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Abstract

The response of clouds in the trades to warming remains uncertain, raising the specter
of a high climate sensitivity. Decreases in cloud fraction are thought to relate to cou-
plings among convective mixing, turbulence, radiation, and the large-scale environ-
ment. The EUREC4A (Elucidating the role of cloud-circulation coupling in climate)
field campaign made extensive measurements that allow for deeper physical under-
standing and the first process-based constraint on the trade cumulus feedback, as
described in this thesis, in two parts.

The first part (Chapters 2–5) uses EUREC4A observations to improve under-
standing of the characteristic vertical structure of trade-wind air and the processes
that determine it. The second part (Chapters 6–7) applies an improved physical
understanding of the trade-wind boundary layer to the evaluation of trade cumulus
feedbacks. Ideas developed in these chapters support new conceptual models of the
structure of the lower trade-wind atmosphere and a more active role of clouds in main-
taining this structure, and show little evidence for a strong trade cumulus feedback
to warming.

Chapt. 3 calculates clear-sky radiative profiles from 2580 in situ soundings launched
during EUREC4A, which are then used to observationally close subcloud layer mois-
ture and energy budgets in Chapt. 4. Chapt. 4 shows that mixed layer theory, eval-
uated with EUREC4A observations and with uncertain parameters constrained in a
Bayesian approach, provides a closed description of subcloud layer thermodynamic
variability. Monthly-mean residuals are 3.6 Wm−2 for moisture and and 2.9 Wm−2 for
energy, and synoptic residuals are small and unbiased. Mixed layer theory is there-
fore a useful framework for characterizing subcloud layer variability and the processes
controlling it. Surface wind speed variability is found to influence the subcloud layer
depth and fluxes, yet thermodynamic variability above the subcloud layer top emerges
as the primary control on subcloud layer moisture and temperature variability. Ob-
served thermodynamic profiles and effective entrainment parameters constrained in
the Bayesian methodology show evidence of an about 150 m thick transition layer
separating the well-mixed part of the subcloud layer from the subcloud layer top.

Contrary to previous theory, Chapt. 5 shows that the canonical structure of strong
jumps at the subcloud layer top is rare and only occurs in large cloud-free areas. A
population of small clouds is shown to be responsible for smoothing vertical gradients
over the transition layer. These findings suggest a new conceptual picture that the
dissipation of small clouds modulates the transition layer structure. This analysis
allows for positing an interplay between shallow and deeper trade-wind convection
and a more active role for clouds in mixing processes that determine the subcloud
layer structure.

Chapt. 6 traces how, in a representative subset of CMIP6 models, differing trade-
wind cloud radiative responses can explain about 70% of the spread in global cloud
feedbacks, and differences in trade-wind cloud responses discriminate between high
and low climate sensitivity models. Chapt. 7 presents analysis supporting a weak
trade cumulus feedback. Observations support a positive relationship between cloudi-
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ness and convective mixing, which is opposite to the negative relationship thought to
underlie strongly positive trade cumulus feedbacks. Three metrics related to the cou-
plings among clouds, convective mixing, and relative humidity are presented that can
be applied to both observations and climate models and yield a probabilistic estimate
of the trade cumulus feedback.
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Chapter 1

Why look to the trades?

“We were still sailing in the blue zone of the trade winds. And it was every

day, every day, every night, the same regular breath, warm, exquisite to

breathe; and the same transparent sea, and the same small white clouds,

speckled, calmly passing across the deep sky; ...” –Pierre Loti, My Brother

Yves, 1883.

“Climate change is a question of our world’s destiny — it will determine

the well-being of everyone on Earth”. –Angela Merkel, 2017.

1.1 A defining challenge of our time

Climate prediction is a defining challenge of our time. It is long-established that

greenhouse gases lead to a warming of the atmosphere (e.g., Arrhenius, 1908; Charney

et al., 1979). A central open question, which motivates much of the research in this

thesis, is what sets the speed and intensity of warming at the global scale. How

much and how quickly will global temperatures rise due to greenhouse gas forcing?

A subsequent question is what effects are produced by a certain amount of warming.

Heating provides the energy to drive winds, evaporate moisture, form rain, and melt

ice. Global warming is thus expected to influence extreme weather events, such as

storms, floods, and droughts, and increase sea level. These regional changes have

attendant consequences for human health, water resources, agriculture, migration,

and biodiversity. As expressed by former German chancellor Angela Merkel, climate
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change is a question of Earth’s destiny and will affect the well-being of everyone on

Earth.

Economically, climate change is an externality that is unprecedentedly large and

uncertain (Tol, 2009). Estimates of the social cost of carbon range in magnitude

(e.g., Stern, 2006; Weitzman, 2011; Nordhaus, 2018), yet they all project large conse-

quences. These estimates, however, likely remain an incomplete representation of the

possible effects of climate change, in particular heavy-tailed structural uncertainties

associated with low-probability, high-impact scenarios (e.g., Weitzman, 2011, 2014;

Wagner and Weitzman, 2016). There is thus a need for advancing knowledge about

how much the Earth will warm and the implications of a given level of warming.

A primary lens for studying future climate is General Circulation Models (GCMs),

also called global climate models. In 1963, Joseph Smagorinsky published a seminal

paper describing numerical experiments using the primitive equations, a set of fluid

equations that describe global atmospheric flows (Smagorinsky, 1963). This first

GCM was based on the premise that studying the atmospheric circulation required a

model capable of resolving heat transport from the equator to the poles. Smagorin-

sky’s work paved the way to a vast research effort to couple the atmospheric circulation

to different physical processes, such as moist convection and cloud formation, which

have long been appreciated as important for the energetics of the atmosphere (e.g.,

Arakawa and Schubert, 1974; Stevens and Bony, 2013).

GCMs are a powerful tool for understanding how the climate system works, yet

they remain an imprecise lens into the future. These models must make a number

of approximations and simplifications, in particular to represent small-scale processes

below the 100–200 km resolution of typical GCMs. Most processes related to moist

convection and cloud formation cannot, for instance, be simulated explicitly and are

instead represented indirectly by so-called parametrizations, which relate subgrid-

scale processes to the large-scale variables explicitly resolved by the model (e.g.,

Siebesma et al., 2020). Representing tropical diabatic responses, in particular, re-

lies heavily upon such parametrizations, whereas in the mid-latitudes, much of the

energy and moisture transport is accomplished by baroclinic eddies that are better
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resolved by GCMs (Smagorinsky, 1963; Stevens and Bony, 2013; Siebesma et al.,

2020). Beyond these structural uncertainties, there are additional parametric un-

certainties that result from inadequately sampling the high-dimensional parameter

spaces of these models; a model with only 20 free parameters is, for instance, already

a hypercube with around one million corners (Carslaw et al., 2018).

Due to these uncertainties, GCMs lay out a broad swath of futures in response

to greenhouse gas forcing. A common metric for quantifying the response of the

climate system to carbon dioxide (CO2) radiative forcing is the equilibrium climate

sensitivity (ECS). ECS is defined as the amount of surface warming at equilibrium

following a doubling of atmospheric CO2 concentrations. Knutti et al. (2017) write

that ECS “has reached almost iconic status as the single number that describes how

severe climate change will be”. This idealized metric also serves as a way to compare

model predictions.

Despite a long history of recognizing the influence of carbon dioxide on Earth’s

temperature, ECS has proven stubbornly challenging to estimate. In the 1820s, the

French physicist Joseph Fourier suggested that the Earth traps heat (Fleming, 1999).

In 1896, in developing a theory to explain the Ice Ages, Swedish physicist and chemist

Svante Arrhenius first estimated how increases in atmospheric CO2 are responsible for

increases in Earth’s temperature. In 1908, Arrhenius wrote, “Although the sea, by ab-

sorbing carbonic acid [resulting from carbon dioxide interacting with water], acts as a

regulator of huge capacity, which takes up about five-sixths of the produced carbonic

acid, we yet recognize that the slight percentage of carbonic acid in the atmosphere

may by the advances of industry be changed to a noticeable degree in the course

of a few centuries” (Arrhenius, 1908). Arrhenius was the first person to recognize

the potential for anthropogenic CO2 to change Earth’s temperature and estimated a

temperature increase of 4∘C in response to a CO2 doubling (Arrhenius, 1908). In the

1960s, Charles Keeling presented observational evidence of increasing atmospheric

CO2 concentrations due to human activities, relative to preindustrial levels trapped

in ice cores. Climate models developed beginning in the 1960s provided a physical-

numerical framework for studying the relationship between radiative forcing by CO2
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and surface temperature (e.g., Smagorinsky, 1963; Manabe and Strickler, 1964; Man-

abe and Wetherald, 1967). In 1979, the United States National Academy of Sciences

convened a group of scientists, led by Jule Charney, to assess the potential influences

of CO2 on climate. The ensuing report, “Carbon Dioxide and Climate: A Scientific

Assessment” became known as the ‘Charney Report’ and popularized the concept of

equilibrium climate sensitivity. Drawing on results from two early climate models

and physical insights, the Charney report put forward a best estimate of ECS of 3∘C

and range from 1.5–4.5∘C (Charney et al., 1979), known as the ‘Charney range’.

Tightening the Charney range of ECS is one of climate science’s most enduring

problems. The most recent assessment of climate sensitivity, across multiple lines of

evidence gives a narrower range of 2.6–3.9∘C (Sherwood et al., 2020). Notably, the

tighter upper bound is not directly constrained by the latest generation of GCMs

in the Coupled Model Intercomparison Project phase 6 (CMIP6) whose range is

1.8–5.6∘C (Zelinka et al., 2020; Meehl et al., 2020). The upper bound is instead

constrained by process-based and paleoclimate constraints, though paleoclimate con-

straints also use GCMs (Sherwood et al., 2020). Despite the apparent tighter upper

bound, there are still open questions regarding the influence of changing spatial pat-

terns of warming (‘pattern effect’), long timescale feedbacks, and cloud feedbacks,

which could still allow for a more positive upper bound on ECS (Sherwood et al.,

2020).

The increase in complexity of GCMs has expanded the number of physical pro-

cesses that can be studied with these tools, yet uncertainties in climate sensitivity

remain similar to those that emerged from early modeling studies. In his landmark

study, Smagorinsky concluded, “In pursuing the objective to generalize theoretical

models we must ask ourselves whether greater detail in formulating the contributing

processes is warranted by truncation errors, by sensitivity of the results to detail, by

the resulting increase in computational complexity and time, and by ignorance of the

way these processes really work. Very often this cannot be determined in advance,

but must wait for computational experiments to be performed”. Stevens and Bony

(2013) respond, writing, “Although the drive to complexity has not reduced key un-
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certainties, it has addressed Smagorinsky’s question as to what level of process detail

is necessary to understand the general circulation. There is now ample evidence that

an inadequate representation of clouds and moist convection, or more generally the

coupling between atmospheric water and circulation, is the main limitation in current

representations of the climate system”. The Charney report already discussed that a

primary obstacle to better climate predictions was uncertainty in the radiative feed-

backs associated with clouds (e.g., Charney et al., 1979; Bony et al., 2013b). These

obstacles remain in CMIP6, with the response of clouds and convection still repre-

senting a primary uncertainty in constraining climate sensitivity (e.g., Zelinka et al.,

2020; Meehl et al., 2020). This chain of research casts into relief that in addition

to increasing the complexity of models, it is equally important to deepen physical,

process understanding using observations and simpler modeling frameworks.

1.2 Climate questions traced to the trades

In the novel, My Brother Yves, the French naval officer and writer, Pierre Loti, writes

about a journey in the trade winds, as cited in the opening quotation. The trade-wind

zones extend from about 10–30∘ north and south of the equator. In both hemispheres,

these zones are dominated by the trades, which are steady easterly winds with an

equatorward component, blowing from the subtropical high to the equatorial low.

The etymology of the trade winds in different languages gives insight to their

nature and perception. In German the winds are known as Passatwinde, coming from

Portuguese, passar, or Italian passata, both meaning to ‘go through’, highlighting their

steady movement. In French the trades are les vents d’alizés, similar to Portuguese,

ventos alísios. The French name is speculated to relate to the Latin root lixare, which

was used in medieval French to qualify the “smooth, delicate, gentle character of these

measured winds that blow regularly” (Bellec, 2003). The serenity and steadiness of

this etymology and Loti’s description appear at odds with the urgency of climate

change. How can such a calm and steady region play a role in determining how much

the Earth will warm?
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1.2.1 Role of trades in climate

A first answer comes by way of their large statistical weight: trade-wind regions are

the most frequent tropical regime, and trade-wind cumuli are, moreover, the most

frequent cloud type on Earth (e.g., Norris, 1998; Bony and Dufresne, 2005). Trade-

cumulus regions cover approximately 20% of the Earth (e.g., Myers et al., 2021).

Small changes in these regions with warming, such as associated with their cloudiness,

therefore have a large global impact. Their geographic extent provides an intrinsic

motivation to better understand the trades.

In the vertical, trade-wind air exhibits a characteristic layered structure (Riehl

et al., 1951; Malkus, 1958; Augstein et al., 1974; Stevens, 2006). A robust vertical

structure also allows for developing conceptual models, which are useful frameworks

for developing process understanding (e.g., Stevens, 2006). In its most general form,

the trade-wind atmosphere is divided into a shallow, moist layer typically extending

to 2–3 km in height, topped by a much drier free troposphere. Near the equator, deep

convection forms in response to the destabilizing effect of radiative cooling from water

vapor (e.g., Emanuel et al., 1994). This deep, precipitating convection effectively

dehydrates the atmosphere, such that air subsiding in the subtropics is very dry.

Large-scale subsidence in the subtropics also suppresses deep convection, explaining

why the trade-wind moist layer does not grow beyond few kilometer depth.

This shallow, moist layer is often referred to as the ‘planetary boundary layer’ and

is itself divided into additional layers. Previous descriptions of these layers, primarily

from Malkus (1958) and Augstein et al. (1974), are briefly summarized:

1. surface layer : the lowest 50–100 m over the ocean that are characterized by

mechanical turbulence.

2. mixed layer : a neutrally stable, vertically well-mixed layer from the top of the

surface layer up to approximately 600 m.

3. transition layer : a layer of approximately 100 m thickness that is thought to

separate dry convection and mechanical mixing below from cloud convection
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a. b.

Figure 1-1: Reproducing two figures from Malkus (1958), one of the first papers
to analyze the vertical structure of the trade-wind atmosphere. Panel (a) plots a
cartoon of the vertical levels in the moist layer, from the sea surface to the cloud
top, overlain by a dry, subsiding free troposphere, and (b) mean sounding profiles
in cloudy (nine soundings) and clear areas (sixteen soundings) for the mixing ratio,
temperature, virtual temperature. These profiles are annotated with estimates of the
different vertical levels introduced above: mixed layer, transition layer, cloud layer,
and inversion layer.

above the transition layer top. Together the mixed layer and transition layer

are often referred to as the subcloud layer.

4. cloud layer : a layer wherein shallow trade cumuli are embedded. This layer

typically has decreasing specific humidity and a temperature gradient that is

slightly stronger than the moist adiabat. Cloudiness typically peaks around

cloud-base and again near the trade-wind inversion. Trade-wind cumuli are

shallow in height because they are capped by subsiding air and a stable inversion

layer.

5. trade-wind inversion layer : a layer of strongly decreasing humidity (‘hydro-

lapse’) and increasing temperature around 2–3 km in height, which separates

the moist layer from the dry free troposphere. The mean height of this inter-

facial zone is determined by the opposing balance between compression due to

large-scale subsidence and expansion due to convection.

In the following sections, three vignettes are discussed that describe the implications
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of this characteristic vertical structure and motivate a closer examination of the trade-

wind planetary boundary layer.

Link in the global energy budget

One motivation to study the trade-wind planetary boundary layer is its role as an

early link in the global energy budget (e.g., Riehl et al., 1951; Malkus, 1958). The

trade-wind subcloud layer couples the surface to the cloud layer, and in doing so,

regulates the import of energy and moisture from the ocean (e.g., Malkus, 1958;

LeMone and Pennell, 1976; Stevens, 2007). Subcloud layer moisture and temperature

variability control moist static energy variability, which influences the convective po-

tential and thus cloudiness (e.g., Emanuel, 1986; Neelin et al., 1987; Lindzen and Hou,

1988; Emanuel, 1993). Clouds, however, also influence the subcloud layer. Clouds

bring down drier air from aloft, which can then be entrained into the subcloud layer

(Stevens, 2006). They can also influence the radiative budget of the subcloud layer

and of the surface.

The export of latent heat from the trades to the equator is accomplished by ad-

vection of moisture by the trades. The trades can be interpreted in a number of ways.

They can be interpreted, for example, as the return flow of the Hadley circulation,

or, from a boundary layer perspective, as the result of the boundary layer momen-

tum budget that is driven by pressure gradients induced by sea-surface temperature

differences (Lindzen and Nigam, 1987). After being exported to equatorial regions, la-

tent heat that originally accumulated in the trade-wind boundary layer has numerous

downstream effects. The advection of water into the deep tropics, favors high values of

boundary layer moist static energy and thus deep convection (Emanuel et al., 1994)

there rather than in the trade wind regions (Oueslati and Bellon, 2013; Popp and

Silvers, 2017). The deep convection in the deep tropics causes divergence near the

tropopause and a return flow away from the equator that exports energy poleward,

thus helping to maintain an approximate thermal equilibrium globally (e.g., Riehl

et al., 1951; Malkus, 1958; Pierrehumbert, 1995). Outside the tropics, the poleward

energy transport is dominated by eddies. These eddies transport latent heat poleward
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at mid-latitude thus influencing large-scale circulations and the global hydrological

cycle (e.g., Riehl, 1954; Heckley, 1985; Tiedtke, 1989)

Given its role in global energy transports, primarily by funneling latent heat to

the tropics, subtle thermodynamic variations in the trades can have significant global

reverberations (e.g., Malkus, 1958; Augstein et al., 1974; Tiedtke, 1989). These con-

siderations motivate an investigation of the vertical structure of the trade-wind at-

mosphere, as well as its thermodynamic variability and vertical mixing processes.

Earth’s ‘radiator fins’

The vertical structure of trade-wind air also has implications for radiative processes.

Fig. 1-2 shows that Earth is a water planet. It depicts upper-atmospheric water vapor

absorption above about 4 km observed from the Meteosat satellite in the water vapor

channel. Areas with a dry upper atmosphere are rare globally but emerge in the

subtropics (e.g., Spencer and Braswell, 1997; Soden, 1998).

The trade-wind atmosphere is effective at cooling to space because of the large

transmissivity of the dry free troposphere. Strong radiant energy loss to space occurs

from the top of the shallow moist layer, whereas the dry atmosphere above does not

return much downwelling radiation. The loss of infrared energy to space increases

nonlinearly with decreases in relative humidity (Spencer and Braswell, 1997; Soden,

1998). For instance, a free troposphere with 10% mean relative humidity radiates

about 320 Wm−2, whereas an atmosphere with 30% relative humidity radiates only

300 Wm−2 (e.g., Fig. 2 in Spencer and Braswell (1997)). The key to allowing the

tropics to lose its heat — the, on average, 400 Wm−2 of solar radiation that pour into

the tropics from the sun — is thus to have vast dry areas. Evocatively, Pierrehumbert

(1995) calls the subtropics the ‘radiator fins’, in contrast with the equatorial regions

being like a ‘furnace’ or a ‘hothouse’. Through their dryness, the trades thus increase

the efficiency of radiant heat loss, stabilize tropical temperatures, and reduce the

amount of energy that must be exported to the poles.
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AQUA-MODISa. b.

c.

*

*

Figure 1-2: (a) the 6.2 micron METEOSAT channel, which measures atmospheric
water vapor absorption above about 600 hPa. Darker shades indicate lower humidity
and thus greater transparency to emitted longwave radiation. One such area with a
dry free troposphere is highlighted by a white box. (b) Two AQUA MODIS GOES-
E views of a trade-wind cloud field east of Barbados (indicated by a red star) on
February 2, 2020 and (c) February 9, 2020.
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A less cloudy future?

Besides its dry free troposphere, the trades further cool tropical temperatures through

the presence of shallow cumuli, which have a negative radiative effect (e.g., Hartmann

et al., 1992). Regarding these shallow trade-wind clouds, the question is not how much

longwave radiation do the subtropics lose to space. It is, rather, how much shortwave

energy do the subtropics absorb, with more shallow clouds implying a larger albedo

and less heat gain, and vice versa. Trade-wind cumuli are, as introduced previously,

the most frequent cloud type on Earth (e.g., Norris, 1998; Bony et al., 2017). The

‘small white clouds’, as described by Loti, are not as spectacular as cumulonimbus

clouds that can grow higher than the tallest mountains or the expansive decks of

stratocumulus clouds off western continental coasts. Yet they constitute the ‘silent’,

or humble majority of Earth’s clouds whose changes are greatly amplified by their

frequency.

Climate change experiments with GCMs show that there is a propensity of trade-

wind cloudiness, in particular at its base, to decrease with warming, raising the specter

of high ECS values. In a pioneering study, Bony and Dufresne (2005) showed that

cloud radiative responses in GCMs diverged most in shallow cumulus regimes, and

these responses discriminate between high and low climate sensitivity models (Fig. 1-

3a). This analysis also highlights how climate models, despite their known deficien-

cies, allow us to form hypotheses — for instance, that the sensitivity of trade-wind

clouds to environmental conditions is a large source of uncertainty in global cloud feed-

backs and ECS (Bony and Dufresne, 2005). Ensuing research has further supported

the Bony and Dufresne (2005) findings, such as using different CMIP ensembles (e.g.,

Webb et al., 2006; Vial et al., 2013; Zelinka et al., 2020) and more idealized aquaplanet

configurations (e.g., Medeiros et al., 2008). Fig. 1-2 shows two trade-wind cloud fields

from the GOES-E satellite. This uncertainty can be rephrased pictorially: how will

the views in Fig. 1-2 change with warming, towards a cloudier or less cloudy future

in the trades?

Process-based studies, on the other hand, suggest that trade-wind clouds are less
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a. Stevens et al, 2016Bony and Dufresne, 2005

d. Myers et al, 2021

Figure 1-3: Figures illustrating the discrepancy between a large sensitivity of cloud-
base cloudiness to changing environmental conditions in GCMs (a. ,b. , c.) and
greater resilience in satellites (d) and LES (not shown). (a) Reproduction of Fig. 2
from Bony and Dufresne (2005) showing the change in the net cloud radiative effect
with warming as a function of dynamical regimes. Red (blue) points correspond
to models predicting a positive (negative) tropical-mean cloud radiative response.
Markers show the mean, lines the standard deviation, and dotted lines the range of
15 coupled GCMs. (b) Reproduction of Fig. 1 in Stevens et al. (2016) showing cloud
fraction (left) and change in cloud fraction (right) for two model versions differing
in a single shallow convective mixing parameter. Also shown is an observed cloud
fraction profile at the Barbados Cloud Observatory (grey). (c) Reproduction of
Fig. 1 in Vial et al. (2016) showing the vertical distribution of the moist static energy
flux convergence due to convection (left, in %) and cloud fraction (right, in %) for a
range of convective mixing strengths, with minimum in thick blue, and maximum in
thick red. (d) Adapted from Fig. 3 in Myers et al. (2021) showing observationally-
constrained marine low cloud feedbacks scaled by regime frequency globally. Error
bars for observations span 90% confidence intervals estimated from observational
uncertainty and inter-model uncertainty in cloud-controlling factors. Bars for CMIP
models span the range of simulated feedbacks associated with changes in low cloud
properties.
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sensitive to changing environmental conditions than GCMs predict. In large-eddy

simulations (LES), trade-wind clouds at cloud-base are resilient to changing environ-

mental conditions both in the current climate (Nuijens et al., 2015b) and idealized

climate change experiments (Rieck et al., 2012; Blossey et al., 2013; Bretherton, 2015;

Vogel et al., 2016). These process-based studies suggest a neutral or slightly posi-

tive trade-wind cloud feedback. Two recent studies, Myers et al. (2021) and Cesana

and Del Genio (2021), use satellite measurements and also find evidence for a near-

zero trade-wind cloud feedback (Fig. 1-3d.). Myers et al. (2021) also find that trade

cumulus feedbacks estimated using CMIP models are markedly higher than their

satellite-constrained estimate. In CMIP6 relative to CMIP5, a too-negative midlat-

itude cloud feedback, compared to satellite constraints, was corrected (e.g., Zelinka

et al., 2020). This correction is argued to have unmasked a compensating too-positive

cloud feedback in the trades, which then led to much higher ECS values in CMIP6,

outside the Charney range (Myers et al., 2021), again emphasizing the importance

of testing the credibility of strongly positive trade cumulus feedbacks simulated by

GCMs.

There is thus a discrepancy to resolve — why are trade-wind clouds in GCMs

much more sensitive to changing environmental conditions than in LES or satellite-

derived studies? On the one hand, there are reasons to interpret results from LES

and satellite-based studies with caution. In LES, the cloud amount is not linked to

the large-scale circulations in which the clouds form, and cloud fraction is known to

be sensitive to microphysics scheme, resolution, or domain size (e.g., Vogel et al.,

2016; Vial et al., 2017; Radtke et al., 2021). Cloud fraction estimates from satel-

lites were shown to diverge widely across passive remote sensors (Stubenrauch et al.,

2013). Another consideration is that due to their coarse spatial resolution, satellite

retrievals could, in principle, underestimate the number of cloudy pixels and overesti-

mate the clear-sky fraction (e.g., Mieslinger et al., 2019, 2021); this would lead to an

underestimate of the cloud feedback, which is proportional to the difference between

the all-sky and clear-sky cloud radiative effect. The satellite-based studies also rely

upon reanalysis data to estimate environmental conditions, yet these reanalysis data
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are known to exhibit biases in the trades (e.g., Stevens et al., 2016). More fundamen-

tally, the question remains why these lines of evidence suggest a small trade cumulus

feedback. That is, the physical mechanism explaining the resilience of trade cumulus

cloud fraction to changing environmental conditions remains unknown.

Growing evidence suggests that the diversity of GCM trade cumulus feedbacks

can, on the other hand, be traced to a specific idea: how models represent lower-

tropospheric vertical mixing (e.g., Sherwood et al., 2014; Bony et al., 2017). Fig. 1-

3b,c. highlight two case studies from GCMs that differ in the strength of convective

mixing, with large implications for changes in cloudiness and ECS. The general idea,

which will be discussed in Chapt. 7, is that increased convective mixing brings dry air

down from the free troposphere, drying the large-scale environment near cloud-base

and decreasing cloud-base cloudiness. Greater mixing therefore reduces cloudiness at

cloud base. In GCMs, differences in this vertical mixing are thought to result from

different representations of the interplay among surface turbulent fluxes, convective

mixing, and low-level radiative effects (e.g., Tomassini et al., 2014; Vial et al., 2016).

These processes are thought to explain large differences in the trade-wind cloud

feedback, yet they have never been tested observationally. During the EUREC4A

(Elucidating the role of cloud-circulation coupling in climate) field campaign, we col-

lected data to measure these interplays, such as among cloudiness, shallow convective

mixing, radiative heating, and the large-scale environment, in order to constrain cloud

feedbacks (Bony et al., 2017; Stevens et al., 2021). The campaign took place in Jan-

uary and February 2020 in the downstream trades of the North Atlantic. The original

aim of EUREC4A to constrain cloud feedbacks opened a broader set of questions to

improve fundamental understanding of the trades. The Charney report stated that

climate prediction may be “expected to improve gradually as greater scientific under-

standing is acquired and faster computers are built” (Charney et al., 1979). Since this

report, faster computers have been built, but there are still numerous open questions

regarding scientific understanding of the trades, several of which this thesis, using

EUREC4A data, tries to answer.
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1.3 Thesis outline

From a methodological perspective, this thesis has two parts. In the first part (Chap-

ters 2–5), in situ EUREC4A observations are collected (Chapt. 2) and analyzed to

deepen physical understanding of the characteristic vertical structure of trade-wind

air and the processes that maintain it. Chapt. 4 closes subcloud layer moisture and

energy budgets for the first time with in situ observations, using radiative heating pro-

files calculated and studied in Chapt. 3 and bulk models of surface and entrainment

fluxes constrained in a Bayesian approach. The EUREC4A observations also provide

a basis for reconceptualizing the transition layer, which contrasts with previous views

based on theory for cloud-free boundary layers (Chapt. 5).

Better understanding how the trades behave in the present-day using EUREC4A

observations allows for better evaluating how trade-wind clouds will change in the fu-

ture. In the second part (Chapters 6–7), this improved physical understanding is ap-

plied to the evaluation of general circulation models. Chapt. 6 traces how, in CMIP6,

uncertainties in trade cumulus feedbacks are strongly associated with uncertainties in

the global cloud feedback and, to a lesser extent, in equilibrium climate sensitivity.

Chapt. 7 shows analysis supporting the first process-based constraint on the trade cu-

mulus cloud feedback. This constraint draws upon extensive EUREC4A observations,

mixed layer theory as evaluated in Chapt. 4, and output from ten GCMs. Conclu-

sions and perspectives following from ideas presented in this thesis are discussed in

Chapt. 8. Chapt. 9 presents additional materials.

1.4 A door in the sky — learning to see clouds

Clouds, while remaining the subject of rich scientific inquiry, have also long fascinated

artists and writers. One can argue that there are a number of parallels between

observing art and observing nature. Both involve noticing and connecting particular

elements with the entirety. Art and nature evoke a sense of beauty and wonder

that are thought-provoking. Seeing artwork, like observing nature, is enriched by
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Figure 1-4: Artistic of clouds and turbulence from different time periods and cultures:
(a) knight on horseback hidden in the clouds Andrea Mantegna’s (1456–1459) painting
of St. Sebastian, (b) figure hiding in the clouds in a 13th century fresco by Giotto di
Bondone, (c) sketch of turbulence by Leonardo da Vinci (1452–1519), (d) Starry Night
by Vincent van Gogh (1853–1890), (e) L’Embellie, or The Upswing by René Magritte
(1898–1967), (f) the The Great Wave off Kanagawa by Hokusai (1760–1849), and (g)
La corde sensible, or The Heartstring by René Magritte.

being with people of various backgrounds, as each person brings different perspectives

and experiences to bear. Works of art, such as poetry, painting, or dance, also

foster concision and intensity in communicating ideas, which is not unlike a scientific

equation or explanation.

Looking at art, moreover, sharpens our senses and encourages close examination.

The precise observer Andrea Mantegna’s (1456–1459) painting of St. Sebastian is

rewarded with a knight on horseback hidden in the turbulent clouds (Fig. 1-4a).

Similarly, if looking closely at a 13th century fresco by Florentine artist, Giotto di

Bondone, a profile of a smirking devil, or alternatively the artist himself, emerges

in the vaporous clouds (Fig. 1-4b). In both cases, once you see the hidden figure

a first time, you cannot fail to see it the following times. These vignettes raise the

question of how we learn to see, as one often sees what one is conditioned to see. How

often do we miss surprises hidden in plain sight? One way that EUREC4A avoids

potential blind spots is by bringing together a vast community. By merging differing,

complementary perspectives, one can hope to overcome our blind spots and discover

some of the surprises that have remained hidden in the clouds.

These cloud mysteries have long fascinated the human imagination. Art has often

depicted depicted clouds and turbulent motion, as illustrated in Fig. 1-4. Painter
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René Magritte writes about his research on “the problem of the cloud”: “I feel a drive

to paint a cloud, perhaps a hundred” (Magritte et al., 1992). Indeed, his painting

L’Embellie, or The Upswing, (1962) depicts a door in the sky that opens onto a field

of shallow clouds (Fig. 1-4e). The Barbadian poet, Kamau Brathwaite (1930–2020),

uses the same visual language as Magritte, writing, ‘from under the clouds where I

write the first poem ... a door opening in the sky” (Brathwaite, 2005). To return to

the questions introduced in this chapter, Magritte and Brathwaite’s images of a door

in the sky evoke the history of climate model analysis of the trades. These model

analyses revealed limitations in our physical understanding about shallow convective

processes in the trades, which represent bottlenecks for climate predictions. That is,

they have shown us the door to deeper physical understanding and improved climate

prediction. Now, EUREC4A has allowed us to walk through this door. The German

physicist, Max Planck, writes about the scientific process of formulating questions

and then posing them to nature that is at the heart of EUREC4A: “An experiment

is a question which science poses to Nature, and a measurement is the recording of

Nature’s answer. But before an experiment can be performed, it must be planned

— the question to Nature must be formulated before being posed” (Planck, 2014).

The ‘recordings’ of nature’s answers from EUREC4A invite us to deepen our physical

understanding, all the while being filled with a sense of wonder and curiosity about

these questions in the sky.
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Chapter 2

Can EUREC4A answer climate ques-

tions?

At the time of EUREC4A, the scientific study of the trades had progressed to the

point of formulating specific questions that, if tested observationally, could lead to

a step-change in understanding, as discussed in Chapt. 1. Before transitioning to

the research chapters, this chapter discusses additional motivations for organizing

the EUREC4A field campaign (Sec. 2.1) and presents the primary measurement plat-

forms (Sec. 2.2.1). An argument is also given why these measurements are amenable

to answering climate questions (Sec. 2.2.2). I had the opportunity to take part in

EUREC4A and briefly describe my research flight experiences (Sec. 2.3) and contri-

butions to the campaign (Sec. 2.4).

2.1 Why organize EUREC4A?

The EUREC4A (Elucidating the role of cloud-circulation coupling in climate) field

study took place in January and February 2020 in the downstream Atlantic trades,

east of Barbados (see Fig. 2-1 for experiment location). As introduced in Chapt. 1, it

is the most extensive field campaign ever performed in the trades and measured the

interplay among clouds, circulations, and the large-scale environment (Bony et al.,

2017; Stevens et al., 2021). EUREC4A was originally conceived to observationally

test trade cumulus feedback mechanisms and to provide benchmark measurements

for a new generation of models and satellite observations (Bony et al., 2017; Stevens

et al., 2021). These aims require jointly characterizing the micro- and macrophysical
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environment of clouds, and the cloud field itself. Yet the question arises, why organize

such a campaign, given the large number of previous field campaigns and the wealth

of data from satellites?

Advancing understanding on the questions raised in Chapt. 1 requires observa-

tional data, but such data is lacking in the trades. The last major field studies focus-

ing on the trades took place about 50 years ago, before climate change was considered

a salient issue. They include the Atlantic Expedition from September to October 1965

(Augstein et al., 1973), the Atlantic Tradewind EXperiment, ATEX, in February 1969

(Augstein et al., 1974), the Barbados Oceanographic and Meteorological Experiment,

BOMEX, from May to July 1969 (Holland, 1970), and the Puerto-Rico Experiment

in December 1972 (LeMone and Pennell, 1976). These campaigns took place at the

advent of the satellite era, so they were not yet accompanied by observations from

space. Despite occurring half a century ago, these studies continue to act as reference

data sets for studying and simulating cloudiness the trades (e.g., Stevens et al., 2001;

Siebesma et al., 2003).

More recent field campaigns focused on different cloud regimes and other questions

than jointly characterizing clouds and their large-scale environment. Some field stud-

ies sampled primarily stratocumulus regimes (e.g., Stevens et al., 2003; Bretherton

et al., 2004; Wood et al., 2011; Russell et al., 2013), or regions of deeper convection

(e.g., Betts, 1974; Johnson et al., 1999; Raymond et al., 2003). Other field cam-

paigns made measurements in the trades, such as Rain in shallow cumulus over the

ocean (RICO Rauber et al., 2007), Cloud System Evolution in the Trades (CSET

Albrecht et al., 2019) and Organization of Tropical East Pacific Convection (OTREC

Fuchs-Stone et al., 2020), yet their scientific motivations were targeted towards more

specific physical processes, such as precipitation and the stratocumulus-to-cumulus

transition.

Since early field campaigns in the trades, the expansion of satellite measurements

has provided global views of Earth and extensive new data. Yet as alluded to in

Chapt. 1, the coarse resolution of passive remote sensing measurements leads to bi-

ases in their representation of vertical moisture profile features, such as the sharp
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decrease at the planetary boundary layer top or elevated moisture layers (e.g., Loeb

et al., 2009; Chepfer et al., 2010; Stevens et al., 2017; Prange et al., 2021), especially in

the lowest three kilometers, corresponding to the weakest absorption lines (Chazette

et al., 2014). Regarding cloudiness, biases in cloud detection among different passive

remote sensors lead to large discrepancies in estimates of trade-wind cloud fraction

and related quantities (Stubenrauch et al., 2013). The highest-resolution satellite

measurements better resolve trade-wind clouds (e.g. the ASTER instrument has up

to 15 m spatial resolution), yet these high-resolution sensors have limited temporal

sampling (e.g., Mieslinger et al., 2019, 2021). Cloudiness is often studied in mesoscale

large-eddy simulations, yet cloud fraction and cloud organization are sensitive to res-

olution, domain size, and microphysics scheme (e.g., Bretherton and Blossey, 2017a;

Vogel et al., 2016; Radtke et al., 2021).

Given these limitations, in situ observations are critical for testing ideas about

trade-wind cumuli. To begin filling this measurement gap, in 2010, the Max Planck

Institute for Meteorology and the Caribbean Institute for Meteorology and Hydrol-

ogy established the Barbados Cloud Observatory (BCO) on the windward side of

Barbados, at the easternmost point of the island (Stevens et al., 2016). The BCO

intercepts air that has been undisturbed by land influence since the western coast

of Africa. Other long-term, ground-based measurement stations are located in the

extratropics, such as Cloudnet] (Illingworth et al., 2007) and the U.S. Department

of Energy’s ARM (Atmospheric Radiation Measurement) climate research facilities

(e.g., Moran et al., 1998; Long et al., 2013). The BCO is unique, however, in being

the only long-term observational site in the trades. The BCO was also an anchor for

two Next-Generation Aircraft Remote Sensing for Validation Studies airborne field

campaigns (NARVAL and NARVAL2), held in December 2013 and August 2016 in

preparation for EUREC4A Stevens et al. (2016); Konow et al. (2019).
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Figure 2-1: Location of EUREC4A field study in the downstream North Atlantic
trades, east of Barbados, as shown in (a) and (d). (b) shows the view from the
Barbados Cloud Observatory in a rare cloud-free moment, and (c) depicts a view
from flying on the WP-3D aircraft. In (e) is René Magritte’s painting, L’embellie or
The Upswing (1962), as if opening the door to the trade winds that blow from the
east, as illustrated schematically in (d).

2.2 Building a cloud laboratory in the trades

Growing from these observational foundations, EUREC4A brought together four ships,

five aircraft, the BCO, a C-band rain radar, and a multitude of uncrewed aerial and

seagoing systems, including fixed-wing aircraft, quadcopters, drifters, buoys, under-

water gliders, and Saildrones (Stevens et al., 2021). EUREC4A also launched an

extensive sounding array consisting of 1068 dropsondes and 1512 radiosondes. This

‘symphony’ of measurements can be thought of building a transient cloud labora-

tory in the trades. This cloud laboratory can then be used to observationally test

questions, such as those raised in the previous chapter.
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2.2.1 Primary measurement platforms

In the following section, the four measurement platforms whose data are used through-

out the following chapters are briefly outlined. Further information is given in later

chapters regarding particular analyses. The high-flying aircraft, HALO (High Alti-

tude and Long Range Research Aircraft) (Konow et al., 2021) characterized clouds

and the environment from approximately 9–10 km, both with remote-sensing instru-

ments and by launching approximately 800 dropsondes around the perimeter of a

fixed, mesoscale circle (Stevens et al., 2021). It followed a circular flight pattern

known as the ‘EUREC4A circle’ (Fig. 2-2). This EUREC4A circle was centered at

13.3∘ N, 57.7∘ W and had an about 220 km diameter, roughly comparable to the

meso-𝛽 scale from Orlanski (1975) or the size of a typical GCM grid box. A second

aircraft, the ATR-42, primarily followed a 120x15 km rectangular, or racetrack, flight

pattern at low-levels within the EUREC4A circle (Fig. 2-2) (Bony et al., 2022). One

particularity of the ATR-42 was its sideways-pointing lidar and radars that, notably,

measured the cloud fraction at cloud base. Flight legs below cloud base also charac-

terized turbulent structures, microphysics (aerosols and clouds), and thermodynamic

variability in the subcloud layer and near-to-surface. A third aircraft, the WP-3D

Orion, augmented this sampling of clouds and their environment with additional

dropsondes and remote sensing (Pincus et al., 2021). Within the EUREC4A circle, a

research vessel, the R/V Meteor, complemented the three aircraft by providing sea

temperature estimates, surface-based remote sensing, and surface flux measurements

along an about 200 km transect in the same domain, from 12.5–14.5∘ N along the

57.255∘ W meridian (Fig. 2-2). Data from the Barbados Cloud Observatory provide

additional data.

2.2.2 Relevance for climate questions

A common denominator of the platforms described in Sec. 2.2.1 is that they undertook

intense, unbiased statistical sampling. That is, they did not ‘cloud chase’, or seek

out specific meteorological conditions, as did other platforms, such as the Twin Otter
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MODIS-Aqua, February 2, 2020 

~220 km

HALO

R/V Meteor

ATR-42

WP-3D

a. b.

Figure 2-2: (a) MODIS-AQUA satellite image overlain with approximate tracks for
HALO and the WP-3D in the EUREC4A circle (yellow), ATR-42 rectangular pattern
(green), and R/V Meteor ship tracks (red), and (b) the campaign-mean specific hu-
midity profile annotated with the approximate flight levels of the different aircraft,
noting that HALO dropsondes yield data from 9–10 km and WP-3D dropsondes from
about 5–7 km downwards.

aircraft that was also part of the campaign. Instead, the platforms followed prescribed

flight patterns – the EUREC4A circle for HALO, and to a lesser extent, the WP-

3D, the racetrack for the ATR-42, and the transect for the R/V Meteor. These

measurements therefore yield unbiased realizations of the large-scale environment.

As a result, measurements from the different platforms are assumed to be consistent

and comparable, despite sampling at slightly offset locations and times.

For the relevance of EUREC4A measurements to climate questions, the measure-

ments need to fulfill two additional conditions beyond being unbiased samples. First,

measurements must be representative of the broader trade wind regions, such that

inferences from EUREC4A generalize to the trades as a whole. Second, inferences

from short timescales must be relevant for longer climate timescales.

For the first condition, Medeiros and Nuijens (2016b) show that in GCMs and

observations (from the BCO and Calipso), shallow cumulus clouds near Barbados

exhibit similar structure and variability to clouds across the trade wind belt as a

whole. Medeiros and Nuijens (2016b) also show that errors simulated by GCMs
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near Barbados – regarding the vertical structure of clouds, the planetary boundary

layer, covariance with environmental conditions, and turbulent and convective mixing

processes that give rise to clouds – are similar to errors simulated in other trade-

wind regions. Rasp et al. (2020) find, similarly, that patterns of shallow cumulus

cloud organization present near Barbados are also present through the trades as a

whole. These studies lay an empirical foundation that clouds near Barbados are

representative of trade-wind clouds across the tropics.

The second condition is that short timescale variability is informative of variability

expressed on longer scales. Clouds and many associated processes, such as turbulence,

entrainment, and convective mixing, are ‘fast physics’. Over the past two decades,

numerous studies have shown that climatological biases in GCMs, in particular re-

garding moist convection, are already evident on shorter timescales, even within a

few days of model simulation, motivating the evaluation of GCMs in ‘weather mode’

(e.g., Rodwell and Palmer, 2007; Williams et al., 2013). Regarding changes in tropi-

cal circulation and precipitation associated with the direct adjustments to CO2, Bony

et al. (2013a) show that about half of the 30-year mean change from a quadrupling of

CO2 occurs within five days, showing that these changes rely upon fast physical pro-

cesses. Based on these considerations, it therefore appears a reasonable ansatz that

EUREC4A observations can provide a window into understanding these fast physical

processes, which can then inform longer-term responses. Indeed, in Chapt. 7, the rela-

tionships among convective mixing, cloudiness, and relative humidity are shown to be

similar at the three-hourly and monthly timescales in GCM output. These results in-

dicate that three-hourly processes are informative for explaining longer timescale vari-

ability. Vial et al, in prep also demonstrate that variability on the diurnal timescales

is representative of variability of longer, climatological timescales. On slightly longer

time scales, previous studies also indicate that cloud feedbacks are similar whether

calculated from inter-annual, or longer timescale variability (e.g., Zhou et al., 2015;

Sherwood et al., 2020).
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2.3 Flying

I had the remarkable opportunity to take part in the EUREC4A campaign in January

and February 2020. The in situ data that I analyze in the following chapters is thus

data that I helped collect. The benefits of being immersed in the natural environment

one wishes to study is perhaps best expressed by the renowned American mathemati-

cian and meteorologist, Edward Lorenz. Regarding atmospheric circulations, Lorenz

wrote, “Before one can make any serious attempt to explain the circulation of the at-

mosphere, he must become familiar with the circulation which he wishes to explain...

experience suggests that the investigator who attempts to deduce the atmospheric

circulation without first observing it is placing himself at a considerable disadvan-

tage” (Lorenz, 1967). This sentiment certainly holds for observing and making an

attempt to better understand processes in the trades. There is also a unique spirit

of discovery, joy, and camaraderie in participating in a field campaign that brings

together people from numerous institutions and countries in a shared pursuit.

While in Barbados, I took part in two research flights: one on the ATR-42, and

another on the WP-3D, known informally as the ‘hurricane hunter’ or ‘Miss Piggy’.

These were my first research aircraft experiences and gave me different perspectives

of the trade-wind clouds. The ATR flew through clouds near their base around 800

m, and the WP-3D flew higher, around 5–6 km on average. On the French ATR-42,

I sat next to Marie Lothon who was already analyzing turbulence data in real-time

and initiated me as a first-timer into the workings of a flight. On this day, February,

5, 2020, there were many clouds at cloud base (Fig. 2-3a,d). On other days, the me-

teorological situation was quite different, and given the unbiased (vs. cloud-chasing)

nature of the sampling, the crew found themselves flying through long stretches of

nearly clear-sky. After hours of flat lines on different measurement devices designed

to measure clouds and humidity, one can understand when Nicolas Rochetin, a French

scientist, exclaimed, “Holy mackerel, we missed the stratiform zone again!” (“Saper-

lipopette, on a encore raté la zone stratiforme !”). Even when the skies were clear, a

rapid descent down to 60 m provided an adrenaline rush. During this flight leg, it felt
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d. e. f.

Figure 2-3: Photos from flying in the ATR-42 (left) near (a,d) the maximum in cloud-
base cloudiness and (e) near the surface around 60 m, and (right, b,c,f) in the WP-3D,
depicting wisps of clouds detraining condensate at cloud top (b,c).
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as though the airplane was skimming along the ocean surface. One was close enough

to spot wave crests breaking into whitecaps in the strong wind and the sargassum

seaweed that is so troublesome for Barbadian tourism. Within the ATR aircraft, it

was still possible to appreciate the coordination of the EUREC4A experiment. The

online Planet interface allowed for tracking, for instance, the Twin Otter aircraft that

zigzagged around, chasing clouds, and the Poldirad rain radar, which we had helped

build a few days earlier and that now measured precipitation. One could also track

how the HALO aircraft flew above us in circles. On our headphones, the French

pilots joked about the Germans who throw “800 lithium batteries in the sea”. (That

is, about 800 dropsondes launched from HALO.) The concurrence of the ATR-42

and HALO flight patterns (Fig. 2-2) and their unbiased sampling suggest that their

measurements should be coherent. Indeed, after the campaign, strong agreement

was found between the two platforms across the campaign, such as regarding their

thermodynamic variability at different heights, indicating that measurements indeed

reflect large-scale, rather than local variability (Bony et al., 2022).

My flight on NOAA’s hurricane hunter was also a poetic, fascinating experience.

The hurricane hunter, as its name implies, normally flies in much more trying condi-

tions. The evening before my flight, Kerry Emanuel was telling us about the first and

only crash of a hurricane hunter plane during Hurricane Janet in 1955, and another

harrowing, near-crash during Hurricane Hugo in 1989. In the pre-flight meeting prior

to our take-off, unusually strong wind shear was forecast for the flight area. We were

then instructed to put on safety suits whose pockets contained essentials in case of an

emergency, such as a flashlight, knife, and warming blanket. These aspects certainly

added to the mystique and excitement, tinged with very slight fear, when stepping

on board for the flight.

The WP-3D flight on February 9, 2020 was an all-night flight during full moon.

Even deep in the night, the moonlight illuminated a panorama of cloud formations:

billowing cumuli, cloud arcs, decks of clouds, veil clouds that appear like flying car-

pets, and a handful of extremely narrow cloud towers that grew to 7–8 km. I sat

in the cockpit during take-off and parts of the flight. Despite the illusion of gliding
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across a tactile or well-defined surface of the clouds, there is no such obvious boundary

between clouds and their environment. Encountering the cloud edge is, of course, not

like walking through a door, but rather like encountering a gradient of water vapor

that would be easier to observe in infrared light. Stevens et al. (2017) expresses it

evocatively and succinctly: “If it did not have to condense to become visible, water va-

por would fuel the fascination of many more scientists. Imagine seeing with the naked

eyes how elevated layers of water vapor, and its radiative effects, engender shallow

circulations, or how pockets of humidity surround and socialize cumulus convection.

Imagination is indeed necessary because water vapor’s mysteries arise as much from

its visible transparency as from the opulence of its infrared opacity”.

One frequently-occurring cloud formation was small wisps of clouds that detached

from cloud tops and then drifted and dissipated into the drier environment (Fig. 2-

3b,c). This detrainment moistens and cools the surrounding environment. Observing

these clouds out the window was the initial spark for proposing a new conceptual

model of the transition layer in Chapt. 5.

2.4 Organizing outreach

Before concluding this chapter and transitioning to the research chapters, I summarize

two contributions to the campaign. The first contribution is outreach work that we or-

ganized in collaboration with Barbadian colleagues Rebecca Chewitt-Lucas, Branden

Spooner, Shanice Whitehall from the Caribbean Institute for Meteorology and Hy-

drology (CIMH), and French colleagues, Benjamin Fildier and Ludovic Touzé-Peiffer.

Ulrike Kirchner and Dörte de Graaf from the Max Planck Institute for Meteorol-

ogy also helped us organize outreach. The outreach initiatives included a two-day

scientific symposium, about 20 visits to local schools, a weekly seminar series with

local institutes, and an open house for the broader community to visit different mea-

surement platforms. The second contribution was calculating clear-sky, aerosol-free

atmospheric radiative profiles from 2580 soundings (1068 dropsondes and 1512 ra-

diosondes) launched during the campaign (Albright et al., 2021a). This analysis is
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presented in Chapt. 3.

The research symposium, ‘From BOMEX to EUREC4A’, brought together 24 lo-

cal and visiting scientists and about 100 participants to consider the advances since

BOMEX, a major field campaign that took place 50 years before EUREC4A (Fig. 2-

4). While BOMEX had many similarities with EUREC4A, involving several ships and

research aircraft, the main difference lies in their objectives. For BOMEX, the main

objective was studying the exchange of moisture, heat, and momentum between the

ocean and the atmosphere. At the time, climate change was not yet a topical issue,

so the main goal of the campaign was to improve weather forecasting. For EUREC4A,

by contrast, better understanding and constraining the magnitude of future climate

change is at the heart of the campaign.

Two ‘alumni’ of the BOMEX campaign, 50 years before, spoke during the sympo-

sium: Clyde Outram, former director of Civil Aviation on Barbados, and Pat Callen-

der, then the head of the Barbadian airport. They vividly recounted their experiences,

even bringing an insignia from BOMEX that they had kept for five decades. Callen-

der raised further points of contrast between BOMEX and EUREC4A, describing

how he had to negotiate on behalf of air traffic controllers seeking compensation for

managing United States aircraft during the BOMEX campaign, and local scientists

were not often co-authors on the papers published with BOMEX data. EUREC4A,

on the other hand, is a Barbadian-German-French-American initiative with strong

Barbadian involvement and expertise.

Together with the Barbadian Ministry of Education, we also organized visits to

about 20 local elementary and secondary schools (Fig. 2-4). The Barbadian gov-

ernment has strongly invested in education, and our efforts sought to reinforce their

environmental education. We interactively explored the scientific method by con-

ducting small experiments using simple materials. Using commonly-found materials

made it easier for students to recreate the experiments at home. The experiments

included creating a cloud in a bottle, observing surface tension, and asking how strat-

ification affects mixing and overturning (e.g., by observing whether an ice cube melts

more quickly in fresh or salty water). During the school visits, we also tried to vi-
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Figure 2-4: Photographs from outreach activities organized, including a two-day sym-
posium, ‘From BOMEX to EUREC4A (a) and a school visit where Ludovic Touzé-
Peiffer and I perform experiments with local students (b,c).

sualize questions asked during EUREC4A and benefited from cloud animations and

presenting tips provided by Tim Cronin and Pier Siebesma. We also organized an

outreach day, wherein a number of facilities opened to the general public, such as for

the launching of radiosondes and drones. Our outreach activities are summarized in

the EUREC4A overview paper, Stevens et al. (2021).
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Chapter 3

Atmospheric radiative profiles during

EUREC4A

This chapter presents the method to calculate atmospheric radiative profiles from

EUREC4A soundings and presents initial results. Calculating these radiative profiles

is a necessary step for analyses in later chapters, namely closing subcloud layer ther-

modynamic budgets (Chapt. 4) and reconceptualizing the transition layer (Chapt. 5).

3.1 Abstract

The couplings among clouds, convection, and circulation in trade-wind regimes re-

main a fundamental puzzle that limits our ability to constrain future climate change.

Radiative heating plays an important role in these couplings. Here we calculate

clear-sky radiative profiles from 2580 in situ soundings (1068 dropsondes and 1512

radiosondes) collected during the EUREC4A field campaign, which took place in the

downstream trades of the western tropical Atlantic in January-February 2020. We

describe the method used to calculate these cloud-free, aerosol-free radiative profiles.

We then present preliminary results sampling variability at multiple scales, from the

variability across all soundings to groupings by diurnal cycle and mesoscale orga-

nization, as well as individual soundings associated with elevated moisture layers.

We also perform an uncertainty assessment and find that the errors resulting from

uncertainties in observed sounding profiles, and ERA5 reanalysis employed as up-

per and lower boundary conditions are small. The present radiative profile data set

This chapter was published in Earth System Science Data in February 2021 (Albright et al.,
2021a).
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can provide important additional detail missing from calculations based on passive

remote sensing and aid in understanding the interplay of radiative heating with dy-

namic and thermodynamic variability in the trades. The data set can also be used

to investigate the role of low-level radiative cooling gradients in generating shallow

circulations. All data are archived and freely available for public access on AERIS at

https://doi.org/10.25326/78.

3.2 Introduction

The EUREC4A field campaign, which took place in January and February 2020 in

the downstream trades of the western tropical Atlantic, was designed to elucidate

the couplings among clouds, convection, and circulation in trade-wind regimes and

understand the role of this interplay in climate change (Bony et al., 2017). Shallow

trade-wind clouds cover large parts of tropical oceans (Wood, 2012), yet their response

to warming remains largely unknown, and uncertainty in shallow convective processes

are the cause for large uncertainties in climate projections (Bony and Dufresne, 2005;

Vial et al., 2013; Sherwood et al., 2014; Zelinka et al., 2020). Among all physical

processes involved in shallow convection, atmospheric radiative cooling emerges as

key to the coupling between low-level circulations and convection. Understanding the

dynamics driven by variations in radiative heating rates, and potential relationship

to the mesoscale organization of clear and cloudy regions, was one motivation for the

campaign (Bony et al., 2017).

A characteristic feature of the trade-wind vertical moisture profile is a sharp hu-

midity gradient between the moist marine boundary layer and dry, subsiding free

troposphere around two kilometers Riehl et al. (1951); Malkus (1958). This charac-

teristic vertical moisture structure has important implications for radiative cooling

profiles, but it is difficult to observe with satellite remote sensing (Stevens et al., 2017).

Indeed, moisture profile features, such as the sharp decreases in moisture at the top

of the marine boundary layer or elevated moisture layers, are smaller than typical

weighting functions of even hyperspectral instruments (e.g. Maddy and Barnet, 2008;
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Schmit et al., 2009; Menzel et al., 2018), especially in the lowest three kilometers,

corresponding to the weakest absorption lines (Chazette et al., 2014). The lack of

informative observations means that the vertical profile of water vapor in large-scale

atmospheric analyses do not represent the fine-scale moisture structure indicated by

soundings (Pincus et al., 2017). Errors in the vertical moisture structure estimated

from passive remote sensing produce corresponding errors in radiative cooling pro-

files computed from retrievals and/or analyses, making in situ soundings especially

valuable.

Here we calculate radiative profiles from 2580 in situ soundings (1068 dropsondes

and 1512 radiosondes) collected during EUREC4A, whose network of observations pro-

vided extensive sampling of the tropical trade-wind environment. Similar studies have

been conducted over continents as part of the Atmospheric Radiation Measurement

program (Kato et al., 1997; Mlawer et al., 1998), over the western Pacific warm-pool

region as part of the TOGA COARE (Coupled Ocean–Atmosphere Response Exper-

iment) (Guichard et al., 2000), and over the western tropical Atlantic, albeit focused

on transported Saharan dust layers (Gutleben et al., 2019). The present radiative

profiles have the potential to complement and further what can be learned from cal-

culations based on passive remote sensing. In addition, this data set may help in

understanding how low-level gradients in radiative cooling fuel shallow circulations,

as observed to emerge in remote sensing and large eddy simulations (L’Ecuyer et al.,

2008; Stephens et al., 2012; Seifert et al., 2015). These shallow circulations are specu-

lated to influence the mesoscale spatial organization of shallow convection, a question

at the core of EUREC4A (Bony et al., 2020; Stevens et al., 2020b).

In Sec. 3.3, we describe the data, the radiative transfer code, and the procedure

underlying the calculation of the radiative profiles. We then present initial results to

open the discussion on questions that could be explored with these radiative profiles

(Sec. 3.4). Lastly, we perform an uncertainty assessment (Sec. 3.5) and find that errors

resulting from uncertainties in the sea surface skin temperature, in situ soundings,

and ERA5 reanalysis used as boundary conditions are modest.
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3.3 Data and methods

3.3.1 Radiosonde and dropsonde data

From January 8 to February 19, over 2500 atmospheric soundings were conducted

using dropsondes and radiosondes over the western tropical Atlantic ocean south and

east of Barbados. As the sondes fall or ascend, their simple autonomous sensors,

equipped with a GPS receiver, measure the vertical profiles of pressure, temperature,

relative humidity, and instantaneous horizontal wind. To calculate radiative profiles,

we employ level-3 data, which have been interpolated into a common altitude grid with

10 meter spacing (Stephan et al., 2020; George et al., 2021). We select dropsondes

and radiosondes that have measurements on more than ten atmospheric levels in

total. This filter suffices to remove failed soundings and results in an input data

set consisting of 1068 atmospheric profiles from dropsondes and 1436 profiles from

radiosondes. The minimum and maximum levels 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 measured by each

sonde are reported in the final data set.

Figure 3-1a shows the geographic and temporal distributions of the sondes used

to calculate the radiative profiles. Radiosondes were launched from a network of

one land station and four research vessels, within a region ranging from 51–60∘W to

6–16∘N. On land, radiosondes were launched from the Barbados Cloud Observatory

(BCO), located on a promontory on the easternmost point of Barbados called Deebles

Point (13.16∘N, 59.43∘W), where it is exposed to relatively undisturbed easterly trade-

winds. The fleet of four research vessels includes the French research vessel L’Atalante,

two German research vessels Maria S. Merian (MS-Merian) and Meteor, and the

American research vessel from the National Oceanic and Atmospheric Administration

(NOAA) Ronald H. Brown (RH-Brown). Dropsondes were launched from both the

German High Altitude and Long Range Research Aircraft (HALO) and the United

States Lockheed WP-3D Orion from NOAA (WP-3D). HALO typically flew at an

altitude of 30,000 ft (approximately 9 km), following a circular flight pattern with

90 km radius centered at 13.3∘N, 57.7∘W. When launching sondes, the WP-3D flew
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Figure 3-1: (a) The EUREC4A sounding network: 1068 soundings from dropsondes
(white) and 1512 from radiosondes (coral). We employ 810 dropsondes launched from
HALO and 258 dropsondes from the WP-3D to calculate radiative profiles, as well
as 325, 344, 156, 377, and 310 radiosondes launched from L’Atalante, BCO, MS-
Merian, Meteor, and RH-Brown, respectively. Background colors show sea surface
skin temperature (SSTskin) from ERA5 reanalysis at 0.25∘ resolution averaged over
January and February. (b) The diurnal distribution of the 1068 dropsondes (blue)
and 1512 radiosondes (coral) with sonde launch time are binned in 10 min intervals.
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at 24,000 ft (approximately 7 km), releasing sondes along both linear and circular

patterns in the region covered by HALO, as well as further to the east close to the

nominal position of the RH-Brown.

Radiosondes were launched every four hours, daily from January 8–February 19,

2020, approximately synchronously from each platform. Given that the time-lag

between ascending and descending radiosondes is on the order of hours, and that

there is substantial horizontal drift between the ascent and descent, we chose to

compute separate radiative profiles for ascending and descending radiosondes. For

dropsondes, HALO flight takeoffs were staggered at 5, 8, and 11 am local time, with

flights lasting approximately eight hours, yielding roughly 72 sondes per flight. The

WP-3D undertook three night flights, which allows for a better characterization of

the diurnal cycle, together with the radiosondes launched during the night (Figure

3-1b).

We refer the reader to Stephan et al. (2020) and George et al. (2021) for a complete

description of the radiosonde and dropsonde data sets, respectively, and Bony et al.

(2017) and Stevens et al. (2021) for an overview of the campaign scientific motivations

and measurement strategy.

3.3.2 Radiative transfer calculation

The radiative transfer code used here, RRTMGP (Rapid Radiative Transfer Model

for GCMs, Parallel) (Pincus et al., 2019), is a plane-parallel correlated-𝑘 two-stream

model based on state-of-the-art spectroscopic data for gas and condensate optics.

It is based on line parameters from Atmospheric and Environmental Research and

the MT_CKD water vapor continuum absorption model (Mlawer et al., 2012). The

calculation of radiative profiles from radiosonde and dropsonde data then proceeds in

the following way:

1. vertical soundings of temperature, pressure, and water vapor specific humidity

at 10 meter resolution are interpolated onto a 1 hPa vertical grid and then

merged with temperature and specific humidity from ERA5 reanalyses in the
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following manner. Sonde measurements below 40 m are first truncated for all

sondes: radiosondes do not provide data in this surface layer because of deck

heating effects on ships (Stephan et al., 2020), and we apply the same filter

to dropsondes for consistency. The ERA5 profiles at hourly and 0.25∘ resolu-

tion (European Centre for Medium-Range Weather Forecasts, 2017) are linearly

interpolated temporally and spatially to the time, latitude, and longitude of the

sounding. ERA5 values are used above the highest level measured by each sonde

to extend the observed soundings vertically to 0.1hPa and account for the ef-

fect of high-altitude thermodynamic variability on the radiative cooling profiles

below. To obtain the lower boundary condition, we linearly interpolate the

ERA5 sea surface skin temperature (SSTskin), also at hourly and 0.25∘ reso-

lution (European Centre for Medium-Range Weather Forecasts, 2017), to the

time, longitude and latitude where the sounding was launched;

2. CO2 concentrations are set to the present day value of 414 ppm while CH4,

O3 and N2O concentrations are taken from the standard tropical atmosphere

profile of Garand et al. (2001);

3. the set of resulting profiles is then used as input to RRTMGP to derive upwelling

and downwelling clear-sky radiative fluxes in the shortwave and longwave ranges

of the spectrum. The calculation uses a spectrally-uniform surface albedo of 0.07

and a spectrally-uniform surface emissivity of 0.98, typical values for tropical

oceans.

Dropsondes and radiosondes drift horizontally as they rise and/or fall (Figure 3-

1a), which could give slight errors due to aliasing of horizontal moisture variability

into vertical variability. This potential error source is less pronounced for dropsondes

than radiosondes due to their faster travel speed through the troposphere.

We compute radiative fluxes and heating rates only for the gaseous component

of the atmosphere, without explicitly taking into account cloud or aerosol properties.

These radiative profiles are therefore clear-sky and aerosol-free. The soundings do,

however, capture the water vapor structure, including regions of high humidity in

49

Kerry
Highlight

Kerry
Sticky Note
It would be good to compare, in a few cases, radiative calculations from the dropsondes that omit the lowest 40 m from calculations that retain them. 

Kerry
Highlight

Kerry
Sticky Note
Do we know for sure that these errors are slight? I recall that we flew a DIAL instrument on HALO; also there is that upward-scanning lidar at the Barbados observatory. Could we use measurements from those instruments to estimate the aliasing of horizontal water vapor variations into the vertical? 



cloud areas and aerosol layers. Cloud cover in trade-wind regimes is relatively low,

between 10% (Nuijens et al., 2015a) and 20% (Medeiros and Nuijens, 2016a) for active

clouds, so cloud-free, or clear-sky, profiles are representative of the thermodynamic

environment. Taking into account the influence of cloud liquid water would require

a number of ad hoc assumptions about microphysical and optical properties within

clouds (see for instance Guichard et al., 2000). Similarly, we do not directly represent

the radiative effect of mineral dust aerosols. The dominant aerosol radiative effect in

this region has been shown to result from the covariance of aerosols with water vapor,

such that aerosols tend to be associated with elevated moisture layers Gutleben et al.

(2019, 2020). Dust aerosol layers are, moreover, more common in the summer than

in winter (Lonitz et al., 2015). We leave open the possibility that direct scattering by

dust aerosols has an additional role on radiative heating rates, but do not have the

coincident data to appropriately address this question for all soundings.

3.4 Preliminary results and discussion

This section includes a first exploration of the data set. We examine radiative variabil-

ity at different scales – across all soundings, at the diurnal timescale, and according to

different patterns of mesoscale organization – as well as in individual profiles showing

the influence of sharp vertical moisture gradients on radiative heating rates.

3.4.1 Variability across soundings

A distribution of longwave, shortwave, and net heating rates, as well as large-scale

thermodynamic quantities, are shown in Fig. 3-2. Local extrema in the median

shortwave, longwave, and net heating rates occur near 2 km (Fig. 3-2d,e,f), associated

with the rapid decrease in specific and relative humidity at this level (Fig. 3-2b,c).

The top of the planetary boundary layer, or interface between the moist marine

boundary layer and dry free troposphere above, is expected to occur around 2km

in the trades (Malkus, 1958; Cao et al., 2007; Stevens et al., 2017). The spread in

specific and relative humidity is greater than that in temperature, suggesting a strong
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Figure 3-2: Top: Temperature (a), specific humidity (b) and relative humidity (c)
(with respect to ice for 𝑇 < 0∘C) from EUREC4A dropsonde and radiosonde data.
Bottom: Shortwave (d), longwave (e) and net (f) heating rates calculated from
EUREC4A dropsonde and radiosonde data using the radiative transfer code RRT-
MGP. The center traces are the median profiles, and the medium and light grey
shadings indicate the 25–75% and 5–95% intervals, respectively. For the shortwave,
the median and the interquartile range are calculated using daytime values only.
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role for moisture variability on the variability in radiative heating rates. On average,

longwave cooling is stronger than shortwave heating, such that net heating rates are

largely negative from the surface up to 10 km, with a median value around -1 K/day.

Additional local minima in longwave heating are observed around 3 and 5 km between

the 5% and 25% quantiles. These local minima could, for instance, correspond to the

radiative effect of elevated moisture layers arising from convection detraining moisture

at these higher levels, albeit less frequently, or aerosol layers associated with increased

water vapor concentrations (Stevens et al., 2017; Wood et al., 2018a,b; O et al., 2018;

Gutleben et al., 2019).

We next partition radiative heating variability into its variability in time (e.g.

diurnal cycle, day-to-day variability) and regarding the spatial characteristics of the

convection field (e.g. the spatial distribution of clear and cloudy regions).

3.4.2 Diurnal cycle and day-to-day variability

Figure 3-3 gives an overview of the diurnal variability of radiative heating, which

has been implicated in the diurnal cycle of convection and cloudiness (e.g., Gray

and Jacobson Jr, 1977; Randall and Tjemkes, 1991; Ruppert and Johnson, 2016).

Shortwave radiative heating follows the solar cycle. Longwave heating rates show less

diurnal variability and have approximately the same amplitude (with an opposite sign)

as shortwave heating rates during daytime. This compensation between longwave

cooling and shortwave heating results in a daytime net heating rate that is slightly

positive in the lower 2km. The daytime heating contributes to stabilizing the lower

atmosphere, disfavoring convection. At night, strong radiative cooling destabilizes

the lower troposphere and strengthens convection. The maximum nighttime longwave

cooling occurs slightly above 2 km, with secondary cooling peaks occurring around 4

and 6km. During daytime, the peak in stabilizing radiative heating appears slightly

below 2km. This difference in the height of peak radiative heating, albeit of different

sign, could reflect differences in the height of the moist, convecting layer over the

diurnal cycle: a shallower marine boundary layer during the day that deepens at night

(Vial et al., 2019). These considerations highlight the potential for subtle interactions
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Figure 3-3: Diurnal composite of shortwave (left), longwave (middle), and net (right)
clear-sky heating rates binned in 10-minute intervals. Colored shadings indicate heat-
ing rates in units of K/day. The data are plotted with respect to local solar time to
simplify interpretation of the diurnal cycle. White indicates the absence of data. We
note that some variability, such as in the nighttime longwave radiative cooling vari-
ability, could result from different numbers of sondes launched throughout the diurnal
cycle (as illustrated in Fig. 3-1b).
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among radiation, convection, and cloudiness on the diurnal timescale.

Fig. 3-4 shows the day-to-day evolution of the shortwave (top), longwave (middle)

and net (bottom) heating rates derived from radiosondes launched at BCO. In the

shortwave and net heating rates, the daily stripes are due to zero shortwave heating

during the night. In the longwave component alone, the amplitude of the diurnal

cycle is less evident. Regarding the day-to-day variability, both in the shortwave

and the longwave components, trends in the height-evolution of the radiative heating

maxima appear to persist over several days. These trends are likely due to variations

in humidity (e.g. Dopplick, 1972; Jeevanjee and Fueglistaler, 2020) and are consistent

with the presence of multi-day trends in moisture observed at BCO during the cam-

paign (see Figure 13 in Stevens et al., 2021). At the end of the campaign, the rise in

the peak of longwave cooling appears to correspond to the rising location of the inter-

face between the moist, convecting layer below and dry free troposphere above (not

shown). The persistence and evolution of radiative heating patterns could be tied to

larger-scale synoptic moisture activity or to the evolution of mesoscale organization

patterns.

3.4.3 Radiative signatures of mesoscale patterns of cloud or-

ganization

We next aggregate radiative heating rates spatially. Fig. 3-5 illustrates four represen-

tative cases of the Fish-Gravel-Flower-Sugar classification established previously for

mesoscale (20-2,000km) organization patterns of clear and cloudy regions (Bony et al.,

2020; Stevens et al., 2020b). These cloud organization patterns were identified visu-

ally from satellite imagery and correspond to differences in large-scale environmental

conditions (Bony et al., 2020). They are also observed to have different top-of-the-

atmosphere radiative effects (Bony et al., 2020). As outlined in Stevens et al. (2020b),

Sugar refers to a ‘dusting’ of small, shallow clouds with low reflectivity and a random

spatial distribution. Gravel clouds tend to be deeper than Sugar (up to 3-4km), have

little stratiform cloudiness, precipitate, and organize along apparent gust fronts or
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Figure 3-4: Shortwave (top), longwave (middle), and net (bottom) heating rates at
BCO during EUREC4A, from January 19 to February 17. The heating rates are
calculated from radiosondes launched at BCO. In colors are heating rates with units
of K/day. White indicates the absence of data.
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cold pools at the 20-200km scales. Fish are skeletal networks (often fishbone-like)

of clouds at the 200-2,000km scale with stratiform cloud layers; the Fish pattern is

often associated with extratropical intrusions. Flowers are circular features defined

by their stratiform cloud elements. Both Fish and Flowers are surrounded by large

swaths of clear air.

We choose four days as an example of the large-scale environmental and radiative

signature of each pattern, given the spatial pattern observable in the GOES-16 satel-

lite images in the HALO flight path shown by the white circle. We plot daily-mean

profiles for temperature, specific humidity, and relative humidity (Fig. 3-5a,b,c), as

well as shortwave, longwave, and net radiative heating rates (Fig. 3-5d,e,f). These

profiles were calculated from approximately 70 HALO dropsondes launched during

the eight-hour flight on each day. We also plot the standard deviation of radiative

heating for each flight (Fig. 3-5g,h,i). As a first approximation, the standard deviation

of daily radiative heating profiles acts as a proxy for spatial variability in radiative

heating rates.

Spatial variability in radiative heating has been shown to drive shallow circula-

tions (e.g. Naumann et al., 2019) and affect convective organization (e.g. Bretherton

et al., 2005; Muller and Held, 2012). In this illustrative example, the differences in the

mean and standard deviation of the radiative heating rates hint at a role for differ-

ences in radiative cooling rates in the onset or maintenance of mesoscale patterns of

organization. For instance, the ‘Fish’ pattern on January 22, 2020 is associated with

a moister lower troposphere between 1 and 3km and slightly drier free troposphere

above 4km. This vertical moisture distribution may give rise to the observed vertical

variability in radiative heating rates, with larger peaks in the mean profile (Fig. 3-5e)

and standard deviation (Fig. 3-5h) in radiative heating observable between 2 and

4km, likely corresponding to strong humidity gradients at these levels.
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Fish 22-01-2020

Flower 02-02-2020

Gravel 05-02-2020

Sugar 09-02-2020

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3-5: Thermodynamic (a-c), daily mean radiative heating (d-f), and daily stan-
dard deviation of radiative heating (g-i) profiles classified by mesoscale organization
pattern, using a characteristic example of each type as diagnosed from snapshots
from GOES-16 infrared channel (left column). This figure employs HALO dropson-
des launched in the circular flight pattern (shown by the white circle) on the chosen
day, corresponding to roughly 70 dropsondes each. We focus on the spatial extent of
the HALO flight pattern because the cloud organization pattern does not necessarily
extend across the entire sampling domain Figure 3-1a, nor have the patterns been
shown to be scale-invariant.
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3.4.4 Effect of sharp moisture gradients on radiative heating

profiles

Figure 3-6 highlights the radiative signatures of elevated moisture layers, which can

persist for multiple hours at inversion levels (Stevens et al., 2017; Wood et al., 2018a;

Gutleben et al., 2019). We focus in detail on two thermodynamic and radiative heat-

ing profiles of a particular elevated moisture layer extending to 4 kilometers, along-

side GOES-16 images (Fig. 3-6i,j) corresponding to these soundings. This structure

persisted for at least four hours on January 24, 2020, and we plot thermodynamic

conditions and radiative heating profiles sampled three hours apart, at 12:55 and

15:55 UTC (see Fig. 3-6). A striking feature is the sharp peak in longwave cooling

at the top of the moisture layer of nearly -20 K/day at 15:55 UTC, corresponding to

the strong humidity gradient, with relative humidity decreasing by nearly 70% in 100

meters (Fig. 3-6c,d).

Although we calculate clear-sky profiles only, the present work could be extended

to account for radiative effect of cloud liquid water, which could be used, for instance,

to investigate the radiative effect of geometrically- and optically-thin ‘veil clouds’

persisting at inversion levels (Wood et al., 2018a,b; O et al., 2018), such as those

illustrated by the flight photographs (Fig. 3-6a,e). Over global oceans, approximately

half of low clouds do not fully attenuate space-borne lidar, suggesting that these

optically-thin clouds contribute significantly to total cloud cover estimates (Leahy

et al., 2012a) and could have an important radiative impact (e.g., Wood et al., 2018b).

3.5 Uncertainty assessment

To evaluate the robustness of our results and ensure good use of this data set, we

performed several uncertainty assessments by perturbing the SSTskin, in situ moisture

data, and ERA profiles used. We also included in the data set the minimum and

maximum levels 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 measured by each sonde. Unless indicated otherwise,

the errors reported below correspond to a subset of profiles with valid data starting
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(b) (c) (d)

(f) (g) (h)

(a)

(e)

(i) (j)

Figure 3-6: Thermodynamic and radiative heating profiles associated with an elevated
moisture layer persisting for multiple hours on January 24, 2020 in the HALO flight
pattern. Plotted here are the temperature (b), specific humidity (c), relative humidity
(d), as well as shortwave, longwave, and net radiative heating rate (f-h) profiles for
two soundings sampled three hours apart, at 12:55 and 15:55 UTC. Alongside these
profiles are photographs (a,b) taken from the HALO aircraft during the flight and
GOES-16 satellite images (i,j), with the dropsonde location and launch time indicated
by a circle along the circular flight pattern. Credit for the two flight photographs: J.
Vial.
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at 40 m (ie. 𝑧𝑚𝑖𝑛 ≤ 40 m) and during daytime, which corresponds to 1314 profiles.

The daytime filter was required for relevant calculation of the error in the shortwave,

and then kept for consistency for the longwave, but the magnitude of errors in the

longwave is not affected by this filter (not shown).

We first test the sensitivity to the ERA5 SSTskin. To this end, we perturbed

the original SSTskin by ±0.42 K and recalculate all heating rates. This value is

chosen as it corresponds to the root-mean-square-error (RMSE) between between

ERA5 SSTskin and Marine-Atmosphere Emitted Radiance Interferometers (M-AERI)

measures taken during a series of cruises in the Carribbean Sea from 2014 to 2019

(Luo and Minnett, 2020). Figure 3-7 shows the RMSE between the original and

perturbed radiative profiles (blue curves). In the longwave and net, the effect of the

perturbation is strong in the first atmospheric layer, but then decreases rapidly and

becomes negligible after a few hundred meters. Except for the first few atmospheric

layers, the uncertainty around the SSTskin can therefore be safely neglected.

We then investigate the sensitivity to the uncertainty of sounding measurements

by perturbing all soundings by a vertically-uniform relative error and redoing all

radiative transfer calculations. The manufacturer predicts an uncertainty of ±0.1 K

for the temperature and ±3% for specific humidity (Vaisala, 2018). The temperature

uncertainty has virtually no effect on radiative profiles (not shown). The effect of ±3%

uncertainty on the specific humidity profiles is shown in Fig. 3-7 in red. The highest

RMSE for this specific humidity perturbation occurs in the cloud layer, between 800

m and 2 km, with a magnitude of 0.05 K/day for net radiative heating. A secondary

peak with a magnitude of 0.03 K/day is also evident near the inversion, at about

3 km. Given a median radiative heating value of -1 K/day throughout the lower

troposphere (Sec. 3.4.1), these errors are roughly 3-5% for the net radiative heating.

These maxima likely correspond to the cumulative errors at the altitude of large

vertical humidity gradients, which lead to peaks in longwave, and to a lesser extent

shortwave heating rates for individual profiles.

Finally, we explore the uncertainty associated with ERA5 temperature and hu-

midity data employed as an upper boundary condition. Similarly to the uncertainty
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Figure 3-7: Root-mean-square error (RMSE) estimates in shortwave (left), longwave
(center) and net heating rates (right) for perturbations in SSTskin (blue), ERA5 hu-
midity profiles (green) and sonde humidity measurements (red) for the 1314 daytime
profiles that have valid data starting at 40 m. Dashed curves show negative perturba-
tions, solid curves show positive perturbations and dotted green curves show ERA5
humidity perturbations restrained to the 1117 daytime profiles that have valid data
at all levels between 40 m and 8 km. The horizontal grey bars on the left panel show
the frequency distribution in the maximum level measured (𝑧𝑚𝑎𝑥).
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analysis for the sounding data, we perturb ERA5 3D fields — used as input to the ra-

diative transfer code — by a uniform relative error. Previous studies have shown that

ERA5 reanalyses can present biases of various kinds (Nagarajan and Aiyyer, 2004;

Dyroff et al., 2015). We compare ERA5 humidity and temperature data with coinci-

dent radiosonde measures to obtain an estimate of ERA5 biases up to 100 hPa. From

the surface to 100 hPa, the RMSE in temperature between co-located radiosonde

soundings and ERA5 is between 0.3 and 0.7 K, with a mean of 0.5 K, and between

5% (at the surface) and 70% (near the inversion) for the specific humidity, with a

mean around 30%.

Fig. 3-7 only shows the effect of the ERA5 specific humidity uncertainty, taken at

±30%, on radiative profiles, as the temperature has once again a negligible influence.

The corresponding green curves (respectively dashed and solid) reveal local maxima

in the longwave and net heating rates around 3, 7 and 9.5 km. Again given a median

radiative heating value of -1K/day throughout the lower troposphere (Sec. 3.4.1), the

errors at these local peaks are between 10–30%. These maxima coincide with the

modes in the frequency distribution of the highest level 𝑧𝑚𝑎𝑥 measured by the sound-

ings, indicated in grey in the left panel. These peaks suggest that the uncertainty

arises from the large discontinuities emerging at the ERA5-sounding junction level

when perturbing ERA5 humidity profiles. The results suggest that the corresponding

uncertainty mainly occurs in the vicinity of the junction levels. This notion is further

confirmed by calculating the RMSE only on profiles which have data between 40 m

and 8 km (ie. 𝑧𝑚𝑖𝑛 ≤ 40 m and 𝑧𝑚𝑎𝑥 ≥ 8 km, dotted green curve): the remaining 1117

profiles left do not contain vertical discontinuities in humidity in this range, and we

see that the remaining upper-tropospheric discontinuities do not affect heating rates

in the lowest troposphere.

Overall, the small uncertainty values given with these tests support the robustness

of this data set and gives confidence regarding its use for more detailed investigations

in the lower troposphere. The uncertainty from sea surface skin temperature is limited

to the first few atmosphere layers, and uncertainty from merging with ERA5 specific

humidity is largely contained to the sounding-reanalysis junction point. Uncertainty
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associated with observed specific humidity profiles produces localized errors in the

cloud and inversion layers below 3km, though these errors are approximately 5% or

less. We recommend that users carefully compare the magnitude of the signal they

analyze with the magnitudes of the errors provided here.

3.6 Conclusions

The first objective of this work is to present the method used to calculate clear-sky,

aerosol-free radiative profiles from 2580 radiosonde and dropsonde soundings launched

during the EUREC4A field campaign. These radiative profiles are calculated using

a state-of-the-art correlated-𝑘 model, RRTMGP, in which ERA5 reanalyses provide

lower and upper boundary conditions. We then aggregate the radiative heating pro-

files at multiple scales to examine temporal and spatial variability in trade wind

regimes. We find that radiative heating rates in the wintertime trade-wind environ-

ment display significant diurnal and day-to-day variability, and we observe hints that

this variability may be associated with different types of mesoscale organization. An

uncertainty assessment is further conducted to demonstrate that the influence of un-

certainties in the sounding data, and upper and lower boundary conditions, is small

relative to the magnitude of estimated radiative heating.

These results present a first overview of how this data set could help answer

existing research questions, in particular: 1) What is the role played by radiation

in the mesoscale organization of shallow convection? (e.g., Seifert and Heus, 2013;

Bretherton and Blossey, 2017b) 2) what is the interplay between the diurnal vari-

ability in radiative heating, convection, and cloudiness? (e.g., Gray and Jacobson Jr,

1977; Ruppert Jr and O’Neill, 2019; Vial et al., 2019), and 3) what is the influence

of clear-sky radiative cooling gradients on atmospheric circulations? (e.g., Gray and

Jacobson, 1977; Mapes, 2001; Emanuel et al., 2014; Thompson et al., 2017; Naumann

et al., 2019). Such questions regarding the coupling of clouds, convection, and circu-

lations in trade-wind regimes are at the heart of the EUREC4A field campaign, and

the radiative profiles presented here complement other EUREC4A observations and
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data products in forming a toolbox for these investigations.
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Chapter 4

Observed subcloud layer moisture and

energy budgets in the trades

4.1 Abstract

The trade-wind subcloud layer is a structural component of the atmosphere. Its ther-

modynamic variability has long been characterized using simple frameworks, of which

mixed layer theory is the simplest kind. Past observations qualitatively support such

a description, yet the adequacy of mixed layer theory as a quantitative description

has not been tested. Here we use observations collected during the EUREC4A (Elu-

cidating the role of clouds–circulation coupling in climate) field campaign to test this

framework and evaluate our understanding of the trade-wind subcloud layer. We find

evidence for a transition layer separating the mixed layer and subcloud layer tops. The

presence of such a finitely-thick transition layer complicates the application of mixed

layer theory with its assumptions of no vertical gradients and an infinitesimally-thin

‘jump’ at the subcloud layer top. This ambiguity introduces effective parameters and

motivates their estimation through a Bayesian inversion. Results from this joint in-

version further reflect a nonzero depth of entrainment mixing. We find that subcloud

layer moisture and energy budgets close for both synoptic variability and a monthly

campaign-mean, yielding a campaign-mean residual of 3.6 Wm−2 for moisture and

and 2.9 Wm−2 for energy. Surface wind speed variability influences the subcloud

layer depth and fluxes, yet thermodynamic variability above the subcloud layer top

This chapter is under review in the Journal of the Atmospheric Sciences.
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emerges as the primary control on subcloud layer moisture and temperature variabil-

ity. Given that mixed layer theory offers a closed description for observations, it offers

an appealing framework for evaluating larger-scale models that must parameterize the

processes regulating this important part of the atmosphere.

4.2 Introduction

The trade-wind subcloud layer is an important component of the tropical atmosphere.

Typically defined as extending from the top of the surface layer (at approximately

50 m) to cloud base (at approximately 700 m) (e.g., Malkus, 1958; Stevens et al.,

2017), it couples the surface to the trade-wind cloud layer and, in so doing, regulates

the import of energy and moisture from the ocean (e.g., Malkus, 1958; LeMone and

Pennell, 1976; Stevens, 2007). Clouds in the trades are rooted in the subcloud layer, as

subcloud moisture variability controls moist static energy variability, which influences

convective potential and cloudiness (e.g., Emanuel, 1986, 1993). Clouds, however, also

influence the subcloud layer, as they mix down dry air from aloft, making it available

to be entrained into the subcloud layer (Stevens, 2006). This subtle interplay between

mixing processes in the subcloud layer and their interaction with the clouds above

governs the magnitude of latent heat export from the trades to the equator (e.g.,

Malkus, 1958). The trade-wind subcloud layer thus forms an important link in the

global thermodynamic budget, transporting latent heat to the equatorial belt where

it influences large-scale circulations and the global hydrological cycle (Riehl, 1954;

Heckley, 1985; Tiedtke, 1989).

The clouds of the trades provide an additional motivation to study the trade-wind

subcloud layer. By virtue of their large spatial extent and thus statistical weight,

trade-wind cloud regimes have a large influence on the global energy budget and

global dynamics (e.g., Bony et al., 2004). Diverging cloud feedbacks in the trades

were also shown to explain differences in climate sensitivity estimates (e.g., Bony and

Dufresne, 2005; Webb et al., 2006; Vial et al., 2013), some of which has been shown

to relate to how efficiently moisture is exported out of the subcloud layer (Sherwood
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et al., 2014).

Given the importance of the trade-wind subcloud layer, it is useful to understand

what controls its properties. To aid this understanding, the subcloud layer has long

been characterized using simple frameworks. Strong buoyancy- and, to a lesser extent,

wind shear-driven turbulence homogenizes subcloud layer thermodynamic variables

in the vertical (e.g., Mahrt, 1976; Stull, 2012). Such a well-mixed vertical structure

allows for simplification by solving for the vertical integrals, or bulk properties, of

the boundary layer. Among these the vertically-integrated models, or bulk models,

the mixed layer model is the simplest case. Bulk models have formed the basis of

parameterizations in larger-scale models (Arakawa and Schubert, 1974; Deardorff,

1972). Mixed layer models are a special type of bulk model that assume that the

vertical structure in conserved quantities is not important for their dynamics. This

simplification allows the evolution of the layer to be represented by simply tracking

its mean mass and energy budgets, usually as represented by the mean subcloud

layer specific humidity and potential temperature (e.g., Betts, 1976; Stevens, 2006).

Mixed layer models allow for assessing the relative magnitude of different processes

and provide a quantitative map between subcloud properties and their environmental

controls.

The adequacy of this mixed layer description of the subcloud layer has, however,

only been assessed from relatively few measurements and large-eddy simulations often

performed for idealized conditions over small (and usually homogeneous) domains.

Past observational studies typically used approximately 100 dropsondes and fixed

certain parameters, such as the sea surface temperature and vertical thermodynamic

structure above the subcloud layer (Betts, 1976; Betts and Ridgway, 1989). Aug-

menting such analyses with passive remote sensing remains challenging (e.g., Kalmus

et al., 2014). Indeed, subcloud layer moisture variability is poorly quantified by pas-

sive remote sensing because observed moisture profile features, in particular vertical

gradients at the top of the boundary layer, are at scales much finer than the typi-

cal weighting functions of even hyperspectral instruments (e.g., Maddy and Barnet,

2008; Stevens et al., 2017; Pincus et al., 2017). Mixed layer models have been used
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effectively to interpret large-eddy simulations (e.g., Neggers et al., 2006; Bellon and

Stevens, 2012, 2013; Schalkwijk et al., 2013). The apparent realism of large-eddy

simulation can suggest a trustworthy representation of nature, yet these simulations

use idealized boundary conditions, employ a range of domain sizes and resolutions,

and rarely represent the diversity of mesoscale patterns of convection observed in na-

ture, all of which can influence the resultant moisture fields (e.g., Bony et al., 2017).

These limitations render in situ observations especially important for evaluating the

adequacy of the mixed layer model in encapsulating the main modes of subcloud layer

variability and ultimately attributing it to changes in the trade-wind environment.

During the EUREC4A (Elucidating the role of clouds–circulation coupling in cli-

mate) field campaign, the most comprehensive field study ever performed in the trades

(Bony et al., 2017; Stevens et al., 2021), we collected the necessary data to investigate

the structure and variability of the subcloud layer. These data allow us to test the

assumptions of mixed layer theory as a closed description of the trade-wind subcloud

layer. To the extent that mixed layer theory provides an adequate description, it al-

lows us to go a step further and quantify which large-scale environmental conditions

influence variability in subcloud layer properties.

Section 5.2 presents the EUREC4A observations, and Section 4.4 defines subcloud

layer variability first in terms of five parameters — its height, as well as its means

and gradients in specific humidity and potential temperature – and assesses how each

parameter contributes to observed day-to-day variability. Section 4 introduces the

mixed layer theory framework for assessing the importance of the subcloud layer

structure in shaping its bulk variability. To do so we introduce a Bayesian method-

ology to jointly constrain uncertain parameters related to entrainment. Section 5

then evaluates whether mixed layer theory can explain observed synoptic variability

and the monthly campaign-mean balance for moisture and energy. Section 6 exam-

ines the relationships among subcloud layer properties and large-scale meteorological

conditions.
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4.3 EUREC4A field campaign data

EUREC4A field study measurements were made in January and February 2020 in the

downstream trades of the North Atlantic, anchored in Barbados. In both models and

observations, clouds and the large-scale environment around Barbados were found to

be representative of the Atlantic and Pacific trades (Medeiros and Nuijens, 2016b;

Rasp et al., 2020), suggesting that many inferences from EUREC4A observations are

informative of the global trade-wind regimes as a whole. EUREC4A sets itself apart

from previous field campaigns, as, for instance, reviewed by Garstang et al. (2019),

through the intense and unbiased sampling; the use of novel observing strategies

and exploiting improved and novel instrumentation; and the coincidence of satellite

measurements with very high spatial resolution and temporal sampling (Bony et al.,

2017; Stevens et al., 2021).

Figure 4-1 shows the geographic distribution of the measurements used in this

study. Our core data are 810 dropsondes from the German High Altitude and Long

Range Research Aircraft (HALO) launched between January 22, 2020 and February

15, 2020 (Konow et al., 2021). These dropsondes yield vertical profiles of pressure,

temperature, and relative humidity with a manufacturer-stated accuracy of 0.4 hPa,

0.1∘C, and 2%, respectively. We employ level-3 and level-4 dropsonde data, which

have been processed and interpolated into a common altitude grid with 10 m vertical

resolution (George et al., 2021). We note that George et al. (2021) identify a dry

bias in the HALO dropsondes, which they correct with a multiplicative factor of 1.06

applied to relative humidity and all associated moisture quantities from these sondes.

We use these corrected data.

During EUREC4A, dropsonde measurements were distributed along the ‘EUREC4A

circle’. The EUREC4A circle is defined by a circular flight pattern with an approx-

imately 220-kilometer diameter, centered at 13.3∘N, 57.7∘W (Fig 4-1). This flight

pattern was repeated 69 times, over 12 flights. Typically each flight incorporated

two – temporally well separated – periods of circling. A ‘circling-mean’ is defined

as the mean of three ‘circle-means’ that each average about 12 dropsondes along
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Figure 4-1: Data employed in this study include dropsondes launched in the
EUREC4A circle (white; 810 HALO dropsonde soundings), subcloud layer thermo-
dynamic measurements from the ATR-42 aircraft (red tracks), and sea surface tem-
perature and surface flux measurements from the R/V Meteor (navy tracks). We
also use data from the Barbados Cloud Observatory (green) and subcloud layer ther-
modynamic measurements from the remotely-piloted aircraft CU-RAAVEN (orange).
Background sea surface temperatures are ERA5 data 0.25∘ resolution averaged over
January and February 2020.

the EUREC4A circle (Table 4.1). Given that measurements did not target specific

meteorological conditions they provide unbiased sampling of the trade-wind layer.

The structure of the data collected encourages the definition of 69 circle-means, 24

circling-means, and one campaign-mean (Table 4.1).

The French ATR-42 aircraft made additional thermodynamic measurements dur-

ing 18 flights from January 26 to February 13, 2020. The ATR-42 flew coincident

rectangular patterns inside the EUREC4A circle (see Fig. 4-1), which show good

agreement with HALO measurements (Bony et al, in prep, Fig. 15). We also use

thermodynamic measurements between January 24 to February 15, 2020 below one

kilometer from a remotely-piloted aircraft CU-RAAVEN (?), as well as eddy covari-

ance surface sensible and latent heat fluxes from the R/V Meteor (Schirmacher et al,
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Term Definition
EUREC4A circle-mean One circle-mean refers to the mean of 7–12 dropsondes

launched over one hour by the HALO aircraft along a
circular, 220-kilometer airborne sounding array centered
at 13.3∘N, 57.7∘W at 10.5 km altitude. A dropsonde is
launched for every 30 degree change in heading. The
spatial scale of the EUREC4A circle characterizes the
large-scale environment and corresponds to the size of a
typical general circulation model gridbox, or what Or-
lanski (1975) called the meso-𝛽 scale (20-200km).

circling-mean One circling-mean is defined as the mean of three consec-
utive circle-means, corresponding to 30–36 consecutive
soundings aggregated over 210 minutes. The start time
of successive circles was offset by fifteen minutes. The
circling-mean scale represents synoptic variability of the
large-scale environment.

flight-mean The mean of all dropsondes launched along the
EUREC4A circle during one of eleven research flights
of the HALO aircraft for which circles were performed.
Each flight lasted approximately eight hours.

campaign-mean The mean of 810 dropsondes launched from the HALO
aircraft between January 22, 2020 and February 15,
2020, or approximately a monthly-mean, spanning the
majority of the EUREC4A campaign.

Table 4.1: Defining terminology to describe the sampling strategy in EUREC4A used
in this analysis and described in Sec. 5.2. This terminology follows the terms in-
troduced in Stevens et al. (2021). We refer the reader to Konow et al. (2021) for
additional information about data from HALO flights.

in prep). Sea surface temperatures are from the R/V Meteor, with these values ex-

trapolated from the R/V Meteor location to the respective dropsonde location based

on fixed zonal and meridional sea surface temperature gradients of -0.14 K degree−1

of latitude or longitude. These gradients are estimated from two satellite products

(GOES-16 ABI and CLS), and ECMWF Reanalysis (ERA5) reanalysis (Hersbach

et al., 2020), which agree well over the same spatiotemporal domain. We subtract

0.25 K from Meteor sea surface temperatures measured at few-meter depth to ac-

count for the ‘cool skin’ surface effect (e.g., Fairall et al., 2003). To a lesser extent

and solely for purposes of comparison with observations, we use ERA5 reanalysis

at 0.25∘ spatial and hourly temporal resolution for January and February 2020 for
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surface sensible and latent heat fluxes and vertically-resolved specific humidity and

potential temperature.

4.4 Describing the subcloud layer structure and its

variability

To conceptualize the subcloud layer we first consider a representation in terms of five

scalar variables: height or depth (ℎ), mean potential temperature (𝜃), mean specific

humidity (𝑞), the potential temperature vertical gradient (𝜕𝜃/𝜕𝑧), and the specific hu-

midity vertical gradient (𝜕𝑞/𝜕𝑧), which we refer to jointly as 𝑋SCL ={ℎ, 𝜃, 𝑞, 𝜕𝜃/𝜕𝑧, 𝜕𝑞/𝜕𝑧}.

4.4.1 Defining the subcloud layer height

We first ask to what extent the subcloud layer height, ℎ, can be defined from thermo-

dynamic profiles. Despite its role as a key vertical length scale, there is no consensus

on how to define this height (e.g., Seibert et al., 2000). Different methods applied

to a single data set have been shown to yield a wide range of heights (e.g., Liu and

Liang, 2010; Beyrich and Leps, 2012; Dai et al., 2014), leading to ambiguity in the

basic question of the depth of the trade-wind subcloud layer.

To estimate the subcloud layer depth, we use three subcloud height definitions.

The methodology for applying each definition to the data is given in Appendix A, and

Table 4.2 summarizes the results. The first method estimates the depth over which

there is no vertical gradient in a conserved variable within a threshold (Canut et al.,

2012). This ‘gradient method’ selects the height where a thermodynamic variable

exceeds its mean, averaged over the levels below, by a certain threshold 𝜖: for instance,

for specific humidity, the depth over which |𝑞(𝑧) − 𝑞𝜌| ≤ 𝜖𝑞, where 𝑞𝜌, hereafter 𝑞, is

updated at each vertical level and computed as the density-weighted mean from 100 m

to z. We apply this method to 𝑞, 𝜃, and virtual potential temperature, 𝜃𝑣, a proxy

for buoyancy. The method implicitly defines the sub cloud layer as that layer over

which the vertical deviation in the mean structure is less than the expected horizontal
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variability within the layer. Empirically, we choose a threshold that is one-third of

small-scale variability, estimated as within-day variability from 50-550 m depth. 𝜖-

values for 𝑞, 𝜃, and 𝜃𝑣 are 0.30 gkg−1, 0.15 K, and 0.20 K, respectively. The second

method, following Holzworth (1964), estimates the level at which a hypothetical rising

parcel of near-surface air, representing a thermal, reaches its level of neutral buoyancy

based on the 𝜃𝑣 profile, without any overshoot. The third definition finds the peak

in the relative humidity profile, given that relative humidity is expected to maximize

at the subcloud layer top if specific humidity is constant and temperature linearly

decreases with height.

From this height analysis a conceptual picture emerges of two distinct layers that

may be controlled by different mixing processes. We find evidence for a well-mixed

layer in 𝑞 and 𝜃 with a mean depth of 570 m, which also corresponds to the distribution

of relative humidity maxima (Fig. 4-2, Fig. B1). This layer appears to be homogenized

vertically by boundary layer eddies driven by surface fluxes. We call this height the

mixed layer top. The buoyancy variable, 𝜃𝑣, is, however, approximately well-mixed

over a deeper layer, to a mean depth of 718 m. This depth also corresponds to the

mean lifting condensation level (LCL) of 708 m, corresponding to the mean of LCL

values estimated for air masses from 50–300 m. Given its correspondence with the

mean LCL, we call this depth the subcloud layer top. The subcloud layer depth

also coincides with peaks in cloud base height distributions from the BCO and R/V

Meteor ceilometers. These ceilometer distributions do, however, have a substantial

fraction of cloud bases below the mean subcloud layer height (not shown).

We associate the intermediate layer, defined by the offset between the mixed layer

and subcloud layer top, with the presence of a transition layer, which has often been

observed (Malkus, 1958; Augstein et al., 1974) and simulated (e.g. Stevens et al.,

2001). Over this interfacial layer, 𝑞 and 𝜃 begin to exhibit vertical gradients, albeit in

ways that have compensating effects on buoyancy, so that 𝜃𝑣 gradients are much less

pronounced. This offset is also present in individual soundings, demonstrating that

it is not a product of averaging over layers that vary in depth. Using a smaller set

of dropsondes, Betts and Albrecht (1987) also note a subcloud layer with constant 𝜃𝑣
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Mixed layer Subcloud layer top
Transition layera.

b.

Figure 4-2: (a) distributions of different methods employed to estimate the mixed
and subcloud layer heights. We find that three methods based on specific humidity
𝑞 or potential temperature 𝜃 individually and relative humidity (blue curves) corre-
spond to the mixed layer, whereas the 𝜃𝑣-gradient and parcel method based on 𝜃𝑣, a
proxy for buoyancy (red), and the lifting condensation level (black). For the mixed
layer and subcloud layer top distributions, the thicker line is the mean of individual
distributions. (b) 69 circle-mean profiles from HALO for 𝑞, 𝜃, and 𝜃𝑣. The black line
is the time-mean across all profiles, and colored profiles correspond to time (dark to
lighter blue with time). Dotted lines mark the mixed layer height (estimated from the
𝑞-gradient method, blue) and subcloud layer height (estimated from the 𝜃𝑣-method,
red). Their difference indicates the transition layer.

(dry virtual adiabat), though their paper does not highlight a transition layer.

Contrary to what is often assumed in the application of mixed layer theory (e.g.,

Lilly, 1968; Tennekes, 1973), and previously asserted for the transition layer (e.g.,

Augstein et al., 1974; Albrecht et al., 1979), our measurements do not show the

subcloud layer to be a layer defined by a sharp jump in 𝜃𝑣. Spatial and temporal
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variability could smooth vertical profiles and prevent sharp gradients, though we also

do not find sharp jumps in most individual sounding profiles. Vertical variability in

height is similar for different depths. The mixed layer top, defined with the 𝑞-gradient,

and subcloud layer top, defined with the 𝜃𝑣-gradient, for instance, vary coherently,

with a Pearson correlation coefficient of r=0.86. While this vertical structure merits

further study, for the purposes of our analysis we note that the presence of a transition

layer introduces ambiguity in the application of the mixed layer theory. We address

this uncertainty through the introduction of effective parameters estimated through

a Bayesian approach, as outlined in the next section.

4.4.2 Evidence that vertical thermodynamic gradients are small

To test the assumption that conserved subcloud layer properties can be represented by

a single vertical or bulk value, we compare the magnitude of vertical gradients relative

to differences about the mean. We calculate the root mean square error (RMSE) from

assuming a vertical, perfectly well-mixed profile relative to the observed profile up to

the mixed layer top. We then compare this RMSE with one standard deviation of

circle-mean data averaged up to the mixed layer top, 𝜎, as
[︀
𝜎−𝑅𝑀𝑆𝐸

𝜎

]︀
×100. For 𝑞,

the 𝜎 value is 83±3.2% across circle-mean data, suggesting that vertical deviations

from the mean value are small relative to differences in the mean (see Fig. B1).

Similarly, the 𝜎 value for potential temperature is 76±6.0% (Fig. B1). A related

question is the extent to which the strength of vertical gradients encode differences

in variability among subcloud layers. We find rank (Kendall and Spearman) and

Pearson correlations of 𝜕𝜃/𝜕𝑧 and 𝜕𝑞/𝜕𝑧 with ℎ, 𝜃, and 𝑞 below 0.3. We therefore

infer that vertical gradients are small and therefore justify omission from the mixed

layer description. We return to the question of whether excluding vertical gradients

biases interpretation of subcloud layer moisture and energy budgets in Sec. 4.

75

Kerry
Highlight

Kerry
Sticky Note
A little confused by this. Do you mean the root-mean-square of deviations of individual soundings from their circle-mean?  If so, are you also averaging in the vertical?

Kerry
Highlight

Kerry
Sticky Note
Cannot find this figure



4.4.3 Moisture variability is the primary mode of subcloud

layer thermodynamic variability

We find that the subcloud layer varies thermodynamically primarily through variabil-

ity in 𝑞. Note that the height of the subcloud layer is defined using the 𝜃𝑣-gradient

method, and subcloud layer means, 𝑞 and 𝜃, are defined as the density-weighted

means from 50 m to this height. We compare variability in 𝑞 and 𝜃 by diagnosing

their contribution to variability in vertical length-scales. In the circle- and circling-

mean observations, we find that anomalies in 𝑞 have a Pearson correlation coefficient

of -0.97 with anomalies in the LCL and -0.71 with ℎ anomalies, showing that vari-

ability in the subcloud layer depth is strongly associated with 𝑞 variability. The

correlation between anomalies in ℎ and the LCL is 0.77. Anomalies in 𝜃, by contrast,

have a Pearson correlation coefficient of only -0.5 with anomalies in the LCL and

-0.24 with ℎ anomalies, counter intuitively suggesting that higher temperatures are

associated with lower LCL heights. Warmer temperatures are also associated with

increased humidity, which would lower the LCL, so the weak anticorrelation could

reflect the trade-off between temperature and humidity. There is a nearly one-to-one

relationship for variance in subcloud layer moisture and moist static energy (MSE),

defined as MSE=𝐶𝑝𝑇 + 𝐿𝑣𝑞 + 𝑔𝑧 where 𝐶𝑝 is the specific heat at constant pressure,

𝑇 is the absolute pressure in Kelvins, 𝐿𝑣 is the latent heat of vaporization, 𝑞 is the

water vapor specific humidity, 𝑔 is the gravitational constant, and 𝑧 is height above

the surface. The Pearson correlation coefficient of 𝑞 and mean subcloud-layer mean

MSE is r=0.99.

From continuous ERA5 data, we find the large-scale 𝑞 signal decorrelates after ap-

proximately two days, with a lag-1 autocorrelation (AR1) coefficient that decreases

from 0.98 after one hour to 0.19 after 48 hours (Fig. 4-3d). This decorrelation

timescale aligns with the mean gap of two days between EUREC4A flights, such

that the EUREC4A data quantify independent realizations of synoptic moisture vari-

ability. Performing a fast Fourier transformation on ERA5 𝜃 data shows that its

variability is largely diurnal (Fig. 4-3c) and likely driven by variability in radiative
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a. b.

c. d.

Figure 4-3: Evolution of subcloud layer-mean specific humidity, 𝑞, (a.), 10 m wind
speed (b.), and subcloud layer mean potential temperature, 𝜃 for circle-mean data
(lighter circle) and circling-mean data (darker circle), compared with hourly ERA5
data. Note that ERA5 moisture displays a dry bias (Bock et al., 2021) and ERA5 spe-
cific humidity is corrected by 1.1 Its variability is, however, coherent with variability
in the in situ measurements Panel d. shows lag-1 autocorrelation (AR1) coefficients
calculated from hourly ERA5 data for 𝑞 and 𝜃, interpolated to the same heights as
the in situ data, and 10 m wind speed.

heating (Albright et al., 2021a). 𝜃 has a strong peak in the power spectral density at

a 24-hour period, a signal not seen in 𝑞 (not shown). The ERA5 10 m wind speed is

highly autocorrelated, with an autocorrelation coefficient of 0.74 after two days and

0.48 after 8 days (Fig. 4-3d). The wind speed signal decorrelates after ten days with

r=0.04, demonstrating the dominance of lower-frequency variability in the wind.

4.5 Mixed layer theory for subcloud layer moisture

and energy

Mixed layer theory assumes that the interface between the subcloud layer and the

more stratified fluid above is vanishingly thin and that the subcloud layer gradients

are negligibly small (e.g., Stevens, 2006). The presence of a transition layer and its

gradients complicates this interpretation. EUREC4A observations, however, provide

unprecedented data to test the adequacy of this interpretive framework.
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4.5.1 Theory and closure assumptions

For a subcloud layer scalar, 𝜗, after performing a Reynolds decomposition on the

conservation equation (D𝜗
D𝑡

= 0) and integrating over the depth of the layer, the

mixed layer budget of 𝜗 can be written as,

ℎ𝑄𝜗 = 𝑤′𝜗′
⃒⃒
0
− 𝑤′𝜗′

⃒⃒
1
. (4.1)

Here, 𝑄𝜗 is a source term that includes diabatic tendencies (e.g., radiant energy

sources, evaporation, precipitation) and the material derivative. The thickness of the

layer, ℎ, is ℎ = 𝑧1 − 𝑧0. The subscript 0 denotes values at the lower interface of the

bulk layer, the ocean-to-subcloud layer interface, subscript 1 denotes values at the

upper interface, the subcloud-to-cloud layer interface, and 𝑤 refers to the vertical

velocity. The equation expresses that the vertical divergence of the turbulent flux

balances the sum of the non-turbulent processes, denoted by 𝑄𝜗 (e.g., Betts, 1976;

Stevens, 2006).

The flux at an interface is given as product of the velocity of the interface relative

to the mean flow and a ‘jump’, at that interface 𝑖, such that,

𝑤′𝜗′
⃒⃒
𝑖
= −𝑉𝑖∆𝑖𝜗, (4.2)

where ∆𝑖𝜗 defines the change in 𝜗 across the interface, from top to bottom, so that

∆1𝜗 = 𝜗1 − 𝜗 and ∆0𝜗 = 𝜗 − 𝜗0. At the top of the layer, this jump is traditionally

assumed to occur over a layer of zero thickness. Such a sharp discontinuity is seen

in stratocumulus mixed layers (e.g., Lilly, 1968; Deardorff, 1972) and represented in

idealizations of the dry mixed layer (e.g., Tennekes, 1973; Stull, 1976; Albrecht et al.,

1979).

As shown in the previous section, ℎ and hence the jumps are poorly defined in the

trades. These findings introduce ambiguity in the application of mixed layer theory.

We attempt to accommodate this ambiguity by introducing scaling coefficients, 𝐶q

and 𝐶𝜃, in the entrainment flux calculation. These coefficient scale jumps at the top
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of the layer and compensate for possible errors in our choice of the subcloud layer

height, ℎ, and uncertainty in the depth over which the jumps are computed. To

the extent that these coefficients do not vary on a case-to-case basis, they indicate

that variability in the transition layer depth is not the primary mechanism regulating

mixing into the boundary layer. The jumps ∆1𝑞, ∆1𝜃, and ∆1𝜃𝑣 are formulated as,

∆1𝑞 = 𝐶q(𝑞ℎ+ − 𝑞|h−) (4.3)

∆1𝜃 = 𝐶𝜃(𝜃ℎ+ − 𝜃|h−) (4.4)

∆1𝜃𝑣 = ∆1𝜃 + 0.61(𝜃∆1𝑞 + 𝑞∆1𝜃) (4.5)

The subscript ℎ+ refers to the value of 𝑞 or 𝜃 above ℎ, computed as the average

from ℎ to ℎ + 100 m. 𝑞|ℎ− or 𝜃|ℎ− are averages from 50 m to the mixed layer top

defined from the linearized relative humidity method (see Appendix A), though it

is insensitive to defining the mixed layer top using other methods. The choice of

averaging up to the mixed layer top, rather than up to ℎ, to calculate these jumps

is motivated by the desire to exclude transition layer air in the average. Due to

sub-circling variability in ℎ, excluding transition layer air can best be achieved by a

conservative (and therefore lower-altitude) choice of averaging height. An idealization

of these jumps is given schematically in Fig. 4-4. This scaling coefficient approach is

also similar to the linear mixing-line model that represents cloud layer air mixing into

the mixed layer (Betts and Ridgway, 1989). Whereas our formulation is similar to the

‘transfer coefficient’ approach in Neggers et al. (2006) and Zheng (2019), these studies

consider values in the free troposphere whereas we consider values at the subcloud

layer top. The structure of the transition layer, as discussed in Sec. 3a, suggests that

this layer is actively mixed by local processes, rather than by an overturning mixing

that extends to the free troposphere.
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Figure 4-4: Schematic of subcloud layer budgets, as described in Eq. (4.9) and
Eq. (4.10). We give a description of the surface fluxes (F𝜗), entrainment fluxes (E∆𝜗),
material derivatives, and clear-sky radiative heating term (Q𝑟) in Sec. 4a. The height
ℎ refers to the depth of the subcloud layer, which includes both a well-mixed layer
and a transition layer. Also shown are idealized profiles of specific humidity, 𝑞, and
potential temperature, 𝜃, from foregoing studies, with the dotted lines marking a
transition layer gradient.

With these jumps we can rewrite Eq. (4.1) as,

ℎ𝑄𝜗 = −𝑉0∆0𝜗+ 𝑉1∆1𝜗. (4.6)

The first term on the left-hand side, 𝑉0∆0𝜗, defines a surface flux wherein the surface

exchange velocity, 𝑉0, denotes the product of the 10 m horizontal wind speed, 𝑈

(wherein easterly is defined as negative), and a dimensionless parameter, C𝑑, following

surface layer similarity theory (e.g., Stevens, 2006). Note that −𝑉0∆0𝜗 is positive

when surface values are larger than near-surface -air values, which is almost always

the case. The dimensionless parameter, C𝑑, depends on the surface roughness, the

structure of the surface layer, and the stability of this layer but is generally taken

to be constant and equal to 0.0011 (e.g., Deardorff, 1972; Fairall et al., 2003). In

this analysis, we set C𝑑 = 0.0010, which is slightly smaller than its typical value of

0.0011. Our smaller value compensates for the larger difference between the surface

and subcloud layer mean value, compared to the typical difference taken between the

surface and 20 m value (e.g., Fairall et al., 2003).

𝑉1 represents the diabatic growth of the subcloud layer into the overlying fluid
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and is taken to equal the entrainment rate, 𝐸 (Stevens, 2006). Given a transition

layer of zero thickness, a common closure for 𝐸 is to represent the turbulent flux at

the subcloud layer top as a fixed fraction of the surface turbulent flux (Lilly, 1968;

Stull, 1976). That is, the turbulent entrainment flux is energetically constrained by

its surface source, such that,

𝐸 = −𝐴𝑉0∆0𝜃𝑣
∆1𝜃𝑣

. (4.7)

The constant 𝐴 defines the entrainment ‘efficiency’ and is between 0 and 1. The jump,

∆1𝜃𝑣, is positive and models the resistance that entrainment feels when expanding

into the overlying, more buoyant fluid.

As demonstrated in Fig. 4-2, the transition layer does, however, have finite thick-

ness, and the above closure is not appropriate. (Include the following either here

in the text or in an Appendix) We present two expository examples that motivate

the appearance of an effective 𝐴 parameter, 𝐴𝑒, reflecting a thick interfacial layer.

Integrating over a layer above and below ℎ from ℎ+ = ℎ + 𝜖 to ℎ− = ℎ − 𝜖 for some

small 𝜖 yields an expression for 𝐸, wherein 𝜃𝑣+ is the value at ℎ+,

𝐸 =
−𝐴𝑉0∆0𝜃𝑣

∆1𝜃𝑣
+

𝛿ℎ

2∆1𝜃𝑣

(︂
𝑑𝜃𝑣
𝑑𝑡

+
𝑑𝜃𝑣+
𝑑𝑡

)︂
. (4.8)

The derivation for Eq. (4.8) is given in Appendix C. Setting these two equations for 𝐸

equal Eq. (4.7) and Eq. (4.8), we can consider that the second term on the right-hand

side of Eq. (4.8) as being absorbed to increase 𝐴 in Eq. (4.7), which renders 𝐴 as an

effective parameter, 𝐴𝑒 that accounts for jumps occurring over finite-thickness.

A similar justification is obtained by specifying of 𝐴𝑒 to be the value that gives

the correct flux divergence:

1. Modeling the subcloud layer with an infinitely thin transition layer (zero-order

flux-jump model), the rate of warming or drying in the subcloud layer mean is

given by the flux gradient 𝜕𝐹
𝜕𝑧

, equivalent to 𝐹0(1+𝐴)
ℎ

if 𝐹h = −𝐴𝐹0.

2. If the flux minimum is not at the top of the subcloud layer, but there is a finite

thickness transition layer above the subcloud layer top, then the minimum flux
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is not at h, but at a height ℎ - 𝛿ℎ. Defining 𝐴 as the ratio of the minimum to

maximum flux, the equation becomes 𝐹0(1+𝐴)
(ℎ−𝛿ℎ)

.

3. Setting these two terms equal and replacing 𝐴 in 1. with 𝐴e yields 𝐹0(1+𝐴e)
ℎ

=
𝐹0(1+𝐴)
(ℎ−𝛿ℎ)

, or 𝐴e =
(1+𝐴)ℎ
(ℎ−𝛿ℎ)

-1. As an example, if 𝐴=0.2 as often assumed, ℎ=700

m, 𝛿ℎ=120 m, then 𝐴𝑒=0.45.

Combining these assumptions, the equilibrium budget for Eq. (4.1) for specific

humidity, 𝑞 is thus

ℎ

[︂
𝜕𝑞

𝜕𝑡
+ (𝑢⃗ · ∇𝑞)

]︂
= −𝐶𝑑𝑈∆0𝑞 −

𝐴𝑒𝑉0∆0𝜃𝑣
∆1𝜃𝑣

∆1𝑞 = 0. (4.9)

The 𝑞 balance is between a surface kinematic latent heat flux, 𝐶𝑑𝑈∆0𝑞, which moist-

ens the layer from a saturated ocean surface moisture source, 𝑞𝑠, wherein ∆0𝑞 =

𝑞− 𝑞𝑠 < 0; an entrainment flux, 𝐴𝑒𝑉0Δ0𝜃𝑣
Δ1𝜃𝑣

∆1𝑞, which imports drier cloud layer air into

the subcloud layer, wherein ∆1𝑞 < 0; and large-scale horizontal advection, 𝑢⃗·∇𝑞 and a

time-derivative, 𝜕𝑞
𝜕𝑡

, both of which can either moisten or dry the subcloud layer. Note

that we neglect phase changes, such as associated with evaporating precipitation.

For potential temperature, 𝜃, the equilibrium budget equation is,

ℎ

[︂
𝜕𝜃

𝜕𝑡
+ (𝑢⃗ · ∇𝜃)

]︂
= −𝐶𝑑𝑈∆0𝜃 −

𝐴𝑒𝑉0∆0𝜃𝑣
∆1𝜃𝑣

∆1𝜃 + ℎ𝑄r = 0. (4.10)

This energy balance is more difficult to constrain, both because it involves more

terms and because the magnitude of individual terms is smaller. Eq. (4.10) includes

a surface kinematic sensible heat flux, 𝐶𝑑𝑈∆0𝜃, which warms the subcloud layer given

∆0𝜃 = 𝜃−𝜃𝑠 < 0; an entrainment flux −𝐴𝑒𝑉0Δ0𝜃𝑣
Δ1𝜃𝑣

∆1𝜃, which brings warmer cloud layer

air into the subcloud layer; large-scale horizontal advection 𝑢⃗ ·∇𝜃, which could either

warm or cool the layer; a time-derivative 𝜕𝜃
𝜕𝑡

, which is predominantly associated with

the diurnal cycle; and a clear-sky radiative heating term 𝑄rad,clr, another cooling term.

The 𝑞 and 𝜃 balances are illustrated schematically in Fig. 4-4.
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4.5.2 Observational estimates of terms in mixed layer theory

budgets

Here we describe how the different terms in Eq. (4.9) and Eq. (4.10) are calculated

from the observations. Clear-sky, aerosol-free radiative heating profiles for EUREC4A

dropsondes and radiosonde profiles are calculated in Albright et al. (2021a). Large-

scale horizontal moisture advection, 𝑢⃗ · ∇𝑞, and potential temperature advection,

𝑢⃗ · ∇𝜃, are calculated in George et al. (2021) using the regression method from Bony

and Stevens (2019). We estimate the time derivatives or storage terms, 𝜕𝑞
𝜕𝑡

and 𝜕𝜃
𝜕𝑡

,

as the ordinary least squares regression slope of the three circle-means per circling-

mean. Estimating this derivative as the regression slope for the approximately 30–36

individual soundings per circling yields similar results (r=0.82), yet these soundings

are more affected by small-scale variability than are circle-means. For uncertainty

estimates, we calculate the standard error of the three circle-mean data per circling-

mean for all terms in Eq. (4.9) and Eq. (4.10), except for uncertainty on the time-

derivative, which we take to be the standard error on the regression slope.

Our bulk estimates of the sensible heat flux are 6.3 ± 2.7 Wm−2 and 166 ± 54

Wm−2 for the latent heat flux, with the notation denoting the mean and standard de-

viation. We find good agreement among these bulk surface fluxes and four co-located

estimates: bulk estimates from the R/V Meteor, eddy covariance flux measurements

from the R/V Meteor, fluxes calculated with the COARE algorithm (Fairall et al.,

2003) using HALO dropsonde data, and ERA5 surface fluxes (see Table 2). Pear-

son correlation coefficients of our bulk sensible heat flux estimates are 0.81, 0.63,

0.82, and 0.72 with these four estimates, respectively. For the latent heat fluxes, the

correlations are 0.84, 0.78, 0.92, and 0.95, respectively.

The surface turbulent flux, 𝐹𝜃𝑣 , is used to compute 𝐸 and is defined as 𝐹𝜃𝑣 =

𝐹𝜃+𝜖𝜃𝐹𝑞, where 𝜖 ≈ 0.608 is a thermodynamic constant that depends on the molecular

weight of water relative to that of dry air. 𝐹𝜃𝑣 relates to surface buoyancy flux by

a factor 𝑔

𝜃𝑣
, which then denotes the time rate of change of turbulent kinetic energy

production. 𝐹𝜃𝑣 fluxes estimated from mixed layer theory or bulk methods are 16±
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units mean 1 s.d.

mixed layer m 555 79.0
subcloud layer m 708 83.6
lifting condensation level m 694 105
transition layer m 153 52
𝑞 gkg−1 15.3 0.886
𝑞sc gkg−1 15.1 0.883
𝜃 K 298 0.235
𝜃sc K 298 0.253
SST K 300.3 0.166
𝜃𝑠 K 299.2 0.260
𝑞𝑠 gkg−1 22.59 0.189
𝜕𝑞/𝜕𝑧 (ML) gkg−1m−1 -1.06*10−3 2.93*10−4

𝜕𝜃/𝜕𝑧 (ML) Km−1 4.24*10−4 2.91*10−4

𝜕𝜃𝑣/𝜕𝑧 (ML) Km−1 2.33*10−4 2.47*10−4

𝜕𝑞/𝜕𝑧 (TL) gkg−1m−1 -6.69*10−3 2.11*10−3

𝜕𝜃/𝜕𝑧 (TL) Km−1 2.49*10−3 6.44*10−4

𝜕𝜃𝑣/𝜕𝑧 (TL) Km−1 1.30*10−3 3.24*10−4

10 m wind speed, 𝑢⃗10 m/s 8.46 2.19
𝑢⃗ · ∇𝑞 gkg−1ms−1 1.59*10−5 2.12*10−5

𝑢⃗ · ∇𝜃 K ms−1 8.51*10−3 8.46*10−3

𝑄rad,clr K d−1 -0.853 1.01
E mm s−1 20.3 7.74
Δ𝑞 gkg−1 -2.36 0.597
Δ𝜃 K 0.782 0.115
Δ𝜃𝑣 K 0.359 0.0297
𝐹q bulk, dropsondes Wm−2 166 56
𝐹q bulk, Meteor Wm−2 165 48
𝐹q eddy covariance, Meteor Wm−2 150 51
𝐹q COARE, dropsondes Wm−2 162 45
𝐹q ERA5 Wm−2 178 49
𝐹𝜃 bulk, dropsondes Wm−2 6.3 2.7
𝐹𝜃 bulk, Meteor Wm−2 6.5 3.8
𝐹𝜃 eddy covariance, Meteor Wm−2 12.4 4.1
𝐹𝜃 COARE, dropsondes Wm−2 6.0 6.1
𝐹𝜃 ERA5 Wm−2 10 4.5

Table 4.2: Campaign-mean and standard deviation of different terms as calculated
from the 69 circle-mean data (hourly timescale) located in the ‘EUREC4A circle’.
Results are qualitatively similar for 24 circling-mean data aggregated to a three-hourly
timescale. For the surface flux terms, bulk refers to bulk theory flux formulations,
COARE refers to the COARE algorithm, and Meteor refers to the R/V Meteor.

84



5.2 Wm−2, which agree well with the four other estimates in magnitude and with

correlation coefficients around r=0.9.

4.5.3 Bayesian inversion of uncertain entrainment parameters

The most uncertain terms in Eq. (4.9) and Eq. (4.10) relate to the entrainment fluxes:

the effective entrainment efficiency, 𝐴𝑒, and the scaling parameters for the jumps, 𝐶q

and 𝐶𝜃. The entrainment exchange velocity, 𝐸, and fluxes at the subcloud layer top

have long been challenging to measure observationally (e.g., Lenschow et al., 1999;

Kawa and Pearson Jr, 1989; Stevens et al., 2003) or estimate from simulations (e.g.,

Moeng et al., 1999; Bretherton et al., 1999; Vogel et al., 2020).

There are a lack of foregoing constraints on these jumps, and from the trade-

wind observations, there are ambiguities associated with how to define the jumps

at the upper interface. Given these uncertainties, we constrain the parameters, Θ

={𝐴𝑒, 𝐶q, 𝐶𝜃}, using a Bayesian framework. This approach allows for estimating

a joint distribution of parameters Θ that are most likely to explain observed data.

The values of 𝐶q, 𝐶𝜃, and 𝐴𝑒 should be physical, and synoptic variability should be

explained without having to vary these parameters, as the latter would be indicative

of a failed assumption.

The Bayesian approach is similar to other optimization techniques, yet it yields

joint posterior distributions and thus provides an estimate of uncertainty for the

constrained parameters. Following Bayes rules, we invert for the joint posterior dis-

tribution of Θ,

𝑃 (Θ | 𝑦obs) ∝ 𝑃 (𝑦obs | Θ)·𝑃 (Θ). (4.11)

Sampled sets of parameter values, Θ, are used with observed estimates of the other

terms to model subcloud layer moisture and temperature budgets, 𝑦obs, following

Eq. (4.9) and Eq. (4.10). We model the likelihood, 𝑃 (𝑦obs | Θ), such that the residuals

of the subcloud layer moisture and energy budgets are normally distributed around

zero with standard deviations 𝜎𝑞 and 𝜎𝜃, respectively. The likelihood 𝑃 (𝑦obs | Θ)

is thus formulated based on the multivariate Gaussian distribution of the modeled
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subcloud layer moisture and temperature budgets,

𝑃 (𝑦obs | Θ) ∼ 𝑁(0,Σ2(Θ)). (4.12)

Σ2(Θ) =

⎡⎢⎣𝜎2
𝑞 0

0 𝜎2
𝜃

⎤⎥⎦ . (4.13)

This likelihood expresses the probability of closing the moisture and energy budgets,

or jointly obtaining residuals equal to zero for both budgets given parameters Θ.

We do not expect any covariance between the moisture and temperature residuals,

and therefore the off-diagonal terms are zero in Eq. (4.13). We assume a standard

deviation 𝜎𝑞 of 10−8 kgkg−1s−1 or 17 Wm−2. For potential temperature, the stan-

dard deviation 𝜎𝜃 is chosen to be 3*10−6 Ks−1 or 2.5 Wm−2, though our results are

insensitive to these choices. The posterior distribution, 𝑃 (Θ | 𝑦obs), then represents

the distribution of parameter values that are most likely to close the budgets given

observed data.

For the prior distribution 𝑃 (Θ) on 𝐴𝑒, we choose a normal prior with mean of

0.2 and standard deviation 0.4, 𝒩 (0.2, 0.42). A common view of 𝐴 is the ratio of

minimum to maximum buoyancy fluxes, when assuming that the minimum buoyancy

flux occurs at the subcloud layer top, and that the transition from the negative,

minimum to zero buoyancy flux occurs over an infinitely thin layer. Its value is often

taken to be 0.2 (Lilly, 1968; Stull, 1976; Canut et al., 2012). A value of 𝐴 greater

than one is energetically inconsistent, given that the source for entrainment mixing

is the surface turbulent fluxes. Obtaining a posterior distribution of 𝐴𝑒 that does not

exceed one serves as a physical test of the model. We model the prior distributions

for 𝐶q and 𝐶𝜃 as a normal distribution with mean 1 and standard deviation of 0.5.

Sampling is performed using the Metropolis-Hastings algorithm (Metropolis et al.,

1953; Hastings, 1970), and we run four chains of 60,000 samples. The first 10,000

samples are discarded for each chain, yielding 200,000 samples. Results are consistent

among chains, indicating that our model is adequately sampled.
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Notably, 𝐴𝑒 is well-constrained by the inversion and has a maximum likelihood es-

timate (MLE) posterior value of 0.43 and a 5–95% credible interval (c.i.) of 0.34–0.53

(Fig. 4-5). Its marginal posterior distribution is similar regardless of the prior dis-

tribution. 𝐴𝑒 being larger than 0.2 is consistent with it being an effective parameter

that reflects the presence of a finitely-thick transition layer as previously discussed.

A finitely thick layer is consistent with what is seen in large eddy simulations sim-

ulations (e.g., Vanzanten et al., 1999) and direct numerical simulations (e.g., Garcia

and Mellado, 2014), albeit in the case of the cloud-free mixed layer.

e

e

Figure 4-5: Marginal and joint posterior distributions for the uncertain entrainment
parameters Θ ={𝐴,𝐶𝑞, 𝐶𝜃}. For the marginal posterior distributions (black), the
marginal prior distribution (grey) and maximum likelihood estimate, MLE (red), are
also shown.

The MLE 𝐶q is 1.27 with a 5-95% c.i. of 0.74–1.89. The MLE 𝐶𝜃 is 1.16 with

a 5-95% c.i. of 0.65–1.66 (Fig. 4-5). We multiply the MLE transfer coefficients by
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the time-varying values of ∆𝑞 and ∆𝜃 (calculated following Eq. (4.3) and Eq. (4.4)

to obtain specific humidity and potential temperature jumps used to calculate the

entrainment flux. We also note the strong covariance between 𝐶q and 𝐶𝜃, which

have a Pearson correlation coefficient of r=0.97, highlighting the utility of a Bayesian

framework that can capture this parameter covariance. The covariance suggests that

the same subcloud layer eddies mix moisture and energy, consistent with physical

expectation. That the parameters constrained by the Bayesian inversion are physical

– namely, an 𝐴𝑒 greater than 0.2 and scaling coefficients that strongly covary – acts

as a first validation of mixed layer theory.

4.6 Resulting moisture and temperature budgets

Adopting the maximum likelihood estimate parameters from our Bayesian inversion,

Fig. 4-6 shows that the bulk theory budgets close to within 3.6 Wm−2 for moisture

and 2.9 Wm−2 for potential temperature for the campaign-mean and can largely

explain synoptic variability. For the moisture budget, the campaign-mean residual is

2.2% of the largest term, the surface latent heat flux. Out of 24 circling-means, 20

residuals are unbiased given uncertainty estimates, and the budgets close equally well

for circling-means measured during daytime or nighttime (Fig. 4-6a). In the energy

balance, 14 out of 24 residuals are unbiased, and as for moisture, the budget holds

equally well for day and night (Fig. 4-6b).

Regarding the relative magnitude of physical processes, for the moisture budget,

the dominant balance is between surface latent heat flux (166±56 Wm−2) and entrain-

ment drying flux (−128 ± 53 Wm−2), with a secondary role for large-scale moisture

advection (−34 ± 41 Wm−2) and the storage term (−1.0 ± 40 Wm−2). Note that

the advection term is negative because it is subtracted from the left-hand side in

Eq. (4.9). Its absolute value is positive, as the product of negative (easterly) winds

and a negative difference (moving west to east), as the advection brings colder, less

moist air from east to the west. In the energy budget, the entrainment flux (18± 6.5

Wm−2) has roughly twice the magnitude of the other terms, which have a similar

88

Kerry
Highlight

Kerry
Sticky Note
All absolute values are non-negative



magnitude of 6–8 Wm−2 (Fig. 4-6b). Physically this balance says that radiative cool-

ing of the layer is disproportionately balanced by entrainment warming, enabled by

moisture flux contributions to the turbulence kinetic energy production, i.e., though

the F𝑞 contribution to F𝜃𝑣 .

One might be tempted to think that the flexibility afforded by the Bayesian frame-

work allows for closing the budgets by construction. 𝐴𝑒, 𝐶q, and 𝐶𝜃 are constants,

yet vertical profiles of moisture and potential temperature change across days, such

that there is no guarantee that a fixed combination of 𝐴𝑒, 𝐶q, and 𝐶𝜃 allows for

budgets to close. We close moisture and energy budgets jointly, which provides a

stronger constraint than closing a single budget. That is, in the moisture budget,

drying by entrainment balances moistening by surface fluxes, whereas in the energy

budget, both entrainment and surface fluxes warm the layer, such that each budget

place counteracting constraints on the entrainment rate.

That the budgets close to within these small residuals suggests that knowledge

of the mean state in Eq. (4.9) and Eq. (4.10) is sufficient to close the budgets, with-

out knowledge of the vertical thermodynamic gradients or incorporating additional

processes. The correlation of residuals with vertical gradients informs whether the

omission of vertical gradients is justified. Indeed, correlations of residuals with ver-

tical gradients are small. The correlations of 𝜃 residuals with 𝜕𝜃/𝜕𝑧 and 𝜕𝑞/𝜕𝑧 are

0.21 and -0.17, respectively, and the correlations of the 𝑞 residuals with 𝜕𝜃/𝜕𝑧 and

𝜕𝑞/𝜕𝑧 are 0.33 and -0.25, respectively. The ratios of 𝜕𝜃/𝜕𝑧 and 𝜕𝑞/𝜕𝑧 multiplied by

ℎ/2 to the jumps at the upper interface are also small, with a mean value of 20% for

𝑞 and 22% for 𝜃, providing further evidence that the influence of vertical gradients

on the subcloud layer budgets is small.

Structure in the residuals is also indicative of observational error or missing pro-

cesses. We use two proxies for precipitation or precipitation-driven downdrafts, whose

influences we neglect: cloud top height estimated from the WALES instrument on-

board HALO (Konow et al., 2021), mindful that deeper clouds are more likely to

precipitate (e.g., Stevens et al., 2016), and a cold pool fraction per circling, wherein

a cold pool sounding is defined as having 𝜃𝑣-gradient height less than 400 m (Touzé-
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166 (56) Wm-2

-128 (53) Wm-2

-34 (41) Wm-2

3.6 Wm-2

-8.1 (9.8) Wm-2

b. Energy budget

-1.0 (40) Wm-2

6.3 (2.7) Wm-2
18 (6.5) Wm-2

-6.9 (8.2) Wm-2

2.9 Wm-2

-6.3 (16) Wm-2

a. Moisture budget

Figure 4-6: Synoptic variation and campaign-mean moisture balance, showing the
surface flux (blue), entrainment flux (orange), large-scale horizontal advection (dark
blue), the time derivative (light blue), clear-sky radiative cooling (red), and the resid-
ual term (grey). Black stars flag circling-means that include sondes launched during
the nighttime. Panel a. shows the moisture balance whereas panel b. shows the en-
ergy balance. Uncertainties are added in quadrature for the 5-95% Bayesian credible
interval on entrainment parameters, as well as one standard deviation for individual
terms calculated across the three circle-means per circling-mean.

Peiffer et al., 2021). The residual structure is, however, not correlated with these

proxies. For WALES cloud top height, correlations are r=0.19 for 𝑞 residuals and

r=0.16 for 𝜃 residuals. For the cold pool fraction, these correlations are also small,

r=0.23 for 𝑞 residuals and r=0.24 for 𝜃 residuals. These weak correlations support

our finding that the subcloud layer moisture and energy budgets can close solely

by representing small-scale entrainment mixing. These findings that the influence

of downdrafts and other coherent structures is relatively small in the trades rela-

tive to turbulent entrainment mixing are consistent with Thayer-Calder and Randall

(2015), justifying assumptions in many parameterizations, dating back to Arakawa

and Schubert (1974).
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4.7 How do these subcloud layer properties relate to

the large-scale environment?

Surface and entrainment fluxes are strongly associated with 𝑈 variability, as expected

given their structural dependence on the wind speed. Fig. 4-7 relates variability

among 𝑈 , ℎ, surface fluxes, and entrainment fluxes, and the clear-sky radiative cool-

ing, Qrad. A deeper subcloud layer is associated with stronger 𝑈 , r=0.62, consistent

with Nuijens and Stevens (2012). Fixing other parameters at their campaign-mean

value and only allowing 𝑈 to change recovers most variance in surface and entrain-

ment fluxes: 87% of the variance in 𝐹𝑞, 64% of the variance in 𝐸∆𝑞, 74% of the

variance in 𝐸∆𝜃, though only 22% of the variance in 𝐹𝜃. If we instead allow only

the sea surface temperature to vary, we recover 32% of the variance in 𝐹𝑞, 38% of the

variance in 𝐸∆𝑞, 11% of the variance in 𝐹𝜃, and 35% of the variance in 𝐸∆𝜃. The

surface wind speed plays a larger role in explaining variability in the fluxes except for

𝐸∆𝜃.

Having established that mixed layer theory is a skillful framework, we can further

employ it as a physical mapping to diagnose how boundary conditions, such as the

surface wind speed, influence 𝑞 and 𝜃. Solving for 𝑞 at equilibrium from Eq. (4.9)

yields,

𝑞 =
𝑉0𝑞𝑠 + 𝐸𝑞+ − ℎ(𝜕𝑞

𝜕𝑡
+ 𝑢⃗ · ∇𝑞)

𝑉0 + 𝐸
. (4.14)

Similarly, solving for 𝜃 at equilibrium yields,

𝜃 =
𝑉0𝜃𝑠 + 𝐸𝜃+ + ℎ𝑄𝑟 − ℎ(𝜕𝜃

𝜕𝑡
+ 𝑢⃗ · ∇𝜃)

𝑉0 + 𝐸
. (4.15)

The velocity scale 𝑉0 = 𝐶𝑑𝑈 , 𝑞+ and 𝜃+ correspond to values 100 m above the

subcloud layer top. 𝐸 can, moreover, be rewritten as 𝐴𝑒𝐹𝜃𝑣

(𝜃+0.61[𝜃(𝑞+−𝑞)+𝑞(𝜃+−𝜃)]−𝜃𝑣
as

function of 𝑞+ and 𝜃+.

Predictions of 𝑞 from Eq. (4.14) nearly recover observed 𝑞, with a correlation

coefficient r=0.92 (Fig. 4-8a). Predictions of 𝜃 from Eq. (4.15) have a correlation

91

Kerry
Highlight

Kerry
Sticky Note
But in 4.14 you are retaining the local derivative in time

Kerry
Sticky Note
Would be interesting to look at the moist static energy budget. 



Figure 4-7: Relationships among 10 m wind speed, subcloud layer depth, surface
fluxes, and entrainment fluxes. The black line is the central ordinary least squares
regression, and the grey shading is the 5–95% confidence interval on the regression.
Colors correspond to quartiles of the wind speed with increasing wind speed going
from blue to red. The inset shows the Pearson correlation coefficients.

coefficient of r=0.48 with observed 𝜃, qualitatively consistent with larger residuals

in the energy budget (Fig. 4-8d). Note that if only considering residual terms whose

absolute value is less than 5 Wm−2, which occurs 29% of the time, then the correlation

of observed and predicted 𝜃 becomes r=0.88.

Different boundary conditions, set by the large-scale environment, are 𝑈 , 𝑞+, 𝜃+,

SST, 𝑢⃗ ·∇𝑞, 𝑢⃗ ·∇𝜃, 𝜕𝑞
𝜕𝑡

, 𝜕𝜃
𝜕𝑡

, and Qr. We vary one external parameter at a time, and fix

the other parameters at their campaign-mean value, to estimate the predicted 𝑞 or

𝜃 values driven just by variability in a single external condition (Fig. 4-8). Perhaps

surprisingly, varying only the surface wind speed to predict 𝑞 yields a weak correlation

with observed 𝑞 (r=-0.28) or with predicted 𝑞 when allowing all quantities to vary (r=-
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0.11), not only the wind. That the net influence of the wind speed is weak results

from its opposing influences, both moistening the layer through surface fluxes and

drying it through entrainment. Whereas the correlation of the surface wind speed

with individual fluxes is strong (Fig. 4-7), the correlation of the wind speed with the

sum of the surface moistening flux and entrainment drying flux is weak (r=0.32).

Varying only 𝑞+, which also influences the entrainment rate through ∆𝜃𝑣, yields the

highest correlation with predicted moisture (r=0.66, Fig. 4-8b) and observed moisture

(r=0.54). Varying other factors yields weak correlations (Fig. 4-8c). For thermal

energy, we find, similarly, that 𝜃+ recovers the most variance in 𝜃 that is predicted

(r=0.43) and observed (r=0.93), whereas the predictive power of other external factors

is smaller. If again considering the case of residual terms whose absolute values are

less than 5 Wm−2, the correlation of observed 𝜃 is r=0.89 when only varying 𝜃+ to

calculate the predicted 𝜃 and r=0.93 when only varying 𝑞+.

In summary, variability in the fluxes is very strongly influenced by 𝑈 variability.

Yet because of opposing influences of the surface and entrainment fluxes on 𝑞, the

surface wind speed influence on 𝑞 is weak. Instead, knowing the humidity above the

subcloud layer, 𝑞+, is the most informative for predicting 𝑞 variability. Subcloud layer

moisture and moisture just above are coupled, such that it is not possible with this

analysis to infer causality.

Regarding external influences on vertical gradients, we also find weak rank and

Pearson correlations (r<0.2) of 𝜕𝑞/𝜕𝑧 and 𝜕𝜃/𝜕𝑧 with the 10 m wind speed or wind

shear between different vertical levels. This finding contrasts with Malkus (1958) who

found the vertical moisture gradient to be anticorrelated with the surface wind speed,

r=-0.68, though the earlier study used many fewer soundings (order-10 vs. order-1000

in our study).

Naumann et al. (2017) and Naumann et al. (2019) suggest that stronger radiative

cooling is associated with a smaller ℎ, while Zheng (2019) finds that stronger radiative

cooling deepens the subcloud layer. Unfortunately, our observations do not allow us

to resolve this discrepancy. We do not find a simple linear relationship between clear-

sky radiative cooling and ℎ (Fig. 4-7) or mean thermodynamics (not shown). During
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Figure 4-8: a,b,d,e. Scatter plots with linear regression and Pearson correlation
coefficient. Panel (a) plots subcloud layer mean specific humidity predicted using
mixed layer theory (Eq. (4.14)), 𝑞𝑝, and observed specific humidity, 𝑞𝑜, and similarly,
panel (d) plots 𝜃𝑝 from Eq. (4.15) and 𝜃. Panels (b) and (e) compare predicted val-
ues using all terms with predicted values only varying values at ℎ+. Insets (c) and
(f) show Pearson correlation coefficients among subcloud layer mean thermodynamics
and meteorological controls. Scatter plots on the left are highlighted by black squares.
Large-scale meteorological controls that vary are the near-surface wind (∆𝑉s), val-
ues at ℎ+ (e.g. ∆𝑞ℎ+), horizontal advection (∆adv.), and sea surface temperatures
(∆SST).

the night, the wind speed tends to increase, deepening the subcloud layer, which

could offset a decrease in the depth of this layer due to stronger nighttime radiative

cooling. This compensation highlights the difficulty in disentangling the influence of

clear-sky radiative cooling on subcloud layer properties when its variability is aliased

onto variability in other variables, such as the surface wind speed.

4.8 Conclusions

In this analysis, we quantify thermodynamic variability in the trade-wind subcloud

layer and test mixed layer theory using extensive in situ observations from the
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EUREC4A campaign. In defining the subcloud layer height, we find evidence for

a transition layer that separates the subcloud layer top from the mixed layer top.

Both heights were not clearly defined in prior literature, and we develop three def-

initions for calculating these heights from vertical thermodynamic profiles. Vertical

gradients are small relative to variability about the mean, providing an initial justi-

fication of their omission from mixed layer theory. We find that 𝑞 varies primarily

day-to-day and decorrelates after about two days, such that EUREC4A flight data

samples nearly-independent realizations of large-scale variability. Anomalies in the

subcloud layer depth and LCL are largely associated with anomalies in 𝑞. Given its

synoptic variability and influence on subcloud layer vertical length-scales, the primary

mode of subcloud layer thermodynamic variability therefore appears to be through 𝑞

variability.

The presence of a transition layer and its vertical gradients introduces ambigu-

ity in the application of mixed layer theory. We address this uncertainty through

the introduction of effective parameters estimated through a Bayesian methodology.

These entrainment parameters, in particular a mean effective entrainment parame-

ter 𝐴𝑒 = 0.43 that is greater than the value of 0.2 as often assumed, are consistent

reflections of a finitely-thick transition layer. Such a finitely-thick layer with thermo-

dynamic gradients contrasts with foregoing theory based on dry boundary layers that

assumes a sharp discontinuity at the layer’s upper interface (e.g., Lilly, 1968), but it

is consistent with direct numerical simulations (e.g., Garcia and Mellado, 2014) albeit

of a dry boundary layer.

Despite the apparent challenges in applying mixed layer theory in the trades, we

find that this framework offers a closed description for moisture and energy budgets,

with campaign-residuals of 3.6 Wm−2 for moisture and 2.9 Wm−2 for energy and

small, unbiased residuals for synoptic variability. That the budgets close to within

these small residuals suggests that knowledge of the mean state through 𝑞, 𝜃, and ℎ

is sufficient to close the thermodynamic budgets, without having to include vertical

thermodynamic gradients. We also find little evidence that closing moisture and

energy budgets requires representing additional processes, such as precipitation or
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coherent downdrafts.

After showing that mixed layer theory is a useful framework, we use this theory

as a mapping between meteorological variables and subcloud layer thermodynamics.

Mixed layer theory predictions of 𝑞 have a correlation r=0.92 with observed 𝑞, whereas

predictions of 𝜃 have a correlation r=0.48 with observed 𝜃, consistent with more skillful

closure of the subcloud layer moisture budget. We find strong linear relationships

among surface wind speed variability and subcloud layer depth, surface fluxes, and

entrainment fluxes. Yet due to the compensating influences on 𝑞 through surface

moistening and entrainment drying, the net influence of the wind speed on 𝑞 is weak.

Instead, only knowing moisture and temperature values above the subcloud layer

has the most predictive skill for predicted 𝑞 and 𝜃, respectively, because these are the

properties of the air mixed into the subcloud layer by entrainment. Clear-sky radiative

cooling variability does not appear to exert a primary influence on the subcloud layer

depth or fluxes compared to the stronger influence of the surface wind speed.

Given the skill of the mixed layer framework, it would be worthwhile to apply

this framework to representations of the trade-wind subcloud layer by a hierarchy

of models, from general circulation to storm-resolving models and large-eddy sim-

ulations. Variables analyzed could include subcloud layer moisture or energy as in

this study, momentum (e.g., Holland and Rasmusson, 1973), or isotopes (e.g., Risi

et al., 2020). Quantifying the relative magnitudes of different processes, how well the

budgets close, and how individual terms vary according to large-scale environmental

conditions would serve as a litmus test for evaluating how well models represent phys-

ical processes, such as surface and entrainment fluxes, relative to novel observational

anchoring from the EUREC4A field campaign.
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4.9 Appendix A: Methodology for various boundary

and subcloud layer height estimates

4.9.1 Thermodynamic variable gradient method

The vertical stratification of the tropical atmosphere occurs in all variables, but it is

most evident in moisture (Augstein et al., 1974; Stevens et al., 2001). We first define

a subcloud layer length scale as the depth over which there is no vertical gradient in

specific humidity within a threshold, applying the method from Canut et al. (2012).

The method selects the height where the specific humidity becomes greater than the

density-weighted mean specific humidity of the levels below by a certain threshold 𝜖q:

|𝑞(𝑧) − 𝑞| ≤ 𝜖𝑞, where 𝑞 is updated at each vertical level. We begin at a height of

100 m to minimize the influence of the surface layer. This humidity-jump approach

was implicitly adopted in Malkus (1958), and is similar to previous estimates based

on discontinuities in observed profiles (e.g. Heffter, 1980; Marsik et al., 1995).

In implementing the 𝑞-gradient method, the primary uncertainty is the choice of

threshold 𝜖𝑞, which should be large enough not to be biased by small-scale vertical

variability, but precise enough to identify the humidity discontinuity at the subcloud

layer top. To choose a threshold, we turn to intensive sampling from both the CU-

RAAVEN remotely-piloted aircraft and the ATR-42 and HALO aircraft. Empirically,

we choose a threshold that is one-third of turbulent, eddy-scale variability, estimated

as within-flight variability (compared with day-to-day variability). Calculating the

specific humidity standard deviation below 550 m within a three-hourly flight of the

CU-RAAVEN suggests a threshold 𝜖= 0.3 gkg−1. Calculating the standard deviation

in 𝑞 below 500m from the ATR-42 yields a threshold 𝜖= 0.35 gkg−1, and for HALO

soundings within one flight, one-third of the standard deviation is 𝜖= 0.27 gkg−1.

We use 𝜖= 0.30 gkg−1. The maximum allowable vertical gradient in the boundary

layer is thus 0.03 gkg−1m−1, given a 10m grid spacing. This threshold allows for

a certain moisture gradient, or deviation from a perfectly well-mixed profile, noted

previously for both the trades and other environments (Malkus, 1958; Mahrt, 1976;
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Dai et al., 2014) and shown by our analyses. Across the HALO dropsonde soundings,

this 0.30 gkg−1 threshold corresponds to a 10% difference between mean air in the

cloud and subcloud layer, when averaging air masses between 1000–1200m and 100-

300m depths. We evaluate this height method and empirically-chosen gradient in

Sec. 4.4. Heights from the 𝑞-gradient method are 546±82 m, with values denoting

the mean and standard deviation across the 69 circle-mean data.

An advantage of this threshold definition is its straightforward application to other

thermodynamic variables like 𝜃 and 𝜃𝑣: |𝜃(𝑧)− 𝜃| ≥ 𝜖𝜃. We use thresholds 0.15 K for

𝜃 and 0.20 K for 𝜃𝑣. The threshold of 0.2K for 𝜃𝑣 is also employed in Touzé-Peiffer

et al. (2021). These thresholds are similarly chosen from the CU-RAAVEN, ATR-

42, and HALO sounding data as one-third of one standard deviation within flights.

These thresholds correspond to 10% of differences between cloud and boundary layer

air (estimated conservatively as the 1000-1200m minus 100-400m layer-means) for 𝜃

and 𝜃𝑣, respectively. Heights from the 𝜃-gradient are 549±97 m and 697±94 m for

the 𝜃-gradient, with values denoting the mean and standard deviation across the 69

circle-mean data.

4.9.2 Parcel method

Next, we examine the parcel method, also referred to as the ‘Holzworth method’, as

introduced by Holzworth (1964), which estimates the level at which a hypothetical

rising parcel of surface air, representing a thermal, reaches its level of neutral buoy-

ancy. We compute the level of neutral buoyancy where 𝜃𝑣 surface parcels intersect a

background profile fitted to the cloud layer 𝜃𝑣 profile determined by linear regression.

Surface air is defined as 0-50m values; choosing 0-90m air affects the height by O(1%).

We calculate the cloud layer 𝜃𝑣 profile from 100m above the height determined from

the 𝑞-gradient method to the first inversion base height, defined where the static

stability first exceeds 0.1 K/hPa, similar to a definition given in Bony and Stevens

(2019).

This parcel method can be viewed as a simplification of the Richardson-number

method that neglects the shear contribution (e.g., Seibert et al., 2000; Dai et al.,
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2014; Zhang et al., 2014). Although the Richardson and gradient Richardson number

methods are related to the generation and consumption of mixed layer turbulence

and diagnose flow stability (e.g., Garratt, 1994; Stull, 2012), we do not employ this

method due to the considerable uncertainty underlying choices in its free parameters

(e.g., Zilitinkevich and Baklanov, 2002; Seidel et al., 2012). Heights from the parcel

method are 719±85 m.

4.9.3 Linearized relative humidity profile

A third type of definition involves the relative humidity profiles. The relative hu-

midity increases throughout the subcloud layer (e.g., Nuijens et al., 2015c), as the

specific humidity 𝑞 remains largely constant while temperature decreases. In practice,

spurious peaks in relative humidity in our circle-mean profiles could arise from the

spatial averaging of multiple soundings. For instance, a circle-mean could average

between profiles falling through a cloud close to the subcloud layer top, saturated in

relative humidity, and drier profiles elsewhere along the EUREC4A circle flight path.

To circumvent this bias, we introduce a linearization of the relative humidity

profile. We find the first local maximum in relative humidity above 300m and then

linearize the relative humidity profile, by ordinary least squares regression, from 50m

above the surface to 50m above this first local relative humidity maximum. We then

find all local relative humidity maxima below one kilometer and choose the height

that minimizes the relative humidity difference between the observed and linearized

profiles. Heights from the relative humidity maximum method are 571±96 m.

4.10 Appendix B: Vertical thermodynamic profiles

In Figure B, we show vertical profiles of specific humidity, 𝑞, and potential tempera-

ture, 𝜃, to further illustrate the vertical structure as described in Sec. 4.4.
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Figure 4-9: The 24 vertical circling-mean profiles (black) of specific humidity, 𝑞 and
potential temperature, 𝜃, together with the three circle-mean profiles (grey) averaged
to estimate each circling-mean. Blue dots correspond to the mixed layer top, esti-
mated with the 𝑞-gradient definition, whereas red dots denote the subcloud layer top,
estimated with the 𝜃𝑣-gradient definition. The vertical navy line denotes the mixed
layer-mean value and demonstrates that the majority of circling-mean profiles have a
vertically well-mixed layer.

4.11 Appendix C: Derivation for entrainment effi-

ciency parameter, 𝐴𝑒

For a subcloud layer scalar, 𝜗, Eq. (4.8) results from integrating the following equation

over a thin interfacial layer with lower and upper boundaries h− and h+ and layer-

thickness 𝛿ℎ = ℎ+ − ℎ−,

∫︁ ℎ+

ℎ−

𝜕𝜗

𝜕𝑡
𝑑𝑧 = −

∫︁ ℎ+

ℎ−

𝜕

𝜕𝑧
𝑤′𝜗′ 𝑑𝑧. (4.16)
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Applying the Leibniz integral rule for differentiation under integration yields,

𝑑

𝑑𝑡

[︀
⟨𝜗⟩𝛿ℎ𝛿ℎ

]︀
− 𝑑ℎ+

𝑑𝑡
𝜗ℎ+ +

𝑑ℎ−

𝑑𝑡
𝜗ℎ− = −𝑤′𝜗′|ℎ+ + 𝑤′𝜗′|ℎ− (4.17)

Assuming that turbulence vanishes at h+ implies that 𝑤′𝜗′|ℎ+ = 0. Heights ℎ+ and

ℎ− are offset from ℎ by a constant, 𝜖, such that h+=h+𝜖 and h−=h-𝜖, which means

that 𝑑ℎ+

𝑑𝑡
= 𝑑ℎ−

𝑑𝑡
= 𝑑ℎ

𝑑𝑡
. Assuming that the layer is well-mixed implies that 𝑞ℎ− = 𝑞.

With these assumptions, Eq. (4.17) becomes,

𝑑

𝑑𝑡

[︀
⟨𝜗⟩𝛿ℎ𝛿ℎ

]︀
− 𝑑ℎ

𝑑𝑡
∆𝜗 = 𝑤′𝜗′|ℎ− (4.18)

If 𝛿ℎ is constant and ⟨𝜗⟩𝛿ℎ is approximately equal to 𝜗+𝜗+

2
, with 𝜗 equaling the

mixed layer mean value then Eq. (4.18) becomes,

𝛿ℎ

2

[︂
𝑑𝜗

𝑑𝑡
+

𝑑𝜗+

𝑑𝑡

]︂
− 𝑑ℎ

𝑑𝑡
∆𝜗 = 𝑤′𝜗′|ℎ− (4.19)

Note that if assuming that the interfacial layer has zero-thickness, e.g. 𝛿ℎ = 0,

Eq. (4.19) becomes,

−𝑑ℎ

𝑑𝑡
∆𝜗 = −𝐸∆𝜗 = 𝑤′𝜗′|ℎ−, (4.20)

where the growth of the layer, 𝑑ℎ
𝑑𝑡

is considered the entrainment rate, 𝐸.

Replacing 𝜗 with 𝜃𝑣 yields Eq. (4.8),

𝛿ℎ

2

[︂
𝑑𝜃𝑣
𝑑𝑡

+
𝑑𝜃𝑣+
𝑑𝑡

]︂
− 𝑑ℎ

𝑑𝑡
∆𝜃𝑣 = 𝑤′𝜃′𝑣|ℎ− (4.21)

Rearranging to solve for 𝐸 = 𝑑ℎ
𝑑𝑡

yields and adopting the formulation for the flux,

𝑤′𝜃′𝑣|ℎ−, given in Eq. (4.2) and Eq. (4.7) yields,

𝐸 =
−𝐴𝑉0∆0𝜃𝑣

∆1𝜃𝑣
+

𝛿ℎ

2∆1𝜃𝑣
(
𝑑𝜃𝑣
𝑑𝑡

+
𝑑𝜃𝑣+
𝑑𝑡

). (4.22)

The effective 𝐴𝑒 can be interpreted as absorbing the second term on the right-hand

side in Eq. (4.22).
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Chapter 5

A new conceptual picture of the tran-

sition layer

5.1 Introduction

The transition layer in the trades has long been observed (e.g., Malkus, 1958; Augstein

et al., 1974; Yin and Albrecht, 2000) and simulated (e.g., Stevens et al., 2001), but

previous studies have not investigated its origins. This layer is often associated with

an approximately 200 m deep layer between the well-mixed part of the subcloud

layer (around 500 m depth) and the subcloud layer top (around 700 m depth) (e.g.,

Malkus, 1958; Betts, 1976; Augstein et al., 1974; Arakawa and Schubert, 1974; Yin

and Albrecht, 2000). The transition layer is typically identified from thermodynamic

soundings by its vertical gradients that extend over a certain depth and are stronger

than those in the cloud layer above or the mixed layer below. Its top is also often

associated with the mean cloud base level estimated from the lifting condensation

level (LCL) of surface parcels (e.g., Malkus, 1958; Augstein et al., 1974).

From these recognitions, previous studies developed a conceptual view that that

the transition layer is predominantly a feature of cloud-free regions, and clouds, if they

occur, are rooted at the transition layer top. Malkus (1958), for instance, examines

vertical gradients to conclude that the transition layer was always (100%) present in

clear-sky regions and generally (55%) absent in cloudy regions. She also proposes

that the transition layer is thicker in clear areas (200 m) than in cloudy areas (80 m),

This chapter is in preparation for submission to the Journal of the Atmospheric Sciences.
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as illustrated schematically in Fig. 5-1a. Augstein et al. (1974) goes a step further to

outline a qualitative scheme (his Fig. 12) that the transition layer is maintained by dry

convection and mechanically-driven turbulence, whereas moist convective processes

play a role above the transition layer top.

The inferences of strong vertical gradients over the transition layer, moreover,

established a conceptual picture of the transition layer as a barrier to convection,

or a valve that regulates subcloud to cloud layer transports (e.g., Augstein et al.,

1974; Yin and Albrecht, 2000; Neggers et al., 2006). In this view, buoyant updrafts

must be sufficiently energetic to overcome the stable transition layer, similar to the

notion of convective inhibition. Earlier, Ooyama (1971) presented the ‘cumulus dis-

patcher function’, which represents the probability that a buoyant updraft in a statis-

tical ensemble successfully forms a cloud. The probability of success depends on the

large-scale environment near cloud base – that is, on environmental conditions in the

transition layer. Neggers et al. (2006) expresses a similar idea of the transition layer

influencing the coupling between subcloud and cloud layer processes, noting that “the

bulk subcloud-layer properties that determine the saturation characteristics of the

transition layer, and thus the area fraction of shallow cumulus, act as a regulator or

valve on the moist convective transport”.

In the intervening years from these early observational studies, a different interpre-

tation arose that the transition layer could be modeled as an infinitely-thin layer with

‘jumps’, or abrupt discontinuities, in analogy with the cloud-free convective bound-

ary layer (e.g., Lilly, 1968; Stull, 1976; Stevens, 2006). A schematic of a cloud-free

boundary layer (Fig. 5-1b) and results from a direct numerical simulation of a dry

boundary layer (Fig. 5-1c) highlight a layer that is well-mixed by turbulence, topped

by an abrupt discontinuity. Neglecting cloudiness was rationalized by the small cloud-

base cloud fraction in the trades. Indeed, trade-wind cloud fraction near cloud-base

was estimated to be about 3-4% as by the ATR-42 aircraft during EUREC4A (Bony

et al., 2022), such that this assumption appears reasonable.

Closure schemes for the entrainment rate based on cloud-free layers are features

of cumulus parametrizations in the seminal Arakawa and Schubert (1974) study, as

104

Kerry
Highlight

Kerry
Sticky Note
It might be useful to note here that these concepts are in contradiction to contemporary quasi-equilibrium theory



well as the Betts (1973) and Albrecht et al. (1979) representations of shallow cumulus

fields. The conceptual view of entrainment in a cloud-free boundary layer is that over-

shooting plumes entrain filaments of more stratified overlying air into the turbulent

layer (e.g., Bretherton, 1997). Such a formulation suggests that clouds are not ex-

plicitly agents of subcloud layer turbulent mixing, and turbulence and any associated

entrainment are instead generated by surface fluxes.

During EUREC4A, we collected data to better understand the characteristic ver-

tical structure of the trades, as introduced in Chapt. 1. In Chapt. 4, the trade-wind

subcloud layer is shown to have a nuanced vertical structure that includes a finite-

depth transition layer between the well-mixed part of the subcloud layer and subcloud

layer top. That is, extensive soundings from EUREC4A show that most thermody-

namic profiles do not exhibit the jump that is expected from cloud-free boundary

layers and used as the conceptual basis for mixed layer theory.

There are different reasons a finite-thickness transition layer with smooth vertical

gradients, as opposed to a jump, could be evident in thermodynamic profiles. Aver-

aging individual profiles that show a jump, albeit at different heights, would yield a

finite-depth layer with vertical gradients simply as a product of averaging. Yet the

transition layer and lack of a clear discontinuity at the boundary layer top exist in

individual soundings, as will be discussed in this chapter, disproving this first idea.

A second hypothesis is that a transition layer exists as a structural component of

the atmosphere and has finite thickness. The question then arises, what processes

maintain such a transition layer in the trades? This chapter provides a first answer

to this question.

5.2 EUREC4A data

The primary data are similar to those used in the previous chapter, in particular

810 dropsondes from the High Altitude and Long Range Research Aircraft (HALO)

launched between January 22, 2020 and February 15, 2020 (Konow et al., 2021).

These dropsondes provide vertical profiles of pressure, temperature, and relative hu-
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Reproduced from Garcia, Mellado, 2014

(a) (b)

(c)

Δq

q Subcloud layer

Transition layer

Cloud layer

q / gkg-1

Figure 5-1: (a) Representing specific humidity profiles from Malkus (1958) with the
heights and gradients given in her study. The mean profile (dark blue) is the weighted
average between 16 clear-sky (averaged in light blue) and 9 cloudy (averaged in
medium blue) soundings. According to her view, clouds are rooted at the transition
layer top. (b) An idealized profile of specific humidity, similar to idealized profiles
such as in Albrecht et al. (1979) for moist static energy. That the infinitely-thin tran-
sition layer can vary in height is indicated by the grey arrow. (c) Figure reproduced
from Garcia and Mellado (2014), showing results from a direct numerical simulation
of a dry convective boundary layer. Shown is the logarithm of the buoyancy gradient,
which acts similarly to the 𝜃𝑣 gradient. Colors correspond to increasing values (e.g.,
from black to blue to green).
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midity, which have been processed and interpolated into a common altitude grid with

10 m vertical resolution (George et al., 2021). As described in Chapt. 4, dropsonde

measurements were distributed along the ‘EUREC4A circle’. The EUREC4A circle

is defined by a circular flight pattern with an approximately 220-kilometer diameter,

centered at 13.3∘N, 57.7∘W. This flight pattern was repeated 69 times, over 12 flights.

Typically each flight incorporated two – temporally well separated – periods of cir-

cling. A ‘circling-mean’ is defined as the mean of three ‘circle-means’, which each

average about 12 dropsondes along the EUREC4A circle. Given that measurements

did not target specific meteorological conditions they provide unbiased sampling.

The structure of the data collected encourages the definition of 69 circle-means, 24

circling-means, and one campaign-mean value.

We also use ceilometer cloud base height estimates from the R/V Meteor and the

Barbados Cloud Observatory (BCO) at 10-second resolution from January 19, 2020

to February 19, 2020. Data during night times that the HALO aircraft did not fly

are dropped. Cloud base heights vary, and to estimate the base of clouds forming

from updrafts within the subcloud layer, ceilometer data between 350 and 1000 m are

analyzed. These data span the range of the mixed layer lifting condensation levels. We

bin data into three-hourly segments and select the most frequently-sampled value as

a representative cloud base. Typically, the first peak corresponds to the distribution

peak. In the cases where they differ, we select the first peak that is within 50% of the

absolute distribution peak. The first peak is chosen because the first decile is biased

by rain, whereas higher deciles increasingly reflect cloud side detection from sheared

convection or decaying cloud fragments that are not indicative of cloud base (Nuijens

et al., 2014). Example three-hourly cloud base distributions are given in Fig. 5-2 to

illustrate the methodology. In the following analysis, the ceilometer cloud base height

distribution refers to the aggregate of distribution peaks from three-hourly cloud base

height data.

Cloud top height data are taken from the WALES (WAter vapor Lidar Experi-

ment in Space) instrument, a water vapour differential absorption lidar. This lidar

operates at four wavelengths around 935 nm to measure water vapor mixing ratio
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a. b.

Figure 5-2: Example three-hourly cloud base height distributions from the R/V Me-
teor (solid) and the Barbados Cloud Observatory ceilometers (dotted), annotated
with the first distribution peak (blue vertical line). Also shown is the 5% cloud top
height estimate from WALES (purple vertical line) for the same time interval.

profiles below HALO (Wirth et al., 2009; Konow et al., 2021). An additional High

Spectral Resolution Lidar (HSRL) channel at 532 nm allows for the retrieval of the

atmospheric transmission. The backscatter data from the HSRL has a resolution of

40 m in the horizontal (corresponding to temporal resolution of 5 Hz and a typical

200 m/s flight speed) and 15 m in the vertical. Data products include a cloud flag

inferred from the lidar backscatter ratio at 532 nm, cloud top height with both a

precision and accuracy of about 10 m, and optical depth between the cloud top and

subcloud layer top (Konow et al., 2021). By way of comparison, even high-resolution

satellite retrievals from the Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) instrument have a vertical uncertainty of 250–500 m on cloud

top height estimates, similar to the uncertainty in Mieslinger et al. (2019). Cloud top

height estimates from these lidar data with their approximately 10 m accuracy are

thus particularly valuable.
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5.3 A different conceptual picture emerges

5.3.1 Transition layer depth

The expectation from cloud-free boundary layers is a single layer that varies in height

(e.g., as illustrated in Fig. 5-1b). Sampling the undulation of this layer would result

in a single Gaussian height distribution. To test this idea, we perform a vertical

length-scale analysis of the convective boundary layer. The methods for calculating

various heights are described in the previous chapter and its appendices. Contrary

to expectations from cloud-free boundary layers, Fig. 5-3a shows that two height

distributions exist even in individual soundings. A bimodal distribution is also evident

in more aggregated data, such as EUREC4A circle-mean and circling-mean data (see

Fig. 4-2).

We associate the first distribution with a well-mixed layer in 𝑞 and 𝜃, having a

mean depth of 500 m for individual soundings and 570 m for circle-mean data (Fig. 5-

3). This layer appears to be homogenized by surface-flux driven eddies. We call this

height the mixed layer top. The buoyancy variable, 𝜃𝑣, is, however, approximately

well-mixed to a mean depth of 710 in individual soundings and 708 m in circle-mean

data. We call this depth the subcloud layer top. These heights are generally consistent

with what Malkus (1958) and Augstein et al. (1974) identified as the mixed layer and

subcloud layer top depths.

We hypothesize that the offset between the mixed layer and subcloud layer top

indicates the presence of a transition layer, over which thermodynamic variables be-

gin to have vertical gradients. Using individual dropsondes and taking the difference

between the top of the subcloud layer and mixed layer distributions, we find a transi-

tion layer thickness of 180±207 m, with the values denoting the mean and standard

deviation. The mean value appears to converge towards a mean depth of 150 m, and,

as expected, the standard deviation decreases with increasing levels of aggregation

from individual sondes to circle- and circling-mean data (151±77 m for circle-mean

and 152±50 m for circling-mean data). The transition layer therefore appears to have

109

Kerry
Highlight

Kerry
Sticky Note
I am again confused by the terminology here.  What is the mixed layer? Is it s that portion of the subcloud layer that has roughly constant conserved variables with height? I do not get the difference between the depth of the subcloud layer and the depth of the mixed layer. Appendix A of the previous chapter only talks about the subcloud layer; it does not define a mixed layer height. But this figure shows two different distributions. 

Kerry
Highlight

Kerry
Highlight

Kerry
Sticky Note
OK...here are the definitions.   I think you should introduce these earlier in the paper and in the thesis. 

Kerry
Highlight

Kerry
Sticky Note
except theta_v.  What about wind?



Mixed layer Subcloud layer
Transition layer

a.

b. c.

Cold pools

Figure 5-3: (a) distributions of different methods employed to estimate the mixed
and subcloud layer heights for 810 individual dropsondes. We find that three meth-
ods based on specific humidity 𝑞 or potential temperature 𝜃 individually and relative
humidity (averaged in the blue curve) correspond to the mixed layer, whereas the
𝜃𝑣-gradient and parcel method based on 𝜃𝑣, a proxy for buoyancy (averaged in the
orange curve) correspond to what is often called the subcloud layer height. Also
shown are the lifting condensation level averaged from 100–300 m air parcels (black)
and ceilometer cloud base height estimates (grey). Cold pool soundings correspond
to the distribution around 150 m height. (b) 69 circle-mean profiles from HALO
for 𝑞, 𝜃, 𝜃𝑣, and 𝜃𝑒. The black line is the time-mean across all profiles, and col-
ored profiles correspond to time (moving from darker to lighter blue). Dotted lines
mark the mixed layer height calculated using circle-mean data (blue) and subcloud
layer height (orange). Their difference indicates the presence of a transition layer.
Note that the mixed layer and subcloud layer height values in panel b. are calculated
from circle-mean profiles, explaining the difference in heights with panel a. (c) Em-
pirical cumulative distribution function (CDF) of aggregated ceilometer cloud base
height distributions measured by the R/V Meteor and at the BCO. In this aggregated
distribution, each cloud base height value corresponds to first distribution-peak from
three-hourly distributions, corresponding to the blue lines in Fig. 5-2 and as described
in Sec. 5.2.
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about 150–200 m depth, within the range given in previous observational studies (e.g.,

Malkus, 1958; Augstein et al., 1974; Yin and Albrecht, 2000), but contrasting with

the thin transition layer view from modeling.

5.3.2 Less stable layer than in previous studies

Observed thermodynamic profiles exhibit smooth vertical gradients over the transition

layer (Fig. 5-3b). The 𝜃𝑣 (buoyancy) gradients, however, appear relatively weak

because 𝑞 and 𝜃 vertical gradients have compensating effects on 𝜃𝑣, as also pointed

out by Yin and Albrecht (2000). Previous conceptualizations of the transition layer,

however, posit that the transition layer acts as a barrier or cap to convection (Sec. 5.1),

which would suggest a relatively strong 𝜃𝑣 gradient.

The transition layer gradients given Malkus (1958) and Augstein et al. (1974)

are a useful point of comparison. Fig. 5-4 shows that transition layer 𝜃𝑣 gradients

observed during EUREC4A are, on average, weaker than those in Malkus (1958) and

Augstein et al. (1974). Specific humidity gradients are similar, and the weaker 𝜃𝑣

gradient in EUREC4A is driven by a weaker 𝜃 gradient. We speculate that the reason

for the greater stability implied by the mean profiles in Malkus (1958) and Augstein

et al. (1974) is their smaller sample size and that their sampling was not entirely un-

biased, compared to the extensive, unbiased sampling in EUREC4A. Malkus (1958),

for instance, launch 16 out of their 25 soundings into very clear-sky regions, whereas

the other nine soundings explicitly targeted active cloud cores. Augstein et al. (1974)

analyze a larger set of soundings from field campaigns in 1965 and 1969. He, however,

removes soundings wherein a transition layer was not apparent, which could bias re-

sults towards stronger transition layer gradients. During EUREC4A, strong gradients

with the magnitude of those in Malkus (1958) and Augstein et al. (1974) are seen,

but they occur infrequently (Fig. 5-4).
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Figure 5-4: Composite profiles of (a.) specific humidity, 𝑞, and (b.) virtual potential
temperature, 𝜃𝑣. The profiles are constructed from the mean mixed layer value,
mean gradients over the mixed layer, transition layer, and lower cloud layer, and
mean heights of the mixed layer and transition layer top. Heights are estimated from
EUREC4A sounding data and are generally consistent with those in Malkus (1958)
and Augstein et al. (1974). EUREC4A data are plotted in black, both the campaign-
mean (thick black line) and individual dropsondes (thin black lines), with the mixed
layer mean value indicated by the black dot. Colorful profiles use vertical gradients
from previous studies, but with the mean value adjusted to the mean mixed layer
value in EUREC4A to better compare transition layer gradients. M58 corresponds to
Malkus (1958), and A74 refers to Augstein et al. (1974). 𝜃𝑣 gradients are given in
Augstein et al. (1974), but for Malkus (1958), 𝜃𝑣 values are calculated from observed
temperature, mixing ratio, and pressure profiles in her Fig. 7. Based on our view,
clouds are shown as rooted at the mixed layer top, rather than the transition layer
top as in Augstein et al. (1974), but for Malkus (1958). Also shown are the 25th-
and 75th-percentile of lifting condensation levels (LCL) calculated from individual
dropsondes, averaging LCL values from 100–300 m air parcels (blue dotted lines).
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5.3.3 Clouds rooted within transition layer

Another difference with Malkus (1958) and Augstein et al. (1974) is that we find that

clouds are already rooted within the transition layer, instead of at its top. Decreasing

𝜃𝑒 over the transition layer (Fig. 5-3b), a necessary but not sufficient condition for a

conditionally unstable layer, hints at a potential role for convective processes in this

layer.

Examining ceilometer cloud base estimates, about 60% of cloud bases occur below

what is typically called the subcloud layer top height around 700 m. A cumulative

distribution of these cloud base heights is given in Fig. 5-3c, showing that the R/V

Meteor has 61% of cloud bases below 710 m, and the BCO has 55% of cloud bases

below 710 m. Below 500 m, approximately the mixed layer top height, 9% clouds at

BCO and 6% of clouds measured by the R/V Meteor ceilometer already have their

bases.

We therefore conjecture that the transition layer is populated by shallow clouds,

and that cloud-mediated mixing processes shape its structure. While many clouds

may continue to grow above the transition layer, a fraction of clouds both form and

dissipate within the transition layer. When these clouds form, they warm and dry the

ambient environment and when they dissipate, they cool and moisten the large-scale

environment, such that this air takes on properties that more closely resemble air in

the mixed layer. Such cloud-driven processes could ‘precondition’ the surrounding air

and reduces the work to entrain more-buoyant air into the mixed layer. Viewed from

the point of thermals and cloud formation, reducing the ∆𝜃𝑣 jump by cooling and

moistening ambient air reduces the barrier to convection and thus the updraft velocity

required by a thermal to continue ascending and form a cloud. We thus hypothesize

that the structure of the transition layer is an important way in which the cloudy

boundary layer differs from a cloud-free, or dry boundary layer. This hypothesis can

directly be tested using EUREC4A observations.
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5.4 Physical origins of transition layer structure

We first test the idea that the presence of clouds changes the transition layer structure

through a ‘denial of mechanism’ approach. A distinction is made between a clear

convective boundary layer, or a convective boundary layer without clouds at its top

over scales much larger than the depth of the layer (e.g., cloud-free over scales greater

than 10 km), as compared to cloud-topped convective boundary layers. Large cloud-

free areas, rather than simply clear-sky areas in between clouds, are selected because

the area between clouds is still materially influenced by cloud condensate detrainment

and mixing. We identify such large cloud-free patches in two ways: first, by eye,

from GOES-E satellite movies at one one-minute resolution overlain with dropsonde

locations and times (Bony et al., 2022); and second, in Sec. 5.4.3, using the cloud flag

product from WALES lidar as introduced in Sec. 5.2.

Fig. 5-5 illustrates two case studies for January 31, 2020 and February 2, 2020 with

large cloud-free areas. In each case, GOES-E satellite movies are used to identify one

dropsonde from a clear convective boundary layer and another sonde that is more

influenced by clouds. The cloud-free sondes exhibit the characteristic structure of

a clear convective boundary layer, with a well-mixed layer topped by a jump. In

the non-clear-sky case, a discontinuity is not visible, and instead there are smoother

vertical gradients. The influence of clouds on the surrounding environment is also

suggested by the bottom dropsonde profile in Fig. 5-5a, which does not necessarily

fall within a cloud, but nonetheless does not display a canonical clear-sky profile.

The expected difference between clear and cloudy profiles holds in these two cases,

but how well does the distinction generalize across the 810 HALO soundings? To this

end, we find the distribution of the maximum vertical gradient (over 10 m) in all

dropsonde vertical profiles of specific humidity, 𝑞, between 100–900 m. This metric

captures the strongest jump that is evident in an observed boundary layer moisture

profile. Results are similar for different choices of lower and upper bound. The

lower bound of 100 m is chosen to avoid possible surface layer gradients, and 900

m acts as a conservative estimate of the mixed layer top. The vertical layering of
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Figure 5-5: Two pairs of sondes launched in large clear-sky patches (top panels) and
areas influenced by cloudiness (bottom panels), and their corresponding GOES-E
satellite images with the sonde time (listed above the profiles) and sonde location
(circled in red). Sondes are launched on January 31, 2020 (a.) and February 2, 2020
(b.). Profiles are specific humidity, 𝑞 (medium blue), equivalent potential tempera-
ture, 𝜃𝑒 (dark blue), potential temperature, 𝜃 (red), and potential temperature, 𝜃𝑣
(purple). Clear-sky profiles exhibit a stronger jump at the mixed layer top than do
profiles influenced by clouds, which tend to have smoother vertical thermodynamic
gradients.

the atmosphere is present in numerous variables, but particularly evident in moisture

(e.g., Augstein et al., 1974), motivating our choice of 𝑞, though results are similar for

other thermodynamic variables.

Fig. 5-6 shows the majority of soundings have small values of this first difference

metric, corresponding to smooth gradients at the mixed layer top. The 25th-percentile

and median values of the maximum vertical gradient are 0.17 and 0.25 gkg−1 com-

pared to a standard deviation of 1.06 gkg−1 for 𝑞 averaged from 100–500 m. As

described in Sec. 4.7, mixed layer theory allows for predicting the mean subcloud

layer specific humidity, 𝑞, by varying only certain factors, but keeping other param-

eters fixed at their campaign-mean value. The predicted 𝑞 from only varying the 10

m wind speed and surface saturation specific humidity, indicative of variations in the

surface latent heat flux, has a standard deviation of 0.61 gkg−1 across the campaign.

These comparisons indicate that the median gradient value at the boundary layer top
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a. Jan 22 b. Jan 26

d. Jan 31c. Jan 28

Figure 5-6: Empirical cumulative distribution function (CDF) for vertical gradients
(across 10 m) calculated for specific humidity, 𝑞, profiles between 100–900 m. The
red box highlights the largest-5% vertical gradients. On the right are four satellite
snapshots from GOES-E corresponding to days most frequently represented in these
largest-5% values and illustrating large clear-sky swaths.

is significantly smaller than variations about the mean, even when the variations are

driven only by surface fluxes.

Examining vertical gradients above the 95th-percentile, we find that larger val-

ues systematically occur in large clear-sky areas. Fig. 5-6 shows satellite images for

four days whose sondes make up 56% of the largest-5% vertical gradient values. On

these days, large cloud-free areas frequently extend across the EUREC4A circle. This

analysis provides an initial indication of an association between sharp gradients in

thermodynamic profiles and large, cloud-free areas. That is, the cloud-free convec-

tive boundary layer exhibiting an abrupt discontinuity at its top appears to be the

exception that makes the rule, rather than the typical vertical structure.

5.4.1 What maintains cloud-free regions?

A subsequent question is what physical processes create such clear skies. Subsiding

branches of shallow circulations are expected to be associated with large dry areas

(e.g., Naumann et al., 2019). Qualitatively, sondes with gradient values exceeding the

95th-percentile tend to be associated with mesoscale subsidence (not shown). This

vertical velocity is calculated at the circle-scale rather than at the scale of individual
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dropsondes, making it difficult to associate individual sondes within a large-scale

vertical motion value.

Cold pools could, conceivably, give rise to canonical dry layer profiles as illus-

trated in Fig. 5-5. Cold pools suppress convection in their cold interior, but promote

convection on their edge associated with a gust front (e.g., Rochetin et al., 2021).

We find, however, that only a single sounding of the largest-5% vertical gradients

is identified as a cold pool sounding using the method in Touzé-Peiffer et al. (2021).

The influence of a cold pool could, however, be temporally delayed, such that the cold

pool passage both enhances surface sensible heat fluxes (larger temperature difference

between the surface and mixed layer and and stronger wind speed at the gust front

edge) and suppresses convection due to the colder mixed layer value, giving rise to

the canonical dry boundary layer structure. With the dropsonde data, it not possible,

however, to establish whether a clear-sky patch was due to the lingering influence of

a cold pool, or simply restoration to a background environmental state, such as of

large-scale subsidence, independent of the cold pool’s passage.

5.4.2 Two populations of clouds

A population of clouds is identified that we hypothesize is responsible for changing

vertical gradients in the transition layer relative to cloud-free conditions. Fig. 5-7

shows the distribution of WALES cloud top heights. This distribution is bimodal,

with peaks around 850 m and 1900 m. There is an apparent scale separation around

1300 m. The first peak is associated with shallow, likely non-precipitating clouds,

and the second peak is associated with deeper, potentially precipitating clouds and

stratiform clouds resulting from detrainment near the trade-wind inversion around

2–3 km. Fig. 5-7 also shows that the first cloud peak can be well-described by an

exponential distribution. An exponential distribution would be consistent with cloud

formation following a Poisson process, or forming continuously, independently, and

at a constant rate. The exponential fit cannot, however, explain the second cloud top

height distribution, and it appears to overestimate the fraction of cloud top heights

near the scale break around 1300 m, suggesting that deeper cloud formation violates
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the Poisson process assumptions, for instance that clouds do not form independently,

as numerous updrafts may aggregate to form a deeper cloud.

Figure 5-7: Distribution of cloud top heights estimated from WALES lidar data as
described in Sec. 5.2. The distribution is bimodal, with peaks around 850 m and
1900 m, corresponding to shallow and deeper clouds. The grey line plots the best-fit
exponential distribution fit to clouds with tops below 1900 m. The solid turquoise
line marks the 5th cloud base heights from R/V Meteor and BCO ceilometers, giving
a lower bound of cloud bases.

The bimodality in cloud top heights appears to be a robust feature of trade-

wind cumuli (e.g., Genkova et al., 2007; Leahy et al., 2012b; Mieslinger et al., 2019).

Genkova et al. (2007), for instance, use various remote sensing retrievals and find

peaks with maxima at 650 m and 1500 m. These peaks are similar to ours, although

their estimate had a vertical uncertainty of 250–500 m, highlighting that the WALES

data with its 10 m vertical resolution is more amenable to such a fine-scale analyses.

Malkus (1958) already implicitly represents this bimodality in cloud top heights (see

her Fig. 1 and Fig. 2, reproduced in Fig. 5-8), though she did not explicitly discuss

a bimodality in cloud top heights given the lack of data to analyze this question at

the time. The two populations could, moreover, reflect the long-established notion

of ‘active’ clouds, associated with thermals and cloud cores, and ‘passive’ clouds,

sometimes referred to as forced convection, or non-buoyant thermals that overshoot

their lifting condensation level. Radar measurements often miss the smaller, optically-

thin passive clouds and only capture larger, active clouds, whereas lidar measurements
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like WALES better sample both active and passive clouds (e.g., Jacob et al., 2020;

Klingebiel et al., 2021).

A back-of-the-envelope scaling provides further evidence that the transition layer

is populated by shallow clouds. In the WALES data, shallow clouds are more fre-

quent than deeper clouds, and they appear to vary relatively little in height, with a

standard deviation of 184 m for cloud tops below 1.3 km (Fig. 5-7). As a heuristic

example, consider the 5th-percentile of cloud bases around 500 m, which give a lower

bound of cloud bases and roughly correspond to the mixed layer top from individual

dropsondes. The transition layer extends about 150–200 m above this mixed layer

top. The mean shallow cloud top height is 850 m, or about 350 m above the mixed

layer top. Shallow clouds therefore appear to be rooted in the transition layer and

grow only a few hundred meters above this layer. Viewed differently, the distributions

in Fig. 5-7 show that 14% of clouds have their tops below 800 m, and 29% of all clouds

have their tops below 1000 m. Selecting only the shallow clouds below 1.3 km (first

peak in Fig. 5-7), 35% of cloud tops are below 800 m and 72% are below 1000 m.

5.4.3 Shallow clouds appear responsible for transition layer

structure

To more formally test how shallow clouds shape the transition layer structure, we

revisit the vertical gradient distribution using WALES cloud top estimates. The goal

is to select large clear-sky swaths that are relatively free from cloud influences. Using

the WALES cloud flag and cloud top heights, measurements are separated into three

categories: large clear-sky areas, cloudy areas with cloud tops below 1.3 km (shallow

clouds, e.g. Fig. 5-7), and all areas that are not large clear-sky areas, including cloudy

and smaller clear-sky areas. This separation allows us to test whether the presence

of shallow clouds is sufficient to change the transition layer structure from the dry

boundary layer case, independent of the influence of deeper clouds.

Large clear-sky areas are selected by first identifying all clear-sky segments using

the cloud flag, calculating the 95th-percentile of segment lengths, and then considering

119

Kerry
Highlight

Kerry
Sticky Note
perhaps you should avoid implying causality here. 



Clouds wicking moisture into inversion layer, 
cf. Riehl et al, 1951; Malkus, 1958

Shallow clouds rooted in transition layer

c. Malkus, 1958b. Riehl et al, 1951a. 9 Feb. 2020 from WP-3D

Figure 5-8: In column a., photos I took during a EUREC4A flight in the WP-3D
aircraft that illustrate shallow clouds rooted in the transition layer (bottom), and
deeper clouds wicking or injecting moisture to maintain the inversion layer (top).
Riehl et al. (1951) propose that the evaporation of deeper clouds maintains the cloud
layer is by Riehl et al. (1951), as illustrated by the schematic in column b. Column
c. reproduces figures from Malkus (1958) showing two populations of shallow and
deeper clouds both in schematic and photograph form.

Figure 5-9: Similar to Fig. 5-6, except with distributions conditioned on large clear-
sky scenes of at least 15 minutes without encountering a cloud (red), shallow clouds
with cloud top heights estimated from WALES lidar data below 1.3 km (light blue),
and all areas outside of large clear-sky scenes (dark blue).
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segments that are greater than this 95th-percentile. These large clear-sky patches

correspond to 15 minutes of flight time without encountering a cloud, or about 180

km at a typical flight speed of 200 m/s. The associated dropsondes are then chosen

for these clear-sky patches, corresponding to 13% of all dropsondes. For non-clear-sky

areas, the disjoint set of the large clear-sky swaths is chosen. Scenes with shallow

clouds below 1.3 km do not have a minimum time or length requirement, given that

the influence of clouds is expected to extend outside the immediate cloudy vicinity.

We then repeat the analysis from Fig. 5-6 for these three categories. Fig. 5-

9 shows that gradients are stronger in large clear-sky areas than other scenes. A

second result is that the distribution of gradients estimated for shallow clouds is

nearly identical with the distribution of gradients for all conditions (including deeper

clouds), suggesting that the presence of shallow clouds is sufficient to cause mixing

that smooths vertical gradients relative to cloud-free conditions. Fig. 5-10 also shows

that large clear-sky areas exhibit stronger vertical gradients over a shorter distance

than sondes launched outside such clear-sky areas.

From this conditional sampling, a physical picture emerges that the life cycle of

shallow clouds forming and dissipating in the transition layer changes vertical gradi-

ents relative to cloud-free conditions. Similarly to Malkus (1958), we find that the

transition layer structure differs in cloudy and clear-sky conditions. Yet, we find an

opposite result that the transition layer occurs over a smaller distance (sharper gradi-

ent) in clear-sky than cloudy regions, though Malkus (1958) also noted an ambiguity

in how the depth of the transition layer was defined for cloudy profiles in her study.

5.5 Implications and interpretation

The general picture of the role of shallow clouds in maintaining the transition layer

structure is that when these clouds form, they warm and dry the surrounding air,

and when they evaporate, they cool and moisten, such that the ambient air takes on

properties that more closely resemble mixed layer air. Does this different transition

layer structure and the role of shallow clouds in maintaining it have any implications
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Figure 5-10: Similar composite profiles of (a.) specific humidity, 𝑞, and (b.) virtual
potential temperature, 𝜃𝑣, as in Fig. 5-4, but for the conditional sampling as described
in Sec. 5.4.3. The profiles for each category are constructed from the mean mixed
layer value, mean gradients over the mixed layer, transition layer, and lower cloud
layer, and mean heights of the mixed layer and transition layer top. Colors correspond
to at least 15 minutes of sampling (about 180 km) without encountering a cloud (red),
shallow clouds with cloud top heights below 1.3 km (light blue), and all areas outside
of large clear-sky scenes (dark blue).
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for how entrainment is modeled? As discussed in Sec. 5.1, common entrainment

closure schemes are based on the cloud-free boundary layer structure. To begin to

answer this question, we return to mixed layer theory, as introduced in the previous

chapter, albeit from a different angle. The height of air incorporated into the mixed

layer has the potential to be informative about the conceptualization of entrainment

mixing, in particular whether it is a local process in the transition layer or rather

extends deeper into the cloud and potentially inversion layers.

As discussed in Chapt. 4, the subcloud layer bulk budget of a scalar, 𝜗, is expressed

as the vertical divergence of the turbulent fluxes balancing a source term, 𝑄𝜗, which

comprises material derivatives (e.g. advection and time-rate of change or storage

terms) and diabatic tendencies (e.g. radiation, evaporation, and precipitation),

ℎ𝑄𝜗 = 𝑤′𝜗′
⃒⃒
0
− 𝑤′𝜗′

⃒⃒
1
. (5.1)

Here 𝑤 denotes vertical velocity, and the prime symbol denotes fluctuations from

the mean value. Subscript 0 denotes values at the lower interface (e.g. the ocean

surface), subscript 1 denotes values at the upper interface, and ℎ = 𝑧1 − 𝑧0, is the

layer thickness, which can either refer to the mixed layer thickness, or the subcloud

layer thickness as in Chapt. 4. Note that in this chapter, ℎ refers to the mixed layer

top given our focus on processes in the transition layer above the mixed layer top.

In Chapt. 4, two closure assumptions were discussed for this equation. First, the

fluxes at an interface were modeled by a mean exchange velocity, 𝑉𝑖, and a ‘jump’ at

the interface,

𝑤′𝜗′
⃒⃒
𝑖
= −𝑉𝑖∆𝑖𝜗, (5.2)

where ∆𝑖𝜗 defines the difference in 𝜗 across the interface, 𝑖, from top to bottom. This

assumption allows us to rewrite Eq. (5.1) as,

−𝑉0∆0𝜗+ 𝑉1∆1𝜗 = 𝑄𝜗ℎ. (5.3)

Second, it is assumed that the surface 𝜃𝑣 flux (proportional to the surface buoyancy
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flux) at the upper interface is energetically constrained by its source of surface 𝜃𝑣

fluxes, such that,

𝑉1∆1𝜃𝑣 = −𝐴𝑉0∆0𝜃𝑣, (5.4)

with 𝐴 defining the entrainment efficiency and assumed to be constant. In the pre-

vious chapter, a mean value 𝐴 = 0.43 was found from a Bayesian inversion of uncer-

tain entrainment parameters in subcloud layer thermodynamic budgets closed with

EUREC44A data (Albright et al., 2022).

With this second closure assumption in Eq. (5.4) and taking 𝜗 = 𝜃𝑣, Eq. (5.3)

becomes,

−𝑉0(1 + 𝐴)∆0𝜃𝑣 = 𝑄𝜃𝑣ℎ. (5.5)

Rearranging Eq. (5.5) to solve for the 𝜃𝑣-jump at the surface yields

∆0𝜃𝑣 = − 𝑄𝜃𝑣ℎ

𝑉0(1 + 𝐴)
. (5.6)

With Eq. (5.6), Eq. (5.4) can be manipulated to solve for the velocity at the upper

interface, 𝑉1,

𝑉1 = 𝐴⋆𝑉0 where 𝐴⋆ = −𝐴∆0𝜃𝑣
∆1𝜃𝑣

. (5.7)

The modified constant 𝐴⋆ is the velocity scale analogue to the entrainment buoyancy

flux ratio, 𝐴. That is, whereas 𝐴 relates the buoyancy flux at the upper and lower

interfaces, 𝐴⋆ relates the exchange velocities at the upper and lower interfaces. 𝐴⋆

is, however, not energetically constrained by the surface buoyancy source (e.g., that

the buoyancy flux used at the upper interface is generated at the surface, such that

𝐴 cannot exceed one). As a result, 𝐴⋆ is not expected to be fixed across conditions.

Using the above formulations, including 𝐴⋆, the generalized budget equation in

Eq. (5.3) can be solved for 𝜗,

𝜗 =
𝜗0 + 𝐴⋆𝜗1 +𝑄𝜗𝜏

(1 + 𝐴⋆)
, where 𝜏 =

ℎ

𝑉0

. (5.8)

This equation gives an expression for the layer-mean value of any scalar based on
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external boundary conditions, such as values at the lower and upper interfaces (𝜗0,

𝜗1) and the surface exchange velocity, 𝑉0. Other components could be considered

emergent properties of the system, such as its height, ℎ, and diabatic tendencies and

material derivatives in 𝑄𝜗. If 𝑄𝜗 = 0, then 𝜗 is simply a weighted average between

its lower value, 𝜗0, and upper value, 𝜗1, with a larger 𝐴⋆ denoting that 𝜗 is more

influenced by the upper than the lower interface. If 𝑄𝜗 ̸= 0 term, the 𝜏 = ℎ
𝑉0

, can

be thought of as an adjustment time scale that changes values from pure two-point

mixing between the upper and lower interfaces. That is, this adjustment time scale

weights the material derivative and diabatic tendencies.

5.5.1 Mixing diagrams

A first way of visualizing these equations is through ‘mixing diagrams’, also known

as Paluch diagrams (Paluch, 1979). Fig. 5-11 plots a mixing diagram with observed

pairs of campaign-mean 𝑞 and 𝜃 values (every 10 m). This visualization shows that

𝑞-𝜃 pairs fall along lines, often referred to as mixing lines. A linear structure is what

is expected from two-point mixing, or mixtures of air derived from two sources (e.g.,

Paluch, 1979; Betts and Albrecht, 1987; Heus et al., 2008; Böing et al., 2014). Fig. 5-

11 shows that there appears to be a mixing line that includes the mixed and transition

layers. This structure suggests that air in the transition layer is incorporated into the

mixed layer, and air at various heights in the transition layer cannot be distinguished

from the point of view of mixing. The observed mixing line does, however, appear

to change slope around 900 m, suggesting that air above this height is not directly

incorporated into the mixed layer, and that different processes are responsible for its

structure.

A theoretical mixing line is calculated from Eq. (5.8) for 𝑞 and 𝜃. The best-fit

mixing line to observations incorporates air from 10–150 m above the mixed layer

top into the mixed layer. The theoretical mixing line increasingly diverges from

observations as air is incorporated from higher levels (not shown). That is, theoretical

and observed mixing lines agree best when air is entrained into the mixed layer

from the transition layer, rather than from deeper in the cloud layer. This analysis
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Figure 5-11: Scatter plot of observed, campaign-mean pairs of 𝑞 and 𝜃 up to 1.6 km
(grey points). Two theoretical mixing lines are shown with 𝑞 and 𝜃 values calculated
from Eq. (5.8). The black dashed line is the best-fit theoretical mixing line, taking
all values at their campaign-mean, varying 𝐴⋆, and incorporating air from 10–150
m above the mixed layer layer. The grey dashed line multiples the surface wind
speed by 0.73, thereby increasing 𝜏 . Additional curves and markers are plotted for
reference: values for a constant lifting condensation level at 950 hPa (blue dotted
line), constant 𝜃𝑣 (orange dotted lines), constant 𝜃𝑒 (darker blue dotted lines), the
surface values (black filled circle), mean values from 540–690 m (black open circle),
and the heights 720 m (black horizontal marker) and 900 m (red horizontal marker).
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suggests that entrainment is a local mixing across the transition layer, rather than

one wherein eddies bring down air from higher aloft. This inference is also consistent

with the kink in the observed mixing line around 900 m (Fig. 5-11). The agreement

of this theoretical mixing line, incorporating air from within the transition layer,

with the observed values can be further improved by increasing 𝜏 = ℎ
𝑉0

, such as by

multiplying the wind speed by a factor 0.73 in the 𝑉0 term, or by increasing the

source terms, 𝑄𝜗 (Fig. 5-11, grey dashed line). These adjustments suggest potential

limitations in how the surface exchange velocity is represented or missing source terms,

such as cloudy radiative heating. Also shown for reference are lines of constant 𝜃𝑣

(constant buoyancy), constant 𝜃𝑒 lines, which illustrate the slope that a saturated,

cloudy updraft would follow, and the curve indicating a constant lifting condensation

level at a pressure of 950 hPa. Of note, the observed and best-fit theoretical mixing

line are perpendicular to the constant LCL curve. Whether this perpendicularity is a

coincidence, or whether mixing aligns to maximize variance in the lifting condensation

level merits further study.

5.5.2 Further support for a shallow mixing layer

A complementary approach is to set Eq. (5.8) equal for mixed layer mean specific

humidity, 𝑞, potential temperature, 𝜃, and then solve for the two unknowns, 𝐴⋆ and

𝜏 . All other terms can be calculated from EUREC4A circling-mean data and are

set to their campaign-mean value. Again ℎ refers to the mixed layer top, not the

subcloud layer top, as in the previous chapter. Solving these two equations for the

two unknowns yields an equation for 𝐴⋆,

𝐴⋆ =
−𝜃𝑄𝑞

𝑄𝜃
+ 𝑞 + 𝜃1

𝑄𝑞

𝑄𝜃
− 𝑞1

𝜃𝑄𝑞

𝑄𝜃
− 𝑞 − 𝜃2

𝑄𝑞

𝑄𝜃
− 𝑞2

. (5.9)

Physically, 𝐴⋆ = 𝑉1

𝑉0
can be thought of weighting air with properties of the upper and

low interfaces. A large 𝐴⋆ denotes that air at the upper interface has more influence
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Figure 5-12: Theoretical values of 𝜏 (black curve) calculated from Eq. (5.10) for differ-
ent depths, 𝑑𝑧, above the mixed layer top, ℎ. The campaign-mean 𝜏 (grey horizontal
line), calculated from the campaign-mean mixed layer height, ℎ, and campaign-mean
10 m wind speed, is always less than the predicted 𝜏 . Also shown are 𝜏 values when
using the 10th-percentile wind speed from the campaign (medium blue horizontal line,
top) and 90th-percentile of wind speed (dark blue horizontal line, bottom).

on the mixed layer value, and vice versa. Solving for 𝜏 as a function of 𝐴⋆ yields,

𝜏 =
(1 + 𝐴⋆)𝜃 − 𝜃1 − 𝐴⋆𝜃2

𝑄𝜃

. (5.10)

The parameter 𝜏 has units of time and can be thought of as a time scale that adjusts

how quickly the mixed layer responds to other influences than simply mixing between

the upper and lower interface – that is, influences from the material derivative and

diabatic processes such as radiation.

Calculating this adjustment time scale, 𝜏 , for a range of heights, 𝑑𝑧, about the

mixed layer top, and comparing these values to observed values of 𝜏 provides fur-

ther information about the depth of air that is entrained into the mixed layer. The

campaign-mean 𝜏 calculated from the campaign-mean ℎ and surface exchange veloc-

ity, 𝑉0, is smaller than the theoretical values (Fig. 5-12), suggesting that the the-

128



ory predicts a slower adjustment time scale. Also plotted is 𝜏 = ℎ
𝑉0

for the 10th-

percentile and 90th-percentile observed 10 m wind speeds. These 10th-percentile and

90th-percentile values approximately correspond to the wind speed in the first and

second half of the campaign (George et al., 2021; Stephan et al., 2020; Bony et al.,

2022). For expository purposes, variations in the near-surface wind speed (which

drives variations in 𝑉0) are plotted, keeping ℎ fixed at its campaign-mean value.

Fig. 5-12 allows for two inferences. First, the predicted 𝜏 and the observed 𝜏

for weak wind speeds converge when air is taken from within 150 m depth above

the mixed layer top, corresponding to the approximate transition layer depth. If

air is sourced from above the transition layer, a less physical 𝜏 must increasingly

be adopted. Second, Fig. 5-12 generally indicates a 𝜏 value that is larger than the

observed campaign-mean value. This overestimation of 𝜏 could suggest that the

surface mixing velocity, 𝑉0, and hence the surface fluxes are overestimated, there is

a flaw in how this surface mixing is conceptualized, or source terms are missing in

𝑄𝜗. The first inference suggests that air is incorporated into the mixed layer from

the transition layer, rather than from deeper eddies extending higher into the cloud

layer. The second inference could be consistent with the greater skill of mixed layer

theory for closing subcloud layer moisture than temperature budgets in Chapt. 4,

perhaps suggesting that it is important to include cloudy, rather than simply clear-

sky radiative heating rates in 𝑄𝜗. It could also potentially suggest that the mixed

layer framework is more skillful when wind speeds are weak (e.g., associated with the

‘sugar’ pattern of cloud organization (Bony et al., 2020)).

5.6 Discussion and conclusions

This ongoing analysis suggests that the transition layer structure is determined by

cloudy, not dry processes. An offset exists between mixed and subcloud layer tops in

individual soundings, as well as more aggregated vertical profiles. We associate this

offset with a transition layer. Strong vertical gradients at the mixed layer top are only

found rarely and when they occur, they tend to occur in scenes that are cloud-free over
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large areas. In areas influenced by clouds, vertical gradients are instead smoother,

extending over a larger depth. The transition layer is populated by small clouds that

have their bases starting around 500 m and tend to only grow a few hundred meters

above these bases.

Based on these findings, we propose a new conceptual picture that the formation

and dissipation of shallow clouds maintains the transition layer, in analogy with the

maintenance of the trade-wind inversion by deeper clouds, as proposed by Riehl et al.

(1951) and developed by Stevens (2007). This conceptual model suggests that small

clouds beget larger clouds. Small clouds precondition the large-scale environment

and decrease the resistance to convection through weaker vertical gradients in the

transition layer, making it easier for deeper clouds to form.

From this analysis emerges the potential for an alternate view of entrainment mix-

ing, which is based on the ability to detrain condensate into the overlying stable layer

and thus induce gentle sinking motion through negative buoyancy. Clouds forming

and evaporating by mixing with ambient air in the transition layer ‘precondition’ the

environment, both decreasing the barrier to convection and causing gentle sinking

motion into the mixed layer. This view contrasts with the classical view established

from dry boundary layers. The classical view of entrainment posits that overshoot-

ing plumes must do work on the overlying stratified fluid in order to bring down

tendrils or filaments of overlying, more stable fluid and mix it into the turbulent

boundary layer below (e.g., Bretherton, 1997). The preconditioning picture is one

of ‘subtle persuasion’ rather than ‘brute force’ in dry layers (Bjorn Stevens, personal

communication). An injection of moisture into the transition layer, moreover, leads to

additional radiative cooling from water vapor and further reduces the work required

to incorporate this air into the mixed layer.

Our findings also suggest a symmetry between shallow and deep clouds, with both

populations growing their own layer. The shallow clouds maintain the transition layer,

whereas deeper clouds maintain the trade-wind inversion layer. This idea is illustrated

schematically in Fig. 5-13. This idea forms in analogy with the maintenance of the

trade-wind inversion layer as described by Riehl et al. (1951):
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Figure 5-13: Illustration of a new conceptual picture that suggests a symmetry be-
tween deeper clouds growing and maintaining the trade-wind inversion layer following
Riehl et al. (1951) and Stevens (2007), and shallower clouds growing the transition
layer. The formation and dissipation of shallow clouds in the transition layer moist-
ens and cools (denoted by the transparent blue area) the transition layer, rendering
gradients smoother and weaker compared to the dry boundary layer case.

.

“It is well known that the bases of the cumuli have a nearly uniform height,

but that the tops are very irregular. Some are found within the cloud layer,

many near the inversion base, and some within the inversion layer as active

clouds penetrate the base. As shown by visual observation and many

photographs, the tops of these clouds break off and evaporate quickly. In

this way moisture is introduced into the lower portions of the inversion

layer, and the air there situated gradually takes on the characteristics of

the cloud layer.”

In this view, overshooting convective plumes collapse or break off and, in the

process, inject condensate into the trade-wind inversion layer. The evaporation of

this condensate maintains the depth of the cloud layer against compensating subsi-

dence, which evacuates mass and shrinks the layer. These ideas are also illustrated

by Fig. 5-8b reproduced from Riehl et al. (1951), as well as Fig. 5-8c from Malkus

(1958). In a similar way, clouds evaporating in the transition layer grow and main-

tain the transition layer compared to the abrupt discontinuity observed in the dry
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boundary layer case. The transition layer then more closely resembles the properties

of the mixed layer. Ongoing work further investigates such cloud dissipation in the

transition layer with high-frequency turbulence data from the ATR-42 aircraft. These

data allow for tracking, with high-frequency, the cooling and moistening achieved by

clouds dissipating in the transition layer. Other ongoing work partitions whether the

observed thermodynamic structure outside of large clear-sky swaths can be explained

by radiative cooling, subsidence, or cooling from cloud evaporation.

Building upon findings in Riehl et al. (1951), Stevens (2007), moreover, show that

the cloud layer growth could be represented using concepts based on cloud-free, or

dry mixed layer theory. He finds that a simple model that is formulated in terms of

an ‘effective’ dry buoyancy flux is skillful at predicting the cloud layer growth in large

eddy simulations. These findings suggest that cloudy processes can still be represented

using cloud-free mixed layer theory if effective parameters are introduced. This result

is similar to the findings of Chapt. 4 wherein an entrainment formulation based on

mixed layer theory and dry boundary layers was used, but effective parameters were

introduced to account for ambiguities resulting from the finite-thickness transition

layer. We find that mixed layer theory, with slight modifications, still closes subcloud

layer moisture and energy budgets. These considerations highlight that extensive

observations from the field, such as from the EUREC4A campaign, open the door to

revisiting old concepts and testing their applicability when confronted with new data.

This confrontation, in turn, allows for improved understanding of the origins of the

characteristic vertical structure of trade-wind air.
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Chapter 6

Uncertainty in trade cumulus feedbacks

still contributes to uncertainty in global

cloud feedbacks in CMIP6

6.1 Outline

In the second part of this thesis, physical understanding developed in chapters 2–

5 is applied to the evaluation of general circulation models (GCMs). In previous

CMIP ensembles, uncertainties regarding trade cumulus cloud changes were shown to

explain large differences in global cloud feedbacks and climate sensitivity (e.g., Bony

and Dufresne, 2005; Webb et al., 2006; Vial et al., 2013; Brient and Schneider, 2016).

The CMIP6 models have been updated in numerous ways, such as regarding their

convection schemes, microphysics schemes, and vertical resolution (e.g., Gettelman

et al., 2019; Danabasoglu et al., 2020; Zelinka et al., 2020). It is therefore not a priori

clear how large a role trade-wind clouds still play in explaining global uncertainties.

This chapter uses CMIP6 models to motivate a continued focus on trade cumulus

cloud feedbacks. It acts as preparation for Chapt. 7, which presents the first process-

based constraint on this trade cumulus feedback. In this chapter and Chapt. 6,

Jessica Vial pre-processed the amip and amip4K model output and provided valuable

guidance throughout this analysis. The structure of this chapter follows the well-

known quip from Winston Churchill (1874–1965) of a ‘riddle wrapped in a mystery

Analysis in this chapter contributed to Boucher et al. (2020), published in the Journal of Ad-
vances in Modeling Earth Systems in May 2020.
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inside an enigma’. Here the question is whether the riddle of trade-wind clouds,

wrapped in the mystery of tropical clouds, still contribute to enigmas surrounding

global cloud feedbacks and climate sensitivity.

6.2 Methods

6.2.1 Estimating equilibrium climate sensitivity

As introduced in Chapt. 1, the equilibrium climate sensitivity (ECS) is one of the

earliest metrics for quantifying the climate system response to carbon dioxide (CO2)

forcing (Charney et al., 1979; Cess et al., 1989). The top-of-atmosphere (TOA) radia-

tive imbalance, ∆𝑅, can be expressed linearly as the sum of the radiative forcing, 𝐹 ,

and the product of a feedback parameter, 𝜆, and the global-mean surface temperature

change, ∆𝑇 ,

∆𝑅 = 𝐹 + 𝜆∆𝑇. (6.1)

This product, 𝜆∆𝑇 , is also referred to as radiative damping.

The ECS is defined as the global-mean surface temperature change, 𝑇eq, that

restores a TOA radiative balance, ∆𝑅=0, after a carbon dioxide doubling,

𝐸𝐶𝑆 = ∆𝑇eq = −𝐹2xCO2

𝜆
. (6.2)

The ECS depends both on the radiative forcing associated with a CO2 doubling,

𝐹2xCO2 and the strength of the radiative feedback parameter, 𝜆. A climate system

that more effectively reflects shortwave radiation to space, such as through greater

low cloud fraction, or more effectively radiates longwave radiation away to space,

such through fewer upper-tropospheric clouds, requires less warming, ∆𝑇 , to restore

a planetary energy balance (e.g., Zelinka et al., 2020; Meehl et al., 2020). A key

assumption is that the radiative damping, 𝜆∆𝑇 , in Eq. ?? can be expressed as a

product of a single, time-invariant feedback parameter, 𝜆, and ∆𝑇 . A large body of

research has highlighted that the constant 𝜆 assumption is imperfect, such as due to
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a.

b. c. d.

Figure 6-1: (a) Distribution of ECS estimated for the models listed in the legend, and
scatter plots of (b) global ∆CRE and ECS (c), tropical ∆CRE and global ∆CRE,
and (d) tropical ∆CRE and ECS. High climate sensitivity models, defined as ECS
> 4∘C are red, and low climate sensitivity models (ECS < 4∘C) are blue. 5–95%
uncertainty on the linear regression (grey shading) is defined from bootstrapping.

different radiative feedbacks actualized on different response timescales (e.g., Armour

et al., 2013; Proistosescu and Huybers, 2017) and the state-dependence of feedbacks

(e.g., Bloch-Johnson et al., 2015).

Here ECS is estimated following Gregory et al. (2004), similar to Andrews et al.

(2012) and Zelinka et al. (2020). Anomalies are calculated as the difference between

the first 150 years of global-annual output from abrupt-4xCO2 simulations (coupled

GCM simulations wherein atmospheric CO2 concentrations are abruptly quadrupled

from their preindustrial baseline and then held fixed) and a preindustrial control sim-

ulation, piControl. Positive radiative fluxes are defined downwards. Note that ECS

using 150 years of model output is sometimes referred to as the ‘effective’ climate sen-

sitivity instead of the equilibrium climate sensitivity since the model has not reached

equilibrium above 150 years (e.g., Rugenstein et al., 2020; Meehl et al., 2020). Here

the two terms are used interchangeably, given the focus on understanding relative

differences among models.
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Using a subset of 12 CMIP6 models, Fig. 6-1a shows that there is a bimodal

distribution of ECS, with a mean of 4∘C and two cluster of models around 3∘C and

5∘C, consistent with Zelinka et al. (2020) and Flynn and Mauritsen (2020). In the

following analysis, low and high ECS are defined relative to the CMIP6 mean of

4∘C. The second distribution around 5∘C was not present in CMIP5, which had a

range of 2.1–4.7∘C (Taylor et al., 2012; Andrews et al., 2012), and it is above the

canonical Charney range (Sec. 1.1). As discussed in Sec. 1.2.1, the shift towards

higher ECS in the CMIP6 ensemble is thought to result from correcting too-negative

extratropical low cloud feedbacks, compared with satellite constraints. This correction

then unmasked the consistently coupled too-positive trade cumulus feedbacks, driving

high ECS values (Myers et al., 2021).

A different way of quantifying climate sensitivity is also proposed, which examines

the influence of the nonlinear relationship between forcing and response. Methodolog-

ically, the approach bins annual-mean data and then repeatedly samples from each

bin to perform a linear regression, rather than performing a linear regression on

all data directly. Binning the data better illustrates a potential nonlinearity in the

forcing-response relationship (Fig. 6-2a vs. Fig. 6-2b). Repeating this bootstrapping

procedure, for instance, 1000 times, yields a distribution, such as for climate sen-

sitivity in Fig. 6-2c, or the climate feedback parameter. The mean ECS from this

method is similar to results from the Gregory et al. (2004) regression. Using 300

years of data, ECS from the Gregory et al. (2004) method is 4.8∘C, equal to the mean

from the bootstrapping approach. The 5-95% uncertainty from the bootstrapping ap-

proach (4.2–5.7 ∘C) is, however, larger than the 5-95% uncertainty on the regression

(4.3–5.2 ∘C). This result suggests that influences from the nonlinear forcing-response

relationship tend to be small but influence the upper bound, at least for the IPSL-

CM6A-LR model as shown in Fig. 6-2. In the following analysis, we return to the

Gregory et al. (2004) method for consistency with other studies.
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Figure 6-2: (a) Canonical Gregory ordinary least-squares (OLS) regression using dif-
ferent lengths of global-annual data as given in the legend; (b) an example of binning
300 years of model output from IPSL-CM6A-LR to better see the concavity in forc-
ing and response; (c) a quantile regression performed for different percentiles in 300
years of model output; (d) the ECS distribution that results from binning data as in
(b) and repeatedly sampling (1000 times) global-annual mean data from each bin to
perform the least-squares regression. The vertical black line denotes the mean

6.2.2 Quantifying cloud radiative responses

In previous ensembles, the spread in cloud feedbacks was the primary driver of the

spread in climate sensitivity (e.g., Bony and Dufresne, 2005; Vial et al., 2013; Zelinka

et al., 2020). Here we quantify the spread in cloud radiative responses among a subset

of models using a simplified metric, the change in the cloud radiative effect (∆CRE),

in order to quantify how much differences in this ∆CRE, globally, tropically, and in

the trades, contribute to uncertainty in ECS.

The cloud feedback is a component of the radiative feedback, 𝜆, in Eq. (6.1)

and Eq. (6.2). A cloud feedback is a change in the top-of-atmosphere radiative flux

resulting from a change in cloud albedo (e.g., due to changes in droplet size, water

content), fraction, or altitude with warming. A positive feedback denotes that clouds

change radiatively in a way that amplifies the initial warming, whereas a negative

feedback denotes that clouds change in a way that damps the initial warming. A

closely related quantity, the change in the cloud radiative effect (∆CRE), was shown

to be a skillful proxy for intermodel differences in the cloud feedback (e.g., Soden

et al., 2008; Vial et al., 2013). ∆CRE is defined as the difference between all-sky (all,

with clouds) and clear-sky (clr, clouds artificially removed) net downward radiative
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fluxes,

𝐶𝑅𝐸 = 𝑅all −𝑅clr = (𝐿𝑊clr −𝐿𝑊all) + (𝑆𝑊all −𝑆𝑊clr) = 𝐶𝑅𝐸LW +𝐶𝑅𝐸SW, (6.3)

with positive radiative fluxes defined downward. In present-day climate, net CRE

is negative (about -20 Wm−2) due to CRELW ≈ 30 Wm−2, reflecting the longwave

warming effect of high clouds, and CRESW ≈ −50 Wm−2, due to clouds enhancing the

planetary albedo (e.g., Ramanathan et al., 1989). A small change in the cooling effect

of clouds (∆𝐶𝑅𝐸 on the order of a few Wm−2) due to global-mean warming, ∆𝑇 ,

could induce a strong feedback, motivating the large, long-standing focus on better

constraining the cloud feedback, proportional to ∆𝐶𝑅𝐸/∆𝑇 (e.g., Ramanathan et al.,

1989; Bony et al., 2006).

Here ∆CRE is defined as the difference in CRE between a perturbed and control

climate simulation. Cloud feedbacks are equal to the ∆CRE with an offset, typically

0.3 Wm−2 (e.g., Soden et al., 2008), accounting for the masking effects of clouds on

clear-sky fluxes. For instance, removing a high cloud in a dry atmosphere would

have a larger influence on the outgoing longwave radiation than would removing

such a cloud in an already moist and opaque atmosphere. Whereas the ∆CRE is

not a reliable metric of the sign or absolute magnitude of the cloud feedback, it is a

skillful proxy for intermodel differences in the cloud feedback as calculated from other

methods (e.g., Vial et al., 2013; Zelinka et al., 2020). The global ∆CRE calculated for

this subset of models has a Pearson correlation coefficient r=0.99 with global cloud

feedback estimates from Zelinka et al. (2020) using the kernel method.

6.3 Uncertainty in ECS still driven by spread in global

and tropical cloud feedbacks

Fig. 6-1b shows that, in this representative subset of models, the spread in the global

∆CRE can explain 55% of the variance in ECS (r=0.74). Variability in climate

sensitivity is driven more by variance in the shortwave ∆CRE (r=0.61) than by
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variance in the longwave ∆CRE (r=-0.25) (not shown). The explanatory power of

the global ∆CRE for ECS in this sample is similar to that in the previous CMIP5

ensemble, r=0.73 (e.g., Ceppi et al., 2017). The global ∆CRE can result from multiple

physical processes, such as rising high clouds (e.g., due to fixed anvil temperature

hypothesis), the iris effect (e.g., decreasing anvil cloud fraction with warming), cloud

fraction changes in shallow clouds over tropical oceans, and cloud fraction and phase

changes in extratropical clouds (e.g., Bony et al., 2006; Ceppi et al., 2017). It is thus

not a priori clear how large a role the tropics, or cloud fraction changes in the trades,

in particular, play in explaining global ∆CRE and climate sensitivity.

Only the tropical ∆CRE can, however, still explain 44% of the variance in climate

sensitivity (r=0.66, Fig. 6-1c) and 76% of the variance in the global cloud feedback

(r=0.87, Fig. 6-1d). The tropics are defined equatorward of 30∘. The extratropical

∆CRE, by contrast, explains only 18% of the variance in ECS (r=0.42). While

changes in extratropical cloud feedback can explain the shift towards higher mean

values from CMIP5 to CMIP6, variance in the tropical ∆CRE can still explain more

variance within ensembles. The origins of the spread in tropical ∆CRE are therefore

examined in greater detail in the following sections.

6.4 Trade-wind cloud responses differ between high

and low climate sensitivity models

6.4.1 Conceptualizing the tropical circulation

The tropical cloud responses can further be decomposed using the framework from

Bony et al. (2004). The tropical radiation budget depends on the distribution of

cloud types, which in turn is controlled, to first-order, by the large-scale atmospheric

circulation (Bony et al., 2004). Large-scale atmospheric subsidence favors the forma-

tion of shallow clouds, such as trade-wind cumuli and stratocumulus clouds, whereas

large-scale ascending motion is associated with deeper convective clouds (Fig. 6-3a).

This framework uses the large-scale vertical velocity at 500 hPa, 𝜔500 (expressed in
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hPa/day), as a proxy of the large-scale atmospheric circulation. 𝜔500 is the first

baroclinic mode of the large-scale circulation in the deep tropics and correlates well

with the total diabatic heating of the column, and hence with the precipitation. The

tropical circulation can be discretized as a series of dynamical regimes, wherein the

ascending branches of large-scale circulations with warm sea surface temperatures

correspond to negative values of 𝜔500, and regions of colder sea surface temperatures

and large-scale subsiding motions correspond to positive values of 𝜔500. The trades

are often identified between 10 to 30 hPa/day (e.g., Bony et al., 2004; Brient et al.,

2016).

The tropical circulation can also be conceptualizing using the large-scale vertical

motion at 700 hPa, 𝜔700, and estimated inversion strength, EIS, more precisely dis-

criminate among low-cloud regimes, such as between the trades and stratocumulus

regimes. This approach is similar to Medeiros and Stevens (2011) and Medeiros et al.

(2015) using lower tropospheric stability and 𝜔500, and is analogous to the approach

in Myers et al. (2021). Following Myers et al. (2021), we identify the trades as areas

with climatological annual-mean EIS below 1 K and 𝜔700 between 0 and 15 hPa/day.

In the following analysis, ten amip models from CMIP5 and CMIP6 are used,

which are a different sample of models presented above. The amip simulations are

global simulations of the atmosphere and land surface forced by observed sea surface

temperatures (rather than letting these freely evolve as in coupled piControl and

abrupt-4xCO2 experiments), sea ice cover, and greenhouse gas concentrations (Gates

et al., 1999). Using observed sea surface temperatures (SST) avoids known biases in

coupled models. In coupled models, Liu et al. (2013) show that SSTs are too cold and

not variable enough in the Atlantic warm pool compared to observations, and Zhou

et al. (2016) show that SSTs are too warm in the eastern equatorial Pacific compared

with observed SSTs.

∆CRE values are calculated as the difference between CRE in amip4K and

amip simulations and then normalized by the 4 K temperature difference in these

simulations to give a proxy for the cloud feedback. Qin et al. (2021) find good

agreement between cloud feedbacks across geographic locations calculated using cou-
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Figure 6-3: (a) An idealization of the tropical circulation as given in Emanuel et al.
(1994), ranging from regions of large-scale ascent and deep convection to regions of
moderate large-scale subsidence and trade cumulus clouds (turquoise box) and strong
large-scale subsidence and stratocumulus clouds (dark blue box), as well as transi-
tion zones between trade cumuli and stratocumuli (dashed turquoise box). (b) The
probability density function of 𝜔500 in seven CMIP6 piControl simulations, with the
colored shading denoting one standard deviation of monthly values around 20-year
climatology. (c) A satellite view of ‘flower’ clouds that could represent clouds found
in the cumulus-stratocumulus transition zone, perhaps corresponding to the dashed
turquoise box in other panels. (d) The mean frequency distribution of tropical dy-
namical regimes averaged over ten amip simulations in EIS and 𝜔700 space. Frequency
of discretized dynamical regimes is defined as the area covered by these regions, nor-
malized by the total area of the tropics. Following Myers et al. (2021), the trades are
defined as areas with climatological annual mean EIS below 1 K and 𝜔700 between 0
and 15 hPa/day. A potential intermediate zone between cumulus and stratocumulus
clouds is extended from 15–25 hPa/day (dashed turquoise box).

141



Figure 6-4: Frequency of occurrence of trade-wind regions in geographic space in the
IPSL-CM6A-LR model (high ECS) and BCC-CSM2-MR (low ECS) using 30 years
of annual model output from amip simulations. Trade-wind regions are identified as
having EIS<1 and 𝜔700 between 0–15 hPa/day, as introduced previously and following
Myers et al. (2021).

pled (e.g., abrupt-4xCO2 and piControl) and uncoupled, atmosphere-only simulations

(e.g., amip4K and amip), justifying our use of atmosphere-only simulations to analyze

the spread of cloud feedbacks. For these amip experiments, for heuristic purposes,

we take ECS values from the corresponding coupled models (e.g., as calculated in

Zelinka et al. (2020) and Sec. 6.2.1), with low and high ECS again defined relative to

the CMIP6 mean of 4∘C.

Fig. 6-3b,d shows how the trades are the most common cloud regime in the trop-

ics in these two coordinate systems. In the ensemble-mean frequency distribution

(Fig. 6-3d), the trade-wind area covers 32% of the tropics, compared with 4.4% for

stratocumulus, using the respective EIS and 𝜔700 definitions from Myers et al. (2021)

and 39% of the tropics when defining the trades between 10–30 in hPa/day in 𝜔500.

The frequency distribution structure is similar for individual models. Perhaps sur-

prisingly, there is also substantial weight in between what Myers et al. (2021) define

as either trade-wind or stratocumulus based on the EIS-𝜔700 decomposition. The area

from 16–25 hPa/day and EIS < 1 K covers 14% of the tropics and could correspond

to transition zones between stratocumuli and trade cumuli, such as when stratocumu-

lus decks recede towards continents. These clouds could perhaps also correspond to
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clouds named ‘flowers’ by Stevens et al. (2020b) and Bony et al. (2020), which tend

to be associated with stronger subsidence (Bony et al., 2020; Schulz et al., 2021).

In geographic space, Fig. 6-4 shows the frequency of occurrence of trade-wind

regions in two representative climate models, one having high ECS (IPSL-CM6A-

LR) and another with low ECS (BCC-CSM2-MR). Fig. 6-4 shows that trade-wind

regions cover wide swaths of tropical oceans. The EUREC4A measurement area east

of Barbados is nearly always classified as a trade-wind region across the ten models.

6.4.2 Different thermodynamic and dynamic cloud radiative

responses for high and low ECS models

Clouds are sensitive to changes in both temperature and circulation. The Bony

et al. (2004) framework separates these two influences, decomposing a cloud variable,

such as the ∆CRE, into the sum of a thermodynamic component that is related to

temperature changes, a dynamic component that is related to circulation changes,

and a covariance term that tends to be negligibly small,

𝛿𝐶𝜔 =

∫︁ +∞

−∞
𝐶𝜔𝛿𝑃𝜔 +

∫︁ +∞

−∞
𝑃𝜔𝛿𝐶𝜔

∫︁ +∞

−∞
𝛿𝑃𝜔𝛿𝐶𝜔. (6.4)

Discretizing this equation gives,

𝛿𝐶𝜔 =
∑︁
𝜔

𝐶𝜔∆𝑃𝜔 +
∑︁
𝜔

𝑃𝜔∆𝐶𝜔 +
∑︁
𝜔

∆𝑃𝜔∆𝐶𝜔 (6.5)

The dynamic component, 𝐶𝜔∆𝑃𝜔, represents the effect of changing circulation on the

cloud variable, without letting the clouds adjust in response to temperature. The

thermodynamic component, 𝑃𝜔∆𝐶𝜔, by contrast, quantifies the effect of changing

temperature structure the cloud response, holding circulation fixed.

To illustrate the association between clouds and circulation, Fig. 6-5 projects the

tropical thermodynamic cloud radiative response, 𝑃𝜔∆𝐶𝑅𝐸𝜔, into the two circula-

tion spaces. A difference emerges between high and low ECS models in the trades.

Trade-wind clouds exhibit a moderate radiative sensitivity to temperature change,
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High ECS

Low ECS

a. b.

c.

Figure 6-5: (a) The thermodynamic component, P𝜔∆CRE, in 𝜔500 space for 4 high
(red) and 6 low (blue) ECS models, with the mean (solid line) and standard er-
ror (shading). Trade-wind regions are demarcated by the dashed lines from 10–30
hPa/day. (b) and (c) show the thermodynamic component in EIS-𝜔700 space with
the boxes defined in the same way as in Fig. 6-3.
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Figure 6-6: (a) The net ∆CRE in 𝜔500 space for 4 high (red) and 6 low (blue)
ECS models, with the mean and standard error in shading. Trade-wind regions are
demarcated by the dashed lines from 10–30 hPa/day. (b) and (d) show the net ∆CRE
in EIS-𝜔700 space with the boxes defined in the same way as in Fig. 6-3. (c) shows
the change in regime frequency, 𝛿𝑃𝜔500 between amip4K and amip simulations.

yet through their ubiquity, or large statistical weight in 𝑃𝜔, they have a large net

influence on the tropical radiation budget. If defining the trades from 10–30 hPa/day

in 𝜔500, the fractional contribution of the trades to the tropical ∆CRE is 20% for

low ECS models and 46% for high ECS models. In general, the contribution to the

spread of a variable, such as ∆CRE, can be quantified as,∑︀
𝜔trades

(∆𝐶𝑅𝐸h
𝜔 −∆𝐶𝑅𝐸l

𝜔)

∆𝐶𝑅𝐸
h −∆𝐶𝑅𝐸

l , (6.6)

where ∆𝐶𝑅𝐸 is the tropical-mean ∆CRE for high (h) or low (l) ECS models. As one

example, applying Eq. (6.6) to the thermodynamic ∆CRE and defining the trades

from 10–30 hPa/day in 𝜔500, trade-wind regimes contribute to 65% of the spread in the

tropical thermodynamic ∆CRE. This contribution is similar for different definitions

of the trades: 57% if defining the trades from 10–25 hPa/day, or 78% if defining from

0–30h hPa/day.
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Fig. 6-6 shows the tropical net ∆CRE, including both the dynamic and thermody-

namic component, and the small covariance term. The correlation between the tropi-

cal thermodynamic and net ∆CRE values is r=0.66. The change in regime frequency,

∆𝑃𝜔, (Fig. 6-6c) illustrates the well-established finding that the large-scale tropical

circulation weakens with warming. In trade cumulus regimes, weakly-subsiding re-

gions become more frequent at the expense of more strongly-subsiding regimes, with

∆𝑃𝜔 values crossing zero around 15 hPa/day. The structure and magnitude of the

∆CRE is driven more by the dynamic response to changes in the large-scale circu-

lation than the thermodynamic response. In particular, the dipole structure in the

net ∆CRE reflects the influence of the dynamic component of ∆CRE, driven by the

dipole structure in ∆𝑃𝜔 (Fig. 6-6c). Low ECS models have more negative, stabiliz-

ing ∆CRE in weakly-subsiding regimes than do high ECS models (Fig. 6-6a,d). In

low ECS models, the more stabilizing ∆CRE likely arises from a positive dynamic

change in cloud fraction near cloud base and the trade-wind inversion (Fig. 6-8b)

and a less-negative thermodynamic component of cloud fraction changes (Fig. 6-8a).

These results may suggest that low ECS models simulate stronger estimated inver-

sion strength (EIS) (Wood and Bretherton, 2006) in these weakly-subsiding regimes,

whereas high ECS models are associated with weaker EIS, as larger EIS is associated

with increased cloudiness (e.g., Wood and Bretherton, 2006; Myers and Norris, 2013).

6.4.3 Global influence of spread in trade cumulus feedbacks

Fig. 6-7, moreover, shows that these differences in the trade-wind ∆CRE can explain

differences in the global ∆CRE and ECS. Here the trades are selected using the

EIS and 𝜔700 criteria, but results are qualitatively similar if using the 𝜔500 criterion.

Differences in the net trade-wind ∆CRE explain 69% of the variance in the global

cloud feedback (Fig. 6-7a) and 25% of the variance in ECS (Fig. 6-7b). Defining the

trades using 𝜔700 values up to 25 hPa/day instead of 15 hPa/day, as in Myers et al.

(2021), following discussions in Sec. 6.4.1, increases the mean trade-wind ∆CRE from

a mean of 0.31 to 0.46 Wm−2K−1. The correlation between the different ∆CRE values

is, however, one-to-one, r=0.996, showing that the choice of upper bound on 𝜔700 does
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c. d. up to 25 hPa/dayω700  up to 25 hPa/dayω700

Figure 6-7: Scatter plots between the (a) trade-wind net ∆CRE and global ∆CRE (b)
and trade-wind net ∆CRE and ECS. Red is ECS > 4∘C, and blue is < 4∘C. Uncer-
tainty is 5–95% uncertainty on the regression defined from bootstrapping. Trade-wind
regions are selected from the EIS-𝜔700 criterion. Also shown is the mean (blue verti-
cal line) and standard deviation (blue shading) of the marine shallow cloud feedback
given in IPCC AR6.

not strongly influence the relative differences among models (cf. Fig. 6-7c,d). Also

illustrated is the mean and standard deviation of the marine shallow cloud feedback

given in the International Panel of Climate Change’s Sixth Assessment Report (IPCC

AR6), which is assessed to be 0.2±0.16 Wm−2K−1 from multiple lines of evidence

(Arias et al., 2021). The broad standard deviation reflects uncertainties associated

with different approaches of constraining trade cumulus feedbacks (Arias et al., 2021),

as discussed in Chapt. 1.
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a. Thermodynamic:  PωΔCω c. Netb. Dynamic:  ΔPωCω

Figure 6-8: Contribution of cloud fraction changes in trades to the tropical cloud
fraction change between amip4K and amip simulations for high (4 models, red) and
low ECS models (6 models, blue). Shown are the (a) thermodynamic change, 𝑃𝜔∆𝐶𝜔,
(b) dynamic change, 𝜔𝐶𝜔, and (c) total change, 𝛿𝐶𝜔, (right), where 𝐶𝜔 refers to cloud
fraction. The shading is the standard error. Trade-wind regions are selected from the
𝜔700 and EIS criteria as described in the text.

6.4.4 Vertical cloud fraction changes in high and low ECS

models

The change in the vertical cloud fraction in the trades also differs between high and

low ECS models, similar to previous ensembles (e.g., Vial et al., 2013; Brient et al.,

2016). In previous ensembles, the trade cumulus feedback was shown to largely be

governed by changes in cloud fraction near cloud-base, which is, in turn, sensitive

to the representation of turbulence, convection, and radiation in models (e.g., Brient

et al., 2016; Vial et al., 2016).

Fig. 6-8 shows the change in trade-wind cloud fraction, expressed as the contri-

bution to the net tropical cloud fraction change, which is on the order of one- or

two-percent across models. Trade-wind regions are selected from the 𝜔700 and EIS

criteria, but results are similar when selecting on the basis of 𝜔500. The three panels

correspond to the thermodynamic change (Fig. 6-8a), dynamic change (Fig. 6-8b),

and the total change (Fig. 6-8c). Cloud changes between high and low sensitivity
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models tend to be most pronounced at two levels – around cloud base at about 930

hPa (∼ 700 m) and the inversion base at about 800 hPa (∼ 2 km). The next chapter

will focus on cloud fraction changes at cloud-base.

6.5 Analysis of climate sensitivity in the IPSL-CM6A-

LR model

Before concluding, a more in-depth examination of the causes of higher ECS in the

IPSL-CM6A-LR model relative to its predecessor, IPSL-CM5A-LR, is discussed. This

analysis contributed to Boucher et al. (2020) (its Sec. 6 on climate sensitivity) and

is described below.

When calculated with the Gregory et al. (2004) method, the effective ECS be-

tween IPSL-CM5A-LR and IPSL-CM6A-LR increases from 4.0 to 4.5 K using 150

years of data, or from 4.1 to 4.8 K using 300 years of data. The relative contri-

butions to ECS are calculated following Dufresne and Bony (2008) and Vial et al.

(2013), and illustrated in Fig. 6-9a. This method decomposes the contributions to

ECS into (i) rapid tropospheric and stratospheric adjustments to carbon dioxide and

(ii) temperature-mediated feedbacks operating on longer time scales. More specifi-

cally, the rapid tropospheric adjustment includes the climate response associated with

all tropospheric adjustments (temperature, water vapor, and clouds), surface albedo

change, and the small land surface warming due to the CO2 forcing (Vial et al.,

2013). The method also quantifies the relative contributions of the water vapor and

temperature lapse rate, surface albedo, and cloud feedbacks. Individual feedbacks

are calculated by the radiative kernel method (Bony et al., 2006; Soden et al., 2008;

Shell et al., 2008). A radiative kernel acts as a partial derivative, representing the

sensitivity of the radiative flux, 𝑅, to changes in a climate variable, 𝑋, such as water

vapor, temperature, and surface albedo. To find the kernel, the radiative code of a

climate model is run offline with a standard perturbation, such as 1 K warming at

each vertical level, moistening that would occur from warming by 1 K at constant
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Figure 6-9: (a) Changes in radiative feedbacks calculated with the kernel method
following Vial et al. (2013) between IPSL-CM5A-LR and IPSL-CM6A-LR, with each
model labelled as either ‘CM5A’ or ‘CM6A’ (b) also compared with the CMIP5
mean feedback values given in Ceppi et al. (2017). Panel (c) shows that a relative
humidity bias in the CMIP5 model version (left) increased further in IPSL-CM6A-LR
(right) relative to ERA Interim reanalysis. (d) Differences between relative humidity
(%) after 150 years of the abrupt-4xCO2 experiment and values in the piControl
experiment for the IPSL-CM6A-LR model

.

relative humidity, and changing surface albedo by 1%. The radiative kernel, 𝜕𝑅
𝜕𝑋

, is

multiplied by the change in the climate variable of interest diagnosed from a model

simulation and then normalized by the global-mean surface temperature change to

yield the feedback value,

𝜆𝑥 =
𝜕𝑅

𝜕𝑋

𝜕𝑋

𝑑𝑇
. (6.7)

We employ the same kernels as in Shell et al. (2008) for water vapor, temperature,

and surface albedo. The cloud feedback is calculated as a corrected residual term,

correcting for a cloud-masking term following Vial et al. (2013), which adds a con-

sistent offset to net cloud feedback value estimated from the cloud radiative effect

method (e.g., Andrews et al., 2012). A small residual term reflects nonlinearities in

the relationship between radiative perturbation and the temperature response.
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The main drivers of this larger ECS in IPSL-CM6A-LR are, somewhat unexpect-

edly, more positive rapid tropospheric adjustment to CO2, and a stronger combined

lapse rate and water vapor feedback (Fig. 6-9a), rather than a stronger cloud feedback.

We diagnose the strong tropospheric adjustment from aqua-4xCO2 and amip-4xCO2

simulations, as well as the abrupt-4xCO2 simulations, and find that the stronger

adjustments come from clear-sky regimes (not shown). The stronger water vapor

feedback primarily results from strong moistening tendencies in weakly-ascending

regimes around 500 hPa (Fig. 6-9d). We diagnose this moistening tendency in weak

ascent regimes by projecting the relative humidity anomalies, defined as the difference

between relative humidity after 150 years of the abrupt-4xCO2 simulation and the

piControl, into a circulation regime basis, based on 𝜔500 (Bony et al., 2004). Relative

humidity anomalies reach up to 15% in these weak ascent regimes. The IPSL-CM6A-

LR model is, however, also too moist in the historical tropical atmosphere compared

with ERA-Interim data (Fig. 6-9c), which suggests the moistening under warming

might be exaggerated as well. The net cloud feedback is less positive than in previous

model versions (Fig. 6-9a). The IPSL-CM6A-LR model is somewhat of an outlier

that predicts a high ECS without a strong global cloud feedback (e.g., Fig. 6-1a.,c).

An anticorrelation between the strength of the cloud and combined lapse rate

and water vapor feedback was noted by Huybers (2010) for the CMIP3 ensemble.

The two IPSL model versions appear to trade-off in the strength of the combined

global lapse rate and water vapor feedback and cloud feedback. In the subset of

12 CMIP6 models analyzed here, such an anticorrelation is also evident (r=-0.68),

driven more by the water vapor (r=-0.62) rather than lapse rate feedback (r=0.25).

One physical hypothesis is that a mid-tropospheric increase in relative humidity and

cloudiness in weakly-ascending regimes could reflect a trade-off between shallow and

deep convection schemes. If thermals are not strong enough to trigger deep convection,

water vapor and cloudiness accumulate in the mid-troposphere after being transported

there by shallow convection, yielding a positive water vapor feedback and negative

cloud feedback. This mechanism is, however, confined to a single tropical regime,

whereas the feedbacks are global. It would be useful to more systematically examine
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potential physical origins of such compensations, such as whether they are tied to a

single regime or physical mechanism across models.

6.6 Initial conclusions

In a representative sample of CMIP6 models, differences in trade-wind cloud responses

can still discriminate between high and low sensitivity models. The trade-wind ther-

modynamic and net change in the cloud radiative effect (∆CRE), as well as vertical

changes in cloud fraction, differ between high and low sensitivity models. The trade-

wind net ∆CRE can, moreover, explain about 70% of the variance in the global

cloud feedback. These analyses show that trade-wind cloud feedbacks are still a large

source of uncertainty in global cloud feedbacks, even if other regions contribute to

the spread in ECS in CMIP6 more so than in previous CMIP ensembles (e.g., Zelinka

et al., 2020). These findings are similar to those shown for CMIP5, such as in Vial

et al. (2013) and Brient et al. (2016), albeit for a larger number of models.

Three main conclusions are drawn from this chapter that motivate analyses in

the following chapter. First, large differences remain in CMIP6 among modeled trade

cumulus cloud responses to warming. Second, these differences in trade cumulus cloud

responses to warming differ between high and low ECS models. Third, the inability

to assess which group of modeled responses are more physically credible highlights a

fundamental gap in our understanding of the environmental controls on trade-wind

cloudiness. The next chapter tries to improve this understanding with EUREC4A

observations in order to constrain trade cumulus feedbacks.
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Chapter 7

Constraining trade cumulus feedbacks

with EUREC4A

7.1 Introduction

The skill of mixed layer theory for obsessionally closing subcloud layer moisture and

energy budgets (Chapt. 4) gives confidence that it can also be applied to the subcloud

layer mass budget. In the following chapter, the motivation and key results of Vogel

et al. are summarized, with a focus on my contributions. Vogel et al. use mixed layer

theory and novel sampling strategies to perform the first observational test of the

‘mixing-desiccation’ hypothesis.

I am the second author on the Vogel et al. study and contributed to the analysis in

two main ways. My first contribution was constraining the entrainment rate from the

subcloud layer thermodynamic budgets and estimating the subcloud layer depth, as

discussed in Chapt. 4. Together with Jessica Vial, my second contribution is analyzing

how GCMs represent the mixing-desiccation hypothesis in present-day (Sec. 7.4) and

relating these representations to trade-wind cloud radiative responses to warming

(Sec. 7.5).

Analysis in this chapter contributes to Vogel et al., which is in preparation for submission to
Science.
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7.2 Mixing-desiccation hypothesis

EUREC4A was originally conceived to observationally constrain trade-wind cloud

feedbacks that were shown to explain large differences in climate sensitivity (Bony

et al., 2017; Stevens et al., 2021), as introduced in Chapt. 1 and further discussed in

Chapt. 6. A substantial chain of research has formulated a specific physical idea about

what influences changes in cloudiness with warming. This idea can be expressed as

the mixing-desiccation hypothesis, or the cloud fraction vs. mass flux dilemma. An

increased convective mass flux evacuates more mass from the subcloud layer, deep-

ening the cloud layer. This deepening through cloud formation causes mixing at the

cloud top, which brings down dry air from the free troposphere. As a result, the moist

lower troposphere becomes relatively drier, leading to the evaporation, or desiccation,

of clouds near their base. As a result, the mixing-desiccation hypothesis predicts an

inverse relationship between convective mixing and cloud-base cloud fraction (e.g.,

Gettelman et al., 2012; Rieck et al., 2012; Zhang et al., 2013; Sherwood et al., 2014;

Tomassini et al., 2014; Brient et al., 2016; Vial et al., 2016; Bony et al., 2017). In

a warmer climate, the lower tropospheric humidity gradient increases, following the

nonlinear Clausius-Clapeyron relationship. All else equal, vertical mixing even more

efficiently dries the environment at cloud-base. The decrease in cloud-base cloudiness

is expected to lead to a more positive cloud feedback (e.g., Bony et al., 2017).

Early support for this conceptual picture comes by analogy with the process of

stratocumulus breaking up into cumulus. Bretherton and Wyant (1997) use a mixed

layer model and find that increasing surface fluxes, relative to cloud-top radiative

cooling, drive the decoupling of the stratocumulus layer. That is, increased surface

fluxes, and thus convective mixing (e.g., Tiedtke, 1989), appear to break up stratocu-

mulus into cumulus and reduce cloud fraction. Studies with GCM-ensembles and

single GCMs also support the idea that increased convective mixing decreases cloudi-

ness at cloud-base. Sherwood et al. (2014) use 43 GCMs (in CMIP5) to show that

differences in the simulated strength of convective mixing between the lower and mid-

troposphere in the tropics can explain about 50% of the spread in climate sensitivity.
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Stevens et al. (2016), Tomassini et al. (2014), and Vial et al. (2016) use single climate

models run in configurations that differ in their convective mixing parameters and

also find evidence that increased convective mixing decreases cloud-base cloudiness.

Other approaches, however, do not find a strong reduction in cloud-base cloudiness

with convective mixing. As discussed in Chapt. 1, process-based studies using large-

eddy simulations suggest that low clouds are more resilient to changing environmental

conditions than many GCM studies suggest (e.g., Blossey et al., 2013; Zhang et al.,

2013; Bretherton, 2015; Vogel et al., 2016; Radtke et al., 2021), supporting a neutral

or only slightly positive trade cumulus cloud feedback. Using the MIROC model,

Kamae et al. (2016) find that differences in lower-tropospheric mixing can explain the

spread in low-cloud feedbacks in only half of a perturbed physics ensemble. Myers

et al. (2021) and Cesana and Del Genio (2021) use satellite measurements and also

find evidence for a near-zero trade-wind cloud feedback. The physical mechanisms

behind an apparent robustness of trade-wind clouds to warming are, however, not yet

understood.

An alternate null hypothesis is that increased convective mixing increases cloud-

base cloudiness by moistening the large-scale environment at cloud-base. Such a

hypothesis is not the mixing-desiccation hypothesis, but could instead be called the

mixing-moistening hypothesis. There are multiple reasons why the mixing-desiccation

hypothesis could be wrong. Observed mesoscale vertical velocity is, for instance,

larger than the longer timescale-mean values that are typically used in models of

varying complexity (Bony and Stevens, 2019; George et al., 2021). This larger vari-

ability in vertical velocity could introduce dynamic controls on cloudiness that might

be missing in models. It is also not a priori clear whether an increased mass flux and

entrainment necessarily decrease relative humidity, or could instead increase relative

humidity by deepening the subcloud layer (Vogel et al., 2020).
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7.3 First observational test of this mechanism

7.3.1 Measurements and methods

To observationally test this hypothesis requires jointly measuring the cloud fraction

(𝐶), mass flux (𝑀), and relative humidity (𝑅𝐻) near cloud base. Vogel et al., in prep

estimate all of these quantities for the first time at the process level using EUREC4A

observations. Here the key points related to the measurements and methods are

summarized. Further information is found in Vogel et al., in prep.

To measure the cloud fraction at cloud base, 𝐶, the ATR-42 aircraft had horizontally-

staring backscatter lidar operating at 355 nm (‘ALIAS’, Airborne Lidar for Atmo-

spheric Studies) (Chazette et al., 2020) and horizontally-staring Doppler cloud radar

(‘BASTA’, Bistatic rAdar SysTem for Atmospheric studies) (Bony et al., 2022). A

radar-lidar synergy product of cloud fraction near cloud-base product agrees well with

independent, coincident estimates (see Fig. 17 of Bony et al. (2022)). The estimate

includes drizzle, making it an upper bound on cloud-base cloud fraction.

Vogel et al., in prep consider the mass flux, 𝑀 , as a proxy for the lower-tropospheric

convective mixing. It can be estimated as a residual from the subcloud layer mass

budget,
𝐷ℎ

𝑑𝑡
= 𝐸 −𝑀 +𝑊. (7.1)

The mass balance of the subcloud layer is based on mixed layer theory, as also eval-

uated in Chapt. 4 for subcloud layer moisture and energy budgets. In the mass

balance, the subcloud layer, having a depth ℎ, is controlled by the entrainment rate,

𝐸 (a mass source), the mass flux, 𝑀 (a mass sink), and the large-scale vertical ve-

locity, 𝑊 (either a mass source or sink), as, for instance, described in Stevens (2006).

As preparation for EUREC4A, Vogel et al. (2020) also evaluated the skill of this mass

budget framework using large-eddy simulations. These terms have units of height per

time, such as mm/s. Note that depth, ℎ, multiplied by area and density corresponds

to mass.

If assuming stationarity and homogeneity, 𝐷ℎ
𝑑𝑡

=0, 𝑀 can be solved for as the
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residual of the subcloud layer mass budget. That it, the mass flux is the sum of 𝐸

and 𝑊 ,

𝑀 = 𝐸 +𝑊. (7.2)

Vogel et al., in prep finds that the storage and advection terms are small and unbiased,

such that these assumptions are justified. Results are also qualitatively similar when

including the total derivative term.

Whereas 𝐶 is measured from the ATR-42, other terms, such as those to calculate

𝑀 , are estimated using over 800 dropsondes launched from the coincident HALO

aircraft. The subcloud layer height, ℎ, is estimated using the 𝜃𝑣-gradient method as

described in Chapt. 2. The method for calculating the entrainment rate, 𝐸, is also

described in Chapt. 2. Chapt. 4 constrain uncertain entrainment parameters using a

Bayesian inversion of subcloud layer moisture and energy budgets. This approach as-

sesses the skill of mixed layer theory and provides an independent constraint on 𝐸 for

the mass budget in Vogel et al., in prep. The vertical velocity, 𝑊 , is historically chal-

lenging to measure. During two smaller field campaigns in preparation for EUREC4A,

novel sampling strategies were developed and tested to measure 𝑊 (Bony and Stevens,

2019). With EUREC4A data, George et al. (2021) compute vertical profiles of 𝑊 by

vertically integrating the divergence of the horizontal wind field measured by drop-

sondes from the surface up to the flight level. These measurements allow for capturing

variations in the strength of mesoscale circulations (Bony and Stevens, 2019; George

et al., 2021). In this analysis, 𝑊 is taken at the subcloud layer top, ℎ. Relative

humidity, 𝑅𝐻, is also estimated from HALO dropsonde measurements at ℎ. Results

are similar when considering 𝑅𝐻 measured by the ATR-42. All terms are computed

at the one-hour circle-scale and then aggregated to the three-hourly circling-scale (see

terminology in Chapt. 4, Table 1).

7.3.2 Observed relationships

To test the mixing-desiccation hypothesis, Vogel et al., in prep perform a multiple

linear regression between cloudiness, 𝐶, and mass flux, 𝑀 , and relative humidity,
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𝑅𝐻,

𝐶 = 𝑎M𝑀 + 𝑎RH𝑅𝐻 + 𝐶0. (7.3)

𝑀 and 𝑅𝐻 are not correlated, with a Pearson correlation coefficient r=-0.075.

Contrary to the anticorrelation between 𝐶 and 𝑀 outlined by the mixing-desiccation

hypothesis, the observed correlation between 𝐶 and 𝑀 near cloud-base is strong and

positive, with r=0.72. That is, increased convective mixing is associated with in-

creased, rather than decreased cloudiness. Also including 𝑅𝐻 further tightens the

relationship, giving a correlation between predicted and observed 𝐶 of r=0.83, though

the relationship remains driven mostly by 𝑀 variations. Adding relative humidity

presumably improves the correlation because the large-scale moisture conditions in-

fluence the persistence of clouds and because not all clouds are active clouds and

associated with a mass flux (e.g., Stull, 1985). The physical mechanism will be fur-

ther discussed in Sec. 7.5, and more thoroughly presented in Vogel et al., in prep.

7.4 Comparison with GCMs

As a point of comparison, we examine how GCMs represent the couplings among the

same terms, 𝐶, 𝑀 , and 𝑅𝐻. Hourly modeling output at so-called cfSites-locations

is produced as part of the Cloud Feedback Model Intercomparison Project (CFMIP).

These 120 locations are sometimes coincident with measurement stations, such as the

Barbados Cloud Observatory, and are generally located in areas exhibiting a large

spread in intermodel cloud feedbacks (e.g. see Fig. 2 in Webb et al. (2017)). Despite

the general notion that GCMs do not produce output in the ‘space of observables’,

these point-wise model outputs are more amenable to comparison with in situ obser-

vations than GCM outputs on larger grid scales.

𝐶, 𝑀 , and 𝑅𝐻 are calculated for ten CMIP models (four from CMIP5 and six

from CMIP6) using the cfSites output. As in Vial et al., in prep, we use the amip

configuration from 1979–2008, selecting data in January and February to correspond

to EUREC4A measurements. For each model, between 2–6 cfSites locations are avail-

able in the north Atlantic trades between 59–44 ∘W and 11–16 ∘N. All profiles with
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(c).

(b).

(a).

Figure 7-1: Box plots of cfSite output from ten amip model simulations for (a)
mass flux, 𝑀 , (b), relative humidity, 𝑅𝐻, and (c), cloud fraction, 𝐶. The box plot
corresponds to the interquartile range (from the first quartile to the third quartile),
with mean values shown in red (medians not shown). Whiskers extend from the
box by 1.5 times the interquartile range. Flier points are those extending past the
whiskers. The interquartile range of observed EUREC4A values are outlined in red,
and the mean observed value is given by the dotted red line.
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clouds above 600 hPa (about 4.2 km) are dropped to ensure a focus on shallow con-

vection. Values near cloud-base are selected as the first maximum below 850 hPa

(about 1.5 km). These vertical levels can differ for cloudiness, mass flux, and relative

humidity, but the height differences are, on average, zero. Results are qualitatively

similar when constraining all values to occur at the same level. After calculating

the near cloud-base values for all sites, we average across the available sites for each

model. These spatially-averaged, hourly outputs are then aggregated to the three-

hourly timescale, which corresponds to the circling-mean timescale of EUREC4A data

(see description in Chapt. 4). Hourly outputs are also aggregated to monthly-means

for studying longer timescale variability.

Fig. 7-1 shows that these ten models simulate a diversity of cloud-base mass flux,

relative humidity, and cloud fraction values for three-hourly data. Across models,

the mean 𝑀 ranges enormously from 1.25*10−11–61.6 mm/s, the mean 𝑅𝐻 ranges

from 86.4–99.4%, and the mean 𝐶 ranges from 2.06–29.7%. The observed 𝑀 values is

15.2±6.54 mm/s, with values denoting the mean and standard deviation. Observed

𝑅𝐻 values are 86.6±3.06%, and observed 𝐶 values are 5.38±1.94%. Except for one

model (IPSL-CM5A-LR), the mean modeled 𝑅𝐻 value is higher than observed mean

𝑅𝐻. Modeled 𝑀 values vary widely, including by many orders of magnitude. Eight

out of ten models predict 𝐶 values greater than the observed value, and four out of

ten models predict 𝐶 values that are more than twice the observed value.

Among models, the relationships among these variables also differ strongly, both

at the three-hourly and monthly timescale. Fig. 7-2a,b plot relationships among 𝐶

and 𝑀 and between 𝐶 and 𝑅𝐻 using non-standardized data (e.g., not divided by

the standard deviation) to show the diversity of simulated relationships. Given the

sometimes large differences among modeled values, for instance, in the magnitude of

𝑀 , values are, however, standardized in the following analysis. As a result of this

standardization, the slope and correlation values are equal. In GCMs, the correlation

between standardized 𝐶 and 𝑀 ranges from -0.12 to 0.55 in three-hourly data and

-0.42 to 0.61 in monthly data. Three of ten GCMs have a negative correlation at

the three-hourly timescale and seven GCMs have a weakly positive correlation of

160



r<0.3. The observed correlation between 𝐶 and 𝑀 is, by contrast, 0.72, with a 50%

confidence interval from 0.65 to 0.82, outside the values spanned by these ten GCMs.

The relationships between 𝐶 and 𝑅𝐻 in models also show large variability (Fig. 7-

2b), yet these relationships overlap with the observed correlation. In the GCMs,

correlations range from 0.097–0.84 in three-hourly model output and 0.21–0.84 in

monthly model output. The correlation in three-hourly observed data is 0.36, towards

the center of the GCM range, with a 50% confidence interval from 0.16–0.55.

7.5 Can present-day variability constrain future cloud

changes?

One condition for the relevance of EUREC4A measurements for evaluating cloud

feedbacks, as discussed in Chapt. 2, is that variability expressed on shorter timescales

is informative of variability expressed on longer timescales. In the ten GCMs, a strong

association emerges between correlations estimated at the three-hourly and monthly

timescales, both for the 𝐶-𝑀 relationship (r=0.80, 0.33–0.95, 5-95% c.i.) and 𝐶-𝑅𝐻

relationship (r=0.80, 0.21–0.96, 5-95% c.i.), as shown in Fig. 7-3. These correlations

provide important support that inferences from EUREC4A data are informative about

climate scale behaviors. More generally, these correlations suggest that the physical

processes underlying the relationships among 𝐶, 𝑀 , and 𝑅𝐻 are relatively timescale-

invariant.

A common approach to narrowing uncertainty in climate variables involves so-

called ‘emergent constraints’ (e.g., Eyring et al., 2019; Hall et al., 2019). Emergent

constraints relate an observable quantity with an uncertain, non-observable climate

response parameter, such as cloud feedbacks or climate sensitivity. If a relationship

(e.g., linear) emerges between these two variables, estimating the observable quan-

tity provides a ‘shortcut’ to constrain the non-observable variable. Early emergent

constraints were proposed for the hydrological cycle (Allen and Ingram, 2002) and

snow-albedo feedback and (Hall and Qu, 2006). Regarding Northern Hemisphere
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a. b.

c. d.

Figure 7-2: Diversity of relationships between (a) 𝐶 and 𝑀 and (b) between 𝐶 and
𝑅𝐻. Note that in panels a. and b., data are not standardized (divided by standard
deviation) in order to show the variability among models, but the mass flux for
the IPSL-CM6A-LR model is divided by three so that its magnitude is comparable
to the other models. The circle refers the mean value, and the line is the linear
regression fit to model output or observations. Colors are consistent throughout
panels and correspond to values of the thermodynamic trade-wind ∆CRE, divided by
the 4 K change in global-mean surface temperature, with blue to red corresponding to
increasing values. Panel c. shows a bar plot of these thermodynamic ∆CRE values.
Panel d. plots aM/aRH versus 𝜎C as described in Sec. 7.5.
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a. b.

Figure 7-3: Relationship between three-hourly correlation and monthly correlation
between cloud fraction and mass flux (a) and between cloud fraction and relative hu-
midity (b). Symbols correspond to models as listed in the legend, and the black line
is the ordinary least squares regression. Dark and light grey shading correspond to
50% and 90% confidence interval on the regression, as estimated by bootstrapping, or
repeatedly sampling with replacement and performing the regression 1000-times. The
(three-hourly) observed correlation is given by the orange vertical line, and shading
corresponds to 50% uncertainty on the Pearson correlation as estimated by bootstrap-
ping (rather than the Fisher transformation).
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snow cover, Hall and Qu (2006) demonstrated that, in 17 CMIP3 models, there is a

tight correlation between the amplitude of the seasonal cycle and decrease in snow

cover per degree of local warming. This constraint is compelling because it is phys-

ically plausible that the same mechanism controls snow cover changes, whether due

to seasonal changes or CO2-mediated radiative forcing. Indeed, this constraint has

persisted across multiple climate model ensembles (Qu et al., 2014; Thackeray et al.,

2018).

Many other emergent constraints are less robust, casting doubt on the utility of

this framework. Caldwell et al. (2018) found that only four of 19 published emergent

constraints on climate sensitivity remained plausible when applied to out-of-sample

data. Similarly, Schlund et al. (2020b) recalculated previous emergent constraints for

the CMIP6 ensemble and found much lower correlations of these metrics with climate

sensitivity than with the ensembles for which these constraints were calculated. More

generally, the limited sample size of models and near-infinite number of observable

quantities implies that some spurious emergent relationships can arise solely due to

chance (e.g., Caldwell et al., 2014). The framework is therefore criticized as being the

result of ‘data mining’ whose inferences should be treated with caution (e.g., Caldwell

et al., 2014, 2018; Lutsko et al., 2021). As GCMs become increasingly sophisticated,

multiple factors can explain the spread in global quantities, such as climate sensitivity,

(e.g., Zelinka et al., 2020), suggesting that a single metric will no longer have global

explanatory power. Emergent constraints should therefore instead target specific

physical processes or regions (e.g., Klein and Hall, 2015; Brient and Schneider, 2016),

which we adopt as the approach in this work. Such improved physical understanding

can then be used to assess the credibility of model representations, or even rule out

certain models, whether or not a linear relationship emerges between present-day and

future variables.

7.5.1 Observational constraints

We consider three metrics, which can be applied to both three-hourly observations and

model output and then related to future cloud changes: (1) the correlation between 𝐶

164



and 𝑀 , as shown in Fig. 7-2a; (2) aM/aRH, the ratio of the multiple linear regression

coefficients of Eq. (7.3); and (3) 𝜎C, the standard deviation of 𝐶.

The first metric quantifies how increasing convective mixing changes the cloud-

base cloud fraction. Fig. 7-4 shows that a linear relationship emerges between the cor-

relation between 𝐶 and 𝑀 and the change in the trade-wind thermodynamic ∆CRE

(r=-0.71). There are indications that models simulating a more positive correla-

tion between 𝐶 and 𝑀 , in better agreement with observations, predict less-positive

thermodynamic ∆CRE values, and vice versa. With the other two metrics, a linear

relationship does not emerge with the thermodynamic or net ∆CRE. The correlation

with the thermodynamic ∆CRE is -0.19 with aM/aRH and 0.30 with 𝜎C.

The two other metrics nonetheless allow for assessing models relative to obser-

vational constraints, as modeled metrics both have a large spread and differ from

observational metrics. The ratio aM/aRH quantifies the relative dependence of cloudi-

ness on 𝑀 , a dynamic control, versus 𝑅𝐻, a more thermodynamic control. A greater

dependence on 𝑅𝐻 is, moreover, expected if increasing the mass flux decreases rel-

ative humidity, which then decreases cloudiness, in line with the mixing-desiccation

hypothesis. Fig. 7-2d shows that all models underestimate aM/aRH relative to its

observed value. This finding suggests that models have a larger dependence on 𝑅𝐻

(larger aRH regression coefficient) and a weaker dependence on 𝑀 than observations.

Expressed differently, models whose cloudiness depends more on 𝑀 variations, rather

than 𝑅𝐻 variations are in better agreement with observations. These models, more-

over, tend to predict weaker thermodynamic ∆CRE values, though a clear linear

relationship does not emerge. These findings suggest that observed clouds are more

dynamically controlled, by 𝑀 , and less thermodynamically controlled, by 𝑅𝐻, than

clouds in GCMs.

Fig. 7-2d also shows that all models overestimate 𝜎C, the variability in cloud-

base cloud fraction. Nine of ten models have 𝜎C values more than three times the

observed value. The standard deviation in the IPSL-CM6A-LR (3.2%) is closest to

the observed value (1.9%). Both the mean cloud fraction (Fig. 7-1c) and its variability

through 𝜎C are overestimated. Moreover, models that produce a larger mean 𝐶 also
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Figure 7-4: Correlation between cloud fraction and mass flux versus trade-wind ther-
modynamic ∆CRE. As in Fig. 7-3, symbols again correspond to models as listed in
the legend, and the black line is the ordinary least squares regression. Dark and light
blue shading correspond to 50% and 90% confidence interval on the regression, as
estimated by bootstrapping, or repeatedly sampling with replacement and perform-
ing the regression 1000-times. The (three-hourly) observed correlation is given in
the orange vertical line with shading corresponds to 50% uncertainty on the Pearson
correlation as estimated by bootstrapping, rather than the Fisher transformation.

simulate more variation about this mean value, with a correlation r=0.62 between

the mean 𝐶 and 𝜎C. One speculation is that some GCMs represent trade-cumulus

clouds more similarly to stratocumulus clouds. The larger mean cloud fraction and

larger variability could perhaps be more analogous to stratocumulus decks forming

and breaking up than the more scattered trade cumulus fields with lower mean cloud

fraction and lower variability.

In terms of obtaining a probabilistic estimate of the trade cumulus feedback, the

three metrics co-vary and therefore cannot be treated as fully independent constraints.

The correlation between the 𝐶 and 𝑀 correlation is 0.49 with aM/aRH and -0.53 with

𝜎C. The correlation between aM/aRH and 𝜎C is -0.58. These considerations motivate
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the development of a framework to consider constraints jointly (Sec. 7.6 and Chapt. 8).

7.5.2 Comparison with other cloud feedback estimates

In Fig. 7-5, one metric, the 𝐶 vs. 𝑀 correlation is related to the trade cumulus feed-

backs estimated from Myers et al. (2021) as a check of consistency. The Myers et al.

(2021) trade-wind cloud feedbacks are calculated from different model simulations

(abrupt-4xCO2 rather than amip4K simulations), but we use the same regime par-

titioning based on 𝜔700 and EIS as in Myers et al. (2021) to identify the trades as

described in Chapt. 6. There are seven models that overlap between our analyses.

Fig. 7-5 relates the Myers et al. (2021) trade cumulus feedbacks to the 𝐶 vs. 𝑀

correlation for GCMs and observations. The MIROC6 model emerges as an outlier

whose trade cumulus cloud feedback is much smaller in the coupled (abrupt-4xCO2 )

than uncoupled (amip4K ) simulations (Fig. 7-5b). Including the MIROC6 model,

the correlation between the Myers et al. (2021) trade cumulus feedback and 𝐶 vs. 𝑀

correlation is -0.37. If excluding MIROC6, the correlation is much stronger, r=-0.92.

The best linear regression fit to GCMs is also extrapolated to the observed correla-

tion value. The two lines including and excluding MIROC6 span the 90% confidence

interval from Myers et al. (2021), as shown in Fig. 7-5, which provides additional

support for a weak trade cumulus feedback.

7.6 Discussion and initial conclusions

This chapter described key results of Vogel et al., with a focus on my contributions.

Vogel et al. present novel measurements of the convective mass flux, cloud fraction and

relative humidity at cloud base from the recent EUREC4A field campaign. These mea-

surements allow for performing the first observational test of the mixing-desiccation

hypothesis, which is thought to explain large differences in trade cumulus feedbacks

and thus equilibrium climate sensitivity.

Instead of the negative relationship between cloudiness and the convective mass

flux outlined by the mixing-desiccation hypothesis, observations show a strong, posi-
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with MIROC6

a.

b.

without MIROC6

Figure 7-5: As in Fig. 7-4, but with trade-wind cloud feedbacks estimated from Myers
et al. (2021) for the six models that overlap with our analysis. Also shown is the best
estimate of the trade cumulus feedback (grey horizontal line) and the 90% confidence
interval (grey horizontal shading), both from Myers et al. (2021). Also shown is an
extrapolation of the best-fit regression line from modeled correlations between the
cloud fraction and mass flux to the observed correlation (dashed black line).
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tive relationship between cloudiness and the mass flux. This positive relationship is

strengthened by also including relative humidity at cloud base. Observations therefore

suggest that cloudiness is principally controlled dynamically through the mass flux,

whereas an analysis of ten GCMs shows that cloudiness in these models is more con-

trolled thermodynamically by relative humidity variations. GCMs also tend to over-

estimate both the mean and variability in cloud fraction compared with observations,

which could potentially result from a more stratocumulus- than trade cumulus-like

representation in GCMs.

We propose three metrics related to these couplings among cloudiness, mass flux,

and relative humidity, which can be used to observationally constrain the trade cumu-

lus feedback. Models that simulate a negative coupling between cloudiness and the

mass flux, as opposed to the positive observed relationship, tend to produce a stronger

thermodynamic cloud feedback (thermodynamic ∆CRE) with warming. Different ap-

proaches exist for combining multiple physical constraints in a statistical framework

to yield a probabilistic estimate of the trade cumulus feedback, which are discussed

in Chapt. 8 as ongoing work.

The findings described in this chapter and more-fully in Vogel et al. provide the

first constraint on the trade cumulus feedback at the process-level. The results sup-

port a weak trade cumulus feedback, consistent with large-eddy simulations and satel-

lite studies, as discussed in Chapt. 1 and Sec. 7.2. The present work distinguishes

itself, however, from these foregoing studies because it also elucidates a physical

mechanism behind the robustness of trade cumuli to changes in their environment.

Whereas clouds in GCMs are more sensitive to thermodynamic variations, clouds in

nature are more robust to thermodynamic variations and instead more controlled by

dynamic variations that are not well-represented in GCMs.
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Chapter 8

Conclusions and perspectives

Clouds may first strike an observer by their poetry, which sparks the imagination.

As introduced in Chapt. 1, clouds have long fascinated human imagination, and this

fascination finds manifold expressions in art. When something is striking, there is

often a greater desire to understand it. That leads to deeper analysis and deeper

appreciation of what we see. The British painter John Constable (1776–1837) con-

tended that “we see nothing truly until we understand it” (Hamblyn, 2002). In this

spirit, this thesis can also be interpreted as an attempt to better understand, and

therefore to better see the visible and invisible motions that surround us.

This chapter reviews key results from this thesis, organized in two parts (Sec. 8.1),

and then discusses new questions that follow from these results (Sec. 8.2). The first

part (Chapters 2–5) used EUREC4A observations to improve understanding of the

characteristic vertical structure of trade-wind air and the processes that determine this

structure. Better understanding how the trades vary in the present-day is a necessary

condition for evaluating how they will change in the future. In the second part

(Chapters 6–7), this improved physical understanding was applied to the evaluation

of general circulation models (GCMs) to yield the first process-based constraint on

the trade cumulus feedback.

To return to the challenges outlined in Chapt. 1, estimates of future warming, as

quantified by the equilibrium climate sensitivity (ECS), disagree by several degrees.

One of the largest sources of disagreement is uncertainties about how trade-wind

clouds over the oceans will respond to warming (e.g., Bony and Dufresne, 2005; Webb

et al., 2006; Vial et al., 2013; Myers et al., 2021). During EUREC4A, we collected

the necessary data to test whether models predicting large trade cumulus feedbacks
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are physically plausible (Bony et al., 2017; Stevens et al., 2021). A single set of mea-

surements cannot disprove a hypothesis, as individual measurements may be biased

or non-reproducible. EUREC4A, however, brings together a wealth of instruments

and approaches. This comprehensive view informed by many coincident observations

allows us to propose new conceptual models of the structure of the trade-wind bound-

ary layer and the role of clouds in determining this structure and to conclude that

there is little evidence for a strong trade cumulus feedback to warming.

8.1 Summary of key results

8.1.1 Clear-sky radiation in the trades

In the uncertain couplings among clouds, convection, and circulation in the trades,

radiative heating plays an important role, yet it is difficult to observe from space.

Passive remote sensing cannot capture the sharp vertical moisture gradients, espe-

cially in the lower troposphere, that are essential for calculating atmospheric radiative

heating profiles (e.g., Maddy and Barnet, 2008; Chazette et al., 2014; Stevens et al.,

2017). To fill this gap, we calculate clear-sky radiative profiles from 2580 in situ

soundings launched during EUREC4A, which form the largest radiative profiles data

set for the trades (Chapt. 3). An updated radiative transfer code RRTMGP (Rapid

Radiative Transfer Model for GCMs, Parallel) from Pincus et al. (2019) is used to

calculate the radiative profiles. Variability in radiative heating is evident at multiple

scales, such as related to the diurnal cycle, synoptic variability, and mesoscale cloud

organization. An uncertainty assessment, moreover, shows that errors resulting from

uncertainties in observed sounding profiles and ERA5 reanalysis employed as upper

and lower boundary conditions are small. In the context of this thesis, the clear-sky

radiative profiles are a necessary component of observationally closing subcloud layer

moisture and energy budgets, which is the subject of Chapt. 4.
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8.1.2 Observed subcloud layer moisture and energy budgets

The trade-wind subcloud layer is an important structural component of the tropi-

cal atmosphere (e.g., Riehl, 1954; Malkus, 1958; Tiedtke, 1989; LeMone et al., 2018),

which has long been characterized using simple, bulk frameworks (Betts, 1973; Arakawa

and Schubert, 1974; Deardorff, 1972; Stevens, 2006), of which mixed layer models are

the simplest kind. The adequacy of the mixed layer description of the subcloud layer

has, however, only been assessed from relatively few observations and large-eddy sim-

ulations often performed for small domains and idealized conditions (e.g., Stevens,

2006). These limitations render in situ observations especially important for testing

the skill of mixed layer theory.

Chapt. 4 shows that mixed layer theory, evaluated with EUREC4A observations

and with uncertain parameters constrained in a Bayesian approach, provides a closed

description of subcloud layer moisture and energy budgets. Campaign-residuals are

3.6 Wm−2 for moisture and 2.9 Wm−2 for energy, and residuals for synoptic vari-

ability are small and unbiased. In defining the subcloud layer height using observed

thermodynamic profiles, we find evidence for a transition layer that separates the

well-mixed part of the subcloud layer from the subcloud layer top. The presence

of a transition layer and its vertical gradients introduce ambiguity in the applica-

tion of mixed layer theory, which are addressed through the introduction of effective

parameters estimated through a Bayesian methodology. We find that constrained

entrainment parameters reflect mixing over a finitely-thick transition layer. These

entrainment parameters, notably a mean effective entrainment efficiency, 𝐴e = 0.43,

that is greater than 0.2 as often assumed, are consistent with expectations both from

theory and direct numerical simulations. The small residuals, moreover, suggest that

closing moisture and energy budgets does not require knowledge of additional pro-

cesses, such as phase changes associated with evaporating precipitation in downdrafts.

Regarding large-scale external influences, we find that the net influence of the

surface wind speed on mean subcloud layer moisture is weak due to its compensating

influences through surface moistening and entrainment drying. Instead, knowing
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moisture and temperature values above the subcloud layer has the most skill for

predicting subcloud layer mean moisture and energy, presumably because these are

the properties of the air mixed into the subcloud layer by entrainment.

8.1.3 A new conceptual picture of the transition layer

The presence of a finitely-thick transition layer, as discussed in Chapt. 4, contrasts

with foregoing theory based on cloud-free convective boundary layers, which have an

abrupt discontinuity at their top (e.g., Lilly, 1968). This discrepancy is investigated

further in Chapt. 5. The transition layer in the trades has long been observed and

simulated, but its origins remain little investigated. This layer is often associated with

an 150–200 m stable layer that separates dry turbulent processes in the well-mixed

part of the subcloud layer from moist convection in the overlying cloud layer (e.g,

Malkus, 1958; Augstein et al., 1974; Yin and Albrecht, 2000). Extensive observations

from EUREC4A indicate that the majority of clouds are already rooted in the transi-

tion layer, and cloud-mediated mixing causes its vertical structure. Strong jumps at

the layer top, as expected from the theory of cloud-free convective boundary layers,

are only found rarely and when they occur, they tend to occur in large cloud-free

areas. A population of small clouds with their bases around 600–700 m is shown to

be responsible for smoothing vertical gradients over the transition layer.

These findings lead to a new conceptual picture that the formation and dissipation

of shallow clouds maintains the transition layer, in analogy with the maintenance of

the trade-wind inversion by deeper clouds as proposed by Riehl et al. (1951) and

elaborated by Stevens (2007). Small clouds precondition the large-scale environment

and decrease the resistance to convection through weaker vertical gradients in the

transition layer, making it easier for deeper clouds to form. This conceptual model

suggests that small clouds beget larger clouds. From this analysis also emerges the

potential for an alternate view of entrainment mixing, which is based on the ability

to detrain condensate into the overlying stable layer and thus induce gentle sinking

motion through negative buoyancy. Inferences from mixed layer theory and Paluch

mixing diagrams (e.g., Paluch, 1979) are also used to support inferences of air being
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sourced from the transition layer for entrainment, rather than being mixed directly

from deeper in the cloud layer.

8.1.4 Towards the first process-based constraint on trade cu-

mulus feedbacks

In the second part of this thesis, physical understanding developed in the previous

chapters 2–5 is applied to constrain trade-wind cloud feedbacks simulated by GCMs.

In CMIP3 and CMIP5, uncertainties in trade-wind cloud responses were the largest

source of uncertainty in climate sensitivity (e.g., Bony and Dufresne, 2005; Webb

et al., 2006; Vial et al., 2013; Brient and Schneider, 2016).

Chapt. 6 finds that, in a representative sample of CMIP6 models, trade-wind

cloud responses still differ between high and low sensitivity models, in the terms of

the trade-wind thermodynamic and net ∆CRE, as well as vertical changes in cloud

fraction. The trade-wind net ∆CRE can, moreover, explain about 70% of the variance

in the global cloud feedback. These analyses show that trade-wind cloud feedbacks

are still a large source of uncertainty in global cloud feedbacks, even if other regions

also contribute to the spread in ECS in CMIP6 (e.g., Zelinka et al., 2020; Flynn and

Mauritsen, 2020; Myers et al., 2021). Given the multiple influences on ECS, efforts

should focus on constraining physical processes or regional cloud responses rather

than ECS (e.g., Klein and Hall, 2015; Brient and Schneider, 2016; Lutsko et al.,

2021), which is the focus of Chapt. 7.

Chapt. 7 presents analysis supporting the first process-based constraint on the

trade cumulus feedback. This chapter describes results of Vogel et al., with a focus

on my contributions. Vogel et al. present novel measurements from EUREC4A of

the cloud-base cloud fraction, convective mass flux, and relative humidity. These

measurements allow for testing the mixing-desiccation hypothesis, which predicts a

negative relationship between convective mixing and cloudiness and is thought to

explain large differences among trade cumulus feedbacks.

Contrary to this hypothesis, observations show a positive relationship between the
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convective mass flux and cloud fraction (r=0.72), which is strengthened by the inclu-

sion of relative humidity (r=0.83). Observations indicate that cloudiness is principally

controlled dynamically by variations in the mass flux, which is, in turn, influenced

by variability in the entrainment rate and mesoscale vertical velocity. Both the en-

trainment rate and mesoscale vertical velocity have, historically, been challenging to

estimate with observations. The entrainment rate is independently constrained in

Chapt. 4. Novel sampling strategies during EUREC4A provided the most extensive

data set of the mesoscale vertical velocity (Bony and Stevens, 2019; George et al.,

2021), revealing its influence on cloudiness.

An analysis of ten GCMs, by contrast, indicates that cloudiness in GCMs is more

controlled thermodynamically, by relative humidity variations, than dynamically, by

vertical velocity variations, as in the observations. We speculate that this dynamical

control makes clouds in nature more resilient to relative humidity decreases due to

increased convective mixing, which has tended to dissipate clouds in GCMs.

To obtain a probabilistic estimate of the trade cumulus feedback, we propose three

metrics related to the couplings among cloudiness, mass flux, and relative humidity,

which can be applied to both observations and GCMs. In the ten GCMs, a rela-

tionship, for instance, emerges between the correlation between the cloudiness and

convective mass flux and a proxy for the trade cumulus cloud feedback, the thermo-

dynamic ∆CRE. Models predicting the most negative coupling between convective

mixing and cloudiness, most inconsistent with observational constraints, are associ-

ated with the strongest thermodynamic ∆CRE. This constraint suggests a weak trade

cumulus feedback, consistent with large-eddy simulations and satellite studies as dis-

cussed in Chapt. 1 and Sec. 7.2. Calculating a probabilistic estimate of the trade

cumulus feedback using the three proposed metrics is the subject of ongoing work

and described in more detail in Chapt. 8. The present work, moreover, goes a step

further than previous constraints because its aim is to elucidate the physical mecha-

This mass flux is also estimated using mixed layer theory. Closing subcloud layer moisture and
energy budgets in Chapt. 4 provided an observational assessment of this framework, as well as an
independent estimate of the entrainment rate, 𝐸, which is used to calculate 𝑀 in Eq. (7.2).

176



nism behind the resilience of trade-wind cumuli to changes in their environment, with

observations indicating that dynamic, rather thermodynamic controls make clouds in

nature more resilient than those in GCMs to changing environment conditions.

8.2 Perspectives

8.2.1 Short-term perspectives

Several projects emerge as relatively logical extensions to ideas proposed in this thesis.

Given that mixed layer theory offers a closed description for observations (Chapt. 4),

it offers an appealing framework for evaluating larger-scale models that must param-

eterize the processes regulating this important component of the tropical atmosphere.

The mixed layer framework would ensure a consistent definition of different terms and

processes and allow for more like-for-like comparisons among terms across models, in-

cluding GCMs, storm-resolving models, and large-eddy simulations. Such a project

would allow the quantification of the relative magnitudes of different processes in

these budgets, test how well the budgets close in different models, and examine how

individual terms vary according to large-scale environmental conditions. Observa-

tions from the EUREC4A field campaign, as analyzed in Chapt. 4, act as a novel

benchmark for these modeled representations.

Another extension is calculating moist static energy (MSE) budgets for the to-

tal atmospheric column. It is not immediately clear whether the budgets will close

on time- and spatial-scales relevant for EUREC4A, such as the three-hourly circling

and monthly campaign-mean timescale and about 220 km-diameter EUREC4A circle

spatial scale. Previous studies used remote sensing observations, but on much larger

monthly and annual time scales and continental-wide spatial scales, to observation-

ally constrain water (Rodell et al., 2015) and energy budgets (L’Ecuyer et al., 2015),

still with large uncertainties. Inoue and Back (2015) close MSE budgets using TOGA

COARE data and Lanczos filters to separate variability with different timescales

(about 2-, 5-, 10-day, and MJO timescales). Preliminary analysis of EUREC4A sound-
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ings shows that horizontal and vertical advection terms become increasingly large and

variable when approaching the three-hourly circling timescale.

If the total-column MSE budget can, however, be closed to within small residuals

using EUREC4A observations, this framework could be used to study the interplay

of clouds and their environment through an energetic lens. The atmospheric cloud

radiative effect (ACRE) emerges as a residual from the total-column MSE budget,

yielding an energetic estimate of clouds. It would be useful to compare these es-

timates of the ACRE with coincident satellite and geometric (i.e. cloud fraction)

estimates of cloudiness, as well as examine how the ACRE varies on different scales

and relates to large-scale environmental conditions. In a different approach, Brient

and Bony (2012) and Brient and Bony (2013) estimate the ACRE from total-column

MSE budgets calculated for the IPSL-CM5A-LR model run in a hierarchy of configu-

rations, diagnose the contributions to the ACRE, and conclude that the impact of an

external perturbation on low-cloud cover depends on how the perturbation influences

the vertical gradient of moist static energy within the boundary layer.

A third extension, especially of Chapt. 7, is to combine different observational

constraints on the trade cumulus feedback in a physical, statistical framework. Dif-

ferent approaches exist for combining physical constraints, as introduced in Sec. 7.6.

Stevens et al. (2016) proposed a quantitative ‘storyline’ approach, which was ex-

panded into the Bayesian statistical framework in Stevens et al. (2016) to constrain

climate sensitivity. Bretherton and Caldwell (2020) discuss an approach that uses

multiple physical constraints and an ensemble of GCMs to yield a multivariate Gaus-

sian distribution of an uncertain climate sensitivity proxy. Their approach accounts

for observational uncertainties in the different metrics, sampling uncertainties, and

covariance among the metrics. One drawback to this approach is an assumption of

normality of the underlying variables, which could give overconfidence about the tails

of the constrained distribution. Other approaches include the Bayesian approaches

of Renoult et al. (2020) and Bowman et al. (2018), and machine learning approach of

Schlund et al. (2020a). It is ongoing work to develop a statistical framework to com-

bine the multiple constraints discussed in Chapt. 7 into a single probabilistic estimate
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of the trade cumulus feedback.

8.2.2 Bias correction using atmospheric radiative profiles from

in situ measurements and machine learning approaches

Chapt. 3 presented over 2500 radiative profiles derived from in situ dropsondes and

radiosondes launched during the EUREC4A campaign. The soundings more accu-

rately represent fine-scale vertical moisture features, which are critical for calculating

atmospheric radiative cooling profiles but are often smoothed in passive remote sens-

ing retrievals and reanalysis data, as for example shown by Prange et al. (2021) and

discussed in Chapt. 3. The EUREC4A soundings, and therefore the radiative profiles,

also have much higher temporal and spatial sampling than the soundings that are

typically launched worldwide. The greater accuracy and high sampling intensity of

the soundings and radiative profiles provide an opportunity to improve satellite and

reanlysis products.

Machine learning is an increasingly common approach for studying clouds and ra-

diation, such as by training on cloud-resolving model output for use in coarser climate

models (Rasp et al., 2018; Gentine et al., 2018; O’Gorman and Dwyer, 2018; Beucler

et al., 2021, e.g.,). Bias correction is a common problem to which machine learning is

applied (e.g., Lary et al., 2016; Karpatne et al., 2018; Mathieu and Aubrecht, 2018).

A successful application of machine learning depends primarily on two factors: the

machine learning algorithm and a comprehensive training data set (e.g., Mathieu and

Aubrecht, 2018; Rolnick et al., 2019; Beucler et al., 2021). The radiative profiles pre-

sented in Chapt. 3, and its underlying moisture profiles, would be a useful training

set in the application of machine learning, in particular using deep neural networks.

The soundings and radiative profiles introduce information about short-term, small-

scale features that is missing from passive remote sensing and reanalysis products and

therefore has the potential to improve biases in these global products.
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8.2.3 How do tropical forests modulate atmospheric moisture

transports?

As discussed in Sec. 1.2.1, the trades can be pictured as an expansive river in the sky,

advecting moisture into the Inter-tropical Convergence Zone. A longer-term, broad

question is, how and why does the path of water change when it moves over land?

How do atmospheric moisture transports work over land where the sources are more

variable and the flows more influenced by topography? In other words, how does the

broad, moist wave in the trade-wind atmosphere evolve as it snakes and meanders

across tropical continents?

One way that land influences atmospheric water flows is through moisture recy-

cling by rainforests, such as the vast rainforests surrounding the Amazon and Congo

Rivers. In many tropical regions, moisture appears to be transported in a sort of

‘atmospheric river’, traveling across borders, channeled narrowly in the vertical, but

spread out widely in the horizontal, compared to atmospheric rivers in the extratrop-

ics, which are narrow in the horizontal and often associated with extreme precipita-

tion (e.g., Gimeno et al., 2014; Rutz et al., 2019). There are many open questions

regarding these expansive moisture transports in the tropics and how they differ from

atmospheric rivers in the midlatitudes, which are better characterized (e.g., Espinoza

et al., 2018). The sources of water, for instance, remain unclear. Jasechko et al.

(2013) use isotope measurements to show that transpiration is the largest source of

water over continents, representing 80–90% of terrestrial evapotranspiration, though

other studies contend that such partitioning is subject to large uncertainties (e.g.,

Schlesinger and Jasechko, 2014; Ellison et al., 2017). Beyond the origins of the mois-

ture, how do these tropical atmospheric ‘rivers’ meander across borders, how variable

are their flows, and how do they vary according to large-scale conditions?

These transcontinental moisture flows produce rainfall that feeds lakes and rivers,

yet too often such bodies of water are considered as national entities. Political conflicts

often find root in river systems, such as Egypt, Sudan, and Ethiopia’s conflicts over

the Nile (e.g., Swain, 1997; Carlson, 2013). There is an impression that ‘Egypt is
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the Nile’ when examining a map of its population density (e.g., as shown in Fig. 1

of Haars et al. (2016)), illustrating the preeminence of these freshwater sources for

human welfare and livelihood. Yet the main source of the Nile is the Ethiopian upper

Blue Nile Basin (e.g., Mellander et al., 2013), and rainfall in Ethiopia has its origins,

in part, from moisture recycling from rainforests in the Congo.

How would deforestation affect these extensive tropical atmospheric rivers? At-

tributing precipitation changes to such human influences must be treated with cau-

tion. Ellison (2018), however, suggest that deforestation in West Africa may have

decreased Nile flows from Ethiopia in the last decades of the 20th century. In other

African regions, Keys et al. (2016) estimate that up to 40% of sub-Saharan rainfall is

presently due to moisture recycled by vegetation. Is the ongoing famine in Madagas-

car, for instance, in any way connected to ongoing deforestation in the Congo River

basin? Similar questions about the influence of deforestation of atmospheric circu-

lation and precipitation for the Amazon region (e.g., Coe et al., 2017; Staal et al.,

2018), and southeast Asian regions (e.g., Paul et al., 2016).

Tropical atmospheric moisture flows and their interactions with land are not yet

fully understood, and they have never been governed, as would be a river that crosses

international borders on land. Storm-resolving models, in concert with remote sensing

and in situ observations, are a new tool and potentially have advantages for study-

ing these atmospheric moisture flows and precipitation compared to GCMs. There

are indications that storm-resolving models may better represent precipitation than

GCMs with certain well-documented deficiencies, such as raining too early in the day

and too frequently compared to observations (e.g., Palmer and Stevens, 2019; Stevens

et al., 2020a). The influences of deforestation on atmospheric water flows could po-

tentially be studied by selectively changing the evaporative capacity over land to

reflect how forests modulate water flows compared to deforested areas. Increasing

physical uncertainty about these atmospheric moisture flows and precipitation would

provide valuable information for scientists, stakeholders, and policymakers. It there-

fore seems reasonable to approach these questions with a diversity of tools, and new

storm-resolving models complement existing studies using in situ observations, satel-
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lite products, and GCMs. Idealized bulk models, similar to those used in this thesis,

have provided insights to land-atmosphere couplings (e.g., Betts, 2000; Cronin, 2013)

and could potentially be used in an exploration of the influence of forests on atmo-

spheric moisture variability.

8.2.4 Final thoughts

Behind the apparent steadiness of the trades, as evoked by Pierre Loti, with its

“same regular breath, warm, exquisite to breathe; and the same transparent sea, and

the same small white clouds”, a more dynamic picture emerges. Ideas in this thesis

allow for proposing new conceptual models of the lower trade-wind atmosphere and

a more active role for cloud mixing processes in determining its vertical structure,

and falsifying a strong trade-wind cloud response to warming, based on clouds being

dynamically, rather than thermodynamically controlled. I hope that this thesis was

at times enjoyable to read. Participating in EUREC4A was a tremendous opportunity

to be immersed in the natural environment that I study and approach these questions

with first-hand experience, having collected data, watched clouds form and dissipate,

and imagined the circulations that fuel these clouds. There remains much to be

understood about the trades and how they will evolve with warming. I can only

hope that some of the ideas in this thesis can help improve our understanding of the

surprises still hidden in the clouds.
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Chapter 9

Additional materials

A list of publications as first or co-author is included at the end of this manuscript.

As a final note, another part of my research, developed with Peter Huybers, in-

volves studying aerosols and their multifaceted influences, on radiation and the cli-

mate system, as well as on paintings. Regarding the former, our recent paper Albright

et al. (2021b) is included after the list of publications, at the end of this thesis. This

work uses a Bayesian model of aerosol forcing and Earth’s multi-time-scale tempera-

ture response to radiative forcing to understand the origins of different lower bounds

on aerosol forcing. We first demonstrate the ability of a simple aerosol model to

emulate aerosol radiative forcing simulated by 10 general circulation models. A joint

inference of climate sensitivity and effective aerosol forcing from historical surface

temperatures is then made over 1850–2019. We obtain a maximum likelihood esti-

mate of aerosol radiative forcing of -0.85 Wm−2 (5–95% credible interval from -1.3 to

-0.50 Wm−2) for 2010–19 relative to 1750. A relatively tight bound on aerosol forcing

is obtained from the structure of temperature and aerosol precursor emissions and,

particularly, from the rapid growth in emissions between 1950 and 1980. Obtaining

a 5th percentile lower bound on aerosol forcing around -2.0 Wm−2 requires prescrib-

ing internal climate variance that is a factor of 5 larger than the CMIP6 mean and

assuming large, correlated errors in global temperature observations. Ocean heat

uptake observations may further constrain aerosol radiative forcing but require a bet-

ter understanding of the relationship between time-variable radiative feedbacks and

radiative forcing.

Regarding the latter, after studying aerosol forcing over the instrumental period,

we look further back in time to study the influence of 19th century air pollution in
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London and Paris. We present evidence that trends in paintings by J.M.W. Turner

and Claude Monet depict trends in historical air pollution. The abstract of this paper,

which is in preparation, is reproduced here.

Paintings by Turner and Monet depict

trends in 19th century air pollution

Abstract: Anthropogenic aerosol emissions increased greatly during the 19th cen-

tury as a result of industrialization (Fouquet, 2011), particularly in Western European

cities, leading to an optical environment having less contrast and more intensity (Cor-

ton, 2015; Horvath, 1971; Kim and Kim, 2005). Here we argue that the stylistic trends

from more figurative to impressionistic styles in J.M.W. Turner and Claude Monet’s

paintings in London and Paris over the 19th century are, at least in part, a response

to changes in their local optical environment. In particular, we show that changes

in local SO2 emissions are a highly statistically-significant explanatory variable for

trends in the contrast and coloration of Turner and Monet’s works, including after

controlling for time trends and subject matter. Trends in contrast and coloration

across the 19th century are quantitatively similar to differences between pairs of mod-

ern clear-sky and polluted photographs. It has previously been shown that paintings

by artists including Vincent van Gogh and Edvard Munch render specific atmospheric

phenomena (Neuberger, 1970; Olson et al., 2003; Baker and Thornes, 2006; Zerefos

et al., 2007, 2014; Fikke et al., 2017). Our results indicate that longer-term stylistic

trends are also informed by physical atmospheric phenomena.
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ABSTRACT: A variety of empirical estimates have been published for the lower bounds on aerosol radiative forcing,

clustered around 21.0 or 22.0Wm22. The reasons for obtaining such different constraints are not well understood. In

this study, we explore bounds on aerosol radiative forcing using a Bayesian model of aerosol forcing and Earth’s

multi-time-scale temperature response to radiative forcing. We first demonstrate the ability of a simple aerosol model

to emulate aerosol radiative forcing simulated by 10 general circulation models. A joint inference of climate sensitivity

and effective aerosol forcing from historical surface temperatures is then made over 1850–2019. We obtain a maximum

likelihood estimate of aerosol radiative forcing of20.85Wm22 (5%–95% credible interval from21.3 to20.50Wm22) for

2010–19 relative to 1750 and an equilibrium climate sensitivity of 3.48C (5%–95% credible interval from 1.88 to 6.18C). The
wide range of climate sensitivity reflects difficulty in empirically constraining long-term responses using historical tem-

peratures, as noted elsewhere. A relatively tight bound on aerosol forcing is nonetheless obtained from the structure of

temperature and aerosol precursor emissions and, particularly, from the rapid growth in emissions between 1950 and 1980.

Obtaining a 5th percentile lower bound on aerosol forcing around22.0Wm22 requires prescribing internal climate variance

that is a factor of 5 larger than the CMIP6 mean and assuming large, correlated errors in global temperature observations.

Ocean heat uptake observations may further constrain aerosol radiative forcing but require a better understanding of the

relationship between time-variable radiative feedbacks and radiative forcing.

KEYWORDS: Aerosol radiative effect; Forcing; Bayesian methods; Idealized models; Internal variability

1. Introduction

Historical aerosol forcing is a major source of uncertainty

in Earth’s energy budget, with attendant consequences for

observation-based estimates of the transient climate response

(TCR) and equilibrium climate sensitivity (ECS) (Andreae

et al. 2005; Otto et al. 2013; Forster 2016; Knutti et al. 2017).

The most recent comprehensive review of anthropogenic

aerosol radiative forcing Faer indicates a 5%–95% confidence

interval from 22.0 to 20.40Wm22 relative to a preindustrial

baseline (Bellouin et al. 2020, sections 10 and 11 therein). This

range of Faer is broadly consistent with the previous range

from 21.9 to 20.1Wm22 of the Fifth Assessment Report of

the Intergovernmental Panel on Climate Change (IPCC AR5;

Myhre et al. 2013). The magnitude of Faer is inferred from both

process-based constraints and empirical constraints over the

historical climate record. Process-based constraints alone, how-

ever, yield a broad 5%–95% range from 23.5 to 20.40Wm22

(Bellouin et al. 2020), and our focus is understanding empirical

constraints on the lower bound of Faer.

Empirical lower bounds on Faer are based on the inference

that more negative values would imply temperature trends

over parts of the twentieth century that are inconsistent with

observed warming (Bellouin et al. 2020). Specific lower bounds,

however, vary across studies. In one set of studies, lower bounds

cluster in the range from 21.8 to 21.7Wm22 (Aldrin et al.

2012; Skeie et al. 2014, 2018), and, in another, in the range

from 21.3 to 20.70Wm22 (Andronova and Schlesinger 2001;

Forest et al. 2006, 2008; Murphy et al. 2009; Libardoni and

Forest 2011; Stevens 2015). The origins of these discrepant

estimates of Faer are not entirely clear, particularly given that

the frameworks make similar assumptions regarding simplified

aerosol forcing and climate response models and employ sim-

ilar sampling techniques. Differences, however, may stem from

multiple sources, including the formulation of the forward

model, sensitivity to prior distributions, choice of global or

regional historical observations, interval of analysis, represen-

tation of observational error and internal climate variability,

uncertainty associated with forcing efficacy, and assumptions

regarding how ocean heat content observations constrain

estimates (Annan 2015; Bodman and Jones 2016; Forest 2018).

In this study we examine lower bounds on Faer using esti-

mates of global-annual historical radiative forcing and surface

temperature since 1850 and simple models of aerosol forcing

and of the temperature response to forcing. We first present a

flexible Bayesian model formulation in section 2. In section 3

we describe the inference of a 21.3Wm22 lower bound on

2010–19 Faer, and in section 4 we explore the origin of these

constraints, along with prospects for further constraints based

upon ocean heat uptake. Given its focus on drawing physical

insight from simple models, our study can be considered to

occupy a rung on the hierarchical approach to climate science

(Hoskins 1983; Held 2005; Polvani et al. 2017), complementing
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analyses from more comprehensive models (Pincus et al. 2016;

Kretzschmar et al. 2017).

2. Bayesian model

We use a model that is an extension of the linear response

framework of Proistosescu and Huybers (2017). This simple

framework uses temporal Green’s functions to represent the

response of global-mean surface temperature and net heat

uptake to an imposed radiative forcing. The model is able to

emulate the joint evolution of global-average surface temper-

ature and net heat uptake across an ensemble of general cir-

culation models (GCMs) runs from phase 5 of the Coupled

Model Intercomparison Project (CMIP5). Here we extend the

model to represent the radiative forcing associated with an-

thropogenic aerosol and volcanic emissions in greater detail.

Some previous studies have used regionally resolved simple

models to bound climate sensitivity and Faer (e.g., Andronova

and Schlesinger 2001; Forest et al. 2002; Skeie et al. 2014).

Although using regional temperature and heat uptake trends

makes use of more information, it also engenders considerable

complexity that is not easily accounted for. For example,

hemispheric energy balance constraints ignore variations in

cross-equatorial heat transport (Skeie et al. 2014; Bellouin

et al. 2020), whereas models with constant hemispheric- or

zonal-mean feedbacks are unlikely to reproduce the time de-

pendence of the net radiative feedback that is thought to be

primarily controlled by east–west equatorial temperature gradi-

ents (Dong et al. 2019). Furthermore, inferences of Faer and cli-

mate sensitivity were found to be sensitive to regional differences

in surface temperature observational estimates (Libardoni and

Forest 2011, 2013), and regional uncertainties in surface tem-

peratures since 1850 are not yet fully quantified (Chan and

Huybers 2019; Davis et al. 2019).

a. Modeled and observed temperatures

Over the historical record, the temperature response to radia-

tive forcing is well captured by linear models (e.g., Hasselmann

et al. 1993; Held et al. 2010; Geoffroy et al. 2013; Caldeira and

Myhrvold 2013; Haustein et al. 2019). Proistosescu and Huybers

(2017) generalized the response of these linear models as a

superposition of three independent linear modes, representing

the dominant eigenmodes of the climate system:

T
forced

(t)5 �
3

n51

�
a
n
T

23

t
n
F
23

�
exp(2t/t

n
)+F

net
(t) . (1)

The term T23, or ECS, is the equilibrium climate response to a

radiative forcing per doubling of atmospheric CO2, F23. Each

mode has a response time scale tn and contributes a fraction an

of the equilibrium response. The forced temperature response

Tforced is obtained by convolving each eigenmode with the net

radiative forcing Fnet and summing across all modes. Convolution

in Eq. (1) is indicated by the star, and t21
n is a normalizing

factor that makes the integral
Ð t5‘

t5o
t21
n exp(2t/tn) equal one.

Following Proistosescu and Huybers (2017), we employ

three eigenmodes because fewer modes result in systematic

residuals in fits to GCM simulations during initial model

adjustment to increased greenhouse gas forcing, whereas ad-

ditional eigenmodes do not improve the fit, as judged by a

Bayesian information criterion. These three modes, moreover,

correspond to annual, decadal, and centennial response times

to forcing, consistent with foregoing work (e.g., Caldeira and

Myhrvold 2013; Tsutsui 2017; Cummins et al. 2020; Leach

et al. 2021).

We assume that the difference between observed global-

annual historical temperatures Tobs and the forced tempera-

ture response Tforced is due to a combination of observational

uncertainty and unforced internal variability. The difference

between observations and the forced response is modeled as a

multivariate Gaussian,

P(T
forced

2T
obs

);N(0, S
2
), (2)

with the covariance matrix S representing both internal vari-

ability and observational error:

S
2 5 rji2jjs2

int 1 d
i,j
s2
obs . (3)

Internal variability, the first term on the right-hand side of

Eq. (3), is represented as a first-order autoregressive, or AR1,

process with autocorrelation coefficient r in keeping with

earlier studies (e.g., Frankignoul and Hasselmann 1977; Feldstein

2000; Aldrin et al. 2012; Johansson et al. 2015). Observational

uncertainty is represented as uncorrelated error by the second

term on the right-hand side of Eq. (3), with di,j equaling 1 when

i equals j and 0 otherwise.

We estimate the distribution of internal climate variability

using 39 CMIP6 preindustrial control simulations of detrended

global-mean temperature, wherein each time series is the last

400 years of the control run (Parsons et al. 2020). Internal

variability is estimated as s2
int 5 0:0196 0:0118C2, with values

equaling the mean and standard deviation across these 39

simulations. Following Schneider and Neumaier (2001), we

estimate an AR1 coefficient, r 5 0.57 6 0.16. By way of

comparison, 41 CMIP5 control simulations (Taylor et al. 2011)

yield s2
int 5 0:0176 0:0148C2 and r5 0.556 0.18. Similarly, for

the 40-member Community Earth System Model version 1

Large Ensemble (CESM1 LE) (Kay et al. 2015), we obtain

s2
int 5 0:0106 0:00198C2 and r 5 0.46 6 0.07. Because the

CESM1 LE includes only forced runs, we use the ensemble

mean of global-annual surface temperatures as the forced

component and attribute ensemble spread to internal vari-

ability. We specify r as a free parameter in the inversion and

use these results as a point of comparison because the appro-

priate value is not obvious (Bodman and Jones 2016). In our

inversion, we set the variance associated with internal vari-

ability equal to the CMIP6 ensemble mean, s2
int 5 0:0198C2.

Allowing for larger internal variability by employing the

CMIP6 mean, rather than the CMIP5 or CESM1 LE mean,

provides a more conservative estimate of the constraints placed

on aerosol forcing by historical temperatures.

For historical temperature observations we use a version of

the HadCRUT4 dataset developed by Cowtan andWay (2014)

that they refer to as version 2.0. Temperature data span 1850–2019

and are referenced to a 1960–90 baseline.We use time-variable

values for s2
obs, squaring the standard deviation estimated by
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Cowtan and Way (2014), which decreases from 0.078C in 1850

to 0.038C in 2019. Using NOAA temperature observations and

error estimates (Zhang et al. 2019) yields qualitatively similar

results, which is unsurprising given the agreement of different

temperature products in the global average. Accounting for

correlated error structures within observational estimates

(Morice et al. 2012; Karl et al. 2015; Cowtan et al. 2015; Chan

et al. 2019; Davis et al. 2019) would increase the influence of

observational error, and we discuss this possibility further in

section 4c.

b. Anthropogenic aerosol forcing model

We follow Stevens (2015) in representing aerosol radiative

forcing as a log-linear function of global-annual anthropogenic

aerosol precursor emissions. We, however, extend the Stevens

(2015) model to include not only SO2 emissions, but also

contributions from black carbon, B, and organic carbon, O, in

units of Tg of each per year:

F
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The first three terms on the right-hand side represent the direct

effects of aerosol–radiation interactions, wherein sulfur diox-

ide and organic carbon are expected to have a cooling effect,

whereas black carbon could have a warming effect (Penner

et al. 1994; Chylek and Wong 1995).

The last term represents aerosol–cloud interactions, defined

here as the first indirect, or Twomey, effect (Twomey 1977).

This logarithmic term follows Charlson et al. (1992), yet is a

highly simplified term given the complex processes underlying

aerosol–cloud interactions (Boucher et al. 2013). Whereas the

aerosol direct effect is proportional to atmospheric aerosol

burden, assumed to follow linearly from SO2, B, and O, the

indirect effect of cloud brightening involves the ratios of SO2 to

the natural aerosol background, So, and the sum of B and O to

their natural aerosol background, Bo 1Oo, and is represented

as becoming saturated (Twomey 1977;Wigley and Raper 1992;

Boucher and Pham 2002). A further rationale for the func-

tional form of Eq. (4) is provided in Stevens (2015, appendices

A and B therein). For global-annual SO2, B, and O emissions,

we employ the most recent estimate from O’Rourke et al.

(2021), although using estimates from Hoesly et al. (2018) or

Smith et al. (2011) gives qualitatively similar results for the

period of overlap.

Equation (4) permits for more detail than empirical studies

that have rescaled IPCC AR4 or AR5 aerosol effective radi-

ative forcing (e.g., Padilla et al. 2011; Aldrin et al. 2012;

Schwartz 2018), yet still involves potentially consequential

simplifications. For example, we neglect nonsulfate and non-

carbonaceous precursor emissions, such as nitrate emissions,

which could impact aerosol radiative forcing (e.g., Bellouin

et al. 2011; Hauglustaine et al. 2014). Further, rapid tropo-

spheric adjustments, such as the cloud lifetime effect, are po-

tentially important (Albrecht 1989), though uncertain (Stevens

and Feingold 2009; Gettelman 2015; Malavelle et al. 2017).

Finally, aerosol forcing is found to be sensitive to emission

location in some studies (Zhang et al. 2016; Gettelman and

Sherwood 2016; Persad and Caldeira 2019) but insensitive in

others (e.g., Fiedler et al. 2019).

To check whether Eq. (4) adequately represents historic

variations in aerosol radiative forcing, we fit it to the effective

aerosol radiative forcing from 10 CMIP6 models participat-

ing in the Radiative Forcing Model Intercomparison Project

(RFMIP) andAerosols andChemistryModel Intercomparison

Project (AerChemMIP) (Pincus et al. 2016). Figure 1 shows the

least squares fit of Eq. (4) to these RFMIP and AerChemMIP

simulations. After applying a 5-yr smoothing to the effective

aerosol radiative forcing, the standard deviation across models

is 0.43Wm22 over 1850–2014. Over this interval, the root-

mean-square residual between each model and the least squares

fit of Eq. (4) has a mean value of 0.09Wm22, ranging from

0.07 to 0.14Wm22. If using solely SO2, the root-mean-square

residual is slightly larger, with a mean of 0.13Wm22, demon-

strating that the inclusion of black and organic carbon im-

proves the simple model fit. This small residual suggests that

Eq. (4) affords sufficient flexibility to emulate the magnitude

and temporal evolution of aerosol radiative forcing generated

by more sophisticated models. That is, contributions to

global-scale aerosol radiative forcing from nonsulfate and non-

carbonaceous aerosols, rapid tropospheric adjustments, and spa-

tial variability in aerosol emissions, as simulated in sophisticated

models, can largely be absorbed by appropriate fitting of Eq. (4).

c. Net radiative forcing

To obtain net radiative forcing Fnet, we sum time series of

Faer with nonaerosol effective radiative forcing from Smith

et al. (2021), which overlap with observed temperatures from

1850 to 2019. These nonaerosol effective radiative forcing time

series are updated AR5 time series that are extended to 2019

using the SSP2.45 scenario (Smith et al. 2021). Nonaerosol

forcing agents include long-lived greenhouse gases, tropo-

spheric and stratospheric ozone, land-use change, black carbon

on snow, contrails, solar variability, and stratospheric water

vapor. These terms together contribute a net positive forcing

over the historical period. We address uncertainties in non-

aerosol forcing by including a scaling parameter gp. We note

that greater forcing uncertainty was estimated in AR5 for

methane (e.g., Etminan et al. 2016; Hoesly et al. 2018) and solar

forcing (e.g., Dudok de Wit et al. 2017). Persisting uncertainty

in these nonaerosol forcing terms in the updated forcing data,

insomuch as they allow for positive trends, is expected to shift

the inferred lower bound on Faer to more negative values

(Stevens 2018).

Volcanic forcing is also taken from Smith et al. (2021), but it

is important to account for the fact that the temperature re-

sponse to volcanic forcing appears to be damped relative to the

temperature response to other forcing. That is, volcanic forcing

appears to have a forcing efficacy less than one (Meinshausen

et al. 2011; Marvel et al. 2016; Ceppi and Gregory 2019). We

admit for uncertainty in the efficacy of volcanic forcing by

introducing a scaling parameter gy. Although our focus is on

anthropogenic aerosol forcing, we account for uncertainties in

volcanic aerosol forcing because of the possibility that it trades

off against Faer. In another approach, Stevens (2015) focused
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on the early record before 1950 as a period of relatively qui-

escent volcanism in order to separate Faer from volcanic forc-

ing. Such a time-limited approach is discussed in section 4a.

d. Bayesian priors and inversion

Our Bayesian model comprises 16 parameters: 6 associated

with aerosol radiative forcing in Eq. (4), 3 associated with

nonaerosol radiative forcing variance and the autocorrelation

of internal variability, and 7 further temperature response

parameters from Eq. (1). Note that the three temperature ei-

genmode weights an are constrained to sum to one, such that it

is only necessary to invert for two eigenmode weights. We

collectively refer to these 16 parameters as u.

Table 1 summarizes the prior distribution specified for each

parameter. Volcanic forcing efficacy gy is assigned a uniform

prior from 0 to 1, consistent with findings of lower efficacy than

for CO2 (e.g., Meinshausen et al. 2011; Marvel et al. 2016;

Gregory et al. 2016). For nonaerosol, nonvolcanic forcing ef-

ficacy gp, we assign a normal prior with mean of 1 and standard

deviation 0.2. Equilibrium climate sensitivity T23 is assigned a

broad uniform prior from 18 to 108C (Sherwood et al. 2020).

The AR1 coefficient for internal variability, r, is specified as

uniform from 0 to 1. Priors for tn and an are normal distributions

with mean and standard deviation taken from Proistosescu

and Huybers (2017). For adjusted forcing to a doubling of

carbon dioxide F23, we follow the Sherwood et al. (2020)

normal prior with a mean of 4.0Wm22 and standard deviation

of 0.3Wm22.

There exist large and long-standing uncertainties associated

with aerosol–radiation interactions (e.g., Bellouin et al. 2013;

Su et al. 2013; Samset et al. 2014) and aerosol–cloud interac-

tions (e.g., Carslaw et al. 2013; Gettelman 2015; Seinfeld et al.

2016; Feingold et al. 2016). The natural aerosol background

parameters, So and Bo 1 Oo, are also uncertain (e.g., Carslaw

et al. 2010; McCoy et al. 2015), despite their being fixed in

previous analyses (e.g., Andronova and Schlesinger 2001;

Aldrin et al. 2012; Skeie et al. 2014). Furthermore, to avoid

circular reasoning (Rodhe et al. 2000; Anderson et al. 2003),

the aerosol forcing prior should not be informed by tempera-

ture trends. Accordingly, we assume broad and uniform priors

for the six aerosol parameters in Eq. (4) (see Table 1) that are

only weakly informative in assuming a uniform distribution

from212 to 0Wm22. The prior constraint that Faer is negative

comes from process-based models (Bellouin et al. 2020). In

comparison, Stevens (2015) bounded Eq. (4) such that present-

day aerosol forcing varied between 21.5 and 0Wm22. Other

analyses have also been found to be sensitive to the choice of

prior (Frame et al. 2005; Hegerl et al. 2006; Annan 2015),

Following Bayes’s rule, we invert for the joint posterior

distribution of our 16 parameters u,

P(ujT
obs

)}P(T
obs

ju)P(u) , (5)

where the likelihood P(Tobsju) is formulated based on the

multivariate Gaussian distribution of the difference between

observed temperature and the forced response of our model:

FIG. 1. Fits of Eq. (4) to time histories of aerosol forcing from 10 CMIP6 models participating in the Radiative

Forcing Model Intercomparison Project (RFMIP) and Aerosols and Chemistry Model Intercomparison Project

(AerChemMIP). Points are 5-yr smoothed values of aerosol forcing anomalies. For RFMIP simulations we cal-

culate aerosol forcing anomalies as the difference of the piClim-Histaer and piClim-control experiments, and for

AerChemMIP simulations we calculate anomalies using the histSST experiment relative to the histSST-piAer

control experiment. The solid line is the least squares fit of Eq. (4) to each CMIP6 model simulation. Best fits

suggest that the highly simplified aerosolmodel we use can approximate the evolution of historical effective aerosol

radiative forcing from more sophisticated models. Furthermore, the parametric uncertainty represented in our

Bayesian framework reflects model uncertainty associated with Eq. (4).
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P(T
obs

ju);N[T
forced

(u), S
2
(u)]. (6)

Sampling is performed using the Metropolis–Hastings algo-

rithm (Metropolis et al. 1953; Hastings 1970), and we run three

chains of one million samples. The first 5000 burn-in samples

are discarded for each chain, and the remainder are thinned

by a factor of 5 to reduce serial correlation. Results are consistent

among chains, indicating that our model is adequately sampled.

Reflecting how observed temperatures are represented, model

temperatures between 1960 and 1990 are removed from each

realization.

3. Results

Table 1 lists the maximum likelihood estimate (MLE) and

5%–95% posterior credible interval ranges for the 16 param-

eters, u, as well as ranges for Faer and aerosol direct and indirect

effect forcing. Modeled and observed temperatures fit well,

with the posterior 5%–95% posterior credible interval cover-

ing 99% of observations (Fig. 2). The credible interval is de-

termined by integrating Eq. (1) using each posterior realization

of u and adding realizations of observational error and internal

variability. A mismatch does appear, however, in the form of

warmer-than-predicted temperatures observed in the early

1940s. This mismatch, noted in other attempts to reproduce

surface temperature from forcing (Folland et al. 2018), likely

arises because of systematic errors in the observations, given

that such a warm anomaly is absent in nearshore land station

temperature records (Cowtan et al. 2018) and is absent from

sea surface temperature records after correcting for systematic

biases associated with engine-room-intake and bucket esti-

mates (Chan and Huybers 2021).

The posterior distribution of Faer is calculated from the joint

posterior distribution of aerosol parameters associated with

Eq. (4) (Table 1). The posterior MLE for Faer between 2000

and 2010, relative to 1750, is20.95Wm22. The lower bound on

Faer is21.4Wm22 using a 5th percentile value or21.5Wm22

using a 1st percentile value. Calculating the lower bound over

2010–19, the posterior MLE for Faer, again relative to 1750,

is20.85Wm22, and its lower bound is21.3Wm22 using a 5th

percentile value (Fig. 2c), or21.4Wm22 using a 1st percentile

value. Themean aerosol direct effect over 2010–19 is20.56Wm22

(from 20.91 to 20.16Wm22 5%–95% credible interval), and

the mean aerosol indirect effect over 2010–19 is 20.45Wm22

(from 20.99 to 20.04Wm22 5%–95% credible interval).

a. Origin of lower-bound constraints on anthropogenic
aerosol forcing

Offsetting covariance among the six aerosol forcing pa-

rameters in Eq. (4) better constrains the overall range of Faer

than its individual components. The natural sulfate back-

ground, So, for instance, covaries with values of b with a

Pearson correlation coefficient of r 5 0.32. Thus, whereas

a more negative value of Faer can come about either through a

greater indirect effect, b, or smaller natural aerosol back-

ground, the combination of these parameters is constrained.

TABLE 1. Model specification for the baseline inversion using temperature and forcing data from 1850 to 2019. Listed are posterior

maximum likelihood estimates (MLE), the associated 5%–95% credible intervals (c.i.), and prior distributions for aerosol forcing pa-

rameters (aSO2
,aB, aO, b, So, and Bo 1 Oo), volcanic efficacy (gy), nonaerosol forcing efficacy (gp), the AR1 coefficient of internal

variability (r), and temperature response parameters (T2x, t1, t2, t3, a1, a1, and F2x). We also report the net aerosol forcing (Faer), aerosol

direct (Faer_d), and aerosol indirect (Faer_i) effects that are calculated from Eq. (4); the joint posterior distributions of aerosol parameters;

and SO2, B, and O time series, as described in section 2b. Aerosol forcing values are for the 2010–19 interval, with values for the 2000–10

interval given in parentheses. The parameter aSO2
has units of W m22 (Tg SO2 yr

21)21 and is multiplied by 103 in the table. Similarly,

parameters aB and aO have units of W m22 (Tg B yr21)21 and W m22 (Tg O yr21)21, respectively, and are multiplied by 103. Columns

m and s are the mean and standard deviation of normal prior distributions.

Units MLE 5% c.i. 95% c.i. Prior distribution Range m s

aSO2
See caption 22.8 25.5 20.37 Uniform 250 to 0 — —

aB See caption 7 0.39 21 Uniform 250 to 50 — —

aO See caption 216 236 28.5 Uniform 250 to 50 — —

b W m22 20.45 20.80 20.039 Uniform 23 to 0 — —

So Tg SO2 97 35 144 Uniform 10–200 — —

Bo 1 Oo Tg B 1 O 31 5.4 57 Uniform 10–60 — —

r — 0.70 0.59 0.77 Uniform 0–1 — —

T23 8C 3.4 1.8 6.1 Uniform 1–10 — —

gy — 0.72 0.59 0.97 Uniform 0–1 — —

gp — 1.01 0.75 1.3 Normal — 1 0.2

t1 yr 0.67 0.30 1.1 Normal — 0.7 0.25

t2 yr 12 4.9 21 Normal — 9 7

t3 yr 352 221 482 Normal — 354 80

a1 — 0.20 0.069 0.38 Normal — 0.24 0.15

a2 — 0.38 0.12 0.57 Normal — 0.32 0.15

F23 W m22 4.0 3.5 4.5 Normal — 4.0 0.3

Faer W m22 20.85 (20.95) 21.3 (21.4) 20.50 (20.56) Uniform 212 to 0 — —

Faer_d W m22 20.56 20.91 20.16 Uniform 26 to 0 — —

Faer_i W m22 20.45 20.99 20.04 Uniform 26 to 0 — —
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The two direct effect coefficients for carbonaceous aerosols, aB

and aO, are anticorrelated, with r520.82. Aerosol direct and

indirect effects also trade off in capturing variability in observed

temperature trends. Parameters aSO2
and b compensate, with

r 5 20.54, as do the aerosol direct and indirect effects,

r 5 20.56, in explaining observed temperature trends, such

that the model cannot readily distinguish the aerosol direct

from indirect effect. The parameter covariance, even in this

highly simplified model, highlights the need for uncertainty

quantification in higher-dimensional models, as discussed by

Lee et al. (2016) and Carslaw et al. (2018).

We find general agreement between the MLE aerosol forcing

parameters and the best-fit parameters across the 10 simulations

in Fig. 1. The MLE b of 0.45Wm22 is qualitatively similar to the

best-fit b of 0.42Wm22. Our MLE aSO2
of 2.8 is smaller than the

best-fit value of 3.7Wm22 (Tg SO2yr
21)213 1023, but ourMLE

Soof 97TgSO2 is also slightly smaller than the best-fit value across

the simulations of 107 Tg SO2, such that the overall effect is

similar. The 10 simulations diverge on the sign and magnitude

of the best-fit direct effect parameters for black and organic

carbon, aB and aO, consistent with the notion that the direct

effect parameters trade-off in capturing observed temperature

trends. Note that the Bayesian framework better captures the

covariance among these parameters than does the least squares

fit used earlier for purposes of initial characterization.

Posterior constraints on the volcanic forcing efficacy pa-

rameter gy give a MLE value of 0.72 and a 5%–95% posterior

credible interval of 0.59–0.97, indicating that the efficacy of

volcanic forcing for producing a temperature response is less

than that of carbon dioxide forcing. Previous estimates of

volcanic efficacy range from 0.5 to 0.7 (e.g., Chylek et al. 2020;

Marvel et al. 2016), consistent with our estimate, although

these values were for AR5 volcanic forcing data. Performing

our inversion with AR5 forcing data produces a MLE volcanic

efficacy parameter of 0.67. Lehner et al. (2016), however,

suggest that it is premature to infer that volcanic forcing has

reduced efficacy because of the coincidence of volcanic erup-

tions and El Niño events over the twentieth century. A more

detailed study of volcanism, El Niño events, and internal cli-

mate variability, possibly using this same framework, could be

pursued in future work.

Perhaps surprisingly, gy does not substantially contribute to

uncertainty in Faer. The magnitude of Faer and the volcanic

forcing efficacy are weakly correlated (r520.10). This lack of

correlation despite both terms being negative forcing reflects

that volcanic forcing tends to decay more rapidly and shows

little temporal covariance with trends in Faer. Conditional on

the 5% aerosol forcing lower bound, the MLE of gy is 0.71,

with a similar posterior distribution to the posterior distribution

that is not conditioned on 5% aerosol forcing. These results

suggest that it is less essential to subselect time periods associ-

ated with low volcanic activity in order to isolate Faer, at least

when all terms are cointegrated within a Bayesian framework.

Unlike for volcanic forcing, we find that uncertainty in the

efficacy of nonaerosol forcing gp, relative to values in Smith

et al. (2021), is an important contribution to the uncertainty in

Faer. The MLE of gp is 1.01 with a 5%–95% posterior credible

interval of 0.75–1.3. Conditional on the 5th percentile of Faer,

the MLE of gp is 1.3, giving the expected result that greater

nonaerosol forcing allows for more negative values of Faer.

Conversely, if gp is assigned its MLE of 1.01, the 5th percentile

of Faer is 21.1Wm22.

FIG. 2. Posterior estimates of temperature and forcing using data

from 1850 to 2019. (a) Observed temperatures from HadCRUT4

(red) and the maximum likelihood estimates (MLE) of tempera-

ture (black), where each is referenced to an 1850 baseline. Also

shown is temperature if aerosol radiative forcing is conditioned on

its 5th percentile lower bound between 2010 and 2019 of21.3Wm22

(light blue). (b) Net forcing comprising contributions from green-

house gases, anthropogenic and volcanic aerosols, land-use change,

tropospheric and stratospheric ozone, black carbon on snow, contrails,

stratospheric water vapor, and solar variability. (c) Anthropogenic

aerosol radiative forcing (Faer) in terms of its MLE (black line) and its

5th percentile lower bound averagedover 2010–19 (blue line). Shading

indicates 50% (dark gray) and 90% (light gray) credible intervals

for annual averages.
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For the first-order autoregressive coefficient, r, we find a

MLE value of 0.70 with a 5%–95% credible interval of 0.59–

0.77. The MLE value of r corresponds to an autocovariance

time scale of t 5 21/ln(r), or 2.5 years, with a 5%–95%

credible interval of 1.9–3.8 years. Note that Faer is only weakly

sensitive to the time scale of internal variability, as represented

using an AR1 process and drawn from the posterior distribu-

tion of r. If r is assigned its MLE value of 0.70, the 5th per-

centile of the Faer distribution for 2010–19 is unchanged

at21.3Wm22. The narrow distribution of the autocovariance

time scale t may reflect that our representation does not cap-

ture low-frequency, interdecadal variability. In section 4c we

discuss an extension that better accounts for internal variability

at longer time scales.

b. Relationship with climate sensitivity

Our MLE climate sensitivity is 3.48C and has a broad 5%–

95% posterior credible interval of 1.88–6.18C. The higher mean

and upper bound on ECS than in Sherwood et al. (2020) re-

flects contributions from the long-response time scale, which is

almost unrealized in the historical record (Proistosescu and

Huybers 2017). The loading on each eigenmode equals an

times ECS and has an average that increases from 0.67 (t1 5
0.67 yr) to 1.10 (t2 5 12 yr) to 1.638C (t3 5 352 yr). The uncer-

tainty on each eigenmode also increases with times scales:

standard deviations for the loading on each eigenmode increase

from 0.258 to 0.418 to 1.28C.
Although not the focus of this study, it appears the differ-

ence in how informative the transient response is of the equi-

librium response helps explain the wide range of foregoing

upper bounds on climate sensitivity from empirical studies

(e.g., Bodman and Jones 2016). Recent work suggests that as

SST patterns evolve from their transient to their equilibrium

state, they modulate the net radiative feedback, and, thus, the

effective climate sensitivity (Andrews et al. 2015). Representing

zonal equatorial temperature gradients appears especially

important for capturing changes in radiative feedbacks (Dong

et al. 2019). The resulting difference between the transient and

long-term feedbacks is called a ‘‘pattern effect’’ and needs to

be accounted for when inferring ECS from the fast response

manifested over the historical record (e.g., Sherwood et al.

2020). Such a pattern effect is generally missing from previous

simple models used in inversions of aerosol forcing and climate

sensitivity, leading to a strong covariance between the transient

and equilibrium feedbacks. In contrast, the pattern effect

exhibits a large spread in general circulation models (Andrews

et al. 2018) and cannot currently be constrained from the his-

torical climate record (Sherwood et al. 2020).

The Proistosescu and Huybers (2017) model is a general

approximation of the leading modes of response that allows

for the presence of a pattern effect by allowing for different

radiative feedbacks between the fast and slow modes. In this

regard, our model appears more flexible than previous box

models used for inferring Faer. The three modes can be in-

terpreted as representing time-evolving warming patterns as-

sociated with, for example, warming over land on annual time

scales, the ocean mixed layer on decadal time scales, and the

eventual warming of the deep ocean on centennial time scales.

Each mode is assumed to have a different underlying surface

temperature pattern and, thus, a different radiative feedback.

As the relative loading of each mode changes, so does the SST

pattern and the net radiative feedback. The lack of constraints

on the long-term feedback and, thus, on the ECS can be un-

derstood as a consequence of the fact that this long time scale is

almost entirely unrealized in observations.

Previous inverse (e.g., Forest 2018) or coupledmodel studies

(e.g., Andreae et al. 2005; Chylek et al. 2016) found a strong

relationship between Faer and climate sensitivity, whereas

Smith et al. (2020) do not find such a relationship in the CMIP6

ensemble. We obtain a correlation between the net forcing and

the fast-mode response, here defined as the summed response

of the annual and decadal modes, of r520.76, or between the

net forcing and climate sensitivity of r520.52. The correlation

between Faer and ECS, however, is only r5 0.01 on account of

uncertainty in the relationship between the fast-mode response

and ECS as well as between Faer and Fnet. That said, this low

correlation does not fully capture dependencies between Faer

and ECS. Conditioned on the 5th percentile value of the cli-

mate sensitivity distribution, the 2010–19 Faer 5th percentile

value is21.1Wm22, whereaswhen conditioned on 95th percentile

climate sensitivity the 5th percentile ofFaer becomes21.3Wm22.

Figure 3 illustrates how, despite the lack of a linear relation-

ship, the magnitude of Faer sets the range of other parameters,

including the net forcing and the temperature response across

different time scales.

4. Discussion

The Bayesian framework allows us to explore how the obser-

vational record constrains Faer and climate sensitivity through

quantifying how different processes combine to allow fitting to

the data within uncertainties, similar to the ‘‘storyline’’ ap-

proach outlined for constraining climate sensitivity in Stevens

et al. (2016). We are particularly interested in reconciling our

lower bound with more negative estimates (Bellouin et al.

2020) and, thus, examine several modifications that would alter

our 2010–19 5th percentile Faer estimate of 21.3Wm22 to

values around 22.0Wm22.

a. Constraining aerosol forcing using pre-1950 data versus

the full record

Stevens (2015) used a shorter interval less influenced by

volcanic activity and obtained a 2005 Faer lower bound

of 21.3Wm22 when employing global energy balance argu-

ments. If only fitting our model using temperature and forcing

from 1850 to 1950, we instead obtain a MLE Faer of21.4Wm22

and a 5th percentile lower bound of22.0Wm22 for the 2000–10

interval. For 2010–19, we obtain a MLE Faer of 21.3Wm22

and a 5th percentile lower bound of 21.8Wm22.

We illustrate the origin of the more negative bound on Faer

than in Stevens (2015) when only fitting to data before 1950 by

sequentially modifying three parameters within our model.

First, we used broad priors on the aerosol direct effect parameters,

aSO2
, aB, and aO, thus allowing for a more linear relationship

between Faer and precursor emissions, which addresses the

particular critique of Stevens (2015) by Kretzschmar et al. (2017)
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and Booth et al. (2018) that aerosol forcing could be more linear

than logarithmic with emissions. If aSO2
, aB, and aO are fixed at

their MLE values, the 5th percentile lower bound on 2000–10

Faer becomes 21.7Wm22. Second, we incorporated non-

aerosol forcing terms beyond solely long-lived greenhouse gas

forcing. Excluding all but these greenhouse gas forcing terms

gives a 5th percentile of Faer equal to 21.6Wm22. Finally, we

allowed for uncertainty in temperature observations and in-

ternal variability that, if excluded, yields a 5th percentile bound

of 21.6Wm22. Considering these modifications jointly, we

can obtain values commensurate with Stevens (2015). Fixing

aerosol direct effect parameters at theirMLE values, excluding

all radiative forcing except that from long-lived greenhouse

gases, and excluding uncertainty in temperature observations

and internal variability yields a 2000–10 5th percentile aerosol

forcing lower bound of 21.2Wm22. This bound is slightly

tighter than the Stevens (2015) bound, possibly on account

of employing temperature trends rather than comparing net

forcing in 1850 and 1950.

Our approach addresses several critiques of the Stevens

(2015) framework (Kretzschmar et al. 2017; Booth et al. 2018;

Stevens 2018) and indicates that the approach taken by Stevens

(2015) gives a larger-magnitude lower bound on aerosol forc-

ing when accounting for additional uncertainties. The fact that

our baseline estimate of aerosol radiative forcing is similar to

Stevens (2015) is a coincidence whereby greater uncertainties

are offset by additional constraints available from considering a

longer time series and additional structure in the aerosol emissions

and temperature histories.

b. The role of temporal structure in separating forcing
from sensitivity

It has been suggested that a primary source of uncertainty

in constraining aerosol forcing is compensation between

radiative forcing and climate sensitivity in explaining his-

torical temperature trends (Andreae et al. 2005; Kiehl 2007;

Knutti et al. 2017). This compensation appears when re-

stricting the analysis prior to the 1950s, but less so afterward.

Whereas the anticorrelation between ECS and Faer is weak

using data from 1850 to 2019 (r 5 20.01), after restricting to

1850–1950 the anticorrelation increases to 20.30. Using only

pre-1950 data, we obtain a highly uncertain ECS distribution

FIG. 3. Parameter covariance among aerosol forcing (Faer), net radiative forcing (Fnet), climate sensitivity (ECS), and the fast-mode

temperature response to forcing (annual contributions from a13ECS plus decadal from a23ECS). Binning aerosol forcing by quartiles,

shown from the lower quartile (blue) to upper quartile (yellow), illustrates how aerosol forcing influences the permissible range of other

terms. The inset shows Pearson correlation coefficients between pairs of terms.
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with a 5%–95% credible interval of 2.38–9.18C and a MLE

value of 5.28C.
In our framework, limiting model fitting to temperatures

from 1850 to 1950 results in a posterior temperature distribu-

tion with toomuch cooling between 1950 and 1980, followed by

too much warming (Figs. 4a,b). That is, increased aerosol

precursor emissions between 1950 and 1980 cause excessive

cooling, and a plateau in emissions after 1980 unmasks the high

climate sensitivity and produces excessive warming relative to

observations. We infer that the temporal evolution of aerosol

precursor emissions and temperature post-1950 results in a

reduced capacity for aerosol forcing and sensitivity to trade off

against each other in explaining temperature trends.

Previous studies have also pointed to the important role of

differences in the post-1950 evolution of aerosol forcing and

temperature trends. In the GFDL Global Atmosphere and

LandModel AM4.0/LM4.0 (Zhao et al. 2018) and DOEE3SM

CoupledModel version 1 (Golaz et al. 2019), strongly negative

Faer and high climate sensitivity led to mismatches between

modeled and observed temperatures. In particular, these

models simulated reduced warming in the 1960s–1980s, fol-

lowed by an excessive warming trend after aerosol emissions

peak around 1980. When using the Held et al. (2010) two-layer

energy balance model to emulate their coupled model tem-

perature response, Golaz et al. (2019) found it necessary to

reduce Faer from 21.65Wm22 to approximately 20.8Wm22

and ECS from 5.38 to 2.78C in order to improve the fit of

modeled to observed temperatures, qualitatively in keeping

with our findings.

c. Increased internal or observational variability

The treatment of low-frequency internal variability was high-

lighted by Forest (2018) as a key open issue for constraining Faer.

Indeed, an important difference in foregoing inverse model

studies that obtained a lower bound around 22.0Wm22 ap-

pears to be the fact that they allow for more low-frequency

internal variability or observational error (e.g., Aldrin et al.

2012; Skeie et al. 2014, 2018). We examine how the lower

bound of Faer depends on the specification of the variance of

internal variability s2
int and its autocorrelation r. An increase in

r is motivated by the appearance of greater decadal autocor-

relation than would be expected if temperature variations

followed an AR1 process (e.g., Vyushin and Kushner 2009;

Laepple and Huybers 2014), and that observational products

show temperature trends that lie outside the range of tem-

perature variability simulated by coupled models in historical

runs (e.g., Zhou et al. 2016; Coats andKarnauskas 2017; Hegerl

et al. 2018; Parsons et al. 2020).

One means to obtain an estimate of the autocorrelation of

low-frequency internal variability is to calculate the AR1

coefficient r from global-mean, detrended temperature time

series from 39 CMIP6 coupled model control runs using 10-yr

block-averaged temperatures. From block-averaged tem-

peratures, we obtain a mean AR1 coefficient of 0.33 across

the 39 simulations. This value implies a mean annual AR1

coefficient of 0.90, where rannual 5 (rblock)
1/n and n is the

number of years in the block. We obtain a 5th percentile of

Faer equal to 21.7Wm22 (MLE 21.1Wm22) for 2000–10,

or 21.6Wm22 (MLE 21.0Wm22) for 2010–19 after increas-

ing r from 0.5 to 0.90 and doubling innovation variance s2
int

from its CMIP6 ensemble mean value of 0.0198 to 0.0368C2

(Figs. 4c,d). Increasing innovation variance to 0.0378C2 is

within the range simulated by 39 CMIP6 control simulations,

which have a maximum value of 0.0608C2. These modifications

increase the variance of the AR1 process fivefold, where var-

iance is s2
int/(12 r2annual).

Similar to increased internal variability, representing greater

error in observations also permits for a more negative lower

bound on Faer (Figs. 4e,f). In particular, low-frequency obser-

vational errors in sea surface temperatures could occur at the

multidecadal time scales of instrumentation changes (Chan

et al. 2019). We add AR1 observational error, similar to the

term for internal variability in Eq. (3), with observational error

variance estimated as the offset between modeled and ob-

served temperatures between 1936 and 1948, which has a mean

of 0.148C, or 0.028C2 (e.g., Fig. 2a). If we assume this variance

of 0.028C2 and an AR1 coefficient of 0.9, independent of in-

creasing internal variability, we obtain a 5% Faer lower bound

of 21.6Wm22 for 2000–10, or 21.5Wm22 for 2010–19.

Estimating bounds using both increased internal variability

and observational error leads to aMLE of21.2Wm22 and 5%

lower bound on Faer of 21.9Wm22 for 2000–10, or 21.8Wm22

for 2010–19 (Figs. 4e,f).

d. Ocean heat content

Ocean heat content observations could, conceivably, further

constrain Faer. The covariance between Faer and ocean heat

uptake noted in previous work (e.g., Forest et al. 2002; Forest

2018) argues for inferring both jointly. Skeie et al. (2014) and

Johansson et al. (2015) state the importance of ocean heat

content observations, yet other studies find that incorporating

these observations only weakly constrains climate sensitivity

(Knutti et al. 2002; Aldrin et al. 2012) and is influenced by the

data source, depth covered, and observational uncertainties

(Sokolov et al. 2010).

To explore whether additional constraints on Faer can be

obtained from ocean heat content observations, we compare

the top-of-atmosphere radiative imbalance predicted by our

climate response model with the radiative imbalance estimated

from observed ocean heat content estimates. The Proistosescu

and Huybers (2017) model that we build upon predicts the

global net top-of-atmosphere radiative imbalance Nforced(t)

as the difference between net forcing Fnet and the radiative

response to forcing,

N
forced

(t)5F
net
(t)2 �

3

n51

l
n
T
n
(t) , (7)

where Tn(t) is given by Eq. (1), and ln is the radiative feedback

associated with each mode of the response. Values of Tn(t)

are drawn from our posterior distribution, and values of ln are

the median radiative feedback coefficients from Proistosescu

and Huybers (2017) that were obtained by fitting to CMIP5

simulations.

We compare our results to the top-of-atmosphere radia-

tive imbalance implied by the full-depth ocean heat uptake
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FIG. 4. Posterior estimates of temperature and forcing from various scenarios. (a),(b) Only using data from 1850

to 1950 results in a MLE (solid black line) that predicts warmer temperatures after the 1990s (dashed black line)

than observed (red line). Constraining the model to the 5th percentile of aerosol radiative forcing (solid blue line)

leads to excessive cooling between 1950 and 1990, followed by stronger warming than observed (dashed blue line).

Aerosol radiative forcing is both more negative and more uncertain relative to using the full period (Fig. 2). (c),(d)

Increasing the variance of internal variability by a factor of 5, and (e),(f) additionally including similar low-frequency

observational error, leads to larger credible intervals. Posterior credible intervals are shown at 50% (dark gray) and

90% (light gray) coverage. Observed and simulated temperatures are referenced to an 1850 baseline. (g) Modeled

top-of-atmosphere radiative imbalances (black line) using the median values of CMIP5-inferred radiative damping

parameters [ln in Eq. (7)]. Radiative imbalances are estimated from ocean heat content estimates Zanna et al.

(2019) divided by 0.9. (h) As in (g), but after increasing radiative damping [i.e., ln in Eq. (7)].
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estimates of Zanna et al. (2019), after dividing ocean heat

uptake rates by 0.9, under the assumption that 90% of Earth’s

energy imbalance is absorbed by the ocean (von Schuckmann

et al. 2020). Uncertainties remain, however, regarding how

heat uptake is partitioned among the upper and lower ocean,

atmosphere, cryosphere, and land system (e.g., Hansen et al.

2005; Cheng et al. 2017).

Comparison of our maximum likelihood estimate of the top-

of-atmosphere radiative imbalance against the implied esti-

mate fromZanna et al. (2019) indicates amismatch in the 1940s

and after 1980 (Fig. 4g). Given that the ocean heat uptake

estimated by Zanna et al. (2019) is based upon propagating

SSTs into the ocean interior, the mismatch in the 1940s may be

the result of SST errors during this time period (Cowtan et al.

2018; Chan and Huybers 2021). The fact that our model

produces a larger top-of-atmosphere radiative imbalance than

estimated by Zanna et al. (2019) after 1980, however, suggests

that the recent rate of planetary heat uptake is poorly fit

with climate response parameters estimated from the CMIP5

simulations.

For the median CMIP5 ln parameters, the MLE of the ra-

diative imbalance from 2006 to 2019, referenced to an 1870

baseline, is 1.16Wm22 (0.45–1.94, 5%–95% credible interval).

Sherwood et al. (2020), however, report aMLE of the radiative

imbalance of 0.80Wm22 (0.55–1.04, 5%–95% credible inter-

val) for 2006–18. Discrepancies in ln are also found in recent

work suggesting that coupled GCMs exhibit too little radiative

damping relative to GCMs forced with observed SSTs (Zhou

et al. 2016; Sherwood et al. 2020). The radiative response to

forcing is defined by the second term inEq. (7),R5�3

n51lnTn(t),

and a too small R leads to an overestimate of the top-of-

atmosphere radiative imbalance.

As a heuristic example, we increase ln from their CMIP5-fit

values of l15 1.6, l25 1.4, and l35 0.8Wm22 8C21 to l15 2.2,

l2 5 1.8, and l3 5 0.8Wm22 8C21, increasing the net feedback

over the historical period from 21.45 to 21.95Wm22 K21,

consistent with a Dl 5 0.5Wm22 K21 mean bias between

coupled simulations and simulations prescribed with observed

SST patterns (Sherwood et al. 2020). Increased radiative damping

decreases the predicted top-of-atmosphere radiative imbalance

and increases consistency with ocean heat uptake estimates

(Fig. 4h), withMLE radiative imbalance becoming 0.71Wm22

(from 20.02 to 1.54 5%–95% credible interval).

We are thus concerned that biases in simulated radiative

damping and planetary heat uptake over recent decades im-

plies that emulators trained on coupled models are similarly

biased. Specifically, the discrepancy between the observed

planetary heat uptake and net top-of-atmosphere radiative

imbalance from coupled models can be thought of as a ‘‘ghost

forcing.’’ Experiments with prescribed SSTs suggest that this

ghost forcing is due to historical SSTs causing a stronger ra-

diative damping and more negative cloud feedback than SSTs

in coupled models (Zhou et al. 2016). An inversion with priors

informed by coupled models, however, can erroneously attri-

bute this ghost forcing to more negative radiative forcing Fnet.

We speculate that the weakened radiative damping in coupled

models leads to inferences of Faer that are biased low when

attempting to fit to recent planetary heat uptake. Indeed, a

recent paper by Smith et al. (2021) using emulators trained on

coupledmodels finds that theMLE value of Faer becomesmore

negative by 0.2Wm22 when also fitting planetary heat uptake.

In our formulation, the uncertainties in radiative damping are

encapsulated in uncertainties in ln. Given the lack of inde-

pendent observational constrains on the true radiative damp-

ing and uncertainty about whether recent SST patterns that

cause more negative feedbacks are forced or unforced (Andrews

et al. 2018; Sherwood et al. 2020), we conclude that ocean heat

content data at present do not offer robust additional con-

straints on Faer. We also note that trends in ocean heat content

prior to the 1950s have potentially important uncertainties,

particularly in the deep ocean (Gebbie and Huybers 2019).

e. Reconciling our estimates with foregoing aerosol forcing
lower bounds

Our alternate 2000–10 5% aerosol forcing lower bound

of21.7Wm22 when including a factor of 5 increase in internal

variability is similar to previous finding of a 5% lower bound

of 21.7Wm22 by Aldrin et al. (2012) and Skeie et al. (2014),

or a 21.8Wm22 lower bound by Skeie et al. (2018). These

studies reference their lower bounds to a baseline around 2010,

such that our 2000–10 is comparable. These foregoing studies

used a different model setup than our analysis—for example,

including hemispheric temperatures—making it difficult to

directly compare the magnitudes of observational error al-

lowed for in foregoing studies, but their specified uncertainties

were substantial. Aldrin et al. (2012) specifies AR1 coefficients

ranging from 0.5 to 0.9 and hemispheric standard deviations of

0.58–0.68C, as well as AR1 model error and a representation of

internal variability based on the Southern Oscillation. The

posterior distribution of Faer obtained by Aldrin et al. (2012) is

nearly identical to their Faer prior distribution from AR5, im-

plying that their observations provide little further constraint

on Faer. Skeie et al. (2014, 2018) use a similar approach but also

include an autoregressive order three process, i.e., AR3, rep-

resenting long-term internal variability estimated from long,

coupled model control simulations.

A recent study by Smith et al. (2021) uses a similar framework

to ours and obtained a 2019 maximum likelihood estimate

of 20.9Wm22 and 5% aerosol forcing lower bound, refer-

enced to 1750, of 21.6Wm22 (their Table S4), compared to

ourMLEof20.85Wm22 and 5% lower bound of21.3Wm22.

They use the same aerosol forcing model as in Eq. (4) and a

simple emulator for the temperature response to forcing. We

hypothesize that three methodological differences account

for the approximately 0.3Wm22 discrepancy in the 5% lower

bounds in their and our estimate: the use of ocean heat uptake

observations, the treatment of observational error, and the

treatment of internal climate variability. First, regarding ocean

heat uptake, Smith et al. (2021) provide an estimate of aerosol

forcing lower bound solely based on observed temperatures,

with aMLEof20.80Wm22 and a less negative lower bound of

2019 aerosol forcing of 21.4Wm22. Second, we use time-

resolved observational error fromHadCRUT4, whereas Smith

et al. (2021) use a time-mean value of 0.018C2. Repeating our

inversion with a fixed observational error of 0.018C2 lowers the

2019 5% lower bound by 0.1Wm22 to21.4Wm22. These two
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factors already bring our lower bound in line with the Smith

et al. (2021) lower bound. Differing treatment of internal

variability can further explain differences in the lower bounds.

Smith et al. (2021) draw realizations of internal variability from

detrended CMIP6 preindustrial control global mean temper-

ature anomalies. We first fix internal variability at the CMIP6

ensemble mean value and in section 4c show that increasing

variability by a factor of 5 relative to this CMIP6 mean yields a

2019 5% lower bound of 21.6Wm22, more negative than the

Smith et al. (2020) lower bound when they exclude constraints

based on ocean heat uptake.

5. Conclusions

We find that an extension of the Stevens (2015) aerosol

forcing model [Eq. (4)], also recently used by Smith et al.

(2021), emulates global-annual historical variations in aerosol

radiative forcing simulated by 10 state-of-the-art general cir-

culation models. Simulations include contributions from rapid

tropospheric adjustments, such as the cloud lifetime effect, and

spatial variability in aerosol emissions. The root-mean-square

residual between each simulation of global aerosol radiative

forcing and a least squares fit using Eq. (4) has a mean value of

0.09Wm22 when the global-annual sulfur dioxide, black car-

bon, and organic carbon aerosol precursor emissions used in

each simulation are prescribed. Furthermore, using a simple

aerosol forcing model that emulates the time history of aerosol

forcing in CMIP6 models together with parametric uncertainty

estimated using a Bayesian framework affords greater flexibility

than previous approaches that rely upon rescaling aerosol forcing

fromGCM simulations (e.g., Padilla et al. 2011; Aldrin et al. 2012;

Schwartz 2018).

Our analysis supports a lower bound on Faer that is closer

to 21.0 than to 22.0Wm22. Specifically, we obtain a 95%

credible interval on Faer between 2010 and 2019 from 21.3

to 20.50Wm22, despite ECS being broadly uncertain with a

95% credible interval from 1.88 to 6.18C. Paleoclimate and

process-based constraints elsewhere were argued to yield a tighter

upper bound on climate sensitivity than do inferences from the

historical record alone (e.g., Sherwood et al. 2020). To ensure that

we accurately represent uncertainties in Faer, it is important to

jointly infer climate sensitivity and Faer. In practice, however, we

find that there is little correlation between climate sensitivity and

Faer, apparently because of distinct temporal variability. Similarly,

uncertainty in effective volcanic forcing contributes little uncer-

tainty to Faer because their time histories weakly covary.

The origin of the strong Faer constraint is traced to the rapid

increase in precursor emissions between 1950 and 1980 and

relatively stable emissions thereafter. Support for this emis-

sions structure being critical comes from a restricted analysis

using pre-1950 data that yields a 5th percentile 2010–19 lower

bound on Faer of 21.8Wm22 (Figs. 4a,b). In order for our

model results to admit a 2010–19 fifth-percentile lower bound

of 21.6Wm22, when employing the historical temperature

record from 1850 to 2019, requires increasing the variance of

internal variability by a factor of 5 relative to the mean variance

inferred from 39 CMIP6 control simulations (Figs. 4c,d). Allowing

for comparable variance in global-annual temperature observations

further reduces this 2010–19 lower bound to 21.8Wm22

(Figs. 4e,f). It seems premature to rule out such large values

of temperature variance, given differences between coupled

and historical atmosphere-only model runs (e.g., Zhou et al. 2016;

Parsons et al. 2020), differences between climate model and pa-

leoclimate proxies (Laepple and Huybers 2014), and recent work

on systematic SST errors (e.g., Chan and Huybers 2019).

There are several avenues open for improving empirical

constraints on Faer. One approach is to test our inference

methodology within the context of general circulation model

simulations. Temperatures simulated in response to various

aerosol emissions and nonaerosol radiative forcing scenarios

could be incorporated into our Bayesian methodology to infer

Faer and results compared against simulated values. Better

quantifying uncertainty associated with low-frequency natural

variability and observational error, presently not well charac-

terized in GCMs and SST datasets, would also improve our

ability to rule out extreme values of Faer. Ocean heat uptake

data cannot, at present, be used as an independent constraint

on Faer because radiative damping and net radiative forcing

compensate in explaining observed variability in the historical

top-of-atmosphere radiative imbalance. Improving the char-

acterization of radiative feedback terms would allow for

stronger constraints on Faer from ocean heat uptake data.

Further development of a Bayesian methodology to improve

estimates of radiative feedbacks, low-frequency internal

variability, and observational error should help narrow the

stubborn bounds on aerosol radiative forcing.
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