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Significance

 This study integrates advanced 
modeling approaches to project 
risks of tropical cyclone–induced 
power outages under changing 
climate conditions. Combining 
climate simulations, machine 
learning, distributional impact, and 
economic analyses, this research 
identifies regions and vulnerable 
populations along the US Gulf and 
Atlantic coasts that are 
disproportionately affected by 
these outages. These insights 
emphasize the urgent need for 
adaptive planning, equitable 
resource allocation, and targeted 
mitigation strategies to address 
the growing societal and economic 
impacts of climate-driven outages.
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This research investigates the projected risks of future climate trends on tropical cyclone–
induced power outages in the Gulf and Atlantic coast of the United States, focusing 
on the disproportionate impacts on vulnerable populations and the economic burdens 
associated with such events. Our methodology integrates four well-documented models 
to estimate changes in power outage rates, sociodemographic inequities, and economic 
costs due to tropical cyclone projections. Synthetic tropical cyclones were generated 
using data from seven global climate models (GCMs), used to compare power outage 
risks at the census tract level along two periods: hindcast (1995–2014) and late-century 
(2071–2100) using the SSP5-8.5 scenario. The late-century results from each model were 
scaled to align with a global warming scenario of 3 °C. We evaluated the uncertainty of 
these projections by considering the agreement among the GCMs outage projections. 
Results highlight a significant increase in power outage risks and high agreement in 
northern Florida, Georgia, the mid-Atlantic, and the North Atlantic coast. Distributional 
impact analyses indicate higher outage risks for Hispanic, non-White, and low-income 
populations, while economic projections show annual costs rising from $6.2 billion in 
the hindcast to over $11 billion for the 3 °C scenario. The findings highlight the need 
for adaptive strategies and equitable resource allocation to mitigate these growing risks 
due to future climate projections.

electric system reliability | climate change | power outages | tropical cyclones | interruption cost

 Weather events are the primary cause of power outages in the United States, accounting 
for 78% of major disruptions ( 1 ). The impact of these weather-induced outages has 
increased substantially over the past two decades ( 2 ) and is expected to further rise as the 
changing climate intensifies extreme weather events. These outages have far-reaching 
implications, disproportionately affecting vulnerable populations who face significant 
social and economic burdens, such as disrupted access to critical services, health risks from 
power-dependent medical devices, and income losses ( 3 ).

 Evidence indicates that lower-income communities experience longer restoration times, 
exacerbating existing disparities in health, safety, and overall well-being ( 4 ). In addition 
to their societal impacts, these outages also place a significant economic burden ( 5 ). Annual 
costs of weather-related power outages in the United States are currently estimated to 
range from $25 billion to $400 billion, with projections suggesting further increases as 
extreme weather events become more frequent and severe ( 5   – 7 ).

 Tropical cyclones in particular are responsible for 9 out of 10 major outages in the 
United States ( 8 ). Recent studies show that tropical cyclones are intensifying more 
rapidly, producing more rainfall, moving more slowly, extending further inland, and 
causing increased storm surges ( 9 ). These trends are consistent with research corre-
lating a warming climate to shifts in tropical cyclones’ behavior, such as increased 
maximum surface wind speeds, poleward shifts of storm tracks, increased precipita-
tion, slower translation speed, and a global increase in the frequency of high-intensity 
cyclones ( 10 ).

 Over the next century, warming sea surface temperatures and changes in atmospheric 
conditions may further alter the cyclonic behavior, potentially changing their frequency, 
wind speed, and size. Along the US Gulf and Atlantic coasts, medium-confidence 
projections suggest further increases in cyclone intensity, wind speeds, precipitation, 
storm surge, and intensification rates ( 11 ). However, it remains uncertain which regions 
and demographic groups in the United States may face disproportionately higher impacts 
from these outages as climate conditions continue to shift. Proactive planning for these 
changes enables decision-makers to prepare for variations in the occurrence of major 
power interruptions.D
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 Many models have been developed to estimate power outages 
due to tropical cyclones, ranging from detailed parametric and 
semiparametric statistical models (e.g.,  12 ,  13 ) to advance machine 
learning models (e.g.,  14         – 19 ). Particularly relevant to this study 
are models that use a reduced set of variables available at fine 
spatial scales (e.g.,  14 ) or those which rely only on publicly avail-
able data, thereby avoiding dependence on utility-specific data, 
which is often restricted or unavailable (e.g.,  20 ).

 Previous modeling efforts have identified key predictors of 
power outages, including gust wind speed, duration of winds 
exceeding 20 m/s, land use, and population density ( 14 ,  20 ). These 
predictors are crucial for improving model accuracy and under-
standing the factors driving outage patterns. In contrast, other 
factors such as storm surges are generally not significant predictors 
of power outages beyond a narrow coastal strip ( 21 ,  22 ).

 Additional analysis of outage characteristics suggests that areas 
managed by rural utilities experience longer restoration times 
compared to urban regions ( 23 ). Similarly, wealthier areas tend 
to have power restored faster than less affluent ones, even when 
accounting for storm strength and initial impact ( 4 ). These dis-
parities disproportionately affect vulnerable communities, 
including low-income households, the elderly, and non-Hispanic 
Black and Hispanic populations, who are less likely to have access 
to backup power solutions ( 24 ) and often endure prolonged 
outages ( 25 ,  26 ).

 These power outages also have broader economic implications. 
Understanding the economic implications of cyclone-induced 
outages is essential for decision-makers, as it provides a basis for 
comparing sectoral impacts and evaluating adaptation strategies, 
thereby guiding effective resource allocation. A commonly used 
metric to estimate these impacts is the Customer Interruption 
Cost (CIC), also known as the Value of Lost Load. CIC can be 
estimated using various methods, including survey-based stated 
preferences, market-based revealed preferences, and regional eco-
nomic modeling ( 27 ).

 To make these CIC insights more accessible, the US Department 
of Energy, in collaboration with Lawrence Berkeley National 
Laboratory and Resource Innovations, Inc., developed the 
Interruption Cost Estimate (ICE) Calculator. This online tool 
consolidates the results of many existing CIC studies, offering 
utilities and other stakeholders a practical resource for estimating 
the economic costs of power interruptions for residential, com-
mercial, and industrial customers ( 27 ). The ICE Calculator is 
based on a meta-database of 34 existing CIC studies, containing 
more than 100,000 survey responses. This tool incorporates rele-
vant regional data such as annual power usage, household income, 
timing of outages, and commercial and industrial customer char-
acteristics, allowing for customization in each analysis ( 27 ,  28 ).

 To improve our understanding of climate change’s impact on 
electric power outages, individuals, and the US economy, this paper 
estimated changes in 1) power outage rates, 2) inequities in power 
outage rates, and 3) the costs of power interruptions, all associated 
with landfalling tropical cyclones in the Gulf and Atlantic Coasts 
of the United States. Our approach integrates four models: a 
Tropical Cyclone Simulator Model, a Power Outage Prediction 
Model, an Distributional Impact Model, and an Economic Model.

 This analysis begins with the Tropical Cyclone Simulator 
Model, which uses a dynamic downscaling technique to generate 
tropical cyclone tracks from seven coarse-resolution global climate 
models (GCMs). Tracks are produced for both a hindcast period 
(1985–2014) and a late-century period (2071–2100) under a high 
emissions scenario, namely SSP5-8.5. This scenario is projected 
to lead to a global temperature increase of approximately 2.9 to 

5.6 °C by the late century. This scenario is not a likely outcome 
of current emissions but is useful for generating damage functions 
that can be expressed in terms of by-degree warming ( 29 ). The 
results of the study are then scaled to 3 °C of warming globally, 
similar to the 2.8 °C that Sarofim et al. ( 29 ) estimate is the median 
future warming scenario.

 The simulated tropical cyclone tracks are used to estimate sur-
face wind speeds for 45,707 census tracts along the Gulf and 
Atlantic Coasts of the United States for each of the generated 
tropical cyclones. These near-surface wind statistics serve as input 
to the second model, the Power Outage Prediction Model, a 
machine learning model trained on past tropical cyclone events 
to estimate the fraction of customers who experience power out-
ages in each census tract for each tropical cyclone event.

 The fraction of customers who experience power outages serves 
as the response variable in the Distributional Impact Model, which 
uses a random forest regression model to evaluate the projected 
impacts of these outages on diverse sociodemographic and socio-
economic groups. This analysis provides insights into the potential 
burdens on vulnerable populations. Finally, the Economic Model 
estimates the customer interruption cost by integrating the out-
puts of the ICE Calculator with typical cyclone power restoration 
times based on historical events in the United States

 Each of these individual models is well documented in the 
literature. The contribution of this paper is not in advancing any 
single model, but rather in integrating them to offer insights into 
potential future increases in impacts from tropical cyclone–
induced power outages. The insights gained not only highlight 
the regions and populations at greatest risk but also provide action-
able information for policymakers, utility companies, and emer-
gency planners to develop more targeted mitigation and adaptation 
strategies. 

1.  Results

1.1.  Changes in Tropical Cyclone Hazard and Power Outage 
Frequency. Fig.  1 shows the projected changes in the annual 
frequency of tropical cyclones by Saffir–Simpson category 
classification, based on the maximum wind speed at first U.S. 
landfall. Five out of seven GCMs project an overall increase in the 
frequency of tropical cyclones by the end of the century. However, 
these increases are not uniformly distributed across the cyclone 
categories. Specifically, five of the seven GCMs project a decrease 
in the frequency of tropical storms, compared to their respective 
hindcast, while all seven GCMs project an increase in Category 5 
hurricanes. These findings indicate that overall, tropical cyclones 
are likely to be more intense and damaging by the late century, 
generally in agreement with the existing literature (e.g., 30).

  Fig. 2  shows the projected changes in the annual proportion of 
the population experiencing power outages per census tract, cal-
culated as the difference in power outage rates between the hind-
cast period (1995–2014) and the late century period (2071–2100), 
considering a 3 °C warming scenario. The map highlights the 
magnitude of change in outage rates and the level of agreement 
among climate models.        

 The most significant increases in outage rates are expected in 
northern Florida and Georgia, regions currently experiencing 
moderate outage risks (SI Appendix, Fig. S6 ) but projected to face 
substantial increases by the late century. Expected increases in 
outage rates extend northward, reaching as far as the New England 
coast. This includes areas with historically low outage risks, which 
are now projected to experience significant increases in the fre-
quency and duration of power outages.
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 Northern Florida, Georgia, the mid-Atlantic, and North Atlantic 
coasts emerge as areas of high concern, showing both significant 
increases in outage rates and strong agreement among models. In 
contrast, areas like the Gulf Coast exhibit low GCM agreement, 
indicating substantial uncertainty in the direction and magnitude 
of projected outage changes. These findings point to the dual need 
for robust climate adaptation strategies in regions with high agree-
ment and significant outage risks, as well as further research to better 
understand and reduce uncertainties in low-agreement regions. 
Additional information on model-by-model outage projections is 
included in the Supporting Information.

  Fig. 3  displays the total household outage hours across multiple 
tropical cyclone return periods (2, 5, 20, and 100 y), broken down 
by region. The results indicate that the range of estimated outage 
hours increases at higher return period events across all regions. 
Notably, at the 100-y return period level, the North Atlantic region 
experiences the highest outage hours, driven partly due to its larger 
population compared to other regions. Only high-intensity tropical 
cyclones impacting this region are likely to produce outages at the 
upper end of the outage-hour range.        

 Taken together, the outage results suggest substantial increases 
in tropical cyclone–induced outages in northern Florida and 
Georgia, and along the mid-Atlantic and North Atlantic coasts. 
Beyond these areas, there is higher uncertainty about both the 
magnitude and direction of future changes. However, all models 
suggest that the more extreme tropical cyclone events will result 
in increased outage hours across all four regions evaluated.  

1.2.  Inequality of Impacts Across Subpopulations. To investigate 
differences in outage rates across subpopulations, we trained a 
Random Forest model using the census tract outage rate as the 
response variable and sociodemographic variables as the explanatory 
features. Following the method of Shortridge and Guikema (31), 
we calculated the total change in the marginal effect of each 
sociodemographic variable on the outage rate from its partial 
dependence plot. This metric, referred to as the “swing”, captures 
the range between the minimum and maximum predicted values 
for each variable while holding other factors constant. A positive 
swing indicates that census tracts with higher values for a given 
sociodemographic group are associated with higher outage rates 
in the margin.

 In addition to individual sociodemographic variables, the Social 
Vulnerability Index (SVI) was included in the analysis to assess 
the extent to which census tracts with a high SVI align with those 
identified as most at risk for power outages. The SVI is a composite 
measure that incorporates multiple factors contributing to vul-
nerability, including socioeconomic status, household composi-
tion, disability, minority status, and language proficiency, as well 
as housing and transportation accessibility.

Fig. 1.   Annual frequency of all tropical cyclones (TCs) included in the analysis 
(Upper panel) and the annual frequency of tropical cyclones by the Saffir–
Simpson scale (Lower panel). The gray solid vertical lines show the GCM 
hindcasts representing 1985–2014, where each vertical line represents a GCM. 
The projected frequency for each of the seven GCMs at 3° is represented by 
dots.

High Model Agreement 
(At least 5 out of 7 models agree)
Low Model Agreement 
(Less than 5 out of 7 models agree)

Median Projected Changes in
Power Outage Rates

High Mo
(A(( t leas
Low Mo
(Less th

Median Projected C
Power Outage Rate

Fig. 2.   Projected changes in the annual proportion of the population experiencing power outages per census tract, calculated as the difference in power outage 
rates between the hindcast period (1995–2014) and the late century period (2071–2100) considering a 3 °C of warming scenario. Colors indicate the magnitude 
of change in outage rates, with red areas suggesting an increased risk of power outages. Regions with high model agreement, where at least 5 out of 7 models 
concur on the direction of change, are shaded solid. In contrast, regions with low model agreement, where fewer than 5 models align, are marked with diagonal 
stripes, highlighting areas of greater uncertainty in the projected direction of change.D
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 To account for geographic variability in tropical cyclone expo-
sure and population characteristics, this analysis was conducted 
across four distinct regions of the United States: North Atlantic, 
South Atlantic, Gulf, and Florida.  Fig. 4  presents swing values for 
eight sociodemographic variables across both historical (hindcast) 

and future climate scenarios (3 °C warming) scenarios, disaggre-
gated by region. Across regions, census tracts with higher propor-
tions of non-White and Hispanic populations consistently exhibit 
higher outage risks. These groups frequently show the largest 
positive swing values, indicating persistent vulnerability to tropical 

Fig. 3.   Projected residential household hours without power for 100-y, 20-y, 5-y, and 2-y tropical cyclone events, categorized by region. Each dot represents one 
of the seven GCMs under the 3 °C warming scenario. The dashed vertical black line indicates the hindcast mean. For this figure, household hours for each GCM 
are calculated as the difference between the GCM-specific hindcast and projection, added to the hindcast mean (shown by the dashed vertical line).
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North Atlantic

South Atlantic

Swing

Florida

Gulf

Tropical Cyclone-Induced Power Outages Impact on Socio-Demographic Groups

Region Reference

Hispanic

Elders (65+)

Education
(<High School)

Social Vulnerability
Index

Median Income ($)

Disability Status

Children (<18)

Race: White (Non-
Hispanic)

Hindcast

Hispanic

Elders (65+)

Education
(<High School)

Social Vulnerability
Index

Median Income ($)

Disability Status

Children (<18)

Race: White (Non-
Hispanic)

Fig. 4.   Swing estimates per sociodemographic group for the Hindcast and the 3 °C warming scenario per region. Each dot represents one of the seven GCMs. 
The swing measures the marginal effect of a sociodemographic variable on power outage rates, as calculated using partial dependence plots. A positive swing 
indicates that census tracts with higher current concentrations of the specified sociodemographic group experience a larger marginal increase in the frequency 
of power outages, with larger values reflecting a stronger effect. Conversely, a negative swing suggests that census tracks with a higher representation of the 
group have a negative marginal effect in outages compared to others.D
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cyclone–induced power outages under both current and future 
climate conditions.        

 At the region level, individual swing directionality and magni-
tude differ. In the North Atlantic region census tracts with higher 
concentrations of Hispanic and non-White populations, individ-
uals with less than a high school education, higher SVI scores, and 
higher median incomes, are more likely to experience significant 
impacts both now and in the future. This suggests that future risk 
in this region may increasingly affect both traditionally vulnerable 
groups and some higher-income areas.

 In Florida, higher outage risks are associated with tracts that have 
larger proportions of Hispanic populations, elderly individuals 
(65+), and high SVI scores. These findings highlight a persistent 
concentration of outage vulnerability among older and socially vul-
nerable populations in the state. For the South Atlantic region, the 
swing effect for non-White populations is smaller compared to other 
regions. Instead, outage risk is more strongly associated with lower 
educational attainment and higher disability prevalence, suggesting 
different underlying vulnerability structures.

 Finally, the Gulf region swing results indicate census tracts with 
larger proportions of Hispanic and non-White residents, elderly 
populations, population with education below high school, and, 
similar to the North Atlantic, higher median household income 
have higher outage risk due to tropical cyclones. While the general 
direction of swing values remains stable over time, these regional 
differences suggest that climate-driven changes in tropical cyclone 
behavior may interact with existing social patterns in complex 
ways. The consistency of high swing values between hindcast and 
projected conditions for certain populations underscores persistent 
structural vulnerabilities, while shifts in other variables (e.g., 
income or disability) may reflect spatial changes in storm impacts 
under future climate scenarios.  

1.3.  Economic Impact Results. Table  1 summarizes the annual 
economic impacts of power outages from tropical cyclones, as 
estimated by ICE, with both total cost and cost per customer 
shown. The hindcast mean cost of $6.2 billion annually is expected 
to increase to approximately $11 billion on average under the 3 °C 
warming scenario. Results vary widely across GCMs, ranging from 
$5.4 billion to $26 billion annually. Looking at per-customer costs, 
the medium and large commercial and industrial customers bear 
the bulk of the outage burden in economic terms, even though 
residential customers account for 88% of all customers in the 
domain. Projecting the number of customers for the late century, 
using population projections for residential customers and expected 
trends for commercial and industrial customers, results in $20 billion 
annually with 3 °C warming, ranging from $9.5 to $47 billion across 
GCMs (see Supporting Information for population projections).

2.  Discussion

 This study highlights the growing risks of tropical cyclone–induced 
power outages in the United States based on 3 °C of warming. 
Our analysis reveals substantial increases in both the frequency 
and intensity of tropical cyclones, leading to longer outage dura-
tions, particularly in the Gulf, Atlantic, and Northeastern regions. 
Importantly, all GCMs evaluated project that power outage impact 
will extend further inland under future climate conditions, with 
significant increases along the northern region of the Atlantic 
coast—a region historically less vulnerable to such disruptions. 
This shift highlights the need for utilities and policymakers to 
address evolving risks in previously low-exposure areas.

 The analysis of inequalities in impacts across subpopulations 
highlights disproportionate impacts on vulnerable populations, 
including census tracts with high concentrations of Hispanic pop-
ulations, low-income households, and elderly residents. 
Simultaneously, the economic burden of these outages is projected 
to nearly double, rising from $6.2 billion to over $11 billion 
annually based on the 3 °C warming scenario. Medium and large 
commercial and industrial customers are expected to bear the 
highest per-customer costs, reflecting their reliance on reliable 
electricity.

 Despite these challenges, utilities have opportunities to mitigate 
risks through adaptive measures. Establishing strategies such as rou-
tine maintenance, undergrounding power lines, and asset hardening 
can significantly reduce the likelihood of outages. Additionally, inno-
vations like smart grid technologies and optimized restoration 
responses offer opportunities to enhance resilience. However, the 
widespread implementation of these measures requires substantial 
financial and operational investments, and many utilities remain con-
strained by limited budgets and resources.

 The reliance on seven GCMs and the SSP5-8.5 high-emissions 
scenario provides a robust framework for projecting outage risk 
under a warming scenario. However, the scaling to 3 °C of warm-
ing assumes linearity in impacts—explicitly calculating those 
changes using a different SSP scenario could result in different 
projections of tropical cyclone frequency, intensity, and associated 
power outages. Expanding the analysis to include a broader ensem-
ble of GCMs and additional emissions pathways would enhance 
our understanding of uncertainties and provide a more compre-
hensive view of potential future outcomes.

 The power outage model used in this study, while robust, has 
several limitations that could influence its predictive accuracy. For 
instance, the exclusion of critical covariates such as tree character-
istics—due to their unavailability at a multistate scale—may 
reduce the model’s ability to capture vegetation-driven outage 
risks. Additionally, the model’s training relies on historical outage 

Table 1.   Economic impacts by customer type, showing total annual costs and per-customer costs under the hindcast 
scenarios, along with the additional costs (in italic) projected for the 3 °C warming scenario

Customer type
Annual cost ($bill,  

Hindcast)
Additional annual cost 
($bill, 3 °C of warming)

Annual cost per  
customer (Hindcast)

Additional annual  
cost per customer  
(3 °C of warming)

 Residential $0.12 ($0.11 to $0.15) +$0.10 (−$0.01 to $0.41) $1.9 ($1.6 to $2.3) +$1.6 (−$0.1 to $6.4)

 Small commercial 
and industrial

$3.42 ($2.82 to $4.31) +$3.00 (−$0.19 to $11.95) $431 ($355 to $544) +$379 (−$24 to $1,505)

 Medium/large 
commercial and 
industrial

$2.67 ($2.21 to $3.08) +$1.98 (−$0.24 to $8.26) $2,477 ($2,052 to $2,853) +$1,839 (−$219 to $7,657)

﻿Total﻿ $6.22 ($5.14 to $7.54) +$5.09 (−$0.44 to $20.62) ﻿ ﻿
The first value in each cell represents the mean (in bold) across all GCMs, with the minimum and maximum estimates from the GCMs in parentheses. All values are in 2020 dollars.
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data (1985–2014), which may not fully account for future changes 
in grid infrastructure, urbanization, or adaptive measures.

 Furthermore, the power restoration model used in our analysis 
is a simplified representation that assigns a uniform outage dura-
tion to all impacted areas for a given event. This approach, while 
enabling streamlined integration into the economic model, mis-
estimates spatial patterns of outages, likely underestimating dura-
tions near the landfall locations and overestimating durations in 
inland areas. It also neglects key factors that influence variability, 
such as utility-specific crew management practices, real-time oper-
ational decisions, and localized challenges in infrastructure recov-
ery. Future work will address these limitations by incorporating 
more robust restoration models that account for spatial and oper-
ational variability in restoration processes.

 Similarly, the ICE Calculator, used to estimate economic 
impacts, is constrained by its reliance on customer interruption 
cost (CIC) data, which is geographically uneven and significantly 
underrepresents the northeastern United States. Additionally, the 
calculator may not fully capture the broader economic effects of 
prolonged outages. While its results offer valuable insights, they 
remain constrained by the underlying CIC dataset, based on stud-
ies conducted between 1989 and 2012, and the econometric 
model, which was last refined in 2018. Enhancing these datasets 
and models in the future could substantially improve the accuracy 
and relevance of our model in estimating outage costs.

 Beyond the direct impacts of tropical cyclones, climate change 
introduces additional vulnerabilities to the grid. Changes in veg-
etation growth, tree stability, and infrastructure degradation—
such as power pole degradation—pose further risks to grid 
reliability ( 32 ). While these were not included in our current 
model, incorporating these factors into future models could 
improve the accuracy and utility of outage projections. 
Furthermore, it is worth acknowledging that advances in grid 
design, such as increased undergrounding of power lines, the 
deployment of smart grid technologies, microgrids, and improved 
storm forecasting and outage response systems, may significantly 
enhance grid resilience by 2100. While these developments are 
difficult to predict and were beyond the scope of this analysis, they 
could mitigate some of the projected risks.

 This study provides a significant contribution to understanding 
the risks associated with future climate scenarios. By integrating 
physical, economic, and sociodemographic analyses at the census 
tract level, this study offers a robust framework to inform policy 
and investment decisions. These insights aim to enhance grid resil-
ience and mitigate the societal impacts of future power outages. 
Our findings highlight the need for proactive adaptation strategies, 
equitable resource allocation, and ongoing research to address the 
uncertainties and vulnerabilities associated with a changing climate.  

3.  Methods

This approach utilizes four established model frameworks—the Tropical Cyclone 
Simulator Model, Power Outage Prediction Model, Distributional Impact Model, 
and the Economic Model—to improve our understanding of climate change’s 
impact on power outages, individuals, and the US economy. The Tropical Cyclone 
Simulator Model generates synthetic tropical cyclone storm tracks using atmos-
pheric data from GCMs. These storm tracks are then used in the Power Outage 
Prediction Model, which estimates the fraction of customers experiencing power 
loss in each event, analyzed at the US Census tract level. To further assess the social 
implications, the outage results were used as inputs for the Distributional Impact 
Model, which uses a random forest regression model to evaluate how projected 
outages might affect various sociodemographic subgroups. The Economic Model 
subsequently calculates the economic impact of these power interruptions. The 
methodology for these integrated frameworks is shown in Fig. 5.

3.1.  Tropical Cyclone Simulation Model.
3.1.1.  Synthetic tropical cyclone generator. We employ a well-established 
dynamic downscaling technique that simulates ensembles of tropical cyclone 
tracks from coarse-resolution GCMs. The approach, described in detail by Emanuel 
et al. (33, 34) with updates by Emanuel (35) and Komurcu et al. (36), uses monthly 
sea surface temperature, atmospheric temperature, humidity, and daily horizontal 
wind speeds to generate proto-vortices. These weak proto-vortices are used to 
initialize the intensity model.

Storm intensity is driven by a coupled ocean-atmosphere, quasi-balanced, 
axisymmetric numerical model. Most initial proto-vortices, or “seeds”, are dis-
carded as they fail to meet an intensity threshold of 7 m/s within two days or a 
lifetime maximum wind speed of 20.58 m/s (40 kn). This filtering process ensures 
that only storms forming under suitable thermodynamic and kinematic condi-
tions are included in the ensemble, resembling a natural selection process. For 
each year, the model generates synthetic storms until an established number of 
successful storms is achieved, recording both the successful and unsuccessful 
attempts.

To ensure consistency across models, simulations for the hindcast period 
(1985–2014) are calibrated to have the same average storm frequency. This 
calibration is achieved by applying a proportionality constant to the ratio of suc-
cessful to unsuccessful seeds, which serves as the basis for estimating annual 
storm frequencies and aligning them with historical observations from the ERA5 
reanalysis dataset (37).

The calibrated proportionality constants derived from the hindcast period are 
then applied to late-century simulations, which for this analysis are based on 
the SSP5-8.5 scenario. These parameters remain constant for future simulations, 
allowing the model to naturally produce variations in tropical cyclone frequency 
and intensity due to changes in climate conditions. The simulated changes in 
tropical cyclone frequency are due to variations in the survival rate of seeds, driven 
by shifts in climate drivers such as sea surface temperatures (SST), atmospheric 
temperatures, and humidity. This approach ensures that the simulations reflect 
the influence of a warming climate on tropical cyclone genesis and intensification.

The projected changes in storm frequency vary across models. While some of 
this variability is due to differing climate sensitivities, scaling to 3 °C of warming 
helps account for these differences. Variations in sea surface temperature pat-
terns, wind shear, and other parameters further contribute to differences among 
GCMs. This variability highlights the importance of an ensemble approach, which 
captures a broader range of possible outcomes and provides a more robust under-
standing of how tropical cyclone frequencies may evolve under future climate 
conditions.

The modeled frequency and power dissipation from the hindcasts are used to 
select a set of seven CMIP-6 GCMs: EC-Earth3, MRI-ESM2-0, MPI-ESM1-2-HR, 
UKESM1-0-LL, CESM2, MIROC6, and CNRM-CM6-1. Additional details on this 
GCM selection process are provided in the Supporting Information (Section 1). 
Using this method, we generate 2,000 tropical cyclone tracks and intensities 
for each GCM hindcast period (1985–2014) and an additional 2,000 tracks and 
intensities for a late-century period (2071–2100) under the SSP5-8.5 high emis-
sions scenario. The application of SSP5-8.5 in this analysis is not a judgment 
regarding the likelihood of that scenario. Its use here is relevant and useful in 
that it encompasses the broadest range of possible future temperatures, including 
higher warming levels, and there is higher confidence in interpolation between 
temperature data points than in extrapolation beyond those points (38, 39).
3.1.2.  Estimates of impacts by-degree. Results are presented for a global 
warming scenario of 3 °C. To estimate these results, we scale the data using 
the ratio of 3 °C to the global temperature change from the GCM hindcast to 
the late-century period. This approach ensures comparability across models and 
scenarios, allowing the analysis to focus on outcomes under a uniform 3 °C warm-
ing scenario while accounting for the inherent differences in model predictions. 
Additional details, including global temperature changes by GCM, are provided 
in the Supporting Information (SI Appendix, Table S3).
3.1.3.  Parametric wind field model. To estimate local wind speed statistics 
for each census tract, we used a parametric wind field model based on the 
Willoughby et al. (40), publicly available through the R package “stormwind-
model.” This model has been applied in previous studies by Han et al. (12), 
and Tonn et al. (22). It calculates surface-level sustained winds, 3-s wind gusts, 
and the duration of winds exceeding a specified threshold at the centroid of 
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each census tract based on the tropical cyclone’s location and maximum wind 
speed recorded at 2-h intervals from the Synthetic Tropical Cyclone Generator 
Model. For our analysis, we set the cutoff wind speed at 20 m/s, following 
the methodology of Han et al. (12). The model outputs—maximum gust wind 

speed at the surface level and the duration of sustained winds exceeding 20 
m/s—are incorporated as input parameters in the Power Outage Prediction 
Model. Additional details on the Parametric Wind Field Model are provided 
in the Supporting Information.

Predictors
Atmospheric and Oceanic Variables were used as
input for Cyclonic Forma�on es�mates.

Wind Dura�onWind Speed

Synthe�c Tropical Cyclone Generator
Generates synthe�c tropical cyclone tracks and intensi�es.

Parametric Wind Field Model 
Generate wind characteris�cs at census tract level.

Predictors
Popula�on density and land cover data.

Power Outage Simulator
Es�mates the frac�onal outages at the census tract level.

Predictors
Socio-demographic, Socio-economic, and Social 
Vulnerability Index data.

Predictors
Reliability Index, Power Consump�on, Median 
Income, and Customer Type data.

Economic Model Results
Es�mates the economic impact of power
interrup�ons.

Distribu�onal Impacts Results
Es�mates which socio-economic and socio-demographic groups will 
be the most affected by power interrup�ons per region.

Tropical Cyclone Model

Power Outage Predic�on Model

Economic Model

Distribu�onal Impacts  Model

Power Outage Restora�on
Es�mates the outage dura�on for each event.

Fig. 5.   Overview of methodology for estimating the economic and social impact associated with tropical cyclone–induced power outages.
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3.2.  Power Outage Prediction Model.
3.2.1.  Parameter selection. We utilized an outage model adapted from 
Guikema et  al. (20) and McRoberts et  al. (41) to estimate the fraction of the 
customers in each census tract that will experience power outages during a 
tropical cyclone. An earlier model developed by Guikema et al. (20) utilized three 
key variables—census tract population, maximum gust wind speed, and duration 
of winds above 20 m/s—to estimate outage rates, achieving strong predictive 
accuracy for most tested storms. McRoberts et al. (41) later enhanced the model’s 
accuracy by implementing a two-stage random forest model, building on the 
work of Guikema and Quiring (42). The first stage uses a binary random forest 
classification model to determine whether a census tract will experience power 
outages. The second stage, conditional to the first stage predicting outages, uses 
a random forest regression model to estimate the fraction of customers without 
power in those tracts. This updated model included additional environmental 
variables such as topography, tree characteristics, land cover, soil moisture, and 
precipitation.

To adapt the model for estimating outages across 25 states along the Gulf 
and Atlantic coasts, we excluded variables from the McRoberts et al. (41) model 
that were unavailable at this geographical scale, such as tree characteristics. 
The covariates considered in the retraining process included population, land 
cover, topography, soil moisture, and tropical cyclone wind data. The population 
density data were obtained from the US Census Bureau. The land cover data, 
obtained from the Land Cover Database, included eight land use classifications: 
water, developed, barren, forest, shrubland, herbaceous, planted/cultivated, and 
wetlands. The topography data—mean, median, SD, minimum, and maximum 
elevation—were obtained from the digital elevation model (DEM) produced by the 
US Geological Survey. The soil moisture data, obtained from North America Land 
Data Assimilation System Phase 2 (NLDAS-2), includes measurements at three 
levels: 0 to 10 cm, 10 to 40 cm, and 40 to 100 cm. Finally, the tropical cyclone 
wind data include the maximum surface-level (10 m) gust wind speed over the 
length of the tropical cyclone at the center of the census tract and the duration 
of sustained winds exceeding 20 m/s.

For validation, we used holdout cross-validation with mean absolute error as 
the performance metric, splitting the outage data into 80% for training and 20% 
for testing across 30 iterations. The retrained model minimized prediction error 
with the chosen subset of variables, achieving effective performance across the 
multistate region. The Mean Absolute Error results indicated that the best perfor-
mance model, which minimized the prediction error, included population density, 
land cover variables (forest, herbaceous, and wetlands), maximum surface-level 
(10 m) gust wind speed, and the duration of sustained winds above 20 m per 
second. Additional details on the parameter selection process are provided in 
the Supporting Information.
3.2.2.  Power outage simulation. We estimated the fraction of the customers 
in each census tract that will experience power outages for each tropical cyclone 
using the two-step regression model with the reduced set of covariates. This 
analysis estimated the impact of 4,000 tropical cyclones for each GCM, which 
included 2,000 cyclones for the hindcast period (1985–2014) and 2,000 cyclones 
for the late-century period (2071–2100).

To estimate the mean fraction of outages per census tract for each GCM and 
period, we used a Poisson distribution, setting the rate parameter (λ) equal to 
the annual frequency parameter obtained from the Synthetic Tropical Cyclone 
Generator. This parameter represents the expected annual frequency of tropi-
cal cyclones over a 30-y period. For each Monte Carlo simulation iteration, the 
Poisson distribution provided the number of cyclones expected for that year. 
Based on this result, we randomly selected an equivalent number of events from 
the dataset of tropical cyclones.

Each event in the dataset had an equal probability of selection, as the dataset 
already incorporates the tropical cyclone intensity distribution. This assumption 
ensures that the randomly selected hazards appropriately reflect the original 
hazard intensity distribution for a given year. For each iteration, we recorded 
the maximum fraction of power outages observed in each census tract, which 
reflects the worst-case scenario for that year. This approach captures the upper 
bound of outage impacts across the modeled events. The process was repeated 
1,000 times using Monte Carlo simulation techniques to ensure robust statis-
tical sampling.

Upon completing the simulations, we calculated the mean fraction of outages 
over the 30 y for each GCM. These results enabled us to evaluate and compare the 
projected impacts of tropical cyclones on the frequency and intensity of power 
outages at the census tract level along the Gulf and Atlantic Coasts of the United 
States across both the hindcast and late-century periods. We then calculated the 
difference in mean fractional outages between the two time periods for each 
GCM, where positive values indicate a projected increase in the proportion of 
customers experiencing power outages under 3 °C of warming, and negative 
values indicate a projected decrease. By estimating these parameters at the 
census tract level across all GCMs, we captured the variability and uncertainty 
in tropical cyclone occurrence and its impacts on regional power infrastructure 
under different climate scenarios.

To address the uncertainties in climate model projections, we evaluated the 
level of agreement (AL) across the seven GCMs. This approach enabled us to 
identify areas of consensus, where projections from multiple models align, and 
areas of disagreement, which highlight potential uncertainties. Agreement is 
defined as cases where at least 5 out of 7 models concur on the outage projec-
tion trend—either an increase or decrease—while all other cases are categorized 
as disagreement.
3.2.3.  Power outage restoration. Understanding restoration times is essen-
tial to capture the full impact of increases in both the number and duration of 
outages, particularly as they contribute to the economic impacts discussed in 
the following section. However, estimating restoration times on a national scale 
is challenging due to variations across utilities, which depend on factors such as 
crew management practices and real-time operational decisions. Given these 
complexities, we use a straightforward estimation approach with the aim of 
refining it in future research.

For this analysis, we utilize outage duration data, in minutes, per Saffir–
Simpson categories, calculated using outage data from poweroutages.us, a 
website that scrapes outage data from utilities. These estimates are based on 
a statistical outage duration model trained on tropical cyclones from 2013 to 
2020. Using central estimates of outage duration, we developed a piecewise 
linear relationship between outage minutes and the wind speed range associated 
with each category.

To estimate event frequency, we assume the occurrences follow a Poisson 
distribution, where the median point is calculated as 1/ev, with v representing the 
maximum wind speed at landfall. Due to this simplified approach, all customers 
are assigned the same outage duration for a given event.

3.3.  Distributional Impact Model. For our distributional impact analysis, 
we evaluated the relationship between sociodemographic and socioeconomic 
variables, including the Social Vulnerability Index (SVI), and tropical cyclone–
induced power outage risks. The selected variables included sociodemographic 
factors such as the proportions of females, children, elderly individuals, White and 
Hispanic populations, and individuals with disabilities, as well as socioeconomic 
factors like populations with education below the high school level, poverty levels, 
and median household income. Additionally, we included the Social Vulnerability 
Index (SVI), a composite measure that incorporates multiple factors contributing 
to social vulnerability.

Sociodemographic data, including gender, race, ethnicity, age, and educa-
tion, were obtained from the 2020 Decennial Census, while employment and 
disability rates were obtained from the 2021 American Community Survey (ACS). 
Socioeconomic data, including median household income and poverty rates, were 
also sourced from the 2021 ACS. The Social Vulnerability Index was obtained 
from the 2020 CDC SVI Documentation, which provided a composite measure 
of vulnerability factors. Additional details on these data sources are included in 
the Supporting Information (SI Appendix, Table S1).

To ensure the robustness of the analysis and minimize multicollinearity, we 
evaluated all sociodemographic and socioeconomic variables for independence. 
Variables with a correlation coefficient greater than 40% were considered highly 
correlated and excluded from the final analysis. For example, median household 
income and poverty levels exhibited a strong inverse correlation, as areas with 
higher median income typically had lower poverty levels. By excluding one var-
iable from each highly correlated pair, we retained a final set of variables that 
allowed for a clearer interpretation of their independent contributions to power 
outage risks.
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To evaluate the relationship between these variables and power outage risks, 
we implemented a Random Forest regression model, using the “Random Forest” 
package in R (43). The response variable was the mean fraction of outages for 
each GCM and period. The explanatory variables consisted of the final set of 
sociodemographic and socioeconomic variables as well as the SVI.

Then, we utilized the methodology described by Shortridge and Guikema 
(31) to calculate the total change in the marginal effect of each predictor on the 
response variable from its Partial Dependence Plots (PDPs). This total change, 
referred to as the “swing,” captures the variability in the predictor’s influence on 
outage risks. The swing represents the difference between the minimum and 
maximum values of a predictor’s PDP. This metric provides insight into both the 
magnitude and direction of the variable’s impact on outage risks. The magnitude 
of the swing indicates the sensitivity of each variable to power outage risks, with 
larger swings indicating a greater likelihood of outage impact for the associated 
subgroup. A positive swing suggests that census tracts with higher concentrations 
of the subgroup represented by the variable are more likely to experience greater 
outage risks. Conversely, a negative swing indicates that higher concentrations 
of that group are associated with reduced outage risks.

It is worth noting that all sociodemographic and socioeconomic variables 
were held constant between the hindcast and late-century periods. As such, the 
observed changes in outage risks across these periods reflect only the influence of 
climate-driven changes in tropical cyclone characteristics. This approach ensures 
that any changes are attributed only to climate-related factors, without interfer-
ence from assumptions about future changes in human systems. In other words, 
it does not account for future demographic, economic, or infrastructural shifts. 
Future work could incorporate migration and dynamic socioeconomic projections 
to assess how changing human systems may interact with climate impacts to 
shape future risk landscapes.

3.4.  Economic Model. To estimate the economic impact of these outages, 
we used the ICE Calculator, which estimates customer interruption costs (CIC) 
through a two-stage regression model. The first stage uses a probit model that 
estimates the probability that a customer reports any financial cost from a power 
interruption, as opposed to reporting no cost at all. This estimate is based on 
independent variables that capture customer and interruption characteristics. 
The second stage uses a generalized linear model to relate actual interruption 
costs for those customers who report financial costs from power interruptions to 
the set of independent variables (28).

Through these regression models and data from 34 existing CIC studies 
(27), the ICE Calculator estimates outage costs using several key input variables. 
These inputs include reliability index values for the System Average Interruption 
Duration Index (SAIDI), System Average Interruption Frequency Index (SAIFI), 
and Customer Average Interruption Duration Index (CAIDI), the geographical 
area affected by outages; the number of residential, commercial, and industrial 
customers impacted; annual power consumption by customer sector in megawatt 
hours (MWh); and median household income for residential customers.

To implement the ICE Calculator into our analysis, we first obtained U.S. utility 
service territory information from the US Energy Information Administration (EIA) 
through the Annual Electric Power Industry Report data, collected through the Form 
EIA-861 survey (44). This form provides historical data from 1990–2021, including 
reliability indices from 2013 onward, sector-specific customer counts, and annual 
electricity sales by sector, for each utility service territory impacted by increased 
tropical cyclone–related power interruptions. The reliability index values compiled 
were SAIDI, SAIFI, and CAIDI. SAIDI indicates the cumulative annual duration of 
interruptions for the average customer; SAIFI indicates the average annual number 
of interruptions for each customer; and CAIDI indicates the average outage length 
per customer, or the average electricity service restoration time (27).

We extracted the two-stage regression model framework and regional data 
from the ICE Calculator model available online (45) and reconstructed a functional 
version in R to enable iterative processing of each modeled tropical cyclone track 
in our analysis. Using spatial data on the centers of population coordinates for 
each census tract (46) and a utility service territory shapefile (47), we mapped 
each census tract to its corresponding utility service area.

For each affected census tract population ((48) and utility service territory, we 
stored the proportions of residential, commercial, and industrial sector customers 
(from 2021 data or 2016–2020 average where the former was unavailable), along 
with their respective MWh sales obtained from the EIA-861 Form, and the adjusted 

reliability index values based on our projected tropical cyclone interruptions. These 
inputs, along with the regression models, regional timing of outage (time of day or 
year), commercial and industrial customer characteristic data for each census-tract 
iteration were processed in the ICE calculator to estimate the interruption cost per 
event for each customer. Additional details are provided in the SI Appendix, section 5.

We expect an increase in the number of customers over time, which is 
expected to further increase the impact of power outages. To account for growth, 
we use population projections for residential customers and recent trends to rep-
resent growth in commercial and industrial customers. Consistent with other CIRA 
sectoral analyses, we use state-level population projections from the Integrated 
Climate and Land Use Scenarios version 2 (ICLUSv2) model (49, 50) along with the 
United Nations’ (51) Median variant projection, which is based on assumptions 
of medium levels of fertility, mortality, and migration (52). For commercial and 
industrial customers, we assume growth follows recent linear trends extracted 
from the state-level customer data described above (44) for 1990–2021. More 
details are provided in the Supporting Information (SI Appendix, Table S6).

3.5.  Uncertainty. We acknowledge that there is substantial uncertainty in any 
projection this far into the future, uncertainty that arises from many sources. A 
full uncertainty propagation and quantification is beyond the scope of this paper, 
and future work could expand on our modeling to more fully account for and 
propagate uncertainty.

Previous work on projecting hurricane power outage risk into the future suggested 
that uncertainty in projected hurricane outage rates is dominated by uncertainty in 
hurricane frequency (8). Starting from this earlier finding, we expanded on the sources 
of uncertainty considered and focused on the uncertainty in 1) future climate state as 
represented by uncertainty in the GCMs and 2) uncertainty in hurricane frequency, 
track, and intensity. We did not include uncertainty in power outages for a given hurri-
cane, in power outage restoration given an outage event, or in the economic impacts. 
The uncertainty bounds provided in Table 1 thus reflect the uncertainty due to climate 
models and downscaled hurricanes for each climate model. We acknowledge that this 
is an incomplete representation of uncertainty, but it captures the dominant source 
of uncertainty suggested by Alemazkoor et al. (8) and goes beyond this to more fully 
capture hurricane frequency, location, and track uncertainty as well.

We note that we did not project changes in demographic or economic varia-
bles into the future. We are unaware of any study that has done this for project-
ing power outages into the future. If this were to be done, this would contribute 
substantial uncertainty to the estimated changes. This is left for future work.

Finally, we note that we did not project changes in the electric power grid 
into the future. These changes are highly uncertain and depend in part on poli-
cies, incentives, and regulations put in place in the coming decades. This makes 
changes in the electric power grid difficult to project with any degree of confi-
dence. One can imagine that if current grid resilience enhancement programs 
continue, the electric power grid of the future may experience reduced disruptions 
due to hurricanes. If this were to occur, future outage rates may be lower than 
we have estimated.

Data, Materials, and Software Availability. Some of the data used in this 
research, particularly the detailed hurricane track data, is available only under a 
non-commercial, non-distributed use agreement. This can be made available from 
the authors for non-commercial uses but requires a non-disclosure statement to 
be signed. The data underlying the figures and results in the paper are available 
publicly (53). The code for the paper also requires a non-disclosure statement.
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