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Recently, Leibovich & Stewartson (1983) developed a sufficient condition for the 
instability of columnar vorticer -4th radial shears in both the azimuthal and axial 
velocities, while others (e.g. Staley & Gall 1984) have found instabilities in numerical 
simulations which conform exactly to expectations based on the Leibovich- 
Stewartson theory. The purpose of this brief note is to show that this three-dimensional 
stability problem is isomorphic to the classical two-dimensional inertial? stability 
problem when viewed in an appropriate local coordinate system. The instability is 
therefore clearly inertial in character, as suggested by Pedley (1969). 

1. Introduction 
The stability of vortices with axial as well as azimuthal flow has been a subject 

of considerable interest for some decades. The interest has no doubt been stimulated 
in part by the varied and curious behaviour of laboratory and natural vortices, which 
exhibit such phenomena as vortex breakdown and multiple vortex formation (e.g. 
Rotunno 1978; Ward 1972). The known stability properties of vortex flow bear a 
strong resemblance to those characterizing stratified shear flow, with the radially 
directed inertial restoring force due to rotation in the former problem playing the 
role of gravitational restoring forces in the latter. This analogy is exhibited in the 
necessary condition for instability developed by Howard & Gupta (1962) : 

< a .  (1 / r 3 )  dr2/dr  
(dw/dr)2 

Here r is the fluid angular momentum per unit mass ( = r V ,  where V is the azimuthal 
velocity), r is the radial coordinate and w is the axial velocity. The numerator of ( 1 )  
is equal to the square of the oscillation frequency of a particle within a purely 
azimuthal flow, and is thus analogous to the buoyancy frequency squared in stratified 
flow. The Howard-Gupta necessary condition is thus similar to the classical 
Richardson-number criterion for stratified shear flow and pertains to the possible 
development of wave-like disturbances analogous to Kelvin-Helmholtz instability. 
A sufficient condition for instability is that the numerator of (1) be negative, for in 
this case the inviscid vortex is locally unstable to convection-like instability, in this 
case inertial instability. This too is analogous to a negative Richardson number in 
stratified shear flow. 

Anumber of investigations have, however, cast into some doubt the extent to which 
the aforementioned analogy is valid. A recent numerical investigation by Staley & 
Gall (1984), for example, reveals the presence of instability which is subcritical with 
respect to the Rayleigh sufficient condition (dr2/dr  < 0) but which does not behave 

t The instability discussed here is sometimes referred to as ‘centrifugal instability ’. 
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like a vortex analogue of Kelvin-Helmholtz instability. Moreover, Leibovich & 
Stewartson (1983) have developed a sufficient condition for instability which is less 
stringent than the Rayleigh criterion. This new sufficient condition, which pertains 
to three-dimensional disturbances, may be written 

(2 )  
d52 d Q d r  dw J7- --+ - 
dr [ dr dr ( d r y ]  < O’ 

where 52 = V / r  is the angular velocity. This is the same condition as Staley & Gall 
found in their numerical simulations. Our present purpose is to demonstrate that the 
condition ( 2 )  does indeed pertain to local two-dimensional inertial instability in a 
plane that locally contains all the velocity shear relative to a rotating coordinate system. 
Since this plane is slanted with respect to a horizontal surface, the most-unstable 
mode of the instability may be said to be h ~ l i ~ l ~ y  symmetric. The identification of 
these modes as inertial instabilities has been suggested by Pedley (1969). 

2. Local stability of a columnar vortex 
We now examine the local stability of a steady, inviscid, incompressible columnar 

vortex flow whose properties vary in the radial direction .only. We next expand the 
angular and vertical velocities in a Taylor series about r = r,, retaining only the first 

A new coordinate system which rotates at  constant angular velocity 0, is now 
defined. Relative to the new coordinates, the angular, vertical and azimuthal velo- 
cities sufficiently near r = ro may be written 

d52 a* = (r-r,)(%) +..., 
n 

The crucial step here is to realize that all of the velocity shear relative to the rotating 
coordinate system occurs in a surface which is sloped with respect to the horizontal. 
We therefore define a helical coordinate system that contains all of the shear in the 
vicinity of r,, by rotating the old coordinate system about a radial through an angle 

(4 ) 
a given by 

The new Coordinate system is illustrated in figure 1 .  In this new system the vertical 
component of rotation has been reduced, 

( 5 )  

(6 )  

(dw/dr), 
(d J7*ldr),. 

t ana  = 

52; = 0, cos a, 

52; = 0, sin a. 

and an azimuthal component of rotation has been introduced, 

Here primes denote the transformed values. All of the shear is now in the (r’ ,  #)-plane, 

dV* and its magnitude is 
(7) 
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FIGURE 1. The transformed coordinates in which 8‘ is a unit vector tangent to the 
total velocity shear in the vicinity of r = r,,. 

Without further development, we notice that the problem of local stability of flow 
in this transformed coordinate system is equivalent to the classical inertial instability 
problem phrased in a rotating coordinate system (with the added feature of an 
azimuthal component of rotation), provided that perturbations are assumed that do 
not vary with 8’;  such that perturbations are helically symmetric. Emanuel(l979) has 
shown that the azimuthal component of vorticity has no effect on the growth rat.es 
of the unstable modes. The most-unstable inertial mode has infinite wavenumber in 
the direction of z‘, and its growth rate u is given by (cf. Holton 1972, p. 185) 

(8) u2 = - 2Q;(2Q; + 8). 
Using (5 ) ,  (3c)  and (4), this may be rewritten as 

If we notice that close to ro the gradient of circulation r is 

and that V, = roQO, (9) may be expressed as 

+ 

The criterion for growth is thus equivalent to the Leibovich-Stewartson criterion ( Z ) ,  
while (10) also gives the linear growth rate of the most-unstable mode if the flow i s  
unstable in this sense. 
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3. Conclusions 
When viewed in a rotating coordinate frame that contains all of the velocity shear 

in the local vicinity of a radius ro, the inertial stability of a columnar vortex with 
axial velocity is seen to be isomorphic with the classical problem of inertial instability 
in a rotating coordinate system. Since the plane that locally contains all the velocity 
shear is sloped in the (0,  z)-plane, the most-unstable modes (which do not vary in the 
direction of the shear) are helically symmetric; that  is, they do not vary along a path 
that (at a given radius ro) has a constant slope in the (0, 2)-plane. The growth rate 
(10) of the most-unstable inertial modes is consistent with the sufficient condition for 
instability developed by Leibovich & Stewartson (1983). 
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