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ABSTRACT

In the semigeostrophic system, the growth rate of baroclinic waves varies with the inverse square root of the
potential vorticity, which acts as the effective static stability. Recent observations in the ascent regions of middle
latitude cyclones show that the effective potential vorticity for saturated air is very near zero. In this paper we
examine the structure and rate of growth of baroclinic cyclones when the effective potential vorticity is small
for upward (saturated) displacements but large in regions of descent. Analytic solutions for two-dimensional
disturbances in a two-layer semigeostrophic model and numerical simulations using a multilevel semigeostrophic
model show that when the effective potential vorticity is small in regions of upward motion, growth rates are
modestly increased and the region of ascent intensifies and collapses onto a thin ascending sheet. In the limit
of zero moist potential vorticity the fastest growing wave has a finite growth rate which is about 2.5 times the
dry value while the horizontal scale is reduced by a factor of about 0.6 compared to the dry modes. The
asymmetry associated with condensation heating leads to frontal collapse first at the surface, rather than at both
boundaries as in the dry case. In contrast to the analytic model, the numerical simulations allow the effect of
(dry) potential vorticity evolution due to the latent heat release to be included. The anomalies of potential
vorticity are advected horizontally through the wave, enhancing the low-level and diminishing the upper-level
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cyclonic vorticity and static stability in both the saturated and unsaturated regions of the flow.

1. Introduction

Recent observations within the ascent regions of
middle latitude cyclones (e.g., Emanuel, 1985) reveal
that the temperature lapse rate along absolute mo-
mentum (M) surfaces is very nearly moist adiabatic,
having presumably been rendered such by slantwise
moist convection. This condition has also been ob-
served by the first author in cyclones surveyed during
the Genesis of Atlantic Lows Experiment (GALE).
Neutrality to slantwise convection has been shown by
Bennetts and Hoskins (1979) to be equivalent to the
condition of zero equivalent potential vorticity.

In the context of semigeostrophic theory (e.g., Hos-
kins and Brétherton, 1972) potential vorticity plays the
same role as static stability does in quasi-geostrophy,
with intrinsic length and time scales varying with the
square root of the potential vorticity. As this quantity
becomes small, as it effectively does in saturated regions
within cyclones, the geostrophic momentum approx-
imation becomes progressively weaker and breaks
down altogether at zero potential vorticity, implying
large ageostrophic accelerations (Emanuel, 1985).
However, it is possible that despite a local breakdown
in balanced motion the solutions described by these
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equations remain valid everywhere €xcept in the im-
mediate vicinity of the breakdown (Cullen and Purser,
1984). Here turbulence becomes important and, in ef-
fect, prevents the ultimate collapse of scale implied by
the inviscid equations. With the above qualification
we feel it is of importance and interest to explore the
behavior of such systems with balance approximations
near the limits of their validity. Future work with
primitive equations will explore the accuracy of the
balanced system.

In this spirit Emanuel (1985) and Thorpe and
Emanuel (1985) explored the nature of frontal circu-
lations and frontogenesis in environments which are
nearly neutral to slantwise moist convection. The main
effect of this condition is to cause the updraft to collapse
down to very small scale and to somewhat enhance
the rate of surface frontogenesis. Condensation in-
creases the potential vorticity at low levels and dimin-
ishes it aloft, preserving the mass-weighted volume in-
tegral. These solutions are of particular interest as the
latent heat release is strictly governed by the observed
condition of near-zero moist potential vorticity.

In the present paper we wish to explore the somewhat
broader issue of the effects of latent heat release on the
development and structure of baroclinic waves, taking
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near-zero moist potential vorticity as the relevant con-
straint on the rate of release of latent heat. In the fol-
lowing section we specifically relate the rate of heating
to vertical velocity and moist and dry potential vortic-
ity. We subsequently develop a set of semigeostrophic
equations governing the development of y-independent
disturbances on a zonal flow which varies only in the
vertical. These are further specialized to a two-layer
model in section 4 and analytic solutions are obtained.
The full set of equations is solved numerically in section
5 using a multilevel semigeostrophic model and the
solutions compared with the analytic results. Section
6 contains a discussion and concluding remarks.

2. Condensation heating

We derive the condensation heating in terms of moist
and dry potential vorticity directly from the conser-
vation of moist entropy (or equivalent potential tem-
perature, 6,). Defining s(=C, Inf) and s*(=C, Inf,) as
the dry and moist entropies, we write the conservation
equation for s* as

ds* [ds* Os*
L ([ iv.ye o
dt (at + s )p © dp 0, o

where V is the vector horizontal velocity along constant
pressure surfaces and the other symbols have their usual

meanings. Now where air is saturated, s* is a state vari-

able which we may consider to be a function of any
other two state variables; in this case we choose s and

p. Therefore,
d
(ds®),= ( SS) ds.
P

Using this, (1) may be written

ds*\ [ds Jds*
.V - =
(8s)[6t+v s]+wap 0,

or

@

as as*
5—+V +Vs= w(a *) ap

The total change of dry entropy, s, may thus be written

ds 0ds as [as (as) Os*

& ,,5]' 3

The quantity (ds/ds*), may be related to the moist and
dry adiabatic lapse rates as follows. Regarding s as a
function of p and specific volume, a, we have

o) ae) 65

@
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From the first law of thermodynamics it can be shown

that
(%) -G
da , @

da) _(oT
os*)  \aop .

where C,, is the heat capacity at constant pressure, The
second relationship is derived in Emanuel (1986), ap-
pendix A. Using these, (4) becomes

(6, (&),
as* p 6p Pd
where T',, = —(87/dz),» is the moist adiabatic lapse
rate, I'; is the dry adiabatic lapse rate, and we have

made use of the hydrostatic approximation. Applying
(5), (3) becomes

©)

ds [as T, 6s*] ©

dat “lop T.ép

We define geostrophic coordinates analogous to those
used by Hoskins and Bretherton, (1972):

X=x+vyff,
Y=y—uf,
P=p,

T=1, )
where f7is the Coriolis parameter and v, and u, are the
meridional and zonal components of the geostrophic
wind. If we follow the same steps leading to (6), the
heating formulation in geostrophic coordinates is

ds [8s R 65*]

?1; - m_

P T, 0P

where it is understood that the pressure derivatives hold
X, Y and 7 constant. From the definitions of s and s*,
the above may alternatively be expressed

d ln0 aln() I‘ d1né,
dt oP I‘d oP

)

Through the remainder of this paper we shall work in
height coordinates, making the approximation that w
~ —pgw. Then (8) becomes

dnf _ W[a Inf T, 1noe]

dt 9Z T, dZ ©)

where Z (=z) is the geostrophic height coordinate. -
These diabatic terms are related to the potential vor-
ticities based on 8 and 8,. In geostrophic coordinates
we can define
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1
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—&M 9 10, ——( - va) (10)

%=1 92" 1
where n = V X v,, 7, is the vertical component of ,
" and the bracketed terms are the potential vorticity and
equivalent potential vorticity, which are conserved in
unsaturated and saturated flow, respectively (see Hos-
kins et al., 1985, for a review of potential vorticity con-
cepts). In the following we shall take the density p to
be constant for simplicity, although this is not essential
to the analysis Consequently, g, and g,, are also con-
served in Boussinesq flows. The relations (10) allow
us to write (9) in the form'
T
'I"-.:q“ »

dind w
W*Efwlﬂg- (12)

i
It is understood that (11) applies only in saturated flow,
otherwise @ is conserved. We shall use (11) as the rep-
resentation of condensation heating in the following
development.

(11)

where

3. Semigeostrophic Eady model with condensation
heating

We here develop the inviscid, Boussinesq semigeo-
strophic equations governing the development of y-
independent perturbations on a base state zonal flow
which is itself independent of y. The full semigeo-
strophic equations are (see Hoskins, 1975):

4 ‘] 0 9
( +ugaX+vgaY+w )ug —f,=0, (13)

d
—+
(67
d a a a d1nd
+ + +
( “ox " "egy waz)l 0=
where the independent coordinates are defined by (7)
but with Z = z. The horizontal ageostrophic wind
components are #, and v,. The system is closed using
the thermal wind relations and the mass continuity

equation, the last of which we write in physical coor-
dinates:

a a 0
.._+ —— — —
ugaX vgaY+ waz)u‘_’+fu“ 0, (14)

(15)

_ 3 Inb
83y

ouy
fGZ

! Thorpe and Emanuel (1985) omitted the coefficient T',,/T'y which
appears in (11) due to an oversight. As they were principally concerned
with flows in the limits of small g,., however, the omisison leads to
only very small quantitative errors.
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A time-independent zonal flow of the form u, = u,(z)
and an associated meridional gradient of Inf obeying
(16) are solutions of this system of equations. As a
particular case, we take u, = u,(Z — H/2), where u,,
is a constant and H is the vertical distance between
two parallel plates. The associated meridional gradient
of In#, from (16), is then constant. If (15) is differen-
tiated in Y, the result is

—a—+ui+v—?— w—q- a_ln()
ar X %9y aZ] dY

0 dlnf du,dInf dv,dInf dwdInf
T9Y & oY X oY aY aY oz

This shows that if the heating and velocity perturba-
tions are independent of Y, 3 Inf/dY is constant for all
time. This in turn implies that u, is time-independent.
Without loss of generality, then, we write

Uy =u(Z— H/2),

Ing = —g Ug,Y +1n6(X, Z, 7).

With these substitutions, (13)-(15) become

Wikg, = fU,, (19)
ad 3 3
((—9-;4- Ugpot W p Z) —~futa, (20)
d d 4 dind f
( +ugaX+WBZ) Inf = 7 +gugzvg 21

Finally, the mass continuity equation (18) together with
the coordinate transformations (7) may be used to de-
fine a streamfunction y such that

= W NN HOZ_ 1, &

“® 8z 8Xdz 8Z3z fozdX 9Z
TN
f?9Zax 9z

dx dX dx f&X

With these relations, (19)-(21) and (17) can be written,
using the heating formulation (11),

fou="eu gzjﬁ, @3)
a3 d
(3;+ug5)})vg -1, 24)
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a9 9 3y
—_— —_— + —_——
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. 9v,  olng
Jaz=% x> (26)

where ¢ is defined separately in saturated and unsat-
urated regions:

dg, unsaturated
(27)

T
g, saturated.
Py

It remains only to determine the evolution equations
for g, and g,.. The latter is exactly conserved in flow
which is either saturated or two-dimensional (Bennetts
and Hoskins, 1979):

9gge

, dt
The basic equation for g, may be written (e.g., Thorpe
and Emanuel, 1985):
N, @ dInb

4y _ g O
d °foz Tdr

Using (11) and (22) this becomes, in saturated regions

only,
dgg_ng 9 Q‘ﬁ P.m a
d foZ 8X r,
Otherw1se g, is conserved.
The system comprised of (24)-(29) is a closed set of

equations for ¥, v, Iné, g,, and q,., while (23) may be
used to diagnose v,. Although T,, is strictly a function

=0. ) (28)

29)

of pressure and temperature, its variability is mostly -

with height in a domain whose horizontal size scales
with the deformation radius. For simplicity, we regard
T,, as a fixed function of Z. We also note that a pre-
diction equation for water substance.is necessary to
determine whether the air is saturated. As our aim is
to describe the essential physics of baroclinic waves
with condensation, however, we shall simply assume
that ascending air is saturated while descending air re-
mains dry. In terms of observations, this is seldom far
from the truth.

4. A two-layer model

We shall now derive analytic solutions to the systems
of equations described in section 3 for the crudest non-
trivial vertical discretization of the system, which can
be described as a two-layer model (Phillips, 1951). The
structure of such a model is illustrated in Fig. 1. We
require that the streamfunction vanish along the upper
and lower boundaries, and define meridional geo-
strophic velocities v, and.v, at the midpoints of each
layer. Streamfunction and potential temperature are
defined at the interface between the two layers. The
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FIG. 1. Structure of the two-layer model. The subdivision of layers
and levels where quantities are defined is shown in (a), while the

‘division into moist and dry regions is illustrated in (b). The X co-

ordinate is defined separately in each region, extending from —L, to
L, in region 1 and from ~L, to L, in region 2. The perturbations
are periodic so that quantities are matched at points A and Band at .
point C.

model domain is taken in a reference frame moving
at the vertical mean speed of the zonal geostrophic
wind so that the zonal velocities at the midpoints of
each layer are

= —U =—Ug, /2,
uy=U=ugh/2,

where £ is half the depth of the domain. With these
definitions, the vertical discretization of (24)—(26) gives

(5‘97— + Ug‘i—c)bz =—fY/h, (30)
(58?— Ut%)vn =fuih, (31)
ai nf+g g)i(— S fuge(s + v2), (32)

oy —01) = gha Ing .

with g defined by (27). Except for the middle term in
(32), this is a linear systéem. The (partial) linearization
of this term uses the initial value of g, rather than a
time-dependent value derived from (29). Thus we ap-
proximate (27) by
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34)
=1{r, (
q NG W> O:

Ty

where g, is the initial value of g,, assumed constant.
If we take g, to be initially constant, it will remain
constant by (28) for either two-dimensional or saturated
motion. Thus it is important to note that the neglect
of the temporal variability of q, is the only linearization
we will make.

The number of parameters in (30)-(34) may be re-
duced through a suitable choice of normalizations.
Denoting dimensional variables by tildes, these are

X=hgff™'X,
F=f"hqif?U s,
(0, 02) = hq (v, vy),
V=hUy,
Inf = dphg™'0,
4= qgod. (3%)

Note that 2hq*/f is the analog of the Rossby radius
of deformation in the semigeostrophic model, and that
his the half~depth of the layer. If we seek exponentially
growing solutions of the form exp(s7), (Where o may
be complex), then (30)-(34) become, with the nor-
malizations (35)

]
( 3 X)vz =y, (36)
]
(a—g)—()v, 2 (37)
00+q§§=v,+vz, (38)
a0
v =og (39)
i
1, X <0 o
g=
r % >0
b aX b
where
T e
rE——=, 41

It is assumed that r is a constant. The dependent vari-
ables in (36)—(39) may be eliminated in favor of ¥ to
yield the fourth-order equation _

a

¢) =0. (42)

02
+—=W-{-
(az aXZ)"’ ( aXZ)aX( 6X
In the dry case [r = 1 in (40)], the preceding has a
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snnple solution of the form ¢ = ¥, exp[ikX], where k
is a horizontal wavenumber. The solution for ¢? is then

2—k?
2+ k%

for which the maximum value of ¢ is 2 — V2 (=0.586)
occuring at a k2 of 2(v2 — 1). This is the classical result
of the two-layer model, though the dimensional equiv-
alent quantities involve the potential vorticity rather
than the static stability. (The continuous Eady model
has a maximum value of ¢ of 0.62 occurring at a k2
of 0.65.)

When r # 1 in (40), the problem becomes nonlinear
due to the dependence of r on the sign of w. The equa-
tions are, however, linear except at points where w
changes sign. It is then possible to solve (42) in piece-
wise segments where w has a single sign and match the
solutions across points where w changes sign. In order
to carry this procedure out, we assume that ¥ is periodic
over a length 2L and that w changes sign only twice in
this interval (see Fig. 1b). The vertical velocity is taken
to be negative in region 2 and positive in region 1.
Though we shall be able to find solutions of this char-
acter, there is no a priori reason to suppose they are
unique.

According to (40), ¢ is constant in the interiors of
regions 1 and 2, so that (42) may be written

6“#/ Y
Tax* ax?
This is solved in each region and the solutions matched
at points C and A (=B) in Fig. 1b. We require that 3y/
dX be positive in region ! and negative in region 2.
The matching conditions are derived by demanding
continuity of Y and pressure at the levels where they
are defined. Using (36)-(39) it can be shown that the
four conditions may be phrased as the continuity of
the following functions of Y.

o 3 [ oy
‘[’qaxax( )

22 22

o2 = k2

—+ Q- )=+ 2*y=0. (43)

ax a2 \Yax)

The interior equations (43) have only even derivatives
and the aforementioned matching conditions are in
terms of either odd or even derivatives, but not both
kinds together. If we define a separate X coordinate in
each of the two regions of Fig. 1b, the solutions in each
region may be separated into symmetric and antisym-
metric parts, ¥, and y,, such that

2y (X) = UX) + (= X),
24 X) = YX) — Y(—X),

in each region. The matching conditions and thus the
eigenvalues will be different for ¥, and ¥,. But since
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we demand that w = dy/dX not change sign within a
region, we must discard the symmetric solutions in
favor of y,. This symmetry will facilitate the search
for solutions.

Finally, we note in (44) that gdy/dX must be con-
tinuous across points C and A (=B), where w itself is
assumed to change sign. Since g does not change sign,
go¢/dX must do so and since it is continuous it must
vanish at these points. Thus we enforce the condition

- that 8y/dX vanish at A, B and C. This is an additional
constraint that further limits the eigenvalues and in
fact makes it impossible to find solutions for arbitrary
widths of the regions 1 and 2. Thus the relative widths
of the up- and downdrafts are themselves eigenvalues.

The method of solution of the eigenvalue problem
is described in appendix A; it suffices to say here that
we treat the system as a double eigenvalue problem for
the eigenvalues ¢ and A, where the latter is the ratio of
the updraft to the downdraft width, having fixed the
values of r and L. In appendix B we prove that o is
never complex. .

The eigenvalues ¢ are shown in Fig. 2 as a function
of the downdraft half-width L, for different values of
r. The total wavelength [=2L,(1 + \)] at which o peaks
decreases with 7, as does the ratio of the updraft to the
downdraft width. The shortwave cutoff in terms of L,
remains constant with the value 1r/(2s/§) but decreases
in terms of L by nearly a factor of 2 at r = 0. The
growth rate ¢ increases with decreasing r. The growth
rate maximized with respect to L is shown in Fig. 3 as
a function of r together with L, A, and the downdraft
width. The last of these quantities increases slowly with
diminishing r, while the total wavelength and updraft
width diminish. v '

The maximum growth rate shown in Fig. 3 evidently
does not become indefinitely large as r approaches zero,
as it would if the potential vorticity become small ev-

| 1.5 2 2.5 3
Lz

FIG. 2. The growth rate ¢ as a function of the half-width of the
dry region, L,, for different values of . The curve for r = 0 is derived

in appendix C. The dashed line connects the growth rate maxima of
each curve.
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FIG. 3a. The maximum growth rate ¢ and ratio A of updraft
to downdraft widths as a function of r.

erywhere, not just in the updraft. The asymptotic anal-
ysis presented in appendix C shows that the growth
rate approaches the limiting value 1.484 as r - 0. Ac-
cording to the nondimensionalizations (35) the mini-
mum dimensional e-folding time is then

o=t Voo 1348 Vo
CUL4BYS w, f

This is a factor of 0.395 of the e-folding time in the
dry case. For a vertical shear of 5 m s™!/km, g = 107
s™2and = 10™* s~ this amounts to about 7.5 hours.
This is a major result of this work and gives the first
indication that the presence of moist processes in baro-
clinic waves does not lead to an “ultraviolet” catastro-

— —_ : L
8

»t

FG. 3b. The updraft half-width L,, downdraft half-width L,, and
total half-wavelength L = (L, + L,) corresponding to the maximum
growth rate, as a function of r. The dashed line shows the asymptotic
solution for L, derived in appendix C.
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FIG. 4a. The modified dimensionless vertical velocity, w*, and"

dimensionless potential temperature 8, each defined at the model
mid-level, as a function of the geostrophic coordinate X for the most
rapidly growing solutions when r = 0.08.

phe in which the shortest scales grow indefinitely rap-
idly. We can hence give a limit to the growth rate of a
normal-mode moist baroclinic development in the ab-
sence of surface fluxes of heat and moisture.

In the limiting case of small r the updraft width be-
comes vanishingly small. In appendix C it is shown
that in the limit of small r, the updraft half-width
Ly~ wVr/(2V2) + r. As suggested by Fig. 2, the growth
rate peak with respect to the total wavelength becomes
progressively less well defined, but still has a peak at r
= (. This peak shows that the most rapidly growing
moist mode with zero stability to slantwise moist con-
vection has a total horizontal wavelength of about 0.6

X —- 3

FIG. 4b. As in (a) except for dimensionless meridional velocities,
v, and modified pressures, ¥, defined in the upper and lower layers.

@ =2+ wn)
P .
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times that for the maximum growing dry mode. Using
the values above and a half-depth 4 of 5 km gives a
dimensional wavelength of about 1940 km for the
moist wave. As shown in appendix C, the growth rate
when r = 0 asymptotes to v2 at large L. Thus, para-
doxically, the longwaves are destabilized by conden-
sation even though the most rapidly growing distur-
bance shifts to smaller scale. The scale selectivity at
scales longer than that associated with the fastest grow-
ing mode is very weak when r is near zero.

The horizontal structures of the various fields are
shown in Fig, 4 for the case r = 0.08 with L near the
wavelength of maximum growth. The most obvious
effect of condensation is to narrow and intensify the
updraft and weaken and broaden the downdraft. The
pressure and temperature fields are still remarkably si-
nusoidal (in geostrophic coordinates), though the low-
level pressure trough and upper ridge are slightly en-
hanced compared to their counterparts. The temper-
ature perturbation is everywhere positive, showing the
effect of net latent heat release. In the Boussinesq ap-
proximation, only the gradients of Inf appear, so that
this net heating does not affect the dynamics. Asso-
ciated with this effect is a domain-average pressure fall
at the lower level and pressure increase at the upper
level.

To obtain some idea of the wave structure in physical
space we extrapolate the linear result to finite ampli-
tude. In doing so, the only nonlinearity we neglect is
that associated with the change in dry potential vorticity
given by (29) which, due to the near symmetry, will
be generally small at the midlevel, where potential vor-
ticity enters the two-level model equations. Specifically,
we select an amplitude such that the maximum ab-
solute vorticity at level 1 is 10f; i.e., at a time when a
discontinuity is about to form at low levels. The re-
sulting fields in physical space are shown in Fig. 5.
Notable features of these fields include:

FIG. 5a. Asin Flg 4a except showing real dimensionless vertical
velocnty, w, and @ in physical coordinates for an amphtude at which
the maximum low-level vorticity is 10f.
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o}

T2 <

FIG. 5b. As in (a) except for dimensionless meridional velocities,
v, and real pressures, p, in the upper and lower layers.

1) Frontal collapse occurs at low levels first. (In the
dry model, singularities appear at the lower and upper
level simultaneously.) This is clearly related to the large
stretching effect on vorticity associated with the strong
updraft.

2) The western edge of the updraft is extremely sharp

while the eastern side is more gradual. The strongest

descent is just to the rear of the surface pressure trough.

3) While the surface pressure pattern is strongly
asymmetric, showing a broad ridge and sharp trough,
the upper-level pressure wave is nearly sinusoidal. The
associated meridional wind field is strongly asymmetric
at the lower level but only modestly so aloft.

Although this model cannot resolve the vertical
structure of the vertical velocity, the numerical simu-
lations described in section 5 show that the updraft
tends to be aligned along constant X surfaces. These
surfaces slope westward with height when the vertical
shear of the meridional wind is positive with the con-
verse holding as well. Careful inspection of Fig. 5 shows
that X surfaces slope westward with height on the west-
ern side of the updraft and eastward with height near
the east edge of the region of upward motion, implying
the characteristic wedge shape of the updraft first noted
by Bjerknes (1919). In order to further resolve the ver-
tical structure of the disturbances and account for the
effects of changing potential vorticity, we turn in the
following section to numerical integration of the
semigeostrophic equations.

.

5. Numerical simulations

The numerical solution of the equation set involves
using Eq. (29) to determine the time development of
the potential vorticity g,. The geostrophically balanced
flow consistent with the current distribution of g,
is determined by the inversion equation, which is ob-
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tained from the definition of 7 Using geostrophic and
hydrostatic balance:

16 1
(44)

where @ [=¢ + }(1,” + v,?)] is the modified geopoten-
tial and ¢ is'the normal geopotential. This computation
has been referred to as the invertibility principle by
Hoskins et al. (1985). To solve Eq. (44) we need g (X,
Z) and the potential temperature on the two horizontal
boundaries of the domain to specify ®/3Z as boundary
conditions. Equation (25) is integrated numerically to
give the time evolution of the boundary potential tem-
perature: .

i+u 2 Ind = 9
ar  “ax Yoz ox

Finally, to determine the ageostrophic streamfunction
¥ necessary to provide the source term in the potential
vorticity equation, the Sawyer-Eliassen circulation
equation is solved diagnostically each timestep. By
taking f16(24)/6Z] — [8(25)/6X] and using the thermal
wind relation we obtain:

& 9 i)

on Z=0,2h (45)

2
S aX ax’ (46)
This equation is solved taking w = 0 on the horizontal
boundaries and periodic conditions on the lateral
boundaries. The numerical algorithm uses the prog-
nostic Egs. (29) and (45) and the diagnostic Eqgs. (44)
and (46).

The equations are solved in a periodic domain with
a variable horizontal dimension and in a layer of depth
2h = 10 km. The number of horizontal gridpoints is
128 while the vertical resolution is 250 m. Due to the
coordinate transformation, a fixed horizontal grid-
length corresponds to an increased resolution in phys-
ical space in regions of cyclonic vorticity. The finite
difference scheme is centered in space and time with

. a 15-min timestep, which is reduced if the flow inten-

sification requires this for stability. The elliptic equa-
tions are solved using periodic Fourier transforms in
the X-direction and Gaussian elimination in the vertical
(see Heckley, 1980, for details). The numerical simu-
lations begin with » = 0.1, using an initial potential
vorticity of 0.327 PV units corresponding to values of
ge = 1.36 X 107* 572 and 2hq}*/f = 1167 km. The
shear u,, was taken as 3 X 103s or U= 15m s~
and f=10"*s"!, p = 1.22 kg m~3, and 6§, = 288 K.

In the dry case, r = 1, the normal model growth rate
and structure has been described by Hoskins (1976)
for this semigeostrophic model. For example, the dis-
persion relation is given by the expression:

o?=4(k cothk— 1)(1 — k tanh k).

The shortwave cutoff occurs at k = 1.2 and the max-
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imum growing mode has ¢ = 0.62 and & = 0.80. Note
that these are slightly different from the values predicted
by the two-layer model described earlier. The numerical
simulations are all initiated with a small-amplitude dry
normal mode with a surface # perturbation of £2 K.
We shall describe four simulations, with figures shown
for three of these. The following are essential charac-
teristics of these simulations:

(1) k= 0.80,2L = 4554 km, dry (Fig. 6) and moist

(Fig. 7). This wavelength corresponds to the fastest

growing dry mode.

(i) k= 0.94, 2L = 3900 km, moist (Fig. 8). This
moist wave grows the most rapidly of those to be de-
scribed here.
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(iii) k£ = 1.27, 2L = 2875 km, moist. This corre-
sponds to a neutral dry mode which, however, grows
in the presence of moisture.

It should be noted that in these simulations the total
half-wavelength L cannot change during a particular
integration, as it is fixed at the domain size, but the
updraft and downdraft region L, and L, can evolve,
As we begin with a dry normal mode at t = 0, then L,
= L, = L/2. Consequently, for example, L, will de-
crease as the wave intensifies reaching a finite limit in
transformed space. However, in physical space there
is a continuing contraction as the fronts progress 10
discontinuities.

b - —

i S ----———--,--7_=—_5_

Ja)

{b)

{c)

N
]
3
]
-.{

{d)

(e)

FIG. 6. The structure of the dry wave with k = 0.80 or wavelength 4554 km. Shown are
horizontal-vertical contour plots with the horizontal axis marked with ticks every 1000 km and
the vertical axis with ticks every 1 km. (a) The meridional flow (solid lines, contour interval 5 m
s~") and the potential temperature 8 (dashed lines, contour interval 4 K) at ¢ = 0. This corresponds
to a dry normal mode of small amplitude. (b) Meridional flow and 6 at ¢ = 3 days. (c) 5,/f with
contour interval of 0.5, at ¢ = 3 days. (d) Streamfunction for the ageostrophic flow, contour
interval of 4000 m? s™', at ¢ = 3 days. (e) Vertical velocity with contour interval 1 cm s7', at ¢

= 3 days.
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FIG. 7. The structure of the moist wave with r = 0.1 initially and k& = 0.80 or wavelength 4554

km. Figures have the same format as Fig. 6 unless otherwise stated. (a) The meridional flow and
@ at ¢ = 2 days. (b) n,/fat t = 2 days. Note uneven contour interval. {c) Streamfunction at ¢/ = 2
days. Contour interval is 4000 m? s™'. (d) Vertical velocity at £ = 2 days. Note uneven contour
interval. (¢) Potential vorticity PV = (1/p)n- V6 at ¢ = 2 days. The contours are labeled in PV
units, where { PV unit = 10~ K m~ kg~! s™". Note the uneven contour interval. The initial value
was 0,327 PV units; to obtain g, 2 PV unit must be multiplied by 4.15 X 1074, (f) Streamfunction
atf = 1.5 days. (g) Vertical velocity at ¢ = 1.5 days. Contour interval 1 cm s™.
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t = O days
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<
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FIG. 8. The structure of the moist wave with r = 0.1 and k = 0.94 or wavelength 3900 km.
Figures have the same format as Fig. 6 unless otherwise stated. (a) Meridional flow and § at ¢ = 0.
(b) Meridional flow and 6 at ¢ = 1.5 days. () n,/f at ¢ = 1.5 days. Contour interval 0.5. (d)
Streamfunction at ¢ = 1.5 days. Contour interval is 4000 m® s™', (e) Vertical velocity at f = 1.5
days. Contour interval 1 cm s™. (f) Potential vorticity [=(1/p)n- V8) at ¢ = 1.5 days. The contour
interval is 0.1 PV units, where a PV unit is 107 K m~2 kg~! s™. The initial value was 0.327 PV
units and to obtain g, a PV unit must be multiplied by 4.15 X 107,

Figures 6, 7 and 8 all refer to physical space and
show vertical (z)-horizontal (x) cross sections of the
relevant fields. The geostrophic flow v, is shown su-
perimposed with the isentropic distribution. Other
fields include the normalized absolute vorticity, 7./,
the streamfunction v, the vertical velocity w, and the
(dry) potential vorticity.

We shali discuss the important features of these sim-
ulations under the following headings:

a. Horizontal scale

From the vertical velocity fields we can see that while
the dry mode (Fig. 6) retains L, = L,, there is a con-
siderable contraction in the horizontal scale of the re-
gion of ascent in the moist development. For example,
in Fig. 8, at this stage in the wave growth, we estimate
A = 0.15. Note that this figure is in physical space rather
than in transformed space as given in Fig. 3a. In trans-
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formed space the value is closer to the value of 0.24
predicted in Fig. 3a. ‘

b. Growth rate

‘This is a difficult quantity to obtain from the sim-
ulations for comparison with the two-layer model, as
the initial (dry) mode is not a moist normal mode.
Consequently there is a period of adjustment at the
beginning of the integration as the moist mode becomes
established; this is most apparent in Fig. 7 att = 1.5
days, as will be discussed later. The following compares
the time taken for the front to collapse to a disconti-
nuity:

dry: t=~3.7days
k=0.80, { R Y
moist: ¢=2.01days
dry: ¢t~ 3.7days
k=094, [ R Y
moist: ¢=1.71days
dry: no growth or discontinuit;
k=127, { MO BIOWIRG jd
' moist: ¢=2.2days.

Using these data and the rate of increase in amplitude
of several variables it is possible to estimate that the
moist mode grows between two and three times as fast
as the dry waves. Considering that r is initially 0.1, this
suggests that the two-layer model may underestimate
the increase in growth rate due to moist processes. -

¢. Meridional geostrophic flow

In the dry simulation the warm air maximum and
the cold air minimum of méridional (or along-front)
flow are equal in magnitude and symmetrical in the
lower and upper parts of the domain. There is a small
asymmetry in the vertical in the moist case but the
main asymmetry is that the warm southerly flow is
substantially stronger than the cold northerly flow. This
feature is also apparent in the two-layer solutions,
though to a lesser extent. Cursory examination of ob-

- servations of fronts show this to be a realistic aspect of
these moist simulations. This stronger warm flow and
the narrow region of ascent ahead of the frontal surface
have a clear interpretation in terms of the “warm con-
veyor belt” described by Browning and Monk (1982).

d. Condensation heating

The domain-averaged value of -6, indicates the net
heating due to condensation. The following average
was computed in physical space:

) 1 (2

T 2Lho

—X,y

h
L [6—0(t=0)] dxdz.

For k = 0.80 the moist mode has values of & ~ at ¢
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=(0,0.5, 1.0, 1.5, 2) days of & ~ = (0, 0, 0.15, 0.40,
0.79) K. -

e. Vertical velocity structure

In Fig. 7 there is a double vertical velocity maximum
apparent at ¢ = 1.5 days which coalesces into a single
maximum by ¢'= 2 days. This is likely to be due to the
difference in tilt of the region of ascent of the moist
normal mode compared to the initial dry normal mode.
As part of the adjustment, the large slope of the moist
ascent becomes locally established at lower levels com-
pared to the smaller slope of the ascent aloft. It is in-
triguing to speculate whether such a structure occurs
in nature as moist processes become dominant in the
baroclinic wave development. Orlanski and Ross
(1984) have discussed a double maximum which occurs
in their mesoscale simulation of a cold front. The sim-
ulation for k = 1.27 did not exhibit this feature. ‘

As is the case in the two-layer model, there is an
extremely large horizontal gradient of vertical velocity
on the cold side of the ascent region. This also occurs
in the dry solutions (see Fig. 6) but is particularly no-
ticeable in the moist case. Given that cloud and rain
are proportional to the vertical velocity we may expect
that the thickest cloud and most intense precipitation
are likely to be adjacent to the cloud-free cold air. This
is in accord with observations of rapid clearing behind
cold fronts.

f. Surface pressure field

In the presence of moist processes, the exponential
rate of deepening of the surface pressure minimum is
much accelerated. For example, in the case of k = 0.80
the following shows the difference between the surface
maximum and minimum pressure deviation (Ap) as a
function of time: for ¢t = (0, 0.5, 1, 1.5, 2) days, Ap
= (8, 11.5, 17.5, 27.0, 43.4) mb. The final 12 hours
before frontal collapse shows a pressure fall of about
16 mb, which exceeds the threshold for explosive de-
velopment defined by Sanders and Gyakum (1980). It
is likely, however, that the inclusion of modest amounts
of surface dissipation would substantially reduce this
deepening rate. It seems unlikely that condensation
effects on normal-mode growth can by themselves ex-
plain extreme cases of cyclogenesis such as those re-
ported by Sanders and Gyakum (1980), especially as
condensation is not peculiar to oceanic storms.

Although not shown here, the shape of the surface
pressure field, analogous to the trace on a barograph,

- is similar to that shown for the two-layer model in Fig.

5b. This is a characteristically different shape from that
of the dry wave, where the trace remains nearly sinu-
soidal right up to frontal collapse, with a change in
curvature across the front. In the moist case the trace
essentially keeps the same sign curvature (in space or
time) across the front. This seems to be typical of bar-
ograph traces of rapidly deepening lows.
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g Evolution of potential vorticity

The form of the potential vorticity equation (29)
shows that latent heat release will produce a lower tro-
posphere positive anomaly and an upper troposphere
" negative anomaly of potential vorticity. This is subject
to the mass-weighted volume integral remaining con-
stant. The moist simulations indeed show this to be
the case (e.g., see Fig. 8). However, unlike the results
described by Thorpe and Emanuel (1985) for defor-
mation-forced frontogenesis, these anomalies are ad-
vected horizontally through the baroclinic wave by the
total wind field, which contains the background zonal
shear flow. Moving with the cyclone, this produces an
advection of the anomaly in the direction of the cold
air at low levels and in the direction of the warm air
at upper levels (or in the figures, from right to left at
low levels and vice versa aloft). In terms of potential
vorticity, this spreads the influence of the condensation
from the ascent region into the descent region. This
does not diminish the growth of the baroclinic wave
but it does have important implications for its structure.

The potential vorticity concepts developed by Hos-
kins et al. (1985) can be used here to describe these
implications. In that paper it was shown that a positive
potential vorticity anomaly is consistent with a bal-
anced flow which has cyclonic relative vorticity and an
increased static stability; the opposite signs apply for a
negative anomaly. The proportion of the stability and
circulation anomalies depends on the aspect ratio of
the potential vorticity anomaly but is typically shared
equally. These ideas allow us to predict that in moist
baroclinic waves there is an increase in stability and
cyclonic vorticity at low levels and a decrease at upper
levels due to the condensation. Because of horizontal
advection, this occurs not only where the condensation
is located but, in time, throughout the wave. As an
example, for £k = 0.94 in the dry simulation after 3
days the absolute vorticity maximum and minimum
are the same at the upper and lower boundary with
values of 2.9/ and 0.6f. In the moist simulation at 1.5
days at the lower boundary they are 3.65f and 0.7/,
while at the upper boundary they are 1.4f and 0.57f.
The increase in stability at low levels and decrease at
upper levels is particularly evident in Fig. 7a for k
= (.80.

h. Neutral mode growth

When k = 1.27 the dry initial perturbation is 2 neu-
tral normal mode, as its horizontal scale is shorter than
the short wave cutoff. Without moist processes this does
not grow but propagates at 2.5 m s~' in the model
frame of reference. [It is worth noting here that the
growing moist modes do not propagate, in agreement
with the analytic result (appendix B) that ¢ cannot be
complex. The location of the frontal collapse is, how-
ever, slightly different in the moist case, being displaced
some 300 km eastward relative to the dry simulation.]
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In the presence of condensation, the wave initially
propagates but quickly becomes stationary as the wave
develops. The moist mode grows rapidly despite being
initiated with a perturbation which does not have the
correct phase tilts for baroclinic development. This
shows that an important role of moist processes in the
atmosphere is to allow baroclinic development on hor-
izontal scales otherwise stable to baroclinic instability.

6. Conclusions

We have examined the structure and growth rate of
baroclinic waves developing in environments charac-
terized by small or zero moist potential vorticity, a
condition often observed in middle latitudes. Analytic
solutions of a two-layer semigeostrophic model show
that the growth rate at zero moist potential vorticity is
about 2.5 times the classical dry value and that the
updraft collapses onto a thin ascending sheet. The
wavelength of the most unstable moist mode when ¢,
= (is roughly 60% of the dry value. In the moist model
atmosphere frontal collapse occurs first at the surface
despite the presence of a rigid upper boundary. These
results are confirmed by numerical integrations of a
multilevel semigeostrophic model which show, in ad-
dition, that the total wind, which contains the base
state zonal shear, advects through the horizontal extent
of the wave high potential vorticity generated at low
levels and low potential vorticity produced at upper
levels by condensation. The distributions of wind,
temperature, and pressure in the moist models appear
closer to observed distributions than those of dry mod-
els. While condensation effects increase the growth rate
of baroclinic normal modes, the authors do not believe
that this alone can account for cases of explosive marine
cyclogenesis. This conclusion is consistent with those
of previous investigators (e.g., Anthes et al., 1983).

We emphasize that we have not examined the effects
of unstable moist stratification (i.e., g, < 0) on devel-
oping baroclinic waves; rather, we have investigated
the characteristics of disturbances growing in an en-
vironment which is nearly neutral to slantwise moist
convection. Such effects, together with those of surface
friction, surface heat fluxes, and three-dimensionality
remain to be explored in future work.
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APPENDIX A
General Solution of the Eigenvalue Problem

In each of the regions 1 and 2, the antisymmetric
parts of the solutions to (43) may be written

V1,2 =4,z sinh(a; ;. X) + By ; sinh(8,,.X), (Al)
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where X is defined separately in each region (see Fig.
1) and « and B (which may be complex) satisfy

1, 2 I
(al,lzaBl,Zz)=§[”2—Ei[(‘72—'a) _§§] }, (A2)

where the positive root yields « and the negative root
gives B. ¢ is defined separately in each region according
to (40). According to the boundary conditions and
the subsequent discussion in the text, we require that
OY/dX vanish at the boundaries of the regions and that
¥, gd*/dX? and g8*/dX> be continuous across the

"ﬂl(ﬂlz"axz)

tanh8, L, — 2 tanha, L,
oy

8182 — a,?)
r[8\? tanh@, L, -

With 7 and L, specified, these may both be considered
to yield eigenvalues ¢ as functions of L;. Except in
certain cases, these two functions intersect only at a
discrete set of points which yield the eigenvalues ¢ and
L,. This set turns out to be countably infinite, but for
all eigenvalues except one, the sign of the vertical ve-
locity changes within either or both regions, making

“those solutions unacceptable. The acceptable eigen-

value (o, L,) is found numerically for different values
of rand L, by searching for solutions of (A4) and (AS).

APPENDIX B

Proof That ¢ is Not Complex

The proof that ¢ is real is carried out as follows.

Multiply (42) by ¢*, the complex conjugate of ¥, and
integrate over an entire wavelength L. For simplicity,
we avoid having the endpoints of the integration at
points where w changes sign. We have

f v X3q f “’*aX"a

[2]
+2f P adeX+2a2f WPdx=0. (Bl)
Integrating terms 1, 2 and 3 in (B1) by parts and noting

that ¢ is periodic over L, each of these terms may be
written
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oy tanha L] B, tanhB, L, —
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internal boundaries. The vanishing of 3}/dX at the
boundaries leads to the conditions

Alal COShalLl + Blﬂl COShBlLl =

}. (A3)
Azaz COSha2L2 + Bzﬁz COShﬂsz =0

We use (A3) to eliminate 4; and A4, in favor of B,
and B,.

The other three conditions overspecify the eigen-
value problem and thus lead to the requirement that
the determinants of two separate matrices vanish.
These may be written

~B2(82* ~ a7?) By coshg L,
8 =0, (A4)
tanhﬂzl,z—f tanha, L, | | B, coshB,L, ‘
2 .
~B2B2* — @) B, coshB, Ly}
a8, tanhasz][ B; cosB, L, ]"0' (A35)
LY g W fL Y
I ]f o axax X ), qlaxde
(B2)

[a]
L 2 . L
214 q]%(ldx '
‘ L a¢2

[31 -

/

Since g has finite jumps at points where w changes
sign, the term labeled [a) above has delta functions in
the integrand. But because d¢/dX is by definition zero
at these points, term [a] vanishes. Using this fact and
the other relations (B2), (B1) may be written

[ qlaXz dx+ozf()LqL-;‘;£(|.zdx—zf|%fdx

.
+2¢2 fo WPdX=0. (B3)

The imaginary part of the above is

L a‘pz ) _
20,0; J; [ P +2|¢|2]dX =0. (B4)

Since the integrand of (B4) is positive definite, o; must
vanish everywhere except when o, = 0.
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APPENDIX C
Asymptotic Solutions for Small r

Asymptotic solutions to the equations {43) with
boundary conditions can be found by expanding
the eigenvalues in powers of r. The process of finding
these solutions is simplified by noting certain behavior
in the numerical solutions. Specifically, we suppose that
the coefficients 4, and B, defined by (A1) are order
one quantities and that L, =~ O(r'/?) in the limit of
small r. We also note from the definitions of oy, By (see
A2) that to O(1)

2_ _ 1/2

B2 =—2/r+2a*+ 00"

Following the same procedure outlined in appendix A
but formulating the matrices for the coefficients 4, and
B, (rather than B, and B,) results in the following two
simultaneous equations valid to O(r):

Bi{a tanha, L, — B, tanhB, L]

=82 - ) tanhB L,, (C2)

(312)[5 tanho, L, — tanhﬁsz]

= B8, “dzz)(ﬂ tanh, L, ~ L,), (C3)

where the hyperbolic tangents of O(r'/?) quantities have
been expanded to O(r'/?). If tanh@, L, is O(1), the above
implies that 3; = a, + O(r”"), where 7 is some positive
number, since 8,”! and L, vary as r'/2. But this is in-
consistent since no matter how o, and 8, approach
each other the terms in brackets on the left-hand side
of (C2) and (C3) have the same order of r as the term
(B;* — a2?). Thus the only consistent solutions are for
tanhB, L, = O(8,) = O(r"'/?). Elimination of tanh8, L,
from (C2) and (C3) then yields the dispersion relation

2 2
2t %2 tanhaz Lz = 2t BZ tanhﬁz Lz,

ay 2

correct to O(1). Since a; and 8, depend only on ¢ (and
not on r) the above yields the dispersion relation o(L,)
valid in the limit of r — 0. This is solved numerically
with the results plotted in Fig. 2. The growth rate
reaches a peak value of 1.484 when L, = 1.94, and
quickly asymptotes to V2 at large L. We can solve (C2)
for the quantity 8,~! tanhg,; L,; at the value of L, at

(C4)
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which the growth rate peaks, this has the value —0.477.
Since 8, = iV2/r as r — 0, this yields

tanVZT'L, = —0.477\5.; as r—>0.

If we let VE/—rL‘ — (w/2) + ¢, where ¢ is a small pa-
rameter, expansion of the above gives

e~ Vor.

Thus in the limit of small 7,

limL1=§%V;+r. :

r—=0
This function is plotted alongside the numerical results
in Fig. 3.

(Cs)
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