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ABSTRACT

This study investigates projected changes in the length of the tropical cyclone season due to greenhouse gas

increases. Two sets of simulations are analyzed, both of which capture the relevant features of the observed

annual cycle of tropical cyclones in the recent historical record. Both sets use output from the general cir-

culation models (GCMs) of either phase 3 or phase 5 of the CMIP suite (CMIP3 and CMIP5, respectively). In

one set, downscaling is performed by randomly seeding incipient vortices into the large-scale atmospheric

conditions simulated by each GCM and simulating the vortices’ evolution in an axisymmetric dynamical

tropical cyclone model; in the other set, the GCMs’ sea surface temperature (SST) is used as the boundary

condition for a high-resolution global atmospheric model (HiRAM). The downscaling model projects a

longer season (in the late twenty-first century compared to the twentieth century) in most basins when using

CMIP5 data but a slightly shorter season using CMIP3. HiRAMwith either CMIP3 or CMIP5 SST anomalies

projects a shorter tropical cyclone season in most basins. Season length is measured by the number of con-

secutive days that the mean cyclone count is greater than a fixed threshold, but other metrics give consistent

results. The projected season length changes are also consistent with the large-scale changes, as measured by a

genesis index of tropical cyclones. The season length changes aremostly explained by an idealized year-round

multiplicative change in tropical cyclone frequency, but additional changes in the transition months also

contribute.

1. Introduction

The active seasons for tropical cyclones (TCs) vary

widely across different basins within the same hemi-

sphere. For example, in the North Atlantic Ocean the

peak season is the late summer to early fall (August–

October) with the official season defined from June to

November. In thewesternNorth PacificOcean, TCs form

throughout the year, while in the north IndianOceanTCs

mainly form before and after the monsoon season. As

greenhouse gas concentrations increase and the climate

warms, the lengths and durations of the tropical cyclone

seasons may change. Already, observational studies have

found trends toward longer TC season lengths in the

NorthAtlanticOcean (Kossin 2008) and SouthChina Sea

(Yan et al. 2012) in the recent historical record. Other

work has shown that the timing of the TC season is sen-

sitive to the radiative balance, so that during the mid-

Holocene, the NorthernHemisphere TC annual cycle (as

delineated by the large-scale environment for TC activity
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in climate model simulations) shifted to later in the cal-

endar year in response to increased boreal summer in-

solation (Korty et al. 2012).

Our interest in the possibility of greenhouse gas–

induced changes in tropical cyclone seasonality stems

from global climatemodel (GCM) projections of changes

in the annual cycles of other climate variables in response

to increasing greenhouse gases. In the tropics and sub-

tropics, the World Climate Research Programme’s

(WCRP’s) Coupled Model Intercomparison Project

(CMIP), phase 3 (CMIP3; Meehl et al. 2007) and phase 5

(CMIP5; Taylor et al. 2012), multimodel datasets project

increases in the annual ranges of temperature and pre-

cipitation as well as a shift of the annual cycles of these

variables to later in the year (Chou et al. 2007; Biasutti

and Sobel 2009; Sobel and Camargo 2011; Dwyer et al.

2012; Seth et al. 2013; Huang et al. 2013; Dwyer et al.

2014). Motivated by the robustness of these seasonality

changes (nearly all models agree on the sign), we initially

hypothesized that the timing shift and increase in the

annual range of SST could be affecting the seasonality of

tropical cyclones in a similar manner. Do GCMs project

tropical cyclones to respond similarly to SST?

Unfortunately, coupled GCMs, including those used

in CMIP5 and CMIP3, do not have sufficient horizontal

resolution to accurately simulate all characteristics of

tropical cyclones (especially intensity), making pro-

jections of future behavior difficult (e.g., Camargo 2013).

A common alternate approach is to use less compre-

hensive models, which do not attempt to simulate a fully

coupled atmosphere and ocean, to reproduce the ob-

served distribution of TCs in both space and time and to

provide clues as to how TCs may change in the future.

This study focuses on TC projections produced by two of

these methods. The first method employs a statistical–

dynamical downscaling approach in which incipient vor-

tices are seeded into large-scale conditions from a GCM

and then simulated with an idealized axisymmetric dy-

namical tropical cyclone model, following a track de-

termined using the GCM wind field (Emanuel et al.

2008); while the other method, a high-resolution global

atmospheric model (HiRAM; Held and Zhao 2011), can

explicitly, albeit crudely, resolve TCs when given the SST

as a boundary condition.

Despite the advances of GCMs and new modeling

approaches and techniques, uncertainty remains in pro-

jections of TC frequency with global warming. High-

resolution global atmospheric models, includingHiRAM,

have predicted a reduction in the global number of TCs

(e.g., Sugi et al. 2002; Bengtsson et al. 2007; Knutson et al.

2010). Unlike these models, the downscaling approach

described above when applied to CMIP5 data (Emanuel

2013) projects an increase in the global number of storms

by the end of the twenty-first century. When that same

downscaling technique is applied to the CMIP3 dataset,

though, it projects a reduction in the global TC frequency

in the future, in agreement with other studies (Emanuel

et al. 2008). Furthermore, otherCMIP5 analyses (Camargo

2013; Tory et al. 2013; Murakami et al. 2014) project a re-

duction of global TC frequency by the end of the twenty-

first century for most models. Regional changes in TC

frequency are more uncertain (e.g., Knutson et al. 2008;

Villarini and Vecchi 2012, 2013; Knutson et al. 2013; Wu

et al. 2014).

Here we investigate how the timing of the tropical

cyclone season is projected to change due to increased

greenhouse gases and other anthropogenic effects and

relate these changes to changes in environmental char-

acteristics, using both the downscaling model and

HiRAM forced with CMIP3 and CMIP5 data. In the

following section we describe the data and explain the

methods we use. In section 3, we describe the twentieth-

century seasonal cycles in HiRAM and the downscaling

model and compare them with observations. In sections

4 and 5 we describe the projected changes in the length

of the TC season and in a genesis index for tropical cy-

clones. Finally, in section 6, we summarize our findings.

2. Data and methods

We consider two sets of simulations that make use of

coupledmodel data. The first is the statistical–dynamical

downscaling method of Emanuel et al. (2006). This

method randomly seeds incipient vortices into envi-

ronmental conditions produced by GCMs and then

simulates the further evolution of each vortex using an

idealized axisymmetric dynamical tropical cyclone

model. For each GCM, the number of seeds is tuned so

that the annual number of tropical cyclones that form

matches that of the current climate in the annual mean.

The large-scale winds determine the track of the po-

tential TC using a ‘‘beta and advection’’ model. The

dynamical model used to compute the wind field of the

storm is the Coupled Hurricane Intensity Prediction

System (Emanuel et al. 2004), a deterministic, coupled

air–seamodel in angularmomentum space. This method

was used to generate the equivalent of many years of

storms for any given climate scenario.

The statistical–dynamical downscaling method was

previously run on the following CMIP5 models: NCAR

CCSM4, GFDL CM3, HadGEM2-ES, MPI-ESM-MR,

MIROC5, and MRI-CGCM3 for the twentieth-century

historical simulation and the twenty-first-century repre-

sentative concentration pathway 8.5 (RCP8.5) scenario as

described in Emanuel (2013). We refer to these simula-

tions collectively as D5. We calculate changes in the TC
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statistics averaged over 1975–2000 in the historical sim-

ulation and 2075–2100 in the RCP8.5 simulation.We also

study the TCs downscaled from the following CMIP3

models (D3) for the 20C3M and twenty-first-century

SRES A1B scenarios: CCSM3, CNRM-CM3, CSIRO

Mk3.0, ECHAM5, GFDL CM2.0, MIROC3.2(medres),

MRI-CGCM2.3.2, and fully described in Emanuel et al.

(2008). These downscaling simulations were run using

coupled model output averaged over 1970–2000 and

2070–2100. (Expansions for acronyms are available at

http://www.ametsoc.org/PubsAcronymList.)

The other set of simulations we analyze was produced

by the High Resolution Atmospheric Model (HiRAM),

an atmospheric GCM at 50-km horizontal resolution

using prescribed surface boundary conditions (Held and

Zhao 2011). TCs are identified and tracked using an

algorithm that identifies features of maximum vorticity

and minimum pressure within a warm core (Zhao et al.

2009). We study the HiRAM response to the twenty-

first-century SST anomaly patterns generated by the

CMIP3 and CMIP5 ensembles, compared with a control

simulation run with observed, climatological SST from

1981 to 2005. The future simulations use the SST per-

turbation from the end of the twenty-first century in the

CMIP suites added to the twentieth-century-observed

SST pattern, as described in detail in Zhao et al. (2009)

and Zhao and Held (2012). For CMIP5, we look at the

multimodel mean SST warming in the RCP4.5 scenario

(about half of the forcing strength of the RCP8.5 sce-

nario used by the D5 models). For CMIP3, we study the

response in individual A1Bmodels (CCCma CGCM3.1,

ECHAM5, GFDL CM2.1, GFDL CM2.0, HadCM3,

HadGEM1, MIROC3.2, and MRI-CGCM2.3.2) as well

as the response to the multimodel mean SST increase.

Because each set of simulations includes different

models and different forcing scenarios, a direct com-

parison of the results incorporates variability arising

from different projections of twenty-first-century cli-

mate. We refer to HiRAM forced with the CMIP5

multimodel mean SST anomaly as H5 and HiRAM

forced with CMIP3 SST anomalies as H3. The control

simulation is run for 25 years, the simulation with the

multimodel mean SST perturbation for 20 years, and the

simulations with SST anomalies from individual CMIP3

models for 10 years. The simulation lengths and number

of SST perturbations (especially for H5) are constrained

by the large computational resources demanded for

high-resolution modeling.

Observational TC data come from the best-track

datasets of the National Hurricane Center for North

and South Atlantic (NA and SA), eastern North Pacific

(ENP), and central North Pacific (CNP) basins (NHC

2015; Landsea and Franklin 2013), and from the Joint

Typhoon Warning Center for the western North Pacific

(WNP), north Indian Ocean (NI), south Indian Ocean

(SI), Australian (AUS), and South Pacific (SP) basins

(JTWC 2015; Chu et al. 2002). The seasonal cycle of TCs

is not very sensitive to the choice of dataset (Schreck

et al. 2014). To ensure an accurate representation of the

seasonal cycle in all basins, we calculate the climatology

only over the satellite era (1980–2012).

Basin definitions are shown in Fig. 1. TCs are only

counted in their genesis basin and genesis month, unless

they form in the last two days of the month and persist

for more than four days, in which case they are counted

in the following month. We require TC events to have a

peak sustained wind speed of at least 35 kt (1 kt ’
0.51m s21; this excludes tropical depressions from our

analysis). Because TCs in D5 have been characterized

at a higher threshold (40kt), we perform a correction to

account for this small discrepancy in threshold wind

speed. Observations show the global average number of

TCs per year is 85.1 with a 35-kt threshold and 79.1

with a 40-kt threshold, giving a ratio of 1.08.Wemultiply

the twentieth- and twenty-first-century D5 data in each

basin by this ratio to roughly account for the stricter

threshold. Note that this procedure has little effect on

changes in season length, but it increases the global,

annual mean number of TCs identified by D5.

In previous studies of seasonality changes in other

variables (Biasutti and Sobel 2009; Dwyer et al. 2012,

2014), we have performed a Fourier transform to obtain

the phase and amplitude of the annual cycle. The phase

indicates the timing of the annual cycle relative to the

calendar year and the amplitude is a measure of the

annual range. An alternative approach is to define sea-

sonality by the length of time a variable is larger than a

certain threshold value, as is often used in the biological

FIG. 1. Our basin definitions and abbreviations used in subsequent

figures.
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and phenological literature. For surface temperature,

annual mean changes lead to changes in threshold-based

season lengths so directly (e.g., summer as defined by

temperature above a given threshold lengthens when

the climate warms) as to be almost trivial, motivating a

focus on changes in the Fourier-defined seasons, since

those are not as obviously expected.

In the case of tropical cyclones, though, Fourier-defined

seasonality is a less natural measure than threshold-based

seasonality for two reasons.One reason is thatmost ocean

basins have no or very few TCs during the winter months,

cropping the annual cycle and reducing Fourier amplitude

to be simply a measure of the annual mean. The second

reason is that the Fourier-derived phase is of less inherent

interest than the absolute length of the TC season, as

measured by the time during which TCs are probable,

however, that is precisely defined. So, while initially

motivated by the effects of projected changes in the

Fourier-derived seasonality of temperature, we will pri-

marily focus on changes in the threshold-derived mea-

sures of seasonality for tropical cyclones, though we do

still calculate their Fourier phases.

We calculate the threshold-derived seasonality of a

variable by defining the start date of the season as the

time when the variable crosses the threshold and is in-

creasing, while the end date of the season occurs when

the variable crosses the threshold and is decreasing. We

ignore data for which there are no crossings or more

than two crossings (a start and an end), since they do not

have well-defined annual cycles at that threshold value.

We calculate the monthly climatology for each model

and period of interest, which we then interpolate to daily

using a cubic spline approach in order to better resolve

the start and end dates. To determine the robustness of

our results, we repeat our analysis using different

thresholds.

We also calculate the length of the TC season by

simply measuring the number of days between the first

and last storms of the season. This works well in basins

that only have TCs during a specific part of the year and

less well in basins with TCs throughout the year because

there is ambiguity about whether a storm is the first

storm of the season, or the last one of the previous

season. But in all basins it is useful as a complementary

technique to the threshold analysis described above.

3. Climatology

Figure 2 shows the climatologies of tropical cyclones

in different ocean basins for the observations, the down-

scaling method forced with output from the six CMIP5

models’ historical simulations (D5), the downscalingmodel

FIG. 2. Seasonal cycles of the number of TCs in different ocean basins.We plot data from observations (solid black

line), the downscaled historical CMIP5 data (D5, dark blue line), the downscaled 20C3M CMIP3 data (D3, cyan

line), and HiRAM forced with observed SST (magenta line). The thin dashed horizontal black line indicates

a threshold of one tropical storm per month. Because D5 and D3 are run with SST from climate models, while

HiRAM is run with observed SST, these simulations are not directly comparable.
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on the seven CMIP3 models’ historical (20C3M) simu-

lations (D3), and HiRAM forced with the observed

climatological SST from the end of the twentieth cen-

tury. First we focus on the observations, averaged over

1980–2012. In the North Atlantic, TCs commonly occur

between June and November and most frequently be-

tween August and October. The eastern North Pacific

has a similar distribution but with a broader peak shif-

ted to earlier in the year and peaking between July and

September. The western North Pacific is the most active

basin globally with TCs occurring during all months

of the year, though it maintains a strong annual cycle

peaking between July and October. The central North

Pacific is a relatively inactive basin, with no months

averaging more than one tropical storm per month. The

north Indian Ocean has a semiannual cycle with peaks

in May and between October and December, with a

quiescent period in between during monsoon season. In

the Southern Hemisphere, the South Pacific, Australian

basin, and south Indian Ocean have a similar climatol-

ogy, with the highest frequency of TCs between January

and March.

Figure 2 also includes the seasonal cycle of TCs from

D5, D3, and HiRAM. All models capture the approxi-

mate seasonal cycle but are biased in some basins. For

example, all models overestimate the frequency in the

central North Pacific and South Pacific, and they tend to

peak around one month later than observations in the

eastern North Pacific and Australian basins. In the most

active basins, D5 produces fewer storms than observed,

possibly because D5 (and D3) is run with model SST,

while HiRAM is run with observed SST. For this reason,

Fig. 2 does not present a fair evaluation of different

model techniques, but rather shows that all sets of sim-

ulations considered in this study are able to capture the

approximate timing and strength of the seasonal cycle

of TCs.

4. Projected changes in the seasonal characteristics
of tropical cyclones

Next we look at the projected changes and plot the

change in the annual cycle of TC frequency for each

basin in Fig. 3. In the North Atlantic and western North

Pacific, two of themost active basins, there is an increase

in storm frequency in D5, a small increase in D3, and

decreases in both H5 and H3. In the eastern North Pa-

cific, another very active basin, all ensembles except D3

project an increase in TC frequency. In some basins,

such as the South Pacific, all models project a decrease in

TC activity, while in other basins different models pro-

ject differing overall frequency and timing changes. In

FIG. 3. Projected changes in the number of TCs in different ocean basins, as indicated by colored lines. Black

shading shows months where the climatology has more than 2 TCs per month, medium gray shading is for between 1

and 2 TCs per month, and light gray shading is for between 0.5 and 1 TCs per month on average. The blue line shows

the changes in D5, the downscaling model forced with CMIP5 data; the cyan line shows the changes for D3, the

downscaling model forced with CMIP3 data; the red line shows the changes in H5, HiRAM forced with SST

anomalies from CMIP5; and the magenta line shows the changes in H3, HiRAM forced with SST anomalies

from CMIP3.
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the global picture, though, D5 projects an increase in TC

frequency, D3 projects little change in storm frequency,

while H5 and H3 project a decrease in storm frequency.

These changes are largest during the peak season, in-

dicated by the dark shading, but extend into the transi-

tion seasons too.

The larger changes in D5 relative to D3 must in some

way be attributable to differences in the CMIP models,

since the downscaling method has changed little between

CMIP generations. There are many differences between

CMIP5 and CMIP3 models. They have different green-

house gas and aerosol emission scenarios, leading to dif-

ferent radiative forcing both at the top of the atmosphere

and at the surface. CMIP5 models also have better res-

olution and different parameterizations compared to

CMIP3. Moreover, the models included in D5 are not all

merely later generations of the models inD3, but in some

cases different models entirely, chosen because of data

availability. And while H5 and H3 show similar changes,

they both use the same observed SST for the twentieth

century, whereas D5 and D3 use model output with dif-

ferent twentieth-century climatologies. These effects all

may contribute to the relatively larger changes in D5.

As described in section 2, we use a threshold metric to

determine the projected changes in TC season length.

Since different threshold values will give quantitatively

different answers for season length changes, we focus on

1) the qualitative changes and 2) what factors explain

the changes in season length.

Figure 4a shows the changes in the length of the TC

season as defined by the number of consecutive days that

the tropical storm frequency (in units of TCs per month)

is above thresholds of 0.5, 1.0, 2.0, and the mean TC

frequency of the late twentieth century. The numerical

values were chosen to capture season length across a

range of models and basins (see Fig. 2), while the mean

metric uses the average number of storms in the late

twentieth century as a threshold and varies bymodel and

basin. Any basin with TC frequency always above or

below the threshold or exceeding the threshold in non-

consecutive months is ignored (e.g., we do not include

the north Indian Ocean in Fig. 4a because of its very

strong semiannual cycle). We present each available

simulation but not the ensemble average, as different

choices of CMIP scenarios and simulations do not en-

able direct comparison between each set of simulations.

FIG. 4. Projected changes in the season length of the number of TCs as measured by (a) the number of days that the

data are above a threshold and (b) the number of days between the first and last TC each year. In (a), we use

thresholds of 0.5, 1, and 2 TCs per month, and the mean of the late twentieth-century TC frequency, which varies by

model and basin.
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Figure 4a shows that in most basins D5 projects a

longer TC season, whileD3 projects little change inmost

NH basins and a shorter season in the SH basins. H5 and

H3 both project a shorter TC season in most basins, with

some ensemble members shortening their season by as

much as three months. While the quantitative changes

depend on the threshold value and simulation, there is

overall agreement on the sign of the changes with a few

exceptions. In the eastern and central North Pacific, H3

and H5 do not project a shorter season. In the South

Pacific, D5 projects a small reduction in season length,

unlike in all of the other basins. Similar results are ob-

tained when the season length changes were defined

using the accumulated cyclone energy (Bell et al. 2000),

rather than TC frequency (not shown).

We also studied the changes in TC season length for

storms simulated directly in the CMIP5models (also not

shown). These models underestimate the mean global

storm frequency but capture the seasonal behavior of

TCs in most basins (Camargo 2013). In the western

North Pacific, the only basin where nearly all CMIP5

models agree on the sign of the TC frequency change,

the models project a much shorter season, similar to the

behavior of H3 and H5 in that basin.

Another way to measure the length of the TC season

is to calculate the length of time that passes between the

first and last TC of a season. This measure works best in

regions that have a stormy season and a quiescent sea-

son, but it can be applied in all basins.We define the year

for Northern Hemisphere basins as 1 January–31 De-

cember and as 1 July–30 June for the Southern Hemi-

sphere basins and find the first and last storms that

happen during this period each year. Even in basins

with a clear TC season, there is some ambiguity re-

garding whether a storm is being appropriately counted

as the first of the season or the last of the previous sea-

son. We attempt to minimize the effect of these in-

appropriately counted storms by taking the median

(rather than mean) date of the first and last storms.

We plot the changes in the length of the TC season as

measured by the length of time between the first and last

storm in Fig. 4b. The changes in season length echo those

calculated by the threshold metric. D5 projects a longer

season in most basins, including the three most active

basins. D3 does not project a clear change in the NH

basins, but does give a shorter season in the SHbasins. H5

and H3 both project a shorter season in most basins. In

most basins, different CMIP output can lead to season

length changes of very different magnitudes, even in the

same set of simulations. The clearest changes in TC sea-

son length are in the central North Pacific, with most

models showing a longer season, consistent with other

studies that have linked the increase in TC frequency to a

northwestward shift of the eastern North Pacific TC

tracks (Murakami et al. 2013) and the well-documented

tendency of climate models to reduce the east–west gra-

dients in SST and ocean heat content as the climate

warms (DiNezio et al. 2009; Vecchi and Soden 2007).

Next we study whether changes in the TC season

length are mainly due to a simple year-round multipli-

cative change in storm frequency or to the seasonal as-

pects of the change. We do this by first calculating two

sets of idealized twenty-first-century TC climatologies,

one with the twentieth-century annual cycle multiplied

by a scaling factor N0(t)5 aN20(t) and the other as the

residual of this quantity R(t)5N21(t)1 (12 a)N20(t),

where N(t) is the number of TCs each month, the sub-

scripts refer to late twentieth- or twenty-first-century

data, and a is the ratio of the annual mean twenty-first-

century TC frequency to the annual mean twentieth-

century TC frequency. The quantity N0(t) has the shape

of the twentieth-century TC climatology but the annual

mean of the twenty-first-century TC climatology. The

residual R(t) captures changes in the shape (e.g., a peak

that shifts or an extension into the inactive season), but

its annual mean is that of the twentieth century. For both

of these idealized quantities, calculated with a separate

scaling factor for each model and basin, we determine

the change in the length of the season relative to the

twentieth-century value using the threshold method

described in the previous section and compare it to the

actual projected season length changes.

We start by plotting the actual change in season length

against the change in season length when using N0(t) as
the twenty-first-century TC frequency time series in

Fig. 5a. Correlating the changes in season length for

each measure yields a positive correlation coefficient, to

be expected since the year-round multiplicative change

should positively contribute to season length changes

when calculated with a thresholdmetric. The correlation

coefficients are r5 0:81 for D5, r5 0:93 for D3, r5 0:80

for H5, and r5 0:86 for H3.

Perhaps more meaningful are the results of Fig. 5b, in

which we plot the change in the actual season length

against the change in the season length when using R(t)

as the twenty-first-century TC frequency time series.

Here we also find a positive correlation, albeit smaller,

with correlation coefficients of r5 0:14 for D5, r5 0:14

for D3, r5 0:85 for H5, and r5 0:28 for H3. Combining

all models together yields r5 0:24 and a regression slope

of 0.57, compared to r5 0:89 and a slope of 0.87 for the

annual mean–like change. While smaller, a Student’s t

test reveals that the correlation is significantly different

than zero at the 95% level, meaning that the year-round

multiplicative change is not entirely responsible for the

changes in season length. Instead there is contribution
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from seasonal aspects of the changes in TC frequency. If

more TCs occur in a given year, then they do not tend to

be solely concentrated in the existing stormymonths but

also occur at the margins of the season, thus extending

the season. Nonzero changes during the transition

months can also be seen in Fig. 3.

Another metric often used to assess seasonality is the

phase of the annual cycle, calculated via a Fourier

transform. This metric cannot measure changes in sea-

son length, since the data are projected onto a sinusoid,

but instead measures the timing of the annual cycle

relative to the calendar year. Because it does not depend

on the annual mean value of the data, it offers an in-

dependent objective measure of seasonality. Using this

metric previous work has found the CMIP3 and CMIP5

models project a delay in the annual cycles of SST,

precipitation, and the circulation in the tropics,

indicating a shift in the extrema of these quantities to

later in the year. Does this also occur for TCs?

Figure 6 shows the change in the phase of the annual

cycle of TCs only for simulations with a strong annual

cycle (i.e., the annual cycle for both the twentieth- and

twenty-first-century simulations makes up at least 60%

of the total variance). The phase changes vary consid-

erably by basin and model. In the North Atlantic, nearly

all of the D5 models and most of the D3 and H3 models

project a phase delay. In the eastern North Pacific, the

majority of models also project a phase delay, while in

the western North Pacific, nearly all of the H3 models

project a phase advance (shift to earlier) and the D3

models almost all project a phase delay. In the south

Indian Ocean, most models project a phase delay,

FIG. 5. Projected changes in the season length (days) of actual TC frequency (y axes) against season length changes

from idealizations of the twenty-first-century TC frequency (x axes). We use (a) N0(t) for the twenty-first century,

which preserves the shape of the twentieth-century data, but it has the annual mean of the twenty-first-century data,

and (b) the residual R(t), which captures changes in the shape but maintains the annual mean of the twentieth

century. Season length changes are calculated with the twentieth-century mean as a threshold. The correlation co-

efficients r and regression slopes are given in the figure for each model and for the combined model data. Asterisks

after the correlation coefficients indicate statistical significance at the 95% level. These results suggest that most, but

not all, of the change in season length is due to a year-round multiplicative factor change in storm frequency. Note

that seven data points lie outside the axis bounds in both (a) and (b), but they are still included in the analysis.
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especially for H5 and H3. While CMIP3 and CMIP5

models mostly project a phase delay in SST and other

aspects of tropical climate, these do not translate to a

phase delay in the number of storms according to the

downscaling and HiRAM models.

5. Projected changes in the seasonal characteristics
of a tropical cyclone genesis index

To gain a better understanding of the nature of the

seasonal changes in TC frequency, we look at the

changes in a tropical cyclone genesis index (TCGI;

Tippett et al. 2011), which relates TC activity to envi-

ronmental fields. The index we use was developed by

Camargo et al. (2014) following the technique of Tippett

et al. (2011) and uses clipped absolute vorticity, vertical

wind shear, saturation deficit, and potential intensity

(Bister and Emanuel 2002) to model tropical cyclone

genesis. Using HiRAM, Camargo et al. (2014) de-

termined coefficients that form the optimal combination

of these variables for describing TC activity in HiRAM

in both the present and future climates. Here we apply a

similar index for the CMIP5 models used by the down-

scaling method. Because the CMIP5 models do not di-

rectly simulate TCs adequately because of coarse

resolution and other factors (Camargo 2013), the TCGI

coefficients used for the CMIP5 models are derived

from a reanalysis, ERA-Interim (Dee andUppala 2009),

and observed TC data and then calculated for each

CMIP5 model using the environmental fields from

present and future climates.

Figure 7 shows the projected changes in the season

length of basin-integrated TCGI for CMIP5, H5, and

H3, calculated in the same way as for the changes in TC

season length. (We did not calculate the TCGI for

CMIP3 because of time constraints.) There is a shorter

FIG. 6. Projected changes in the phase of the annual cycle of TC

frequency. Phase is calculated via Fourier transform and ignores

any changes in the annual mean. Positive values indicate a phase

delay, or shift of TCs to later in the calendar year. For each basin

we only plot models for which the annual cycle captures at least

60% of the total variance.

FIG. 7. As in Fig. 4a, but for the change in the season length of

the TCGI.
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season for each set of simulation in most basins, in-

cluding the North Atlantic, western North Pacific, and

the SH basins. For H3 and H5, some ensemble members

give a longer season or no change of TCGI in the eastern

and central North Pacific, but elsewhere the projection

of a shorter TCGI season is very robust. The decreases

are especially dramatic for CMIP5: only two ensemble

members in any basin do not project a shorter season.

Some of the decreases were so large that they were not

plotted, since the twenty-first-century data did not meet

even the smallest threshold.

The shorter season in TCGI for H3 and H5 are in

agreement with a shorter season in TC frequency

(Fig. 4a), both in the global mean and on a basin-by-basin

level. However, the much shorter season in TCGI for

CMIP5 is in contrast to D5’s projections of a longer

season in many basins. It is not fully clear why this is the

case. Most genesis indices, like the one used in Emanuel

(2013), project an increase in future global TC frequency.

But these indices disagree with most models’ projections

of decreasing TC frequency (Knutson et al. 2010). Our

choice of genesis index captures not only present-day TC

frequency but also future TC frequency, as projected by a

large number ofmodels. Ultimately, resolving this issue is

beyond the scope of the present work.

6. Summary

We study projected changes in the length of the

tropical cyclone season for the end of the twenty-first

century compared to the end of the twentieth century

using two sets of simulations that are able to capture the

approximate timing of the tropical cyclone season.

These datasets, from a downscaling method applied to

both CMIP5 and CMIP3 data (D5 and D3) and from

HiRAM, an AGCM forced with both CMIP5 and

CMIP3 SST anomalies (H5 and H3), give different

projections for the changes in the season length of the

TC season. When calculated using a threshold measure,

D5 projects longer seasons in most basins, D3 projects a

slight decrease in season length, and H5 and H3 project

shorter seasons in most basins. In the central North

Pacific, most models agree on a longer season, while in

the South Pacific, most models project a shorter season.

Projections in other basins vary by model. These

changes are robust to the method used to define season

length; different threshold values and a measure in

which season length is defined as the length of time

between the first and last TC each year give the same

qualitative results.

We also find that the twenty-first-century changes in

season length are not entirely due to mean changes. By

idealizing the projected twenty-first-century annual

cycle of TC frequency as a component that preserves

the shape of the twentieth-century climatology but alters

the annual mean and a residual component that does the

opposite, we find that while the year-round multiplica-

tive change explains a large amount of the change in

season length, the residual component also contributes

to the changes. This suggests that the observed trend

toward a longer TC season in theNorthAtlantic (Kossin

2008) is mainly a result of an increasing frequency of

TCs over the past few decades in that basin.

When using a Fourier measure of seasonality for the

number of storms (which does not allow for changes in

season length), the results vary by model and basin. In

the North Atlantic, most models project a timing shift to

later in the year, while in the western North Pacific, H3

projects a large shift to earlier in the year, and in the

eastern North Pacific there is some indications of a shift

to later in the year. In the other basins, the results vary

by model. Finally, we look at the projected changes in

season length for a genesis index for tropical cyclones.

Season length changes for that environmental index

agree with those for storm frequency for H3 and H5,

adding confidence to these findings, while D5 models do

not show the same agreement. Ultimately, there is not

yet a consensus on how the length of the TC season will

change as a result of anthropogenic effects.
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