the future.

In addition, while we solely focus on wind-driven impacts in this
study, TCs can also cause substantial damage through their storm
surges and rainfall-induced freshwater flooding. The synthetic
models considered here do not simulate these other hazards.
Although, the regionalized impact functions used in this study33

implicitly capture the sub-hazards because they were calibrated to
total damage values, these functions still underestimate impacts
from rain- or storm-surge-driven events with low wind speeds (e.g.,
Hurricane Harvey in 2017). Future model developments, focused
around explicitly simulating these sub-hazards, will therefore aid
improved risk assessments.

Lastly, while our study only discusses TC risk in the present cli-
mate, there is also a growing need for insights into how these TC risks
are going to change under future climate conditions. We thus
recommend researchers interested in model comparisons for the
future climate to generate synthetic datasets forced by the same cli-
mate scenarios. Aside from simulating TC activity under climate
change, future-climate risk assessments also require information on
how exposure and vulnerability are going to evolve over time.

In summary, we have conducted a global model intercomparison
of synthetic TC track sets to evaluate their performance and suitability
for TC risk assessments. We used the impact modeling platform CLI-
MADA to contrast risk views across datasets and provide guidance
concerning the suitability of the datasets for various applications and
research questions. Different TC risk metrics and the discussion of
links to key model characteristics yield an improved understanding of
TC impact assessments. We showed that all datasets constitute a valid

Article https://doi.org/10.1038/s41467-022-33918-1

Nature Communications |         (2022) 13:6156 6



foundation for impact assessment and that modeled impacts are
within one order of magnitude in the North Atlantic/Eastern Pacific
where the historical record is considered most reliable. We also
showed that the difference between models is largest when studying
the long-term risk of rare events, or basins with smaller historical
records or small areas. Consequently, modeled losses from rare TCs
vary by orders of magnitude across synthetic track sets, which is par-
ticularly crucial for risk reduction efforts. Intermodel differences are
generally driven by the varying distribution of hazard intensities over
land and the inhomogeneously distributed asset values. This variance
in the different risk metrics can partly be traced back to the key TC
track set and hazardmodel characteristics and thereby help guide the
choice of a TC track set depending on the research question at hand.
Our analysis enables better-informed adaptation decisions and miti-
gation strategies, improves physical risk assessment in climate-related
financial disclosure, and paves the way for impact-based warnings that
are tailored to assets andpopulations at risk. Besides, the guidelines on
tropical cyclone track set application can help other researchers
determine what datasets are best suited for their research question,
and they may also direct researchers in the design of their own data-
sets and establishing the suitability of their datasets.

Methods
Study regions
We compare the five different TC track sets over the fourmain regions
shown in Fig. 4. The regions are chosen to very broadly reflect distinct
TC areas. Specifically, we combine the North Atlantic and Eastern
Pacific into one region (AP) because TCs originating in both basinsmay
impact the USA, Mexico, and other central American countries with
both Atlantic and Pacific coastlines. Yet, we note that most impacts
calculated for this combined region stem from TCs with origin in the
North Atlantic whereas TCs forming in the Eastern Pacific play aminor
role in impacts. Furthermore, we assess TC risk in all of the SH com-
bined. The IO and WP complete our regionalization.

Tropical cyclone track sets
In this study, we contrast the following sources of TC tracks:
1. observed TCs from the International Best Track Archive for Cli-

mate Stewardship (IBTrACS)27,
2. probabilistic events obtained from historical ones by a direct

random-walk process (IBTrACS_p)28,
3. synthetic tracks from a fully statistical model, STORM6,
4. synthetic tracks from coupled statistical-dynamical models,

MIT7,8, and
5. CHAZ9.

The most important descriptors of the single TC track sets are
compiled in Table 1. These key characteristics can be used to facilitate
the choice of a suitable track set depending on the research question.

The different model types underlying the five-track sets are
described in more detail in the next paragraphs. The length of the
dataset is characterized by the number of tracks in each dataset and
the time period covered. Further, the climate data used to run the TC
track models and their open-source nature are two other important
descriptors.

Observations from IBTrACS
The IBTrACS dataset is a centralized, global compilation of all TC
best-track data from the official Tropical Cyclone Warning Centers
and the WMO Regional Specialized Meteorological Centers27. The
IBTrACS dataset is publicly available and covers records from 1848 to
the present, with dataset updates performed annually in August. The
official records contain the position, and at least one entry of max-
imum sustained winds and minimum central pressure at 6-hour
intervals in UTC. If provided by the reporting agency, additional
variables describing theTCgeometry, such as the radius ofmaximum
winds or the radius of the outermost closed isobar, are included, at
up to 3-hour intervals.

For this study, we extracted all available TCs in IBTrACS for
which at least wind or pressure are reported by some agency. If, for
some TCs, there is reported data by the agency that is officially
responsible in the region according to WMO, that data is used at
the highest available temporal resolution. For TCs that have not
been reported about by the officially responsible agency, the data
provided by the next-best agency that reported about that TC is
used, with a fixed order of preference: ’usa’, ’tokyo’, ’newdelhi’,
’reunion’, ’bom’, ’nadi’, ’wellington’, ’cma’, and ’hko’ (the agency
identifiers are according to the IBTrACS data format). The
exact IBTrACS reading routine is part of the open-source
package CLIMADA (see TCTracks.from_ibtracs_netcdf in
climada.hazard.tc_tracks).

While we only consider this agency selection procedure in this
study, we note that the choice of agencies is known to significantly
influence TC statistics. For example, IBTrACS contains data in the WP
from Japan (JMA), China (CMA), Hong Kong (HKO), and USA (JTWC).
The officially responsible agency is Japan (JMA). Still, for almost 20% of
the TCs affecting coastal areas in 1980–2019, there is no reported data
from JMA, but only fromtheother agencies. Furthermore, even though
the central pressure measurements are considered to be comparably
reliable among agencies, the average pressure reported by JMA in WP
is lower by 8 hPa than the CMA average.

Fig. 4 | Global study regions. North Atlantic/Eastern Pacific (AP, blue), North Indian Ocean (IO, orange), Southern Hemisphere (SH, green), Western Pacific (WP, red).
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The reliability of officially reported TC data has greatly increased
in recent years. Still, we note that the IBTrACS-based estimates in this
study should not be taken as ground truth, but as another model
output. This is due to the comparably short time range over which
reliable measurements are available, but also because of the incon-
sistencies between reporting agencies that can be observed over the
whole reporting period.

Furthermore, we acknowledge that the ADT-HURSAT dataset54 is
more homogeneous than the IBTrACS records since it is purely based
on a single data source, namely satellite products of the same resolu-
tion. However, we chose the IBTrACS as an observational reference in
this study because IBTrACS combines satellite data with other sources;
it is known to be more accurate on a storm-by-storm basis; it includes
moremeteorological variables; and IBTrACS isbasedonWMOregional
centers' official best-track data.

Probabilistic TC tracks from IBTrACS records
The probabilistic TC tracks (IBTrACS_p) obtained from the CLI-
MADA platform follow a simple interpolation method. In this
approach, CLIMADA generates a set of 99 probabilistic tracks for
each observed TC obtained by a random-walk process21,24,28. The
method was designed to infer a probabilistic distribution of tracks
from a single track in a physics-, climate-, and basin-agnostic way,
and is described in more detail in the supplementary material of
Gettelman et al.21.

Fully statistical model STORM
STORM55 is an open-source, global-scale, fully statistical model.
STORM takes information on the TC track, characteristics (intensity,
radius of maximum winds, and genesis month) from IBTrACS, and
environmental variables (monthly averaged mean sea-level pressure
and sea-surface temperature) from the European Centre for Medium-
Range Weather Forecasting (ECMWF)’s fifth generation climate rea-
nalysis dataset (ERA-5)56 as input variables. A new, synthetic TC is then
assigned a genesis month and location weighted by the statistics from
the input dataset. Consecutive changes in the TC’s position (longitude/
latitude), intensity (maximum wind speed and minimum pressure),
and radius of maximum winds are then calculated through a series of
autoregressive formulas. STORM was validated against observations,
and results showed that STORM preserves the TC statistics as were
found in the original IBTrACS input dataset. The average number of
genesis and landfalling events in the STORMdataset, as well as landfall
intensity, was shown to lie within one standard deviation of those
values found in IBTrACS. Similarly, the largest deviations in basin-wide
averages of maximum wind speed along a TC track were shown to be
2ms−1 compared to IBTrACS.

Statistical-dynamical model MIT
The MIT model is based on a statistical-dynamical downscaling
method developed by Emanuel et al.7,8. In short, this method initi-
ates TCs using a random seeding technique, propagates the TCs via
synthetic local winds from a beta-and-advection model, and simu-
lates the TC intensity along each track by a dynamical intensity

model (CHIPS, Coupled Hurricane Intensity Prediction System)57. In
more detail, key statistical properties are drawn from global rea-
nalyses or climatemodels to generate a global, time-evolving, large-
scale atmosphere-ocean environment. TC tracks are then created by
randomly seeding warm-core vortices in space and time where the
vast majority of seeds fail to amplify to tropical TC strength. Only
the disturbances in favorable environments for TC formation sur-
vive, making the random seeding a so-called natural selection
algorithm8. Note that the survivors compose the TC climatology of
the respective global reanalyses or climate models and that the
simulated genesis rate thus needs to be calibrated to match the
global or basin-wide number of genesis events in the historical
period. Next, TC tracks are directed by a beta-and-advection dis-
placement model, which is driven by large-scale winds in the syn-
thetic environment. Finally, a simple coupled ocean-atmosphere TC
intensity model (CHIPS) is driven along the TC tracks. The intensity
model has a very high radial resolution of the TC core and can
resolve high-intensity TCs. The statistical-dynamical MIT model is
computationally efficient, making it possible to generate very large
numbers of TCs at a low computational cost, and has been shown to
accurately simulate all important TC features of the current clima-
tology when applied to global reanalysis data8.

Statistical-dynamical model CHAZ
The Columbia HAZard model (CHAZ) encodes physical relation-
ships between TCs and their large-scale environmental variables to
simulate TCs with low computational requirements9. In CHAZ,
synthetic TCs are randomly seeded with a distribution given by the
Tropical Cyclone Genesis Index (TCGI) of Camargo et al. (2014) and
Tippett et al. (2011)58,59. Following genesis, the track of each syn-
thetic TC is advanced in time with a beta-and-advection model60,
using monthly-averaged environmental winds, and a statistical
parameterization of the sub-monthly variability, the same as what
is used in the MIT model8. Along the synthetic TC track, the
intensity is calculated using an autoregressive linear statistical
model61, with the monthly averaged potential intensity, vertical
wind shear, and mid-level relative humidity as environmental
predictors, and with an additional variable to account for sto-
chasticity. In this study, CHAZ is downscaled from 39 years (1981-
2019) of ERA-5 data with 10 different realizations of the genesis and
subsequent tracks. For each realization, 40 ensemble members are
generated using the intensity model, totaling 400 ensemble
members of the 1981-2019 period.

Impact model CLIMADA
The impact model CLIMADA is developed and maintained as a
community project, and the Python 3 source code is openly avail-
able under the terms of the GNU General Public License Version
324,62. It was designed to simulate the interaction of climate and
weather-related hazards, the exposure of assets or populations to
this hazard, and the specific vulnerability of exposed infrastructure
and people in a globally consistent fashion24,62. Here, CLIMADA is
used for the spatially explicit computation of direct economic

Table 1 | Key qualitative tropical cyclone track set characteristics

Model Type Years N of tracks/land-influencinga Climate data Open-source code/dataset

IBTrACS Observational 1980–2018 3068/1858 −/yes

IBTrACS_p Probabilistic 1980–2018/×100 tracks 306,100/185,944 Yes/yes

STORM Fully statistical 10,000 years (1980–2018) 712,800/348,670 ERA-5 Yes/yes

MIT Statistical-dynamical 1980–2018 82,000/80,497 ERA-5 No/no (yes)b

CHAZ Statistical-dynamical 1981–2019/400 × 39 years 1,395,323/960,606 ERA-5 Yes/no (yes)c

aLand-influencing is defined as TCs with >17.5ms−1 within at most 300km from land. bThe MIT dataset is openly available for research only. cThe CHAZ dataset is openly available for research
and NGOs.
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damage from the five different sources of TC track sets on a global
grid at 300 arc-seconds (~10 km) resolution.

Tropical cyclone hazard
The TC hazard model in CLIMADA consists of two components: (i) the
TC track sets, which are coupled with (ii) a parametric wind model to
yield a 2D-wind field29.

CLIMADA’s parametric wind model component computes the
gridded 1-minute sustained winds at 10 meters above ground as
the sum of a circular wind field (following Holland, 2008)29 and the
translational wind speed that arises from the TC movement. We
incorporate the decline of the translational component from the
cyclone center by multiplying it by an attenuation factor as further
described in Geiger et al.63. Apart from the TC location and central
pressure, the wind model requires values for the radius of maximum
winds. Where either pressure or radius is missing from the data (as is
the case for the whole CHAZ dataset), we estimate the missing values
from the provided variables, using simple linear relationships inferred
statistically from observational data (IBTrACS). Note that the absolute
wind speeds over land tend to be overestimated by this model since it
does not consider any surface roughness on its own. Still, this effect is
included at least in part in the track data since the overall TC intensity
decays over land.We calculate thewindfields at a resolution of 300 arc
seconds (~10 km) for this study. The hazard variable used in CLIMADA
is lifetime maximum wind speed at each spatial location; 1-minute
sustained wind speeds below 34 km (17.5ms−1) are discarded.

Asset exposure
Exposure data for direct economic risk assessment contains informa-
tion of asset value exposed to hazards. The dataset for gridded asset
exposure value is spatially explicit and based on the LitPop method,
which distributes national estimates of total asset value to the grid-
level proportional to the product of nightlight intensity (Lit) and
population count (Pop)45. We use asset exposure value at a resolution
of 300 arc-seconds (~10 km) and the 2014 value in USD for GDP.
Figure 5 shows a global map of the LitPop exposure dataset, limited to
adistanceof 1000 km inland. Additionally, we calculate the results on a
normalized exposure layer (removing the spatial heterogeneity of
asset values on land) and report impacts as fraction of affected assets
to remove the potentially confounding signal of inhomogeneously
distributed asset values and show the sole effect of the hazard com-
ponent on the impact (see Supplementary Fig. 2 and Supplementary
Tables 3 and 4).

Impact function
In the CLIMADA terminology, vulnerability is described with impact
functions. An impact function is a relationship between hazard inten-
sity and the relative amount of destroyed assets and can be used to
calculate absolute direct damages for TC events at exposed locations.
We use a set of calibrated regional TC impact functions following
Eberenz et al.33, building on the idealized sigmoidal impact function as

proposed by Emanuel64. Eberenz et al.33 fitted regional impact func-
tions to report damage data to account for the heterogeneous picture
of TC risk in different regions. They grouped a varying number of TC-
prone countries with similar vulnerability into nine distinct regions to
obtain a globally consistent set of regionally calibrated impact func-
tions. We use their root-mean-squared fraction optimized set of
impact functions which is designed to minimize the spread of damage
ratios of single events in contrast to the other, complementary
approach that was optimized for aggregated damage.

Methods for TC model intercomparison
We compare the maximum TC wind speeds over land of the synthetic
datasets with the historical IBTrACS records. Specifically, we contrast
events whose wind fields reach wind speeds of at least tropical storm
strength (17.5ms−1) over land. For this comparison, we apply a sub-
samplingmethod and draw 100–1000 samples of the synthetic hazard
sets (IBTrACS_p, STORM, MIT, CHAZ) at the length of the historical
IBTrACS records. A detailed description of the subsampling method
applied can be found in the Supplementary Methods. We then cate-
gorize the wind speeds according to the Saffir-Simpson Hurricane
Wind Scale (SSHWS)65 and calculate the mean and standard deviation
over all the subsamples in each category. The results are shown in Fig. 1
as probability densities for each dataset in each intensity bin.

We repeat the analysis for the maximum wind speed variable
provided with the track data as opposed to the wind field intensities in
Supplementary Fig. 1. For that, we take the maximum wind speed
associated with a track position within at most 300 km from land to
account for tracks that pass near the coast but whose tracks do not
make landfall in the strict sense.

The EAD over all exposures follows equation 5 in Aznar-Siguan
and Bresch (2019)24. For the synthetic datasets, we again use the sub-
sampling routine (see Supplementary Methods) to compute the EAD
for 100 to 1000 samples and report the mean and standard deviation
thereof. Impact RP curves following the formalism of Cardona et al.66

are shown up to an RP of ~1000 years. For this, we first concatenate
random selections of 26 of the subsamples (see Supplementary
Methods) to a longer sample, yieldingN = 1000 samples, eachcovering
1014 years of TC activity. We calculate the median and 5th and 95th
percentile of each subsample to obtain the 90% CI of each impact.
Besides, we show the impactRPcurveof thehistorical IBTrACS records
up to its maximum RP of 39 years (Fig. 2).

Lastly, we assess the long-term risk of extreme TCs (Fig. 3) by
analyzing the most damaging events exceeding the 100 billion USD
threshold in each of the synthetic datasets; again, applied to all
subsamples generated from the bootstrapping approach (Supple-
mentary Methods).

Note, the CHAZ hazard set is frequency bias-corrected through-
out all impact calculations because it is known to have a bias in its
genesis frequency9,25. To remove the influence of this bias, we adjust
the sample period based on the observed frequencies in each basin
and as described in Sobel et al.25.

Fig. 5 | Global distribution of asset exposure value. Data is given in log10 USD based on the LitPop45 method with an inland distance to the coast of 1000km.
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Furthermore, we calculate the EAD and impact RPs curves on a
normalized exposure layer in order to remove the potentially con-
founding signal of spatially inhomogeneously distributed asset values
on land. Specifically, we report impacts as a damaged fraction of the
total asset value of the area of interest; or in other words, as “affected
area” according to the regional damage functions33 applied toperfectly
uniformly distributed exposure (Supplementary Fig. 2 and Supple-
mentary Tables 3 and 4).

Data availability
The observed TCs from IBTrACS27 are distributed under the per-
missive WMO open data license through the IBTrACS website
(https://www.ncdc.noaa.gov/ibtracs/index.php?name=ib-v4-access)
and can be directly retrieved through the CLIMADA platform24. The
probabilistic IBTrACS are obtained from the random-walk process
directly executed in CLIMADA21,24,28. The statistical model STORM is
fully open: the model code can be obtained from GitHub (https://
github.com/NBloemendaal) under the terms of the GNU General
Public License Version 3 and datasets are available from the 4TU.R-
esearchData data repository6, licensed as public domain (CC0).
CHAZ is an open-source model and can be downloaded at (https://
github.com/cl3225/CHAZ). The CHAZ data are available to scientific
researchers upon request to the CHAZ development team at
Columbia University. The synthetic TC data from the MIT model are
the property of WindRiskTech L.L.C., which is a company that pro-
vides hurricane risk assessments to clients worldwide. Upon request,
the company provides datasets free of charge to scientific
researchers, subject to a non-redistribution agreement. All of the TC
track sets can be fed into CLIMADA to calculate TC impacts, inde-
pendent from their respective licenses. For this study, we used the
Python (3.8+) version of CLIMADA release v3.1.2.

Code availability
Code to reproduce the results of this paper is available at a GitHub
repositorywith the identifier https://doi.org/10.5281/zenodo.678209167.
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