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A B S T R A C T

Climate change is expected to increase both the frequency and intensity of major tropical cyclones, raising the 
risk from extreme ocean waves. Reliable estimation of these waves is essential for maritime-structure design, yet 
assessments that rely solely on historical records cannot capture the ongoing non-stationary changes already 
under way. We introduce a physics-based Gulf of Mexico–wide framework that couples ~20,000 synthetic 
tropical cyclone events with a third-generation spectral wave model explicitly resolving present (1980–2010) 
and future (2070–2100, SSP5-8.5) climates using five CMIP6 GCMs. This synthetic approach overcomes the dual 
limitations of short observational records and coarse GCM resolution. Results show that the 100-year significant- 
wave height derived from present synthetic events already exceeds API values based on historical data by ~2 m, 
and that this design metric is projected to increase by up to 30 % by the late century in the northern Gulf. Such 
changes imply that structures designed today under stationary assumptions will face a higher probability of 
encountering their design wave during service. These findings underscore the need for robust present-day design 
databases and the integration of non-stationary wave climate projections into future design frameworks to 
safeguard maritime assets and ensure long-term resilience.

1. Introduction

Tropical cyclone (TC)-derived wind waves determine the structural 
design conditions for maritime structures in TC-prone regions, such as 
the Gulf of Mexico (GoM), where offshore oil and gas extraction activ
ities began in 1937 (Horowitz, 2020), with continuous extraction since 
1948 (Dunn, 1994). Despite the significance of waves in designing 
structures, there was no guidance for designing wave parameters issued 
during the first few decades of oil and gas activities (Dunn, 1994; Wisch 
et al., 2004). The American Petroleum Institute (API) established its 
Offshore Committee in response to the devastating impact of Hurricanes 
Betsy (1965) and Hilda (1964), highlighting the need for a better un
derstanding of extreme weather events. The API released its first 

standard in 1969 (Wisch et al., 2004); however, design wave recom
mendations did not appear until the 7th edition of RP 2A in 1976, when 
a 100-year return period was recommended as the design wave 
(Mangiavacchi et al., 2005). Since then, a series of hurricanes have 
struck GoM oil and gas extraction areas, generating severe damage and 
operational downtime (Austin et al., 2008; Cruz and Krausmann, 2008; 
Kaiser and Yu, 2010), leading the API to update its recommended wave 
design parameters. After Hurricane Ivan in 2004 and the exceptionally 
active 2005 hurricane season, the API released updated design recom
mendations by dividing the GoM into different regions and provided 
wave design parameters for each region (API, 2007). Recognizing the 
severity of hurricanes (e.g. Ivan, 2004; Katrina, 2005; Rita, 2005; Ike, 
2008) and the fact that a single intense hurricane or hurricane season 
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can alter the extreme wave statistics (Panchang et al., 2013), the API 
revised its recommendations in 2014 and 2021 (API, 2014, 2021). These 
updates are based on historical data (Supplementary Information Text 
S1) and are thus necessary as new extreme events occur. The observed 
shift in wave statistics when recent extreme events are included suggests 
that the historical record alone is insufficient to provide reliable statis
tics, either because of data limitations or due to climate change influ
encing extreme wave behavior. In either case, the need for constant 
updates to design recommendations based on historical events leads to 
uncertainties in the stability of structures.

Beyond the limitations of the short historical record for allowing a 
robust wave climate characterization, climate change has already begun 
altering the climatology of tropical cyclones, with observed increases in 
the proportion of major hurricanes (Categories 3 to 5; Kossin et al., 
2020), a trend expected to continue for Categories 4 and 5 through the 
end of the century (Camargo et al., 2023; Knutson et al., 2020; 
Pérez-Alarcón et al., 2023). As such, synthetic TCs emerge as a key tool 
for generating robust statistics for the present climate and projecting 
wave climate conditions towards the end of the century. Synthetic TC 
events are generated using statistical or physics-based TC models forced 
with large-scale oceanic and atmospheric conditions from Global Cir
culation Models (GCMs). The limitations and advantages of using TCs 
directly from GCMs, as opposed to synthetic TCs, in characterizing 
future TC climates were highlighted in Emanuel (2021).

Considering the advantages of synthetic events in capturing a wide 
range of plausible TC scenarios, including rare but high-impact events, 
Appendini et al. (2017) assessed the extreme wave climate in the GoM 
considering global warming using synthetic TCs derived from RCP 4.5 
and 8.5 scenarios and two different GCMs. This past study found that the 
100-year design wave height could be up to 5 m higher under global 
warming conditions than at present. Despite the large uncertainty 
imposed by using only two GCMs in deriving synthetic events, this study 
showed the relevance of climate change in the design parameters, as the 
coastal and offshore structures designed under the current wave climate 
will be exposed to more intense waves under future climate conditions.

Efforts made by the scientific community under the Coordinated 
Ocean Wave Climate Project (COWCLIP) framework (Hemer et al., 
2012) have already produced wave projection ensembles —based on 
wind forcing directly from GCMs— to identify changes in the wave 
climate by the end of the century (Morim et al., 2019). Acknowledging 
the uncertainty associated with GCM selection and the inter-scenario 
variability (Wang et al., 2015), multi-method ensemble approaches 
have been adopted to obtain robust global wave projections (Morim 
et al., 2019), and distributed wind downscaling techniques have been 
proposed to improve accuracy in regional projections (Alizadeh et al., 
2020). Nevertheless, challenges in resolving extreme waves in 
TC-affected areas have been acknowledged owing to the low resolution 
of GCMs used to force the wave models (Lobeto et al., 2021; Morim 
et al., 2019), which affects storm size, intensity, structure, and trans
lational speed (Timmermans et al., 2017), and the small number of TCs 
in the GCMs (Mori et al., 2010). Both issues have been reported in 
studies related to TC projections for future climate (Camargo, 2013; 
Emanuel, 2010; Hill and Lackmann, 2011; Knutson et al., 2020). Recent 
studies have shown improvements in the representation of TCs using 
storm-resolving models, particularly at an approximate resolution of 5 
km (Baker et al., 2024; Judt et al., 2021). However, the Coupled Model 
Intercomparison Project Phase 6 (CMIP6) models continue to struggle 
with fully resolving tropical cyclone activity and capturing peak in
tensities, despite improvements in HighResMIP models (Roberts et al., 
2020a; Roberts et al., 2020b).

As such, relying solely on climate models for TC wave hazard 
assessment is insufficient as climate models currently underestimate the 
number of TCs and their peak intensity. Synthetic TCs offer an alterna
tive and complementary approach that not only overcomes the under
estimation of TCs inherent in low-resolution GCM and unresolved 
physics but also better captures the stochastic nature of TC generation 

and dynamics. Furthermore, synthetic TCs enable the generation of a 
sufficiently large dataset to reliably calculate extreme-event probabili
ties, an essential capability that observational time series, constrained 
by their limited duration and the rarity of such events, cannot practically 
achieve. Several studies have suggested and utilized synthetic events for 
quantifying extreme waves in TC-prone areas (Lobeto et al., 2021; 
Marsooli et al., 2021; Morim et al., 2019, 2023). This has been per
formed in a limited number of studies, including dynamically down
scaled synthetic events for regional studies (Meza-Padilla et al., 2015) 
including assessment of climate change (Appendini et al., 2017) and 
statistically derived synthetic events (Leijnse et al., 2022). More 
recently, Grossmann-Matheson et al. (2024b) used statistically derived 
synthetic tropical cyclones to drive a parametric wave model 
(Grossmann-Matheson et al., 2023) and characterize global-scale TC 
waves conditions and extending the analysis to mid-century climate 
change impacts (Grossmann-Matheson et al., 2024a).

The present study utilizes a large number of dynamically downscaled 
synthetic TCs generated based on different GCMs to quantify climate 
change impacts on TC wave hazards in the GoM. By applying a fully 
third-generation spectral wave model, our approach not only improves 
the characterization of the present wave climate but also highlights the 
critical need for non-stationary wave climate models in the planning and 
design of offshore structures. This methodology provides a statistically 
robust framework that bridges the gap between historical observations 
and the evolving extremes expected under future climate scenarios, 
thereby offering a more reliable basis for updating industry standards.

2. Materials and methods

To assess the extreme wave climate in the GoM, we adapted the 
methodology of Appendini et al. (2017), as summarized in Fig. 1. The 
extreme wave climate was quantified using synthetic TCs derived from 
reanalysis and GCMs as described in Section 2.1, from which we created 
wind fields using a parametric wind model to force a third-generation 
wave model. The following subsections summarize each methodolog
ical step.

2.1. Synthetic TC database

Synthetic TC events were generated by the statistical/deterministic 
TC model described in Emanuel et al. (2006, 2008) and Emanuel (2013). 
As summarized in Appendini et al. (2017), the generation of synthetic 
events consists of random seeding of warm-core vortices across the 
ocean with peak wind speeds of 12 m/s that can either develop (by 
reaching an intensity of at least 21 m/s) or decay according to 
large-scale oceanic and atmospheric conditions. TCs are steered using a 
beta-and-advection model (Marks, 1992), and the TC intensity is 
calculated along each track position using the deterministic, coupled 
ocean-atmosphere hurricane model described in Emanuel (2004). Both 
models use synthetic wind time series at 250 and 850 hPa, represented 
as a Fourier series of random phases, constrained to have monthly 
means, variances, and covariances calculated using daily data from 
reanalyses or GCM, and to have a geostrophic turbulence power-law 
distribution of kinetic energy Emanuel et al. (2008). Hence, the tracks 
and forward velocities are determined based on ambient circulation 
conditions. The intensity model also considers the monthly mean po
tential intensity and 600 hPa saturation deficit derived from the rean
alysis or GCM (Emanuel, 2013). The deterministic synthetic events used 
in this study provide an advantage over the statistically derived events, 
for example, from the STORM database (Bloemendaal et al., 2022) used 
in Grossmann-Matheson et al. (2024a), as they are not constrained by 
present-day statistics. This allows our model to capture a broader 
spectrum of TC intensities and behaviors, including extreme scenarios 
that may not be reflected in historical records.

The synthetic TCs databases for present and future climates encom
pass events generated based on five different GCMs from the CMIP6: 
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GFDL, HADGEM, MIROC, MPI, and CESM (refer to Table 1 for the 
complete name of each model, version, and reference). The five GCMs 
were selected to balance model diversity (in terms of geographic origin) 
and data availability (complete atmospheric/oceanic fields at the 
required temporal resolution for TC generation), ensuring coverage of 
the dominant sources of inter-model variability while maintaining a 
computationally feasible ensemble. The present climate is considered 
from 1980 to 2010 and the future climate from 2070 to 2100. For the 
future climate, we used the Shared Socio-economic Pathway 5 scenario 
with a radiative forcing of 8.5 W per square meter (SSP5-8.5). The 
synthetic events were generated for the entire North-Atlantic basin and 
each database consisted of 10075 events for the GCM-derived and 20500 
reanalysis-derived events. Given the focus of this study on the GoM and 
considering that TC-derived waves are centered near the TC track (Shi 
et al., 2024), we followed Appendini et al. (2017) and only used syn
thetic TCs entering the GoM and western Caribbean Sea. The number of 

TCs entering the GoM was a subset of each database, as shown in 
Table 2, and was used to force the wave model.

2.2. Wind field definition

The synthetic datasets provide storm parameters for each TC, 
including the date, time, position of the TC center (eye), radius of 
maximum winds, and maximum wind speeds. These parameters can be 
used to generate the TCs wind fields using a parametric wind model. We 
use the Holland model (Holland et al., 2010), a standard parametric 
wind model (Eq. (1)) commonly used in hurricane storm surge and wave 
hazard assessments (Leijnse et al., 2022; Martínez-Asensio et al., 2013), 
to generate wind fields based on the given TC parameters. 
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where Rmw is the radius of maximum winds, Vm is the maximum wind 
speed, r is the radial distance from the eye of the hurricane to any given 
point surrounding it, and Vr is the wind speed of the hurricane at radius 
r. Parameter bs is related to the original B Holland parameter (bs = B gx

s ) 
being gs a reduction wind gradient to surface factor, and x is the scaling 
parameter that adjusts the profile shape. We applied a constant bs value 
of 1.8 and the parameter x varied linearly with the radius, as described 
in Eq. (2). 
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Fig. 1. Flow diagram of the method employed in this study.

Table 1 
Global Circulation Models used to derive present and future climate synthetic 
tropical cyclones.

Institution Model name and 
version

Name used 
in this 
article

Reference

National Oceanic and 
Atmospheric 
Administration/ 
Geophysical Fluid 
Dynamics Laboratory 
(NOAA/GFDL)

Earth System Model 4 
(GFDL-ESM4)

GFDL Dunne et al. 
(2020)

UK Met Office Hadley Global 
Environmental Model 
3 (HadGEM3-GC31- 
LL)

HADGEM Sellar et al. 
(2020)

Center for Climate 
System Research/ 
National Institute for 
Environmental 
Studies/Japan Agency 
for Marine-Earth 
Science and 
Technology

Model for 
Interdisciplinary 
Research on Climate 6 
(MIROC6)

MIROC (Tatebe et al., 
2019)

Max Planck Institute Earth System Model 
MPI-ESM1-2-HR

MPI Müller et al. 
(2018)

National Center for 
Atmospheric Research

Community Earth 
System Model 2

CESM Danabasoglu 
et al. (2020)

Table 2 
Number of synthetic TC events used to characterize the present and future wave 
climate in the Gulf of Mexico.

Model Present climate (1980–2010) Future climate (2070–2100)

ERA5 5082 NA
GFDL 4354 4032
HADGEM 3557 2015
MIROC 4640 4149
MPI 6279 6019
CESM 4306 3360
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where xn is the adjusted exponent to fit the peripheral observations at 
radius rn.

The effect of the surface background winds was included by adding 
storm translation velocity, which is calculated using the time and posi
tion (trajectory) of synthetic storms.

The synthetic 10-m wind data is a 1-min average sustained wind. 
Nevertheless, the ocean surface responds to wind stress over longer 
timescales (Powell et al., 1996). We applied a gust factor Gf to convert 
the 1-min average to the 10-min average sustained wind as follows 
(Powell et al., 2010; Powell and Houston, 1996): 

VT
Avg =

VT
1 min
Gf

Eq. (3) 

where VT
1 min is the 1-min average sustained wind, VT

Avg is the resultant 
wind “T”-min average wind, and Gf is the gust factor. We used a factor of 
1.11 to convert 1-min to 10-min sustained wind following Powell et al. 
(2010) and Powell and Houston (1996). The resulting wind fields have a 
resolution of 0.05◦.

2.3. Wave modeling

The generated wind fields for each TC were used to force the MIKE 21 
SW spectral wave model (Sørensen et al., 2004). This model is a flexible 
mesh finite volume model based on the wave action equation, and is 
used to simulate the growth, decay, and transformation of 
wind-generated waves and swells in coastal and offshore regions. The 
model is formulated in terms of the mean wave direction, θ, and the 
relative angular frequency, σ, where the action density, N(σ, θ), is 
related to the energy density, E(σ, θ), using Eq. (4). 

N(σ, θ)=E(σ, θ)
σ Eq. (4) 

We employed the wave action balance equation formulated in 
spherical coordinates, where the evolution of the wave spectrum in the 
position given by latitude (∅), and longitude (λ) at a particular time (t), 
as given by Eq. (5). 

δN
δt

+
δ

δ∅
c∅N +

δ
δλ

cλN +
δ

δσcσN +
δ
δθ

cθN =
S
σ Eq. (5) 

in Eq. (5), C represents the phase velocity, whereas the energy source 
term S is composed of multiple energy source/sink functions. These 
functions describe the various physical processes that occur during the 
generation, decay, and transformation of waves, as shown in Eq. (6). 

S= Sin + Snl + Sds + Sbot + Ssurf Eq. (6) 

where Sin represents the wind energy input given by a linear and a 
nonlinear growth rate (Janssen, 1989, 1991; Janssen et al., 1989); Snl 
interactions (Hasselmann et al., 1985; Hasselmann and Hasselmann, 
1985; Komen et al., 1994) and triad-wave interactions (Eldeberky and 
Battjes, 1995, 1996); Sds is the energy dissipation due to whitecapping; 
(Komen et al., 1994) Sbot is the energy dissipation due to bottom friction 
(Johnson and Kofoed-Hansen, 2000); and Ssurf is the energy dissipation 
due to depth-induced wave breaking (Battjes and Janssen, 1978; Eld
eberky and Battjes, 1996). The spatial discretization of the equations is 
based on a centered finite volume method over unstructured meshes. 
More details on the source terms, discretization of the governing equa
tion, time integration, and model parameters are provided in Sørensen 
et al. (2004).

The wave model domain encompassed the GoM and the western 
Caribbean Sea, with closed and fully absorbing boundaries at 80◦W 
longitude and 15◦N latitude, so that no external wave action entered the 
model domain. This choice assumes that the swell generated in the 
North-Atlantic and central/eastern Caribbean Sea has negligible influ
ence in the GoM (Appendini et al., 2014), with the goal of capturing only 

the wave field generated by each TC simulated. For each synthetic storm 
the simulation commenced 24 h before the cyclone center crossed the 
domain boundary and ended 12 h after it exited, thereby capturing the 
leading and trailing wind fields that govern wave growth within the 
mesh. The computational mesh was based on triangular elements of 
approximately 10 km in the offshore area, with increasing resolution 
towards the coast. The bathymetry data were obtained from the Coastal 
Relief Model (NOAA National Centers for Environmental Information, 
2023), available local surveys for Mexican coastal areas, and ETOPO1 
bathymetric data (Amante and Eakins, 2009) for areas not covered by 
the first two databases (Fig. 2).

The numerical setup considered the fully spectral and non-stationary 
time formulation, with a directional discretization for 360◦ divided into 
32 directions and a logarithmic spectral discretization with a minimum 
frequency of 0.05 Hz, 25 frequencies, and a frequency factor of 1.1. The 
increased directional discretization in comparison to Appendini et al. 
(2017) was to mitigate the garden sprinkler effect (Tolman, 2002). The 
time step followed a multisequence integration method, with a mini
mum step of 0.01 s and a maximum of 3600 s. Quadruplet wave in
teractions are included for energy transfer. A wave-breaking factor with 
a constant gamma value of 0.80 and an alpha value of 1.0 was used. The 
bottom friction was represented by a constant Nikuradse roughness 
value of 0.002 m. We employed whitecapping dissipation coefficients 
Cdis and Deltadis set to values of 3.5 and 0.6, respectively, where Cdis 
primarily influences the wave height and Deltadis affects the wave 
period. A JONSWAP fetch growth expression with shape parameters a 
and b of 0.07 and 0.09 respectively, was used as the initial condition, 
and the peakness parameter was 3.3. The offshore boundaries at the 
Caribbean Sea and Florida Strait were considered closed, where no 
waves entered the model domain, and the outgoing waves were fully 
absorbed, as in Appendini et al. (2017).

2.4. Wave model validation

Wave model evaluation was conducted by simulating historical TC 
events from 1975 to 2020 and comparing the model results to National 
Data Buoy Center (NDBC) buoys and satellite altimetry measurements of 
wave height using the database from Tamizi and Young (2024). The 
compiled altimetry dataset combines information from various sources, 
including in situ buoy measurements and satellite-based remote sensing 
data. It encompasses observations from altimeters, scatterometers, and 
radiometers for 2927 global TCs. These historical events were derived 
from The International Best Track Archive for Climate Stewardship 
(IBTrACS) dataset (Knapp et al., 2010), covering 1985 to 2017. As 
described by Tamizi and Young (2024), wave height data from satellite 
altimeters, obtained from the Australian Ocean Data Network archive, 
have undergone calibration using buoy measurements.

For evaluation with the altimeter database, we used all historical 
events with altimeter observations in the GoM between 1985 and 2017, 
for a total of 273 observations. We compared the model results for each 
event with observations that fell within three times the radius of 
maximum winds from the TC eye position, as obtained from the IBTrACS 
dataset. We selected Hs from the model at the same position for each 
satellite-observed Hs value. The original track observations are provided 
in the database at their original resolution (6 h in most cases), assigning 
observations at each track position within the 3 h prior and subsequent. 
The historical events were modeled with a temporal resolution of 1 h; 
thus, satellite observations were aligned with the next hour of simulated 
data (30 min after and before).

Fig. 3a illustrates the modeled wave field for Hurricane Claudette in 
2003 on July 13th at 04:00 h alongside ENVISAT satellite observations, 
whereas Fig. 3b presents the time series of observed and simulated data 
within three times the radius of maximum winds at this time frame. The 
inverse cumulative distributions or quantile function comparing the 
model results and all the satellite observations and the error indexes are 
shown in Fig. 3c, showing a good agreement between simulated and 
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Fig. 2. Wave model’s computational mesh and bathymetry, denoting the areas referred to in the article. The vertical dash lines delineate the API (2021) areas in the 
US with a south limit at latitude 26◦N. Acronyms for text in figure: TX, Texas; LA, Louisiana; MS, Mississippi; FL, Florida; YP, Yucatan Peninsula; Mex, Mexico.

Fig. 3. a) Modeled wave field map for Hurricane Claudette 2003 on July 13th at 04:00 h and ENVISAT satellite observations. The black line corresponds to the storm 
track, and the red circle denotes the circular area within 3 times the radius of maximum winds. b) Time series of observed and simulated significant wave height (Hs) 
data within the area within 3 times the radius of maximum winds at this moment. c) QQ plot for observed Hs values from all historical simulated events and altimeter 
data within the area within 3 times the radius of maximum winds. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.)
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measured data, except for the overestimation of waves from Hurricane 
Opal (1995), which was close to the shore during the ERS 1 satellite 
measurements.

The model evaluation was also performed using in-situ measure
ments from NDBC buoys 42001, 42002, 42003, 42039, 42040, and 
42055 located in the deep waters of the GoM and buoy 42056 located in 
the western Caribbean Sea. Buoy data were included in the evaluation 
when two criteria were satisfied: 1) the TC event was located within an 
area three times the radius of maximum winds from the buoy to the TC 
eye position, and 2) the event reached at least tropical storm intensity at 
some point within the area. We used the storm parameters from the 
Tropical Cyclone Extended Best Track Dataset (Demuth et al., 2006) to 
select storms that met the latter criterion. Comparisons were performed 
for simulated events between 1975 and 2020. Table 3 shows the error 
indices obtained by comparing the model results to measurements 
through their inverse cumulative distributions or quantile functions for 
each event. The error statistics were calculated for each event using the 
equations described in the Supplementary Information (Text S2). The 
average error for all events is presented in Table 3 for each buoy, while 
Fig. 4 shows the quantile function plot, considering only the maximum 
Hs value for the observed data from the NDBC and simulated events.

2.5. Wave climate analysis

We generated a maximum envelope map of Hs for each synthetic 
event by selecting the highest Hs value at each grid point during the 
event passage. Thus, the number of maps equals the number of synthetic 
events (Table 2). Using the Hs maximum envelope maps, we applied a 
Bias Correction method at each grid point (see Section 2.6, Bias 
Correction) and characterized the extreme wave climate based on the 
mean values and specific percentiles.

We assessed the extreme wave probability via return periods at each 
of the 59,434 grid nodes by assembling bias-corrected maximum Hs 
vectors for all synthetic events in both present and future climates. We 
then applied a peak-over-threshold (POT) approach by using a fixed 
98th-percentile threshold and fit a Generalized Pareto Distribution 
(GPD; Coles, 2001) to these exceedances, yielding Hs for specified return 
periods and mapping the results. Because threshold and distribution 
choice strongly influence POT outcomes (Méndez et al., 2006), we tested 
automated threshold selection (Caires, 2016) and alternative distribu
tions (e.g. Baghanian and Alizadeh, 2022). While the automated method 
often performed well, it sometimes selected thresholds yielding high 
shape parameter values, resulting in divergent asymptotic behavior and 
unrealistically large wave heights for long return periods. By contrast, 
the fixed 98th-percentile threshold with GPD produced stable, physi
cally plausible estimates. Considering that GPD is the suggested distri
bution when using the POT method (Coles, 2001) and it is widely 
adopted for TC hazard assessment (Jamous et al., 2023; Marsooli et al., 
2021), we applied this procedure across all nodes and models. We then 
generated maps for the selected return periods using the corresponding 
values at each grid element.

To compare our wave hazards with those from the API latest 
guidelines (API, 2021), we also calculated return periods for each of the 

API regions in the GoM. To determine the return periods in the API 
areas, we select the grid points corresponding to each area. 

• Western GoM between 92◦ W and 98◦ W.
• Central GoM between 85◦ W and 92◦ W.
• Eastern GoM between 82◦ and 85◦ W.

We merged the data corresponding to each API area and performed 
the same extreme value analysis described above, using the 98th-percen
tile as the threshold for POT. The procedure described above is a 
simplified version of the grid pooling methods from Heideman and 
Mitchell (2009), which presented a procedure for grid pooling at a 
specific point location. Grid pooling is performed in API recommenda
tions so that the randomness of the TC tracks is diffused by assessing the 
wave conditions as similar in a particular area. Nevertheless, the grid 
pooling procedure for each area is not described in API (2014, 2021). 
Return period waves were calculated for each GCM-derived wave 
dataset. Using these values, we calculated the ensemble mean and un
certainty envelopes based on a single standard deviation.

2.6. Bias correction

Recognizing that biases inherent in GCMs can propagate into the 
derived wind fields and, consequently, to wave simulations (Wang et al., 
2015), a more robust assessment can be achieved using multi-model 
ensembles (Morim et al., 2019). Alternatively, downscaling techniques 
that incorporate bias-corrected winds can improve the accuracy of wave 
projections (Alizadeh et al., 2020). In our case, GCM biases propagate 
through our synthetic-TC generation process; therefore, we applied bias 

Table 3 
Statistics from model evaluation using historical events from 1975 through 2020. Meanm and Means are, respectively, the mean values from the buoy (measured) data 
and simulated data; BI is bias index, RMS is root mean squared error, SI is scatter index, and CC is correlation coefficient.

Parameter Buoy Num. events Meanm Means Bias BI RMS SI CC

Hs (m) 42001 37 2.80 2.87 0.07 0.03 0.99 0.41 0.94
42002 32 2.57 1.87 − 0.69 − 0.27 1.12 0.47 0.93
42003 32 3.44 3.50 0.06 − 0.03 1.22 0.45 0.94
42039 28 3.43 3.74 0.31 0.04 1.33 0.43 0.94
42040 26 4.03 4.10 0.07 0.05 1.48 0.39 0.94
42055 21 2.02 1.75 − 0.27 − 0.13 0.87 0.52 0.92
42056 17 2.48 2.08 − 0.40 − 0.17 1.15 0.47 0.92
all 193 2.97 2.84 − 0.12 − 0.07 1.17 0.45 0.93

Fig. 4. QQ plot comparing observations from NDBC and model results for 
maximum significant wave height (Hs). Each data point represents the 
maximum HS during a historical TC event.

C.M. Appendini et al.                                                                                                                                                                                                                          Ocean Engineering 334 (2025) 121685 

6 



correction directly to the resulting wave outputs rather than to the raw 
GCM winds themselves. Our bias correction aims to improve the sta
tistical consistency of simulated wave climate based on GCM data with 
observational or reference model data by defining a transfer function 
that adjusts GCM outputs, allowing for the correction of future pro
jections from the same GCM. We implemented a hybrid bias-correction 
method designed specifically for synthetic TCs to correct biases in wave 
conditions derived from GCM-based synthetic events when compared to 
the wave climate from a reference model, which is the ERA5-based 
synthetic events in our study. The proposed methodology combines 
two approaches: the empirical quantile mapping technique (EQM; 
Déqué, 2007) and an enhancement of extreme value representation 
using a Gumbel extreme value distribution fit.

The EQM adjusts the empirical cumulative distribution function 
(CDF) of the GCM-derived TC wave height for the present period to 
match the CDF of the same variable from the reference model (i.e. ERA5- 
derived TC waves) for the same period. The CDFs of the GCM and the 
reference model are mapped using a discrete number of quantiles, and 
linear interpolation is applied to define a transfer function (Eq. (7)). 

Hcor =CDF− 1
Ref [CDFGCM(H)] Eq. (7) 

where CDFRef is the cumulative distribution function of the reference 
dataset, CDFGCM is the cumulative distribution function of a GCM, H is 
the original GCM value, and Hcor is the corrected value. Assuming that 
the bias in the GCM-based present wave conditions remains the same for 
future projections, the transfer function is then applied to each GCM 
dataset for the future climate period. This allows us to calculate bias- 
corrected wave projections for future periods.

A known limitation of the EQM method is its handling of extreme 
values, especially when there is a need to extrapolate data (Li et al., 
2010; Rohith and Cibin, 2024). When the GCM-based wave data for 
present or future climates exceed the maximum observed values in the 
reference dataset, values will fall beyond the transfer function and, thus, 
an extrapolation will be required. Déqué (2007) proposed a simple 
extrapolation based on a constant correction factor using the last 
available quantile in the present climate GCM-based data. However, for 
TCs, where future intense events may not be well represented in the 
present climate record, this approach could introduce biases into future 
climate projections.

To better capture extreme events, we complemented the EQM 
method with a parametric quantile mapping technique that adjusts the 
distribution applied to extreme values before computing the CDF. The 
key distinction between this method and the EQM method lies in the 
calculation of the CDF. Here, we propose the use of the Gumbel distri
bution, which is a special case of the extreme value family with a shape 
parameter ξ = 0. The CDF is given by Eq. (8). 

CDF (H; μ; σ)= exp
(

− exp
(

−
H − μ

σ

))

Eq. (8) 

where μ and σ are location and scale parameters, respectively. The bias 
correction was initially applied using the classic quantile mapping 
method, followed by the Gumbel distribution fit to extend the upper tail. 
This approach avoids direct extrapolation and improves the extreme 
value representation.

In addition to the Gumbel distribution, other distributions were 
tested for bias correction of our generated GCM-based wave data using 
parametric methods (Parker and Hill, 2017). The Gumbel function was 
chosen because, in the case of TC, we often encountered extrapolation 
challenges when one of the fitted distributions has either a bounded 
upper tail or a heavy tail. Additionally, Lobeto et al. (2021) applied the 
Gumbel function successfully for bias correction in wave modeling.

The number of quantiles used in the bias correction process signifi
cantly influenced the performance of the method. Given that this study 
focused on the maximum wave heights generated by each TC event, we 
opted to select a high number of quantiles to achieve the best possible fit.

To sum, our method for bias correction is applied to each computa
tional grid node following the following steps. 

1. Quantile definition: Quantiles cover the range from 0.01 (q01) to 
0.999 (q999), with linearly distributed quantiles from 0.05 (q05) to 
0.999 (q999) with an increment of 0.001.

2. EQM application: The EQM method is applied to all generated wave 
data, generating bias-corrected wave characteristics for each GCM- 
based dataset in both present and future climates (including 
extreme values).

3. Extreme Value Adjustment: If extrapolation is required (e.g., when 
future values exceed present wave climate values or present values 
surpass the ERA5 reference dataset), extreme values are adjusted 
using the parametric quantile mapping technique. The Gumbel dis
tribution is fitted to values above the 98th-percentile threshold, and 
bias-corrected extreme values for both the present and future CDFs of 
wave characteristics are obtained, similar to the EQM method.

4. Replacement of Extreme Values: Only extreme values that required 
extrapolation in the EQM process are substituted with Gumbel- 
adjusted corrections obtained from step 3.

Because synthetic TCs generated using GCMs and ERA5 reanalysis 
show differences in the annual frequency of occurrence, the method 
requires adjusting the event frequency to match historical records. The 
ERA5 and each GCM dataset frequency were bias-corrected relative to 
the historical frequency for the period 1980–2010. The future climate 
annual frequency was obtained by multiplying the GCM-derived syn
thetic frequency in future climate by the percentage change in each 
GCM-derived frequency in the present climate with respect to the his
torical record frequency.

3. Results and discussion

3.1. Bias assessment and correction for waves derived from GCM 
synthetic events

The wave model was forced with synthetic TC datasets generated 
based on ERA5 reanalysis and GCMs to characterize the wave climate 
from each dataset. As described previously, the ERA5-derived wave 
climate was used as a baseline to assess the bias of the present wave 
climate from GCM-derived synthetic events. Using the resulting 
maximum significant wave heights (Hs) for each synthetic dataset, we 
computed the mean, 90th-, 95th-, and 99th-percentiles (Fig. 5) and 
calculated the bias for each of the GCMs (Fig. 6).

For a clearer discussion, we divide the model domain into the 
following sectors: the northwestern (NW), northeastern (NE), south
western (SW), and southeastern (SE) sectors. The NW events affect the 
offshore areas of Texas, Louisiana, and northern Mexico; the NE events 
affect offshore areas of West Florida and Mississippi, as well as the 
northern part of the loop current area; the SW events affect the Cam
peche sound; the SE events affect the western Caribbean Sea, the 
Yucatan current, and the southern part of the loop current.

The results under the present climate (1980–2010) showed similar 
wave patterns for all GCMs (Fig. 5), where the largest wave heights were 
found in the northern section of the GoM (NW and NE) and the western 
Caribbean Sea (SE), whereas the Campeche sound region (SW) showed 
smaller TC-derived waves. Synthetic wave data based on HADGEM and 
MIROC showed milder events than the other GCMs, and particularly for 
HADGEM, the wave heights were particularly small in the SE.

The bias in mean Hs (Fig. 6a–e,i,m,q), calculated relative to ERA5- 
derived TC waves, shows high variability between models, with the 
most overestimation in the NW (GFDL, CESM, and MPI) and NE 
(HADGEM, GFDL, CESM, and MIROC) sectors. All GCMs underestimate 
Hs in the SW sector, and the largest underestimation is calculated in the 
SE sector based on HADGEM, CESM, and MIROC. Similar bias patterns 
were obtained for the different percentiles of Hs, although the bias for 
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Fig. 5. Statistics of significant wave heights calculated for the synthetic TCs from GCMs and ERA5 datasets for the present climate (1980–2010). GCMs-based data 
are original (pre-bias-corrected) data. Panels represent ERA5 (a, b, c, d), HADGEM (e, f, g, h), GFDL (i, j, k, l), CESM (m, n, o, p) MPI (q, r, s, t) and MIROC (u, v, w, x) 
including mean (a, e, i, m, q, u), 90 %-ile (b, f, j, n, r, v), 95 %-ile (c, g, k, o, s, w) and 99 %-ile (d, h, l, p, t, x).
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Fig. 6. Bias in significant wave height calculated based on GCM-based synthetic TCs compared to the ERA5 synthetic TCs. GCM-based datasets are HADGEM (a, b, c, 
d), GFDL (e, f, g, h), CESM (i, j, k, l), MPI (m, n, o, p), MIROC (q, r, s, t) and Ensemble (u, v, w, x) considering mean (a, e, i, m, q, u), 90 %-ile (b, f, j, n, r, v), 95 %-ile 
(c, g, k, o, s, w) and 99 %-ile (d, h, l, p, t, x).
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the 99th-percentile (Fig. 6d–h,l,p,t) was less spatially smooth. GFDL and 
CESM show stronger overestimation in the northern GoM than the other 
GCMs across all percentiles, whereas HADGEM and MIROC show higher 
underestimations for the southern GoM and the western Caribbean Sea. 
In particular, HADGEM shows a large underestimation, except near the 
US coastal areas, where there is a slight underestimation, except for the 
99th-percentile. For the ensemble (Fig. 6u,v,w,x), there was a clear 
separation of the bias, with the northern area being overestimated and 
the southern area underestimated.

The calculated biases are removed from the GCM-based wave 
heights. After bias correction, the resulting present wave climate is 
shown in Fig. 7, which shows similar patterns in the wave height across 
different models, validating the bias correction method.

3.2. Future wave climate assessment

Fig. 8 shows the future wave climate (2070–2100) obtained for each 
of the bias-corrected GCM-based synthetic events, while Fig. 9 shows the 

Fig. 7. Bias corrected significant wave height for GCM-based datasets in the present climate (1980–2010) for HADGEM (a, b, c, d), GFDL (e, f, g, h), CESM (i, j, k, l), 
MPI (m, n, o, p) and MIROC (q, r, s, t) including mean (a, e, i, m, q), 90 %-ile (b, f, j, n, r), 95 %-ile (c, g, k, o, s) and 99 %-ile (d, h, l, p, t).
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bias-corrected GCM model ensemble results for the present and future 
climate, as well as the magnitude and percentage of the change in Hs. In 
the future climate, we found that the wave patterns are similar across 
GCMs, with the largest waves in the NW, NE, and SE sectors. The largest 
waves in the NE and NW sectors were found for the HADGEM, GFDL, 
CESM, and MIROC. GFDL and MIROC show more intense events in the 
SE, except for the highest waves (i.e. 99th-percentile) where they are of 
similar intensity to the events in the northern GoM. HADGEM showed 
the mildest events in the SE, whereas MPI showed milder events in 
general. For the SW sector, the patterns are similar across the GCM 

datasets, except for the northern part of the sector, which follows the 
results for the NW sector.

The model ensemble results in Fig. 9 reveal consistent spatial pat
terns in Hs distribution across the GoM. However, analyses of both the 
absolute changes (Fig. 9i–l) and percentage changes (Fig. 9m–p) indi
cate that the change in Hs is not uniform across all sectors or percentiles. 
Notably, the SE sector shows a decrease in Hs for the mean and 90th- and 
95th-percentiles, with milder increases for the 99th-percentile 
compared to the NW sector, which could reflect the probable shift of 
TC towards the poles (Kossin et al., 2014; Studholme et al., 2022). The 

Fig. 8. Bias corrected significant wave height in a future climate (2070–2100) for GCM datasets HADGEM (a, b, c, d), GFDL (e, f, g, h), CESM (i, j, k, l), MPI (m, n, o, 
p) and MIROC (q, r, s, t) including mean (a, e, i, m, q), 90 %-ile (b, f, j, n, r), 95 %-ile (c, g, k, o, s) and 99 %-ile (d, h, l, p, t).
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NE sector shows the largest increase among all percentiles and a 
generalized increase for the NW sector, except near the US-Mexico 
border. The SE sector shows generally a decrease in Hs in the future, 
although this decrease is much less than the increase in the NW sector 
and only for the mean and 90th and 95th-percentiles. For the 99th-per
centile, there is a projected increase in Hs, which is smaller than that for 
the NE sector but similar to that for the NW sector near the US-Mexico 
border. The SW sector shows a smaller increase than the northern part 
of the GoM for the mean and 90th-percentiles of Hs. The SW sector for 
the 99th-percentile shows a clear increase in the southern part of the 
GoM, but a decrease towards the western part of the GoM, south of the 
US-Mexico border. Beyond the spatial shifts in Hs is the projected change 
of the underlying frequency of tropical-cyclone events (Table S1). Across 
the CMIP6 ensemble, there is ~5.4 % increase in total storms entering 
the GoM, driven by ~33 % rise in major hurricanes (Cat 3–5) and ~20 % 
decline in weaker systems (tropical storms and category 1 and 2 hurri
canes). This redistribution with fewer low-intensity but more 
high-intensity storms is reflected in the future increases in extreme 
waves, particularly in the NE and NW sectors.

The results suggest that offshore oil extraction areas from Texas 

through Mississippi (where most oil and gas activities in the USA occur) 
could experience higher waves by the end of the century, as well as the 
Campeche Sound (where most oil and gas activities in Mexico occur) 
although with milder increases. For the offshore oil extraction area 
known as Cinturón Plegado Perdido south of the US-Mexico border, the 
results show a slight decrease in Hs, except for the most extreme waves 
(99th-percentile), where an increase similar to that of the Campeche 
Sound is observed. These results are consistent with the trends reported 
by (Ojeda et al., 2017) for the Mexican GoM.

3.3. Wave conditions based on return periods and implications on design

In the previous section, we divided the GoM into four sectors to 
describe our results; however, the API recommendations report Hs re
turn periods within three regions specific to US GoM waters, as shown in 
Fig. 10 (West, Central, and East US) and defined in Section 2.5. Fig. 10
shows our calculated 15-, 25-, 50-, and 100-year return-period wave 
maps for the GoM ensemble under the present (Fig. 10a–d) and future 
(Fig. 10e–h) climates, the absolute changes (Fig. 10i–l) and the per
centage changes (Fig. 10m–p). The figure also shows the boundaries of 

Fig. 9. Wave conditions for significant wave height for the present (a, b, c, d) and a future (e, f, g, h) wave climate model ensembles, as well as the change in 
significant wave height (i, j, k, l) and in percentage (m, n, o, p) in the future with respect to the present climate. The results show the mean (a, e, i, m), 90 %-ile (b, f, j, 
n), 95 %-ile (c, g, k, o) and 99 %-ile (d, h, l, p).
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the regions (West, Central, and East US) as defined by (API, 2021) for 
presenting wave return periods. The ensembles were constructed using 
the waves resulting from the synthetic events derived from all GCMs. As 
can be seen from the different return periods, projections from most of 
the GCMs-based synthetic datasets show an increase in Hs return levels, 
except for a particular area in the SW sector. API regions will experience 
a significant increase in Hs, including the oil and gas exploitation areas 
offshore of Texas and Louisiana. These results are particularly relevant 
for assets whose metocean design basis is the 100-year return-period 
wave, for example, an L-1 platform (manned, non-evacuated, high-
consequence of failure) in API RP 2MET (API, 2014). Our results show 
that this extreme increases markedly toward the end of the century. A 
prospect identified in 2025 would typically require ~10 years for 
appraisal, design, permitting, and construction, reaching first produc
tion around 2035. With a nominal 25 to 30-year design life (Wahab 
et al., 2020) that is often extended through life-extension programs 
(Stacey et al., 2008), the same installation could still be operating in 
2070, precisely when our projections indicate a substantially higher 
100-year Hs. The same timeline and exposure apply to other long-lived 
offshore assets, such as fixed-bottom offshore wind farms, that also rely 

on multi-decadal metocean criteria.
API (2007, 2014, 2021) has recommended using grid pooling 

(Heideman and Mitchell, 2009) to determine the wave conditions for 
various return periods within a specific area. This approach is particu
larly effective for tropical cyclones because of their low frequency, 
limited spatial extent, and inherent variability in storm tracks under 
various ambient conditions. In other words, different tropical cyclones 
will rarely pass by the same location more than once, which means that 
there is no hope for the statistics at a point to be reliable. However, 
certain regions share common oceanographic and atmospheric charac
teristics, so that extreme events can be considered equally likely to 
happen at any given point within that region. Therefore, extreme events 
are pooled together to create reliable statistics. Without grid pooling, a 
tropical cyclone that passes near an area may have followed a slightly 
different track, potentially leading to an underestimation of extreme 
wave conditions in that region. Although using an ensemble of TC waves 
derived from different GCMs helps address the randomness and limited 
population size of observed events, we implemented a simplified grid 
pooling analysis to derive Hs values for different return periods in the 
API-defined areas. Fig. 11 shows Hs results for different return periods 

Fig. 10. Significant wave height for the 15, 25, 50, and 100-year return period (RP) obtained from the bias-corrected GCM-derived events ensemble for the present 
(a, b, c, d) and future (e, f, g, h) wave climates; increase in significant wave height (i, j, k, l) and in percentage (m, n, o, p) in the future with respect to the present 
climate. Solid black boxes represent areas defined by the API recommendations.
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for both the present and future climates, as obtained using the peak over 
threshold method and applying the GPD. The results are compared to 
API (2021) recommended values, acknowledging API values as the in
dustry standard.

The API values are smaller than our present-climate results using 
synthetic events, approximately by 2 m, which is consistent across 
different return periods, and being slightly higher in the West. For 
instance, in the Central area, the 100-year return period corresponds to a 
Hs of 17.8 m in our present-climate data while API recommends a value 
of 15.8 m, which in turn corresponds to a return period of approximately 
37 years when considering the synthetic events in the present climate. 
The API underestimation stems from its reliance on historical event data, 
which may fail to capture rare high-intensity events, which as described 
in the introduction, has been the case several times in the past. Addi
tionally, API’s estimates are based on historical events since “1900 to 
date”, while our study uses a historic frequency based on the reference 
climatology period 1980–2010. Synthetic events, despite inherent 
modeling uncertainties (e.g., parametric wind formulations and ideal
ized storm structures), explicitly include plausible but rarely observed 
extremes and therefore may provide more representative estimates of 
high-intensity, low-probability events compared to short historical re
cords alone. Although the synthetic approach might overestimate events 
due to the lack of feedback between the large-scale environment and 
downscaled events (Emanuel, 2021), our results are in agreement with 
past experience that using historical data alone may underestimate 
extreme waves. This is confirmed by the fact that the API has updated its 
guidelines following intense storm events or seasons with particularly 
high Accumulated Cyclone Energy (ACE). As such, our results using 
synthetic TCs underscore the limitations of relying solely on historical 
event-based estimates for wave climate characterization.

Unfortunately, we are unable to reproduce the API results for the 
period of 1980–2010, as the API (2014, 2021) standards lack a clear 
description of the methodological steps to determine the recommended 
Hs for different return periods. For example, API references proprietary 
hindcasts with vague and untraceable references (GUMSHOE and 
GOMOS), which are not publicly available, making independent 

verification impossible. Regarding grid pooling API refers to Heideman 
and Mitchell (2009), which states that there is “no uniquely ‘correct’ way 
to do it”, adding uncertainty to how it is employed in determining the Hs 
recommendations for the different return periods in the three US areas. 
Additionally, the period considered for wave analysis remains ambig
uous, as API states it includes data from “1900 to the present,” without 
specifying an end date for the hindcast. This lack of transparency 
significantly limits reproducibility and reliability.

The hindcast period used in API introduces additional uncertainties, 
including whether extending the hindcast back to 1900 shifts the 
baseline to a different climate than the present-day conditions of the 
21st century, whether historical storms provide sufficient data to 
correctly represent the low-probability tail, and whether storm events 
from the first half of the 20th century are even representative. In API 
(2007), it was acknowledged that pre-1950 storm data is unreliable due 
to limited observational capabilities before satellite and aircraft recon
naissance, and thus, it was not included in wave return period calcula
tions. However, in API (2014, 2021), the methodology was expanded to 
include storm records dating back to 1900, despite known limitations in 
the intensity and frequency estimates for early hurricanes (Landsea, 
2007). The inclusion of pre-satellite-era storms may introduce biases, 
artificially lowering return period wave height estimates due to sys
tematic underreporting of extreme storms in earlier decades (as pointed 
out in API, 2007). Furthermore, the use of a historical baseline extending 
from 1900 to the present introduces additional biases besides the inac
curacies in storm intensity prior to 1950 (Landsea, 2007), due to the 
longer baseline diluting recent trends toward increased storm intensity 
(Kossin et al., 2020). A climatological baseline closer to the present day 
(such as 1980–2010) provides a more representative characterization of 
contemporary storm conditions. This issue is particularly critical as the 
present-day climatology of TCs is already changing (Kossin et al., 2020), 
meaning that past data may no longer be a reliable representation of the 
contemporary climate. However, this shorter, more recent period alone 
is insufficient for robust statistical estimation of low-probability extreme 
events, emphasizing the value of complementing observed data with 
synthetic events.

Fig. 11. Significant wave height return periods for the different API-defined areas in the northern Gulf of Mexico (denoted with the dash vertical lines in Fig. 2), a) 
West US, b) Central US, and c) East US, showing the return period curves for API, and the return periods obtained for the present and future climates as derived from 
the GCM events ensemble.
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It is also important to note that the 100-year return period wave in 
API recommendations corresponds to a return period of less than 15 
years in our synthetic TC results in a changing climate, denoting further 
the need to create robust statistics, while also addressing the effects of a 
non-stationary climate. If we only compare the results derived from 
synthetic TC, we find that the effect of climate change will lead to higher 
waves, with Hs approximately 2 m higher in the future. For instance, in 
the Central US area, the 100-year return period increases from 17.8 m in 
the present climate to 20.4 in the future climate, or said in other words, 
the 100-year return period waves would become a 28-year return period 
wave by the end of the century. To illustrate the implications on design, 
Fig. 12 shows the evolution of the 100-year return period design wave in 
the Central area, where the right axis corresponds to the grey line which 
is a linear interpolation of the return period change between 2010 and 
2070, and each colored line shows the probability of occurrence (plotted 
on the left axis) of the design wave event over different structure service 
lives (5, 10, 20, 30, and 50 years), as derived from CIRIA-CUR-CETMEF 
(2007). In this plot, we can see that a structure designed based on the 
present 100-year return-period wave (17.8 m) has ~26 % probability of 
experiencing that event over a 30-year service life. By 2070, this prob
ability is projected to increase to ~65 %. Such growth in exceedance 
likelihood shows that designs based on a stationary (present-day) wave 
climate could seriously underestimate the risk of structural failure in the 
future.

The results show the implications of using historical events, both for 
characterizing the present and future wave climates, and their impli
cations in design. As such, we propose an alternative framework that 
integrates synthetic TCs to better capture the full range of potential 
storm intensities and their impact on wave conditions. This approach 
allows for a more robust representation of low-probability, high-impact 
wave events, which is crucial for offshore design under changing climate 
conditions, as we have demonstrated by comparing the values reported 
by the latest API recommendations (API, 2021) with those obtained 
using the peak over threshold method and applied the GPD to determine 
the return period Hs values. Integrating synthetic TCs into industry 
guidelines would provide more accurate values for the design of more 
resilient structures in a changing climate.

While this study quantifies future changes in the 100-year return- 
period Hs, the same non-stationary forcing also reshapes the full 
wave-energy spectrum that governs fatigue. Moderate sea states, 
roughly the 50th- to 95th-percentiles of Hs, usually account for the bulk 
of cumulative fatigue damage. Recent COWCLIP-based projections for 

the GoM (Appendini et al., 2025) indicate statistically significant in
creases across precisely this range. Merging such basin-scale, non-
extreme wave statistics with the synthetic-storm catalogue employed 
here would yield a more complete picture of climate-driven fatigue 
loading. Future work should therefore integrate the two approaches to 
refine inspection intervals and remaining-life estimates, especially for 
components already operating close to their fatigue design factor.

A final consideration is that while our framework relies on fully 
spectral third-generation wave models to capture the detailed physics of 
TC-driven wave conditions, these models are computationally 
demanding and may be impractical for global-scale studies. In such 
cases, AI-based and parametric wave models such as those proposed by 
(Grossmann-Matheson et al., 2023, 2025), offer a more computationally 
efficient alternative. Nonetheless, we contend that fully spectral models 
should remain the benchmark for characterizing design wave parame
ters due to their superior ability to capture the underlying physics for 
wave modeling.

4. Conclusions

This study assessed the impact of climate change on extreme wave 
conditions in the Gulf of Mexico (GoM) using physics-based synthetic 
tropical cyclones (TCs) generated based on CMIP6 models. By using 
physics-based synthetic storm events and applying wave modeling and 
bias correction techniques, we addressed the limitations of historical 
data and general circulation models (GCMs), thereby providing a more 
robust characterization of present and future extreme wave climates. 
Our findings indicate that climate change will significantly alter the TC- 
driven wave conditions in the GoM —driven by a ~33 % increase in 
major hurricanes alongside a ~20 % decline in weaker storms. By the 
end of the 21st century, significant wave heights (Hs) are projected to 
increase by up to 30 %, with the most pronounced changes occurring in 
the northern region, particularly in the northeast sector of the GoM. 
While the southeastern sector may experience localized reductions in 
wave heights due to possible poleward shifts in TC activity, extreme 
wave events (99th-percentile) are still expected to increase across most 
domains. Equivalently, the increase in extreme wave heights implies 
that offshore structures will be considerably more likely to encounter 
one-in-a-hundred-years events within their lifetime.

These changes have critical implications for coastal and offshore 
infrastructure design. Relying on present stationary wave climate as
sumptions may lead to a significant underestimation of extreme wave 
hazards and an increased risk of structural failure. This underscores the 
necessity of adopting non-stationary wave climate approaches in engi
neering design, where return period assessments account for evolving 
climate conditions. A comparison with industry standards (API, 2021) 
highlights the limitations of traditional design methodologies that rely 
solely on historical data. API estimates for extreme waves tend to be 
lower than those derived from our synthetic TC wave events, reinforcing 
the concern that past observations alone may underestimate future risks.

Given the limitations of API’s reliance on historical event-based es
timates, our study proposes a proactive shift toward integrating syn
thetic TC-based wave modeling with GPD-based extreme value analysis 
as a more robust framework for wave climate assessment. This approach 
captures a broader range of extreme wave events, reduces dependence 
on short historical records, and ensures a more statistically sound basis 
for offshore structure design in a changing climate. Incorporating this 
methodology into industry standards would enhance predictive capa
bilities and reduce the need for reactive adjustments following severe 
hurricane seasons.

Future work should focus on refining probabilistic frameworks for 
extreme event characterization and exploring additional downscaling 
techniques to enhance the resolution and accuracy of TC-driven wave 
projections. For projecting wave climate in coastal waters, future studies 
can incorporate the effects of sea level rise to account for its impact on 
the water depth and, thus, the wave dynamics in shallow coastal waters.

Fig. 12. Central US area percentage chance (left ordinate) of a 100-year return 
period wave in the present climate to occur as we transit into a future climate, 
where the colored lines indicate the projected design life of a structure, and the 
grey line shows the diminishing return period value (right ordinate) of the 
present climate 100-year return period wave as we approach a future climate.
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2021. Tropical cyclones in global storm-resolving models. Journal of the 

Meteorological Society of Japan. Ser. 99 (3), 2021–2029. https://doi.org/10.2151/ 
jmsj.2021-029.

Kaiser, M.J., Yu, Y., 2010. The impact of hurricanes gustav and ike on offshore oil and 
gas production in the Gulf of Mexico. Appl. Energy 87 (1), 284–297. https://doi.org/ 
10.1016/j.apenergy.2009.07.014.

Knapp, K.R., Kruk, M.C., Levinson, D.H., Diamond, H.J., Neumann, C.J., 2010. The 
international best track archive for climate stewardship (IBTrACS). Bull. Am. 
Meteorol. Soc. 91 (3), 363–376. https://doi.org/10.1175/2009BAMS2755.1.

Knutson, T., Camargo, S.J., Chan, J.C.L., Emanuel, K., Ho, C.-H., Kossin, J., 
Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., Wu, L., 2020. Tropical cyclones and 
climate change assessment: part II: projected response to anthropogenic warming. 
Bull. Am. Meteorol. Soc. 101 (3), E303–E322. https://doi.org/10.1175/BAMS-D-18- 
0194.1.

Komen, G.J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., Janssen, P.A.E. 
M., 1994. Dynamics and Modelling of Ocean Waves. Cambridge University Press 
file:///C:/Users/CAppendiniA/CMA/03 Apoyo/Biblioteca/Mendeley/Komen et al. - 
1994 - Dynamics and modelling of ocean waves.pdf. 

Kossin, J.P., Emanuel, K.A., Vecchi, G.A., 2014. The poleward migration of the location 
of tropical cyclone maximum intensity. Nature 509 (7500), 349–352. https://doi. 
org/10.1038/nature13278.

Kossin, J.P., Knapp, K.R., Olander, T.L., Velden, C.S., 2020. Global increase in major 
tropical cyclone exceedance probability over the past four decades. Proc. Natl. Acad. 
Sci. 117 (22), 11975–11980. https://doi.org/10.1073/pnas.1920849117.

Landsea, C.W., 2007. Counting Atlantic tropical cyclones back to 1900. Eos (Wroc.) 88 
(18), 197–208. https://doi.org/10.1029/2007EO180001.

Leijnse, T.W.B., Giardino, A., Nederhoff, K., Caires, S., 2022. Generating reliable 
estimates of tropical-cyclone-induced coastal hazards along the Bay of Bengal for 
current and future climates using synthetic tracks. Nat. Hazards Earth Syst. Sci. 22 
(6), 1863–1891. https://doi.org/10.5194/nhess-22-1863-2022.

Li, H., Sheffield, J., Wood, E.F., 2010. Bias correction of monthly precipitation and 
temperature fields from intergovernmental panel on climate change AR4 models 
using equidistant quantile matching. J. Geophys. Res. Atmos. 115 (10). https://doi. 
org/10.1029/2009JD012882.

Lobeto, H., Menendez, M., Losada, I.J., 2021. Future behavior of wind wave extremes 
due to climate change. Sci. Rep. 11 (1). https://doi.org/10.1038/s41598-021- 
86524-4.

Mangiavacchi, A., Rodenbusch, G., Radford, A., Wisch, D., 2005. API offshore structure 
standards: RP 2A and much more. Offshore Technology Conference 2195–2200. 
https://doi.org/10.4043/17697-MS, 2005-May. 

Marks, D.G., 1992. The Beta and Advection Model for Hurricane Track Forecasting.
Marsooli, R., Jamous, M., Miller, J.K., 2021. Climate change impacts on wind waves 

generated by major tropical cyclones off the Coast of New Jersey, USA. Frontiers in 
Built Environment 7. https://doi.org/10.3389/fbuil.2021.774084.
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