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6  El Niño – Southern Oscillation (ENSO) 
 

6.1 Introduction 
 

At irregular intervals of two to seven years, the cold tongue of water along the equator in the 
eastern Pacific region warms up by as much as 3 K, accompanied by vast changes in 
atmospheric circulation and the distribution of rainfall over the tropical Pacific and Indian 
Oceans. These events were well known to pre-Columbian residents of Pacific coastal South 
America, and Peruvian fishermen referred to such episodes as El Niño events as they tend to 
occur around Christmas (‘El Niño’, literally “the boy’, referring to the Christ child), bringing large 
changes to local fish and seabird populations.  In contemporary parlance, the opposite phase of 
the system, perhaps better characterized as the absence of El Niño, is referred to as ‘La Niña’.  

In the mid-1920s, Gilbert Walker (after whom the Walker Circulation was named) noticed a 
strong anti-correlation between seasonally varying sea surface pressures at Darwin, Australia, 
and Tahiti, in the central tropical South Pacific, and coined the term “Southern Oscillation” to 
describe this see-saw of pressures. Somewhat later it was recognized that the Southern 
Oscillation and the dramatic warming of the eastern equatorial Pacific are part of the same 
phenomenon, which is now referred to as ENSO. We use the terms El Niño and La Niña to 
describe different phases of ENSO.  

ENSO is an enormously broad and intellectually extraordinarily rich subject that deserves a 
textbook of its own; here we provide only a rudimentary overview. The reader is referred to 
Webster (2020) for a comprehensive review of the scientific understanding of ENSO. Wang et 
al. (2017) also provide a nice review of the subject.  

Examples of the distributions of sea surface temperature anomalies in two different types of El 
Niño episode are shown in Figure 6.1. These patterns represent the two leading EOF’s of 
ENSO variability (Takahashi et al., 2011) and most El Niño events can be well described as a 
weighted sum of these two patterns. The eastern Pacific pattern peaks just off the coast of Peru, 
while the second pattern peaks in the central equatorial Pacific.  

The strong sea surface temperature anomalies are associated with equally pronounced 
circulation anomalies. Figure 6.2 is a schematic diagram showing distributions of surface 
pressures and winds, superimposed on sea surface temperature anomalies, for the two ENSO 
phases. El Niño events are associated with strong westerly wind anomalies (and the actual wind 
can become westerly over large portions of the central and western equatorial Pacific), reduced 
pressure in the east and increased pressure in the west. As one might expect, the westerly low-
level wind anomalies are associated with anomalous ascent in the eastern equatorial Pacific, 
and descent in the west, and this is reflected in the pattern on anomalous precipitation (Figure 
6.3).  The precipitation anomalies can be quite large and persist for many months, leading to 
sever drought in Indonesia, Australia, southeast Asia, and as far away as India, and flooding in 
equatorial South America.  
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Figure 6.1: Composite sea surface temperature anomalies (K) for two different classifications of El Niño. Top: Central 
Pacific pattern; Bottom: Eastern Pacific pattern.  These represent the two leading empirical orthogonal functions of 
the ENSO variability, and most El Niño events can be described as a weighted sum of these. The thin black boxes 
represent conventional ENSO monitoring regions.  

                       

Figure 6.2: Schematic diagram showing the distributions of anomalous surface winds and pressures and associated 
sea surface temperature anomalies for the two phases of ENSO. The schematic is based on the composite 
anomalies for November-December drawn from 11 warm events and 11 cold events during 1980-2016.  
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Figure 6.3: Monthly precipitation anomalies regressed onto the first principle component of ENSO time series of sea 
surface temperature. The precipitation is based on the satellite-based Global Precipitation Climatology Project for the 
period 1979–2011. Units are mm day-1 per standard deviation of the principle component time series of sea surface 
temperature.  

ENSO is a strongly coupled phenomena, accompanied by strong perturbations in the upper 
equatorial Pacific Ocean. During El Niño events, the thermocline sinks in the east and rises in 
the west in association with positive sea surface temperature anomalies in the east and 
negative in the west (Figure 6.4). This represents a strong relaxation of the normal upward 
slope of the thermocline toward the east and massive eastward movement of the warm pool 
waters of the western equatorial Pacific.  

                                          

Figure 6.4: Composite time evolution of thermocline depth during an El Niño event. Evolution is from January 
(bottom) to November (top). Deeper thermoclines are indicated by blue.  
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The time evolution of ENSO is best illustrated by time series of various ENSO indices, which are 
based in whole or in part on equatorial sea surface temperature anomalies. One such index 
spanning the period 1980-2020 is reproduced in Figure 6.5. This multivariate index is the 
leading combined empirical orthogonal function of five different variables: sea level pressure, 
sea surface temperature, zonal and meridional components of the surface wind, and outgoing 
longwave radiation, over the tropical Pacific basin (30°S-30°N and 100°E-70°W). Positive 
values are associated with El Niño events. Exceptionally strong El Niños are evident in 1983, 
1997 and 2016. The events occur irregularly every 2-7 years or so.  

While not obvious in Figure 6.5, the evolution of El Niño events is strongly tied to the seasonal 
cycle. El Niño and La Niña episodes typically last 9-12 months. They both tend to develop 
during the Boreal spring (March-June), reach peak intensity during the late autumn or winter 
(November-February), and then weaken during the following Boreal spring or early summer 
(March-June). 

 

Figure 6.5: Evolution of a multivariate ENSO index from 1980 to 2020. Positive values are associated with El Niño 
events.  

While ENSO is usually measured and characterized in terms of sea surface temperature 
anomalies in the equatorial Pacific, it is associated with strong short-term climate perturbations 
around the world. Some of these effects are summarize in Figure 6.6. Some of these weather 
patterns depend on the particular character of El Niño events, especially whether the positive 
sea surface temperature anomalies peak in the central versus eastern Pacific (Figure 6.1). 
Besides some of the characteristics illustrated in Figure 6.6, ENSO strongly modulates tropical 
cyclone activity in many regions; for example, El Niño tends to suppress North Atlantic tropical 
cyclone activity, which, conversely, is enhanced during La Niña conditions.  
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Figure 6.6: Short term climate variations during Boreal winter, associated with El Niño events. Light brown: dry 
conditions; lime green: warm and wet, ochre: warm, medium green: wet; dark brown: warm and dry, blue-green: cool 
and wet.  

As has already been mentioned, ENSO has profound effects on marine life and is accompanied 
by strong shifts in everything from microbial populations to fish and seabirds. The very strong El 
Niño event of 1982-1983 led to large coral mortality in the tropical EASTERN Pacific. Thus, in 
addition to the inherent intellectual interest in ENSO, it has serious consequences for biological 
activity and human society.  

 

6.2 Oscillations of the equatorial ocean 
 

The physics of ENSO involve the interaction of the tropical atmosphere and ocean, both of 
which support a rich spectrum of wave modes. In general, the atmospheric waves are fast 
compared to their oceanic counterparts, which introduces some interesting subtleties in the 
interactions between the two media. We begin with discussion of linear wave modes on a 
resting equatorial ocean, continuing to treat it, to a first approximation, as a two-fluid system 
with an inert deep ocean superimposed by a less dense layer, treating the system using the 
shallow water approximation as in section 5.4.1. The shallow-water equations are phrased on 
an “equatorial plane”, linearizing the sinusoidal dependence of the Coriolis parameter about 

its vanishing value at the equator:  where  is the distance north of the equator. These 

equations are 
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   (6.3) 

where, as before,  and  are the zonal and meridional velocities,  is the fluid depth,  is 

the reduce gravitational acceleration, given by (5.59), and  and  are the zonal and 

meridional surface wind stresses.  

We begin by linearizing these three equations about a resting state in which the wind stresses 
and velocities are zero and the fluid depth is . Denoting perturbations to this state with 
primes, we replace the variables with 

   (6.4) 

Substituting these into (6.1) – (6.3) and dropping quantities that are quadratic in the prime 
variables (but remember that the prime modifying  means something else) gives 

   (6.5) 

   (6.6) 

and 

   (6.7) 

First consider the case where there is no surface wind stress  In that case, there is no 

forcing of this system, but it does admit neutral, oscillatory modes. Of these, let’s first consider a 
special solution to (6.5) – (6.7) for which  everywhere. In that case, we can see that (6.5) 
and (6.7) constitute a closed system, while (6.6) restricts the meridional variation of the mode.  

Taking  and eliminating  between (6.5) and (6.7) yields 

   (6.8) 

This is clearly a wave equation that admits separable solutions of the form 
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where   is any reasonably behaved function, and  is a function of  that we 

will determine using (6.6). Substituting (6.9) into (6.6) with   gives an equation for 

: 

   (6.10) 

whose solution is 

   (6.11) 

where  is an arbitrary integration constant. Here, as a boundary conditions, we must insist 
that the solution be well behaved as , so we must take the negative choice in (6.11), 

which also means we must take the negative root in 6.9. Thus we have as a viable solution 

   (6.12) 

with  with  positive and  any reasonably well behaved function. This solution 

describes eastward-propagating, non-dispersive waves that decay exponentially away from the 

equator on a decay scale   given by  

   (6.13) 

This scale is called the equatorial deformation radius. Taking  and 

(see Figure 5.53), the eastward propagation speed  is about  and the equatorial 

deformation radius is about .  

This special solution to (6.5) – (6.7) describes phenomena known as equatorially trapped Kelvin 
waves, named after William Thomson, Lord Kelvin (Thomson, 1880). These are the main 
means by which adjustments to localized forcing are propagated eastward in the equatorial 
ocean1. From (6.5) or (6.7) it is clear that the layer depth perturbations in zonal velocity 
perturbations are out of phase in these neutral waves, with positive depth perturbations 
associated with negative zonal velocity. The structure of an equatorial Kelvin wave is shown in 
Figure 6.7; here a sinusoidal zonal structure has been assumed.  

                                                            
1 The waves described here are more precisely defined as first baroclinic mode waves. There are also barotropic 
Kelvin waves that fill the depth of the ocean and for which the restoring force is gravity acting on perturbations of 
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Figure 6.7: Structure of an equatorial Kelvin wave. All quantities are nondimensional, with the x axis in radians, 
spanning one-half wavelength. Shading shows thermocline depth perturbations, arrows show zonal velocity, and 
dashed contours show downwelling velocity. The wave is propagating eastward.   

The general solutions to the unforced versions of (6.5) – (6.7) were first described by Taro 
Matsuno (Matsuno, 1966). Since the coefficients are independent of time and longitude, there is 
a class of solutions that are oscillatory in  and  and which we insist be well behaved (not 

blow up) when  Thus we look for viable solutions of (6.5) – (6.7) with  of the 

form   

   (6.14) 

where  is a zonal wavenumber and  is the wave frequency. If we substitute (6.14) into (6.5) 

– (6.7) and eliminate  and  in favor of  we obtain a second-order ordinary 

differential equation: 

   (6.15) 
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   (6.17) 

This is Schrödinger’s equation for a quantum harmonic oscillator, which has well behaved 
solutions only if the wave frequency takes on certain discrete values given by the solution of 

   (6.18) 

where  and the eigenfunctions are parabolic cylinder functions: 

   (6.19) 

where the polynomial in brackets are the first three Hermite polynomials2. The  Hermite 
polynomial corresponds to the integer  in the dispersion relation (6.16).  

Note that (6.18) is invariant to changing the signs of both  and  as is the phase speed, 
 By convention, we allow negative values of  but not .  

For  The cubic dispersion relation (6.18) can be factored: 

   (6.20) 

The particular  is unphysical and corresponds to solutions that are not well behaved for 
large , leaving two roots: 

   (6.21) 

Since by convention we allow negative (corresponding to westward phase propagation) but 
not negative  we select the positive root of (6.21). 

In the limit of large negative k, (6.21) becomes , or re-dimensionalizing using 

(6.16), . In this limit, the solutions are equatorially trapped, westward propagating 

Rossby waves (remember that this is a limit in which  is negative). When  is large and 

positive, (6.21) becomes  or in dimensional terms,  This is the dispersion 

relation for Kelvin waves, in which buoyancy is restoring force. In between these limits, the 
index of refraction depends on both  and  and so these  solutions are called mixed 
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Rossby-gravity waves, or alternatively Yanai waves, named after the tropical meteorologist 
Michio Yanai (Yanai and Maruyama, 1966) who discovered them in stratospheric data.  

For  solutions to (6.20) fall into two classes:  High frequency, equatorially trapped internal 
gravity-inertia waves called Poincare waves, and low frequency, strictly-westward propagating 
Rossby–like waves. For the low-frequency modes, we ignore the first term in (6.18) and re-
dimensionalize the result using (6.16) to get 

   (6.22) 

In the longwave limit, they behave like westward-propagating inertia-gravity waves, but in the 
high negative (westward) zonal wavenumber limit they are equatorially trapped Rossby waves. 
The phase speeds of these low frequency modes are always negative but their group velocity 
can be positive for sufficiently short waves.  

In the high frequency limit we ignore the third term in (6.18) and in that case, the dimensional 
solution is 

   (6.23) 

These are the eastward and westward propagating Poincare waves.  

The full dispersion diagram illustrating the solutions to (6.18) are shown in Figure 6.8. Note that 
the Poincare waves and the Yanai wave have nonzero frequency when  indicating 

zonally symmetric standing oscillations.  

            

Figure 6.8: Nondimensional frequency as a function of nondimensional zonal wavenumber; solutions to (6.18). The 
Kelvin wave is shown in blue, the Yanai wave in green, Equatorial Rossby waves in magenta, and Poincare waves in 
red.  
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An example of an eigenfunction, for the  Yanai wave, is shown in Figure 6.9. This mode 
has a relatively complex structure, with vanishing depth, zonal velocity and vertical velocity at 
the equator, and maximum values at about one equatorial deformation radius north and south of 
the equator. Cyclonic and anticyclonic gyres alternate, with gyre centers at the equator. The 
vertical velocity is in quadrature with the depth perturbations. The interested reader can plot 
eigenfunctions of other modes using the script Matsuno.m available at the book’s website.  

                 

Figure 6.9: Eigenfunction for the Yanai wave (n=0) with k=-1. The shading shows the nondimensional fluid depth 
perturbation, the arrows shows the horizontal perturbation velocity vectors, and the thin black contours show the 
upward motion, with dashed contours indicating negative values.   

Note that if  and using the equatorial value of  the dimensional wavelength 

associated with wavenumber 1 is about 2,800 km and a nondimensional frequency of 1 
corresponds to a period of about 14 days. Consulting Figure 6.8 and noting that El Niño evolves 
over months, the main kinds of waves involved are low frequency Rossby and Kelvin waves. 
We will return to the role of these waves in ENSO evolution in section 6.4, but on our way to 
thinking about the fully coupled problem we must first look at the atmospheric response to 
surface anomalies on the scale of the equatorial Pacific.  

 

6.3 The atmospheric response to large-scale equatorial surface flux 
anomalies 
 

ENSO evolves slowly enough that, to a first approximation, the atmospheric response to ENSO-
related sea surface temperature anomalies can be considered steady on atmospheric 
dynamical time scales. On the other hand, the very large spatial scales and slow time scales of 
ENSO imply that the weak-temperature -gradient approximation cannot be applied here as we 
have, for example, in considering the Walker Circulation on the equator, as we did in Chapter 5. 
We must include the effect of Coriolis accelerations, but we did in examining equatorial ocean 
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dynamics, we will approximate its variation as linear, continuing to use the equatorial -plane 

approximation.  

The principal simplifying assumption we will make about the atmosphere is that in regions 
experiencing deep convection, the lapse rate of temperature is moist adiabatic. As noted in 
Chapter 3, this is well satisfied, especially if one assumes reversible moist adiabatic ascent from 
the top of the subcloud layer. But here we will ignore the direct effects of water substance on 
density and assume that the saturation entropy is constant with altitude above cloud base, and 
equal to the actual moist entropy of air in the subcloud layer. As a reminder, the saturation 
entropy is given by 

   (6.24) 

where  and  are reference temperature and pressure, respectively. We assume that while 

 varies in horizontal space and in time, it is always uniform above cloud base in the 
troposphere.  

 

6.3.1 Dynamics 
 

Now consider linear perturbations to a resting tropical atmosphere in RCE, denoting departures 
from the resting state with primes. First, we write the hydrostatic equation in pressure 
coordinates as  

   (6.25) 

where, as usual,  is the geopotential and  is the specific volume.  

Using the chain rule and one of Maxwell’s relations (Chapter 2), this can be written 

   (6.26) 

This shows that in a hydrostatic, most adiabatic atmosphere, specific volume perturbations are 
constrained to have moist adiabatic vertical profiles. Substituting (6.26) into (6.25) gives 

   (6.27) 

Because we are assuming that  is not a function of pressure, we can integrate (6.27) from 
the top of the subcloud layer to the tropopause to get 
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where we have divided the integration constant into two parts: a height-independent mean 

temperature, , that multiplies the perturbation saturation entropy, and a height-independent 
geopotential, . The former is just the pressure-weighted mean temperature of the 

troposphere above cloud base, and the latter we call the barotropic component of the 

geopotential. Note from the definition of  that the pressure-mean geopotential perturbation 
consists only of its barotropic component. The second term on the right of (6.28) describes what 
has come to be called the first baroclinic mode of tropical dynamics. 

The relation (6.28) is a very powerful constraint on the dynamics of deep convecting regimes. It 
filters all vertical modes except the barotropic and first baroclinic modes, and reduces the full 
primitive equations to a barotropic vorticity equation and equations that take the mathematical 
form of shallow water equations, as shown presently.  

The hydrostatic horizontal momentum equations linearized about a state of rest on an equatorial 
best plane are 

   (6.29) 

and 

   (6.30) 

where  and  are the horizontal components of wind stress. We specialize these to the 

cloud layer by assuming that the stress terms vanish above the subcloud later, and by 
substituting (6.28) for the geopotential terms: 

   (6.31) 

and 

   (6.32) 

where  is now a constant representing the basic state, and  is a function of pressure only. 
Inspection of these two equations shows that the solutions for the horizontal velocities can be 
broken down the same way as geopotential, namely 

   (6.33) 
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term. Substitution of the forms (6.33) into (6.31) and (6.32) gives two pairs of equations for the 
baroclinic and barotropic components. The set for the baroclinic component is 

   (6.34) 

and 

   (6.35) 

 

Clearly, we need an equation for the tropospheric temperature, as represented by  to close 
the baroclinic system. If this equation depends, among other things, on the barotropic 
component of the pressure and/or velocity, then we will also need to solve for the barotropic 
component even if our interest were to lie solely with the baroclinic component.  

The equations for the barotropic component are decoupled from temperature:  

   (6.36) 

and 

   (6.37) 

We can form a vorticity equation by eliminating  from (6.36) and (6.37): 

   (6.38) 

Now we can write the full equation of mass continuity as 

   (6.39) 

where we have substituted (6.33) breaking down the velocities into baroclinic and barotropic 
components. We next integrate (6.39) down from the tropopause to and arbitrary pressure  : 

   (6.40) 
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Evaluating (6.40) at the top of the subcloud layer gives 

   (6.42) 

where  is the pressure depth of the cloud layer. The last term in (6.40) vanishes 

because, by definition,  vanishes at the top of the subcloud layer.  

Note that the barotropic vorticity equation (6.38) together with (6.42) constitutes a close system 
if both  and  are known. We have to determine these two variables by matching what is 

going on in the cloud layer with equations expressing the dynamics of the stratosphere above, 
and equations describing the behavior of the subcloud layer below. In particular, if our 
tropospheric system supports waves, such as Kelvin and Rossby waves, we would expect them 
to couple to some extent with wave modes in the stratosphere. The latter has to be treated as a 
continuously stratified fluid (as its name implies!) but open-ended at the top, so that we may 
(expect upward wave energy propagation. The leakage of wave energy from the troposphere 
may damp disturbances there; a point we shall return to in Chapter 73. But for the very slowly 
evolving ENSO, leakage of energy into the stratosphere will be very small, and so for the 
present purpose we take the tropopause to act as a rigid lid: 

   (6.43) 

This leaves us with the problem if solving for the vertical motion at the top of the subcloud layer, 
 To do so, we must write down linearized dynamics for the subcloud layer.   

Over tropical oceans, the subcloud layer has nearly constant virtual potential temperature, and 
although the value of that temperature will vary with conditions, we will ignore these here and 
assume that the horizontal pressure gradients do not vary with depth within the layer, so that, in 
effect, the pressure gradient in the layer is imposed from above. We shall also assume that the 
frictional deceleration of the horizontal flow owing to surface friction is vertically uniform. These 
two conditions imply that the wind components themselves are independent of height. With 
these assumptions, the linearized momentum equations in the subcloud layer are 

   (6.44) 

and 

   (6.45) 

                                                            
3 If there is enough wind shear in the stratosphere, as for example accompanies the Quasi‐Biennial Oscillation, 
there may be altitudes at which the background wind speed matches the speed of waves emanating from the 
troposphere. In that case, some wave energy may backscatter from these “critical levels” back down into the 
troposphere, providing a possible feedback of stratospheric dynamics on tropospheric waves.  
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where  is the base state temperature at the top of the subcloud layer,  and  are the 

surface wind stresses,  is the pressure depth of the subcloud layer, and the subscript  

refers to subcloud layer quantities. We can simplify these greatly by changing variables: 

   (6.46) 

where the new variables  and  represent departures of the subcloud layer velocities from 

the sum of the barotropic and baroclinic velocities just above the subcloud layer. Substitution of 
(6.46) into (6.44) and (6.45), and making use of (6.34) – (6.37) yields 

   (6.47) 

and 

   (6.48) 

In the absence of any surface stresses, these describe pure inertial oscillations on an equatorial 
 plane and we assume that in this limit they vanish. But in general, surface stresses depend 

on the full surface winds, as expressed by (6.46), and so (6.47) and (6.48) couple the boundary 
layer winds to both the barotropic and baroclinic wind components. In particular, surface friction  
fundamentally couples the barotropic and baroclinic components.  

Mass continuity applied to the boundary layer flow and integrated over the depth of the subcloud 
layer yields 

   (6.49) 

If we eliminate  between (6.49) and (6.42), with  the result is 

   (6.50) 

This determines the barotropic divergence as a function of the divergence of the baroclinic and 
frictional components. This shows that the barotropic divergence is small compared to the sum 
of the baroclinic and frictional divergences. If we substitute (6.50) back into (6.49) we get  

   (6.51) 

Since boundary layers over tropical oceans are thing compared to the depth of the troposphere, 
the first bracketed term on the right side of (6.51) may be approximated by unity.   
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Now, except for needing a relation for the tropospheric temperature  together with the 
specification of surface wind stresses in terms of perturbation surface winds, the relations (6.34) 
– (6.35), (6.38), (6.47), (6.48), and (6.51) would constitute a closed system for the variables 

 and (which, as well see presently, depends on ).  

We next turn our attention to the thermodynamics that determine the perturbation saturation 
entropy,  

 

6.3.2 Thermodynamics 
 

The basic thermodynamic framework we will use here is very similar to that developed in 
Chapter 3 but extended to non-steady conditions. Referring back to Figure 3.17, we can 
approximate the saturation entropy of the atmosphere by its value outside of deep convective 
clouds, since the latter cover a small fractional area and have density temperatures not very 
different from the clear air. The temperature tendency in the clear air reflects two competing 
processes:  subsidence, which warms the column, and radiative cooling. For convenience, we 
repeat (3.56) here: 

   (6.52) 

where  is the dry static energy,  is the dry static stability along the base state moist adiabat, 

 and  is the vertical velocity between clouds, defined positive downward. We 

also repeat the equation for conservation of mass, (3.51): 

   (6.53) 

where  is the ensemble-averaged (large-scale) vertical velocity,  is specific volume, and  

and  are the convective updraft and downdraft mass fluxes. In (6.53) we have neglected the 

fractional area  covered by convection, compared to unity. We also repeat our formulation 
(3.58) relating convective downdraft mass flux to convective updraft mass flux through a 

precipitation efficiency,   

   (6.54) 

Substituting (6.53) into (6.52) and using (6.54) gives 

   (6.55) 

Air is warmed by convective updrafts, (through their forcing of environmental subsidence) and 
cooled by radiation and by adiabatic cooling associated with large-scale ascent.  
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Now both the dry static energy,  and the saturation entropy,  are functions of pressure 

and temperature. Thus, on isobaric surfaces, there is a one-to-one relationship between 
fluctuations of the two quantities. First, we relate isobaric fluctuations of dry static energy to 
fluctuations of dry air entropy: 

   (6.56) 

Now we relate isobaric fluctuations of specific volume to fluctuations of dry air entropy and to 
fluctuations of saturated entropy using (2.47) and (2.74), respectively: 

   (6.57) 

Neglecting the total water concentration  compared to unity, and using the definitions of dry 

and moist adiabatic lapse rates,  and   we can write (6.57) as 

   (6.58) 

Using (6.56) and (6.58), we can write the thermodynamic equation (6.55) as  

   (6.59) 

This will be the form of the thermodynamic equation we will use in deep convecting tropical 
atmospheres. Remember that we are continuing to assume that the temperature lapse rate is 

always moist adiabatic, and so  is constant with height. We choose to evaluate (6.59) just 
above the boundary layer in what follows.  

As we did in Chapter 3, we will close for the convective updraft mass flux using the boundary 
layer quasi-equilibrium hypothesis, (3.53): 

   (6.60) 

where recall that  is the surface enthalpy flux and  and  are the subcloud layer and free 

troposphere moist static energies. Substituting (6.60) into (6.59) evaluated just above the top of 
the boundary layer gives 

   (6.61) 

We note that in our base state of RCE, there is no time tendency of temperature and  so 

from (6.61) 

   (6.62) 
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where the overbar represented the base state. If we make the further approximation that the 
base state (RCE) radiative cooling rate per unit mass is relatively constant with height in the 
troposphere (not usually a bad approximate; see Figure 3.21a), then overall energy balance 
requires that 

   (6.63) 

where  is the scale height of the troposphere. We next linearize (6.61) around 

the basic RCE state, making use of (6.62) and (6.63) and ignoring fluctuations in precipitation 

efficiency and in the basic state stratification, , yielding 

   (6.64) 

Since we assume moist convective neutrality, fluctuations in subcloud layer moist entropy,  

must equal fluctuations in the saturation entropy in the cloud layer, . Moreover, fluctuations 

of moist static energy,  are to a good approximation related to fluctuations of entropy by 

, so that we may write (6.64) as  

 

   (6.65) 

This will be the linearized form of the tropospheric thermodynamic equation we will use here 
and in the next chapter, so it is worth describing the terms in some detail: 

 

Term in (6.65) Description 

 
Perturbations in the surface enthalpy flux lead, through deep convection, 
to heating or cooling of the cloud layer 

 
A positive perturbation in boundary entropy, also proportional to , 
reduces the boundary layer quasi-equilibrium convective mass flux, 
cooling the troposphere. Likewise, a positive perturbation in mid-
tropospheric moist static energy increases the mass flux, warming the 
troposphere.  

   is the effective stratification of a moist convecting 

atmosphere. It is the dry stratification modified by moist convection 
according to how efficiently the convection precipitates.  

  Perturbations in the radiative cooling rate directly cause change in 
tropospheric temperature.  
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Aside from needing to specify the perturbation surface fluxes and radiative cooling in terms of 
known variables, we also need an expression for the perturbation moist static energy of the 
cloud layer, and for that we turn to (3.64): 

   (6.66) 

where recall that the angle brackets denote averaging over the troposphere, and that  is the 
gross moist stability. Linearizing this about the RCE state gives 

   (6.67) 

We represent surface enthalpy fluxes in terms of the aerodynamic flux formula (3.28) assuming 
neutral stability of the surface layer: 

   (6.68) 

where  is a nondimensional surface exchange coefficient,  is the surface wind speed, 

and  is the saturation moist static energy at sea surface temperature. In linearizing this 

about the RCE state, we assume that, in keeping with average conditions in the tropics, there is 
background easterly surface wind. In that case, the perturbation enthalpy flux is given by 

   (6.69) 

where  is the magnitude of the background easterlies and  is the perturbation 

background zonal flow in the subcloud layer. The first term on the right side of (6.69) represents 
the effect of perturbations in sea surface temperature and boundary layer moist static energy on 
surface fluxes, while the second term indicates that easterly wind perturbations will, by adding to 
the background easterlies, enhance the surface enthalpy flux.  

Aside from the radiative cooling perturbations, we now have a closed linear system consisting of 
(6.34), (6.35), (6.47), (6.48), (6.51), (6.65), (6.67) and (6.69). This is quite a notationally 
unwieldy system, but we can make it less cumbersome both by introducing some further small 
approximations and by nondimensionalizing the dependent and independent variables.  

First, as indicated by (6.50) and (6.38), the barotropic velocities will be much smaller than the 
baroclinic and frictional components and we hereafter neglect them. We also approximate the 
first term in brackets in (6.51) as unity and use the hydrostatic equation to re-express it in terms 
of the vertical velocity at the top of the boundary layer: 

   (6.70) 

where  is the physical depth of the subcloud layer.  

In equations (6.47) and (6.48) we represent the surface stress terms using neutral aerodynamic 
flux formulae, linearized around an easterly zonal mean wind to arrive at 
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   (6.71) 

and 

   (6.72) 

The factor of 2 in the drag term in (6.71) results because perturbations in the zonal wind also 
contribute linearly to the net surface wind speed.  

By adding equations (6.34) and (6.35) to (6.71) and (6.72), we notice that now the frictional and 
baroclinic velocities only appear in combination, so we can replace their sum by a single new 
variable.  

In (6.67) we approximate the vertically averaged perturbation radiative cooling, , by its 

value just above the top of the subcloud layer, . 

Finally, we replace the dimensional independent and dependent variables by nondimensional 
counterparts as follows: 

   (6.73) 

 

where 

   (6.74) 
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With these substitutions, the linear perturbation equations take the form 

   (6.75) 

   (6.76) 

   (6.77) 

   (6.78) 

and 

   (6.79) 

where the nondimensional coefficients are defined as follows: 

   (6.80) 

The set (6.75)-(6.81) constitutes are model of linear perturbations to deep convecting regions on 
an equatorial plane. In the next section we will use these to estimate the response of the 

convecting equatorial atmosphere to sea surface temperature perturbations.  
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6.3.3 Tropical atmospheric response to slowly evolving sea surface temperature 
anomalies 

 

ENSO evolves on time scales that are long compared to the atmospheric dynamic response to 
changing sea surface temperature. The time scale used in (6.73) to nondimensionalize time has 
a characteristic value of a few days, for example. Thus, we can look for the steady response to 
prescribed sea surface temperature anomalies (represented in (6.80) and (6.81) by the 
saturation entropy of the sea surface) by setting the time derivatives in (6.75) – (6.81) to zero. 
To make the solutions more analytically tractable, we will focus on solutions with no surface 
drag or radiative forcing by setting  and  to zero: 

   (6.81) 

   (6.82) 

   (6.83) 

   (6.84) 

This is a complete set, and (6.78) becomes a simply diagnostic relation for the mid-tropospheric 

moist static energy perturbation,  Using cross-differentiation to eliminate all the variables in 

favor of the saturation entropy gives a single partial differential equation: 

   (6.85) 

where  and  The right side of (6.85) contains the sea surface saturation 

entropy distribution, which we will prescribe here. Remember that  measures the gross moist 
stability, and  is a measure of the strength of the WISHE effect.  

As an example, we represent the distribution of  as the separable product of a function of  

and a function of  the latter of which we can take to be a discrete Fourier series, with the 

periodicity given by the circumference of the earth. Thus we specify 

   (6.86) 

Here  is the zonal wavenumber; remember that we have normalized  by the radius of the 
Earth. Likewise, we represent the solution as 
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   (6.87) 

where, from substituting (6.87) into (6.86) the functions  must satisfy 

   (6.88) 

Before proceeding, we note from the form of this equation that  at the equator,  

thus there are no temperature perturbations on the equator. We also note that in the special 

case of no WISHE  (6.88) has the simple solution 

   (6.89) 

Otherwise, using variation of parameters, the general solution of (6.88) that satisfies the 
boundary condition at  is 

   (6.90) 

Whether this function is well behaved for large  will depend on the function  The full 

solution for  is then found by substituting  into (6.87). Given the solution for  we can then 

find   and  from (6.81), (6.82), and (6.84).  

Here we evaluate the integral in (6.89) numerically for a sea surface saturation entropy 
perturbation with a single sinusoidal zonal wavenumber of 2 and a distribution in  given by 

   

This distribution is quite flat near the equator but has sharp shoulders at higher latitudes, and is 
symmetric about the equator. The top row of Figure 6.10 shows the fields for the case in which 

 and  for which the solution for is given by (6.89). The vertical motion pattern in 

this case (left panel) strongly resembles the sea surface temperature distribution, but the 
temperature distribution peaks off the equator and more or less zonally in quadrature with the 
surface temperature.  The wind distributions show cyclones and anticyclones around the warm 
and cold atmospheric temperature anomalies. It is important to note that the equatorial zonal 
wind is in quadrature with the sea surface temperature anomalies.  

When the WISHE effect is added ( ; second row in Figure 6.10), the whole pattern shifts 
eastward and extends to higher latitudes. In this case, the equatorial zonal winds have their 
maximum magnitudes near the peaks in the surface temperature distribution, with strong 
westerly surface winds over the warmest water. This is because the maximum surface enthalpy 
flux is shifted eastward toward the maximum surface easterly winds, where the net surface wind 
speed is maximum. With , this has a strong effect on the surface enthalpy flux.  
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Figure 6.10: Steady, frictionless response of the equatorial atmosphere to sea surface saturation entropy anomalies 
as described in the text. In each row, the left-hand panel shows the specified distribution of (black contours, with 

dashed showing negative values) and  vertical velocity  (shading; warm colors positive); the left-hand panel shows 

saturation entropy  (shading) and horizontal winds (arrows). For all plots,  and for the top and bottom rows, 
 while for the middle row . The third row is for conditions identical to the first except that the anomaly 

pattern has maximum amplitude at   
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The last row in Figure 6.10 is for conditions identical to those used to construct the first row, 
except that the sea surface saturation enthalpy pattern has been shifted northward so as to 
have maximum amplitude at  Even this relatively small northward displacement 

dramatically shifts the temperature and horizontal winds response into the northern hemisphere, 
even though the vertical motion pattern is hardly affected.  

The reader is encouraged to explore these solutions using the code Gill.m, which can be found 
on the course website.  

One problem with this solution is that, when  and  the basic state turns out to be 

absolutely unstable. For this reason, the solutions shown here must be regarded, at best, as the 
steady part of a time-evolving pattern. We will explore the linear instability of this system in 
detail in Chapter 7.  

Gill (1980) found solutions for the system presented here for the case  and for small 

values of . He showed that the homogeneous solution can be expressed in terms of parabolic 
cylinder functions and found analytic solutions in the case where the forcing also has the form of 
the first or the second parabolic cylinder function. In both cases he sought solutions in which the 
forcing was confined to a limited range of  rather than being periodic in  as we have 
specified here.  

Here we will solve the system (6.75) – (6.79), for the case   by numerically marching 

forward in time until a steady state is attained. Given today’s computational speeds, this is quite 
fast and allows one the flexibility of specifying any reasonable distribution of the sea surface 
temperature. But here we continue to take the sea surface temperature and the forced solutions 
to be sinusoidal in  so as before we replace all the dependent variables by complex functions 

of  multiplied by . The code used to generate these solutions, GillD.m, is available on the 

course website.  

Results for the same function of  as we used in the zero drag case are shown in Figure 6.11, 

which is in the same format as Figure 6.10, but also includes contours of the normalized moist 
static energy perturbation, for a fairly strongly damped case with    

  and  Surface drag strongly changes the solution. The vertical velocity, 

which was strongly shifted eastward from the sea surface entropy pattern in the zero drag case 
with WISHE, is shifted back to more nearly coincide with the sea surface entropy. Now there are 
large atmosphere temperature (saturation entropy) perturbations on the equator. One can also 
notice flow down the pressure gradient in the off-equator gyres. Recall that these are the sum of 
the baroclinic and frictional velocities; we could now solve the nondimensional equivalents of 
(6.71) and (6.72) for the frictional and baroclinic velocities separately. Note, however, that one 
or both of these would have a singularity at the equator which cancels in their sum.  

Armed with knowledge of the basic response of the atmosphere to sea surface temperature 
anomalies, we are now in a position to tackle the coupled ENSO system.  
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Figure 6.11:  Panels a) and b) are the same as in Figure 6.10 but with surface drag included:    

  and  Panel c) is for the same parameters but shows the mid-level moist static energy 

perturbation.  
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6.3.4  Dynamics of the fully coupled ENSO system 
 

ENSO involves the complex interplay of equatorial waves in the ocean and atmosphere. The 
real system relies in part on partial reflection of equatorial ocean waves off continental 
boundaries as well as leakage of the some of the wave energy into coastally trapped waves. 
(See Federov and Brown (2009) for an excellent review of equatorial wave dynamics.) Here we 
provide a mostly qualitative overview of the fundamental dynamics of ENSO. The reader is 
referred to the review paper by Wang et al. (2017) for a more comprehensive overview.  

At this writing, there are two views of ENSO dynamics.  The first regards it as a fundamental 
instability of the Walker system resulting in growing and decaying oscillations. The second holds 
that the Walker system admits neutral and/or weakly damped modes that are stochastically 
excited by higher frequency disturbances of the equatorial region, such as the Madden-Julian 
Oscillation (see Chapter 7). In both cases, a mechanism first proposed by Bjerknes (1969) 
serves to amplify positive sea surface temperature perturbations in the central equatorial 
Pacific. With some small modifications, we describe this mechanism here.  

Suppose a positive sea surface temperature anomaly is introduced into the central equatorial 
Pacific. Then, referring to either Figure 6.10 (middle row) or Figure 6.11, ascent will develop 
over the warm anomaly, but shifted eastward by the WISHE effect, given that the background 
surface flow in the Walker state is easterly. This will induce westerly surface wind anomalies to 
the west of the positive sea surface temperature anomaly, overlapping with the anomaly of the 
WISHE effect is present. Note that this is fully consistent with the observations summarized in 
Figure 6.2. The relaxation of the surface easterlies over and to the west of the warm ocean 
anomaly leaves the ocean pressure gradient, associated with the sloping thermocline in the 
Walker state, unbalanced, and so water begins to accelerate toward the east, advecting the 
warm pool water with it. This will both amplify the original anomaly and propagate it eastward, 
more or less at the speed of ocean Kelvin waves. Note that this is more likely to start in April, 
when, as part of the normal seasonal cycle of the central Pacific, the equatorial easterlies are 
weakest. (This may help explain why observed El Niño events are phase locked to the seasonal 
cycle.)  

Once the eastern equatorial Pacific has warmed up and zonal gradients across the Pacific are 
weak, it is less clear how an El Niño event dissipates. (Indeed, there is paleoclimatological 
evidence that “permanent” El Niño states existed at certain times in the past, such as the 
Pliocene period (3-5 million years ago), but the evidence is controversial.) We point out here 
that if the equatorial winds averaged across the Pacific become westerly, as they are often 
observed to during El Niño episodes, the WISHE effect changes sign and the westerlies relax 
near the location of peak anomalous sea surface temperature. This is illustrated in Figure 6.12 
which shows solutions for the same conditions as in Figure 6.11 (a and b) except that we 

assume background westerly winds  The ascent is now shifted decidedly west of 

the warm sea surface temperature anomaly and the winds have also shifted westward. Easterly 
wind anomalies east of the warm ocean anomaly should enhance ocean upwelling there, acting 
to restore cold conditions. Note also the cyclonic gyres north and south of the position of the 
warm ocean anomaly. These also exist when mean easterlies are present (Figure 6.11) but are 
more zonally aligned with the ocean temperature with mean westerlies.  

( )1.5 .a=-
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Figure 6.12:  Same as Figure 6.11 a and b, except that . 

 

If we were to assume that the ENSO anomalies are slowly varying relative to the time scales of 
oceanic equatorial Kelvin and Rossby waves (not necessarily a very good assumption!) we 
could make certain deductions about the off-equatorial ocean currents from the steady forms of 
the shallow water equations, (6.5) and (6.6). Taking the derivative of (6.6) in  and subtracting 
from it the derivative of (6.5) in  gives 

   (6.91) 

where the velocities pertain to the ocean and  is here the thermocline depth. Recall that  

and  are the meridional and zonal components of the surface wind stress per unit mass. But 

the steady form of (6.7) requires the divergence of the velocities to be zero, so the first term in 
(6.91) vanishes and we are left with  

   (6.92) 

This is known as Sverdrup balance, named after its discoverer, the Norwegian oceanographer 
Harald Sverdrup. Thus, where the atmospheric surface winds are cyclonic, the steady response 
of the ocean is poleward flow, and where they are anticyclonic, the flow is equatorward. 
Applying this to Figure 6.12b, we have water diverging away from the equator at the location of 
the warm sea surface temperature anomaly (black contours in Figure 6.12a), implying equatorial 
upwelling, which would damp down the anomaly. These physics are a key part of the “Recharge 
Oscillator” theory of ENSO, formulated by Wyrtki (1975) and Wyrtki (1985) and modified by Jin 
(1997).  

Another body of theory, developed by Suarez and Schopf (1988) and Battisti and Hirst (1989), 
postulates that the development of the eastern Pacific warm anomaly during El Niño excites a 
westward-propagating oceanic Rossby wave that partially reflects off the western boundary, 
returning eastward as a Kelvin wave that lifts the thermocline in the eastern Pacific, reversing 
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the warm anomaly. This is known as the “delayed oscillator model” of ENSO. A variant on this 
idea, also involving partial reflection of eastward-propagating Kelvin waves off the eastern 
boundary as westward propagating Rossby waves, was proposed by Picaut et al. (1997). 

The mechanisms described above are by no means mutually exclusive, and the physics behind 
them are contained in reduced ENSO models, such as the model developed by Cane and 
Zebiak (1985), which has proven modestly successful in forecasting El Niño events (Cane et al., 
1986).  It would probably be premature to claim that we have a reasonably complete 
understanding of ENSO physics at the time of this writing, and further progress is likely to 
depend on better understanding of tropical atmospheric physics and dynamics, ocean 
dynamics, and air-sea coupling.  
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