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o Brief Review of Tropical Cyclones

2 Why historical statistics are inadequate

for assessing long-term surge risk in
NYC

» Physically based method for estimating
surge risk



Physically based assessment of hurricane
surge threat under climate change

Ning Lin, Kerry Emanuel, Michael Oppenheimer
& Erik Vanmarcke

Nature Climate Change, 2, 462—-467 (February, 2012)
doi:10.1038/nclimate1389

“The combined effects of storm climatology change and a 1Tm SLR
may cause the present NYC 100-yr surge flooding to occur every 3—
20 yr and the present 500-yr flooding to occur every 25—-240 yr by
the end of the century”



'Brlef Overview of Tropical
: Cyclones




The View from Space







Tropical Cyclones, 1945-2006

Saffir-Simpson Hurricane Scale:

hurricane hurricane
category 1  category 2







Limitations of a strictly statistical approach
U.S. Hurricanes in General

? >50% of all normalized damage caused by top 8
events, all category 3,4 and 5

2 >90% of all damage caused by storms of category
3 and greater

9 Category 3,4 and 5 events are only 13% of total
landfalling events; only 30 since 1870

3 .". Landfalling storm statistics are inadequate
for assessing hurricane risk




- Historical Surge Events Affecting
New York City




Tracks of historical
hurricanes affecting NYC
and western Long Island

Study Sites
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Source: Scileppi and Donnelly, 2007: Geochem.,
Geophys., Geosys., 8



From historical archives From tide gauge at the Battery

Intense Storm Surges: NYC /
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Additional Problem:
Nonstationarity of climate



Atlantic Sea Surface Temperatures and

Storm Max Power Dissipation
(Smoothed with a 1-3-4-3-1 filter)
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Bringing Physics to Bear: Risk
Assessment by Direct Numerical
Simulation of Hurricanes

The Problem

d The hurricane eyewall is an intense, circular
front, attaining scales of ~1 km or less

d At the same time, the storm’s circulation
extends to ~1000 km and is embedded in
much larger scale flows



North Atlantic

02 o oo
g - Histograms of Tropical
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Numerical convergence in an axisymmetric,
nonhydrostatic model (Rotunno and Emanuel, 1987)
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How to deal with this?

» Option 1: Brute force and obstinacy




How to deal with this?

» Option 1: Brute force and obstinacy
» Option 2: Applied math and modest resources




[~

¢ ¢ ¢ ¢

Time-dependent, axisymmetric model
phrased in R space

M:rV+%fr2 %]‘RZEM f =2Qsmb

Hydrostatic and gradient balance above PBL

Moist adiabatic lapse rates on M surfaces above
PBL

Boundary layer quasi-equilibrium convection
Deformation-based radial diffusion

Coupled to simple 1-D ocean model
Environmental wind shear effects parameterized



Originally Developed as a Student
Laboratory Tool, Later Adapted as a

Hurricane Intensity Forecasting
Model

urface wind speed (knots)
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How Can We Use This Model to Help
Assess Hurricane Wind and Rain Risk
in Current and Future Climates?



Risk Assessment Approach:

» Step 1: Seed each ocean basin with a very large
number of weak, randomly located cyclones

» Step 2: Cyclones are assumed to move with the
large scale atmospheric flow in which they are
embedded, plus a correction for beta drift

» Step 3: Run the CHIPS model for each cyclone, and
note how many achieve at least tropical storm
strength

» Step 4: Using the small fraction of surviving events,
determine storm statistics

Details: Emanuel et al., Bull. Amer. Meteor. Soc, 2008



Comparison of Random Seeding Genesis Locations
with Observations
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Calibration

* Absolute genesis frequency calibrated to
globe during the period 1980-2005



90N

70N

S5ON

ERA40, 1000 Tracks

I I | I I I I ! I I I I | I I I I |

40E60E 80E100E120E140E160E1808 60\W40W20WO00W80W60W40W20W OE 20



Example: Hurricane
affecting New York
City




Wind Swath

Newyork
Track number 602
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Accumulated Rainfall (mm)

Newyork
Track number 602
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Coupling large hurricane event sets
to surge models (with Ning Lin)

» Couple synthetic tropical cyclone events (Emanuel
et al.,, BAMS, 2008) to surge models

» SLOSH
» ADCIRC (fine mesh)
» ADCIRC (coarse mesh)

» Generate probability distributions of surge at desired
locations



SLOSH model
(Jelesnianski et al. 1992)
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Hurricane Irene (2011) Hindcast
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2+ —— NOAA tide i

Water level above MSL (m)
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Hurricane Sandy (2012)
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Storm surge

Storm tide
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 Looking Ahead
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Lin et al. (2012)



Black Swan Tropical Cyclones




» Historical records are in general too short to
permit accurate estimates of surge risk

» Climate change also compromises estimates
based strictly on historical records




2 Simple but high resolution coupled tropical
cyclone model can be used to ‘downscale”
tropical cyclone activity and associated
surges from global climate data sets

J» Studies based on this downscaling suggest
some sensitivity of tropical cyclones to
climate state, and possibly important
changes in tropical activity over the next
century




» The 500 year flooding event in New York City
IS expected to occur every 25-240 years as a
result of sea level rise and increased
incidence of intense tropical cyclones

> New York City is also susceptible to winter
storm- and hybrid storm-induced surges.
More work needs to be done to estimate
risks from such events



Projections of U.S. Insured Damage
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Emanuel, K. A., 2012, Weather, Climate, and Society
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Feedback of Global Tropical
Cyclone Activity on the Climate
System
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The wake of Hurrlcane Emlly (JuIy 2005)

Sea Surface
Temperature
in the Wakes
of Hurricanes
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Wake Recovery

Northern Hemisphere 1985-2002
Mean SST Anomaly
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Hart, Maue, and Watson, Mon. Wea. Rev., 2007



Direct mixing by tropical cyclones

Stage 1: Stage 2:
Enthalpy-conserving mixing Wake recovery
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Emanuel (2001) estimated global rate of heat input as 1.4 X 107> Watts

Source: Rob Korty, CalTech



TC Mixing May Induce Much or Most of the
Observed Poleward Heat Flux by the Oceans

Trenberth et al., 2001
b) Heat Transport (PW)
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Tropical Heat Absorption (PW)
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Estimate of total heat
uptake by tropical oceans
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3 Present-day TC tracks
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TC-Mixing may be Crucial for High-Latitude Warmth and Low-Latitude
Moderation During Warm Climates, such as that of the Eocene

90 S 0 90 N
Latitude



Depiction of central North America, ~60 million years ago

Our future?




Linear trend (1955-2003) of the
zonally integrated heat content of
the world ocean by one-degree
latitude belts for 100-m thick
layers. Source: Levitus et al., 2005

TC-Mixing may explain
difference between observed
and modeled ocean warming

Zonally averaged temperature
trend due to global warming in
a coupled climate model.
Source: Manabe et al, 1991
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Pushing Back the Record of
Tropical Cyclone Activity:

Paleotempestology
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Pope Beach Marsh, Fairhaven, MA (4’

Pope Beach 3 - Grain Size
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North Atlantic Synthesis 7y
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- Inferences from Modeling
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The Problem: .

 Global models are far too coarse to simulate
high intensity tropical cyclones

* Embedding regional models within global
models introduces problems stemming
from incompatibility of models, and even
regional models are usually too coarse
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MIROC Model
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To the extent that they simulate tropical
cyclones at all, global models simulate
storms that are largely irrelevant to
society and to the climate system itself,
given that ocean stirring effects are

heavily weighted towards the most
intense storms
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Sensitivity to Shear and Potential
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Hydrostatic Compensation (following
Holloway and Neelin)

Perturbations to moist adiabatic troposphere:

___Op' & __(]; T)Sb
M = ()" Aln(p)  Aln(p)



For typical values of the parameters



Ozone may not explain spatial pattern of cooling
(Fu and Wallace, Science, 2006)
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Stratospheric Compensation
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Application to the Climate of the Pliocene

Present-day TC tracks
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Genesis Points, June-October, Exp CTL

Explicit (blue dots) BN ,>
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Change in Power Dissipation with Global
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Probability Density by Storm Lifetime Peak Wind
Speed, Explicit and Downscaled Events
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- The Importance of Potential
Intensity for Genesis and for
Storm Intensity




Application to Re-analyses and AGCMs
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Annual Atlantic tropical cyclone counts: Unadjusted best-track data (black); and
downscaled from the NCAR/NCEP reanalysis, 1980-2008 (blue), the ECHAM 5

simulation, 1870-2005 (green), and the NOAA/CIRES reanalysis, 1891-2008 (red).
Thin lines show annual values, thick lines show 5-year running means



Interpretation of Recent Trends in Potential

Potential Intensity (m/s)
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Potential intensity has been
increasing by about 12 ms K-,
compared to accepted value of 4
ms-'K-1. What is the source of this
discrepancy?



Surface wind speeds have not changed much
since 1980. Key variable: Outflow temperature,
which in general decreases with:

» Increasing SST

» Decreasing temperature of lower
stratosphere and/or troposphere transition
layer



Importance of Trends in Outflow Temperature

Trends in Outflow Temperature
206 I I I I I I

204 -,

202

200

198

Outflow Temperature (K)

196

194
From

NCEP
Reanalysis 192




Do Climate Models Capture Lower
Stratospheric Cooling?



AGCMs, driven by observed SSTs, do
not get the cooling!
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August-October outflow temperatures averaged over the Atlantic MDR from the
ECHAM 5 simulation (green), the NOAA/CIRES 20t Century reanalysis, version 2
(red) and the NCAR/NCEP reanalysis (blue)



As a result, t

Potential Intensity (m/s)
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1979-1999 Temperature Trends, 30S-30N. Red: Radiosondes;
Solid Black: Mean of Models with Ozone; Dashed Black: Mean of
Models without Ozone (Cordero and Forster, 2006)
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Combine expression for potential intensity, V

max?

with energy balance of ocean mixed layer:

Net surface radiative flux
SST Outflow TX Ocean mixed layer

AN N\ depth Mixed layer heat flux
— — /
— ]; T; Efad dv.Focean

2
V
max
7-; /CDIO ‘ Vs ‘
Drag coefficient Mean surface wind
speed

Valid on time scales > thermal equilibration
time of ocean mixed layer (~ 2 years)
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Cumulative Distribution of Storm Lifetime Peak Wind
Speed, with Sample of 1755 Synthetic Tracks
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