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CHAPTER 1 

Introduction 

Weather and climate – the overall distribution of 
weather over time – shape our economy. Temperature 
impacts everything from the amount of energy we 
consume to heat and cool our homes and offices to our 
ability to work outside.  Precipitation levels not only 
determine how much water we have to drink, but also 
the performance of entire economic sectors, from 
agriculture to recreation and tourism. Extreme weather 
events, like hurricanes, droughts, and inland flooding 
can be particularly damaging, costing Americans more 
than $110 billion in 2012 (NOAA 2013).   

Economic and technological development has made us 
less vulnerable to the elements. Lighting allows us to 
work and play after the sun goes down. Buildings 
protect us from wind and water. Heating and air 
conditioning allow us to enjoy temperate conditions at 
all times of the day and year. That economic growth, 
however, has begun to change the climate. Scientists are 
increasingly certain that carbon dioxide (CO2) emissions 
from fossil fuel combustion and deforestation, along 
with other greenhouse gases (GHGs), are raising average 
temperatures, changing precipitation patterns, and 
increasing global sea levels. Weather is inherently 
variable, and no single hot day, drought, winter storm 
or hurricane can be exclusively attributed to climate 
change. A warmer climate, however, increases the 
frequency and/or severity of many extreme weather 
events.   

ASSESSING CLIMATE RISK 

The best available scientific evidence suggests that 
changes in the climate observed over the past few 
decades are likely to accelerate. The US National 
Academies of Science and the UK’s Royal Society (2014) 
recently concluded that continued GHG emissions “will 
cause further climate change, including substantial 
increases in global average surface temperatures and 
important changes in regional climate.” Given the 
importance of climate conditions to US economic 
performance, this presents meaningful risks to the 
financial security of American businesses and 
households alike. 

Risk assessment is the first step in effective risk 
management, and there is a broad need for better 
information on the nature and magnitude of the 
climate-related risks we face.  National policymakers 

must weigh the potential economic and social impacts of 
climate change against the costs of policies to reduce 
GHG emissions (mitigation) or make our economy more 
resilient (adaptation). State and city officials need to 
identify local vulnerabilities in order to make sound 
infrastructure investments. Utilities are already 
grappling with climate-driven changes in energy 
demand and water supply. Farmers and ranchers are 
concerned about the commercial risks of shifts in 
temperature and rainfall, and American families 
confront climate-related threats – whether storm surges 
or wildfires – to the safety and security of their homes. 

While our understanding of climate change has 
improved dramatically in recent years, predicting the 
severity and timing of future impacts remains a 
challenge. Uncertainty surrounding the level of GHG 
emissions going forward and the sensitivity of the 
climate system to those emissions makes it difficult to 
know exactly how much warming will occur, and when. 
Tipping points, beyond which abrupt and irreversible 
changes to the climate occur, could exist.  Due to the 
complexity of the Earth’s climate system, we do not 
know exactly how changes in global average 
temperatures will manifest at a regional level. There is 
considerable uncertainty about how a given change in 
temperature, precipitation, or sea level will impact 
different sectors of the economy, and how these impacts 
will interact. 

Uncertainty, of course, is not unique to climate change. 
The military plans for a wide range of possible conflict 
scenarios and public health officials prepare for 
pandemics of low or unknown probability. Households 
buy insurance to guard against myriad potential perils, 
and effective risk management is critical to business 
success and investment performance. In all these areas, 
decision-makers consider a range of possible futures in 
choosing a course of action.  They work off the best 
information at hand and take advantage of new 
information as it becomes available. They cannot afford 
to make decisions based on conditions that were the 
norm ten or twenty years ago; they look ahead to what 
the world could be like tomorrow and in coming 
decades.  
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OUR APPROACH 

A financial prospectus provides potential investors with 
the facts about the material risks and opportunities they 
need to make a sound investment decision. In this 
American Climate Prospectus, we aim to provide decision-
makers in business and in government with the facts 
about the economic risks and opportunities climate 
change poses in the United States. We leverage recent 
advances in climate modeling, econometric research, 
private sector risk assessment, and scalable cloud 
computing (a system we call the Spatial Empirical 
Global-to-Local Assessment System, or SEAGLAS) to 
assessing the impact of potential changes in 
temperature, precipitation, sea level and extreme 
weather events on different sectors of the economy and 
regions of the country. 

TIPPING POINTS 

Even the best available climate models do not predict 
climate change that may result from reaching critical 
thresholds (often referred to as tipping points) beyond 
which abrupt and irreversible changes to the climate 
system may occur. The existence of several such 
mechanisms is known, but they are not adequately 
understood yet to simulate accurately at the global 
scale. Evidence for threshold behavior in certain aspects 
of the climate system have been identified based on 
observations of climate change in the distant past, 
including ocean circulation and ice sheets. Regional 
tipping points are also a possibility.  In the Arctic, 
destabilization of methane trapped in ocean sediments 
and permafrost could potentially trigger a massive 
release, further destabilizing global climate. Dieback of 
tropical forests in the Amazon and northern boreal 
forests (which results in additional CO2 emissions) may 
also exhibit critical thresholds, but there is significant 
uncertainty about where thresholds may be and of the 
likelihood their occurrence. Such high-risk tipping 
points are considered unlikely in this century, but are by 
definition hard to predict, and as warming increases, the 
possibilities of major abrupt change cannot be ruled out.  
Such tipping points could make our most extreme 
projections more likely than we estimate, though 
unexpected stabilizing feedbacks could also act in the 
opposite direction. 

Physical climate projections 

The scientific community has recently released two 
major assessments of the risks to human and natural 
systems from climate change. The Fifth Assessment 
Report (AR5) from the Intergovernmental Panel on 
Climate Change (IPCC) provides a global outlook, while  

 

the US government’s Third National Climate 
Assessment (NCA) focuses on regional impacts within 
the US. These assessments consolidate the best 
information that science can provide about the effects of 
climate change to date and how the climate may change 
going forward.  

Building on records of past weather patterns, 
probabilistic projections of future global temperature 
change, and the same suite of detailed global climate 
models (GCMs) that informed AR5 and the NCA, we 
explore a full range of potential changes in 
temperatures and precipitation at a daily, local level in 
the United States as a result of both past and future GHG 
emissions. As variability matters as much in shaping 
economic outcomes as averages, we assess potential 
changes in the number of hot and cold days each year in 
addition to changes in annual means. Using the 
observed, local relationships between temperature and 
humidity, we also project changes in the number of hot, 
humid summer days. Synthesizing model projections, 
formal expert elicitation, and expert assessment, we 
provide a complete probability distribution of potential 
sea-level rise at a local level in the US. While there is still 
considerable uncertainty surrounding the impact of 
climate change on hurricane and other storm activity, 
we explore potential changes, drawing on the work of 
leading tropical cyclone modelers at NOAA’s 
Geophysical Fluid Dynamics Laboratory and MIT.  

Econometric research 

Economists have studied the impact of climate change 
on macroeconomic activity for nearly a quarter century, 
starting with the pioneering work of Yale professor 
William Nordhaus and Peterson Institute for 
International Economics fellow William Cline in the 
early 1990s (Cline, 1992; Nordhaus, 1991). Just as our 
scientific understanding of climate change has 
improved considerably, so has our ability to assess the 
impacts of climate change on particular sectors of the 
economy and, in particular, regions of the country. 
Such finer-scale assessments are necessary to provide 
useful information to individual decision-makers. For 
example, coastal property developers need to assess 
whether, when, and to what extent climate change 
increases the risk of flooding where they are looking to 
build.  Farmers will want to understand the commercial 
risks of shifts in temperature and rainfall in their 
particular region, rather than the country as a whole. 
Electric utilities need to prepare for changing heating 
and cooling demand in their service territory, and the 
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Detailed sectoral models 

Complementing our meta-analysis of micro-
econometric research, we employ detailed, empirically-
based public and private sector models to assess the risk 
of climate change to key economic sectors or asset 
classes. These models are not traditionally used for 
climate change impact analysis, but offer powerful, and 
business- and policy-relevant insights. For example, to 
assess the impact of greater storm surge during 
hurricanes and nor’easters on coastal property as a 
result of climate-driven increases in local sea levels, we 
employ Risk Management Solutions’ (RMS) North 
Atlantic Hurricane Model and building-level exposure 
dataset. More than 400 insurers, reinsurers, trading 
companies, and other financial institutions trust RMS 
models to better understand and manage the risks of 
natural and human-made catastrophes, including 
hurricanes, earthquakes, floods, terrorism, and 
pandemics. To model the impact of changes in 
temperature on energy demand, power generation, and 
electricity costs, we use RHG-NEMS, a version of the US 
Energy Information Administration’s National Energy 
Modeling System (NEMS) maintained by the Rhodium 
Group. NEMS is used to produce the Annual Energy 
Outlook, the most detailed and widely used projection 
of US energy market dynamics.   

Integrated economic analysis 

We use geographically granular US economic data to put 
projected climate impacts in a local economic context. 
This is critical given how widely climate risk exposure 
varies across the country. We also integrate sectoral 
impact estimates into a state-level model of the US 
economy to measure the knock-on effects of climate-
related impacts in one sector or region to other parts of 
the economy, and to assess their combined effect on 
long-term economic growth.   

Cloud computing 

Both the individual components of the analysis, and 
their integration to produce probabilistic, location-
specific climate risk assessments is only possible thanks 
to the advent of scalable cloud computing. All told, 
producing this report required over 200,000 CPU-hours 
processing over 20 terabytes of data, a task that would 
have taken months, or even years, to complete not long 
ago. Cloud computing also enables us to make our 
methodology, models, and data available to the research 
community, which is critical given the iterative nature 
of climate risk assessment and the limited number of 
impacts we were able to quantify for this report. 

USING THIS ASSESSMENT  

In Part 1 of this report, we provide projections of the 
physical changes facing the United States. In Part 2, we 
assess the direct effects of these changes on six impact 
categories amenable to quantification: commodity 
agriculture, labor productivity, heat-related mortality, 
crime, energy demand, and storm-related coastal 
damages. In Part 3, we assess the economic costs of these 
impacts. Part 4 provides an overview of the many types 
of additional impacts that we have not attempted to 
quantify. Part 5 concludes by presenting principles for 
climate risk management. 

This assessment does not attempt to provide a definitive 
answer to the question of what climate change will cost 
the US. Nor does it attempt to predict what will happen 
or to identify a single ‘best estimate’ of climate change 
impacts and costs. While great for making headlines, 
best guess economic cost estimates at a nationwide level 
are less helpful in supporting effective risk 
management. Instead, we attempt to provide American 
policymakers, investors, businesses, and households 
with as much information as possible about the 
probability, timing, and scope of a set of economically 
important climate impacts. We also identify areas of 
potential concern where the state of knowledge does not 
permit us to make quantitative estimates at this time. 
How decisions-makers chose to act upon this 
information will depend on where they live and work, 
their planning time-horizon, and their appetite for risk.  

Probability 

For many decision-makers, low-probability, high-
impact climate events matter as much, if not more, than 
those futures most likely to occur.  Nuclear safety 
officials, for example, must consider worst-case 
scenarios and design reactors to prevent the kind of 
catastrophic impacts that would result. National 
security planners, public health officials, and financial 
regulators are likewise concerned with “tail risks”. Most 
decision-makers will not make day-to-day decisions 
with these catastrophic risks in mind, but for those with 
little appetite for risk and high potential for damage, the 
potential for catastrophic outcomes is a data point they 
cannot afford to ignore. Thus, in addition to presenting 
the most likely outcomes, we discuss those at each end 
of the probability distribution. 

Throughout the report, we employ the same formal 
probability language as did the IPCC in AR5. We use the 
term ‘more likely than not’ to indicate likelihoods greater 
than 50%, the term ‘likely’ for likelihoods greater than 
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67%, and the term ‘very likely’ for likelihoods greater 
than 90%. The formal use of these terms is indicated by 
italics. For example, where we present ‘likely ranges,’ 
that means there is a 67% probability that the outcome 
will be in the specified range. 

In some contexts, we also discuss ‘tail risks,’ which our 
probability estimates place at less than 1% probability. 
While we judge these outcomes as exceptionally 
unlikely to occur within the current century (though 
perhaps more likely thereafter with continued 
warming), we could plausibly be underestimating their 
probability. For example, carbon cycle feedbacks of the 
sort discussed in Chapter 3 could increase the 
temperature response of the planet, or the 
destabilization of West Antarctica might amplify sea-
level rise. Though our formal probability calculation 
places low likelihood on these possibilities, the true 
probability of these scenarios is challenging to quantify.  

As described in Chapter 4, our analyses include the four 
global concentration pathways generally used by the 
scientific community in climate change modeling.  

Timing 

Most of our analysis looks out over the next eighty-six 
years to 2100, extending just four years beyond the 
expected lifetime of a baby girl born the day this report 
was released.  While climate change is already affecting 
the US, the most significant risks await us in the decades 
ahead. How much a decision-maker worries about these 
future impacts depends on their age, planning or 
investment time-horizon, and level of concern about 
long-term economic or financial liabilities. Individuals 
often care less about costs borne by future generations 
than those incurred in their own lifetimes. A small start-
up does less long-term planning than a multi-
generational family-owned company. Property and 
infrastructure developers have longer investment 
horizons than commodities or currency traders, and 
while some politicians are focused purely on the next 
election cycle, others are focused on the economy’s 
health long after they leave office. We present results in 
three periods – 2020-2039, 2040-2059 and 2080-2099 – 
to allow individual decision-makers to focus on the 
time-horizon most relevant to their risk management 
needs. For a few physical changes, we also discuss effects 
beyond 2100 to highlight the potential challenges facing 
the future children of today’s newborns. 

Scope 

Nationwide estimates of the economic cost of climate 
change average out important location- or industry-

specific information. Climate risk is not evenly spread 
across regions, economic sectors, or demographic 
groups. Risks that appear manageable on an economy-
wide basis can be catastrophic for the communities or 
businesses hardest hit. To ensure this risk assessment is 
useful to a wide range of decision-makers, we report and 
discuss sector-specific impacts as well as nationwide 
results. We also analyze economic risk by state and 
region.  

A FRAMEWORK TO BUILD ON 

Given the complexity of the Earth’s climate system, 
uncertainty in how climatic changes affect the economy, 
and ongoing scientific and economic advances, no 
single report can provide a definitive assessment of the 
risks we face. Our work has a number of limitations, 
which are important to keep in mind when considering 
the findings presented in this report. 

First, the universe of potential impacts Americans may 
face from climate change is large and complex. No study 
to date has adequately captured them all and this 
assessment is no different. We have necessarily been 
selective in choosing which economic risks to quantify – 
focusing on those where there is a solid basis for 
assessment and where sector-level impacts are of 
macroeconomic significance. This excludes well-known 
impacts that could be catastrophic for particular 
communities or industries, as well as poorly-
understood impacts that pose risks for the economy as a 
whole. We describe these impacts to the extent possible, 
drawing on recent academic, government and private 
sector research, but they are not included in our 
economic cost estimates.    

Second, this analysis is limited to the direct impact of 
climate change within the United States. Of course, 
climate change is a global phenomenon, and climate 
impacts elsewhere in the world will have consequences 
for the United States as well, whether through changes 
in international trade and investment patterns or new 
national security concerns. While we discuss some of 
these dynamics, we have not attempted to quantify their 
economic impact.  

Third, individual climate impacts could very well 
interact in ways not captured in our analysis.  For 
example, we assess the impact of changes in 
temperature on electricity demand and the impact of 
changes in precipitation on water supply, but not 
changes in water supply on the cost of electric power 
generation. These types of interactions can be limited in 
scope or pose systemic risks.   
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Finally, economic risk is a narrow measure of human 
welfare. Climate change could result in a significant 
decline in biodiversity, lead to the extinction of entire 
species of plants and animals, and permanently alter the 
appearance and utility of national parks and other 
natural treasures. Very little of this is captured in 
standard economic indicators like GDP. While 
understanding the economic risk of climate change is 
important, it is only one facet of the climate-related 
risks we face. A number of the economic risks we 
quantify have non-economic impacts as well, which we 
describe alongside the economic findings.     

Figure 1.2 highlights the impacts we have included in 
our quantitative analysis of risks of climate change to 
the US, those we include in a limited or purely 
qualitative way, and those that are excluded from our 
assessment altogether. 

Given these limitations, our goal is to provide a research 
framework rather than a definitive answer. Our climate 
is complex, and our understanding of how it is changing 
and what that means for our economy is constantly 
evolving. The US National Academies of Science have 

suggested that this kind of “iterative risk management” 
is also the right way to approach climate change 
(National Research Council, 2010), and we believe the 
approach we took in preparing this report provides a 
useful model for future climate risk assessments. Our 
team included climate scientists, econometricians, 
economic modelers, risk analysts, and issue experts, 
both from academia and the private sector. We found 
this interdisciplinary, intersectoral collaboration 
unique, enjoyable, and extremely helpful in better 
understanding such a complicated issue. While taking 
an integrated approach, our research is modular so that 
individual components can be updated, expanded, and 
improved as the science and economics evolves, 
whether that’s the global climate models we use for local 
temperature and precipitation projections, our sectoral 
impact estimates, or the US macroeconomic model we 
employ.  We provide a complete description of our 
methods and information sources in the technical 
appendices of this report, and will be making our data 
and tools available online at 
climateprospectus.rhg.com. We hope others build on 
and improve upon our work in the months and years 
ahead.
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CHAPTER 2 

What We Know 

Over the nearly eight decades since the groundbreaking 
work of Guy Stewart Callendar (Callendar, 1938), 
scientists have become increasingly confident that 
humans are reshaping the Earth’s climate. The 
combustion of fossil fuels, deforestation, and other 
human activities are increasing the concentration of 
carbon dioxide (CO2) and other “greenhouse gases” in 
the planet’s atmosphere. These gases create a 
“greenhouse effect,” trapping some of the Sun’s energy 
and warming the Earth’s surface. The rise in their 
concentration is changing the planet’s energy balance, 
leading to higher temperatures and sea levels and to 
shifts in global weather patterns. In this chapter, we 
provide an overview of what scientists currently know 
about climate change, and what remains uncertain. In 
the following two chapters, we discuss the factors that 
will shape our climate in the years ahead and the 
approach we take to modeling future climate outcomes 
in the United States. We present projections of changes 
in temperature, precipitation, humidity and sea level 
between now and the end of the century. 

SEPARATING THE SIGNAL FROM THE NOISE 

The climate is naturally variable. Temperature and 
precipitation change dramatically from day to day, 
month to month and year to year. Ocean circulation 
patterns result in climate variations on decadal and even 
multi-decadal timescales. Scientists have identified 
changes in the Earth’s climate, however, that cannot be 
explained by these natural variations and are 
increasingly certain they are due to human activities 
(Molina et al., 2014; National Research Council, 2010). 

Since the late nineteenth century, the Earth’s average 
surface air temperature has increased by about 1.4 °F 
(Hartmann et al., 2013). At the global scale, each of the 
last three decades has been successively warmer than 
the decade before (Figure 2.1). Comparing thermometer 
records with indirect estimates of temperature, such as 
the isotopic composition of ice core samples, suggests 
that, at least in the Northern Hemisphere, the period 
between 1983 and 2012 was very likely the warmest 30-
year period of the last 800 years and likely the warmest 
of the last 1400 years (Masson-Delmotte, Schulz, & et 
al., 2013).  Other evidence supports these surface 
temperature measurements, including observed 
decrease in snow and ice cover (from glaciers to sea ice 

to the Greenland ice sheet), ocean warming and rising 
global sea levels. 

Figure 2.1: Global average temperatures 
Degrees Fahrenheit, 1850-2013 

 
Source: Berkeley Earth (http://www.berkeleyearth.org) 

Over the contiguous United States, average temperature 
has risen about 1.5°F over the past century, with more 
than 80% of the increase occurring in the last 30 years 
(Menne, Williams, & Palecki, 2010; Walsh et al., 2014). 
Glaciers are retreating, snowpack is melting earlier, and 
the growing season is lengthening. There have also been 
observed changes in some extreme weather events 
consistent with a warmer US, including increases in 
heavy precipitation and heat waves (Walsh et al., 2014).  

The increase in both US and global temperatures over 
the past century transcend the regular annual, decadal 
or even multi-decadal climate variability. It is a 
disruption far beyond normal changes in the weather.  

A HISTORY OF CLIMATE DISRUPTION 

This is not the first time the Earth has experienced a 
climate disruption lasting more than a century.  Indeed, 
over the past 800,000 years, variations in the Earth’s 
orbit around the sun have triggered glacial cycles 
spanning roughly 100,000 years during which Antarctic 
temperatures (estimated using ice core samples) have 
fluctuated by 10°F to more than 20°F (Figure 2.2). 
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The amount of heat a body radiates increases as its 
temperature rises. For a planet to have a stable global 
average temperature, the heat it absorbs from the sun 
must equal the heat it radiates to space. If it is absorbing 
more than it is radiating, its surface and atmosphere will 
warm until energy balance is achieved. CO2 and other 
gases in the atmosphere hinder the escape of heat from 
the Earth’s surface to space. As the atmospheric 
concentrations of these gases rise, so too do average 
surface temperatures.  This is known as the “greenhouse 
effect,” and its fundamental physics have been well 
understood by scientists since the late nineteenth 
century (Arrhenius, 1896).   

Variations in the Earth’s orbit alter the way the heat the 
Earth receives from the Sun is distributed over the 
planet’s surface and over the course of the year. These 
variations cause changes in surface temperatures that 
can increase or decrease natural emissions of CO2 and 
methane (another greenhouse gas), amplifying the 
direct temperature impact (Figure 2.2).  As the great ice 
sheets of the last ice age began to retreat about 18,000 

years ago, atmospheric concentrations of CO2 rose from 
a low of 188 parts per million (ppm), reaching 260 ppm 
over the following 7,000 years. Concentrations stayed 
in the 260 to 285 ppm range until the 1860s, when they 
started rising again. Today’s CO2 levels are near and 
have seasonally exceeded 400 ppm, far above the range 
experienced over the past 800,000 years (Luthi et al., 
2008). Indeed, the last time CO2 concentrations 
exceeded this level was likely over three million years 
ago (Seki et al., 2010), a period when global average 
temperature was about 5°F warmer than today (Lunt et 
al., 2010) and global average sea level may have been as 
much as 70 feet higher than today (Miller et al., 2012; 
Rovere et al., 2014). 

The pace of the recent rise in atmospheric 
concentrations of CO2 has also been far faster than 
occurs under normal glacial cycles – rising more over 
the last sixty years than during the 7,000 years 
following the last ice age (Figure 2.2). 
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CHAPTER 3 

What Comes Next

If past greenhouse gas emissions from fossil fuel 
combustion and other human activities have already 
changed our climate, what risks do we run if we 
continue on our current course? As discussed in the 
introduction, this report attempts to help answer that 
question. While our focus is the economic risks of 
climate change, the analysis necessarily starts with an 
assessment of ways in which the climate may change in 
the years ahead.   

A growing body of evidence shows conclusively that 
continued emissions of CO2 and other greenhouse gases 
will cause further warming, and affect all components 
of the Earth’s climate system. While there have been 
significant advances in climate science in recent years, 
the Earth’s climate system is complex, and predicting 
exactly how global or regional temperatures and other 
climate variables will change in the coming decades 
remains a challenge. It’s important to be honest about 
the uncertainty involved in forecasting our climate 
future if we are to provide policymakers, businesses, 
and households with the information they need to 
effectively manage climate-related risks (Heal & 
Millner, 2013). Scientists face five major sources of 
uncertainty in predicting climate outcomes: (1) socio-
economic uncertainty, (2) global physical uncertainty, 
(3) regional physical uncertainty, (4) natural variability, 
and (5) tipping points. We discuss each below and 
provide an overview of how they are addressed in our 
analysis.  

SOCIO-ECONOMIC UNCERTAINTY 

Future greenhouse gas emission levels will depend on 
the pace of global economic and population growth, 
technological developments, and policy decisions – all 
of which are challenging to predict over the course of a 
decade, let alone a century or more.  As a consequence, 
the climate science community has generally preferred 
to explore a range of plausible, long-run socio-
economic scenarios rather than relying on a single best 
guess (Bradfield, Wright, Burt, Cairns, & Van Der 
Heijden, 2005; Moss et al., 2010). Each scenario includes 
assumptions about economic development, energy 
sector evolution, and policy action – capturing potential 
futures that range from slow economic growth, to rapid 
economic growth powered primarily by fossil fuels, to 
vibrant economic development in a world transitioning 
to low-carbon energy sources. Each scenario results in 

an illustrative greenhouse gas emission and 
atmospheric concentration pathway.  

A broadly accepted set of global concentration pathways 
was recently developed by the Integrated Assessment 
Modeling Consortium (IAMC) and used in the 
Intergovernmental Panel on Climate Change (IPCC)’s 
Fifth Assessment Report (AR5). Termed “Representative 
Concentration Pathways” (RCPs), these four pathways 
span a plausible range of future atmospheric 
greenhouse gas concentrations. They are labeled based 
on their radiative forcing (in watts per square meter, a 
measure of greenhouse gas concentrations in terms of 
the amount of additional solar energy the gases retain) 
in the year 2100 (Meinshausen et al. 2011b). The 
pathways also include different assumptions about 
future changes in emissions of particulate pollution, 
which reflects some of the Sun’s energy to space and 
thus dampens regional warming. The RCPs are the basis 
for most global climate modeling undertaken over the 
past few years.  

At the high end of the range, RCP 8.5 represents a 
continuation of recent global emissions growth rates, 
with atmospheric concentrations of CO2 reaching 940 
ppm by 2100 (Figure 3.1) and 2000 ppm by 2200. These 
are not the highest possible emissions; rapid 
conventional economic growth could lead to a radiative 
forcing 10% higher than RCP 8.5 (Riahi, 2013). But RCP 
8.5 is a reasonable representation of a world where fossil 
fuels continue to power relatively robust global 
economic growth, and is often considered closest to the 
most likely “business-as-usual” scenario absent new 
climate policy by major emitting countries.  

At the low end of the range, RCP 2.6 reflects a future 
only achievable by aggressively reducing global 
emissions (even achieving net negative emissions by this 
century’s end) through a rapid transition to low-carbon 
energy sources. Atmospheric CO2 concentrations 
remain below 450 ppm in RCP 2.6, declining to 384 ppm 
by 2200. Two intermediate pathways (RCP 6.0 and RCP 
4.5) are consistent with a modest slowdown in global 
economic growth and/or a shift away from fossil fuels 
more gradual than in RCP 2.6 (Riahi, 2013). In RCP 6.0, 
CO2 concentrations stabilize around 750 ppm in the 
middle of the 22nd century. In RCP 4.5, CO2 
concentrations stabilize around 550 ppm by the end of 
the 21st century. 
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Figure 3.1: Representative concentration pathways 
Atmospheric concentrations of CO2 in ppm 

 

Source: Meinshausen et al. 2011 

We include all four RCPs in our analysis for two reasons. 
First, an individual RCP is not uniquely associated with 
any particular set of population, economic, 
technological, or policy assumptions; each could be 
attained through a variety of plausible combination of 
assumptions.  For example, a rapid emissions decline in 
the United States combined with continued emissions 
growth in the rest of the world could result in a 
concentration pathway similar to RCP 8.5. Likewise, if 
emissions in the United States continue to grow but the 
rest of the world makes a rapid transition to a low-
carbon economy, a concentration pathway similar to 
RCP 4.5 is still potentially possible. Given the 
uncertainty surrounding emissions pathways in other 
countries, American policymakers must assess the risks 
associated with a full range of possible concentration 
futures. This is especially true for local officials as well as 
American businesses and households who have little 
control over America’s overall emission trajectory, let 
alone global concentration pathways. 

The second reason is to identify the extent to which 
global efforts to reduce greenhouse gas emissions can 
reduce climate-related risks associated with the absence 
of deliberate mitigation policy (i.e., RCP 8.5 or, under a 
slower global economic growth scenario, RCP 6.0). This 
is not to recommend a particular emission reduction 
pathway, but to identify climate outcomes that are 
potentially avoidable versus those that are already 
locked in.  

GLOBAL PHYSICAL UNCERTAINTY 

Even if we knew future emissions growth rates with 
absolute certainty, we would still not be able to predict 

their impact precisely, due to the complexity of the 
Earth’s climate system. At a global level, the largest 
source of physical uncertainty resides in the magnitude 
and timescale of the planet’s response to a given change 
in radiative forcing, commonly represented by 
“equilibrium climate sensitivity” and “transient climate 
response.” The former, typically reported as the 
response to a doubling of CO2 concentrations, reflects 
the long-term response of global mean temperature to a 
change in forcing; the latter reflects how that response 
plays out over time. 

The effect on global temperature of the heat absorbed 
and emitted by CO2 alone is fairly well understood. If 
CO2 concentrations doubled but nothing else in the 
Earth system changed, global average temperature 
would rise by about 2°F (Flato et al., 2013; Hansen et al., 
1981). Across the entire climate system, however, there 
are several feedback mechanisms that either amplify or 
diminish this effect and respond on different timescales, 
complicating precise estimates of the overall sensitivity 
of the climate system. These feedbacks include an 
increase in atmospheric water vapor concentrations; a 
decrease in the planet’s reflectivity due to reduction in 
ice and snow coverage; changes in the rate at which 
land, plants, and the ocean absorb carbon dioxide; and 
changes in cloud characteristics. Significant 
uncertainties remain regarding the magnitude of the 
relatively fast cloud feedbacks, as well as longer-term 
and/or abrupt feedbacks, such as high-latitude 
permafrost melt or release of methane hydrates, which 
would amplify projected warming (see discussion on 
“Tipping Points” below). Such longer-term feedbacks 
are not included in the “equilibrium climate sensitivity” 
as conventionally defined. 

Uncertainty in the equilibrium climate sensitivity is a 
major contributor to overall uncertainty in projections 
of future climate change and its potential impacts.  
Scientists have high confidence, based on observed 
climate change, climate models, feedback analysis, and 
paleoclimate evidence that the long-term climate 
sensitivity (over hundreds to thousands of years) is likely 
in the range of 3°F to 8°F warming per CO2 doubling, 
extremely likely (95% probability) greater than 2°F, and 
very likely (90% probability) less than 11°F (Collins et al., 
2013). This warming is not realized instantaneously, as 
the ocean serves as a heat sink, slowing temperature 
rise. A more immediate measure, the “transient climate 
response,” indicates that a doubling of CO2 over 70 years 
is likely to cause a warming of between 2°F and 5°F over 
that period of time (Collins et al., 2013).  
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These ranges of climate sensitivity values are associated 
with significantly different projections of future climate 
change. Many past climate impact assessments have 
focused only on the “best estimates” of climate 
sensitivity. To capture a broader range of potential 
outcomes, we use MAGICC, a commonly-employed 
simple climate model (Meinshausen, Raper, and Wigley 
2011) that can emulate the results of more complex 
models and can be run hundreds of times to capture the 
spread in estimates of climate sensitivity and other key 
climate parameters. MAGICC’s model parameters are 
calibrated against historical observations (Meinshausen 
et al. 2009; Rogelj, Meinshausen, and Knutti 2012) and 
the IPCC’s estimated distribution of climate sensitivity 
(Collins et al., 2013). A more detailed description of our 
approach is provided in Appendix 1.  

REGIONAL PHYSICAL UNCERTAINTY 

Since deliberate planetary-scale climate experiments are 
largely infeasible and would raise profound ethical 
questions, scientists must rely on computer models to 
conduct experiments on Earth’s complex climate 
system, including projecting how climate will change at 
a regional scale in response to changes in greenhouse 
gases. Global climate models are descended from the 
first numerical weather prediction models developed 
after World War II (Edwards, 2011; Manabe & 
Wetherald, 1967; Phillips, 1956). Over time they have 
been expanded to include the dynamic effects of oceans 
and sea ice, atmospheric particulates, atmospheric-
ocean carbon cycling, atmospheric chemistry, 
vegetation, and most recently land ice. Model 
projections of the central components of long-term, 
human-induced climate change have grown 
increasingly robust, and recent generations of 
increasingly complex models provide greater detail and 
spatial resolution than ever before.  

There are dozens of global climate models, with a range 
of different model structures and parameter 
assumptions. Since the 1990s the global climate 
modeling research community has engaged in 
structured inter-model comparison exercises, allowing 
them to compare experiments run in different models to 
each other and to the observational record. The 
differences identified among the models allow estimates 
to be made of the uncertainties in projections of future 
climate change, and highlight which aspects are robust 
and where to focus future research efforts to improve 
results over time. By combining and averaging many 
models, clear trends emerge. 

Analysis of the range of potential climate impacts to the 
US for this report is based on climate projections 
developed as part of the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) with a suite of 
35 different global climate models (Taylor, Stouffer, & 
Meehl, 2012). This suite of complex models has become 
the gold standard for use in global climate assessments 
(including by the IPCC in AR5) as well as for regional 
assessments (including the 3rd US National Climate 
Assessment released this year). Major US-based models 
participating in CMIP5 have been developed by teams 
led by the NASA Goddard Institute for Space Studies, 
the NOAA Geophysical Fluid Dynamics Laboratory, and 
the National Center for Atmospheric Research.  

The global climate models that participated in CMIP5 
typically have spatial resolutions of ~1 to 2° (about 70 to 
150 miles at mid-latitudes). To produce projections at a 
finer spatial resolution, researchers have used a variety 
of downscaling approaches. The projections in this 
report build upon one particular downscaling 
technique, bias-corrected spatial disaggregation (BCSD) 
(Brekke, Thrasher, Maurer, & Pruitt, 2013; Wood, 
Maurer, Kumar, & Lettenmaier, 2002). We use a BCSD 
data set generated by the Bureau of Reclamation (2013) 
from the CMIP5 archive.  In addition to the uncertainty 
in the global climate models themselves, further 
uncertainty is introduced by the downscaling step. 
Alternative downscaling approaches can give rise to 
different localized projections, particularly of extremes 
(Bürger, Murdock, Werner, Sobie, & Cannon, 2012).  

It is important to recognize that the CMIP5 model 
projections are not a probability distribution, but 
instead an “ensemble of opportunity” (Tebaldi & Knutti, 
2007). The models are not fully independent of one 
another, instead sharing overlapping lineages and a 
common intellectual milieu (Edwards, 2011). Moreover, 
every modeling team that participates in CMIP has 
striven to develop a model that captures a suite of 
important physical processes in the oceans and 
atmosphere, and has tuned some of the parameters of 
their model to reasonably reproduce historical 
behavior. Attempts to interpret the CMIP5 ensemble as 
a probability distribution will accordingly undersample 
the distribution tails and oversample “best estimates”. 

For this reason, we use estimates from MAGICC of the 
probability of different temperature outcomes at the 
end of the century to weight the projections of more 
complex global climate models. For those parts of the 
probability distribution for global temperature not 
covered by the CMIP5 models, primarily in the tails, we 
create “model surrogates” by scaling spatial patterns of 
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temperature and precipitation change from the CMIP5 
models using temperature projections from MAGICC. 
In the Appendix, we compare our key results to those we 
would estimate if we treated the CMIP5 projections as 
though they formed a probability distribution.  

NATURAL CLIMATE VARIABILITY 

As discussed above, natural climate variability can range 
in timescale from day-to-day temperature variations, to 
interannual patterns such as El Niño and longer-term 
patterns such as the Pacific Decadal Oscillation. In 
addition to the trends in climate associated with climate 
change, global climate models simultaneously simulate 
natural climate variability. The magnitude of such 
variability renders the differences in climatic response 
between plausible emissions pathways essentially 
undetectable at a global scale until about 2025. The 
relative magnitude of climate variability, physical 
uncertainty, and scenario uncertainty differs from place 
to place and for different variables. For example, in the 
British Isles internal variability in decadal mean surface 
air temperature dominates scenario uncertainty 
through the middle of the century (Hawkins, 2009). 
Internal variability, not fully captured by climate 
models, probably accounts for a significant fraction of 
the slow-down in global warming over the last decade 
(Trenberth & Fasullo, 2013) and for the absence of net 
warming in parts of the southeastern US over the last 
century (Kumar, Kinter, Dirmeyer, Pan, & Adams, 
2013).  While unprecedentedly warm years will occur 
with increasing frequency, climate variability means 
that the annual mean temperatures of cooler years in 
most of the US will be in the range of historical 
experience until at least the middle of the century (Mora 
et al., 2013). 

Extreme weather events like heat waves, hurricanes, 
and droughts are examples of natural climate variability 
experienced on more compressed time scales. By nature 
the probability of these events occurring is low, putting 
them at the far “tails” of statistical weather distributions. 
There is increasing evidence, however, that climate 
change is altering the frequency and/or severity of many 
types of these events (Cubasch et al., 2013). Although 
most individual extreme events cannot be directly 
attributed to human-induced warming, there is 
relatively high confidence that heat waves and heavy 
rainfall events are generally becoming more frequent 
(Hartmann et al., 2013). As the climate continues to 
warm, certain types of storms such as hurricanes are 
expected to become more intense (though not 
necessarily more frequent), although less is known 
about how other types of storms (such as severe 

thunderstorms, hailstorms, and tornadoes) may 
respond (National Academy of Sciences & The Royal 
Society, 2014). 

Due to the huge damages incurred by hurricanes in 
recent decades, there has been significant interest in 
understanding global and regional trends in cyclone 
activity and the causes of any observed changes. 
Globally, over the past century, there is low confidence 
in long-term changes in hurricane activity or in the 
influence of human-induced climate changes (Knutson 
et al., 2010). That is not to say that human-induced 
warming played no role – due to limitations in the 
quality of historical records, it is possible that such 
influence is simply not yet detectable, or is not yet 
properly modeled given the uncertainty in quantifying 
natural variability and the effects of particulate 
pollution, among other factors (Christensen et al., 2013; 
Knutson et al., 2010; Seneviratne et al., 2012). Short-
term and regional trends vary, however; hurricane 
activity has increased in the North Atlantic since the 
1970s (Christensen et al., 2013). 

Our confidence in projecting future changes in extremes 
(including the direction and magnitude of changes) 
varies with the type of extreme, based on confidence in 
observed changes, and is thus more robust for regions 
where there is sufficient and high quality observational 
data (Seneviratne et al., 2012). Temperature extremes, 
for example, are generally well simulated by current 
GCMs, though models have more difficulty simulating 
precipitation extremes (Randall et al., 2007). The ability 
to project changes in storms, including hurricane 
activity, is more mixed. There is a growing consensus 
that, around the world, the strongest hurricanes 
(Categories 4 and 5) and associated rainfall levels are 
likely to increase (Christensen et al., 2013; Knutson et al., 
2010; Seneviratne et al., 2012). There is low confidence, 
however, in climate-induced changes in the origin and 
track of future North Atlantic hurricanes (Bender et al., 
2010).  

TIPPING POINTS  

Many components of the Earth system exhibit critical 
thresholds (often referred to as tipping points) beyond 
which abrupt and/or irreversible changes to the climate 
or the biosphere may occur (Collins et al., 2013; Lenton 
et al., 2008; National Academy of Sciences, 2013). Many 
of these tipping points are poorly represented in the 
current generation of climate models. Some may have 
direct societal or economic impacts. Others affect the 
global carbon cycle and amplify climate change. Such 
feedbacks could increase the probability of our most 
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extreme projections (although unexpected stabilizing 
feedbacks could also act in the opposite direction). 

Summer Arctic sea-ice cover has fallen faster than most 
of the previous generation of climate models had 
projected (Stroeve et al. 2007), although the current 
generation of models appears to perform better (Stroeve 
et al. 2012). The Arctic appears on track for nearly ice-
free Septembers in the coming decades. Reduced sea-ice 
coverage amplifies warming in the Arctic and may also 
lead to slower moving weather patterns at lower 
latitudes (Francis & Vavrus, 2012). Slow-moving weather 
patterns supported the long-lived cold winter 
experienced by much of North America in 2013-2014, 
which had a significant economic impact. However, the 
linkage with low summer Arctic sea-ice remains highly 
controversial (Barnes, 2013).  

Past mass extinctions have been tied to global climate 
change (Blois, Zarnetske, Fitzpatrick, & Finnegan, 2013). 
Human activities, primarily land use changes, have 
increased the global species extinction rate by about two 
orders of magnitude above the background rate 
(Barnosky et al., 2011) and climate change is beginning 
to exacerbate extinction further (Barnosky et al., 2012). 
The economic impacts of mass extinction and the 
associated loss of ecosystem services are difficult to 
estimate, but they are likely to be substantial. 

Past climate change has also driven rapid ecosystem 
shifts (Blois et al., 2013). Some research suggests that the 
Amazon rainforest and northern boreal forests may be 
vulnerable to a climatically-driven die-off, which would 
increase global CO2 emissions, but there is significant 
uncertainty about the climatic threshold for such a die-
off and its likelihood (Collins et al., 2013). 

Destabilization of methane trapped in ocean sediments 
and permafrost may have played a major role in the 
geologically rapid 10°F global warming of the 
Paleocene-Eocene Thermal Maximum, 56 million years 
ago (McInerney & Wing, 2011). Global warming today 
may trigger a similar destabilization of methane 
reservoirs today, amplifying projected warming 
significantly, although such a methane release would be 
expected to play out over centuries (Collins et al., 2013). 

Reconstructions of past sea level, as well as physical 
models of ice-sheet dynamics, suggest that the West 
Antarctic Ice Sheet can collapse and raise sea level by 
many feet over the course of a few centuries (Kopp, 
Simons, Mitrovica, Maloof, & Oppenheimer, 2009; 
Pollard & DeConto, 2009). Indeed, recent evidence 
suggests that such a collapse may be underway (Joughin, 
Smith, & Medley, 2014; Rignot, Mouginot, Morlighem, 
Seroussi, & Scheuchl, 2014). The possibility of a rapid 
collapse is included in the sea-level rise projections 
described below, which indicate a 1-in-1000 probability 
of eight feet of global mean sea-level rise by 2100 and 31 
feet of global mean sea-level rise by 2200.  

Other potential tipping points include drops in ocean 
oxygen content, changes to monsoons, and changes to 
pattern of climatic variability such as El Niño (National 
Academy of Sciences, 2013). There may be other critical 
thresholds not yet considered by science. High-impact 
tipping points with consequences realized primarily in 
this century are considered unlikely, but confidence in 
many of these projections is low (Collins et al., 2013). As 
warming increases, the possibility of major abrupt 
changes cannot be ruled out. 
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CHAPTER 4 

US Climate Projections

This report seeks to assess how potential climate futures 
may differ from the conditions we know today. Results 
are provided for three future time periods: 2020-2039, 
mid-century (2040-2059) and late-century (2080-2099).  
We also report results for a historical reference period, 
in most cases the 1981-2010 used by the National Climate 
Data Center in defining the latest release of Climate 
Normals. Using multi-decadal averages, rather than a 
single year, ensures that results are not excessively 
influenced by natural interannual variability.  

Under all scenarios average global and US temperatures 
rise over the course of the century. By mid-century 
global average temperature will likely (67% probability) 
be between 2.2 and 3.7°F warmer under the continued 
high global emissions pathway (RCP 8.5). The increase 
will be somewhat less under RCP 6.0 and RCP 4.5, with 
likely warming of 1.4 to 2.5°F and 1.5 to 2.8°F, 
respectively. Even under RCP 2.6, average temperatures 
continue to increase to a likely range of 1.1 to 2.2°F by 
mid-century. By the end of the century, the differences 
between future pathways are larger: the very likely (90% 
probability) warming is 4.7 to 8.8°F for RCP 8.5, 2.8 to 
5.4°F for RCP 6.0, 2.1 to 4.5°F in RCP 4.5, and 0.9 to 2.6°F 
in RCP 2.6 (Figure 4.1).  

The land warms faster than the oceans, and as a 
consequence the mean temperature increase in the 
United States over the 21st century will, more likely than 
not, be greater than the global average. (Note that these 
are average temperatures; just as they do today, 
individual years will vary by about 1-2°F around the 
average; see Figure 4.2.) Across the continental US, by 
mid-century the average temperature will likely be 
between 2.6 and 5.8°F warmer under RCP 8.5 and 
between 1.9 and 3.5°F warmer under RCP 2.6. By the end 
of the century, the differences between future pathways 
are larger, with likely warming of 6.1 to 12.5°F for RCP 
8.5, 4.1 to 7.7°F for RCP 6.0, 2.9 to 6.9°F in RCP 4.5, and 
1.1 to 3.7°F in RCP 2.6. These likely ranges, however, do 
not reflect the small, but not insignificant chance that 
average US temperatures may rise even further. Under 
RCP 8.5, by the end of the century there is a 1-in-20 
chance that average temperatures could rise by more 
than 14°F, and a very small chance (which we estimate at 
1% or less) of temperature increases above 19°F. In the 
continental US, RCP 6.0 is associated with cooler 
temperatures than the other three RCPs through mid- 
century because it projects greater emissions of 
particulate pollution from power plants and industrial 
sources, offsetting some of the warming that would 
otherwise have occurred.  

Figure 4.1: Global average temperature projections 
Degrees Fahrenheit relative to 1981-2010 averages, historical median projections (left side) and confidence intervals (right side) 
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Figure 4.2: US average temperature projections 
Degrees Fahrenheit relative to 1981-2010 averages, historical temperatures and median projections (left side) and confidence intervals (right) 

The rise in global and US average will be reflected in 
increased daily high temperatures. Since 1950, global 
maximum and minimum air surface temperatures have 
increased by over 1.1°F, about 0.2°F per decade 
(Hartmann et al., 2013). Over the past 30 to 40 years, the 
ratio of record daily high temperatures to record daily 
low temperatures for the continental US has steadily 
increased (Walsh et al., 2014). The last decade 
experienced twice as many record highs as record lows, 
a larger difference than even the 1930s – a time of record 
heat and drought in much of the US (Blunden & Arndt, 
2013). Extreme summer temperatures have also 
approached or exceeded those in the 1930s over much of 
the US.   

One measure of changes in extreme temperatures is the 
number of days with temperatures reaching 95°F or 
more, a measure that is projected to increase 
dramatically across the contiguous United States as a 
result of climate change. Under RCP 8.5, by mid-century 
(assuming the geographic distribution of the population 
remains unchanged) the average American will likely 
experience an average of 27 to 50 days over 95°F each 
year. This represents a near doubling to more than 

tripling of the average 15 days per year over this 
threshold from 1981-2010.  By late century the average 
American will likely see an average of 46 to 96 days per 
year over 95°F, or around 1.5 to 3 months out of the year. 
By the end of the century, the average Coloradan will 
likely experience more days above 95°F in a typical year 
than the average Texan does today (Figure 4.4). 

There are similarly large projected changes in average 
winter temperatures (Figure 4.5) and number of 
extremely cold days (Figure 4.6). Again, northern states 
see the largest shift, with average winter temperatures 
likely rising by 2.9 to 6.5°F in the Northeast by mid-
century under RCP 8.5 and by 6.9 to 13.2°F by the end of 
the century (Figure 4.5).  Of the 25 states that currently 
have sub-freezing average winter temperatures, only six 
(Vermont, Maine, Wisconsin, Minnesota, North Dakota 
and Alaska) are still likely to do so under RCP 8.5 by the 
end of the century. In that scenario the average number 
of days with temperatures dropping below 32°F the 
average resident of New York state experiences will 
likely fall from 93 to less than 51. The number of days 
dipping below 32°F in Washington, DC will likely fall 
from 87 to less than 37. 
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Figure 4.5: C
Daily average
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HUMIDITY 

“It’s not the heat; it’s the humidity,” the common saying 
goes. The combination of high temperatures with high 
humidity is significantly more uncomfortable, and 
potentially more dangerous, than high temperatures 
under drier conditions. Wet-bulb temperature is an 
important climatic and meteorological metric that 
reflects the combined effect of temperature and 
humidity (Buzan, 2013; Sherwood & Huber, 2010). 
Measured with a ventilated thermometer wrapped in a 
wet cloth, it reflects the ability of mammals to cool by 
sweating. In order for humans to maintain a stable body 
temperature around 98°F, skin temperature must be 
below 95°F, which for a well-ventilated individual at rest 
in the shade requires wet-bulb temperature of 95°F. 
Exposure to sunlight and exertion will increase body 
temperature. About an hour of vigorous, shaded activity 
at a wet-bulb temperature of 92°F leads to skin 
temperatures of 100°F and core body temperatures of 
104°F (Liang et al., 2011; Nielsen, Strange, Christensen, 
Warberg, & Saltin, 1997). Higher core temperatures are 
associated with heat stroke, which can be fatal 
(Bouchama & Knochel, 2002). 

Such high wet-bulb temperatures almost never occur on 
the planet today. The highest heat-humidity 
combinations in the US in the last thirty years occurred 
in the Midwest in July 1995, during the middle of that 
summer’s heat wave. Wet-bulb temperatures then 
approached 90°F; one weather station in Appleton, 
Wisconsin recorded a temperature and dew point that 
correspond to a wet-bulb temperature of 92°F (Burt, 
2011).  

We developed the ACP Humid Heat Stroke Index, which 
divides daily peak wet-bulb temperature into four 
categories (Table 4.1). Category I reflects uncomfortable 
conditions typical of summer in much of the Southeast, 
while category II reflects dangerous conditions typical 
of the most humid days of summer in the Southeast, as 
far north as Chicago and Washington. Category III 
conditions are rare and extremely dangerous, occurring 
only a few times in the US between 1981-2010, including 
during the 1995 Midwest heat wave. The extraordinarily 
dangerous Category IV conditions exceed US historical 
experience. 

Table 4.1 The ACP Humid Heat Stroke Index 

ACP Humid Heat 
Stroke Index 

Peak Wet-Bulb 
Temperature Characteristics of the hottest part of day 

I 74°F to 80°F Uncomfortable. Typical of much of summer in the Southeast. 

II 80°F to 86°F 
Dangerous. Typical of the most humid parts of Texas and Louisiana in hottest summer 

month, and the most humid summer days in Washington and Chicago. 

III 86°F to 92°F Extremely dangerous. Comparable to Midwest during peak days of 1995 heat wave. 

IV >92°F 
Extraordinarily dangerous. Exceeds all US historical records. Heat stroke likely for fit 

individuals undertaking less than one hour of moderate activity in the shade. 
 

Projecting future increases in wet-bulb temperatures at 
the same resolution as the other analyses in this report is 
challenging. Indeed, assessing past wet-bulb 
temperatures precisely is tricky as well; differences 
between analytical methods and variations in humidity 
near weather stations can produce differences in 
historical estimates of up to about 4°F. Nonetheless, we 
can make some projections of future changes in wet-
bulb temperature based upon the observed relationships 
between dry-bulb (conventional) temperature and wet-
bulb temperature. Note that in the Midwest, humidity is 
enhanced by transpiration from crops (Changnon, 
Sandstrom, & Schaffer, 2003); changing agricultural 

practices and suitability, as well as the response of crops 
to higher CO2 concentrations, may affect the likelihood 
of future extreme wet-bulb temperatures in this region 
in a way which we cannot account for in our projections. 

Under RCP 8.5, by mid-century, the area expected to 
experience more than a month of dangerous Category 
II+ conditions in a typical year will extend from the 
current range in coastal Texas and Louisiana to most of 
the Southeast up to Washington, DC, and much of the 
Midwest as far north as Chicago (Figure 4.7). A day or 
more of extremely dangerous Category III conditions is 
expected in a typical summer in counties currently
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provides a sense of how the experience of future 
summers will change. By 2020-2039, for example, 
median projected average summer temperatures in 
Washington, DC match, and the expected number of 
hot, humid Category II+ days experienced by 
Washingtonians exceed, those in Mississippi today. By 
mid-century, median projected summer temperatures 
in Missouri under RCP 8.5 approach those in Florida 
today, while the expected number of hot, humid 
Category II+ days experienced by the average 
Missourian exceeds those of Louisiana today. By the end 
of the century under RCP 8.5, the Northeastern, 
Southeastern and Midwestern states south of the 
Mason-Dixon line have higher median projected 
summer temperatures than Louisiana today, and the 
residents of almost the entirety of those three regions – 
including the states north of the Mason-Dixon line – 
have more expected hot, humid Category II+ days than 
does Louisiana today (Figure 4.9).  

While air conditioning can allow humans to cope with 
extreme wet bulb temperatures, habitability in the face 
of sustained extreme wet-bulb temperatures would 
require fail-safe technology and time-shifting of 
outdoor work to cooler (but likely still extremely 
unpleasant) parts of the day. Other species may not be as 
fortunate.  

PRECIPITATION  

Precipitation changes are more challenging to predict 
than temperature changes. Higher atmospheric 
temperatures will in general increase the absolute 
humidity of the atmosphere, making extreme 
precipitation events more likely. Higher temperatures 
will also increase evaporation, however, making 
extreme drought more likely. In general, wetter areas 
are expected to get wetter and drier areas drier, but 
much will depend upon changes in atmospheric 
circulation patterns, which could shift the dry 
subtropics poleward. High latitudes and wet mid-
latitude regions are likely to experience an increase in 
annual mean precipitation by the end of this century 
under RCP 8.5, while many mid-latitude and subtropical 
dry regions will likely see decreases. Extreme 
precipitation events over most of the mid-latitude land 
masses and over wet tropical regions will very likely 
become more intense and more frequent by the end of 
this century, as global mean surface temperature 
increases (Collins et al., 2013). 

Across the contiguous US, average annual precipitation 
will likely increase over the course of the 21st century. 
The spatial distribution of median projected changes in 

seasonal precipitation under RCP 8.5 are shown in 
Figure 4.10. The Northeast, Midwest, and Upper Great 
Plains are likely to experience more winter precipitation. 
Wetter springs are very likely in the Northeast, Midwest, 
and Upper Great Plains, and likely in the Northwest and 
Southeast.  An increase in fall precipitation is likely in 
the Northeast, Midwest, Upper Great Plains, and 
Southeast. The Southwest is likely to experience drier 
springs, while drier summers are likely in the Great 
Plains and the Northwest.  

DROUGHT 

Drought has multiple definitions. Meteorological 
droughts are defined by abnormally low precipitation, 
agricultural drought by abnormally low soil moisture, 
and hydrological drought by reductions in water supply 
through groundwater, reservoirs, or streams (Heim, 
2002). Projected decreases in precipitation in some 
regions and seasons -- for example, the likely springtime 
decrease in the Southwest, and the likely summer 
decrease in the Great Plains and Northwest – make 
meteorological drought increasingly likely over the 
course of the century.  

Projecting agricultural droughts is more challenging 
than simply projecting precipitation. Soil moisture is 
also affected by temperature -- which increases 
evaporation -- and from transpiration by plants, which 
may decrease in response to carbon fertilization 
(conserving soil moisture). Global climate models can 
explicitly model changes in soil moisture; of the models 
participating in CMIP5 and reporting soil moisture, 
more than 90% projected a decrease in annual mean soil 
moisture in the Southwest by late century in RCPs 4.5, 
6.0 and 8.5. More than 90% also projected a decrease in 
soil moisture in the Northwest and Great Plains under 
RCP 8.5 (Collins et al., 2013). In the western half of the 
country as a whole, averaging model results together, 
drought extent by area in a typical year, defined as soil 
moisture below the 20th percentile, is projected to 
increase from about 25% to about 40% (Wuebbles et al., 
2013). Summer droughts are projected to become more 
intense in most of the continental US due to longer dry 
periods, and more extreme heat that increases moisture 
loss from plants and soils (Georgakakos et al., 2014; 
Walsh et al., 2014). 

Our agricultural projections (Chapter 6), which 
incorporate historical relationships between 
temperature, precipitation, and crop yield, as well as 
future responses to changing carbon dioxide 
concentrations, implicitly estimate agricultural 
droughts. The 2012 drought provides a benchmark for 
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particularly true for the West Antarctic Ice Sheet, much 
of which sits below sea level and may therefore be 
vulnerable to positive feedbacks that could lead to more 
than of three feet of global mean sea level rise over the 
century from this one source alone. 

Under RCP 8.5, global mean sea level will likely rise by 
about 0.8 to 1.1 feet between 2000 and 2050, and by 2.0 
to 3.3 feet between 2000 and 2100 (Figure 4.11) (Kopp et 
al., 2014). There is a 1-in-200 chance sea level could rise 
by 5.8 feet, and in a “worst-case” projection reflecting 
the maximum physically plausible sea level rise, global 
mean sea level could rise by as much as eight feet. It is 
important to note that the estimates of tail probabilities 
involve a particular set of assumptions about likely ice 
sheet behavior; feedbacks could render these extreme 
outcomes more likely than we project. 

The uncertainty in ice sheet physics plays a larger role in 
sea-level projections than scenario uncertainty, but 
lower greenhouse gas emissions will lower projected 
sea-level rise, particularly in the second half of the 
century. Under RCP 2.6, global mean sea level will likely 
rise by about 0.7 to 0.9 feet by 2050 and by 1.2 to 2.1 feet 
by 2100. Under RCP 2.6, there is a 1-in-200 change of a 
sea-level rise 4.6 feet, and the worst-case projection is 
reduced to seven feet. 

Sea-level rise will not occur evenly across all regions of 
the globe. Understanding what global mean sea level 
rise will mean for US coasts requires consideration of 
several specific local factors (Kopp et al., 2014). First, 
ocean dynamics and the uneven distribution of ocean 
heat and salinity can cause unevenness in the height of 
the sea surface. The height of the sea surface off the 
coast of New York is about two feet lower than off the 
coast of Bermuda, for example (Yin & Goddard, 2013). 
Climate change can affect these factors, with some 
models suggesting that changes in them could cause 
more than a foot of sea-level rise off New York during 
the 21st century (Yin, Schlesinger, & Stouffer, 2009). 
Second, redistributing mass – including land ice mass – 
on the surface of the Earth affects the Earth’s 
gravitational field, its rotation, and the way the Earth’s 
crust bends underneath loads (Mitrovica et al., 2011). 
Due to changes in the Earth’s gravitational field, sea 
level actually falls near a melting ice sheet: if the 
Greenland ice sheet melts, sea level will fall in Scotland, 
and the northeastern US will experience less than half 
the associated rise in global mean sea level. Third, in 
tectonically active regions such as the western United 

States, sea-level change can occur as a result of uplift or 
subsidence of the land driven by plate tectonics. Finally, 
in regions such as the mid-Atlantic and southeastern US 
coastal plain that rest on sand and other sediments 
rather than bedrock, regional sea-level rise can be 
driven by the compaction of these sediment. Such 
compaction can occur naturally, due to the weight of 
additional sediment deposited on the coastal plain, or 
artificially, due to the withdrawal of water or 
hydrocarbons from the sediments (Miller, Kopp, 
Horton, Browning, & Kemp, 2013).  

As discussed in greater detail in the coastal impacts, sea-
level change will vary around the country (Figure 4.12). 
Both the Atlantic and Pacific coasts of the continental US 
will experience greater-than-global sea-level rise in 
response to West Antarctic melt. The highest rates of 
projected sea-level rise occur in the western Gulf of 
Mexico, due to the effects of hydrocarbon withdrawal, 
groundwater withdrawal and sediment compaction. In 
the mid-Atlantic region, sea-level rise is heightened by 
the ongoing response to the end of the last ice age, 
potential changes in ocean dynamics, and – on the 
coastal plain sediments of the Jersey Shore and 
Delaware, Maryland and Virginia – groundwater 
withdrawal and sediment compaction. In Alaska and, to 
a lesser extent, in the Pacific Northwest, sea-level rise is 
reduced by the changes in the Earth’s gravitational field 
associated with melting Alaskan glaciers. In Hawaii, far 
from all glaciers and ice sheets, sea-level rise associated 
with melting land ice will be greater than the global 
average. 

EXTREME EVENTS 

Projecting changes in the future occurrence of storms 
across the US is subject to much greater uncertainties 
than temperature or sea level rise. Relatively little is 
known about the influence of climate on the frequency 
and severity of winter storms and convective storms like 
tornados and severe thunderstorms. Since 1950, there 
has been no significant change in winter storm 
frequency and intensity across the US, though the 
northeast and northwest coasts have experienced an 
increase in winter storm activity in the period since 1979 
(Vose, Applequist, Menne, Williams, & Thorne, 2012). 
The focus of most study to date has been on 
understanding the relationship between changes in 
climate and Atlantic hurricane activity including 
changes in frequency, intensity, and duration – and is an 
area that is only just beginning to be understood. 

 



Figure 4.11: G
Feet 

 
Figure 4.12: 
Median proje

 

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
18

80

Global mean sea

Local sea level r
cted change (feet)

18
95

19
10

19
25

RCP

RCP

RCP

His
95%

5%

Likely
Range

a level rise 

rise in 2100 
) from 2000 levels

19
25

19
40

19
55

P8.5

P4.5

P2.6

storic

s under RCP 8.5, a

19
55

19
70

19
85

after Kopp et al. (2

20
00

20
15

2014) 

20
30

20
45

US CLI

20
60

20
75

MATE PROJECTIO

 

20
90 210

ONS     32   

 
00



 

33         AMERI

Observatio
activity in 
Figure 4.13
increases 
Power Dis
temperatu
statistical 
anthropog
past few de
local sea su
to more th
difficult to
activity to
Although d
upward tr
Atlantic, m
monitoring
trends (Ve
Vecchi and

Figure 4.13: 
Hurricane act

Source: Emanuel 2
Atlantic hurricane a
Scaled Hadley Cen
the Atlantic.  

Sea surface
expected to
with chang
that influe
2007). Inc

 

ICAN CLIMATE PRO

onal data show 
the Atlantic si

3 below, there 
in hurricane 
sipation Index
res over that
correlation su

genic influence 
ecades; howev
urface temper
han just sea su
o attribute past
o anthropogen
data going back

rend the numb
much of this in

g, making it di
ecchi and Knut
d Knutson 2008

North Atlantic h
tivity index (green

2007. Power dissipation in
activity, combining frequenc
ntre sea surface temperatu

e temperatures
o continue to ri
ges in wind she
ence hurricane
corporating th

OSPECTUS 

a marked incre
ince the 1970s.
is a robust cor
activity, as m

x (PDI), and ri
t time (Eman
uggests the p
on Atlantic hu
er, numerous 
atures and hu

urface tempera
t changes in A

nic factors with
k to 1880 indica
ber of tropica
crease may be 
ifficult to dete
tson 2011; Vill

8). 

hurricane activity
) and sea surface 

dex (PDI), shown in green
cy, intensity, and duration 

ure (in blue) for the main c

s in the North A
ise over the nex
ear and other 

e formation (V
he best under

ease in hurrica
 As illustrated
relation betwe

measured by t
ising sea surfa

nuel, 2007). T
possibility of 
urricanes over t

factors influen
rricanes respo
ature. It remai
tlantic hurrica
h any certain
ate a pronounc
al storms in t

due to improv
rmine long-ter

larini et al. 20

y trends 
temperature (blue

n, is an aggregate measu
of hurricanes in a single in

cyclone development regio

Atlantic basin a
xt century, alo
climate variab

Vecchi and Sod
rstanding of t

ane 
 in 

een 
the 
ace 

The 
an 

the 
nce 
nd 
ins 

ane 
nty. 
ced 
the 
ved 
rm 

011; 

e) 

 

ure of 
ndex. 
ns of 

are 
ong 

les 
den 
the 

comple
studies 
intensit
2013; K
4.5 pa
warmin
lead to
hurrica
frequen
and the
the basi
very in
for onl
the da
conside
hurrica
2008). 
storms 
rainfall
late ce
increas
core. 

Given t
over th
change
two sid
downsc
using th
RCP 4.5

Regard
level ri
enhanc
do strik
In the c
may st
water 
progres
assessm
US coa
frequen
heights
(which 
given y
any giv
Strauss

ex interaction
 project furth
ty of the strong

Knutson et al., 2
athway, found
ng in the Atlan
o a moderate
anes overall 
ncy of very inte
e overall inten
in will likely in

ntense hurrican
ly 15% of cyclo
amage they in
erable, contrib
ane damage ov

According to
and hurricane

l rates under f
entury of app
ses (approxima

the large unce
he course of the
es in storm dist

de cases, one
caled for RCP 
he ensemble m
5 by Knutson e

dless of change
ise under all fu
ce flooding in 
ke (Strauss, Zie
coming decade

till impact low
levels associa

ssively new l
ment of extrem
astal areas as 
ncy of previ
s, pushing onc

currently hav
year) to once-in
ven year) in ma
s, & Zervas, 201

n among the
er increases in
gest Atlantic h
2013).  One stud
d that altho
ntic basin over
e reduction t

(of approxi
ense hurricane
nsity of Atlant

ncrease (Knutso
nes are relativ

ones that make
nflict on coas
buting over h
ver the past ce
o Knutson et 
es are also exp
future warmin
roximately 10

ately 20 to 30%)

ertainties in ch
e 21st century, w
tribution in ou
e using the 

8.5 by Emanu
mean of the mo

t al. (2013). 

es in storm ac
uture concentr
coastal commu

emlinski, Weis
es, even small 

w-lying coastal
ated with pa
evels. This w

me storm event
they see a s

iously rare s
ce-in-a-century
ve a 1% chance 

n-a-decade lev
any areas by m
12).  

ese factors, s
n the frequenc

hurricanes (Em
dy, based on th
ugh anthropo

r the 21st centur
ropical storm

imately 20%)
es (categories 4 
tic hurricanes 
on et al., 2013). 
vely rare (accou
e landfall in th
stal communit

half of historic
entury (Pielke 

al. (2013), tr
ected to have h

ng, with increa
0% and even 
) near the hurri

hanges in hurr
we do not assum
ur base case. W
six climate m

uel (2013), the
odels downscal

tivity, expecte
ration pathway
unities when s
s, & Overpeck,
changes in sea

l areas as they
ast storm sur

will change th
ts for the majo
substantially h
storm-driven 
y level coastal 

of happening 
vels (a 10% cha

mid-century (Te

several 
cy and 

manuel, 
he RCP 
ogenic 
ry will 

ms and 
, the 
and 5) 
across 
While 

unting 
he US), 

ties is 
cal US 
et al., 

ropical 
higher 

ases by 
larger 

icane’s 

ricanes 
me any 
We run 
models 
e other 
led for 

ed sea-
ys will 
storms 
 2012). 
a level 

y push 
rge to 

he risk 
ority of 

higher 
water 

floods 
in any 

ance in 
ebaldi, 



US CLIMATE PROJECTIONS     34   

 

 

  



 

 

 

 

 

 

 

 

 
 
 
 
Part II 

Assessing the Impact of 
America’s Changing Climate 
 
  



AN EVIDENCED-BASED APPROACH         36  

CHAPTER 5 

An Evidence-Based Approach 

How do we assess the impact of the potential changes in 
temperature, precipitation, sea-level, and storm 
patterns described in the previous chapter on our 
homes, businesses, and communities? Anticipating 
climate impacts is in many ways even more analytically 
challenging than projecting climatic changes, as human 
systems are not constrained by laws as rigid as those of 
physics and chemistry that shape the natural world. Yet, 
by piecing together evidence from the distant and not-
so-distant past, including what we have experienced in 
our own lifetimes, we can begin to identify common 
patterns in how populations respond to climatic 
conditions, and then use this information to assess the 
impact of climate change, both positive and negative, in 
the US in the years ahead.  

PALEOCLIMATIC EVIDENCE 

Hints of the physical effects of climate change and 
suggestions of their possible impact on humans and 
ecosystems can be found buried deep in the geological 
record. As discussed in Chapter 3, the greenhouse gas 
concentrations and temperatures projected for the 21st 
century have never before been experienced by human 
civilization, but they have occurred in our planet’s past. 

The last time global mean temperature was warmer than 
today was during the Last Interglacial stage, some 125 
thousand years ago. Temperatures during that period 
may have been as much as 2.5°F warmer than at present 
(Turney and Jones 2010), comparable to levels expected 
by mid-century under all scenarios. The geological 
record shows that global mean sea-level during this 
interval was 20 to 30 feet higher than today (Dutton and 
Lambeck 2012; Kopp et al. 2009) – a magnitude of 
change that will not be realized in this century, but 
could occur over the coming centuries in response to 
warming. Such dramatic sea-level rise would swamp 
nearly all of Miami, Norfolk, New Orleans, Savannah, 
and Charleston. 

The rate at which we are putting greenhouse gases into 
the atmosphere has no known precedent in the 
geological record before at least 56 million years ago. At 
that distant time, within a period that may have been as 
short as decade or as long as a few millennia, the 
Paleocene-Eocene Thermal Maximum (PETM) began 
with a massive release of carbon dioxide and methane 
that caused global mean temperatures to rise by 9 to 

14°F, on top of a baseline already several degrees 
warmer than today (Wright and Schaller 2013; Zachos, 
Dickens, and Zeebe 2008; McInerney and Wing 2011). 
While there were no humans around to experience it, 
other animals did. The warming – comparable to that 
possible in the 22nd century under RCP 8.5 – lasted tens 
of thousands of years and led to dramatic ecological 
shifts, including the dwarfing of land mammals as a 
result of heat stress (Gingerich 2006; Sherwood and 
Huber 2010).  

In more recent millennia, human populations have been 
subject to long-term climatic shifts lasting decades to 
centuries. By linking paleoclimatic reconstructions to 
archeological data, researchers have amassed a growing 
body of evidence that these historical shifts are 
systematically related to the migration, destabilization, 
or collapse of these pre-modern societies (Hsiang, 
Burke, and Miguel 2013). For example, abrupt drying or 
cooling events have been linked to the collapse of 
populations in ancient Mesopotamia, Saharan Africa, 
Norway, Peru, Iceland, and the United States (Ortloff 
and Kolata 1993; Cullen et al. 2000; Kuper and Kröpelin 
2006; Patterson et al. 2010; D’Anjou et al. 2012; Kelly et 
al. 2013).  The iconic collapse of the Mayan civilization 
has been linked to extreme droughts superimposed on 
sustained multi-century regional drying (Haug et al. 
2003; Kennett et al. 2012), the fifteenth century collapse 
of the Angkor city-state in modern day Cambodia 
occurred during sustained megadroughts (Buckley et al. 
2010) and the collapse of almost all Chinese dynasties 
coincided with periods of sustained regional drying 
(Zhang et al. 2006; Yancheva et al. 2007).  

Economic development and technological advances 
(like air conditioning) have, of course, made humans of 
today more resilient to climatic changes than humans in 
the past, so we do not think it is appropriate to use 
paleoclimatic evidence in contemporary climate risk 
assessment. These historical examples demonstrate how 
ecologically and economically disruptive climatic 
change has been in the past, even though we have 
archeological evidence that these past societies 
attempted to adapt to the climatic changes they faced 
using innovative technologies. Thus these anecdotes, if 
nothing else, motivate us to carefully consider low-
probability but high-cost outcomes. 
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EMPIRICAL ESTIMATES 

Another strategy for understanding climate’s potential 
impact on human and natural systems – what we’ll call 
the empirical approach – is based on evidence of actual 
impacts and damages experienced in the not-so-distant 
past. Although this approach also uses the historic 
record to assess future risks, rather than rely on “proxy” 
data buried in the geological record, it draws on data 
recorded and analyzed during modern times. There has 
been an explosion of econometric research in recent 
years examining the relationship between temperature 
and precipitation, and current human and economic 
activity. When combined with the high-resolution 
output from global climate models, this research 
enables a granular assessment of the risks particular 
regions of the country or sectors of the economy face in 
the years ahead. The SEAGLAS approach employs these 
empirical findings for impact categories with a 
sufficiently robust body of econometric research. This 
includes: 

1. Agriculture: The impact of projected changes 
in temperature and precipitation on maize, 
wheat, soy and cotton yields; 

2. Labor: The change in number of hours 
employees in high-risk (construction, utilities, 
mining, and other) and low risk (indoor 
services) sectors of the economy work in 
response to projected temperature change; 

3. Health: Changes in all-cause mortality for 
different age groups resulting from projected 
changes in temperature; 

4. Crime: The sensitivity of violent and property 
crime rates to projected temperature and 
precipitation; and 

5. Energy: The impact of temperature change on 
US electricity demand. 

When trying to use data from the real world to 
understand the influence of climate on society, the key 
challenge is separating the influence of the climate from 
other factors.  For example, if we tried to study the effect 
of warmth on mortality by comparing a warm location 
like Florida to cooler location like Minnesota, it might 
look like Florida had a higher mortality rate due to 
climate alone, but there are many other factors that 
make Florida different from Minnesota—such as the 
fact that the population of Florida tends to be older on 
average. 

To get at these questions more reliably, we could 
imagine an ideal (but impossible) scientific experiment 
where we take two populations that are identical and 
assign one to be a “treatment” group that is exposed to 
climate change and one a “control” group that is 
exposed to a pre-industrial climate. If we then observed 
how outcomes, such as mortality or productivity, 
changed between these two groups, we could be 
confident that the change in the climate caused the 
change in these outcomes.  

Because we cannot do this ideal experiment, 
econometricians have looked for situations where 
natural conditions approximate this experiment, i.e., 
“natural experiments”. In these situations, individuals 
or populations that are extremely similar to one another 
are assigned to slightly different climates due to random 
circumstances, and we observe how those small changes 
in climate are then reflected in economically important 
outcomes. To ensure that “control” and “treatment” 
populations are extremely similar to one another, the 
strongest studies compare a single population to itself at 
different moments in time when it is exposed to 
different climatic conditions. In this way, we know that 
most or all other important factors, such as local 
geography, politics, demographics etc. are the same and 
that changes we observe are driven by the observed 
random changes in the climate. This approach allows 
researchers to construct “dose-response functions” (a 
term adopted from medicine) which describes a 
mathematical relationship between the “dose” of a 
climate variable that a population experiences and the 
corresponding “response” that they exhibit in terms of 
economic outcomes.  

In developing empirically-based dose-response 
functions, we rely only on studies that account for 
temporal patterns that are often important factors in the 
outcomes we observe and might be correlated with 
small changes in the climate. For example, there is 
seasonality in crime rates and mortality, and these 
seasonal patterns may differ by locality, so it is critical 
that seasonality is accounted for because it will also be 
correlated with climatic conditions. Thus, the studies we 
rely on only compare how an outcome for a specific 
location, at a specific time of year, compares to that 
same outcome at that same location and time under 
slightly different climatic conditions. For example, a 
study might examine the number of minutes an average 
individual works on a Tuesday in May in Rockland 
County on a day that is 80°F compared to a day that is 
70°F.  
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The climate of a location is neither the conditions on a 
specific day nor the average conditions throughout the 
year, but rather the distribution of conditions 
throughout the year. Two locations might have the same 
annual average temperature, but while one location 
may have very little daily or seasonal variation around 
that temperature (e.g., San Francisco), the other 
location may have tremendous daily and seasonal 
variation (e.g., New York).  Therefore, we rely primarily 
on studies that measure responses to a complete 
distribution of daily temperature and rainfall measures. 
By decomposing outcomes as a response to the full 
distribution of daily temperatures that are experienced, 
we can more accurately characterize how populations 
will respond to changes in those distributions. For 
example, in the future some locations might see higher 
rainfall variance (more intense storms and more dry 
periods) but little shift in their average conditions. 

Some critics suggest that considering the distribution of 
daily conditions conflates “weather” or “climate 
variability” with “climate.” Often, these critics argue in 
favor of more simplistic approaches where outcomes are 
simply correlated with average conditions, but this 
alternative ignores the fact that individuals experience 
their local climate one day at a time, making decisions 
about their actions based on these daily events that they 
experience.  Few individuals make choices about their 
daily activities based on what they expect annual mean 
temperature to be for the coming year, and in fact most 
individuals do not even know the average climatic 
conditions of the location they live in. Often individuals 
will adapt to their local climate based on what they 
perceive the distribution of daily conditions to be; for 
example, Chicagoans buy winter coats because they 
expect some days in the winter to be cold. It is therefore 
essential that we consider daily distributions to model 
these adaptive decisions. While it is true that Chicagoans 
may have less need of their coats if average Chicago 
temperatures increase, it is unlikely that winter coats 
will be discarded entirely so long as there is a reasonable 
likelihood that some days in a year will be below 
freezing. Thus, information on the distribution of daily 
outcomes is more informative for adaptive behavior 
than averages.  

For additional reasons, understanding responses to 
daily climatic conditions is a particularly powerful 
approach for economic policy analysis. First, it enables 
us to carefully identify nonlinear responses that have 
proven to be critical in these sorts of analyses. In many 
cases, such as agricultural yields, variations in 
temperature or rainfall do not have a substantial effect 
on outcomes until sufficiently extreme conditions are 

reached, at which point outcomes may respond 
dramatically. Disentangling these nonlinearities is 
essential to our analysis, since many of the important 
changes in the climate will occur at these extremes.   

Second, by examining how different populations 
respond to the same daily conditions, we can begin to 
understand how populations adapt to climatic 
conditions in the long run. We often are able to recover 
how outcomes respond to hot days in regions that are 
usually hot and in regions that are usually cool.  Because 
populations in hot regions may have adapted to their 
climate, for example, through infrastructure 
investments or behavior changes, we will be able to 
observe the effectiveness of this adaptation by 
comparing how the two populations respond to 
physically identical events, e.g. a 90°F day. In some 
cases, we are even able to study how populations at a 
single location change their response to the climate over 
time—allowing us to observe how outcomes might 
change (or fail to change) as new technology is 
developed and adopted (or not).  

Finally, by identifying the effect of specific daily events 
on outcomes, we are able to naturally link empirically-
derived responses to climate models that simulate 
future environmental conditions on a daily basis. 
Because we are able to compute the daily average, 
minimum, and maximum temperature, as well as 
rainfall, at each location throughout the country on a 
daily basis for each run of a suite of climate models, it is 
straightforward to estimate how outcomes at each 
location will be expected to respond to any of these 
future scenarios.  

For each scenario that we model using empirical dose-
response functions, we project changes in future 
outcomes relative to a future in which climate 
conditions are unchanged relative to those of 2012.  
Although it is common practice to compare future 
temperature changes to a pre-industrial baseline, 
climate change has been underway for many decades. 
We therefore focus our economic risk assessment on the 
ways in which future climate change may alter our 
economic future relative to the economic reality that we 
know today, which has already been partially influenced 
by the climate changes that have already occurred. This 
idea is illustrated in Figure 5.1, which shows how the 
probability distribution of potential future outcomes in 
an example sector (low-risk labor supply) changes in 
RCP 8.5 relative to historical impacts estimated using 
the same method. Throughout this report, we present 
impacts relative to recent conditions, when recent 
conditions may already be somewhat different from 
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the Energy Information Administration’s Annual 
Energy Outlook, the most commonly used forecast of 
US energy supply and demand. We model changes in 
regional residential and commercial electricity, natural 
gas, oil, and coal demand that would likely occur in 
potential climate futures (comparing modeled results to 
empirical estimates where possible), and what that 
implies for energy prices and the composition of energy 
supply.   

Coastal communities 

The insurance and finance industries use sophisticated 
and extremely detailed models of hurricanes and other 
storm activity, and their impact on coastal property and 
infrastructure. Risk Management Solutions, Inc. (RMS) 
is the world’s leading developer of hurricane and other 
catastrophic risk models and a partner in this 
assessment. RMS’s North Atlantic Hurricane Model 
combines extensive empirical evidence of past hurricane 
activity with a wind and surge model that simulate the 
wind and flooding damage likely to result from a given 
storm. We use RMS’s building-level exposure database 
to identify property at risk from mean local sea-level 
rise, and the North Atlantic Hurricane Model to assess 
the increase in hurricane and nor’easter flood damage 
likely to occur as result of that sea-level rise. Using input 
from the leading cyclogenesis models, we also explore 
how changes in hurricane activity as a result of climate 
change could shape wind and flood damage in the 
future.    

OTHER IMPACTS 

There are many potential climate impacts, beyond those 
listed above, that are of profound importance to the 

functioning of the US economy and the lives of most 
Americans, among them impacts to national security, 
tourism, wildfires, water resources, and ecosystems. To 
date there is not yet a sufficient body of US-based 
econometric research from which to develop an 
econometrically-derived damage function or an 
empirically-based sectoral model capable of robustly 
analyzing potential climate impacts in these areas. That 
does not, however, mean these impacts should be 
ignored. Indeed, the impacts that are hardest to quantify 
could end up being the most costly. In Part 4 of this 
report, we describe the universe of potential climate 
impacts not captured in this assessment. More 
importantly, we provide a framework and a platform for 
quantifying these impacts in the future as research 
improves.        

ADAPTATION 

An important question in any climate impact 
assessment is the extent to which businesses, 
households, investors and policymakers will be able to 
adapt to potential changes in temperature, 
precipitation, sea-levels, and storm activity. Will coastal 
communities build walls to guard against rising seas? 
Will farmers develop and deploy heat and drought-
resistant seeds? As a principal objective of our research 
is to give decision-makers the information they need to 
make those long-term adaptation investments, we 
exclude them from our baseline assessment. In Part V of 
this report, we explore the extent to which both 
adaptation investments and global greenhouse gas 
emission reductions can shield the US economy from 
future climate risks. 
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CHAPTER 6 

Agriculture

Agriculture has long been an economic and cultural 
foundation for the United States. Known for its 
historical boom and bust cycles, agricultural 
productivity and incomes are often influenced by and in 
turn influence the US economy as a whole (Landon-
Lane, Rockoff, and Steckel 2011; Feng, Oppenheimer, 
and Schlenker 2013; Hornbeck and Keskin 2012). In 
agriculture-dependent regions, the extreme drought 
and environmental mismanagement of the Dust Bowl in 
the early 1930s exacerbated the already dire economic 
conditions of the Great Depression (Egan 2006; 
Hornbeck 2012). Climate and weather variability have 
played roles to varying degrees in the cycles of US 
agriculture. Extremes in local and regional weather 
patterns and climate variability have disrupted 
agricultural production in the past.  American farmers 
have developed production practices and strategies 
appropriate for their local conditions, taking into 
account long-term historical trends as well as the risks 
of short-term variability.  Despite the flexibility of the 
US agricultural system, and advances in agricultural 
practices and technologies, US production and prices 
remain highly dependent on climate, making the sector 
particularly vulnerable to both gradual climate change 
and extreme climate events.  

The agricultural sector’s central role in rural and local 
economies, and the national economy, as well as its 
importance for human health and security, make 
understanding the economic risks posed by climate 
change important not only for agricultural states, but 
for farmer livelihoods, rural communities, and the US 
economy as a whole. The US produced over $470 billion 
in agricultural commodities in 2012. Although it has 
traditionally contributed less than 2% of US GDP, it is a 
much more significant source of income for many 
Midwestern and Great Plains states like North Dakota, 
South Dakota, Nebraska, and Iowa. Although a small 
share of California’s overall economy, the state’s 
agricultural contribution is significant, producing over 
10% of the value of all US agricultural commodities last 
year, and nearly half of US-grown fruits, nuts, and 
vegetables. 

American farmers, ranchers and the agriculture sector 
as a whole are familiar with making decisions in the face 
of uncertainty, which arise not just due to variability in 
weather patterns, but also from fluctuations in a whole 
host of other factors including trade dynamics, shifts in 

market demands and consumer preferences, evolution 
of agricultural technologies, and ever-changing state 
and federal policies. Risk-based decision-making must 
take each of these factors into account. Managing the 
risks associated with climate change will require the 
integration of the potential risks of climate on 
agricultural productivity and prices into decision-
making by those involved in the full value chain of 
agricultural production.  

In assessing the risks that climate change poses to 
agricultural productivity, there are a whole host of 
variables to consider including temperature; 
precipitation; availability of water resources for 
irrigation; CO2 concentrations; ozone and other 
pollutant concentrations; and climate-driven changes in 
pests, weeds, and diseases. The relative importance of 
each of these variables will vary based on the region and 
the crop or livestock type. In this analysis we focus on 
the impact of changing temperatures and precipitation 
on commercial crop yields (including grains, cotton, 
and oilseeds) in areas where they are currently grown in 
the US. We discuss other impacts in more detail in the 
sections that follow. 

BACKGROUND 

On the whole, agricultural yields have increased across 
the US during the last quarter of a century due primarily 
to dramatic improvements in agricultural techniques 
and secondarily to increases in temperature and 
precipitation. Studies isolating climate-related impacts 
observed to date have shown that, on average, crops 
were more affected by changes in temperature than by 
precipitation, though temperature played a greater role 
in increased yields in central and northern regions, with 
higher precipitation contributing in the southern US 
(Sakurai, Iizumi, and Yokozawa 2011). However, in the 
past 15 years there has been a marked increase in crop 
losses attributed to climate events such as drought, 
extreme heat, and storms, with instability between 
years creating significant negative economic effects 
(Hatfield, Cruse, and Tomer 2013a). Understanding the 
potential risks to the highly varied agricultural regions 
across the US requires an assessment of both the 
changes in average climate variables, and also changes 
in the intensity and frequency of extremes. 
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Historical changes in temperature have varied both 
across regions of the US, with more significant changes 
in the Midwest and Southwest, and by season, with 
greater winter and spring warming. Overall, warming 
has lengthened the growing season by 4 to 16 days since 
1970 (US EPA 2012a). Final spring frost is now occurring 
earlier than at any point since 1895, and the first fall 
frosts are arriving later (US EPA 2012b). Changes in the 
length of the growing season can have both positive and 
negative effects, as they may allow farmers to have 
multiple harvests from the same plot. However, they 
may preclude certain crops, lead to significant changes 
in water requirements, or disrupt normal ecosystem 
functions such as the timing of pollination and natural 
protections against weeds and invasive species. 

Rising temperatures are expected to further lengthen 
growing season across most of the US (by as much as a 
month or two over the course of the century) and reduce 
the number of frost days, particularly in the West 
(Walthall et al. 2013). While longer growing seasons may 
be a boon to agriculture in some regions, the overall 
impact on yields will also be influenced by associated 
increases in exposure to warmer temperatures over 
greater time spans. While warmer average temperatures 
and increased precipitation over the past few decades 
have contributed to increased yields, this trend is 
unlikely to continue as temperatures rise across much of 
the US. Crop species display temperature thresholds 
that define the upper and lower boundaries for growth 
and the current distribution of crops across the US 
corresponds to temperatures that match their 
thresholds (Hatfield et al. 2014). The impacts on yield 
are non-linear as temperatures reach and then exceed a 
crop’s threshold. When paired with declining 
precipitation and increased evaporation in areas like the 
Southwest and southern Great Plains, warmer 
temperatures result in even greater declines in yield. In 
most regions of the US, optimum temperatures have 
been reached for dominant crops, which means that 
continued warming would reverse historic gains from 
warmer temperatures and instead lead to reduced yields 
over time. As temperatures increase over this century, 
crop production areas may shift to follow the 
temperature range for optimal growth. 

Rising temperatures and shifting precipitation patterns 
will also affect productivity through altered water 
requirements and water-use efficiency of most crops. 
The differential effect of these various factors will lead 
to regional production effects that alter regional 
competitiveness, potentially altering the agricultural 
landscape significantly by mid-century. 

Changes in average conditions will be compounded by 
changes in extremes on a daily, monthly, and seasonal 
scale (Schlenker and Roberts 2009), as well as changing 
intensity and frequency of extreme weather events 
(IPCC SREX, 2012). Many extreme weather events of the 
past decade are outside of the realm of experience for 
recent generations, and as we’ve seen, these events can 
have devastating effects. The drought that plagued 
nearly two-thirds of the country for much of 2012 was 
the most extensive to affect the US since the 1930s, 
resulting in widespread crop failure and other impacts 
estimated at $30 billion, with states in the US heartland – 
Nebraska, Iowa, Kansas, South Dakota – experiencing 
the greatest impacts as maize and soybean yields were 
severely reduced, dealing a serious blow to the states’ 
economies (NOAA 2013). Temperature fluctuations 
need not be long in duration to cause widespread 
destruction. In 2008, heavy rain and flooding, including 
up to 16 inches in parts of Iowa, caused significant 
agricultural losses and property damage in the Midwest 
totaling more than $16 billion (NOAA 2013). 

Changing frequency, severity, and length of dry spells 
and sustained drought can significantly reduce crop 
yields. At their most extreme, crop death and reduced 
productivity due to drought can result in billions of 
dollars of damage; the 1988 drought that hit the central 
and eastern US resulted in severe losses to agriculture 
and related industries, totaling nearly $80 billion 
(NOAA 2013). As the IPCC notes, it is not possible to 
attribute historic changes in drought frequency to 
anthropogenic climate change (Romero-Lankao et al. 
2014a). However, observations of emerging drought 
trends are consistent with projections of an increase in 
areas experiencing droughts in several regions of the US 
(Walthall et al. 2013). There has been no overall trend in 
the extent of drought conditions in the continental US, 
although more widespread drought conditions in the 
Southwest have been observed since the beginning of 
the 20th century (Georgakakos et al. 2014; M.P. Hoerling 
et al. 2012). Summer droughts are projected to become 
more intense in most of the continental US, with longer-
term droughts projected to increase in the Southwest, 
southern Great Plains, and parts of the Southeast 
(Georgakakos et al. 2014; Walsh et al. 2014; Cayan et al. 
2010; Dai 2012; Hoerling et al. 2012; Wehner et al. 2011).  

Excess precipitation can be as damaging as too little 
precipitation, as it can contribute to flooding, erosion, 
and decreased soil quality. Surface runoff can deplete 
nutrients, degrading critical agricultural soils, and 
contribute to soil loss, which reduces crop yields and the 
long-term capacity of agricultural lands to support 
crops. In some critical producing states like Iowa, there 
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have been large increases in days with extremely heavy 
rainfall even though total annual precipitation has 
remained steady (J. Hatfield et al. 2013). Greater spring 
precipitation in the past two decades has decreased the 
number of days for agricultural field operations by more 
than three days when compared to the previous two 
decades, putting pressure on spring planting operations 
and increasing the risk of planting on soils that are too 
wet, reducing crop yields, and threatening the ability of 
soils to support crops in the long-term (Hatfield, Cruse, 
and Tomer 2013b). Greater rainfall quantities and 
intensity across much of the northern US are expected 
to contribute to increased soil erosion (Pruski and 
Nearing 2002). 

The projected higher incidence of heat, drought, and 
storms in some regions will influence agricultural 
productivity. The degree of vulnerability will vary by 
region and depend both on the severity of events as well 
as the adaptive capacity. Due to projected increases in 
extreme heat, drought, and storms, parts of the 
Northeast and Southeast have been identified as 
“vulnerability hotspots” for corn and wheat production 
by 2045, based on expected exposure and adaptive 
capacity, with increased vulnerability past mid-century 
(Romero-Lankao et al. 2014). Livestock production is 
also vulnerable to temperature stresses, as animals have 
limited ability to cope with temperature extremes and 
prolonged exposure can lead to reduced productivity 
and excessive mortality. These impacts increase the 
production cost associated with all animal products, 
including meat, eggs, and milk. 

Extremes that last only short periods are still often 
critical to productivity because annual agricultural 
output may be driven largely by conditions during 
narrow windows of time when crops and livestock 
undergo important developments. The impact of 
variability in precipitation and water resource 
availability as well as temperature extremes will depend 
on the timing of such events in relation to these critical 
periods. Warmer spring temperatures within a specific 
range may accelerate crop development, but extremely 
high temperatures during the pollination or critical 
flowering period can reduce grain or seed production 
and even increase risk of total crop failure (Walthall et 
al. 2012). Warmer nighttime temperatures during the 
critical grain, fiber, or fruit production period will also 
result in lower productivity and reduced quality. Such 
effects were already noticeable in 2010 and 2012, as high 
nighttime temperatures across the Corn Belt were 
responsible for reduced maize yields. With projected 
increases in warm nights, yield reductions may become 
more prevalent (Walthall et al. 2012). Fewer days with 

cold temperatures can also have significant effects, 
reducing the frequency of injury from chilling in some 
cases, while in others yields may be negatively impacted 
as chilling requirements for some crops are not satisfied. 
Many fruit and nut tree types must be exposed winter 
chill to generate economically sufficient yields. The 
state of California is home to 1.2 million hectares of 
chill-dependent orchards, supporting an estimated $8.7 
billion industry. With warmer temperatures expected 
by the middle to the end of this century, one study 
concludes that conditions will not be sufficient to 
support some of California’s primary fruit and nut tree 
crops (Luedeling, Zhang, and Girvetz 2009). 

Though the effect is less well understood than 
temperature- and precipitation-related impacts, rising 
CO2 concentrations are expected to affect plant growth 
and therefore agricultural yields. Elevated atmospheric 
CO2 concentrations stimulate photosynthesis and plant 
growth, with some plant species (e.g., C3 crops such as 
wheat, cotton, soybean) exhibiting a greater response 
than others (e.g., C4 crops including maize) (Leakey 
2009). Increased atmospheric CO2 since pre-industrial 
times has enhanced water use efficiency and yields, 
especially for C3 crops, although these benefits have 
contributed only minimally to overall yield trends 
(Amthor 2001; McGrath and Lobell 2013).  Experiments 
and modeling indicate that the impact of CO2 on yields 
depends highly on crop species, and even sub-species, as 
well as on variables like temperature, water supply, and 
nutrient supply. The interactions between CO2 
concentrations and these variables are non-linear and 
difficult to predict (Porter et al. 2014). Elevated CO2 
concentrations can also increase weed growth rates and 
alter species distribution, and there is some indication 
that elevated CO2 may contribute to a reduction in the 
effectiveness of some herbicides (Archambault 2007).  

An important consideration for determining the 
impacts of climate change on US agriculture is the 
degree to which farmers, ranchers, and the industry as a 
whole can adapt to changes over time.  Agriculture is a 
complex system and has proved to be extremely adept at 
responding to changes over the last 150 years, though 
these adaptations were made during a period of relative 
climatic stability. Producers have continually adapted 
management practices in response to climate variability 
and change by using longer-maturing crop varieties, 
developing new cultivars, planting earlier, introducing 
irrigation, or changing the type of crop altogether (A. 
Olmstead and Rhode 1993; Olmstead and Rhode 2011).  

However, the effectiveness of strategies used in the past 
may not be indicative for the types of changes expected 
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in the future. Technological improvements, for 
example, improve yields under normal conditions but 
may not protect harvests from extremes expected in the 
future (Schlenker, Roberts, and Lobell 2013), such as 
increased drought in the Southwest and southern Great 
Plains, or increased flooding in the Midwest and 
Northeast. Catastrophic crop or livestock losses are 
likely to affect the financial viability of production 
enterprises in a fundamentally different way than 
moderate losses over longer periods of time. In 
addition, many adaptive actions may be costly (e.g., 
requiring increased energy consumption) or 
constrained by climate change (e.g., increasing 
groundwater use may not be an option in areas with 
declining precipitation) (Romero-Lankao et al. 2014b). 
Decisions about future adaptive action will need to take 
into account the potential risks of climate-related 
damages and the costs of adaptation, as well as complex 
changes in domestic and international markets and 
policies, all of which will determine the cost of doing 
business.   

OUR APPROACH 

To quantify the potential impacts of climate change on 
agricultural production, we rely on statistical studies 
that isolate the effect of temperature and rainfall on 
crop yields in the United States. Because there are strong 
cross-county patterns in crop yields, as well as strong 
trends over time (that may differ by location), we rely 
on studies that account for these patterns when 
measuring the effects of climate variables. Schlenker 
and Roberts (2009) provide nationally representative 
estimates that satisfy these criteria, which we use to 
construct quantitative projections. They examine 
county-level agricultural production during 1950-2005 
and identify the incremental influence of temperature 
and rainfall variability on maize, soy, and cotton yields 
using data collected by the US Department of 
Agriculture’s National Agricultural Statistical Service.  
While they focus their analysis on the eastern United 
States, they also provide parallel results for the western 
United States, which we also utilize. To estimate yield 
impacts on wheat, we apply a similar approach to yield 
data from the same source (see Technical Appendix II). 
We also consider how projections change when future 
adaptation is modeled explicitly by linking the results 
from Schlenker and Roberts to an analysis by Burke and 
Emerick (2013), who employ similar econometric 
strategies to measure rates of agricultural adaptation in 
the US (see Part V).  
 
Figure 6.1 displays the temperature impact function for 
maize yield. In general, rising daily temperatures 

increase yields slightly until a breakpoint is reached, 
after which higher daily temperatures dramatically 
reduce yields. For maize, soy, and cotton these 
breakpoints occur respectively at 84°F, 86°F and 90°F.   
 
Figure 6.1: Impact Function – Temperature and maize yields 
Observed change in maize yields (%) vs. daily temperature (°F) 

 
 
Figure 6.2: Impact Function – Precipitation and maize yields 
Observed change in maize yields (%) vs. seasonal precipitation (in.) 

 
This non-linear response has been broadly replicated in 
multiple studies that are more local in character and is 
consistent with quadratic temperature responses in 
studies that use seasonal mean temperature.  Seasonal 
precipitation has a nonlinear inverse-U shaped 
relationship with yields (see Figure 6.2), again broadly 
consistent with local studies.  

Schlenker and Roberts assess whether there is evidence 
that farmers adapt by examining whether there are 
changes in the sensitivity of crop yields to temperature 
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over time.  They find that the relationship between heat 
and yields has changed slightly since 1950, providing 
only weak evidence of adaptation. This finding is 
consistent with a more detailed analysis on the 
evolution of heat tolerance in maize in Indiana counties 
during 1901-2005 (Roberts and Schlenker 2011) and 
analysis of how yields in the eastern United States have 
responded to long-term trends in temperatures during 
1950-2010 (Burke and Emerick 2013). Thus, while there 
is evidence that farmers are adapting over time, the 
evidence indicates that this process is extremely slow. 

Schlenker and Roberts also look for evidence of 
adaptation by examining if counties that are hotter on 

average (in the Southeast) or drier and/or hotter on 
average (in the West) have a different sensitivity to 
climate.  They find strong evidence that crop yields in 
counties in the South or in the West are less sensitive to 
temperature, suggesting that these locations have 
adapted somewhat to their local climatic conditions, 
probably through the adoption of heat-tolerant 
cultivars and/or irrigation (Butler & Huybers 2013). 
These adaptations come at a cost, such as lower average 
yields (Schlenker, Roberts and Lobell, 2013), but they 
might be more consistently adopted in the future in the 
Midwest and East if rising temperatures make them 
cost-effective strategies in these regions.

 

Table 6.1: Impacts of future climate change to US agricultural yields with CO2 fertilization 
Percentage change from 2012 production levels for maize, wheat, oilseeds, and cotton 

Crop Type 

RCP 8.5 RCP 4.5 RCP 2.6 

1 in 20 
less than 

Likely  
1 in 20 
greater 

than 

1 in 20  
less than 

Likely  
1 in 20 
greater 

than 

1 in 20 
less than 

Likely  
1 in 20 
greater 

than 

% % % % % % % % % 

Maize          
2080-2099 -84 -73 to -18 -8.1 -64 -44 to -2.8 1.9 -27 -19 to 0.4 2.8 

2040-2059 -39 -30 to -2.3 2.8 -34 -25 to 0.1 3.6 -23 -18 to -1.0 1.3 

2020-2039 -19 -15 to 4.3 12 -19 -15 to 5.2 9.7 -21 -14 to -3.1 0.4 

Wheat          
2080-2099 8.6 19 to 42 50 -1.1 4.7 to 15 17 -2.6 -0.9 to 4.4 5.3 

2040-2059 3.0 6.0 to 14 17 1.0 3.7 to 10 12 -0.8 0.6 to 5.1 6.2 

2020-2039 0.6 1.8 to 5.6 8.3 -0.3 1.2 to 6.5 7.7 -0.9 0.2 to 4.4 5.3 

Oilseeds          
2080-2099 -74 -56 to 18 29 -55 -30 to 8.6 16 -18 -13 to 6.3 8.4 

2040-2059 -23 -16 to 11 17 -24 -15 to 7.6 14 -15 -8.8 to 5.8 9.9 

2020-2039 -9.7 -6.6 to 9.9 15 -15 -10 to 6.9 13 -16 -7.4 to 3.8 6.8 
Cotton          
2080-2099 -74 -52 to 16 31 -38 -18 to 9.8 18 -17 -9 to 3.0 5.7 

2040-2059 -20 -12 to 13 18 -15 -7.3 to 8.0 13 -15 -7.3 to 4.9 8.6 

2020-2039 -7.7 -3.6 to 5.6 7.8 -8.9 -4.8 to 5.8 9.2 -11 -5.4 to 4.3 6.3 
 
Schlenker and Roberts are unable to account for the 
effect that rising CO2 concentrations have on 
agricultural yields because gradual trends in CO2 cannot 
be statistically distinguished from other trends (e.g. 
technological progress). Thus, to account for increasing 
CO2, we must draw on a body of literature that combines 
field experiments in carbon dioxide enrichment with 
simple models. We obtain estimates for the incremental 
effect that CO2 enrichment has on yields for different 
crops from McGrath and Lobell (2013), who collect 

results from multiple field experiments and use these 
results to construct estimates for the effect of CO2 
fertilization on US crops.  

To assess potential future impacts of climate change on 
national agricultural production, we simulate changes 
in production of major crop varieties (maize, wheat, 
soybeans, and cotton) under different climate scenarios 
relative to a future in which the climate does not drive 
economic changes after 2012—although other social and 
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economic trends are assumed to continue.  Within each 
scenario we account for uncertainty in climate models, 
weather, and statistical results, causing our projection 
to be a probability distribution of potential outcomes at 
each moment in time.  

When we consider the potential impact of changes in 
temperature, precipitation, and CO2 fertilization on 
national yields, we find that the value of total 
production generally declines as early as 2020-2039 —
even under RCP 2.6 — although the range of likely 
outcomes spans positive values through 2099 under all 
scenarios (Table 6.1). Under RCP 8.5, total production is 
likely to change by -14% to +7% by mid-century and -42% 
to +12% by late-century, with a 1-in-20 chance that late-
century changes are below -56% or exceed +19% of 
production. Impacts on maize are generally negative 
throughout all periods because maize is strongly heat 
sensitive and benefits least from CO2 fertilization, while 
impacts on wheat are overwhelmingly positive because 
wheat benefits more from CO2 fertilization than it is 
harmed by heat. Impacts on cotton and soybeans are 
about as likely to be positive as negative until late-
century in RCP 8.5, when they become generally 
negative. The likely ranges for all crops are shown in 
Table 6.1. 

Projected changes are smaller in magnitude for RCP 4.5 
and RCP 2.6, and the distribution of projected changes is 
more skewed towards negative yield changes relative to 
RCP 8.5. The likely range of late-century production 
changes for total production spans -25% to +6% for RCP 
4.5 and -11% to +3% for RCP 2.6. The skewed distribution 
is most apparent when considering 1-in-20 outcomes: 
production changes below -43% or above 10% for RCP 
4.5 and below -17% or above 5% for RCP 2.6. The skewed 
distribution of total production is mainly driven by 
maize and soy, which have especially skewed outcomes 
with a 1-in-20 chance that yields are below -64% and -
55%, respectively, in RCP 4.5 by late-century. The 
skewness for total production in RCP 4.5 is sufficiently 
large that potential downside losses are similar in 
magnitude to downside losses in RCP 8.5; however, in 
RCP 4.5 there is a lower probability of ending up with 
the largest losses. 
 
Across all RCPs, the distribution of potential yields 
broadens over time. The rate of spreading increases 
dramatically with increasing emissions. For total 
production, late-century very likely range spans 15 
percentage points in RCP 2.6 and widens to span 31 and 
54 percentage points in RCP 4.5 and 8.5 respectively 
(Figure 6.3). Climate change not only decreases 

expectations for national production, it also increases 
uncertainty regarding future national production in a 
warming world. 

In percentage terms, the spatial distribution of 
projected impacts is uneven across the country, with the 
South and East regions suffering the largest projected 
yield losses while the Rockies, Northwest and northern 
Great Plains regions achieve yield gains in the median 
RCP 8.5 projection (Figure 6.4). The eastern US is 
hardest hit primarily because the dose-response 
function is more sensitive to extreme heat in the East, in 
part because irrigation infrastructure is not as 
widespread as in the West (Schlenker and Roberts, 
2009).  The Southeast suffers the largest percentage 
losses because the dose-response function is sensitive to 
extreme temperatures and because southern counties 
experience the highest number of additional extreme 
temperature days in future projections. Projected yields 
in the Rockies, Northwest and northern Great Plains 
benefit from both moderate warming and moderate 
wetting from a current climate that is both cool and dry. 
Projected changes in total national output are 
dominated by production losses in central Midwestern 
states that are not heavily irrigated, that warm 
substantially, and that currently have large land areas 
dedicated to high-yield production. 

The impacts above are described in terms of average 
changes over 20 year intervals. These averages are useful 
for describing persistent economic changes in future 
periods, but they mask short-lived events that may only 
last a year or two but have substantial economic 
consequences. Within each 20 year window, the 
likelihood of extreme annual events, such as a very low-
yield year, evolves with the climate. One way to describe 
how the likelihood of extreme events changes is to 
examine how frequently we expect to experience years 
that are as damaging as the worst year experienced 
during two decades of recent history, a so called “1-in-20 
year event”. In Figure 6.5 we plot the estimated number 
of years that will have yield losses larger than 
historically observed 1-in-20 year losses. For each year 
we plot the expected number of these extreme years that 
will be experienced in the 20 years that follow; i.e., we 
plot what the immediate future appears like to an 
individual in a given year. For a long-term investor with 
a 20 year time horizon, these are expected risks to take 
into account. By 2030, in all scenarios, production losses 
that used to occur only once every 20 years will be 
expected to occur roughly five times in the following 20 
years. By 2080, these events will be occurring roughly 
eight times every 20 years in RCP 4.5 and 12 times every 
20 years in RCP 8.5. 
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While irrigation reduces the risk from variable seasonal 
rainfall, producers that rely on irrigation to maintain 
yields may be at greater risk from volatility in cost and 
availability of water supplies. Climate change will have 
important implications for the extent and distribution 
of future US irrigated crop production. Although only 
7.5% of all US cropland and pastureland are irrigated, 
farms that use irrigation accounted for 55% of the total 
value of crop sales in 2007, the last year for which USDA 
census data are available (USDA 2010). Irrigated 
agriculture accounts for over a third of the nation's 
freshwater withdrawals and approximately 80 to 90% of 
overall consumptive use (Kenny et al. 2009). Nearly 
three-quarters of irrigated acreage is in the western US, 
though in recent decades much of the expansion in 
irrigated acreage has occurred in the eastern areas. 

Reduced water availability for agriculture may lead to 
contraction in irrigated acreage in some areas, 
particularly in the western US (Elliot et al., 2013). 
Warmer temperatures at the same time will also 
increase crop water needs and demand for irrigation, 
although increasing CO2 concentrations can also 
increase water use efficiency of some crops (Wada et al. 
2013; Elliott et al. 2013; Prudhomme et al. 2013; J. 
Hatfield et al. 2013). Irrigation, which has traditionally 
been relied on to offset the negative effect of high 
temperatures, has been particularly effective in areas 
with intensive cultivation and irrigation like the Corn 
Belt (Sakurai, Iizumi, and Yokozawa 2011). Such 
strategies may not be available, or will be much more 
costly, in regions with increased water scarcity where 
the cost of irrigation is likely to increase, as are energy 
costs associated with irrigation, including for water 
pumping. 

Ozone pollution 

Carbon dioxide is not the only ambient pollutant that 
affects plant growth. Emissions of nitrogen oxides 
(NOx) and volatile organic compounds (VOCs) from 
farm  

processes and industrial sources react to form ground-
level ozone (O3), which can damage vegetation by 
reducing photosynthesis and other important 
physiological functions resulting in stunted crops, 
decreased crop quality, and decreased yields (Mills et al. 
2007). High temperatures increase ozone formation, 
especially during the warm “ozone season” of May to 
September (Bloomer et al. 2009). The impacts on a range 
of US agricultural crop yields is an area of emerging 
study; initial studies indicate that the impacts of 
elevated ozone concentrations are evident for soybean 

crops in the US Midwest, with annual yield losses in 
2002-2006 estimated at 10% (Fishman et al. 2010). The 
interactions between elevated ozone and CO2 
concentrations have been found to dampen these 
effects, with ozone partially counteracting CO2 
fertilization. More study is necessary to understand the 
interactions between CO2, ozone, and temperature on a 
variety of species. 

Weeds, disease, and pests 

Agriculture is a complex system, and the mechanisms 
through which climate can impact productivity are 
many. While changing climatic conditions affect crop 
yield directly, they also affect a whole array of other 
competing and complementary organisms that have 
varying effects on crop yields. Changes in temperature 
and precipitation patterns, combined with increasing 
atmospheric CO2, change weed-infestation intensity, 
insect population levels, the incidence of pathogens, 
and potentially the geographic distribution of all three.  

The relationship between climate change and 
agricultural crop yield losses due to increased 
competition from weeds, for example, is not fully 
understood due to the complex relationships between 
temperature, CO2 concentration, and crop-weed 
interactions, as well as artificial factors such as herbicide 
use (Archambault 2007). Weeds are generally hearty 
species, and several weeds benefit more than crops from 
higher temperatures and CO2 levels (Ziska 2010). The 
geographic distribution of native and invasive weeds 
will likely be extended northward as temperatures 
warm, exposing farms in northern latitudes to new or 
enhanced threats to crop productivity from weeds like 
privet and kudzu, already present in the South (Ziska 
2010; Bradley, Wilcove, and Oppenheimer 2010). Weed 
control costs the US more than $11 billion a year, with 
most of that spent on herbicides. Use of herbicides is 
expected to increase as several of the most widely used 
herbicides in the US, including glyphosate (also known 
as RoundUp™), have been found to lose efficacy on 
weeds grown at CO2 levels projected to occur in the 
coming decades (Ziska, Teasdale, and Bunce 1999). 

Climate change is also expected to affect the geographic 
ranges of specific species of insects and diseases across 
regions of the US, potentially altering yield losses as a 
result. Changes in average temperature can result in 
gradual shifts in geographic distribution as earlier 
spring and warmer winters affect species overwintering 
and survival. In wet years, high humidity can help 
insects and diseases flourish, with negative indirect 
impacts on animal health and productivity (Garrett et al. 
2006; Garrett et al. 2011). Climate affects microbial and  
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fungal populations and distribution, the distribution of 
diseases carried by insects and rodents, animal and plant 
resistance to infections, food and water shortages, and 
food-borne diseases (Baylis and Githeko 2006; J. 
Gaughan et al. 2009). Regional warming and changes in 
rainfall distribution may change the distributions of 
diseases that are sensitive to temperature and moisture, 
such as anthrax, blackleg, and hemorrhagic septicemia 
(Gaughan et al. 2009; Baylis and Githeko 2006). 

Livestock 

Although livestock is a major component of the US 
agricultural system, with nearly one million operations 
generating nearly half of total US commodity sales, the 
impact of climate change on livestock production has 
received less study than impacts on agricultural crops. 
Climate change will affect the livestock sector both 
directly — through impacts on productivity and 
performance due to changes in temperature and water 
availability — and indirectly — through price and 
availability of feed grains and pasture, and changing 
patterns and prevalence of pests and diseases (Walthall 
et al. 2013).  

Livestock productivity will be most directly impacted by 
changes in temperature, which is an important limiting 
factor for livestock in the US. High temperatures tend to 
reduce feeding and growth rates as animals alter their 
internal temperatures to cope; the resulting increase in 
animals’ metabolism reduces production efficiency 
(André et al. 2011; Porter et al. 2014). For many livestock 
species, increased body temperatures 4°F to 5°F above 
optimum levels disrupts performance, production, and 
fertility, limiting an animal’s ability to produce meat, 
milk, or eggs. Livestock mortality increases as 
optimums are exceeded by 5°F to 13°F (J. B. Gaughan et 
al. 2002). Animals managed for high productivity, 
including most meat and dairy animals in the US (e.g., 
cattle, pigs, and chickens) are already operating at a 
high metabolic rate, decreasing their capacity to tolerate 
elevated temperatures and increasing risk of reduced 
production or death (Zumbach et al. 2008).  

Livestock and dairy production will be more affected by 
changes in the number of days of extreme heat than by 
changes in average temperature, though the effect of 
warmer average nighttime temperatures, especially 
multiple hot nights in a row, can exacerbate animal heat 
stress (Mader 2012). The negative effects of hotter 
summer weather will likely outweigh benefits of 
warmer winters, with the potential for only about half 
of the decline in domestic livestock production during 

CLIMATE’S IMPACTS ON AGRICULTURE DOESN’T STOP AT US BORDERS  

Although for the purposes of this report we isolate our analysis of climate impacts to those that occur within the US, the global 
nature of food production cannot be overlooked (B. M. J. Roberts and Schlenker 2013). The response of global agricultural systems 
to a changing climate may mean production shifts as some regions become more or less suitable for agriculture.  The effects of 
climate on crop and food production are already evident in several key producing regions of the world, with recent periods of rapid 
food and cereal price increases following climate extremes (Porter et al. 2014). By the 2030s global average yields will likely be 
negatively impacted, with reductions more likely than not to be as much as 5% beyond 2050 and likely by the end of the century 
(Porter et al. 2014). The reductions will coincide with growing global demand, which is projected to increase by approximately 14% 
per decade until mid-century (Alexandratos and Bruinsma 2012; Porter et al. 2014).  

These shifts will be reflected in changing global production and commodity prices, all of which will impact US producers, and, in 
turn, how they choose to respond. Due to the complexity of estimating the impacts of climate change on global agricultural 
production, price, and trade, we focus in this report on only those impacts that occur within the US in the absence of any changes to 
global trade or prices. In addition, we do not model how farmers will change which crops they grow, since we lack robust empirical 
evidence to quantify these changes. Historical anecdotes – such as the Dust Bowl – suggest this may be an important margin for 
future adjustments (Feng, Oppenheimer, and Schlenker 2013; Hornbeck 2012).  

In an increasingly interconnected global market, the effects of climate change on global food production and prices will impact US 
farmers and other agricultural producers, as well as American consumers. Regional climatic changes may shift the distribution and 
costs of production across the globe over time, while extreme events may impact food security and price volatility. As a significant 
agricultural exporter, price and production shocks from extreme climate events in the US can have reverberations globally, though 
the globalized system can also act as a buffer to reduce the localized impacts of events in the US (Godfray et al. 2010).  

The US imports about a fifth of all food consumed in the US, making food prices and supply vulnerable to climate variations in other 
parts of the world. Climate extremes in regions that supply the US with winter fruits and vegetables, and in particular tropical 
products such as coffee, tea, and bananas, can cause sharp reductions in production and increases in prices. Volatility in supplies 
and prices of internationally traded food commodities have a significant effect on decisions made by US agricultural producers and 
determine prices US consumers pay for such goods. Fluctuations and trends in food production are widely believed to have played a 
role in recent price spikes for wheat and maize, which followed climate extremes in 2008 and 2011. Between 2007 and 2008, the 
FAO food price index doubled; this was due to a confluence of factors, one of which was extreme weather conditions in major 
wheat and maize exporters including the US, Australia, and Russia (Food and Agriculture Organization of the United Nations 2011). 
Such extreme events have become more likely as a result of recent climate trends, and may be more frequent in the future, 
contributing additional volatility to an already complex global agricultural system.   

The IPCC has reported that projected changes in temperature and precipitation by 2050 are expected to increase food prices, with 
estimates ranging from 3 to 84%.  Projections of food prices that also account for the CO

2
 fertilization effect (but not ozone and pest 

and disease impacts) range from -30% to +45% by 2050, with price increases about as likely as not. This does not take into account 
variations in regional effects or the effect of extremes, which can be a major contributor to variability in productivity and prices. 
Compound events where extremes have simultaneous impacts in different regions (as was witnessed in 2008 and 2011), driven by 
common external forcing (e.g. El Niño), climate system feedbacks, or causally unrelated events, may have additional negative 
impacts on food security and production, though there are very few projections of such compound extreme events and the 
interactions between multiple drivers are difficult to predict. 

Quantifying these effects, in their agricultural and economic terms, is an extremely difficult task, requiring assumptions about the 
myriad climate and non-climate factors that interact to determine food security and prices, both at home and abroad. While all 
aspects of food security are potentially affected by climate change, including food access, utilization, and price stability, there is 
limited direct evidence that links climate change to food security impacts (Porter et al. 2014). 
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hotter summers to be offset by milder winter conditions 
(Adams et al. 1999). 

The majority of American livestock raised in outdoor 
facilities, and therefore exposed to rising temperatures 
and increased heat stress, are ruminants (goats, sheep, 
beef and dairy cattle). Within limits, these animals can 
adapt to most gradual temperature changes, but are 
much more susceptible to extreme heat events (Mader 
2003). Impacts are less acute for confined operations 
that employ temperature regulation, which house 
mostly poultry and pigs, though management and 
energy costs associated with increased temperature 
regulation will increase. Confined operations are not 
immune to the effect of rising temperatures, which can 
contribute to livestock heat stress. Despite modern heat-
abatement strategies, heat-induced productivity 
declines during hot summers – including reduced 
performance and reproduction as well as mortality – 
cost the American swine industry, for example, nearly 
$300 million annually (St-Pierre, Cobanov, and 
Schnitkey 2003).  

Current economic losses incurred by the US livestock 
industry from heat stress, most from impacts on dairy 
and beef cattle, have been valued at $1.7 to $2.4 billion 
annually. Nearly half of the losses are concentrated in a 
few states (Texas, California, Oklahoma, Nebraska, and 
North Carolina). Exposure to high temperature events 
can be extremely costly to producers, as was the case in 
2011, when heat-related production losses exceeded $1 
billion (NOAA 2013). Large-scale commercial dairy and 
beef cattle farmers are most vulnerable to climate 
change and the expected rise in high heat events, 
particularly since they are less likely to have diversified. 

Other, less well-studied impacts to the livestock sector 
from expected climate change include indirect effects of 

warmer, more humid conditions on animal health and 
productivity through promotion of insect growth and 
spread of diseases. Warming is also expected to lengthen 
forage growing season but decrease forage quality, with 
important variations due to rainfall changes (Craine et 
al. 2010; Izaurralde et al. 2011; J. Hatfield et al. 2014). 
One  

study identified significant expected declines in forage 
for ranching in California, even under more modest 
climate changes (Franco et al. 2011). 

Studies of the potential effects of climate change have 
projected the resulting impacts to productivity through 
factors such as change in days to market and decrease in 
annual production. One study found that, given 
expected warming by 2040, days to market for swine 
and beef may increase 0.9 to 1.2%, with a 2.1 to 2.2% 
decrease in dairy milk production (Frank et al. 2001). By 
2090, days to market increased 4.3 to 13.1% and 3.4 to 
6.9% for swine and beef, respectively, with a 3.9 to 6.0% 
decrease in dairy production as a result of heat stress.  

Relatively few economic impact studies have estimated 
the costs of climate-related impacts on productivity and 
management costs of the livestock and dairy sectors, as 
they involve accounting for the complex and interactive 
direct and indirect effects, such as lowered feed 
efficiency, reduced forage productivity, reduced 
reproduction rates, and assumptions about adaptive 
actions such as modifying livestock housing to reduce 
thermal stress. In the absence of such estimates, most 
system-wide economic impact assessments do not 
account for the potential direct costs and productivity 
effects of climate change on livestock, forage, and 
rangeland production (Izaurralde et al. 2011; Antle and 
Capalbo 2010). 
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CHAPTER 7 

Labor

Labor is a critical component of our economy. Even 
slight changes in the productivity of the American 
workforce have a significant effect on overall economic 
output. Labor productivity improvements have been an 
important source of past GDP growth in the US and, as a 
result, is an area of extensive study. Of particular 
interest has been the identification of optimal working 
conditions in a variety of economic sectors, including 
workplace environment and exposure to a variety of 
climate-related factors (Seppanen, Fisk, and Lei 2006; 
Wyon 2000). Sub-optimal environmental conditions do 
more than simply make workers uncomfortable. They 
also affect workers’ ability to perform tasks, and can 
influence work intensity and duration, all of which 
impact overall labor productivity. Thus the 
environmental sensitivity of individual workers 
represents a pathway through which climate change can 
influence all economic sectors, even those previously 
thought to be insensitive to climate (Hsiang 2010). 

Climate change will affect workers, workplace 
environments, and ultimately worker productivity. 
Rising average and extreme temperatures will likely 
have the most direct effect on working conditions. 
Climate change may also affect the US labor force 
indirectly through increased storm damage, flooding, 
wildfires, and other climate-related changes, resulting 
in disruption of business and production in some areas. 
Health-related impacts, both negative and positive, will 
affect Americans’ ability to work. While we provide an 
overview of the range of potential climate change 
impacts to US labor, our analysis focuses specifically on 
the effect of changing temperatures on labor supply. 

BACKGROUND 

Rising average temperatures, greater temperature 
variability, and more frequent and severe temperature 
extremes will make it harder to sustain optimal working 
conditions. Higher temperatures can change the 
amount of time allocated to various types of work as 
individuals spend more time indoors to beat the heat, or 
as outdoor laborers take more frequent breaks to cool 
off (Graff Zivin and Neidell 2014). Climate-related 
factors can also affect worker performance, affecting 
cognitive capacity and endurance (Mackworth 1948; 
Ramsey and Morrissey 1978). Increased use of air 
conditioning for indoor labor and schedule changes for 

outdoor labor can mitigate some, but not all, of the 
effects.   

Not all American workers will be equally affected; the 
impact of climate differs across sectors of the economy. 
Workers in agriculture, construction, utilities, and 
manufacturing are among the most exposed (Graff Zivin 
and Neidell 2014). These “high-risk” sectors, which 
account for roughly 9% of the US labor force, are 
affected by changes both in average temperatures and 
temperature extremes.  Workers in high-risk sectors are 
at particular risk of heat stress because of the internal 
body heat produced during physical labor. Higher 
temperatures and heat strain, however, can also impact 
workers in stores and offices (Kjellstrom and Crowe 
2011). Thermal conditions inside commercial buildings 
are often not well-controlled, and can vary considerably 
over time as outdoor conditions change, making it 
difficult to ensure optimum temperatures for worker 
comfort and productivity (Seppanen, Fisk, and Lei 
2006). The impact of projected temperature changes on 
these low-risk sectors is considerably lower than their 
high-risk peers. 

The first empirical study of the impact of climate on 
labor productivity observed that performance in labor-
intensive sectors declined nonlinearly at high 
temperature (Hsiang 2010), mirroring the response of 
subjects in laboratory experiments (Mackworth 1948; 
Ramsey and Morrissey 1978; Seppanen, Fisk, and Lei 
2006; Wyon 2000) . Since then, studies have found that 
labor supply, measured in work hours, declines 
moderately at higher temperatures. This is true for a 
range of industrial sectors, though there are substantial 
differences in climate exposure among them. 
Temperature impacts endurance, fatigue, and cognitive 
performance, all of which can contribute to diminished 
“work capacity” and mental task ability, as well as 
increased accident risk (Kjellstrom and Crowe 2011). In 
order to cope with heat, workers often reduce the pace 
or intensity of their work, or take additional breaks, 
which reduces overall worker output. One study found 
that at temperatures above 85°F, workers in high-risk 
industries reduce daily output by as much as one hour, 
with much of the decline occurring at the end of the day 
when fatigue from prolonged heat exposure sets in 
(Graff Zivin and Neidell 2014).  
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Extreme heat stress, brought on by more intense or 
extended days of exposure to high temperatures, can 
induce heat exhaustion or heat stroke and can 
significantly reduce ability to carry out daily tasks. 
Estimates of the impact of higher average temperatures 
and heat stress on work capacity indicate that labor 
productivity in high-risk sectors is highly vulnerable to 
temperature extremes, despite our ability in many 
instances to mitigate these impacts.  According to 
Center for Disease Control records, from 1992–2006 
there were 423 worker deaths attributed to heat 
exposure in the US, nearly a quarter from the 
agriculture, forestry, fishing, and hunting industries 
(Luginbuhl et al. 2008).  

Humidity can exacerbate these effects even further, 
particularly in mid-latitudes during summer months of 
peak heat stress. Occupational thresholds developed for 
industrial and US military labor standards provide 
guidelines for assessing labor capacity, or the ability to 
safely perform sustained labor under heat stress. Studies 
using these thresholds have found that the southeastern 
US is particularly vulnerable (Dunne, Stouffer, and John 
2013). In our analysis, the Southeast is projected to 
continue to have the country’s highest wet-bulb 
temperatures (the combination of heat and humidity) 
over the coming century, though the Midwest and 
Northeast will likely see larger increases.  

OUR ANALYSIS 

To quantify the potential impact of climate change on 
labor, we rely on statistical analyses that isolate the 
effect of temperature and other climatic variables on 
individuals’ labor supply in the United States. Because 
there are strong cross-county patterns in labor markets, 
as well as strong trends over time (that may differ by 
location) and over seasons, we rely on the only analysis 
that accounts for these patterns when measuring the 
effect of temperature on labor supply.  

Graff Zivin and Neidell (2014) provide nationally 
representative estimates that satisfy these criteria, 
which we use to construct quantitative projections. They 
examine how individuals around the country allocated 
their time on randomly selected days between 2003 and 
2006, identifying the incremental influence of daily 
maximum temperature on the number of minutes 
individuals work, using data collected through the 
American Time Use Survey (Hofferth, Flood, and Sobek 
2013). The individuals in the survey are considered 
nationally representative and each individual records 
the allocation of their time during a single 24-hour 
period.  

Figure 7.1 and Figure 7.2 display the impact functions 
derived from Graff Zivin and Neidell for individuals 
working in high and low-risk industries, i.e. industries 
where individuals are likely and unlikely, respectively, 
to be strongly exposed to unregulated temperatures 
according to the National Institute for Occupational 
Safety and Health (Graff Zivin and Neidell 2014). 

Figure 7.1: Temperature and High-risk Labor Productivity 
Change in minutes worked for high-risk laborers as a function of daily 
maximum temperature (F) 

 

Figure 7.2: Temperature and Low-risk Labor Productivity 
Change in minutes worked for low-risk laborers as a function of daily 
maximum temperature (F) 

 

Temperature has little influence on labor supply in 
either category until very high daily maximum 
temperatures are reached, at which point individuals 
begin to supply less labor approximately linearly – the 
nonlinear structure of this response is broadly 
consistent with both laboratory studies (N. Mackworth 
1947) and macroeconomic evidence (Hsiang, 2010). As 
one might expect, the response in high-risk industries is 
more negative at high temperatures, probably because 
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every 20 years in RCP 4.5 and every year in RCP 8.5. The 
relative frequency of analogous events in low-risk labor 
is essentially the same for all scenarios and time periods. 

It is important to note that these estimates assume the 
national distribution of workers remains fixed relative 
to the average distribution from 2000-2005 and that air 
conditioning and other time-allocation behaviors 
remain fixed. It is likely that some amount of additional 
adaptation will occur in the presence of climate change, 
but existing research is currently insufficient to conduct 
a systematic evaluation of adaptive behaviors that affect 
labor supply. 

We also note that our estimates only account for 
changes to labor supply, which reflects a change in the 
total quantity of hours that each individual works (the 
extensive margin). It is extremely likely that the 
intensity of each workers’ effort (the intensive margin) 
will also change with warming, as has been observed in 
numerous laboratory experiments (Mackworth 1948; 
Ramsey and Morrissey 1978; Wyon 2000), although the 
magnitude of this effect has not been measured in 
nationally representative and ecologically valid 
samples, so it is not included in this analysis. The 
laboratory-derived dose-response function of labor 
intensity is similar in magnitude (in percentage terms) 
to the response of high-risk labor, so accounting for this 
effect would roughly double the size of the impacts that 
we present here.  

OTHER IMPACTS  

The US labor force is comprised of people, so any one of 
the number of climate-related impacts on the working 
population will ultimately affect the supply and quality 
of the US labor market. In the following chapter we 
report on the impacts to Americans’ health, including 

increased respiratory illness due to increases in 
pollution, allergens, and pollens as a result of rising 
temperatures. Changes in the geographic ranges and 
seasonality of vector-borne infectious diseases will also 
affect health and productivity for some working 
populations. Outdoor workers are the most at risk of 
vector-borne infections because of their exposure to 
species that carry disease (Bennett and McMichael 2010). 
The risk of transmission may increase under climate 
change as warm, wet conditions contribute to greater 
number of vectors, a change in their habitat range, and 
as transmission becomes more efficient. Vector-borne 
diseases are already responsible for considerable losses 
in economic productivity every year, primarily in 
regions where a vector-borne disease is endemic.  We 
have not captured losses due to illness in our analysis, 
but these will certainly affect labor supply and 
productivity. 

Illness, injury, and even death from increased damages 
caused by hurricanes and other storms, flooding, 
wildfire, and other extreme weather will also affect the 
labor market, although quantifying their impact is not 
straightforward. In the months following an extreme 
storm, depending on the severity of the storm, there can 
be negative impacts on total employment and earnings, 
as well as disturbances across labor sectors (Deryugina 
2011; Camargo and Hsiang 2012). Labor impacts are not 
limited to the areas hit by the storm; a study of 19 
hurricanes that hit Florida between 1988 and 2005 found 
that labor markets in counties neighboring affected 
county became more competitive, with falling wages, 
due to the movement of skilled workers out from the 
affected county (Belasen and Polachek 2009). These 
effects were found to dissipate over time, though long-
run impacts are not generally understood as they are 
more complex and more difficult to measure.  
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CHAPTER 8 

Health

The American public health system has been designed to 
promote the health of American communities and 
residents, and to prevent disease, injury, and disability. 
Huge strides in public health have been made over the 
last century, thanks in part to greater wealth, scientific 
advances and innovation, increased education, and a 
more developed public health infrastructure (e.g., water 
treatment plants, sewers, and drinking water systems). 
Improvements in disaster planning and emergency 
response have also improved public health outcomes in 
response to disease outbreak and epidemics, as well as 
floods, heat waves, storms, and other disasters that can 
harm public health. These advances have relied on years 
of assessment of the evolving vulnerabilities and 
resilience of American communities and populations, 
the various factors that contribute to health impacts in 
those communities, and the potential risks, both likely 
and unlikely, that threaten public health.  
 
Climate change is an emerging factor in the risk 
landscape for American public health. According to the 
US National Climate Assessment, there is very high 
confidence a wide range of health effects will be 
exacerbated by climate change in the US (Joyce et al. 
2013). Human health and well-being are impacted by 
climate change both through gradual changes in 
average temperature and precipitation, and also 
through changing patterns of extreme events. 
Incremental effects of increasingly warmer summer 
temperatures will lead to increased rates of ozone 
formation and exacerbate respiratory problems. On the 
other hand, milder winters may reduce cold-related 
deaths. Such changes will also create conditions that can 
disrupt natural systems that affect public health. For 
example, altering the length and severity of allergy 
seasons and changing the patterns and spread of vector-
borne diseases, such as Lyme disease. A changing 
frequency and intensity of extreme weather events, 
such as heat waves, floods, droughts, storms, and 
wildfires, create less predictable but potentially serious 
risk of disease, exposure to dangerous pollutants, 
injury, and even death. 
 
Climate impacts will be wide ranging, and highly 
variable across regions and populations. There will be 
positive as well as negative impacts, depending on the 
local circumstances, but on the whole, net impacts are 
likely to be negative for most regions in the US. The 
cause and effect chain between climate and health 

impacts is complex, and climate change is one of many 
critical factors affecting public health outcomes. The 
magnitude and distribution of these effects will depend 
on the baseline vulnerability of populations over time, 
which are determined by a whole host of variables 
including population age, socioeconomic status, and 
race, as well as regional and local differences in critical 
public health infrastructure and investments. Evidence 
indicates that, absent changes that go beyond current 
prevention and adaptation activities and with increasing 
population susceptibilities (aging, limited economic 
resources, etc.), some existing health threats will 
intensify and new health threats will emerge (Joyce et al. 
2013). While we provide an overview of a number of 
potential climate change impacts to health, our analysis 
focuses specifically on the temperature-related impacts 
to mortality. 

BACKGROUND 

One of the most well-studied impacts of climate on 
public health is the effect of temperature and, in 
particular, extreme hot and cold days. Impacts will be 
felt differently across the US, with some northern 
regions experiencing milder winters and reduced 
exposure to extreme cold and snow, while other regions 
will see longer and more frequent heat waves. The level 
of vulnerability of populations to these risks will depend 
on the severity of the extremes, as well as on society’s 
adaptive response. 

 
Across the US most regions are already experiencing the 
types of impacts that could be exacerbated by a changing 
climate. Many people remember the 1995 Chicago heat 
wave that brought nine consecutive days of record-
setting daytime and nighttime temperatures, 
unprecedented in the preceding 120 years over which 
records have been kept. Nearly 800 people died from 
heat exposure, and thousands of excess emergency 
room and hospital visits were recorded as a result of the 
heat wave (Hayhoe et al. 2010). The 2006 heat wave that 
hit much of California was exceptional both for its 
intensity and duration, setting records for most 
consecutive days over 100°F, and resulted in 140 deaths, 
over 16,000 excess emergency room visits, and 1,180 
excess hospitalizations (Knowlton et al. 2009). Children 
under the age of four and the elderly tend to be 
particularly vulnerable.  
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Heat stress can lead to increased hospitalizations due to 
heat exhaustion and heat stroke; dehydration and 
electrolyte disorders; acute renal failure, nephritis, and 
nephrotic syndrome; and other heat-related illnesses. 
(Knowlton et al. 2009; Kovats and Ebi 2006). Increased 
mortality during heat waves has been attributed mainly 
to cardiovascular illness and diseases of the cerebro-
vascular and respiratory systems, especially among the 
elderly (Anderson and Bell 2011). Heat stress can rapidly 
become life threatening among those with limited 
access to immediate medical attention and often people 
with severe heat stroke symptoms have little time to 
seek treatment. These impacts have been most severe 
for people over 65 and those with pre-existing 
conditions (Zanobetti, O’Neill, Gronlund, & Schwartz, 
2012).  
 
Some of the most well documented effects of heat stress 
are in big cities, in part because large populations are 
simultaneously exposed to extreme heat events, 
generating large numbers of coincident cases. In 
addition, urban residents may be exposed to higher 
temperatures than residents of surrounding suburban 
and rural areas because of the “heat island effect” 
resulting from high thermal absorption by dark paved 
surfaces and buildings, heat emitted from vehicles and 
air conditioners, lack of vegetation and trees, and poor 
ventilation (O’Neill and Ebi 2009).  
 
Heat stress on local populations can also stress the 
public health system. In 2009 and 2010, there were an 
estimated 8,251 emergency department visits for heat 
stroke in the United States, yielding an annual incidence 
rate of 1.34 visits per 100,000 population (Wu et al. 
2014). In times of excessive heat, these figures can jump 
considerably. During the 1995 Chicago heat wave, for 
example, excess hospital admissions totaled 1,072 (up 
11%) among all age groups for the days during and 
immediately after the event, including 838 among those 
65 years of age and older (an increase of 35%), with 
dehydration, heat stroke, and heat exhaustion as the 
main causes (Semenza et al. 1999).  
 
Extreme heat is increasing in parts of the US, and is 
expected to be more frequent and intense (Joyce et al. 
2013). Changes in the intensity, duration, and seasonal 
timing will influence mortality and morbidity effects 
within communities. Under all future pathways, the 
number of days with temperatures reaching 95°F or 
higher across the continental US are expected to 
increase from the historic (1981-2010) baseline of 15 days 
per year.  As described in Chapter 4, under RCP 8.5, by 
mid-century the average American will likely experience 
two to three times the number of days over 95°F than on 

average from 1980-2011 (an additional 12-35 days).  By 
late-century, the average American will likely 
experience one and half to three months of days that 
reach 95°F each year on average (46 to 96 days). National 
averages, however, say little about regional and local 
effects, which may be more extreme in some areas. The 
average resident of the Southeast, for example, will 
likely see 56 to 123 days over 95°F on average by century’s 
end, up from only nine per year on average from 1981-
2010. 

 
At the other end of the spectrum, milder winters may 
actually have a positive impact on public health.  Deaths 
and injuries related to extreme winter weather, as well 
as respiratory and infectious disease related to extreme 
cold, are projected to decline due to climate change 
(Medina-Ramón and Schwartz 2007). Across the 
continental US, winter temperatures will likely be 2.5 to 
6.2°F warmer on average by mid-century, and 5.4 to 
11.8°F warmer by century’s end under RCP 8.5. The 
number of average days with low temperatures below 
freezing for the average county in the contiguous US is 
also expected to decrease dramatically. Under RCP 8.5, 
the average number of days below freezing is likely to 
drop from the 1981-2010 average of 113 days per year to 
81 to 100 days by mid-century, and 52 to 81 by late-
century. 

OUR APPROACH 

Given what we know about observed climate impacts on 
health in the US over the past few decades, what can we 
predict in terms of likely future impacts? The most 
systematically documented relationship is the impact of 
rising temperatures on mortality, which can be 
estimated nationally because the Center for Disease 
Control (CDC) compiles and releases national mortality 
data. Morbidity impacts are more difficult to study 
because national data are not readily available.  
 
To quantify the potential impact of climate change on 
mortality, we rely on statistical studies that isolate the 
effect of temperature on mortality in the United States. 
Because there are strong cross-county patterns in 
mortality rates, as well as strong trends over time (that 
may differ by location) and over seasons, we rely on 
studies that account for these patterns when measuring 
the effect of climate variables on mortality rates. Two 
studies provide nationally representative estimates that 
satisfy these criteria, which we use to construct 
quantitative projections. Deschênes and Greenstone 
(2011) examine county-level annual mortality rates 
during 1968-2002, and Barreca et al. (2013) examine 
state-level monthly mortality rates during 1960-2004 
(Deschênes and Greenstone 2011; Barreca et al. 2013). 
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Both studies identify the incremental influence on 
mortality for each additional day at a specified 
temperature level using data collected by the CDC on all 
recorded deaths in the United States. Deschênes and 
Greenstone provides greater spatial resolution, while 
Barreca et al. provides greater temporal resolution, thus 
the studies may be complimentary.  
 
Figure 8.1 displays the impact function derived from 
Deschênes and Greenstone and Barreca et al. Both 
studies largely agree that both low and high daily 
average temperatures increase overall mortality rates 
relative to the lowest risk temperature range of 50 to 
59°F, with annual mortality rates increasing roughly 
.08% for an additional single day with mean 
temperature exceeding 90°F. In both sets of results, low 
temperatures tend to pose a differentially high risk to 
middle-age (45 to 64 years) and older (>64 years) 
individuals. Deschênes and Greenstone estimate that 
high temperatures pose a differentially high risk to 
infant (<1 year) and older individuals, while Barreca et 
al. find that high temperatures pose a differential high 
risk to infants and younger (1 to 44 year old) individuals 
with modest proportional risks imposed on the elderly. 
Barreca et al. examine causes of mortality and find that 
high-temperature deaths are usually attributed to 
cardiovascular or respiratory disease, while low-
temperature mortality is driven most strongly by 
respiratory disease as well as infectious and 
cardiovascular disease. These findings are generally 
consistent with studies of specific cities, regions, and 
sub-populations during extreme climatic events, (e.g., 
B. G. Anderson & Bell, 2009; Barnett, 2007; Frank C 
Curriero et al., 2002) and are nationally representative. 
 
Figure 8.1: Temperature impact on mortality 
Percentage change in mortality rate (deaths/100,000) vs. daily 
maximum temperature (F) 

 

It is thought that one effect of high temperatures is to 
induce an acceleration or “forward displacement” of 
mortality that would have occurred in the near future 
anyway, even in the absence of a high temperature 
event (a phenomena sometimes known as “harvesting”) 
(Deschenes and Moretti 2009). Deschênes and 
Greenstone and Barreca et al. do not extensively 
consider the extent to which increases in mortality rates 
caused by high and low temperatures cause forward 
displacement of mortality, although the authors 
attempt to account for possible temporal displacement 
by examining mortality over relatively long windows of 
time: a year for Deschênes and Greenstone and two 
months for Barreca et al. So long as temporal 
displacement occurs within these time frames, then 
these estimates will describe the net effect of a 
temperature event. Deschênes and Greenstone note 
that, since total mortality is fixed in the very long run, 
the welfare impact of climatic changes are best 
measured by changes in total life-years. However, for 
simplicity and clarity, we focus here on total premature 
mortality by age group.  

 
Climate variables are not the only factor influencing 
mortality effects on US populations. Adaptation, 
primarily through increased use of air conditioning, 
mitigates the mortality risk of extreme temperatures. 
Barecca et al. study whether there is evidence that 
populations adapt by examining if the sensitivity of 
mortality to temperature declines over time or is lower 
in counties that are hotter on average. Barecca et al. find 
that the response of mortality to temperature has 
declined substantially since the early 20th century (1929-
1959), with larger reductions in high-temperature 
mortality. Consistent with this evidence of adaptation 
over time, Barecca et al. find that modern high-
temperature mortality is lowest in hot southern 
counties and modern low-temperature mortality is 
highest in these counties. They argue that these patterns 
of sensitivity inversely reflect patterns of air 
conditioning adoption, a likely mechanism through 
which populations adapt. Here we assume that the 
sensitivity of mortality to temperature does not change 
relative to the present and we explore the extent to 
which increased use of air conditioning and other 
adaptations can mitigate these deaths in the Part V of 
this report (Strategies of Climate Risk Management). 
However, it is important to note that air conditioning is 
unlikely to mitigate all temperature related deaths 
because only a portion of deaths occur due to inadequate 
air conditioning and the impact function we use here is 
similar to the response recovered when we examine 
only populations in the American South, where air 
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conditioner penetration is roughly 100% (Barrecca et al., 
2013).  
 
To assess potential future impacts of climate change on 
mortality, we simulate changes in mortality rates under 
different climate scenarios relative to a future in which 
the climate does not drive changes in health after 2012—
although other social and economic trends are assumed 
to continue. Within each scenario we account for 
uncertainty in climate models, weather, and statistical 
results, causing our projection to be a probability 
distribution of potential outcomes at each moment in 
time. 
 
When we consider the potential impact of changes in 
temperature, we find that mortality rates do not 
generally increase until late-century except for 
populations aged 1 to 44 years old, which exhibit 
elevated mortality for all time periods (Table 8.1) 
because this age group does not benefit from reductions 
in in cold weather. In RCP 8.5, we find annual all-age 
mortality rates are likely to change by -0.5 to 6.6 deaths 
per 100,000 by mid-century and 3.7 to 21 deaths per 
100,000 by late-century, with a 1-in-20 chance that late-

century increases are below 0.6 deaths or exceed 36 
deaths per 100,000 relative to baseline mortality rates. 
Results are roughly similar for all age groups (Table 8.1) 
except the over-65 age group where mortality rates are 
more responsive to both warming and cooling climate 
changes in all periods, with a likely range of changes 
spanning -23 to +18 additional deaths per 100,000 in 
2020-2039, -24 to +22 by mid-century and -21 to +90 
additional deaths per 100,000 by late-century. 
 
Projected changes are modest in magnitude for RCP 4.5 
and RCP 2.6, with the likely range of changes for all age 
annual mortality spanning a change of -2.5 to 5.9 deaths 
per 100,000 for RCP 4.5 and -2.3 to 3.2 deaths per 
100,000 for RCP 2.6 by late-century. 1-in-20 outcomes 
span a narrower likely range than RCP 8.5, with a 1-in-20 
chance mortality rates change by less than -4.5 deaths or 
more than 12 deaths per 100,000 for RCP 4.5 and less 
than -3.9 or more than 5.0 deaths per 100,000 for RCP 
2.6. Projections for the over-65 age group are 
universally more extreme in magnitude, with a likely 
range of -38 to +16 deaths per 100,000 by late-century 
for RCP 4.5 and -25 to +17 deaths per 100,000 for RCP 
2.6. 

 
Table 8.1: Impact of future climate change to US mortality rate 
Percentage change in net age-specific heat- and cold-related mortality from 2012 levels. Likely range represents 17-83% confidence band. 

Mortality rate 

RCP 8.5 RCP 4.5 RCP 2.6 
1 in 20 

less 
than 

Likely  
1 in 20 
greater 

than 

1 in 20 
less than Likely  

1 in 20 
greater 

than 

1 in 20 
less 
than 

Likely  
1 in 20 
greater 

than 

Deaths per 100,000 Deaths per 100,000 Deaths per 100,000 

<1 year old                   

2080-2099 0.7 3.2 to 17 29 -1.8 -0.4 to 4.9 9.2 -2.1 -1.1 to 2.5 3.5 
2040-2059 -1.4 0.1 to 4.5 7.6 -1.9 -0.9 to 2.8 5.1 -2.2 -1.0 to 2.4 -3.6 
2020-2039 -1.6 -0.9 to 2.4 3.7 -2.3 -1.4 to 1.7 3.3 -2.2 -1.0 to 2.3 -3.7 
1-44 years old                   

2080-2099 2.8 3.1 to 7.6 9.6 0.5 1.1 to 3.6 5.1 -0.1 0.2 to 1.5 1.9 
2040-2059 0.9 1.0 to 3.0 3.5 0.3 0.5 to 2.3 2.8 -0.1 0.6 to 1.4 1.7 
2020-2039 0.0 0.2 to 1.3 1.5 -0.3 0.1 to 1.2 1.5 -0.1 0.3 to 1.0 1.2 
45-64 years old                   

2080-2099 1.3 2.8 to 14 23 -2.4 -1.2 to 3.6 7.5 -2.2 -1.3 to 2.0 2.6 
2040-2059 -1.1 0.2 to 3.6 5.3 -2.6 -1.8 to 2.3 4.3 -2.0 -1.2 to 2.0 3.1 
2020-2039 -1.6 -0.9 to 2.1 3.4 -2.8 -1.7 to 1.5 3.1 -2.0 -1.9 to 1.8 3.4 
65+ years old                   

2080-2099 -51 -21 to 90 181 -55 -38 to 16 48 -41 -25 to 17 23 
2040-2059 -43 -24 to 22 38 -48 -36 to 9.6 34 -41 -22 to 13 25 
2020-2039 -35 -23 to 18 32 -41 -29 to 9.7 35 -33 -16 to 14 27 
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In many areas of the US, air pollution from wildfires and 
biomass burning represents a significant share of total 
exposure, especially as state programs have worked to 
reduce emissions from vehicles and other man-made 
sources. In California, criteria pollutant emissions from 
biomass burning were found to contribute emissions 
equivalent to 18% and 34% of man-made emissions of 
carbon monoxide and particulate matter (PM2.5), 
respectively. The same study found that under a 
medium-high future climate change scenario, end of 
century emissions from wildfires in California are 
projected to increase 19 to 101% above rates experienced 
in recent decades (Hurteau et al. 2014). They found the 
emissions increases to be most extreme in Northern 
California, an effect that was influenced very little by 
adjusting development patterns to control for impacts 
on population exposure. Emissions from wildfire in the 
Sierra Nevada will directly impact the San Joaquin 
Valley air basin, one of the most populous and fastest 
growing in the state, and one with a high probability of 
exceeding federal air quality standards for ground-level 
ozone. Under future climate scenarios, degraded air 
quality in the basin due to wildfires is expected to affect 
an additional 1.5 to 5.5 million people. 

Allergies are the sixth most costly chronic disease 
category in the United States, and the direct medical 
costs of two of the main allergic diseases — asthma and 
hay fever — are estimated to be $12.5 and $6.2 billion per 
year, respectively (US EPA 2008). The production of 
plant-based allergens will also be affected by climate 
change. increased pollen concentrations and longer 
pollen seasons, resulting from warmer temperatures 
and higher ambient CO2 concentrations, which can 
generate allergic responses and exacerbate asthma 
episodes, diminish productive work and school days, 
and incur health care costs (L. H. Ziska 2008; Wayne et 
al. 2002). Studies have shown that between 1995 and 
2001 the pollen season for ragweed, a significant cause 
of hay fever in the US, increased in as much as 13 to 27 
days in the central US, with the largest increases 
observed in northern cities, including Minneapolis, 
Fargo, and Madison (L. Ziska et al. 2011). 

Extreme weather, water- and vector-borne disease, 
and a whole host of other impacts  

A whole host of other potential risks to health may 
result from changing climatic conditions. Whenever 
there is a negative impact on the built environment 
from extreme events, including storms, fires, and 
flooding, human health is at risk and loss of life may 
result. Changes in the frequency of extreme 
precipitation events will have consequences for health 

hazards associated with direct damages wrought by 
storms and floods (including injury and mortality), as 
well as ensuing exposures to waterborne diseases, 
toxins, sewage, and contamination from mold and other 
respiratory irritants (Joyce et al. 2013).  Floods are the 
second deadliest of all weather-related hazards in the 
US, accounting for nearly 100 deaths each year, the 
highest portion of which occur as a result of flash floods 
and flooding associated with tropical storms (Ashley 
and Ashley 2008). Persistent heavy rains and 
thunderstorms in the summer of 1993 brought flooding 
across much of the central US, resulting in 48 deaths and 
$30 billion dollars of damages (NOAA 2013).  

Heavy precipitation and runoff contribute to increased 
risk of waterborne disease from increased surface and 
groundwater contamination. Outbreaks of diseases like 
Giardia, Escherichia coli, and other acute gastrointestinal 
illnesses have been linked to heavy rainfall events, like 
the one in Milwaukee, Wisconsin in 1993, which led to 
403,000 cases of intestinal illness and 54 deaths (Hoxie 
et al. 1997). More than half of the waterborne disease 
outbreaks in the US in the last half of the 20th century 
were preceded by extreme rainfall events, according to a 
study conducted at the Johns Hopkins Bloomberg 
School of Public Health (F C Curriero et al. 2001). In 
urban watersheds, more than 60% of the annual load of 
all contaminants is transported during storm events, 
increasing the risk to vulnerable urban populations 
exposed to dangerous contaminants. 

Further impacts include changes in the distribution of 
diseases borne by insects, changes in crop yields and 
quality as well as global food security, changes in the 
frequency and range of harmful algal blooms, and risks 
resulting from population displacement (due to of sea-
level rise and extreme weather events) (Joyce et al. 2013). 
Many of these impacts are difficult to study, and their 
causal processes and effects are less easily quantified 
(McMichael, Woodruff, and Hales 2006). 

Vulnerable populations 

It is important to take into account that climate-related 
risks are disproportionately higher for the most 
vulnerable sub-populations, including children and the 
elderly, low-income communities, and some people of 
color. Children in particular face increased impacts 
from heat waves (Basu and Samet 2002), air pollution, 
infectious disease, and impacts from extreme weather 
events (American Academy of Pediatrics 2007).  The 
elderly and those with pre-existing health conditions 
face greater risk of death from heat waves, and suffer 
more severe consequences from air pollution and flood-
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related health risks (Balbus and Malina 2009). Low-
income communities, already burdened by high 
incidence of chronic illness, inadequate access to health 
services, and limited resources to adapt to or avoid 

extreme weather, are also disproportionately impacted 
by climate-related events (Reid et al. 2009; Balbus and 
Malina 2009). 
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CHAPTER 9 

Crime 

Crime is an important social force in the United States. 
The incidence of both violent and non-violent crime 
impacts individuals, households, and communities at a 
very personal level. The threat of crime shapes how 
societies organize themselves to protect their fellow 
citizens, their families, and their neighborhoods from 
the potential consequences of crime. Victims of crime 
know firsthand its effects on quality of life. 

Crime is also an important economic force in the US. In 
areas where crime is prevalent, residents notice direct 
effects on housing prices, education, and job 
availability. The opportunity costs are high, as crime 
removes both victims and perpetrators of crimes from 
the productive work force. Crime prevention and 
prosecution comes at significant costs to society, as 
public and private expenditures are redirected from 
other more productive uses. In 2010, public spending on 
police protection, legal and judicial services, and 
corrections totaled over $260 billion for all jurisdictions 
(Bureau of Justice Statistics 2010). Interpersonal 
violence each year amounts to tens of thousands of 
deaths across the US, with millions more the victims of 
assault and rape. Property crime, including burglary 
and larceny, affect nearly 10 million people each year 
(Federal Bureau of Investigation 2012). Given the 
magnitude of current losses due to criminal activity, 
even small changes in crime rates can affect 
communities at a very personal and economic level, and 
can ultimately have a substantial detrimental effect on 
the US economy as a whole. 

According to the Federal Bureau of Investigation, many 
factors influence crime rates including population 
density, age, education, family cohesiveness, and 
divorce rates, effectiveness of law enforcement, and 
weather. Research efforts have long focused on 
understanding crime’s causes and contributors in order 
to improve the effectiveness of crime prevention efforts. 
Because the human and economic stakes are so high, 
every potential cause has been seriously considered. 
These efforts have determined that weather and climate 
have a consistent and significant effect on human 
conflict, broadly defined, including both violent and 
non-violent crime. This relationship has been 
documented around the globe, across all types of 
conflict, levels of development, and all spatial scales, 

through all phases of human history to modern times 
(Hsiang, Burke, and Miguel, 2013).  

Much attention has been given to climate’s effect on war 
and civil conflict, especially in regions where the scale of 
conflict is large and where climate extremes are already 
evident. While it may be easy to imagine increased 
incidence of civil conflicts in hot, arid, resource-
constrained countries, the empirical link to the climate 
applies just as readily to armed robbery in downtown 
Los Angeles. Findings from a growing body of rigorous 
quantitative research across multiple disciplines has 
found that weather, and in particular temperature, 
affects the incidence of most types of violent and non-
violent crime in American cities and rural areas alike. Of 
course, climate is not the primary cause of crime, but 
studies find clear evidence that climate variations can 
have substantial effects (Card and Dahl, 2011; Jacob, 
Lefgren, and Moretti, 2007; Ranson, 2014).  

Despite rising temperatures, the US is in the midst of a 
historic decline in crime rates. Nonetheless, the impact 
of climate on crime in American communities is real, 
and crime rates could increase — or decline more slowly 
than they otherwise would — as temperatures rise 
across the US in the coming century. With over 1.2 
million incidents of violent crime and nearly nine 
million of property crime in the US last year, the 
potential for even a small increase relative to a world 
without climate change is significant enough — in both 
human and economic terms — to merit a serious 
assessment of the risk. As with all impacts in this 
assessment, social and economic factors may determine 
local or national trends in crime, but a changing climate 
may alter these trends substantially, imposing real costs 
on Americans. In this report we assess the temperature-
related impacts on both violent and property crime in 
the US. 

BACKGROUND 

Studies across multiple disciplines – including 
criminology, economics, history, political science, and 
psychology – have found that climatic events have 
exerted considerable influence on crime and human 
conflict, even when controlling for all other possible 
explanations. This is true regardless of geography 
(whether Africa or the US), time period (as relevant in 
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ancient times as last year), duration of climatic events 
(lasting hours, days, or months), or spatial scale (global 
down to neighborhood or even building level) (Hsiang 
and Burke 2013).  

The evidence is particularly strong for one climate 
variable: temperature. Studies from across the US, 
drawn from extensive, high quality time-series data, 
provide compelling evidence of the heat-crime link. 
Studies have repeatedly found that individuals are more 
likely to exhibit aggressive or violent behavior toward 
others if temperatures are higher (Mares 2013; Kenrick 
and MacFarlane 1986a; Vrij, Van der Steen, and 
Koppelaar 1994). This has been documented for a whole 
range of aggressive behaviors: horn-honking by 
frustrated drivers; player violence during sporting 
events, and more serious criminal activity including 
domestic violence, assault, and murder (Kenrick and 
MacFarlane 1986; Mares 2013; Cohn and Rotton 1997; 
Rotton and Cohn 2000; Anderson, Bushman, and 
Groom 1997; Anderson et al. 2000; Jacob, Lefgren, and 
Moretti 2007; Larrick et al. 2011; Ranson 2014). The 
influence of higher temperatures on individuals has also 
been found to lead to increased retaliatory violence 
among groups. Studies have shown that police officers 
are more likely to use deadly force in a training 
simulation when confronted with threatening 
individuals in a hotter environment and hot days have 
contributed to more rapid escalation of retaliatory 
violence at sporting events (Larrick et al. 2011; Vrij, Van 
der Steen, and Koppelaar 1994). Temperature’s role is 
evident even when you remove the confounding effects 
of normal seasonal or annual fluctuations in crime 
rates, economic and cultural factors, enhanced crime 
reporting of over time, and changes in law enforcement 
activity (Ranson 2014). 

While there is substantial evidence to support the link 
between warmer temperatures and the incidence of 
crime, studies have not been able to determine the 
precise physiological mechanism(s) by which this 
occurs. There are several potential explanations. One 
suggests that individual criminal behavior is 
determined by rational decisions about the costs and 
benefits of certain actions, and that weather  factors into 
the probability of committing a crime without getting 
caught (B. Jacob, Lefgren, and Moretti 2007). A second 
is based on consistent evidence that temperature affects 
aggression levels, affecting an individual’s judgment in 
a way that causes loss of control and heightened 
propensity to commit criminal acts (C A Anderson et al., 
1997; Card & Dahl, 2011). Another possible explanation 
is that that the frequency of criminal acts is determined 
in part by opportunity; in this case, certain climate 

conditions allow for increased social interaction, 
expanding opportunities for crime to occur (Rotton and 
Cohn 2003). Pleasant weather, for instance, brings 
victims and offenders in closer proximity as people flock 
outdoors, resulting in increased violence, particularly 
robberies and assaults (Cohn and Rotton 1997). No 
single explanation has been able to explain all of the 
observed patterns, indicating it is quite likely that 
several of these mechanisms are at play (Hsiang and 
Burke 2013).  

OUR APPROACH 

To understand what climate change may mean for US 
crime rates in the future, we rely on statistical studies 
that isolate the observed effect of temperature and 
rainfall on crime in the United States, and apply them to 
projected future conditions. Because there are strong 
cross-county patterns in crime, as well as strong trends 
over time (that may differ by location) and over seasons, 
we rely on studies that account for these patterns when 
measuring the effect of climate variables on crime rates. 
Two published studies provide nationally representative 
estimates that satisfy these criteria, which we use to 
construct quantitative projections. Ranson (2014) 
examines county-level monthly crime rates during 
1960-2009, and Jacob et al. (B. Jacob, Lefgren, and 
Moretti 2007) examine jurisdiction-level weekly crime 
rates during 1995-2001. Both studies identify the 
incremental influence of temperature and rainfall 
changes on violent crimes and property crimes using 
data collected by the Federal Bureau of Investigation. 
Ranson’s analysis provides greater coverage over years 
and across the country (the 2010 data covers 97.4% of the 
US population); however, the studies may be 
complimentary because their sample structure and 
statistical approaches differ somewhat, reflecting 
different modeling decisions.  

Figures 9.1 and 9.2 display an optimally weighted 
average dose-response curve for both violent crime and 
property crime, drawn from Ranson (2014) and Jacob, 
Lefgren, and Moretti (2007). Both studies largely agree 
that higher daily maximum temperatures strongly and 
linearly influence violent crime, with a somewhat 
weaker and probably nonlinear influence on property 
crime. On average, increasing a county’s temperature by 
10°F for a single day increases the rate of violent crime 
linearly by roughly 0.2%.   Jacob et al. assume that all 
types of crime respond linearly to temperature, but 
when Ranson examines nonlinearity, he finds that 
property crime increases linearly up to 40 to 50°F and 
then levels off (see Figure 9.1 and Figure 9.2). These 
findings are consistent with other work that finds 
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aggressive behavior increases roughly linearly with 
temperature and that property crime is mainly 
constrained by opportunity (e.g., it is more difficult to 
steal cars and other property when it is extremely cold 
and snowy outdoors). Both papers find that the effects of 
rainfall are much smaller and less influential, with 
higher rainfall slightly increasing property crime and 
slightly decreasing violent crime. 

Figure 9.1: Temperature and violent crime 
Percentage change in incidence of violent crime vs. daily maximum 
temperature (F) 

 

Figure 9.2: Impact temperature and property crime 
Percentage change in incidence of property crime vs. daily maximum 
temperature (F) 

 

Both studies consider whether increased crime rates 
caused by high temperatures induce forward 
displacement (“harvesting”) of crimes or generate new 
crimes that would not otherwise occur. Jacob et al 

examine weekly crime rates and find that, when a hot 
week triggers additional crime, roughly half of the 
violent crimes and a third of the property crimes would 
have otherwise occurred in the following four weeks, 
with no evidence of displacement beyond the fourth 
week. Consistent with this finding, Ranson examines 
monthly crime rates and finds that, after an abnormally 
warm month, there is no evidence that crime in the 
following month is reduced. Thus, both studies find that 
temporal displacement beyond a one-month time-
frame is minimal, although there is evidence of 
displacement within that month. To account for this 
temporal displacement in our analysis, we only consider 
temperature-induced crime that would not have 
occurred in later periods. 

Ranson examines whether there is evidence that 
populations adapt by examining if the sensitivity of 
crime to temperature declines over time or is lower in 
counties that are hotter on average. Ranson finds that 
the response of crime to temperature has remained 
virtually unchanged since 1960, with only suggestive 
evidence that the sensitivity of violent crime has fallen 
very slightly over the half-century.  Ranson finds no 
evidence that hotter counties are better adapted in this 
respect, since the response of hotter and colder counties 
are indistinguishable. 

To assess potential future impacts of climate change on 
crime, we simulate changes in violent and property 
crime rates under different climate scenarios relative to 
a future in which the climate does not drive changes in 
crime after 2012—although other social and economic 
trends are assumed to continue.  Within each scenario 
we account for uncertainty in climate models, weather, 
and statistical results, causing our projection to be a 
probability distribution of potential outcomes at each 
moment in time. 

Considering the potential impact of changes in 
temperature and precipitation on crime, we find that 
crime generally increases as early as 2020-2039 and the 
range of likely changes are unambiguously positive by 
mid-century for all scenarios (see Figure 9.3). In RCP 
8.5, we estimate violent crime is likely to increase 0.6% 
to 2.1% by mid-century and 1.9% to 4.5% by late-century, 
with a 1-in-20 chance that late-century increases are 
below 1.7% or exceed 5.4% relative to baseline crime 
rates. Examining property crime, we find that impacts 
tend to be substantially smaller in percentage terms for 
all cases, with late-century rates in RCP 8.5 likely rising 
0.4% to 1.0%, with a 1-in-20 chance that the rise in 
property crime rates are less than 0.3% or more than 
1.1%. Property crime does not increase as strongly as 
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It is important to note that these estimates assume the 
national distribution of crime remains fixed relative to 
the average crime rate during 2000-2005 and that 
geographic patterns in law enforcement remain 
unchanged. It is likely that if these changes in crime 
occur, communities will respond by expanding their law 
enforcement activities. One can roughly consider how 
much additional resource communities would need to 
invest in policing activity to offset these increases by 
using estimates for the effectiveness of policing activity 
in reducing crime. Observing that each 1% increase in 

the size of the police force reduces crime by roughly 0.1 
to 0.6% (Chalfin and McCrary 2012), our results suggest 
that to fully offset the likely range of late-century violent 
crime changes in RCP 8.5, police forces would have to 
grow by 3 to 19% (lower end of likely range) to 8 to 45% 
(upper end of likely range). In Part V of this report 
(Principles for Climate Risk Management), we explore 
how our projections might change if future populations 
continue to adapt to climate-related crime at historically 
observed rates. 
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CHAPTER 10 

Energy

Energy is a key ingredient in US economic growth. 
Ensuring a reliable supply of electricity and other 
sources of energy is critical to the financial security of 
American businesses and households, and to the 
national security of the country as a whole. While 
dynamic enough to respond to the climate conditions of 
the past, our energy system, as currently designed, is 
poorly prepared for future climatic changes.  Rising 
temperatures, increased competition for water supply, 
and elevated storm surge risk will affect the cost and 
reliability of US energy supply.  Climate change will also 
shape the amount and type of energy consumed. In this 
chapter we quantify the demand-side impacts of the 
projected changes in temperature discussed in Chapter 
4, and discuss the range of supply-side risks the US 
energy sector faces as well.  

BACKGROUND 

Energy demand is highly climate-sensitive in some 
sectors, and temperature in particular is a significant 
determinant of both the quantity and type of energy 
consumed. Demand for heating and cooling, which 
accounts for roughly half of residential and commercial 
energy use, fluctuates hourly, daily, and seasonally in 
response to outdoor ambient temperatures. Warmer 
winter temperatures as a result of climate change will 
reduce heating demand, particularly in northern states, 
which is currently met largely through the combustion 
of natural gas and fuel oil in boilers, furnaces, and water 
heaters. At the same time, hotter summer temperatures 
will increase demand for residential and commercial air 
conditioning run on electricity. Climate-driven changes 
in air conditioning can have an out-sized impact on the 
electric power sector, forcing utilities to build additional 
capacity to meet even higher peak temperatures. 

OUR APPROACH 

To assess the effect of the projected temperature 
changes discussed in Chapter 4 on US energy 
consumption, we turned first to the econometric 
literature.  Because there are strong cross-location 
patterns in energy demand, as well as strong trends over 
time (that may differ by location) and over seasons, we 
focused on studies that account for these patterns when 
measuring the effect of climate variables on energy 
demand. Two studies provide estimates that satisfy 

these criteria, although only one is nationally 
representative. Deschenes and Greenstone (2011) 
examine state-level annual electricity demand for the 
country from 1968-2002 using data from the US Energy 
Information Administration (EIA), and Auffhammer 
and Aroonruengsawat (2011) study building-level 
electricity consumption for each billing cycle (roughly a 
month) for California households served by investor-
owned utilities (Pacific Gas and Electric, San Diego Gas 
and Electric, and Southern California Edison). Both 
studies identify the incremental change in electricity 
consumed for each additional day at a specified 
temperature level. Deschenes and Greenstone provides 
national coverage, while Auffhammer and 
Aroonruengsawat provide greater temporal and spatial 
resolution across the full range of climate zones in 
California; thus, the studies may be complimentary.  

Figure 10.1: Temperature and electricity demand 
Observed change in electricity demand (%) vs. daily temperature (F) 

 

Both studies find that electricity consumption increases 
during both hot days that exceed roughly 65°F and cold 
days that fall below roughly 50°F (Figure 10.1). 
Incremental increases in daily temperature cause 
electricity consumption to rise more rapidly than 
incremental decreases in temperature, although both 
changes have substantial impacts on overall demand. 
Auffhammer and Aroonruengsawat further examine 
how the shape of this dose-response function changes 
with the climate zone that each household inhabits, 
finding that in hotter locations that are more likely to 
have air conditioning widely installed, electricity 
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demand increases more rapidly with temperature.  This 
suggests that as populations adapt to hotter climates, 
they install more air conditioning infrastructure and use 
air conditioning more heavily for hot days at a fixed 
temperature.  

Widening the lens  

Unfortunately, the available econometric studies only 
capture part of the energy demand story. While 
residential and commercial electricity demand rises 
alongside temperature, as households and businesses 
increase their use of air conditioning, natural gas and oil 
demand in those two sectors falls. Many households and 
businesses use natural gas or oil-fired boilers and 
furnaces for heating, rather than electricity. The 
econometric studies mentioned above only cover 
changes in demand, not changes in price. To capture 
these fuel substitution and price effects, we employ 
RHG-NEMS, a version of the EIA’s National Energy 
Modeling System (NEMS)2 maintained by the Rhodium 
Group. 

NEMS is the model used by the EIA to produce its 
Annual Energy Outlook, the most widely-used projection 
of future US energy supply and demand. NEMS is the 
most detailed publicly-available model of the US energy 
system, as it includes every power plant, coal mine and 
oil and gas field in the country. Individual consumer 
decisions regarding how much to heat or cool their 
homes, which appliance to buy and what car to drive are 
explicitly modeled, as are producer decisions regarding 
new electricity, oil, gas and coal production. 
Temperature is an input into NEMS, and impacts 
heating and cooling demand in the residential and 
commercial sectors. The appliances and equipment used 
to meet this demand influences the quantity of 
electricity, natural gas and oil supplied to household 
and business consumers.  

We began by comparing the modeled impact of a given 
change in temperature on electricity demand in NEMS 
with the empirically-derived dose-response function 
above and found very similar results. We then modeled 
the impact of a range of regional temperature 
projections from Chapter 4 to capture the change in 
total energy demand, energy prices, and delivered 
energy costs. NEMS only runs to 2040, but is still useful 
in modeling the impact of longer-term temperature 
changes relative to the energy system we have today. As 
we are measuring the impact of climate-driven changes 
in energy demand relative to a baseline, the baseline 
                                                                                    
2 More information on NEMS is available at 
http://www.eia.gov/oiaf/aeo/overview/ 

itself matters less. Modeling long-term temperature 
changes in NEMS provides a reasonable estimate of the 
relative chance in demand, price, and costs given 
current economic and energy system structures.   

RESULTS 

Energy demand 

Consistent with the econometric estimates, we find 
meaningful climate-driven increases in residential and 
commercial electricity demand. Under RCP 8.5, average 
nationwide electricity demand in the residential and 
commercial sectors likely increases by 0.7 to 2.2% by 
2020-2039, 2.3 to 4.9% by 2040-2059, and 6.2 to 14% by 
2080-2099 (Figure 10.2).  The largest increases occur in 
the Southwest, the Southeast and southern Great Plains 
states (Figure 10.3). Texas, Arizona, and Florida see late 
century likely increases of 9.6 to 21%, 8.5 to 21% and 9.6 
to 22% respectively. At the other end of the spectrum, 
most New England states and those in the Pacific 
Northwest see low single-digit likely increases, with 
declines possible in certain counties. 

In RCP 4.5, we find a likely increase in average electricity 
demand of 0.2 to 1.9% by 2020-2039, 1.2 to 4.1% by 2040-
2059, and 1.7 to 6.6% by 2080-2099. In RCP 2.6 we find a 
likely increase of 0.8 to 2.1% by 2020-2039, 1.1 to 2.7% by 
2040-2059, and 0.7 and 2.7% by 2080-2099. 

Offsetting this increase in cooling-driven electricity 
demand, we find a significant decline in heating-driven 
natural gas and fuel oil demand in the residential and 
commercial sectors under RCP 8.5. This decline is 
concentrated in the Northeast, upper Midwest, 
northern Great Plains, and Northwest, areas with the 
greatest heating needs today. Total natural gas demand 
does not fall because demand from the power sector 
increases, but the net effect of changes in heating and 
cooling demand is a very modest change in energy 
consumption overall.   

Energy costs 

While we find little climate-driven change in total 
energy demand, the switch from heating demand to 
cooling demand raises total energy costs. Climate-
driven increases in cooling demand increase electricity 
consumption during the hottest times of the day and 
hottest periods of the year, when electricity demand is 
already at its peak. Higher peak demand requires the 
construction of additional power generation capacity to 
ensure reliable electricity supply.  Under RCP 8.5, we 
find a likely increase in installed power generation 
capacity due to climate-driven changes in electricity 
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describe some of the most significant supply-side 
climate impacts below.   

Thermal generation efficiency 

Coal, natural gas, oil, nuclear, and biomass power 
plants all produce electricity by boiling water and using 
steam to spin a turbine. This steam is then recycled by 
cooling it back into water. Higher ambient air 
temperatures as a result of climate change reduce the 
efficiency of this process. The magnitude of the impact 
depends on a number of plant- and site-specific factors. 
For most combined cycle plants, every 1.8°F (1°C) 
increase in air temperature will likely reduce electricity 
output by 0.3 to 0.5% (Maulbetsch and Difilippo 2006). 
For combined cycle plants with dry cooling, often more 
sensitive to warmer ambient temperatures, the 
reduction can be as large as 0.7% (Davcock, DesJardins, 
& Fennel, 2004). For natural gas-fired combustion 
turbines, which are often used for peaking, each 1.8°F 
increase in temperature will likely result in a 0.6 to 0.7% 
decline in electricity output, and for nuclear power 
output losses are estimated at approximately 0.5% 
(Linnerud, Mideksa, and Eskeland 2011). Combining 
these reductions with the projected increase in average 
summer temperatures under RCP 8.5 described in 
Chapter 4 suggests thermal efficiency declines could 
reduce total electricity generation by 2 to 3% by mid-
century and 4 to 5% by late century, depending on 
energy technology mix.  

Nearly all the electric power plants in the US use water 
for cooling, and the power sector accounts for nearly 
half of total US water withdrawals (Energy Information 
Administration 2011). Ambient temperatures affect 
surface water temperatures. Surface water temperatures 
in many US rivers have risen in recent years (Kaushal et 
al. 2010) and are projected to continue to warm due to 
climate change in the decades ahead (Cloern et al. 2011; 
Georgakakos et al. 2014; Michelle T H Van Vliet et al. 
2012). Warmer water temperatures can degrade the 
efficiency of cooling processes and reduce electricity 
production as well (Van Vliet et al. 2012). In August 2012, 
record water temperatures in the Long Island Sound 
shut down one reactor at the Dominion Resources’ 
Millstone Nuclear Power Station in Connecticut because 
the temperature of the intake cooling water exceeded 
technical specifications of the reactor. While no power 
outages were reported, the two-week shutdown resulted 
in the loss of 255,000 megawatt-hours of power, worth 
several million dollars (U.S. Nuclear Regulatory 
Commission 2012). 

The majority of US thermal power plants currently use 
once-through cooling systems, which use water from a 
nearby lake, river, aquifer, or ocean to cool steam and 
then return it to the body of water from which it was 
withdrawn. Because of the elevated temperatures of 
discharged water, thermal discharge limits have been 
established to protect aquatic ecosystems. Increasing 
water temperatures put power plants at risk of 
exceeding these limits, with the potential for financial 
penalties or forced curtailments (Skaggs et al. 2012). 
Indeed, large coal and nuclear plants have, in several 
cases in recent history, been forced to restrict operations 
due to higher water temperatures (Averyt et al. 2011). A 
recent study projected a decrease in average summer 
capacity of thermoelectric plants with once-through 
cooling of 12 to 16% and those with recirculation cooling 
systems of 4.4 to 5.9% by mid-century, dependent on 
emissions scenario (Van Vliet et al. 2012). The study also 
found that the probability of extreme (greater than 90%) 
reductions in power production will on average increase 
by a factor of three. 

Electricity transmission 

Approximately 7% of generated electricity is lost during 
transmission and distribution (known as “line losses”), 
with the greatest losses occurring on hot days (Energy 
Information Administration 2012a). Increased average 
temperatures, as well as more frequent temperature 
extremes, will likely exacerbate these transmission and 
distribution losses (Wilbanks, Fernandez, et al. 2012; J. 
Sathaye et al. 2012; USGCRP 2009). Warmer 
temperatures are also linked to diminished substation 
efficiency and lifespan (Sathaye et al. 2012). Current line 
losses are valued at nearly $26 billion (Energy 
Information Administration 2012b), so even small 
increases in loss rates can have a significant impact on 
electricity producers and consumers.  A recent study 
found that a 9°F increase in average summer 
temperatures in the Southwest (within our projected 
end of century range under RCP 8.5) would result in a 7 
to 8% reduction in transmission carrying capacity 
(Sathaye et al. 2013). Extreme heat events could result in 
even higher losses. Depending on the duration and 
intensity of the event, extreme temperatures can lead to 
power outages, as happened in 2006 when power 
transformers failed in Missouri and New York during a 
heat wave, causing widespread electricity supply 
interruptions (USGCRP 2009).  

Arctic oil and gas production 

Climate change is already shaping the energy landscape 
in Arctic Alaska, which has warmed faster than any 
other region of the US to date, with both positive and 
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negative impacts for US energy supply. Alaska currently 
accounts for over 10% of US crude oil production and is 
home to a large share of the national oil and gas resource 
base (US Energy Information Administration 2013). 
Warming temperatures have already resulted in 
permafrost thaw, which is beginning to threaten on-
shore infrastructure on which oil and gas exploration 
and production depends. Energy pipelines built on 
permafrost are at increasing risk of rupture and leakage, 
and warmer temperatures are already resulting in 
shorter winter road seasons. The number of days of 
allowable travel on Alaskan tundra have been cut in half 
over the past 30 years, limiting the time during which 
onshore oil and gas exploration and production 
equipment can be used (Alaska State Legislature 2008). 
In a changing and unstable Arctic, the cost of 
maintaining existing infrastructure will likely increase, 
as will design and construction costs for new onshore 
infrastructure. Climate change is opening up new 
sources of oil and gas development as well. Higher 
temperatures are reducing sea ice cover, which is 
improving access to substantial offshore oil and natural 
gas deposits in the Beaufort and Chukchi seas.   

Water availability  

Current US energy production is extremely water-
intensive and climate change will impact US water 
supply in myriad ways (see Chapter 17).  Increased 
evaporation rates or changes in snowpack may affect the 
volume and timing of water available for hydropower 
and power plant cooling, and changing precipitation 
patterns can affect bioenergy production. In regions 
where water is already scarce, competition for water 
between energy production and other uses may also 
increase. Regions that depend on water-intensive power 
generation and fuel extraction will be particularly 
vulnerable to changes in water availability over time. 

At 40% of total freshwater withdrawals, thermal power 
generation is the largest water consumer in the US 
(Kenny et al. 2009). Seasonal and chronic water scarcity 
has resulted in electricity supply disruptions in the past, 
particularly during periods of low summer flow.  For 
example, a drought in the southeastern US in 2007 
forced nuclear and coal-fired power plants within the 
Tennessee Valley Authority system to shut down some 
reactors and reduce production at others (National 
Energy Technology Laboratory 2009). Similar water-
driven shutdowns occurred in 2006 along the 
Mississippi River at the Exelon Quad Cities Illinois 
plant, as well as some plants in Minnesota. A recent 
assessment found that nearly 60% of coal-fired power 
plants in the US are located in areas subject to water 

stress from limited supply or competing demand from 
other sectors (National Energy Technology Laboratory 
2010). 

Although annual average precipitation will likely 
increase across the continental US over the next 
century, changes in seasonality of precipitation, timing 
of spring thaw, and climate-driven changes to surface 
runoff may affect surface and groundwater supplies in 
some regions.  Potential future water scarcity increases 
the risk of electricity supply disruptions in some 
regions. In particular, surface and groundwater supplies 
in the Southwest, Southeast, and southern Rockies are 
expected to be affected by runoff reductions and 
declines in groundwater recharge, increasing the risk of 
water shortages (Georgakakos et al. 2014). According to 
the Electric Power Research Institute, approximately 
one-quarter of electricity generation in the US  – 250 
gigawatts (GW) – is located in counties projected to be at 
high or moderate water supply sustainability risk in 
2030 (EPRI 2011). The study found that all generation 
types will be affected, with 29 GW of nuclear, 77 GW of 
coal, and 121 GW of natural-gas generation capacity in 
counties with “at risk” water supplies.  

Hydroelectric generation accounts for 7% of total US 
electricity supply, roughly 20% of electricity generation 
in California and the Northeast, and up to 70% of 
electricity generation in the Pacific Northwest 
(Georgakakos et al. 2014; Energy Information 
Administration 2013). Projected climatic changes, 
including more precipitation falling as rain and less as 
snow, reduced snowpack, and earlier peak runoff, may 
decrease annual water storage and runoff. The resulting 
reductions in streamflow will decrease available 
hydropower generation capacity. The degree of impact 
will vary widely by region, with the western US 
expected to be at greatest risk. 

Water also plays a vital role in oil and gas production. 
Large volumes of water are used throughout the 
production process, including enhanced oil recovery, 
hydraulic fracturing, well completion, and petroleum 
refining. As the share of US oil and gas production 
coming from unconventional sources, including coal 
bed methane, tight gas sands, and shale oil and gas, 
increases access to water will becoming increasingly 
important in sustaining US production growth (US DOE 
2013a). In times of water stress, oil and gas operations 
must compete with other water users for access, 
limiting availability and driving up costs. During the 
severe drought of July 2012, oil and natural gas 
producers faced higher water costs or were denied 
access to water for six weeks or more in several states 
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including Kansas, Texas, Pennsylvania, and North 
Dakota (Dittrick 2012; Ellis 2012; Hargreaves 2012). 

Coastal storms and sea-level rise 

The sea-level rise and coastal storm dynamics discussed 
in Chapter 4 threaten important energy assets as well as 
commercial and residential property. Superstorm Sandy 
demonstrated the extent to which coastal storms can 
disrupt energy supply. Storm surge and high winds 
downed power lines, flooded substations and 
underground distribution systems, and damaged or 
shut down ports and several power plants in the 
Northeast (US DOE 2013b). More than eight million 
customers in 21 states lost power, further threatening 
vulnerable populations reeling from the effects of the 
storm (US DOE 2012). Sandy also forced the closure of oil 
refineries, oil and gas pipelines, and oil and gas shipping 
terminals, impeding fuel supply in the region. 

Over half of total US energy production and three 
quarters of electricity generation takes place in coastal 
states (US Energy Information Administration 2013). 
The concentration of critical facilities in vulnerable 
coastal areas creates systemic risk not only for the 
region, but the nation as a whole. The Gulf Coast is a 
prime example. The region is responsible for half of US 
crude oil and natural gas production and is home to 
nearly half the country’s refining capacity, with nearly 
4,000 active oil and gas platforms, more than 30 
refineries, and 25,000 miles of pipeline (Entergy 2010; 
Wilbanks et al. 2012). It is also home to the US Strategic 
Petroleum Reserve (SPR), with approximately 700 
million barrels of crude oil stored along the Gulf Coast 
for use in the event of an emergency (DOE 2012). With a 
substantial portion of US energy facilities located in the 
Gulf, isolated extreme weather events in the region can 
disrupt natural gas, oil, and electricity markets 
throughout the US (Wilbanks et al. 2012). 

Outside of the Gulf Coast, other regional energy hubs 
are also at risk. The National Oceanic and Atmospheric 
Administration warns that outside of greater New 
Orleans, Hampton Roads near Norfolk, Virginia, is at 
greatest risk from sea-level rise and increased storm 
surge. The area is home to important regional energy 
facilities, including the Lamberts Point Coal Terminal, 
the Yorktown Refinery, and the Dominion Yorktown 
power plant (Wilbanks, Bilello, et al. 2012). On the other 
side of the country, many of California’s power plants 
are vulnerable to sea-level rise and the more extensive 
coastal storm flooding that results, especially in the low-
lying San Francisco Bay area. An assessment done for 
the California Energy Commission found that the 
combined threat of sea-level rise and the incidence of 
100 year floods in California puts up to 25 
thermoelectric power plants at risk of flooding by the 
end of the century, as well as scores of electricity 
substations and natural gas storage facilities (J. Sathaye 
et al. 2012). 

Wildfires 

Wildfires (see Chapter 18) also pose a risk to the nation’s 
energy infrastructure. During the summer of 2011, 
severe drought and record wildfires in Arizona and New 
Mexico burned more than one million acres and 
threatened two high voltage lines transmitting 
electricity from Arizona to approximately 400,000 
customers in New Mexico and Texas. In 2007, the 
California Independent System Operator declared an 
emergency due to wildfire damage to more than two 
dozen transmission lines and 35 miles of wire, with 
nearly 80,000 customers in San Diego losing power, 
some for several weeks (Vine 2008; SDGE 2007). More 
frequent and severe wildfires increase the risk of 
physical damage to electricity transmission 
infrastructure and could decrease available 
transmission capacity. 
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CHAPTER 11 

Coastal Communities

Temperate climates, attractive scenery, ease of 
navigation, and access to ocean food supplies have put 
coastlines at the forefront of human development 
throughout history and around the world. The United 
States is no exception. Today, counties touching the 
coast account for 39% of total US population and 28% of 
national property by value. Coastal living carries risk, 
particularly on the East Coast and along the Gulf of 
Mexico, where hurricanes and other coastal storms 
inflict billions in property and infrastructure damage 
each year. Climate change elevates these risks. Rising 
sea levels will, over time, inundate low-lying property 
and increase the amount of flooding that occurs during 
coastal storms. Moreover, as discussed in Chapter 4, 
warmer sea surface temperatures may change the 
frequency and intensity of those storms. 

BACKGROUND 

A growing body of academic work assesses the potential 
impacts of sea-level rise (SLR) on coastal communities. 
Early studies focused on developing a methodology for 
site-specific estimates of damage from SLR that could be 
used as a model for nationwide assessments (Yohe 1990). 
Several compared the cost to coastal property of 
damages from mean sea-level rise with the cost of 
protecting that property with sea walls, structural 
enhancements, and other adaptive measures (Yohe et al. 
1996; G. Yohe and Schlesinger 1998).  

Subsequent work expanded to regional assessments. 
One of the first was conducted by the US Environmental 
Protection Agency (Titus and Richman 2001), which 
identified areas vulnerable to inundation from higher 
sea levels along the Atlantic and Gulf coasts. A 
subsequent US interagency assessment of the Mid-
Atlantic simulated a one meter sea-level rise running 
from New York through Virginia and estimated the 
associated impacts on residential property and coastal 
residents (CCSP 2009). The first robust national 
estimate of potential inundation damage from SLR, as 
well as the cost of protective measures, was published in 
2011 (Neumann et al. 2011) using the National Coastal 
Property Model (NCPM) developed by Industrial 
Economics, Inc. (IEc) for the US Environmental 
Protection Agency.  

Permanent inundation from mean sea-level rise is only 
one of the risks climate change presents to coastal 
property and infrastructure. Higher average sea levels 
lead to higher storm surges and elevated flooding risks 
(Frumhoff et al. 2007), even if the intensity or frequency 
of storms remains unchanged (Frazier et al. 2010). Kemp 
and Horton (2013) found that, while the record 13.9 foot 
storm tide in New York Harbor during Superstorm 
Sandy was primarily due to the coincidence of the 
strongest winds with high tide, SLR driven by historical 
climate change added more than one foot to that 13.9 
foot total.  

A number of recent studies have assessed coastal 
communities’ vulnerability to future SLR-driven 
increases in storm surge. At a local scale, following 
Superstorm Sandy, the New York City Panel on Climate 
Change analyzed the risk to the city’s property and 
infrastructure from future climate-driven changes in 
sea levels and storm activity (NPCC 2013). California 
conducted an assessment of the impact of sea-level rise 
on the Bay Area’s 100 year floodplains for coastal storms 
(Commission 2011; Heberger et al. 2012), and 
Harrington & Walton (2008) estimated impacts on 
coastal property for six coastal counties in Florida. 
Neumann et al. have incorporated projected increases in 
storm surge as a result of both mean SLR and potential 
changes in hurricane intensity and frequency into the 
NCPM for select cities (Neumann et al. 2014).  

OUR APPROACH 

Alongside the academic and policy-oriented work 
described above, private companies have developed 
sophisticated models to estimate potential losses from 
coastal storms. These models are used by the insurance 
industry in underwriting flood and wind insurance 
products, by the finance industry in pricing catastrophe 
bonds, and by local officials in coastal communities in 
preparing for and responding to hurricanes and other 
coastal storms. While not traditionally used in this way, 
they are also incredibly powerful tools for 
understanding how climate change will likely shape 
both industry and coastal community risk exposure in 
the years ahead.  

Risk Management Solutions (RMS) is a leading provider 
of such tools, along with models for quantifying and 
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managing other catastrophic risks, from earthquakes to 
terrorist attacks to infectious disease, and a partner in 
this assessment. To assess the value of property at risk 
from future sea-level rise, we mapped the probabilistic 
local SLR projections described in Chapter 4 against 
RMS’s detailed exposure dataset, which covers 
buildings, their contents, and automobiles for all coastal 
counties in the US. To analyze the impact of local SLR on 
storm surge and flood damage during hurricanes and 
nor’easters, we employed RMS’s North Atlantic 
Hurricane Model. This model combines state-of-the art 
wind and storm surge modeling, and a stochastic event 
set that represent more than 100,000 years of hurricane 
activity and spans the range of all possible storms that 
could occur in the coming years (see Appendix III).    

The result of this analysis is the first comprehensive, 
nationwide assessment of the risk to coastal 
communities from mean SLR and SLR-driven increases 
in storm surge from hurricanes and nor’easters under a 
full range of climate futures, and at a very high level of 
geographic resolution. Taking this work one step 
further, we explore the impact of changes in hurricane 
frequency and intensity projected by Knutson et al. 
(2013) for RCP 4.5 and Emanuel (2013) for RCP 8.5 on 
both future storm surge and wind damage (see Chapter 
4).3  

There is considerable uncertainty surrounding future 
coastal development patterns, which makes accurate 
cost projections challenging. Over the past few decades, 
population and property values in coastal counties have 
grown faster than the national average, putting more 
people and assets at risk. It is unclear the extent to which 
this trend will continue going forward, given 
constraints to further development and expansion in 
many coastal areas. Rather than attempt to predict how 
the built environment will evolve in the decades ahead, 
we assess the impact of future changes in sea level and 
storm activity relative to the American coastline as it 
exists today. Damages are reported in current dollars 
against current property prices. 

RESULTS 

Inundation from mean sea-level rise 

While all coastal states are at risk from rising sea levels, 
some are much more vulnerable than others. Under 

                                                                                    
3 While we capture projected change in frequency and intensity from the 
cyclogenesis models employed by Knutson et al. and Emanuel, we do 
not capture and projected change in landfall location. This could have a 
meaningful impact on the geographic distribution of hurricane-related 
losses and is worthy of considerable additional research.   

RCP 8.5, for example, between 4.1 and 5.5% of total 
insurable residential and commercial property in the 
state of Louisiana will likely be below MSL by 2050 
(excluding that property already below MSL), growing 
to 15 to 20% by 2100 (Figure 11.1). Florida is the second 
most vulnerable state in percentage terms, with 0.4 to 
0.6% of current statewide property likely below MSL by 
2050, growing to 1 to 5% by 2100. In dollar terms, 
between $33 and $45 billion worth of current Louisiana 
property will likely be below MSL by 2050, growing to 
$122 to $164 billion by 2100. The total value of current 
Florida property at risk is similar, with between $15 and 
$23 billion likely below MSL by 2050, growing to $53 to 
$208 billion by 2100 (Figure 11.3).  

Nationwide, we find that between $66 and $106 billion 
worth of current coastal property will likely be below 
mean sea level (MSL) by 2050 under RCP 8.5 unless 
protective measures are taken (Table 11.1), growing to 
$238 to $507 billion by 2100 (Table 11.2). The value of 
current property likely under MSL falls to $62 to $85 
billion by 2050 in both RCP 4.5 and 2.6. By 2100, 
nationwide property likely below MSL is $175 to $339 
billion in RCP 4.5 and $150 to $276 billion in RCP 2.6.     

Two factors explain this relatively small difference in 
inundation between the RCPs. First, the expanding 
ocean and melting ice sheets respond both to the 
amount of warming and the length of exposure to 
elevated temperatures. Temperatures begin to diverge 
significantly between RCPs only in the second half of 
the century; sea level, which integrates temperature, 
diverges later. Second, the largest sources of 
uncertainty in sea level are potential positive feedbacks 
in the behavior of ice sheets, particularly the West 
Antarctic Ice Sheet (WAIS).  For example, for parts of 
the sea floor that are appropriately sloped, it is possible 
that, as a warming ocean eats away at the base of the 
WAIS (which unlike most of the Greenland and East 
Antarctic Ice Sheets largely sits below sea level), it will 
expose more of the ice sheet to the ocean, which will 
accelerate melt, exposing still more ice, and so forth. 
Such feedbacks are poorly understood at present; the 
uncertainties arising from this low level of 
understanding are independent of emissions and 
therefore cause the projected ranges of sea level change 
for all the RCPs to overlap considerably. 

At the tails of the sea-level rise probability distribution, 
inundation damages are considerably worse than the 
likely range. For example, there is a 1-in-20 chance more 
than $346 billion worth of current Florida property 
(8.7%) could be below MSL by the end of the century 
under RCP 8.5 (Figure 11.3), and a 1-in-100 chance that  
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Figure 11.1: Share of current property below MSL in 2100 
RCP 8.5 

 

Figure 11.2: Share of current property below MHHW due to 
SLR by 2100 
RCP 8.5  

 

Figure 11.3: Value of current property below MSL by 2100 
RCP 8.5, billion 2011 USD  

 

 
Figure 11.4: Value of additional current property below MHHW 
due to SLR by 2100 
RCP 8.5, billion 2011 USD  

 

more than $681 billion of current Florida property (17%) 
could be lost by 2100 unless defensive measures are 
taken. Nationwide, there is a 1-in-20 chance that more 
than $701 billion worth of current property is below 
MSL by 2100, and a 1-in-100 chance it will be more than 
$1.1 trillion (Table 11.2). 

While roughly two-thirds of all current property likely 
below MSL by 2050 is in Louisiana and Florida, and 
three-quarters of all property by the end of the century, 
Maryland, Texas, Massachusetts, North Carolina, New 
York, New Jersey, and California also face meaningful 
inundation risk. In Maryland, for example, between $13 
and $23 billion (0.7 and 1%) of current state-wide 
property will likely be below MSL by 2050, with losses 

concentrated in Queen Anne’s and Talbot counties 
located on the east side of the Chesapeake Bay. In Texas, 
up to $44 billion of current property is likely below MSL 
by the end of the century, including important 
industrial and energy infrastructure. 

Inundation risk from SLR extends beyond those 
properties underwater at average tide levels. There is 
currently $1.6 trillion in coastal property that is above 
mean sea level, but at or below peak high tide levels, 
often referred to as Mean Higher High Water levels or 
MHHW. Most of this property is protected by shoreline 
defense built up over the course of decades, or even 
centuries. As mean sea levels rise, the high tide mark  
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Figure 11.9: Relative increase in average annual coastal 
storm damage due to higher sea levels in 2030 
Percent change from 2010 expected average annual losses 

 

Figure 11.10: Relative increase in average annual coastal 
storm damage due to higher sea levels in 2050 
Percent change from 2010 expected average annual losses 

 

Figure 11.11: Relative increase in average annual coastal 
storm damage due to higher sea levels in 2100 
Percent change from 2010 expected average annual losses 

 

Figure 11.12: Absolute increase in average annual coastal 
storm damage due to higher sea levels in 2030 
Million 2011 USD relative to 2010 expected average annual losses 

 

Figure 11.13: Absolute increase in average annual coastal 
storm damage due to higher sea levels in 2050 
Million 2011 USD relative to 2010 expected average annual losses 

 
 
Figure 11.14: Absolute increase in average annual coastal 
storm damage due to higher sea levels in 2100 
Million 2011 USD relative to 2010 expected average annual losses 
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sea-level rise and modeled changes in hurricane 
activity raise average annual losses by $62 to $91 
billion, three times as much as higher sea levels alone.  

Under RCP 4.5, using changes in hurricane activity 
projected by Knutson et al. (2013), the increase in 
average annual commercial and residential property 
damage as a result of climate change is likely  $2.7 to 
$7.0 billion by 2030, $11 to $22 billion by 2050, and $56 
to $80 billion by 2100. Averaged over the two decade 
intervals used for other impact categories, the 
increases are $3.6 to $5.7 billion by 2020-2039, $11 to 
$22 billion by mid-century and $47 to $65 billion by 
late century (Figure 11.14). The increase in damage 
resulting from either Emanuel or Knutson et al.’s 
projections for future changes in hurricane activity 
are due both to greater storm surge (even without 
climate-driven SLR) and greater wind damage.  

While examining different RCPs, both Emanuel and 
Knutson et al. find significant changes in hurricane 
activity as a result of warmer sea surface 
temperatures. Should this finding turn out to be 
correct, changes in storm activity could be a more 
important determinant of climate-driven changes in 
hurricane damage than sea-level rise alone in the 
years ahead.  

KEEPING OUT THE SEA 

There are a number of steps individual building 
owners, community organizations, and policymakers 
at the local, state and national level can take to guard 
against some of these coastal impact. These include 
strengthening buildings, constructing sea walls, and 
nourishing beaches. We analyze the extent to which 
these adaptive measures can reduce the risk coastal 
communities face in Part V of this report.  
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CHAPTER 12 

From Impacts to Economics 

What are the economic consequences of the climate 
impacts described in the preceding chapters? Rising sea 
levels, increased flooding, and more frequent and 
intense coastal storms damage capital that must be 
rebuilt. Changing yields impact the financial health of 
both agricultural producers and farming communities. 
Climate-driven changes in mortality rates shape overall 
labor supply, and temperature influences the 
productivity of that labor. Higher energy prices reduce 
real household income and raise business costs, and 
changes in crime rates impact property values, and 
public expenditures on police and other security 
services.  The costs of climate change will not be evenly 
spread throughout the country.  The nature and 
magnitude of the economic risks Americans face 
depends very much on who they are and where they 
live.  

Economists began studying the impact of climate 
change on modern economies in the early 1990s, 
starting with the pioneering work of Yale professor 
William Nordhaus (1991),  Peterson Institute for 
International Economics fellow William Cline (1992), 
and London School of Economics professor Samuel 
Fankhauser (1993). Research focused on combining 
climate and economic models to enable an integrated 
assessment of the relationship between a) economic 
activity and GHG emissions, b) GHG emissions and 
global temperature increases, and c) global temperature 
increases and economic activity. The first of these 
“benefit-cost integrated assessment models” (IAMs) 
were developed by Nordhaus (1994), Cambridge 
professor Chris Hope (1993), and University of Sussex 
professor Richard Tol (1995). These three models 
continue to be among the most often used, although a 
few others have joined their ranks (Revesz et al. 2014). 

IAMs are primarily used to conduct cost-benefit analysis 
of emission reduction strategies at the global level 
(Mastrandrea et al. 2010). The cost of climate change is 
quantified through one or more climate “damage 
functions,” which provide monetary estimates of 
climate impacts associated with different increases in 
global average temperatures, often expressed as a 
percentage loss of GDP. This is mapped against an 
“abatement cost function” that provides a monetary 
estimate of the cost of reducing GHG emissions, also 
generally expressed as a percentage loss of GDP, to 

estimate the economically optimal level of emissions 
reduction.  

Because their scope of coverage is so broad, IAMs 
necessarily rely on simplified representations of 
individual components of both climate and economic 
systems (Kopp and Mignone 2012). For example, most 
models explore changes in global mean temperatures 
and sometimes sea-level, but not how these changes 
shape temperature, precipitation, and sea levels at a 
local level.  Economic costs are generally assessed and 
presented as global aggregates or aggregates for a small 
number of multinational regions, with no sub-national 
geographic detail and often no sectoral detail. Most 
IAMs assume the economy naturally adapts to climate 
change to the extent it makes economic sense to do so. 
Those climate costs that can’t be addressed through 
adaptation are weighed against the cost of reducing 
emissions based upon a single representative decision-
maker’s attitude towards risk and level of concern 
regarding future economic liabilities.  

These features make IAMs less useful for the type of risk 
assessment we seek to provide with this report than the 
national or global benefit-cost analysis for which they 
have traditionally been employed. American businesses 
and households experience climate change in the form 
of shifts in local daily temperature and precipitation 
patterns, rather than global annual averages.  Global or 
nationwide economic cost estimates are useful in 
international or national policy-making, but do little to 
inform local risk management decisions. Indeed, local 
decision-makers, whether state infrastructure planners, 
property developers, agricultural producers, or 
individual households, need more tailored information 
in order to make the adaptation investments the IAMs 
assume will occur.  These individuals and institutions 
differ in both risk tolerance, and in planning and 
investment time horizons, making economy-wide risk 
aversion and time preference assumptions irrelevant to 
their individual decision-making process.  

Over the past decade, researchers have begun taking a 
more granular approach to assessing the economic cost 
of climate change, including in the United States. For 
example, in 2004, economist Dale Jorgenson used a 
computable general equilibrium (CGE) model of the US 
economy, and the best climate projections and impact 
estimates available at the time to assess national costs at 
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a sectoral as well as economy-wide level (Jorgenson et 
al. 2004).  In 2009, David Abler, Karen Fisher-Vanden 
and colleagues conducted a similar assessment for 
Pennsylvania, providing a greater level of geographic 
resolution (Abler et al. 2009). A 2010 report by Sandia 
National Laboratory analyzed potential economic 
impacts in the US across a wider range of climate 
scenarios than past assessments (Backus et al. 2010). 

A category of IAMs distinct from the benefit-cost IAMs 
discussed above, known as process-based IAMs, contain 
detailed representations of the energy and agriculture 
sectors. These process-based IAMs have traditionally 
been used for analyses of the cost-effectiveness of 
climate change mitigation strategies rather than for 
assessments of the risks of climate change. Recent work, 
however, has begun to incorporate feedbacks from 
climate change onto these models’ representation of the 

national and global economy, laying the groundwork 
for assessments of the economic costs of climate change 
(Calvin et al. 2012; Reilly et al. 2012). 

Building on this work, in this section we quantify the 
economic consequences of the climate impacts 
described in Part 2 by sector, state, and region, and 
across a full range of potential climate futures. We 
assess the impact on those sectors, states, and regions 
directly affected (Chapter 13), how those impacts ripple 
throughout the region and the country, and how 
climate impacts in a given year affect the rate of 
economic growth in subsequent years (Chapter 14). 
Finally, we explore how the differences in time 
preference, risk appetite, and concern about inequality 
shape the national significance of these economic 
impacts (Chapter 15).  
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or benefit in that geographic area. At the national level, 
assuming current farming practices continue, the likely 
change in yields under RCP 8.5 range from an average 
annual direct cost of -$8.5 billion (i.e., a $8.5 billion 
benefit) to +$9.2 by 2020-2039, -$8.2 to +$19 billion by 
2040-2059, and -$12 to +$53 to billion by 2080-2099.   

These are relatively modest impacts in the context of 
today’s $17 trillion US economy against which they are 
measured – as expected, because these four crops 
account for less than one-third of US agricultural output 
by value, and for just 0.2% of total national economic 
output.  As described in Chapter 6, climate change will 
likely result in an increase in yields in some parts of the 

country and a decrease in others, the combination of 
which results in relatively modest net changes at the 
national level. The local economic significance of this 
regional heterogeneity in agriculture impacts is 
exacerbated by the wide variation in agriculture’s 
importance in different state economies (Figure 13.2). 
The four commodity crops included in our analysis 
accounted for 2.6%, 2.2%, 2% and 1.2% of total economic 
output in Nebraska, South Dakota, Iowa and North 
Dakota respectively in 2011. These states, and key 
counties within them, face economically significant 
changes in agricultural output (both positive and 
negative) over the course of the century. 

 
Figure 13.2: Agricultural production as a share of state output 
2011, broken down by crops quantified in this report and those excluded 

 

Figure 13.3: County-level per capita direct costs from changes 
in agricultural yield by decile in RCP 8.5, 2020-2039 
2011 USD per capita, assumes current economic structure, crop mix 
and agricultural prices. Negative values indicate net benefits. 

 

Figure 13.4: County-level per capita direct costs from changes 
in agriculture yield by decile in RCP 8.5, 2040-59 
2011 USD per capita, assumes current economic structure, crop mix 
and agricultural prices. Negative values indicate net benefits. 
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Figure 13.5: State-level per capita direct costs from changes in agricultural yields in RCP 8.5, 2080-2099 
2011 USD, assumes current economic structure, crop mix and agricultural prices. Negative values indicate direct benefits 
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Likely nation-wide, agricultural impacts per capita range 
from a $27 benefit to a $29 cost on average by 2020-2039 
and from a $26 benefit to a $61 cost by 2040-2059. Figure 
13.3 and 13.4 compare these national estimates to the 
likely range for individual counties, ranked by median 
projected per capita cost and binned by decile. Within 
each decile bin, critical values for the probability 
distribution of impacts (e.g. medians) are averaged 
across counties.  The most vulnerable 10% of counties 
fare considerably worse than the national average, with 
likely per capita costs of -$722 to +$1,793 (median of 
+$793) by 2020-2039, and -$244 to +$3,382 (median of 
+$1632) by 2040-2059. The most positively impacted 
counties see likely per capita costs of -$638 to +$164 
(median of -$261) by 2020-2039, and -$1102 to +$8 
(median of -$574) by 2040-2059.  

By late century, the impacts described in Chapter 6 
translate into likely per capita costs of -$37 to +$169 
(median of +$68) nation-wide, with regional disparities 
getting even larger (Figure 13.5). Iowa and Nebraska see 
the largest likely costs on a per capita basis at +$275 to 
+3,882 (median of +$1,996) and +$550 to +$3,416, 
respectively. North Dakota sees the largest likely net 
benefit, per capita, with Montana, Oklahoma and the 
Pacific Northwest seeing more modest likely gains.   

LABOR  

We assess the direct costs and benefits of the climate-
driven changes in labor productivity described in 
Chapter 7 by mapping projected percentage changes 
both in high-risk and low-risk sectors against the value 

added by those sectors in the 2011 IMPLAN input-output 
tables by geographic area. We assume that a 1% change 
in high-risk sector labor productivity results in a 1% 
change in high-risk sector value-added and calculate the 
direct cost of that 1% of change in value-added at 2011 
prices. At the national level, assuming that the current 
sectoral mix in the economy remains constant, likely 
average annual direct labor productivity costs (high-risk 
and low-risk combined) under RCP 8.5 are +$0.1 to +$22 
billion by 2020-2039, +$10 to +$52 billion by 2040-2059, 
and +$42 to +$150 billion by 2080-2099 – considerably 
larger than the nation-wide agricultural impacts.   

The regional variation of the impact of changes in 
temperature on labor productivity in high-risk sectors is 
not as geographically varied as the impact on 
agricultural productivity, nor is the economic 
importance of those high-risk sectors. That said, there is 
still a meaningful amount of variation in high-risk 
sectors’ share of total state employment, ranging from 
53% in North Dakota to 19% in New York in 2011 (Figure  
13.6). Combined with modest variation in the climate-
driven rate of high-risk labor productivity decline, this 
variation produces meaningful differences across 
counties and states. By 2020-2039, climate-driven 
changes in labor productivity will likely cost between 
+$0.3 and +$69 per capita on average nation-wide 
(Figure 13.7). For the most vulnerable counties, binned 
by decile, the likely range is -$19 to +$270. By 2040-2059, 
likely national average per-capita costs grow to +$36 to 
+$171, with the most vulnerable 10% of counties likely 
seeing +$94 to +$473 in per capita costs. 

Figure 13.6: Share of state employment in high-risk sectors 
2011 
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By late-century, national average per capita costs from 
climate-driven labor productivity declines grow to +$133 
to +$479. The Northeast and the Northwest see smaller 
likely costs than the national average, while most states 
in the Southeast, Great Plains, Southwest and Midwest 
see larger likely costs. At a state level, the largest direct 
per-capita cost of climate-driven changes in labor 

productivity are in Texas (+$276 to +$1,040), Louisiana 
(+$262 to +$962), and North Dakota (+$233 to +$957), 
and due in large part to the relatively large share of the 
workforce in the states in high-risk sectors and, in the 
case of Texas and Louisiana, larger percent reductions in 
productivity (Figure 13.9). 

Figure 13.7: County-level per capita direct costs from changes 
in labor productivity by decile in RCP 8.5, 2020-2039 
2011 USD. Negative values indicate net benefits. 

 

Figure 13.8: County-level per capita direct costs from changes 
in labor productivity in RCP 8.5, 2040-2059 
2011 USD. Negative values indicate net benefits. 

HEALTH 

The climate-driven changes in temperature-related 
mortality discussed in Chapter 8 directly impact 
economic activity by changing available labor supply. 
We measure these “market” costs and benefits by 
calculating the change in state-level labor supply 
resulting from climate-driven changes in temperature-
related mortality by the age cohorts presented in 
Chapter 8 using IMPLAN socio-economic data and labor 
force participation rate estimates by age cohort from the 
Bureau of Labor Statistics.2 As with labor productivity, 
we assume a 1% change in labor supply translates into a 
1% change in value-added.  

Unlike climate-driven changes in labor productivity, 
however, the direct cost or benefit of mortality changes 
compounds over time.  Workers who die in one year do 
not return to the labor force in the next year, during 
which time additional workers may die from climate-
driven temperature increases. This leaves two options 
for assessing market costs. The first is to assess the lost 
or gained life-time labor productivity of a projected 
climate-driven change in mortality in a given year and 
discount (using a 3% discount rate) those future losses to 
                                                                                    
2 Available online at 
http://www.bls.gov/emp/ep_table_303.htm 

the year in which the death occurred. The second is to 
use a population model to assess changes in the 
composition of the workforce over time as climate-
driven mortality impacts evolve. In this chapter, we 
employ the former technique (described in the 
Technical Appendix). We employ the second as part of 
our exploration of how macroeconomic effects might 
shape direct climate costs and benefits in the following 
chapter.   

At a national level, the present value of lost lifetime 
labor supply from likely annual climate-driven mortality 
under RCP 8.5 is +$3.7 billion to +$52 billion on average 
by 2040-59, but with a net benefit likely in a significant 
number of states in the Northeast, Upper Midwest, 
Upper Great Plains and Northwest due to fewer cold-
related deaths. By late century, many of these states still 
see likely benefits, but not enough to offset a sharp 
increase in heat-related mortality across the Southeast 
and in many Midwest, Great Plains and Southwestern 
states (Figure 13.10). Nation-wide likely mortality costs 
rise to +$38 to +$177 billion, or +$121 to +$565 per 
person. Louisiana, Texas, Oklahoma and Florida see the 
highest likely mortality increases, more than twice the 
national average, while New England, Oregon and 
Washington see the largest likely mortality declines. 
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Figure 13.9: State-level per capita direct costs from changes in labor productivity in RCP 8.5, 2080-2099 
2011 USD. Negative values indicate net benefits. 
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Figure 13.10: State-level per capita direct costs from changes in mortality, using market estimates in RCP 8.5, 2080-99 
2011 USD. Negative values indicate direct benefits. 
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Figure 13.11: State-level per capita direct costs from changes in mortality, using a VSL of $7.9 million in RCP 8.5, 2080-99 
2011 USD, Negative values indicate direct benefits. 
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Lost life-time labor supply is, of course, a somewhat 
narrow measure of the value of a human life. In 
analyzing the benefits and costs of policies with an 
impact on mortality rates, governments often look to a 
population’s “willingness-to-pay” for small reductions 
in their risk of dying (Viscusi and Aldy 2003). This is 
often referred to as the “value of statistical life” (VSL). In 
the United States, the Environmental Protection Agency 
(EPA) uses a central estimate of $7.9 million per person 
(in 2011 dollars) regardless of age, income or other 
population characteristics (EPA 2010).  Aldy and Viscusi 
(2007) have found important differences in willingness 
to pay by age cohort, and as temperature-related 
mortality affects older Americans more than the 
population on average, the EPA VSL could be an 
overestimate of the “willingness-to-pay” to avoid these 
impacts. As it is the standard used by the US 
Government, we include it here as an upper-bound 
estimate.  

Using the EPA central VSL estimate, we find likely 
average annual nation-wide mortality costs under RCP 
8.5 of -$12 billion to +$161 billion (median estimate of 
+$69 billion) by 2040-2059. Late century, this grows to 
+$90 to +$506 billion, more than twice as high as the 
market costs of climate-driven mortality. These values 
translate into +$287 to +$1,617 on a nation-wide per 
capita basis (Figure 13.11). As with the market costs of 
the mortality impacts described above, there is 
considerable variation among states. Florida sees the 
highest likely costs, at +$2,163 to +$5,979 per capita, 
while Maine sees the lowest, at -$2,080 to -$1,015. 

CRIME 

We assess the direct costs of the climate-driven increase 
in violent and property crime described in Chapter 9 
using average cost estimates for specific types of crimes, 
such as homicide or larceny (Heaton, 2010). The costs of 
specific crimes are estimated by combining accounting-
based estimates, which attempt to enumerate costs 
incurred by victims (such as doctor’s bills or lost assets), 
and contingent valuations of specific crimes, which try 
to elicit individuals’ willingness to pay to avoid specific 
crimes using surveys.  We assume that, in the future, the 
relative frequency of specific violent crimes and specific 
property crimes remains fixed within each state, but 
that the overall rate of these two classes of crimes 
evolves with the climate. At the national level, the likely 
change in direct property and violent annual crime costs 
under RCP 8.5 is $0 to $2.9 billion on average by 2020-
2039, $1.5 to $5.7 billion by 2040-2059, and $5.0 to $12 
billion by 2080-2099, making crime the least 
economically significant impact quantified in this report 
at a national level. 

There is meaningful regional variation in climate-driven 
crime costs due both to differences in local climate 
projections and underlying crime rates (Figure 13.12 and 
Figure 13.13). Likely national direct crime costs average 
$16 to $37 on a per capita basis in 2080-2099. Michigan, 
New Mexico, Maryland, Louisiana and Illinois see the 
largest increases, though still relatively modest on a per 
capita basis. The per capita increases in crime costs are 
lowest in Utah, New England and the Pacific Northwest.

Figure 13.12: Violent crime rates by state 
Crimes per 100,000 people, 2011, FBI Uniform Crime Reporting 
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Figure 13.14: State-level per capita direct costs from changes in crime rates in RCP 8.5, 2080-2099 
2011 USD  
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Figure 13.13: Property crime rates by state 
Crimes per 100,000 people, 2011, FBI Uniform Crime Reporting 

 

ENERGY  

We assess the direct cost and benefits of climate-driven 
changes in energy demand using the estimates of 
percentage change in energy expenditures outlined in 
Chapter 10 relative to current energy expenditure levels. 
At the national level, future changes in temperature 
mapped against today’s US energy market likely 
increases average annual energy expenditures under 
RCP 8.5 by $0.5 to $11 billion on average by 2020-2039, 
$8.3 to $29 billion by 2040-2059, and $32 to $87 billion by 
2080-2099.Local changes in energy expenditures vary 
based both on local climate projections and local energy 
market conditions. Nation-wide likely average annual 
energy expenditure increases by 2020-2039 are $1.5 to 
$37 on a per capita basis (Figure 13.15), growing to $27 to 
$94 on average by 2040-2059 (Figure 13.16). For the most 
vulnerable 10% of counties, however, the likely average 

per capita increase is $4 to $119 in 2020-2039 and $78 and 
$229 in 2040-2059. At the other end of the spectrum, 
10% of counties see a likely combined decrease in energy 
expenditures of $3 to $60 per capita by 2020-2039 and 
$15 to $78 by 2040-2059. By late-century, annual per 
capita energy expenditures likely increase by $102 to 
$279 (Figure 13.17). The Northeast and Northwest see 
much more modest increase (with some states seeing 
decreases in the median projection), as declines in 
heating costs offset much (and some places all) of the 
increase in cooling costs. Expenditures rise most in the 
Southeast and more southern states in the Great Plains 
and Southwest regions, where temperatures reach their 
highest levels and states currently have little heating 
demand to lose. In Arizona and Florida, for example, 
per capita energy expenditures rise by more than twice 
the national average.  

 
Figure 13.15: County-level per capita direct costs from 
changes in energy expenditures in RCP 8.5, 2020-2039 
2011 USD, negative values indicate net benefits 

 

 
Figure 13.16: County-level per capita direct costs from 
changes in energy expenditures in RCP 8.5, 2040-2059 
2011 USD, negative values indicate net benefits 
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Figure 13.17: State-level per capita direct costs from changes in energy expenditures in RCP 8.5, 2080-99 
2011 USD, negative values indicate net benefits 
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COASTAL COMMUNITIES 

We assess the direct cost of climate-driven changes in 
coastal storms using the average annual loss estimates 
described in Chapter 11. At the national level, assuming 
coastal property exposure remains unchanged, 
projected sea-level rise increases average annual losses 
from hurricanes and other coastal storms by $2 to $3.7 
billion on average by 2020-2039 under RCP 8.5, $6 to $12 
billion by 2040-2059, and $18 to $27 billion by 2080-
2099. 

As discussed in Chapter 11, the impact of these SLR-
driven changes in storm damage is not evenly spread.  
Potential costs vary, not only between coastal and non-
coastal states, but also within coastal states. The direct 
risk of SLR-driven changes in storm damage is 
concentrated in particularly vulnerable coastal 
communities over the next few decades, broadening to 
entire coastal states by the century.  

Figure 13.18: Per capita increase in average annual coastal 
storm damages due to SLR, 2030 
2011 USD, RCP 8.5 

 

Figure 13.19: Per capita increase in average annual coastal 
storm damages due to SLR, 2050 
2011 USD, RCP 8.5 

Take, for example, a single-family wood home on the 
coast in Tampa, Florida. In the RMS exposure dataset, 
such a home has an insurable value of $222,000, with an 
average annual hurricane loss of $5,005. By 2030, higher 
sea levels in Tampa will likely raise this structure’s 
annual average loss by $627 to $1,310, growing to 
increases of $1,534 to $2,404 by 2050. Based on the 
average number of people per household in Tampa, that 
translates into a per resident likely increase in average 
annual losses of $240 to $502 by 2030 and $588 to $921 by 
2050. In Figure 13.18 and Figure 13.19, we compare that 
to the increase in per capita average annual loss in 
Hillsborough County (in which Tampa resides) as a 
whole, and the entire State of Florida. In Hillsborough 
County and Florida, per capita average annual losses 
likely grow by $54 to $93 and $39 to $72 respectively by 
2030 and $137 to $218 and $101 to $211 respectively by 
2050. 

We provide similar comparisons for Galveston, TX, 
Biloxi, MS and Charleston, SC. In Galveston, a typical 
single-family coastal home worth $191,000 faces $4,752 

in average annual hurricane losses today that likely grow 
by $1,035 to $1,392 by 2030 and $2,488 to $3,303 by 2050. 
In Biloxi, a typical single-family coastal home worth 
$194,000 faces $10,800 in average annual hurricane 
losses today that likely grow by $527 to $915 by 2030 and 
$1,384 to $2,299 by 2050. In Charleston, a typical single-
family coastal home worth $180,221 faces $2,329 in 
average annual hurricane losses today that likely grow 
by $254 to $492 by 2030 and $629 to $1,016 by 2050. In 
Figure 13.18 and Figure 13.19 these increases are 
translated into per capita terms using the average 
number of people per household in those cities, and 
compared to the likely per capita increase in losses for 
the counties and states that house those cities as a 
whole.3

                                                                                    
3 Note that for all these estimates we assume home values remain 
unchanged. Over time, home values will appreciate, making damages 
larger in dollar terms, but as incomes will rise as well the relative impact 
of those damages on household budgets will change less than absolute 
damages. As with all costs discussed in this chapter, we compare future 
climate impacts to current incomes, asset prices, and economic output.   
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Figure 13.20: Per capita inundation damage and increase in average annual coastal storm damages due to SLR alone, 2080-2099 
RCP 8.5, 2011 USD 
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Figure 13.21: Per capita inundation damage and increase in average annual coastal storm damages due to SLR and potential 
hurricane activity changes, 2080-2099 
RCP 8.5, 2011 USD, hurricane activity projections from Emanuel (2013) 
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Figure 13.24: Direct costs as a share of economic output at the median under RCP 8.5, 2080-99 
Percent 
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Figure 13.25: Six quantified impacts in RCP 8.5 with historical hurricane activity and market mortality cost, 2080-2099 
Percent of economic output. Negative values indicate net benefits. 
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Figure 13.26: Six quantified impacts in RCP 8.5 with projected hurricane activity and using VSL mortality cost, 2080-2099 
Percent of economic output. Negative values indicate net benefits 
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CHAPTER 14 

Macroeconomic Effects

In the preceding chapter we assessed the direct costs and 
benefits of the climate impacts covered in this report 
and found significant variation by state. US states are all 
part of the same national economy, however, and direct 
impacts in one sector or region have implications for 
other sectors and regions as well. For example, a 
decrease in agricultural output in Iowa impacts food 
prices nation-wide (and globally). Damage to coastal 
property raises borrowing costs in non-coastal regions 
due to the national (and global) nature of capital 
markets. Higher energy costs flow through the economy 
and can increase the price of a wide range of goods, and 
changes in labor productivity alter what people do for a 
living and where they work. This chapter examines the 
extent to which some of these macroeconomic effects 
shape the overall magnitude and the regional variation 
in the direct costs and benefits of the climate impacts 
quantified in this report. 

METHODOLOGY 

To illustrate some of these concepts, we employ RHG-
MUSE, a dynamic recursive computable general 
equilibrium (CGE) model of the US economy developed 
and maintained by the Rhodium Group and integrated 
into the SEAGLAS platform. RHG-MUSE represents 
sectoral and regional relationships as they exist in the 
economy today, based on a framework developed by 
Rausch and Rutherford (2008) and similar to CGE 
models used in other climate change assessments, such 
as Jorgenson et al. (2004) and Abler et al. (2009). RHG-
MUSE is solved annually from 2012 to 2100 and 
simulates the growth of the US economy through 
changes in labor, capital and productivity. The model is 
calibrated using state-level social accounting matrices 
(SAMs) from the Minnesota IMPLAN Group.4 For 
computational simplicity, we aggregated the 440 sectors 
in the IMPLAN SAMs to create nine sectors tailored to 
the impacts covered in this report. A full description of 
RHG-MUSE is available in Technical Appendix IV.  

Our hesitation in predicting how the US economy will 
evolve between now and 2100, expressed in the 
preceding chapter, still holds. Yet as some of the 
macroeconomic consequences of the direct climate 
impacts unfold over time, projections are necessary.  We 

                                                                                    
4 More information on IMPLAN is available at http://www.implan.com/ 

calibrate RHG-MUSE to maintain the country’s current 
economic structure and demographic profile in the 
baseline scenario throughout the modeling timeframe. 
Both population and economic output grow, but the 
sectoral and geographic shares of both employment and 
output remain roughly the same. This allows for a 
relatively apples-to-apples comparison with the direct 
economic impacts described in Chapter 13 and 
maximizes consistency with our empirically-based 
impact estimates. 

We represent the climate impacts covered in this report 
in RHG-MUSE as follows (with a detailed discussion 
available in Technical Appendix IV). 

Agriculture 

We represent climate-driven changes in agricultural 
productivity impacts as a percent change in total output 
productivity affecting the baseline productivity in that 
year. This means that, for a given level of capital, labor, 
and intermediate goods use, a state’s agricultural output 
will be equal to the baseline output given the same level 
of inputs multiplied by the productivity change. The 
model propagates this change through the economy 
through price and quantity effects. 

Labor Productivity 

We represent climate-driven changes in labor 
productivity through the productivity of labor inputs to 
high-risk and low-risk sectors by state. New production 
activities are able to respond to this change and 
substitute labor for capital, or vice-versa, but extant 
production suffers a proportional reduction in output 
and a loss of productive capital.  

Health 

Unlike in the preceding chapter, we represent climate-
driven changes in mortality by tracking their impact (by 
age cohort) on the size and composition of the US 
population using a population model incorporated into 
RHG-MUSE and reducing available labor supply 
accordingly.  
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Crime 

We exclude crime from the CGE model because of the 
mixture of market and non-market factors in our direct 
economic impact estimates.  

Energy 

We increase residential and commercial energy costs by 
state based on the energy expenditure estimates laid out 
in Chapter 10.  

Coastal Communities 

We represent climate-driven inundation, flood, and 
wind damage to coastal property as a direct reduction of 
capital stock. This is implemented before each run of the 
model’s static core, such that some fraction of the 
depreciated capital stock will be unavailable for earnings 
and use in the coming period. Because rates of return 
must equalize across states and sectors in RHG-MUSE, 
new capital formed by savings/investment replaces lost 
capital stock until rates are equal. We also capture 
business interruption by reducing industrial 
productivity in impacted states consistent with RMS 
business-interruption estimates for that particular SLR 
scenario.  

RESULTS 

The macroeconomic dynamics in RHG-MUSE alter the 
direct costs and benefits of the climate-driven changes 
in agricultural production, labor productivity, 
mortality, energy costs and coastal property in several 
ways. The ability of firms to substitute factors of 
production in response to changes in prices, capital 
stock or labor supply reduce direct costs. For example, 
the impact of climate-driven reductions in labor 
productivity on economic output is decreased over time 
through increased application of capital. Likewise, SLR-
driven damage to coastal capital stock is offset in part 
through greater application of labor. When changes in 
prices as a result of climate impacts reduce demand for 
goods from a sector, labor and capital are freed up for 
other sectors, offsetting the direct costs. 

There are other macroeconomic effects in the model 
that amplify direct costs.  Most important in our 
analysis is the impact of damaged coastal capital stock in 
a given year on economic growth in subsequent years.  
The need to rebuild damaged coastal property redirects 
investment that would have otherwise occurred 
elsewhere in the economy, reducing economic output in 
the process. We find that, over the course of decades, 
the cumulative impact on growth of single year coastal 

capital stock damage is several times larger than direct 
cost to the coastal property receiving the damage. 

On net, the economy-wide cost estimates from RHG-
MUSE are roughly in line with the direct costs presented 
in Chapter 13. Under RCP 8.5, the likely late century 
combined direct cost for climate-driven changes in 
coastal damages (assuming historical activity rates), 
labor productivity, energy demand, mortality (using 
market estimates), and agricultural production are 0.8% 
to 3.2% of GDP nation-wide (Figure 14.1). The likely 
range from RHG-MUSE is 1.0% to 3.0%. We may be 
underestimating costs in RHG-MUSE due to the 
different treatment of mortality. In calculating direct 
climate-driven mortality costs and benefits in a given 
period, we estimate the net present value (at a 3% 
discount rate) of lifetime earnings lost by deaths in that 
period. In RHG-MUSE, the late century mortality costs 
are the cumulative impact of all climate-driven 
mortality occurring up until that point. Thus the late 
century estimates of direct mortality costs include 
lifetime earnings lost after 2100, while the RHG-MUSE 
estimates do not. Especially as net national climate-
driven mortality increases sharply in the second half of 
the century, this difference in approach leads to higher 
mortality-related estimates in the direct cost approach. 

At a national level, and for almost all regions, the 
macroeconomic effects captured in RHG-MUSE shrink 
the tails of direct impact distribution. For some impacts, 
it also reduces regional variation in costs, due primarily  
to free movement of capital and goods across state 
borders in RHG-MUSE. For example, the increase in 
investment demand in coastal states as a result of SLR-
driven damages draws investment away from other 
states equally. This is likely an optimistic assumption; 
the price of investment goods like cement and steel will 
probably rise more in storm-damaged areas than the 
national average, even if borrowing costs rise equally 
nation-wide. 

At the same time, however, we assume that labor is 
fixed by state, which prevents additional regional 
smoothing from occurring. As a result, the relative 
return on labor rises in more heavily impacted states, 
which could attract labor from other parts of the 
country. On the other hand, if the climatic changes 
causing those damages also reduce relative livability, 
the state-level reduction in labor supply could be even 
greater than the direct labor productivity and mortality 
costs suggest.  

The Southeast and Great Plains fare better once the 
macroeconomic effects captured in RHG-MUSE are 
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included, while Midwest does considerably worse. This 
is due to the indirect economic impacts in the region of a 
climate-driven decline in commodity agricultural 
production. Interestingly, the Pacific Northwest still 
sees net benefits, despite being part of the same national 
economy, due largely to increased labor supply from a 
decline in cold-related deaths.  

This macroeconomic modeling exercise should serve 
primarily as a conceptual exercise. Predicting how 
markets will respond to climate impacts over the course 
of eight and a half decades is extremely challenging. In 
addition, national macroeconomic conditions are 
heavily shaped by events around the world, and other 
countries will also be impacted by climate change – 
impacts not assessed in this report.  Nonetheless, this 
illustration shows the macroeconomic dynamics we do 

capture modestly decrease the combined national cost 
of the five modeled impacts, and that, while they reduce 
regional inequality somewhat, significant differences 
remain.  

There are a number of research groups actively working 
to build more sophisticated economic models that can 
capture a broader range of national and international 
dynamics, such as the Project on Integrated Assessment 
Model Development, Diagnostics and Inter-Model 
Comparisons (PIAMDDI). In addition to continuing to 
improve the SEAGLAS platform in the months and 
years ahead, we have designed the analysis underlying 
all of this analysis to be modular and open source in the 
hopes that other researchers can integrate those 
components they find useful into their own work and 
build upon the findings of this prospectus. 

Figure 14.1: Combined agriculture, labor, mortality (market), energy and coastal (historical activity) impacts calculated as direct 
costs, and modeled using RHG-MUSE, under RCP 8.5 in 2080-2099 
Percent of output. Negative values indicate net benefits.  
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CHAPTER 15 

Valuing Risk and Inequality

Two central contributions of this report are to 
characterize the uncertainty associated with the 
economic impacts of climate change and to estimate the 
extent to which these impacts will be borne unequally 
among Americans. In both cases, we note that average 
impacts gloss over an important aspect of the story: if 
the climate changes, there is a sizable chance that 
different types of impacts will be larger or smaller than 
the central estimate, and in many cases specific regions 
of the country experience impacts that differ 
substantially from the national average. While the 
primary purpose of this report is to provide empirically-
based, spatially-explicit information about the risks 
businesses, investors and households in different parts 
of the United States face from climate change, these 
insights are also important in how we price climate risk 
at a national level.  

Both risk and inequality can increase the perceived costs 
of climate change above the expected cost of climate 
change, i.e., the average impact we expect to see across 
possible futures and across regions of the United States.  
Uncertain outcomes and unequal impacts increase our 
perception (or valuation) of these costs because as 
individuals and as a society, we generally dislike 
uncertainty in our futures—for example, individuals 
buy home insurance in part because the risk that a 
catastrophe could bankrupt a family is worrisome—and 
we dislike strong social inequalities—for example, 
individuals donate money to charity in part to alleviate 
hardships of poorer individuals.  How much we dislike 
uncertainty and inequality affects how much these 
factors should influence our decision-making process, 
and they inform us of how much we should focus on 
future uncertainty or inequality in climate change 
impacts relative to the average impact of climate 
change. In economics, the extent to which we are 
concerned about risk and inequality is can be described 
by two factors: 

 Risk aversion: How averse are we to the 
uncertain possibility of bad future outcomes? 
 

 Inequality aversion: How much do we dislike 
having some individuals suffer greater losses 
than others, especially if proportionally 
greater losses fall on poorer individuals? 

Both of these types of aversion reflect our underlying 
preferences and can thus be measured empirically, 
although it is possible that a decision-maker may be 
more risk averse or inequality averse than one would 
estimate by observing individuals in a population.  This 
might be true, for example, if increasing inequality has 
indirect effects on the economy or a population’s social 
well-being that are not understood or internalized by 
individuals within a population; it might also be true 
because the preferences of individuals acting 
collectively through democratic processes may differ 
from individuals acting individually in a market.  It is 
worth noting that in many assessments of climate 
change impacts risk aversion and inequality aversion are 
assumed to be the same, although recent work suggests 
that the two need not, and very likely should not, be 
treated that way (Fehr and Schmidt 1999; Engelmann 
and Strobel 2004; Bellemare, Kröger, and Soest 2008; 
Crost and Traeger 2014)  

Here we use our new results describing the probability 
distribution of impact across states within the US to 
illustrate through example how one could adjust their 
valuation of the damages from climate change to 
account for aversion to risk and inequality (see 
Technical Appendix V for mathematical details).  In 
both cases, we summarize the additional costs imposed 
by risk and inequality as a premium, which is the 
additional cost that we would be willing to bear to avoid 
the inherent risk and additional inequality imposed by 
climate change impacts.  We assume the well-being of 
all Americans should be treated equally and consider 
how the value of mortality (using the VSL) and direct 
agricultural losses could be adjusted to account for the 
structure of their risk and their unequal impact, in large 
part because these two example sectors have nonlinear 
response functions that generate some of the largest 
variations in damages.   

RISK AVERSION 

Accounting for risk aversion stems from the observation 
that individuals, and society at large, dislike uncertainty 
in future costs. For example, suppose Anna has a salary 
of $40,000 this year. Further suppose that Anna knows 
that, if she stays at her current job, there is a 95% chance 
that she will get a 10% raise (a gain of $4,000) and a 1% 
chance that she will be fired (a loss of $40,000). The 



VALUING RISK AND INEQUALITY    124   

expected value of staying at her current job is therefore 
$41,800 (the sum of 95% times $44,000 and 5% times $0). 
Further suppose she has the opportunity to switch to a 
new job that also pays $40,000 but guarantees her 
employment next year (with no raise). If she is risk-
neutral, then her current job is worth $1,800 more to her 
than the alternative; if she is risk-averse, she might 
nonetheless opt for the more certain alternative because 
she wished to avoid the possibility of being fired. 

Following conventional practice, we measure risk 
aversion with a coefficient of relative risk aversion 
(RRA). A RRA of zero reflects risk neutrality; higher 
values reflect higher levels of risk aversion. Studies of 
the relative rates of return of safe investments (such as 
US treasury bonds) and risky investments (such as 
stocks) suggest that the RRA reflected in US financial 
investments is between 2.5 and 6, although it could be as 
low as 1 or as high as 12 (Ding et al. 2012). Another study 
of investments, aimed at separating risk aversion from 
preferences between current and future consumption, 
suggests a RRA of 9.5 (Vissing-Jørgensen and Attanasio 
2003). Experimental results from a survey of individuals 
in the US, the UK, Canada, Australia and Mexico 
similarly suggest that the central third of individuals 
surveyed have values between 3 and 5, although one-
third have values less than 3 (half of whom are between 
1.5 and 2.0) and one-fifth have values greater than 7.5 
(Atkinson et al. 2009). 

We can use the RRA to turn the projected probability 
distributions of losses in each state in each period into 
certainty-equivalent losses per capita in that period: in 
other words, we find the losses that an individual would 
bear with certainty that have the same welfare impact as 
the distribution of losses characterized in this report 
(See Technical Appendix V). The risk premium is the 
difference between the certainty-equivalent loss and the 
expected actual loss; it is the hypothetical quantity one 
would be willing to pay just to avoid the uncertainty in 
climate impacts (Kousky, Kopp and Cooke, 2011). 

Because the production of commodity crops (maize, 
wheat, soy and cotton) represents a small fraction 
(about 0.2%) of total economic output, it can have only a 
small effect on total income; the 1-in-20 worst case for 
RCP 8.5 in 2080-2099 in the hardest hit state, Nebraska, 
agricultural losses constitute a 4% loss of overall output. 
The risk premium is therefore small, ranging up to 2% of 
the value of the lost output for a high RRA of 10 (see first 
row of Table 15.1, where IA = 0). By contrast, because the 
mortality impacts can be quite large – in the 1-in-20 
worst case for RCP 8.5 in 2080-2099 is equivalent to 30% 
of output in Florida if measured using the VSL – the risk 

premium can be significant. Even in the absence of 
inequality aversion, strong risk aversion can add as 
much as 18% to the value of the mortality losses (see first 
row of Table 15.2, where IA = 0). 

INEQUALITY AVERSION 

Accounting for inequality aversion is important because 
most individuals dislike the notion that some 
individuals bear far more of a group’s cost than other 
members of a group. For example, in team efforts, most 
individuals usually find themselves unhappy if some 
members of the team do not “pull their weight,” thereby 
forcing others to do additional work to make up for this 
shortfall.  In a more extreme example, if a foreign 
country were to invade a single US state, Americans 
throughout the rest of the country would not simply 
stand by and let the population of that one state fend for 
itself; rather the whole country would come the aid of 
the invaded state. There are many similar cases, such as 
natural disasters, where the nation spends both effort 
and money to protect and support small groups of 
individuals because we do not believe those individuals 
should be left to suffer tremendous costs alone—
instead, the country expends additional resources to 
share these burdens. 

The degree of inequality aversion can be measured with 
a coefficient of inequality aversion (IA), analogous to 
the RRA. An IA of 0 reflects inequality neutrality, 
implying there is no cost to inequality, while higher 
values reflect increasing levels of inequality aversion. 
Experimental results suggest that different individuals 
have a very broad range of IA values, with the central 
third of individuals having values between 2.0 and 7.5, 
one quarter having values between 0.5 and 1.5, and 
nearly a third having values greater than 7.5 (Atkinson 
et al. 2009b).  

In any given period, we can use the IA to turn the 
projected distribution of losses into an equivalent 
national, inequality-neutral loss (Gollier 2013).  The 
inequality-neutral loss is a hypothetical economic loss 
that has the same welfare impact as the actual loss, but, 
as a fraction of income, is shared evenly by all 
Americans. In other words, we find the level of loss that, 
if equalized across states, would yield the same welfare 
as the unequal cross-state distribution of output per 
capita (see Technical Appendix). The inequality premium 
is the difference between the inequality-neutral loss and 
the expected actual loss; it is the hypothetical quantity 
one would be willing to pay just to avoid the additional 
inequality imposed by climate impacts. Inequality-
neutral losses will be larger if individuals who are 
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initially poorer are harmed relatively more by climate 
change; they may be smaller if individuals who are 
initially richer are harmed relatively more.  

Unlike the risk premium, it is possible for the the 
inequality premium to be negative if climate change 
reduces initial wealth disparities, which can happen if 
climate change imposes sufficiently larger damages on 
wealthy populations than on poorer populations. In this 
case, the unequal distribution of climate impacts would 
lower the perceived cost of those impacts relative their 
expected value. Thus it is not obvious ex ante that 
accounting for inequality aversion will necessarily 
increase the perceived cost of climate change. 

We note that we do not resolve differences in damage 
across counties within a state—accounting for such 
differences would likely increase the inequality 
premium—although cross-state impacts tend to be 
more unequal than cross-county impacts within each 
state. We also do not account the distributional impacts 
of climate change with a state by income or 
demographic group, which are likely more important 
than differences across counties. 

For both agriculture and mortality, the inequality 
premium can be significant. Strong inequality aversion 
alone can increase the value of agriculture losses by up 
to 40% (see first column of Table 15.1, where RRA=0), 
although the macroeconomic effects described in the 
preceding chapter dampen the inequality of direct 
agricultural impacts to some extent.   

Strong inequality aversion can more than double the 
value of mortality losses, adding a 150% premium for an 
IA of 10 (see first column of Table 15.2, where RRA=0). 
The large magnitude of the inequality premium for 
mortality arises because the mortality increase is 
highest in some of the nation’s poorest states and least in 
some of the richest. Among the poorest ten states, the 
per capita median mortality cost is $1,900 per person 
under RCP 8.5 in 2080-2099 (with losses exceeding 
$2,000 in Florida, Mississippi, Alabama and Arkansas); 
among the ten richest states, the average is a gain of $75 
per person (with gains exceeding $500 in North Dakota, 
Wyoming, Massachusetts and Minnesota). 

PUTTING IT TOGETHER 

Above, we separately analyzed the risk and inequality 
premiums for two types of impacts. However, we can 
combine both risk aversion and inequality aversion to 
compute an inequality-neutral, certainty equivalent 
damage (see Technical Appendix V). This value is the 

hypothetical cost that, if shared equally among all 
individuals with certainty, would have the same welfare 
impact as the actual unequal distribution of state-
specific risks.  The combined inequality-risk premium is 
the difference between this hypothetical cost and 
expected damages; it is the cost of having unequal 
economic risks imposed by climate change. Calculating 
this premium helps us conceptualize how inequality in 
expected losses, inequality in the uncertainty of losses, 
and inequality in baseline income together increase the 
perceived value of climate change damages.  

Table 15.1: Combined inequality-risk premiums for agricultural 
impacts, 2080-2099 
RCP 8.5, Premium as percentage of expected losses for maize, wheat, 
cotton, and soy output 

      RRA 
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Table 15.2: Combined inequality-risk premiums for mortality 
impacts, 2080-2099 
RCP 8.5, Premium as percentage of expected losses, applying value 
of a statistical life 
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For both agricultural losses and mortality, combining 
risk aversion with inequality aversion yields a higher 
inequality-risk premium. The magnitude of the 
increment from the combination partially reflects the 
magnitude of the individual effects. For agriculture, the 
increased premium from layering risk aversion (which 
is small in this impact category) on top of inequality 
aversion is small; for strong risk and inequality 
aversion, it amounts to a 42% increase in the value of 
losses, compared to 40% from strong inequality and no 
risk aversion. For mortality, in contrast, strong risk and 
inequality aversion combined can add a premium of 
over 200%, compared to 150% for inequality aversion in 
the absence of risk aversion. If we focus on values most 
frequently observed in experiments (RRA and IA of 
roughly 4, Atkinson et al. 2009), which for RRA also 
coincides with the central Ding et al. (2012) estimate 
based on comparison of the prices of US stocks and 
bonds, then the inequality-risk premium on agricultural 
loss and mortality are 22% and 70% of the expected loss. 
If instead we use a RRA of 10, close to the Vissing- 
Jørgensen et al. (2003) estimate of 9.5, the mortality 
premium rises to 91% of the expected loss.  

Overall, for the example impact categories we have 
assess here, the inequality premium is substantially 
larger than the risk premium. While on its face this 
finding may be surprising – risk aversion is, after all, a 
key motivator for many policies and measures to 
manage climate change risk – it is not when considered 
in the broader context of this analysis.  

DECISION-MAKING UNDER UNCERTAINTY 

While our estimated probability distributions for the 
impacts we quantify represent a rigorous effort to assess 
probabilities in a framework that is both internally 
consistent and consistent with the best available science, 
they do not represent the only valid estimates. Among 
other factors, alternative climate model downscaling 
techniques, alternative probability weightings of 
climate models, alternative priors for the impact 
functions, and alternative assumptions about the 
changing structure of the economy would all change the 
estimates. There is no single correct approach. 

Under such conditions of ‘deep’ uncertainty, economists 
and decision scientists have developed a range of 

alternatives to the classical von Neumann-Morgenstern 
expected utility paradigm of estimating a single 
probability distribution that is interpreted as ‘true’ and 
using this distribution to weight possible outcomes (as 
we do above when we estimate our risk premiums). One 
finding from this work is that many decision-makers are 
ambiguity averse: they view the non-uniqueness of the 
probability distribution as imposing a cost premium on 
top of the risk premium (Heal and Millner 2013). 
Another finding is that if catastrophic outcomes are 
possible and decision-makers cannot rule them out, the 
remaining `fat tail’ of the probability distribution of 
potential losses imposes an exceptionally large risk 
premium (Weitzman, 2009).   

Alternative approaches to the expected utility paradigm 
include a ‘maxmin’ approach – choosing a course of 
action that has the least bad worst possible outcome, an 
approach closely related to the ‘precautionary principle’ 
– and an ‘�-maxmin’ approach – making a decision based 
on a weighted mixture of the most likely outcome and 
the worst possible outcome. One might also choose to 
minimize regret – to find a strategy that, across all 
possible futures, minimizes the difference between the 
realized outcome and the best one could have done in 
the absence of uncertainty. These three approaches 
could all be applied using the impacts we estimate in this 
report to characterize worst possible outcomes and most 
likely outcomes. There are also additional alternative 
approaches that address the cost of ambiguity by 
estimating multiple probability distributions, each of 
which is assigned a probability of being correct (Heal 
and Millner 2013; Kunreuther et al. 2012). 

Finally, we note that in this report we have quantified 
only a subset of the potential costs of climate change, 
many of which cannot yet be rigorously assessed in an 
economic framework. Without the inclusion of the 
missing impacts described in the next section, any 
evaluation of worst possible outcomes would be 
incomplete. The true worst-case future is characterized 
not just by lost labor productivity and widespread heat-
related deaths, but also by (among other changes) 
international conflict and ecological collapse (Stern, 
2013).  The next section surveys the gaps in our 
coverage.
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CHAPTER 16 

What We Miss 

Our analysis is broad, but it is far from complete. As 
discussed in Chapter 1, we have only been able to 
quantify a subset of the economic risks of climate 
change in the US. Figure 16.1 highlights some of the 
gaps. These gaps can be subdivided into several 
categories: incomplete coverage within included market 
impacts, omitted categories of market impacts, 
interactions between impacts, omitted non-market 
impacts, effects on international trade and security, out-
of-sample extrapolation, and potential structural 
changes. Many of these limitations parallel those of 
benefit-cost “integrated assessment models” that lack 
the empirical calibration and spatial detail of our 
analysis; some of the literature discussing the 
limitations of the damage estimates of these models 
applies here as well (Yohe and Tirpak 2008; Warren 
2011; Howard 2014). 

MARKET IMPACTS 

Incomplete coverage within included impacts 

In the seven impact categories we have examined, we 
have focused on a subset of effects most amenable to 
quantitative analysis. These limitations of scope are 
described in the sectoral chapters; we summarize them 
here. 

In the agricultural sector, we have assessed impacts of 
temperature and precipitation changes on the largest 
commodity crops, but not on fruits, vegetables, or nuts. 
These so-called “specialty crops” dominate the 
agricultural sectors of some states, such as California. 
We also do not include the effects on livestock, which, 
like humans, will suffer from humidity as well as heat. 
Nor do we include the effects of potentially expanded 
weed, pest, and disease ranges. 

While we consider the effects of temperature on the 
number of hours worked, we do not assess the effects on 
the intensity of labor during working hours. Nor do we 
include the effects on labor productivity of the non-
lethal health impacts of climate change, whether 
mediated by respiratory illness, vector-borne disease, or 
the consequences of extreme weather events. 

For health impacts, we include heat- and cold-related 
deaths. We do not include the respiratory effects of 

temperature-aggravated air pollution, the health 
impacts of disease spread by extreme weather, the effect 
of temperature or weather disasters on birth weight, or 
the expansion in the range of vector-borne diseases like 
Lyme disease. We include humidity-related heat stress 
only to the extent it is indirectly captured in the 
empirically-calibrated temperature impacts; the effects 
of increasingly frequent, extremely dangerous Category 
III and record-breaking, extraordinarily dangerous 
Category IV Humid Heat Stress Index days are not 
included. 

In the energy sector, we include changes in energy 
demand, but not supply-side effects such as reductions 
in the efficiency of thermoelectric generation or 
electricity transmission. For coastal impacts, we include 
damages to capital and the cost of business interruption, 
but we do not include the network effects caused by 
damaging critical infrastructure. 

Omitted categories of impacts 

Other types of market impacts we miss entirely in our 
quantitative analysis. Changes in the availability of 
water will affect the agricultural sector and electricity 
generation. Like coastal storms, inland flooding driven 
by intense precipitation events destroys capital and 
interrupts businesses. Forests, which both serve as an 
essential resource for the forestry industry and provide 
less-easily monetized ecosystem services, are 
threatened by changes in temperature and 
precipitation, more frequent wildfires, and expansion of 
pest and disease ranges. As climate changes, the 
desirability of different areas as tourism destinations 
will change. We qualitatively address water, forest, and 
tourism impacts in Chapters 17-20  

Interactions between impacts 

Although we estimate the direct effects in each impact 
category independently, there are important linkages 
between them that extend beyond the market 
interactions captured by the CGE model. For example, 
energy supply and agriculture compete for limited 
water resources. Similarly, estimates of heat-associated 
mortality and labor productivity reductions include 
implicit assumptions about the use of air conditioning 
(and therefore energy) to offset some of the heat and 
humidity. 
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NON-MARKET IMPACTS 

Many of the most important risks associated with 
climate change fall outside the market economy. In this 
report, we have quantified mortality caused by heat and 
cold; while mortality affects the labor supply and 
therefore the market, it also directly affects human well-
being. Omitted health impacts, discussed above, do as 
well. 

Humans depend upon the planet’s ecosystems in myriad 
ways, most not valued by the market. To name just a 
few: ecosystems absorb CO2 from the atmosphere, 
recycle nutrients, pollinate plants, serve as storm 
barriers, and prevent soil erosion (Millennium 
Ecosystem Assessment 2005). Though placing a dollar 
value on these services is extremely challenging and 
highly sensitive to assumptions, the annual value of 
global ecosystem services has been estimated at twice 
global GDP (Costanza et al. 2014). 

Climate change threatens to disrupt ecosystems both on 
land and in the ocean, which also face serious threats 
from land use change, nutrient pollution, and over-
exploitation. The oceans also face another CO2-related 
threat, that of ocean acidification, which makes it more 
difficult for calcifying organisms – ranging from corals 
to shellfish – to produce their skeletons. Climate change 
related ecosystem disruption has occurred many times 
in the Earth’s past (Barnosky et al. 2012), and may 
represent one of the most serious climate change risks. 
Given the complexity of the problem, however, efforts 
to understand the economic consequences of future 
ecosystem changes are still at an early stage. 

More generally, throughout this analysis, we measure 
impacts in terms of their effects on GDP. But GDP is a 
metric of economic output; it is not a measure of human 
welfare. Agricultural production constitutes only about 
6% of world GDP, but the effect on human welfare of an 
agricultural collapse would be much larger. For many, 
communities and ecosystems have a value that extends 
beyond their productive capacity. For a parent, the 
welfare impact of losing a child to heat-related mortality 
is much greater than the net present value of that child’s 
expected future earnings. The risks posed by climate 
change should be viewed in this broader context; in 
some cases, this may lead to policies or investments that 
would not be merited based on a monetary benefit-cost 
analysis alone. 

INTERNATIONAL TRADE AND SECURITY 

Our analysis focuses on the effects of climate change in 
the United States, but the US is not a world unto itself. 
Its  

fate is bound economically and politically to that of the 
nearly seven billion people outside its borders. For 
globally-traded goods, such as crops, trade effects may 
dominate domestic changes. If the agricultural sectors 
of other countries are more severely affected than our 
own, demand for US crops may rise even at elevated 
prices. Similarly, if the labor productivity impacts in 
other countries are more severe than in the US, the US 
may gain a competitive advantage even if the world 
economy as a whole suffers. Quantifying these linkages 
would require the extension of our analysis to a full 
model of the global economy. 

Climate change could also prove to be an important 
factor affecting global security, which is qualitatively 
discussed in Chapter 20. Extreme weather events and 
longer-term climate shifts can promote migration both 
within and between countries. There is significant 
support in the academic literature for a relationship 
between climate and civil conflict. The 2014 
Quadrennial Defense Review concluded that climate 
change may increase the “frequency, scale, and 
complexity” of future missions, while also posing a 
threat to defense installations.  

OUT-OF-SAMPLE EXTRAPOLATION 

The impact sectors we consider all are calibrated, either 
directly (as in the case of the five sectors with empirical 
models) or indirectly (as in the case of the process-
model based analyses) against historical behavior. While 
history provides us the only data set against which to 
test and calibrate our projections, climate change will 
increase the frequency of record-breaking weather that 
falls outside past experience. Because the structure of 
empirically-derived dose-responses functions beyond 
the limits of historical experience is unknowable, there 
is no fool-proof technique for estimating how impacts 
will look in these out-of-sample cases. Thus, for 
simplicity and clarity, throughout this report we have 
used the conservative assumption that record-breaking 
temperatures will have impacts similar to the estimated 
impact of the hottest days on record. We examine the 
importance of this assumption in a sensitivity test (see 
Technical Appendix II) in which we instead linearly 
extrapolate all dose-response functions beyond the 
hottest conditions observed historically. We find that, in 
general, this adjustment to our modeling approach has 
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only minor impact, primarily because most days over 
the next century will be hotter than historical averages, 
but will not exceed the temperature of historical 
national maxima and thus are well-described by the in-
sample structure of our dose-response functions.   

More generally, the likelihood that the climate will 
produce unexpected surprises will increase as 
temperatures rise outside the realm of past human 
experience. The appearance in the eastern half of the 
countries of summer days so hot and humid that short 
periods of moderate, shaded outdoor activity can induce 
heat stroke in healthy individuals is an example of a 
known phenomenon outside the realm of past 
experience (see Chapter 3). Some of the tipping points 
discussed in Chapter 3 represent known unknowns, and 
in a complex system like the Earth, there almost 
certainly will be “unknown unknowns” that are entirely 
beyond our present knowledge.  

STRUCTURAL CHANGES 

In our analysis, we assume that the structure of the US 
economy remains as it is today – an assumption almost 
guaranteed to be wrong. GDP will grow in different 
regions at different rates, due to a combination of 
factors ranging from demography, to policy, to climate. 
By the end of the century, some of the dominant 
industries may be ones that – like the IT and biotech 

industries today – were unknown eight decades 
previously.  

As we discuss in Chapter 22, social and technological 
innovations may reduce some of the damaging effects of 
climate change. The efficiency of air conditioning may 
increase significantly faster than demand for cooler air. 
Genetically engineered crops, different planting 
schedules, and more efficient irrigation may offset 
effects on the agricultural sector. Defensive structures, 
relocation away from threatened coastlines, and 
structures designed for periodic flooding may all reduce 
the impacts of coastal storms and sea-level rise. Extreme 
heat and humidity may not be a problem if the people of 
2100 spend their entire lives in climatically-controlled 
domed cities like those envisioned in the science-fiction 
novels of the 1950s. 

The statistician George Box famously observed that, “all 
models are wrong, but some are useful.” Our analysis 
provides a projection of what today’s economy would 
look like in the face of 21st century climate change, not a 
prediction of what the economy of 2100 will look like. 
The structural changes that can reduce climate risk are 
more likely if policymakers, business leaders, and 
citizens are equipped with knowledge about the risks 
posed by climate change. We have tried to craft our 
analysis to address this need.  
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CHAPTER 17 

Water

Water is a fundamental resource for our society, our 
economy, and the health of our communities and 
ecosystems.  It is critical not only for our own 
consumption but also for food production, electricity 
generation, and many industrial activities.  Although 
we have dealt with them throughout history, droughts 
and floods continue to pose significant risks to the US 
economy, our health, and way of life.   

Climate change affects water resources through 
multiple pathways, changing risks from water scarcity 
and overabundance, affecting water quality, and 
shifting patterns of water availability within and among 
regions and communities.  Climate change can affect 
water supply by altering precipitation, surface runoff, 
and streamflow patterns, as well as by increasing 
evaporation from lakes, reservoirs, soils and plants.  It 
can affect water demand directly by increasing 
irrigation and landscape watering needs and indirectly 
through increased energy use for air conditioning and 
thus water use for cooling of thermoelectric power 
plants.  Shifting precipitation patterns and heavier 
storms can intensify droughts and floods.  Rising water 
temperatures and saltwater infiltration of near-shore 
groundwater reservoirs can affect water quality. 

In concert with demographic, land-use, and other 
socioeconomic changes, climate change poses novel 
challenges for water planning and management.  
Existing water infrastructure and legal frameworks, 
created assuming an unchanging climate, may not be 
adequate to address these challenges.  Managing water 
risk in a changing climate requires reevaluating 
strategies to meet our diverse water needs and protect 
natural ecosystems, informed by projections of both 
supply and demand. 

WATER DEMAND 

Water is a fundamental input to nearly every sector of 
the US economy, creating competing demands across a 
wide range of users. Linkages with agriculture and 
energy production dominate water use in the US. In 
2005, freshwater withdrawals from surface and 
groundwater sources totaled nearly 350 million gallons 
per day (Kenny et al. 2009).  Freshwater withdrawals for 
thermoelectric power generation (41%) and irrigation 
(37%) are largest, followed by municipal and residential 

uses (14%), industry and mining (5.5%), and livestock 
and aquaculture (3%). Most water for thermoelectric 
power generation is returned to its original source after 
use (at a higher temperature), while most water for 
irrigation is consumed during use. Western States 
account for most irrigation withdrawals, while eastern 
States account for most thermoelectric generation 
withdrawals.  Water withdrawal estimates do not 
include water for in-stream uses such as hydropower 
production, a significant source of electricity generation 
in the Northwest, California, New England and Alaska 
(Energy Information Administration 2013; Georgakakos 
et al. 2014).  Minimum in-stream flow requirements 
have also been established in many places to protect 
freshwater ecosystems. 

From 1960 to 1980, water withdrawals rose dramatically 
(Kenny et al. 2009), but they have since been relatively 
stable due to increases in the efficiency of irrigation and 
thermoelectric cooling processes and declines in 
industrial water withdrawals across the US and in 
irrigated acreage in western States. These have offset 
increases in municipal and residential use and in 
livestock and aquaculture (Kenny et al. 2009; Foti, 
Ramirez, and Brown 2010). 

Projections of future water demand are dependent on 
assumptions about future population growth, 
socioeconomic development, and technological change, 
as well as the effects of climate change on water use.  
One research effort, assuming a continuation of the 
historical trends described above and the A1B 
socioeconomic scenario (in which U.S. population 
growth declines slowly, with total population nearing 
500 million by 2100), found that demand for 
withdrawals in the absence of climate change would 
increase only 3% from 2005 levels by 2060 and 13% by 
2090 (Foti, Ramirez, and Brown 2010; Brown, Foti, and 
Ramirez 2013). With climate change, however, the same 
effort projects that demand for withdrawals will 
increase substantially, mainly due to increased 
irrigation and landscape watering needs and to a lesser 
extent to increased water use for electricity production 
to meet assumed growth in air conditioning (Foti, 
Ramirez, and Brown 2010; Brown, Foti, and Ramirez 
2013). Under the A1B emissions scenario (intermediate 
between RCP 8.5 and RCP 6.0), demand is projected to 
increase 12 to 41% by 2060 and 35 to 52% by 2090, 
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depending on the climate model used, with greater 
increases projected in the West.  One uncertainty is the 
effects on crop water use of climate change-induced 
changes in growing season and increased CO2 in the 
atmosphere, which may compensate to some extent for 
the effects of higher temperatures reflected in the 
irrigation demand increases presented here (Wada et al. 
2013; Elliott et al. 2013; Prudhomme et al. 2013; Brewer 
et al. 2014). 

WATER SUPPLY AND WATER MANAGEMENT 
CHALLENGES 

Balancing climate-driven changes in supply and 
demand across water uses poses challenges for water 
management. Managers are increasingly recognizing 
the need for adaptive responses. Analyses of potential 
challenges have been undertaken at the national scale, 
for specific river basins, for specific municipalities, and 
for specific water uses.  All regions of the US face water 
management risks, and the Southeast and Southwest 
including California are seen as most likely to 
experience water shortages (Georgakakos et al. 2014; 
Romero-Lankao et al. 2014; Foti, Ramirez, and Brown 
2010; Roy et al. 2012; Barnett and Pierce 2009; 
Rajagopalan et al. 2009).   

Changes in precipitation, runoff, and streamflow 

The primary source of freshwater is precipitation—
falling rain and snow—either through runoff when soils 
are saturated into rivers, lakes, and other surface water 
bodies or through recharge of groundwater. Annual 
average precipitation has increased over the past 
century in much of the continental US, with notable 
increases in parts of the Northeast, Midwest, and Great 
Plains over recent decades (Walsh et al. 2014).  
Precipitation is very likely to increase in the Northeast 
and likely to increase in the Midwest, with increases 
particularly in the winter and spring. Springtime 
precipitation decreases are likely in the Southwest, and 
summer precipitation decreases are likely in the Great 
Plains and Northwest. 

Surface runoff has increased in the Northeast and the 
Mississippi basin and decreased in the Northwest during 
the past half-century, and a decreasing trend is 
emerging for the Colorado River basin (Georgakakos et 
al. 2014; Luce and Holden 2009; McCabe and Wolock 
2011; US Department of the Interior Bureau of 
Reclamation 2012). In the future with continued high 
emissions of greenhouse gases, surface and 
groundwater supplies in parts of the Southwest, 
Southeast, and southern Rockies are expected to be 

affected by runoff reductions and declines in 
groundwater recharge, increasing the risk of water 
shortages (Georgakakos et al. 2014; Seager et al. 2013).  
Annual runoff is projected to decrease in some river 
basins in the Southwest, including the Colorado and Rio 
Grande, with mean and median runoff reductions of 
~10% projected for California, Nevada, Texas, and the 
headwaters of the Colorado river over the next few 
decades, with greater model agreement for the 
Colorado headwaters and Texas than for California and 
Nevada (Georgakakos et al. 2014; Cayan et al. 2010; 
Seager et al. 2013). Annual runoff is also projected to 
decrease in the Southeast, driven by temperature-
induced reductions in soil moisture (Brewer et al. 2014; 
Zhang and Georgakakos 2012).  Annual runoff is 
projected to increase in the second half of the century 
(with little change through the middle of the century) in 
river basins in the Northwest and north-central US such 
as the Columbia and Missouri (Georgakakos et al. 2014; 
Brewer et al. 2014). 

The US Bureau of Reclamation has conducted a series of 
western river-basin-level assessments of climate risk, 
which provide local illustrations of the broader trends 
described above. For example, the Colorado River 
supplies drinking water for almost 40 million people 
across seven western States, water for irrigation of 5.5 
million acres producing 15% of US crops and 13% of US 
livestock, and water for hydropower facilities totaling 
4200 MW of electric generating capacity (US 
Department of the Interior Bureau of Reclamation 2012).  
Over the past century there have been multiple years 
when water use was greater than supply, with resulting 
shortages in the upper parts of the basin (that rely more 
on annual stream flow) rather than water storage in the 
river system.  Basin-level projections of water supply 
and demand by the Bureau of Reclamation indicate that 
decreasing annual flows and decreased snowpack result 
in decreased spring/summer runoff in the upper basin. 
At the same time, demand is projected to increase due to 
development and climate factors. Comparing median 
projections of water supply with median projections of 
water demand yield a 3.2 million acre-foot imbalance in 
the Colorado River Basin by 2060 (Figure 20.1) (US 
Department of the Interior Bureau of Reclamation 
2012).1 This imbalance represents about 20% of total 
average annual Colorado River consumptive use over 
the past ten years, or roughly equivalent to estimated 
national water demand for municipal and industrial 
uses in 2015, which is projected to grow over time. 

                                                                                    
1 Note that the confidence bands on these estimates are wide 
and year-to-year demand and supply are variable. 
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timing and amount of streamflow are also projected to 
affect the operation of hydroelectric plants, with actual 
future production dependent on the capacity of 
facilities, competition with other water uses, and basin-
level changes in runoff amount and timing.  For 
example, a study of hydropower production in the 
Pacific Northwest projected increases in winter of 
approximately 5%, decreases in summer of 12-15%, and 
overall annual reductions of 2-3% by the 2040s, with 
larger decreases in summer production of 17-21% by the 
2080s (Hamlet et al. 2010).  

These supply-side energy impacts will impose costs on 
energy consumers above and beyond the climate-driven 
changes in energy demand discussed in chapter 8. 

Water quality 

Changes in air and water temperature, precipitation 
intensity, drought, and streamflow due to climate 
change directly affect water quality, as do changes in 
land use and other aspects of use and management of 
land and water resources.  Worsening water quality can 
affect ecosystems and downstream water users, and 
several studies project decreasing quality in the future 
due to the combined effects of climate change and 
development (Romero-Lankao et al. 2014; Tu 2009; 
Praskievicz and Chang 2011; Wilson and Weng 2011).  
Increases in precipitation intensity along with changes 
in wildfire activity due to climate change can also affect 
sediment, nutrient, and contaminant loads and water 
quality, with negative impacts for downstream water 
use (Georgakakos et al. 2014; Emelko et al. 2010; 
Osterkamp and Hupp 2010). Increasing air and water 
temperature is increasing thermal stratification in lakes 
and reservoirs, which can release nutrients and 
pollutants from bottom sediments (Romero-Lankao et 
al. 2014; Georgakakos et al. 2014; Sahoo and Schladow 
2008; Sahoo and Schladow 2011; Schneider and Hook 
2010). 

FLOODING 

Flooding causes fatalities and significant damage to 
property and agriculture, with average annual damages 
between 1981 and 2010 estimated at $7.8 billion (in 2011 
dollars) (NOAA 2013).  Floods in 2011, including in the 
Northeast and along major river basins in Mississippi, 
Missouri, and Ohio, caused 108 fatalities and $8.4 billion 
in damages (NOAA 2013).  Flash floods, urban flooding, 
and coastal flooding, are all strongly tied to heavy 
precipitation events, while river floods are also 
dependent on basin topography and existing levels of 
soil moisture.  All floods are also affected by human 
land-use and management decisions.   

In most of the US, heavy precipitation events have 
become more frequent and intense over the past several 
decades, with the amount of precipitation during such 
events increasing in all regions of the continental US 
except the Southwest and Northwest (Walsh et al. 2014).  
These trends have not yet been linked to changes in 
flood frequency, but heavy precipitation increases are 
projected to continue across the US (Walsh et al. 2014; 
Kunkel et al. 2012; Wehner 2012; Wuebbles et al. 2013). 

Flood frequency and severity may increase in the 
Midwest and Northeast based on climate and hydrologic 
projections (Georgakakos et al. 2014).  Future flood risks 
across the US are difficult to estimate, given their 
dependence on land-use trends such as urbanization, 
but such trends including development in coastal areas 
and floodplains can exacerbate the impacts of increased 
flooding (Romero-Lankao et al. 2014; Georgakakos et al. 
2014; Doocy et al. 2013; Hejazi and Markus 2009). For 
example, one study estimated 30 to 40% increases by 
mid-century in flood discharge associated with a 100-
year flood in the West and Northeast, with 50 to 60% 
increases by the end of the century in areas of the 
Northeast, in the Pacific Northwest, and in other 
urbanized areas of the West, due to the combined effects 
of climate change, population growth, and land-use 
change (Kollat et al. 2012). Coastal flooding is described 
in chapter 4. 

ECONOMIC DAMAGES AND ADAPTATION COSTS 

A small number of studies have estimated water-related 
economic damages and adaptation costs associated with 
climate change. A study examining national economic 
damages from changes in water supply and demand for 
agricultural, public and domestic, and commercial and 
industrial use, as well as for hydropower and in-stream 
flow requirements estimated total damages from 
climate change by 2100 (in 2007 dollars) of $4.2 billion 
per year under a business-as-usual scenario that falls 
between RCP 8.5 and 6.0 and $3.6 billion per year under 
a policy scenario similar to RCP 4.5 (Henderson et al. 
2013).  Damage estimates for 2025 in this study are $734 
million and $690 million, respectively, and are largest 
in the West and Southeast.  Such cost estimates are 
highly dependent on assumptions about future runoff 
and evaporation, the categories of water use included in 
the analysis, and the handling of reallocation of water 
among uses (e.g., shifting from agricultural use to other 
uses during times of scarcity). The cost estimates above, 
for example, do not include livestock, mining, and 
cooling for thermoelectric power generation, which 
may exclude some of the damages from climate change. 
These estimates also do not include damages due to 



137         AMERICAN CLIMATE PROSPECTUS 

flooding and changes in water quality, which were large 
in earlier studies (Henderson et al. 2013; Frederick and 
Schwarz 1999; B. Hurd et al. 1999). Water transfers may 
themselves involve substantial transaction costs as well 
as follow-on social and economic impacts (B. H. Hurd 
and Coonrod 2012). The analysis also does not include 
adaptation, which could reduce some damages at an 
associated cost, nor the potential reductions in 
agricultural water use associated with carbon 
fertilization that could reduce agricultural damages.   

The estimated investment needs for water 
infrastructure over the next few decades without 
considering climate change are quite large.  The EPA 
estimates that US water infrastructure faces 20-year 
capital investment needs without climate change of $335 
billion for drinking water systems and $298 billion for 

wastewater and stormwater treatment and collection 
(US EPA 2008; US EPA 2009). But changing 
infrastructure needs imply additional costs and make it 
important to consider climate change in such decisions 
in order to spend money wisely.  A preliminary analysis 
of the costs of adaptation by the National Association of 
Clean Water Agencies (NACWA) and the Association of 
Municipal Water Agencies (AMWA) estimated total 
adaptation costs for infrastructure and operations and 
maintenance through 2050 of $325 to $692 billion for 
drinking water systems and $123 to $252 billion for 
wastewater systems, with the largest costs in the 
Southwest followed by the Southeast and ranges 
dependent on assumptions about temperature and 
runoff changes and stringency of inland and coastal 
flood protection measures (NACWA and AMWA 2009).
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CHAPTER 18 

Forestry

From the boreal forests of Alaska, to the California 
Redwoods, to Northeastern deciduous trees and 
Southeastern pines, forests span a third of total US land 
area (about 750 million acres) and provide important 
natural and economic benefits. In economic terms, they 
provide valuable commodities like timber and 
bioenergy, recreational opportunities, and employment 
for local communities.  The US forest products industry 
produces $200 billion in sales per year and employs 
about one million workers, generating an additional $54 
billion each year in payroll (USDA 2013). Although less 
easily quantified, forests also provide important 
ecosystem services including wildlife habitat, clean 
drinking water, flood control, and carbon storage, as 
well as other social, cultural and aesthetic benefits 
(Scholes et al. 2014; Joyce et al. 2013). 

US FOREST HEALTH IS HIGHLY CLIMATE-
DEPENDENT 

The health of US forests and forest-related industries is 
directly influenced by the climate. Gradual changes in 
temperature and precipitation patterns, as well as 
extreme weather events like drought, affect forest 
growth, species distribution, and overall condition. 
Climate factors also affect the incidence and extent of 
damage from forest disturbances like wildfire, pests and 
disease (Anderegg, Kane, and Anderegg 2013).  
 
A 2012 USDA assessment determined that climate 
change has already significantly affected the nation’s 
forests through a host of mechanisms (Vose, Peterson, 
and Patel-Weynand 2012). For example, earlier 
snowpack melt in spring paired with warmer summer 
temperatures and extended drought in some regions has 
led to tree die-off, and more frequent and intense forest 
fires have caused extensive damage in increasingly dry 
areas. Milder winter temperatures have contributed to 
the arrival of bark beetles and other pest outbreaks at 
higher elevations. Changes in the distribution of tree 
and plant species, as well as the timing of their natural 
cycles, have been attributed to rising temperatures, with 
many plant, insect, and animal species shifting 
northward over the past century (Joyce et al. 2013). In 
some areas where tree growth has been limited by cold 
temperatures and short growing seasons, the warming 
climate has resulted in acceleration of forest growth 
(under 1% per decade) (Boisvenue and Running 2006). 

 
Climate is just one among many factors that influence 
the health of US forests. Some of the most significant 
changes in US forests over the past few decades are a 
result of land use changes such as increased 
urbanization and conversion for agriculture, harvest of 
forest products and bioenergy development, fire 
suppression and prevention programs, and air and 
water contamination. The interaction between changes 
in these factors and changes in climate make isolation of 
their individual effects difficult, especially in cases 
where climate and socioeconomic drivers are related 
(e.g. as domestic and global demand for forest products, 
bioenergy and agriculture drive land use change and 
climate change simultaneously).  

CLIMATE-DRIVEN DISTURBANCE PUTS US 
FORESTS AT RISK 

The US National Climate Assessment, based on 
observed changes over the past 30 years, found with 
high confidence that future climate change will further 
shift forest disturbance patterns (Joyce et al. 2013). The 
type and magnitude of such disturbances will differ 
regionally, and will likely be more variable going 
forward, posing significant challenges for state and local 
resource managers. By the end of the century, nearly 
half of the western US landscape will experience climate 
profiles never before seen by forest species currently 
inhabiting that region, making it difficult to predict how 
ecosystems will respond (Rehfeldt et al. 2006). Changes 
in temperature and precipitation patterns are expected 
to trigger dangerous disturbances, potentially doubling 
the area burned by mid-century and increasing by an 
even greater amount the proportion of western forests 
affected by insect infestations (Vose, Peterson, and 
Patel-Weynand 2012). Increased drought and warmer 
temperatures are expected to exacerbate these stresses, 
leading to higher tree mortality, slow regeneration in 
some species, and altered species composition.  
 
Climate change is expected to impact US forest health in 
other ways, including shifting habitat and species 
composition, changing invasive plant species 
distribution and success rates, and altering the 
hydrological cycles that affect local and regional water 
quality. These impacts, while important to overall forest 
health and potentially significant when taken as a 
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whole, are complex and subsequently quite difficult to 
characterize across American forests.  
 
In the following sections, we go into more depth on the 
likely influence of a changing climate on the frequency 
and intensity of forest disturbances from wildfires, 
drought and pest and pathogen infestation. 

WILDFIRE 

Impacts to US from wildfire are large and growing 

In 2013, over 47,500 wildfires burned more than 4.3 
million acres, with the highest incidence in California, 
Nevada, New Mexico, Oregon, Idaho, Colorado and 
Arkansas according to the National Interagency Fire 
Center. On June 30, nineteen firefighters were killed 
while working to contain the Yarnell Hill Fire in 
Arizona, the third highest firefighter death toll 
attributed to wildfires in US history. On August 17, 2013, 
the third largest fire in California’s history was sparked, 
eventually burning over 250,000 acres near Yosemite 
Park (CAL FIRE 2013). 

Fire is a leading source of forest disturbances in the 
United States (M D Flannigan, Stocks, and Wotton 
2000). Since the mid-1980s, large wildfire activity in 
North America has been marked by increased frequency 
and duration, and longer wildfire seasons. The annual 
area burned by large forest wildfires (greater than 400 
hectares) between 1987 and 2003 was more than six 
times as large as the area burned between 1970 and 1986 
(Westerling et al. 2006).  

 
Fire plays an important role in ensuring forest 
equilibrium, but wildfires can also have significant 
economic, social and environmental costs. The US 
Forest Service and Department of the Interior spend an 
average of $3.5 billion a year to fight fires, three times 
what they spent annually in the 1990s. State 
governments spend another $2 billion annually on 
wildfire protection (Congressional Research Service 
2013).  Lloyds of London estimates direct losses from 
catastrophic wildfires in the US totaled $28.5 billion 
between 1980 and 2011 (Lloyds 2013). Nearly half of that 
cost came in just the past decade. An average of 47% of 
average losses over the past three decades were insured. 
In 2012, catastrophic fires caused $595 million of insured 
losses across the US.  
 
A full accounting of the immediate and long-term costs 
of wildfire should also take into account a range of 
impacts to ecosystems, infrastructure, businesses and 
individuals that are not easily quantified. These include 
impacts to human safety and health, loss of human life, 

impacts to regional economies from the loss of 
livelihood and property and the expense of settlement 
evacuations.  

Fire activity in the US strongly influenced by 
climatic factors 

Fires require biomass to burn, dry, hot, and/or windy 
atmospheric conditions conducive to combustion, and 
ignitions. Climate can affect all three of these factors in 
complex ways and over multiple timescales (Moritz et 
al. 2012). Climate – including temperature, 
precipitation, wind, and atmospheric moisture – is a 
critical determinant of fire activity. Climate controls the 
frequency of weather conditions that promote fire, 
whereas the amount and arrangement of fuels 
influences fire intensity and spread. Climate influences 
fuels on longer time scales by shaping species 
composition and productivity (Marlon et al. 2008, 
Power et al. 2008), and large-scale climatic patterns are 
important drivers of forest productivity and 
susceptibility to disturbance (Vose, Peterson, and Patel-
Weynand 2012) 
 
Despite marked impacts by human activities, climate 
conditions were the primary factor in twentieth century 
wildfire activity in the American West. Between 1977 
and 2003, temperature and precipitation provided the 
dominant controls on wildfire (Littell et al. 2009). 
Historical fire records going back as far as 500 CE show 
that biomass burning in the Western US generally 
increased when temperatures and drought area 
increased, and decreased when temperatures and 
drought declined (Marlon et al. 2012).  The greatest 
increases in fire activity have occurred in mid-elevation, 
Northern Rockies forests, where land-use histories have 
relatively little effect on fire risks and are strongly 
associated with increased spring and summer 
temperatures and an earlier spring snowmelt 
(Westerling et al., 2006).  

Wildfire impacts expected to increase  

Future trends of fire severity and intensity are difficult 
to determine due to the complex and non-linear 
interactions between weather, vegetation and people 
(Flannigan et al. 2009). Uncertainty in the link between 
climate and forest fire increases as climate conditions 
move outside historical ranges.  Without historical 
analogs, and considering the highly nonlinear climate–
fire relationship, it is difficult to predict how potential 
climate futures —and the forest fuel conditions 
governed by these climate drivers — will affect fire 
intensity and activity (Westerling et al. 2011). 
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et al. 2010). This effect is less direct in eastern forests, 
where forest composition and structure appear to drive 
impacts in recent decades. As the NCA notes, although 
the extent to which recent forest disturbances can be 
directly attributed to climate change is uncertain, recent 
research provides clear indication that climatic variables 
will impact ecosystems and alter the risks US forests face 
today. 

Tree mortality and forest die-off triggered by dry and 
hot conditions have been documented in most 
bioregions of the US over the past two decades, with 

increases in wildfires and bark-beetle outbreaks in in the 
2000s likely related to extreme drought and high 
temperatures in many western regions (Williams et al. 
2010). Coniferous tree species have seen widespread and 
historically unprecedented die-off in recent years, 
mainly as a result of drought and pests such as bark 
beetles (Adams et al. 2009). Forests within the 
southwestern United States have been particularly 
sensitive to drought and warmth; from 1984 to 2008 as 
much as 18% of southwestern forest area experienced 
mortality due to bark beetles or drought (Joyce et al. 
2013). In Alaska, over 1 million hectares of several 
spruce species experienced die-off. Such die-off events 
can create significant additional risk to surrounding 

forests and local communities, as tree death and the 
accompanying increase of dead wood will influence fire 
risk of forests (Anderegg, Kane, and Anderegg 2013). 

Changes in temperature, precipitation, pest and 
pathogen dynamics and more extreme climate events 
such as drought are expected to lead to increased 
instances of widespread forest die-off in the future   
(Anderegg, Kane, and Anderegg 2013).  Western forests 
have experienced the greatest impacts, even more 
severe than recent estimates,  and with projected 
increases in temperature and aridity out to 2100, 

substantial reduction in tree growth and increased 
mortality is expected, in particular in the Southwest 
(Scholes et al. 2014; Allen et al. 2010; Dale et al. 2001). As 
temperatures increase to levels projected for mid-
century and beyond, eastern forests may be at risk of 
die-off or decline similar to recent die-offs experienced 
in the Western US. 

Climate influences the survival and spread of insects 
and pathogens directly, as well as the vulnerability of 
forest ecosystems infestation. Epidemics by forest 
insects and pathogens affect more area and result in 
greater economic costs than other forest disturbances in 
the United States (Dale et al. 2001). Native and 

YELLOWSTONE  

Large fires have increased in the northern Rockies in recent decades in association with warmer temperatures, earlier 
snowmelt, and a longer fire season (A. Westerling et al. 2011). Although human activity – through fire suppression, forest 
thinning, and fuel treatment  – plays a role, climatic variables were found to be of primary importance in most forests, 
especially at higher elevations where human activity is less prevalent. Recent studies indicate that the greater Yellowstone 
ecosystem, a large conifer forest ecosystem characterized by infrequent, high-severity fire, is approaching a temperature and 
moisture-level tipping point that could be exceeded by mid-21st century. Westerling et al estimates that climate-related 
increases in fire occurrence, area burned, and reduced fire rotation (down to 30 years from the historical 100–300 years), 
there is a real likelihood of Yellowstone’s forests being converted to non-forest vegetation during the mid-21st century (A. 
Westerling et al. 2011).  

CALIFORNIA 

Wildfire in California comes at a very high price. Seven of the ten costliest U.S. wildfires in history before 2011 occurred in 
California. Wildfire risks and their associated costs pose significant challenges to state and local governments, with state fire 
suppression costs of over $1 billion each year. The risk to private property has also increased over recent years as 
development along the wildland-urban interface has increased, with now more than 5 million homes in over 1,200 
communities at risk. The largest changes in property damages occurred in areas close to major metropolitan areas in coastal 
southern California, the Bay Area, and in the Sierra foothills northeast of Sacramento. In 2003, over 4200 homes were 
destroyed by wildland fires in southern California, resulting in more than two billion U.S. dollars in damages (RADELOFF et al. 
2005).  



FORESTRY        142 

nonnative insect pest species and pathogens can greatly 
alter forest habitat and modify ecological processes, 
often leading to extensive ecological and economic 
damage (Dukes et al. 2009). In the United States, insects 
and pathogenic disturbances have affect over 20 million 
hectares on average each year, with an annual cost of 
$2.0 billion (Dale et al. 2001). Shifts in climate are 
expected to lead to changes in forest infestation, 
including shifts of insect and pathogen distributions 
into higher latitudes and elevations and increased rates 
of development and number of generations per year 
(Bentz et al. 2010; Waring et al. 2009). The National 

Insect and Disease Risk Map (NIDRM), prepared by the 
US Forest Service to provide a nationwide strategic 
appraisal and spatial mapping of the risk of tree 
mortality due to insects and diseases from both endemic 
and non-endemic forest pests, estimates that by 2027, 81 
million acres (over 10% of total US forest land) will be in 
a hazardous condition for insects and diseases. This 
assessment does not take into account the potential 
impacts from climate change, but concludes that 
climate change will  significantly increase the number of 
acres at risk, including elevated  risk from already 
highly destructive pests (Krist et al. 2014).
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CHAPTER 19 

Tourism

For many travel destinations across the US, climate is 
the main attraction. Drawn to the nation’s coasts by sun, 
sand and sea and to mountain ranges by snow and lush 
forests, tourists, it seems, are the quintessential fair-
weather friends. The modern tourism industry in the US 
has been built to satisfy the highly climate-sensitive 
desires of the millions of American and foreign visitors. 
The climate itself, and the amenities it provides – snow 
in the mountains, abundant water and fish stocks in 
rivers and lakes, and healthy coral and marine 
ecosystems – is a natural resource upon which the 
tourism industry depends. Mountain resorts in the 
Rockies, for example, depend on regular and abundant 
snow to support more than 20 million visitors each 
winter. In Hawaii, hotels, restaurants, and tour 
operators rely on the state’s year-round sun and sandy 
beaches to draw tourists from all over the world, 
accounting for a full fifth of the state’s economic output. 

Climate change will likely significantly reshape the 
tourism industry nation-wide. Tourist “demand” will be 
influenced over time as tourists take into account 
changing conditions when weighing destination 
options. Climate change will also affect tourism 
“supply” as some destinations experience loss of or 
greater instability in the climate resources on which 
they depend. For example, sea-level rise and increased 
storm surge may damage beach resorts, low-elevation 
mountain resorts may have trouble maintaining 
adequate snow, and water scarcity may limit the season 
for whitewater rafting in areas facing drought. The risk 
of these potential impacts creates significant 
implications for local businesses and communities that 
depend on tourism and the climate-sensitive resources 
that attract visitors. Some regions will also gain, as 
climate change makes certain parts of the country more 
attractive tourist destinations.  

CLIMATE IS ALREADY A MAJOR FACTOR 
INFLUENCING US TOURISM SUPPLY AND DEMAND 

Climate conditions affect the supply of tourism 
opportunities in several ways. First, climate determines 
the length and quality of the tourist season.  In many 
areas of the US, warming temperatures have shifted the 
onset of spring and summer conditions to earlier in the 
year. Tourist activity has been shifted as well, with peak 

park attendance in areas of increased average 
temperatures coming 4 days earlier in the year, on 
average (Buckley and Foushee 2012). Historical 
examples of year-to-year variability have shown that 
warmer, longer summers can provide a significant boost 
to tourist activity in national parks in northern 
latitudes. Warmer average temperatures can also mean 
abbreviated winter seasons, reducing opportunities for 
winter sports activities. High altitude locations 
(including the Colorado Rockies), often thought to be 
more protected from these effects, have experienced 
substantial shifts in the timing of snowmelt and 
snowmelt runoff (Clow 2010). Winter tourism has 
experienced noticeable changes in snow season length 
and quality, as the Western US and parts of the northern 
Great Plains, Midwest and Northeast see earlier spring 
melting (Fritze, Stewart, and Pebesma 2011; Hoerling et 
al. 2012; Mote 2006; Pierce et al. 2008).  

 
Tourist destinations can also experience direct impacts 
from climate-related events that affect their ability to 
attract visitors.  Extreme wet or dry years, for example, 
can make specific destinations unsuitable for the 
outdoor activities upon which they depend. Wildfires 
can block access to outdoor recreation areas, and coastal 
storms and flooding can drive away beach-goers. In the 
spring and summer of 2002, for example, severe 
drought in Colorado created dangerous wildfire 
conditions that kept summer visitors at bay, with a 30% 
reduction in reservations at state park campgrounds 
(Butler, 2002). On more rare occasions, storms and 
other extreme events can wipe out an entire tourist 
season or even multiple seasons, depriving 
communities of tourist-related income on top of direct 
weather-related damages. Louisiana experienced a 24% 
drop in visitor spending from 2004 to 2006 after 
Hurricane Katrina, and the number of visitors to New 
Orleans did not return to pre-Katrina levels until 2013 
(University of New Orleans and LSU 2009).  

 
Finally, climate is a significant factor in determining the 
operating expenses of many tourist destinations, 
including heating and cooling, snow-making, irrigation 
and water supply, and insurance costs. The tourist 
industry has long been exposed to seasonal and inter-
annual climate variability, and to date has developed 
tools to help manage the challenges such uncertainty 
creates for business planning and operation. 
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Climate also plays a role in tourism demand across the 
US. Unlike tourism supply, which is somewhat fixed as 
destinations are unable to pick up and move to more 
suitable climes in times of climate variability or extreme 
events, tourists are by nature fair-weather and flexible 
in their choice of destination. Studies have shown that 
economic development is the principal determinant of 
the level of tourist demand: more disposable income 
means greater travel (Bigano, Hamilton, and Tol 2005). 
However, once people decide to travel, climate is a 
significant influence on where tourists choose to spend 
their vacations (UNEP, WMO, and WTO 2008). Studies 
of tourist destination preferences have identified a 
universal preference for moderate temperatures (with 
an optimal temperature of about 70°F), and have found 
that American tourists in particular display a strong 
preference for specific precipitation levels (Lise and Tol 
2002). As a result, seasonal travel patterns shift toward 
warmer temperatures and sunny skies in temperate 
regions of the US.  Perceptions of environmental quality 
– sufficient stream flow and fish stocks, for example, or 
thriving coral and beach ecosystems – are also 
important determinants of tourist demand. 

CLIMATE CHANGE IMPACTS ON US TOURISM  

The sensitivity of US tourist demand to climate and the 
natural resources it affects means that climate change 
will expose the industry to a wide range of potential 
risks. Businesses that have been built to take advantage 
of local climates will need to adapt to these changes over 
time. Such changes include rising sea levels and 
increased storm surge from hurricanes and other coastal 
storms that may damage tourist infrastructure, disrupt 
travel in coastal communities, and put beaches and 
other environmental attractions at risk.  Changing 
hydrological patterns will impact river flows and lake 
levels that draw tourists for water-sport activities and 
affect water availability and competition among water 
users. Activities that require large volumes of water to 
sustain, such as golf (a single golf course requires the 
same amount of water as a city of 12,000 people), 
waterparks and pools, will be most affected by changes 
in availability and price (UNEP, WMO, and WTO 2008).  
 
Future changes in temperature will have a wide array of 
impacts. Warmer average temperatures nation-wide 
mean that “ideal” tourist temperatures will shift 
northward and to higher elevations, with potential 
impacts on tourist destination preference. Along with 
warmer temperatures comes growth in insect 
populations and the associated vector-borne diseases 
they carry, which may also affect the quality of tourist 
activity in some areas. More severe droughts and 

wildfires may limit or curtail tourist activities in affected 
areas. Changes in the migration patterns of fish and 
animals will affect fishing and hunting, and warmer 
ocean temperatures and ocean acidification will affect 
coral reefs in popular diving destinations. 

 
The dynamic nature of tourism demand and the wide-
array of tourist destination types and locations across 
the US make it difficult to predict how the sector as a 
whole will be impacted by a changing climate. The very 
strong substitution effect on tourist demand makes it is 
difficult to assess the impact of climate change on 
overall tourism levels in the US (Lise and Tol 2002).  
 
Several studies that consider the isolated impact of 
temperature rise on tourism found that the US tourism 
industry as a whole may actually benefit as Northern 
temperate regions become more attractive destinations 
for travelers globally (Deutsche Bank 2008; Scott et al. 
2006; Bigano et al. 2006). Tourists, finding traditional 
Southern destinations increasingly hot, are expected to 
go north following more ideal recreational 
temperatures. One study determined that with an 
increase of 1.8°F of global mean temperatures by mid-
century, the US will see a modest decline in foreign 
travelers (as they stay home or select other 
destinations), but more Americans (by a factor of three) 
are expected to choose to stay in the US as a result of 
milder weather (Berrittella et al. 2006). With domestic 
tourism making up the vast majority of tourist activity 
in the US, contributing nearly 90% of total travel and 
tourism sales in 2012, the net economic impact of 
warmer temperatures was found to be positive. In 
general, global tourism demand models find that 
countries with larger shares of domestic tourism are less 
affected by climate change, a finding that holds for 
climates that are currently cool but which may warm 
over time, like the Northern latitudes of the US 
(Berrittella et al. 2006). It is important to note that 
existing studies of global tourism impacts have only 
explored changes in temperature, omitting potential sea 
level rise, changing precipitation patterns, or ecosystem 
impacts. 

Nation-wide assessments also obscure important 
consequences for specific communities. Climate change 
impacts will be experienced differently from region to 
region, and may even vary among communities within 
the same state, depending not only on local climate but 
also shifting tourism industry dynamics. An analysis of 
the attractiveness of 143 North American cities, based on 
seven climate variables associated with tourist demand, 
found that by the late 21st century, the number of US 
cities with ‘excellent’ or ‘ideal’ climate ratings in the 
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winter months is likely to increase (Scott, Mcboyle, and 
Schwartzentruber 2004). In contrast, Mexico’s ratings 
decline as temperature rise even further, suggesting 
that more winter sun-seekers will opt instead to go 
north, bringing additional revenue to US states. 
However, as temperatures rise, Southern US states may 
also see losses of these sunbird tourists to northern 
states, altering the competitive dynamics within the US 
market.  

 
Although tourists are flexible enough to respond 
climate change, the same cannot be said of local 
providers of tourist services and local economies 
dependent on tourism revenues. Areas where tourism 
constitutes the major livelihood of local communities 
and where such tourism is strongly climate-dependent 
will be the most affected.  Changes in the length and 
quality of the tourism season will also have considerable 
implications for the long-term profitability and 
competitive relationships between destinations. In 
general, greater variability in climate creates 
uncertainty for how tourism demand will respond, 
making it more difficult for the tourism industry to plan 
and maintain business from year-to-year. 
 

 

Winter Sports 

Climate has long ruled the fortunes of winter 
destinations dependent on snow for skiing and other 
winter sports.  Across the US, winter temperatures have 
warmed 0.16°F per decade on average since 1895, and 
more than tripled to 0.55°F per decade since 1970 
(Burakowski and Magnusson 2012). The unpredictability 
of winter seasons, as warmer temperatures bring 
increased variability in snow quantity, quality, and 
season length, has made it increasingly difficult for 
winter destinations dependent on steady revenue from 
snow-seeking tourists.  The unique vulnerability of the 

winter tourism industry to climate makes it an 
important area for studying the near- and long-term 
impacts of a changing climate on winter tourism in the 
US.  

The businesses and communities that depend on winter 
sports as a significant source of annual revenues (over 
$53 billion in annual spending on gear and trip-related 
sales) are paying close attention to current and future 
climate trends (Outdoor Industry Foundation 2012). The 
expectation that climate change will bring even warmer 
winters, increased rainfall and reduced snowfall, and 
shorter snow seasons has raised concern that the U.S. 
winter sports industry could face significant losses. The 
picture is more complicated, however, as experience to 
date shows that winter tourists and ski operators have 
proved able to adapt, to some extent, to these changing 
conditions, making up for lost snow through artificial 
production. Tourists have adjusted as well, varying the 
timing and frequency of winter travel. The key question 
over time will be whether and how tourists and the 
winter sport industry react to future climate changes 
and at what cost. 

Looking back at past impacts associated with warmer 
temperatures can provide some insight into how this 
single variable may impact future winter sports seasons. 
The U.S. 2011-2012 winter season was the fourth 
warmest winter on record since 1896, with the third 
smallest winter snow cover footprint in the 46-year 
satellite record. An assessment by the National Ski 
Areas Association (NSAA) found that winter sport visits 
were down nearly 16%, despite significant efforts by ski 
resorts to supplement the lack of snow with 
snowmaking (National Ski Areas Associations 2013). 
Snowpack was particularly limited across areas in the 
West, where parts of California, Nevada, and Arizona 
had snowpack less than half of average, translating into 
a 25% drop in visitors. This can have real implications 
for states that rely on winter tourism and for local 
resorts and communities that experience declining 
revenues. One study analyzing the winter snowfall data 
across the US from 1999-2010 found that lower-snowfall 
winters were associated with fewer skier visits in nearly 
all states, with a total revenue difference in low-snow 
years of over $1 billion (Burakowski and Magnusson 
2012).  

The ski industry has come to rely heavily on 
snowmaking in order to reduce vulnerability to 
variability in snow levels and season length and 
maintain business from year-to-year. Ski areas have 
invested millions of dollars in snow-making capabilities 
and by 2001 all ski areas in the Northeast, Southeast and 

TOURISM FACTS 

In 2012, tourist-related output generated $1.46 trillion 
dollars (3% of US GDP) and 8 million jobs (U.S. Bureau of 
Economic Statistics 2013). The Outdoor Industry 
Association estimates recreational activities including 
hiking, camping, and fishing contribute nearly $650 
billion in spending and $80 billion in tax revenue to 
federal, state and local governments, and support more 
than 6 million jobs. National Parks see more than 280 
million visitors, generating $12 billion in visitor spending 
and supporting nearly 250,000 jobs (Outdoor Industry 
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Midwest had snowmaking systems covering 62 to 98% 
of skiable terrain (Scott et al. 2006). Across the rest of 
the US, by 2012 nearly 90% of ski resorts report 
snowmaking was used to supplement natural snow 
cover. The ability to adapt to variability in snowfall is 
limited, however, as it requires energy to run 
equipment, significant volumes of water, and below-
freezing temperatures. Adaptation in the form of 
snowmaking, therefore, comes at a high cost, often the 
biggest expense for ski resorts and at times as much as 
half of total expenses (Burakowski and Magnusson 
2012). In drought-stressed regions, water scarcity may 
be a limiting factor. Making an acre-foot of snow 
requires over 160,000 gallons of water; a typical ski run 
(200 feet wide by 1,500 feet long) would take nearly 7 
acre feet of water (or approximately one million gallons) 
to make one foot of snow (Ratnik Industries 2010). 

 

Impacts on coastal tourism 

Coastal areas, and the tourist destinations they support, 
are some of the most vulnerable to climate change.  
Many of the beaches, wetlands, estuaries, coral reefs 
and kelp forests that attract visitors from across the US 
and internationally are managed by the US National 
Park Service, with more than 5,100 miles of coast and 
three million acres of coastal lands under their 
management.  These parks attract more than 75 million 
visitors every year, and generate over $2.5 billion in 

economic benefits to local communities.  Rising sea 
levels are expected to change shorelines and park 
boundaries, resulting in a net loss where parks cannot 
migrate inland.  Everglades National Park, which brings 
in over one million visitors each year, is uniquely 
vulnerable as even slight increases in sea level are 
expected to lead to disproportionate increases in 
inundation periods for broad areas in the park, and have 
already influenced both surface and subsurface 
saltwater intrusion (Stabenau et al. 2011).  Due to a lack 
of suitable habitat, species are prevented from 
migrating upland, resulting in significant changes to the 
composition of wetland and other forest communities 
and the species they support.  

The potential impacts of climate change on coastal 
tourism activity across the US will be highly location 
specific, but localized studies provide examples of the 
type of impacts communities may face. Sea level rise 
alone will likely change the coastal tourist dynamic as 
beach destinations become altered. One result of sea-
level rise is coastal erosion, which decreases beach width 
over time without intervention, and in some instances 
eventually eliminates a beach altogether. One study 
estimates the impacts of sea-level rise induced 
reductions in beach width on beach recreation demand 
in several southern beach communities in North 
Carolina (Street et al. 2007). Using estimates of likely 
sea-level rise in 2030 and 2080 based on local conditions 
at beach sites in Southern North Carolina, the study 
found that the lost recreational value to beach goers is 
$93 million in 2030 and $223 million in 2080, a reduction 
of 16% and 34% of recreational value, respectively. 
Although some of the affected beach-goers, finding 
their preferred beaches diminished or gone entirely, 
will simply choose beach sites further afield (which are 
also likely to be impacted), tourist-dependent 
businesses in the area will be affected. 

Climate change will also accelerate coral bleaching and 
disease caused by increased sea surface temperatures in 
the Caribbean, which has already led to the loss of more 
than 50% of reef-building corals in the Virgin Islands 
park units since 2005 (Buddemeier, Kleypas, and 
Aronson 2004; Hoegh-Guldberg 1999). A recent study 
by Lane et al. (2014) found that even under low-emission 
scenarios, it is likely unavoidable that South Florida and 
Puerto Rico will experience multiple bleaching and 
mortality events by 2020. The same study found, 
however, that low-emission scenarios (associated with a 
radiative forcing of 3.7 W/m2 by 2100) may reduce the 
potential mid-century impact on Hawaii’s coral reefs, 
where sea surface temperatures are cooler and coral 
cover is greater and more robust. Low-emissions 

RECREATIONAL FISHING 

A recent study by Lane et al. (2014) assessed the 
potential climate change impacts to recreational 
freshwater fishing across the coterminous US. They 
found that higher air temperatures, and to a lesser extent 
changes in streamflow, will alter fish habitat, resulting in 
a decline in more desirable recreational fish species (i.e. 
cold-water species like trout) and a shift toward less 
desirable warm-water fisheries.  Under their “business 
as usual” scenario (coinciding with a radiative forcing of 
10 W/m2 by 2100), warmer temperatures are expected 
to result in more than a 60% loss in current cold-water 
fishery habitat, which will virtually disappear in 
Appalachia, while habitat in substantial portions of 
Texas, Oklahoma, Kansas, Arizona and Florida will shift 
from warm-water fisheries to species of even lower 
recreational priority. The analysis suggests that such 
shifts could result in national-scale economic losses 
associated with the decreased value of recreational 
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scenarios only delay the extensive bleaching of Hawaii’s 
corals, however, which is expected to still see 
substantial reductions in coral cover by late century. 
The discounted loss of recreational benefits of a 
“business-as-usual” climate scenario (associated with 

radiative forcing of 10 W/m2 by 2100) when compared to 
the low-emissions scenario are estimated at $17.4 billion 
dollars (with a confidence interval of approximately $9 
to 26 billion) (Lane et al. 2014). 
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CHAPTER 20 

National Security

“People are saying they want to be perfectly convinced about 
climate science projections… But speaking as a soldier, we 
never have 100 percent certainty. If you wait until you have 
100 percent certainty, something bad is going to happen on 
the battlefield.” - General Gordon R. Sullivan (CNA 2007)   

The US national security establishment is accustomed to 
making decisions in the face of uncertainty. In an 
unpredictable world, assessing potential global risks is 
essential to making our homeland more secure. Climate 
change is such a risk. The global conditions associated 
with climate change, including potential changes in 
tropical cyclone activity, additional drought and 
flooding, and rising sea levels, present serious risk 
factors that could trigger mass migration, elevate 
border tensions, increase demands for rescue and 
evacuation efforts, and heighten conflicts over essential 
resources, including food and water (CNA 2007). In 
recent years, the US military has come to recognize 
climate change as a direct threat to national security and 
has developed a risk-based approach to prepare for and 
manage the potential impacts both at home and abroad. 
 
In 2006, a panel of eleven retired three-star and four-
star admirals and generals formed a Military Advisory 
Board to assess the impact of global climate change on 
US national security. They concluded that “climate 
change can act as a threat multiplier for instability in 
some of the most volatile regions of the world, and it 
presents significant national security challenges for the 
United States” (CNA 2007). The following year, in 
response to calls from Congress and shifting national 
strategic priorities, the US intelligence community 
produced the National Intelligence Assessment on the 
National Security Implications of Global Climate Change to 
2030 which highlighted “wide-ranging implications for 
US national security interests” (Fingar 2008).   

 
In recent years, the US military and security 
establishment has moved beyond exploration and 
begun integrating climate change risk assessment and 
management into normal national security planning. In 
its 2010 Defense Quadrennial Review, the US 
Department of Defense (DOD) called for a strategic 
approach to climate to manage the effects on its 
operating environment, missions and facilities and 
regularly evaluate risks as new science becomes 
available (US Department of Defense 2010). This was the 

first time the Pentagon addressed climate in a 
comprehensive planning document. Not long after, 
individual branches of the military began to develop 
their own assessments of likely impacts and plans for 
dealing with near- and long-term threats from climate 
change (US National Research Council Committee on 
National Security Implications of Climate Change for 
Naval Forces 2011; U.S. Navy 2010). The most recent 
Quadrennial Review reinforced the need to incorporate 
climate risks into planning, stating that “the impacts of 
climate change may increase the frequency, scale, and 
complexity of future missions, including defense 
support to civil authorities, while at the same time 
undermining the capacity of our domestic installations 
to support training activities” (US Department of 
Defense 2014). 

 
These assessments group climate-related risks to US 
national security into two categories. The first covers 
direct, physical impacts to the homeland, including 
threats to US military installations from flooding and 
storms, threats to nuclear power plants or oil refineries, 
and the risk that critical US defense forces may be 
diverted from core national security objectives to aid in 
the management of domestic extreme weather events, 
such as Hurricane Katrina. The second, and much 
larger, category covers the indirect risk that climate 
change will exacerbate existing conflicts abroad and 
heighten humanitarian and political crises in vulnerable 
states and populations (US Department of Defense 
Science Board 2011). Below we provide a general 
overview of these indirect international impacts, 
followed by a more in-depth discussion of the direct 
impacts within the US. 

INDIRECT INTERNATIONAL 

Assessments by the Pentagon and national intelligence 
community have concluded that climate change could 
have significant geopolitical impacts around the world, 
contributing to environmental degradation and food 
and water scarcity, exacerbating poverty, increasing the 
spread of disease, and spurring or exacerbating mass 
migration. This is likely to lead to increased demand for 
defense support to civil authorities for humanitarian 
assistance or disaster response.  
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The US military often has a unique ability to respond to 
large-scale extreme weather or natural disasters. In the 
wake of Typhoon Haiyan, which struck the Philippines 
on November 8, 2013, the US not only provided $37 
million in humanitarian aid, but also deployed over 
14,000 US military personnel to help stabilize the area 
and provide relief. The US military gets a request for 
humanitarian assistance and disaster response about 
once every two weeks (Former Captain Jon Gensler (US 
Army) 2014).  As climate change heightens and 
exacerbates humanitarian emergencies, the demand for 
US assistance will further strain US military capacity, 
limiting readiness for homeland defense or combat 
operations that may arise (Fingar 2008). 

While resource scarcity and natural disasters associated 
with climate change are significant threats in and of 
themselves, an associated risk is their potential to 
weaken already fragile governments, providing 
opportunity for increased instability and conflict, 
creating an additional burden on the US military to 
respond to prevent further destabilization. The National 
Intelligence Assessment for 2030 concluded that climate 
change alone is unlikely to trigger state failure in that 
timeframe, but the exacerbation of existing problems 
could be enough to endanger domestic stability in some 
states, giving rise to threats of regional conflict or 
creating openings for criminal activity or terrorism (US 
Department of Defense Science Board 2011). For 
example, a dysfunctional government response to water 
stress -- of a sort expected to become more common 
under climate change -- is generally agreed to be one of 
the contributing factors to the current humanitarian 
disaster in Syria (de Châtel 2014).  
 
Recent work has applied the same econometric 
techniques used elsewhere in this report to 
quantitatively measure the dose-response function 
linking climatic events to various forms of modern 
intra-state social conflict, ranging from ethnic 
riots(Bohlken and Sergenti 2010), land invasions 
(Hidalgo et al. 2010), local political violence (O’Loughlin 
et al. 2012), leadership changes (P. J. Burke 2012), and 
coups (Kim 2014) to full scale civil conflict (Hsiang, 
Meng, and Cane 2011) and civil war (M. B. Burke et al. 
2009).  Overall, the body of econometric analysis 
provides consistent and strong evidence that elevated 
temperatures tend to increase the risk of intergroup 
conflict in a location by roughly 13% for each standard 
deviation of warming, with somewhat weaker evidence 
that rainfall extremes affect conflict in a quantitatively 
similar way (Hsiang, Burke, and Miguel 2013b). For 
perspective on the size of these effects, historically 
observed oscillations in the global climate have been 

implicated in contributing to 21% of civil conflicts since 
1950 (Hsiang, Meng, and Cane 2011). In contrast to 
earlier theories that populations fought over 
increasingly scarce resources (i.e. “water wars”), this 
new body of evidence suggests that more complex 
dynamics are responsible for these social conflicts—the 
leading theory argues that climatic changes cause 
economic conditions and local labor markets to 
deteriorate, reducing the opportunity cost of engaging 
in violence and extractive activities (Miguel, Satyanath, 
and Sergenti 2004; Chassang 2009; Hidalgo et al. 2010; 
Dal Bo and Dal Bo 2011). 
 
In contrast to this recent progress on intra-state social 
conflict, there is no general empirical evidence as to 
whether or not modern inter-state conflict may be 
affected by climate, but this may be due to an absence of 
studies on this topic (Hsiang and Burke 2013). 
 
Climate will also have an impact on strategic resources, 
including fuels, minerals and food supplies, as well as 
the security of international transport routes essential 
to ensuring open access.  One important example is the 
rapid evolution of the Arctic as accelerating sea ice melt 
opens the region to changing transport routes, 
competing territorial and resource claims, and potential 
conflicts. As one of five nations bordering the Arctic 
(with over 1,000 miles of Arctic coastline) and with a 
seat on the Arctic Council, this example is of particular 
importance to the US. With no overarching political or 
legal structures to oversee the orderly development of 
the region or mediate political disagreements over 
Arctic resources or sea-lanes, the potential risk of 
conflict in the region is meaningful.   
 
By the end of the summer of 2012, the area covered by 
sea ice shrunk to about 400 thousand square miles 
smaller than it was the previous summer, leaving the 
Arctic icecap to less than half the size it had been 30 
summers previously (NSIDC 2014). Warming 
temperatures have resulted in a rapidly evolving Arctic 
landscape, exposing sea routes that did not previously 
exist, opening access to transport and resource 
extraction. Further expected warming could open up 
shipping shortcuts on the Northern Sea Route (over 
Eurasia) and the Northwest Passage (over North 
America), cutting existing oceanic transit times by days. 
Both American and other vessels (including other navies 
or smugglers) would have greater access, making the 
overall impacts to national security hard to predict. It is 
likely that these Arctic routes would also allow 
commercial and military vessels to avoid sailing 
through politically unstable Middle Eastern waters and 
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other pirate-infested waters, thus mitigating other 
threats (Borgerson 2008). 
 
The US military has long had a presence in the Arctic, 
but the greater access afforded by melting sea ice will 
require a shift in the nature of its role and the resources 
required to sustain it, such as increased capacity for 
search-and-rescue and border patrolling, alterations of 
naval vessels, and increased monitoring. Responding to 
these challenges may require investments in ice-capable 
technologies and military training; greater resources for 
management of maritime traffic, search-and-rescue and 
accident clean-up capacities; and building an ice-capable 
commercial, scientific and naval fleet, an investment 
some have suggested is on the order of $11 billion for 
icebreakers alone (Ebinger and Zambetakis 2009). 
 

DIRECT IMPACTS TO THE US HOMELAND 

Military Installations 

The most direct national security threat is the potential 
impact of extreme weather and sea level rise on 
domestic military installations and the physical 
infrastructure that supplies them, as well as on our 
international installations of strategic importance. 
 
The US military manages property in all 50 states, seven 
US territories and 40 foreign countries, comprising 
almost 300,000 individual buildings around the globe 
worth roughly $590 billion (US Department of Defense 
2012). About 10% of DOD coastal installations and 
facilities are located at or near sea level and are 
vulnerable to flooding and inundation (SERDP 2013). 
The National Intelligence Council estimated that 30 US 
military installations were already facing elevated risk 
from rising sea levels in 2008, jeopardizing military 
readiness which hinges on continued access to land air 
and sea for training and transport (National Intelligence 
Council, 2008). Due to a combination of natural and 
human-caused factors, Norfolk, Virginia, home to the 
world’s largest naval station, has experienced one of the 
fastest rates of sea-level rise in the United States. 
 
Several recent disasters have highlighted the 
vulnerability of military installations to hurricane-
related flooding and wind damage, as well as increase in 
sea level averages. In 1992, Hurricane Andrew damaged 
Homestead Air Force Base in Florida to the point that it 
never reopened, while Hurricane Ivan knocked out 
Naval Air Station Pensacola for a year in 2004, and 
Hurricane Katrina destroyed 95% of Keesler Air Force 
Base in Mississippi (Foley and Holland 2012).  As 
demonstrated in all three cases, military bases in the US 

are important drivers of local and regional economies, 
and when they are destroyed by natural disasters there 
is considerable collateral economic damage. As 
discussed in chapter 2, scientists have a high degree of 
confidence that global sea levels will continue to rise as a 
result of current GHG emissions trends, and that higher 
sea levels alone increase damage from hurricanes and 
other coastal storms. If climate change increases the 
frequency and severity of the most intense Atlantic 
basin hurricanes, as many cyclogenesis models predict, 
the risks are even higher.   
 
The Pacific Coast is not invulnerable: an 
uncharacteristic tropical storm ripped through Fort 
Irwin, California, in 2013 bringing monsoon rains, wind 
and hail, and leaving homes and facilities flooded. 
Wildfire also poses a risk in the Western US. In 2013, a 
2,500-acre wildfire forced evacuations at Marine Corps 
Base Camp Pendleton in San Diego County.  
 
In recognition of the growing risk posed by these and 
other climate-related disruptions linked to climate 
change, the 2010 Quadrennial Defense Review called for 
a climate impact assessment at all DOD’s permanent 
installations (US Department of Defense 2010). Several 
studies have been completed or are currently underway 
by the individual military service branches, and DOD’s 
Strategic Environmental Research and Development 
Program (SERDP) launched a comprehensive research 
project to examine climate change impacts on coastal 
installations (SERDP 2013).  SERDP is using case studies, 
such as the Norfolk Naval Station, to quantify the 
potential impacts of near-term sea level rise and storm 
activity on coastal infrastructure and Pacific islands and 
atoll systems that are home to critical US military 
installations.  

Critical infrastructure 

National security extends beyond protecting the 
homeland from outside threats. The US Department of 
Homeland Security has affirmed that protecting and 
ensuring the resilience of critical domestic 
infrastructure is essential to the nation’s security, and 
that natural hazards can disrupt the functioning of 
government and business and result in human 
casualties, property destruction, and broader economic 
effects (US Department of Homeland Security 2009). 

The daily functioning of most critical infrastructure 
systems is sensitive to changes in precipitation, 
temperature, wind, and, for coastal cities, rising sea 
levels (Love, Soares, and Püempel 2010). Extreme 
weather events can destroy or temporarily debilitate 
critical physical infrastructure upon which the country 
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CHAPTER 21 

Mitigation 

Risk is the probability of an event occurring multiplied 
by the impact of that event should it occur. Climate risk 
can be managed by reducing the probability of costly 
climate futures by lowering global greenhouse gas 
(GHG) emissions, and by minimizing the impact of 
those futures through defensive investments and 
behavioral adaptation. Like the climate risk itself, the 
right combination of these two will depend on who you 
are, where you live, and the time period of concern. It 
will also depend on the relative cost of each option, costs 
which we do not quantify in this report. The fact that 
our assessment covers a range of global emissions 
pathways, however, allows us to assess in this chapter 
the extent to which global efforts to reduce GHG 
emissions (referred to as “mitigation”) can reduce the 
risks described in this report. In the next chapter we 
discuss some of the available strategies for adapting to 
those changes in the climate not avoided through 
mitigation. 
BACKGROUND 

As discussed in Chapter 3, the scientific community has 
developed a set of four harmonized “Representative 
Concentration Pathways” (RCPs) spanning the plausible 
range of future atmospheric GHG concentrations 
(Figures 3.1 and 21.1). RCP 8.5 represents a continuation 
of recent global emissions growth rates, with 
atmospheric concentrations of CO2 reaching 940 ppm 
by 2100. RCP 2.6 reflects a future only achievable by 
aggressively reducing global emissions (even achieving 
net negative emissions by this century’s end) through a 
rapid transition to low-carbon energy sources. Two 
intermediate pathways (RCP 6.0 and RCP 4.5) are 
consistent with a slowdown in global economic growth 
and/or a shift away from fossil fuels and other sources of 
GHG emissions more gradual than in RCP 2.6 (Riahi 
2013). 

Under RCP 2.6, global GHG emissions peak around 
2020, while under RCP 4.5 and RCP 6.0, they peak 
around 2040 and 2080, respectively. Under all pathways 
except RCP 8.5, projected emissions for 2020 are below 
those that actually occurred in 2012 (Le Quéré et al. 
2014). This overshoot implies that future emissions 
reductions need to be faster than those projected in 
RCPs 2.6, 4.5, and 6.0 to achieve comparable levels of 
cumulative emissions and therefore comparable climate 
outcomes.   

Figure 21.1: Global net human-caused CO2 emissions in the 
Representative Concentration Pathways 
Billion metric tons of CO2 per year 

 Source: Historical: LeQuere et al., 2014; RCPs: Malte Meinshausen et al. 2011a 

Moving from RCP 8.5 to RCP 2.6 (as well as RCP 4.5 and 
RCP 6.0) will come at a cost. We did not quantify these 
costs in this assessment. There is extensive literature on 
this topic (Weyant and Kriegler 2014), including a recent 
summary from Working Group III of the IPCC (Clarke et 
al. 2014). Moving from RCP 8.5 to RCP 2.6 will also 
require coordinated global action, and we do not 
evaluate the prospects of such coordinated action 
occurring. What our analysis provides, however, is a 
better understanding of the potential for such action to 
mitigate the risks to the US of continuing on the current 
global emissions pathway, by region of the country and 
sector of the economy, as well as its limitations. 

STEERING THE SHIP 

The differences in GHG emissions between RCPs emerge 
almost immediately. By 2030, global CO2 emissions are 
13% below 2005 levels (25% below actual 2012 emissions) 
in RCP 2.6, 22% higher than 2005 levels (5% higher than 
2012 emissions) in RCP 4.5, and 59% higher than 2005 
levels (37% higher than 2012 emissions) in RCP 8.5. 
(Because of quirks in the way the RCPs are calculated, 
emissions in RCP 6.0 are below those in RCP 4.5 until 
the 2040s). 

Inertia in the climate system, however, means that this 
broad range in emissions does not translate 
immediately into significant differences in temperature. 
The global mean temperature increase between 2020-
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2039 and 1981-2010 is likely 0.9–1.6°F in RCP 2.6, 1.0–
1.6°F in RCP 4.5, and 1.1–1.8°F in RCP 8.5. Due to natural 
variability and the greater uncertainty in how global 
changes translate into regional changes, the likely 
temperature projections for the contiguous US overlap 
to an even greater extent: 1.2–2.8°F in RCP 2.6 and 1.5–
3.2°F in RCP 8.5. The 1-in-20 chance projection for the 
three RCPs is identical: 3.6°F.  

By mid-century, the likely global mean temperature 
changes for RCP 2.6 and 8.5 (1.1–2.2°F in RCP 2.6 and 
2.2–3.7°F in RCP 8.5) no longer significantly overlap, 
although the changes in contiguous US temperature 
(1.9–3.5°F and 2.6–5.8°F) continue to do so. Only in the 
second half of the century do temperature differences 
between the RCPs fully emerge (with a likely contiguous 
US temperature increase of 1.0–2.6°F in RCP 2.6 and 4.7–
8.8°F in RCP 8.5 by late century). 

Figure 21.2: Change in high-risk labor productivity 
Percent 

 

When the effects of climate inertia, physical projection 
uncertainty, and natural variability are combined with 
the statistical uncertainty in impact projections, the 
economic benefits of mitigation do not start to be felt 
until mid-century and are most obvious in the second 
half of the century. Figure 21.2 illustrates the time 
evolution of one impact, change in high-risk labor 
productivity, over the course of the century under RCPs 
2.6, 4.5, and 8.5. Over the next couple decades, the 
projected labor productivity decline is essential 
independent of RCP. By mid-century, the median 
projection for RCP 2.6 still lies within the likely range for 
RCP 8.5, but differences between RCPs start to be clear 
in the tails: the 1-in-20 worst case projection for RCP 2.6 
is comparable to the median projection for RCP 8.5. By 
late century, the differences are large: the 1-in-20 worst 

case projection for RCP 2.6 is only slightly below the 
median projection for RCP 4.5, and the 1-in-20 worst 
case projection for RCP 4.5 is only slightly below the 
median projection for RCP 8.5. 

As we highlight in the remainder of this chapter, 
mitigation today is a crucial tool for managing some 
types of climate risk in the second half of this century. 
For the next three decades, however, the climate 
outcomes are largely already baked into the system. 
Accordingly, adaptation, as described in the next 
chapter, is critical for managing climate risk in the near 
term. 

AGRICULTURE 

For most of the country, agriculture benefits from 
mitigation on average—even though the positive 
benefits of CO2 fertilization allow for a nonzero chance 
of net agricultural benefits in all regions across all 
emissions scenarios.  In addition to shifting the average, 
a major benefit of mitigation for agriculture is to 
truncate the large tail risk of extremely bad outcomes in 
major agricultural regions under RCP 8.5.  By end of 
century at the national level, extreme events in annual 
yield losses that were historically 1-in-20 year events 
become 1-in-2 year events under RCP8.5, but they are 
restricted to be only 1-in-5 year events under RCP 2.6. 
Taking the Midwest as an example, the agricultural 
heartland of the country, the likely range of losses in 
RCP 8.5 extends from -8.6% (a small gain) down to 61%, 
whereas losses can be constrained span the much 
narrower likely range of -4.0% to 14% in RCP 2.6. Similar 
benefits of mitigation accrue for the Northeast, 
Southeast, and to a lesser extent the Great Plains.  
However, mitigation reduces potential agricultural 
benefits (negative losses) for the Southwest from losses 
between -17% and 5.3% in RCP 8.5 to losses between -
3.9% and 4.3% in RCP 2.6; a more exaggerated effect is 
clear for the Northwest, although there is very limited 
production in that region.  

LABOR  

The impact of climate change on labor productivity is 
more evenly spread geographically than agriculture, as 
are ubiquitous benefits of mitigation. Mid-century likely 
declines in high-risk labor productivity nation-wide are 
0.22% to 0.89% in RCP 8.5, 0.09% to 0.67% in RCP 4.5 
and 0.14% to 0.4% in RCP 2.6. Late-century, likely 
declines fall from 0.83% to 2.38% in RCP 8.5, to 0.2% to 
1.1% in RCP 4.5 and 0.07% to 0.4% in RCP 2.6 (Figure 
21.4). Projected labor productivity declines in late 
century exhibit a long tail, especially in RCP 8.5, with a  
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Figure 21.3: Change in maize, soy, wheat and cotton yields, 2080-2099 
By NCA region and RCP 

Figure 21.4: Change in labor productivity, 2080-2099 
By NCA region and RCP 
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1-in-20 chance of declines below 3.2% in RCP 8.5 and 
1.6% in RCP 4.5. All regions see less labor productivity 
decline in RCP 4.5 and RCP 2.6, though these changes 
are more economically important for states like Texas, 
North Dakota and Louisiana, where high-risk sectors 
account for a greater share of state employment.  

HEALTH 

As discussed in Chapter 13, the effect climate change on 
temperature-related mortality is one of the most 
economically significant impacts we quantify, as well as 
one of the most geographically varied. The nonlinearly 
relationship between temperature and mortality has a 
strong influence over mortality’s response to 
mitigation.  Because small amounts of warming offsets 
roughly the same number of cold-related deaths as heat-
related deaths that it causes, mid-century and late-
century outcomes tend to look very similar in RCP 4.5 
and RCP 2.6.  However, late-century morality rises 
rapidly in RCP 8.5 as the average temperature of 
counties rises and large number of hot days causes many 
more heat-related deaths than the number of cold-

related deaths that are avoided. This pattern in 
mortality creates a strong incentive to avoid RCP 8.5 
through mitigation, but it suggests little gain in aiming 
for RCP 2.6 relative to RCP 4.5. 

In RCP 8.5, the likely increase in temperature-related 
mortality is 3.7 to 20.8 deaths per 100,000 people on 
average between 2080 and 2099. In RCP 4.5 the likely 
range falls to -2.5 to +5.9, and in RCP 2.6 it falls to -2.3 to 
3.2 (Figure 21.5). Projected mortality increases in late 
century exhibit a long tail, especially in RCP 8.5, with a 
1-in-20 chance of increases greater than 36 under RCP 
8.5, 12 under RCP 4.5, and 5 under RCP 2.6. 

The differences between RCPs is even more significant 
for certain regions than for the country as a whole. The 
Southeast, southern Great Plains states and parts of the 
Southwest will likely see steep declines in temperature-
related mortality in RCP 4.5 or RCP 2.6 compared to 
RCP 8.5, while the Northwest will likely see an increase. 
The mortality benefits of mitigation in the Northeast 
and Midwest are more mixed.  

 
Figure 21.5 Change in mortality rates 2080-2099 
Deaths per 100,000, by NCA region and RCP 

 

CRIME 

The overall impact of climate change on crime rates is 
unambiguous but modest, particularly when compared 
to other factors. Climate-driven increases in crime rates 
are lower under RCP 4.5 and RCP 2.6 than RCP 8.5, but 
not significantly so until late century.  Between 2080 

and 2099, the likely violent crime rate is 1.9% to 4.5% 
under RCP 8.5, 0.6% to 2.5% under RCP 4.5, and -0.1% to 
1.3% under RCP 2.6 (Figure 21.6). As with labor 
productivity, the reduction in climate-driven crime rate 
increase is comparable across regions, though the 
economic benefit is concentrated in states with higher 
baseline crime rates. 
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Figure 21.6: Change in violent crime rates, 2080-2099 
By NCA region and RCP 

 

ENERGY 

The impact of mitigation on climate-driven increases in 
nation-wide energy expenditures is ambiguous until 
mid-century, at which point projected increases are 
roughly half as high under RCP 2.6 as RCP 8.5, with 
little difference between RCP 2.6 and RCP 4.5. By the 
end of the century, nation-wide cost increases are 
considerably lower in RCP 2.6 than RCP 4.5, with likely 
ranges of 0.8% to 4.3% and 1.8% to 8.8%, respectively,  

 

which in turn are considerably lower than RCP 8.5, with 
a likely range of 8.0% to 22% (Figure 21.5). The largest 
declines in energy expenditures between RCP 8.5, RCP 
4.5 and RCP 2.6 are in the Southeast, Great Plains and 
Southwest – the regions that see the largest increases 
under RCP 8.5. Energy expenditures decline much more 
modestly in the Northeast and remain relatively 
unchanged in the Northwest.  

Figure 21.5: Change in energy expenditures, 2080-2099 
Percent 
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COASTAL 

Because sea-level rise responds more slowly to changes 
in emissions than temperature, the impact of climate 
change on coastal communities is, in this century, the 
least responsive to changes in global emissions of the 
impacts we assessed. In 2050, additional current coastal 
property value likely below Mean Higher High Water 
levels (MHHW) due to sea level rise (SLR) is $323 to $389 
billion. In RCP 2.6 this only falls to $287 to $360. The 
likely SLR-driven increase in average annual hurricane 
damage in 2050 is $5.8 to $13 billion in RCP 8.5, $5 and 
$11 billion in RCP 4.5 and $4.6 to $10 billion in RCP 2.6.  

By the end of the century, at which point the median 
projected increase in global sea level differs between 
RCP 2.6 and RCP 8.5 by about 1 foot (from a total of 
about 2.6 feet in RCP 8.5), there is a slightly greater 
difference between RCPs. Likely average annual 
inundation from SLR and SLR-driven increases in 
average annual hurricane damage combined are $26 to 
$43 billion between 2080 and 2099 in RCP 8.5. In RCP 
4.5, the damages are reduced to $20 to $33 billion, and to 
$15 to $29 billion in RCP 2.6. This benefit is concentrated 
in the Northeast and Southeast, where most of the 
coastal inundation and hurricane risk exists (Figure 
21.6).   

Figure 21.6: Change in average annual hurricane and inundation damage, 2080-2099 
Billion 2011 USD 

OTHER RISKS 

Not all the risks that mitigation can help manage or 
avoid are quantified in our economic analysis. As 
climate conditions pass further outside the realm the 
planet has experienced for the last several millions 
years, the odds of passing tipping points like those 
discussed in Chapter 3 or of triggering unexpected 
planetary behaviors increases. Under RCP 8.5, the 
magnitude of the likely global warming by the first half 
of the next century (about 9-18°F since pre-Industrial 
items by around 2150) will be unprecedented in the last 
56 million years (see discussion of the Paleocene-Eocene 
Thermal Maximum in Chapter 5). Under RCP 4.5, the 
likely global temperatures at the end of the century 
(about 2.2-5.5°F higher than 1981-2010) will be 
comparable to those the planet last experienced about 3 

million years ago (Hill et al. 2014). Under RCP 2.6, the 
likely increase in global mean temperature is limited to 
about 0.9-2.6°F, maintaining temperatures close to a 
range last experienced about 125 thousand years ago 
(Turney and Jones 2010). 

As described in Chapter 4, by late century under RCP 
8.5, about a third of the American population (assuming 
the geographic distribution of population remains 
unchanged) is expected to experience days so hot and 
humid that less than an hour of moderate, shaded 
activity outside can trigger heat stroke (Category IV on 
the ACP Humid Heat Stroke Index) at least once a year 
on average. Under RCP 4.5, only one-eighth of the 
population is expected to experience such a day at least 
once a decade on average; under RCP 2.6, the risk of 
such conditions is negligible for almost all Americans. 
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Given these and other risks not included in our 
economic analysis, as discussed in Part 4, the results in 
this chapter should be viewed as highlighting the 
capacity of mitigation to reduce the specific set of 
climate risks that we have evaluated – and thus a near-
certain underestimate of the overall benefit of 
mitigation for managing climate risk, especially in the 
second half of the century and beyond. 
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CHAPTER 22 

Adaptation 

While global emission reductions can mitigate much of 
the climate risk Americans face, as shown in the 
preceding chapter, there are some climatic changes that 
are already “baked in” as a result of past greenhouse gas 
emissions and will occur regardless of how emission 
levels change. In addition, many decision-makers, from 
individual businesses and homeowners to local 
governments, have limited ability to affect global 
emissions directly, and need to prepare for a range of 
plausible climate futures. Armed with the kind of 
forward-looking information provided in this report, 
decision-makers can, however, reduce their risk 
exposure through adaptation. 

This report provides new information on the relative 
economic impact of climate change to different sectors, 
allowing decision-makers to consider where they might 
focus adaptation efforts. In this chapter, we consider 
how future populations might adapt, we demonstrate 
how the modeling approaches used in this report could 
be used to better understand the potential gains from 
adaptation, and we highlight weaknesses in our current 
understanding of the costs and benefits of adaptation. 

BACKGROUND 

When the climate changes and imposes economic costs 
on populations, these populations will respond to these 
changes in an effort to cope. Americans will adapt to 
climate change, changing how they live and how they 
do business in ways that are better suited for their 
altered environment. In general, populations adapt to 
climatic changes in two different ways: they change 
their behavior, or they make “defensive investments” in 
new capital that mitigates the effect of climate. 
Behavioral changes may involve small or large changes 
in the actions people undertake, whether they change 
the time of day that they exercise, plant crops earlier in 
the season, or move to a different city. Defensive 
investments are capital investments that individuals or 
firms make to minimize the effects of climate that they 
would not have undertaken in a less adverse climate, 
such as the purchase of air conditioners, the building of 
sea walls, or the installation of irrigation infrastructure. 
Both behavioral adaptations and defensive investments 
are visible in the modern economy. For example, 
residential air conditioning penetration is virtually 

100% in the South, where summers are already 
uncomfortably warm and humid, and irrigation is 
extensive in the West, where climates are already arid.  
Our ability to observe of these adaptations demonstrates 
both their technical and economic feasibility, a notion 
that encourages us to believe that these adaptations will 
play an important role in the future of the American 
economy.   

Importantly, however, all of these adaptations have 
some economic costs and may not be suitable for all 
future contexts. At present, we do not have a strong 
understanding of the costs involved with the numerous 
potential adaptive behaviors and investments that are 
currently available—although we do know that costs are 
involved, since if these behaviors and investments were 
costless, we would expect them to be much more 
broadly employed at present (Hsiang & Narita, 2012). 
For example, the fact that some households currently 
have air conditioners and some do not tells us that some 
families find this investment worth the cost it imposes 
and some do not, perhaps because the latter households 
do not experience extreme heat as often or because 
purchasing an air conditioner would require that the 
household forego other expenses that are more essential 
to their wellbeing, such as spending on food or 
education.  

Developing a full understanding of the economics of 
adaptation is an important question closely related to 
the analysis presented throughout this report.  In future 
analyses, we hope that researchers will provide the 
details needed to carefully evaluate both the costs and 
benefits of various adaptive actions and investments, 
which will enable the design of policies that optimally 
facilitate adaptation. We note, however, that the 
quantity of information required to undertake such an 
exercise is even greater than what we use here: in 
addition to knowing (1) how the climate affects people, 
we must also know (2) how adaptation mediates this 
effect in quantitative terms, i.e. the benefits of 
adaptation, as well as (3) what populations sacrifice in 
order to undertake these adaptations, i.e. the costs of 
adaption. Material in this report has relied heavily on 
(1), insights that are just now becoming available due to 
scientific advances, whereas both (2) and (3) require 



ADAPTATION        162 

additional research innovations that build on what has 
already been achieved. In order to understand how 
adaptation mitigates the impact of climate on a certain 
dimension of the economy, we must first develop 
techniques to measure the effect of climate in the 
absence of additional adaptation, the focus of this report 
and the research underlying it, and then we must 
develop techniques to measure how new behavioral 
changes or defensive investments alter the quantitative 
structure of this linkage and the cost of these actions. 
Since the latter remains a generally unanswered 
question, our assessment is that the potential gains from 
adaptation remain unknown, but they may be 
understood in the near future as research advances.  

Since the current body of research is insufficient to 
project expected patterns of adaptation and their costs 
and benefits, this report has been exclusively focused on 
the direct effects of climate change—assuming 
populations respond to climate similarly as they have in 
the recent past—and their general equilibrium effects. 
Nonetheless, because we are certain populations will 
adapt even in the absence of government actions, it is 
worth considering what some example adjustments 
might look like for illustrative purposes, even if we 
cannot fully quantify their impact and cannot yet 
evaluate their full economic costs or benefits.   

AGRICULTURE 

Agriculture is a sector where producers have been 
adapting to their climate for millennia. We expect that 
as the climate changes in the future, farmers will make 
numerous adjustments in an effort to cope with these 
changes. As explained above, it remains difficult to fully 
evaluate the cost, benefits, and effectiveness of each one 
of these adjustments individually, although we do have 
some sense of what various adjustments might look like 
based on historically observed adaptations.  

For example, we expect that farmers will adjust which 
crops they plant, shifting towards varieties or products 
that are more conducive to their new local conditions, 
probably because they are more tolerant of extreme heat 
(Mendelsohn, Nordhaus, Shaw, 1994). Current research 
is insufficient to evaluate the costs of this transition, so 
it is difficult to know how many farmers will make 
which crop transitions at which points in time and what 
their net benefits will be. It is also likely that some 
producers will change croplands to rangeland, that 
farmers will expand their use of irrigation to help 
mitigate the effects of rainfall loss and extreme heat, 
and that farmers will change their planting dates to 
earlier in the season so that crops will be exposed to less 

adverse planting conditions. It is also possible that 
patterns of agricultural production migrate northward, 
so that land in the North and West that was not 
previously used for agriculture but has rising 
productivity due to warming is brought into 
production. Longer growing seasons in other parts of 
the country may enable double or triple-cropping, even 
if individual crop yields decline. Individuals from 
farming communities may also simply migrate out of 
those communities as economic production declines, as 
was observed in the Dustbowl (Hornbeck, 2012) as well 
as more recent years (Feng, Oppenheimer, Schlenker, 
2012). Finally, genetic technologies and advances in 
breeding may produce more heat tolerant and drought 
tolerant varieties of crops in the future. In the past, such 
efforts have had mixed success, with some advances 
revolutionizing production in local areas, such as the 
development of varieties that enabled widespread 
cultivation in the American West (Olmstead & Rhode, 
2011), while in other cases breeding advances brought 
little to no benefits for decades, such as the persistent 
heat sensitivity of maize in the Eastern United States 
(Schlenker & Roberts, 2011; Burke & Emerick, 2012).  
Because genetic innovations are of a “hit or miss” nature 
they are more speculative and more difficult to depend 
on in comparison to other adaptive measures, such as 
irrigation, where technologies already exist. 

Given the state of research, we lack the necessary 
information to quantify the potential economic benefits 
and costs associated with these various forms of 
adaptation. However, we can use existing data to get a 
quantitative sense for the collective benefits for a subset 
of these adjustments.  Populations have adapted to their 
local climates in the past, and that provides us with 
some information about how effectively they utilize 
technologies that are already within reach. For example, 
irrigation is used extensively in the West but less so in 
the East, a fact that makes maize production in the West 
less sensitive to extreme heat (Schlenker & Roberts, 
2009).   

To address this question, we can do a thought 
experiment in which we ask what maize yields would 
look like if farmers in the East started adopting the 
farming practices of farmers in the West.  This exercise 
is useful for helping us think about the potential heat-
resistance of this particular sector, but it is only half of 
the story because dramatically expanding irrigation and 
changing varieties will have costs that we are not 
measuring (Schlenker, Roberts, Lobell, 2013).  A benefit 
of this approach is that it allows us to model future 
adaptations using simple assumptions that are 
calibrated to the actual, real-world behavior of adapting 
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devices.  RHG-NEMS estimates match historically-
observed responses as found in the econometric 
literature, but could be too conservative about future 
efficiency advances.   

The area where adaptive advances are likely to have the 
greatest mitigating effect on climate-driven energy cost 
increases is on the supply-side. The development and 
deployment of grid storage technology would 
significantly reduce the need for the additional 
generation capacity described in Chapter 10. The cost of 
such technology, however, remains prohibitively high 
for widespread commercialization, which is why little of 
it occurs in RHG-NEMS.  

COASTAL COMMUNITIES 

As shown in the previous chapter, the risks of climate 
change to coastal communities are some of the least 
sensitive to changes in global emissions, at least in this 
century. Fortunately, households, businesses, 
community organizations and local governments along 
the coast have considerable adaptive capacity. To 
explore the extent to which the construction of coastal 
defenses, such as sea walls, building modifications and 
beach nourishment, can reduce the economic cost of 
inundation from mean sea-level rise (SLR) and SLR-
driven increases in storm surge described in Chapter 11, 
we partnered with Industrial Economics, Incorporated 
(IEc), the developers of the National Coastal Property 
Model (NCPM). 

NCPM comprehensively examines the contiguous US 
coast at a detailed 150 x 150 m (about 500 x 500 ft) grid 
level; incorporates site-specific elevation, storm surge, 
and property value data; estimates cost-effective 
responses to the threats of inundation and flooding; and 
provides economic impact results for four categories of 
response: shoreline armoring, beach nourishment, 
structural elevation, and property abandonment 
(Neumann et al. 2014). The model was originally 
developed to address the threat of SLR and was modified 
to incorporate the effect of storm surge on estimates of 
vulnerability, impact, adaptation response, and 
economic damages (see Technical Appendix III). 

IEc assessed the cost of inundation and greater storm 
surge from mean SLR, using the same local SLR 
projections used in the RMS North Atlantic Hurricane 
Model. In one scenario, they assumed no defensive 
investments are made (consistent with our baseline 
analysis described in Chapter 11) and found costs 
between now and 2100 similar to those from RMS. In a 
second scenario, IEc assessed the extent to which 

defensive investments that can be made by individual 
property owners (i.e. structural elevation) can reduce 
these costs. In a third scenario, IEc adds beach 
nourishment to the adaptation options basket, a 
defensive investment that generally requires collective 
community action. In a fourth scenario, shoreline 
arming is added, the option that likely requires the 
greatest degree of collective/public action.  

IEc finds that more than two-thirds of projected 
inundation damages from likely SLR in each decade of 
the century can be avoided through proactive 
investments in shoreline arming and beach 
nourishment, though both will require substantial 
public coordination. Adaptation is less effective in 
coping with lower probability, higher SLR projections, 
but can still cut projected costs by more than half. IEc 
finds adaptation similarly effective in reducing SLR 
increases in costal storm flooding, with structural 
elevation added to shoreline arming and beach 
nourishment. 

A range of barriers can prevent adaptation from 
occurring in an economically optimal fashion, including 
government-backed flood insurance that shields coastal 
homeowners from the cost of hurricane-related 
flooding and local opposition to shoreline arming and 
or structural elevation. Indeed, these factors exacerbate 
coastal property risks today. IEc finds that 86% of 
expected hurricane flood damage at current sea levels 
could be avoided through economically efficient 
adaptive investments that are not occurring.   

INFORMING ADAPTATION 

While Americans will likely reduce at least some of the 
impacts of climate change on coastal property, energy 
systems, crime rates, public health, labor productivity 
and agricultural production through behavioral change 
and defensive investments, such adaptive measures are 
unlikely to occur (at least in a relatively efficient 
manner) without adequate information regarding the 
economic risks these investments and behavioral 
changes are intended to address. Climate change is not, 
and will not, manifest through consistent year-to-year 
increases in temperature or changes in precipitation. 
Storm damage does not occur evenly every year, and 
neither will a climate-driven changes in storm flooding. 
The weather will continue to be variable. If adaptive 
decisions are made based either on that year’s weather 
or past experience, businesses, households and 
policymakers will always be behind the curve. The goal 
of this assessment is to provide the best available 
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information on what is coming down the road, so that 
these individuals may make well-informed decisions.  

A better understanding of the costs, benefits and 
limitations of adaptation is also critical in informing 
household, business and policy decisions. In our view, 
empirical work on the benefits of adaptation is currently 
highly limited and uncertain, while empirical research 

on the cost of these adaptations is almost nonexistent. 
Determining the economic valuations of specific 
adaptive investments and actions is a critical area of 
research, because there are many unanswered 
questions. Reliable quantitative estimates will be key in 
determining the best private sector and policy responses 
to climate change.  
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Corrigenda

Since the June 24, 2014 release of Version 1.0 of this 
report, the following changes have been made:  

Corrections were made to various spelling and 
typographical errors, and some figures were replaced by 
higher resolution images. 

Figures 4.3 and 4.5 - The summer and winter average 
temperature maps of version 1.0 reflected an early 
version of the analysis and did not correspond exactly to 
the results in the text or the data tables. The 
discrepancies were most significant in the 95th 
percentile of late-century average temperatures, where 
county-level results differed from those displayed by 
less than +/- 1.5°F in the most extreme case. The mean 
discrepancy between the county-level final values and 
those displayed was -0.3°F.  

Figure 4.6 – In Version 1.0, the title of Figure 4.6 
mistakenly stated: “Number of days with maximum 
temperatures below 32°F, RCP 8.5.” This was corrected 
to read: “Number of days with minimum temperatures 
below 32°F, RCP 8.5.” 

Values in Tables 6.1, 6.2 and 8.1 and Figures 6.3, 6.6, 7.3, 
7.4, 8.2, 8.3, 9.3 and 9.4 have changed slightly due to 
improvements in the application of the climate model 
model-weighting procedure (as discussed in Technical 
Appendix I) to the calculation of impacts. Additionally, 
estimates are based on an increased number of draws 
from the statistical distribution of impact functions. 
Results from some runs with positive outliers were 
dropped, due to unrealistically high mortality impacts. 

Figure 8.3 was modified to show changes in mortality 
rates (deaths per 100,000), replacing the original 
version which showed percentage change in mortality 
rates. 

Figures 6.5, 7.6, 8.4, 9.7, 9.8 - In Version 1.0, the 
captions read “Average frequencies.” This has been 
corrected to read “Expected frequencies.” 

Page 64 – The mid-century likely range for all-age 
mortality under RCP 8.5 was changed from -0.5 t0 +6.7 
to -0.5 to +6.6.  

Page 65 – The 90% end-of-century confidence interval 
for all-age mortality under RCP 8.5 was changed from 
233 to 232.  

Figures 9.5 and 9.6 – The scale right column indicating 
“Number of crimes each year” has been revised to 
indicate annual totals. In Version 1.0, the maps showed 
the number of crimes in an average month.  

Table 11.2 – The value at the low end of the likely range 
for MHHW under RCP4.5 has been corrected to read 
$546. In version 1.0, this value was incorrectly reported 
as $759, which is the median value. 

Chapter 13 – Improvements in model-weighting 
procedures slightly altered estimates of the direct costs 
and benefits of climate-driven changes in labor 
productivity, crime, and mortality listed in Chapter 13. 
For Version 1.0, we used 2012 economic data and 
population for all impacts except coastal, which also 
resulted in a small change in the direct cost and benefits 
values reported in Chapter 13. The combined magnitude 
of these changes is less than 5% in all cases and less than 
1% in most. More substantial changes were made to 
agriculture valuation. In Version 1.0, state-level changes 
in maize, cotton, wheat and soy production were 
aggregated by weight and then assigned a value based 
on the weighted-average output value of those crops in a 
given state in 2011. For this version of the report, each 
crop is valued individually at the state level and then 
combined.  

Chapter 14 – There was an error in how mortality and 
agriculture impacts were incorporated in RHG-MUSE in 
Version 1.0 of this report, which has been corrected in 
the current version. This impacts all figures and results 
in Chapter 14. For greater model tractability, we have 
aggregated RHG-MUSE to assess macroeconomic effects 
at the NCA region level rather than state level. 

Page 157 – Likely change in maize, wheat, rice and soy 
yields on this page were reported in correctly in Version 
1.0 and have been corrected in this version.  
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