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ABSTRACT

Recent work on the interaction of convection with large-scale flows suggests that a closure based on a pre-
sumed equilibrium between surface enthalpy fluxes and input of low-entropy air into the subcloud layer by
convective downdrafts works well in models of the tropical atmosphere. Such a convective representation is
here used in a simple numerical tropical cyclone model. This further simplifies the model, while in many respects

improving its performance.

1. Introduction

Most convection in the Tropics originates from the
comparatively thin subcloud layer, for it is this layer
that receives direct heat input from the underlying sur-
face. At the same time, the thermodynamic disequilib-
rium between the subcioud-layer air and the underlying
ocean is large enough that, were they unopposed, sur-
face fluxes would bring the subcloud entropy into equi-
librium with the surface in about 12 hours. In nature,
however, the surface enthalpy fluxes are very nearly
balanced by the entrainment of low-entropy air through
the top of the layer. In undisturbed conditions, this en-
trainment is accomplished by small-scale turbulence
acting on a pronounced negative jump of entropy
across the top of the layer, while in regimes experienc-
ing deep convection, convective downdrafts are the
principal agents for importing low-entropy air.

The near balance of the subcloud-layer entropy
budget was used by Emanuel (1993) to determine the
convective updraft mass flux out of the boundary layer
in a simple model of intraseasonal oscillations in con-
vecting atmospheres. Recently, Raymond (1995) has
more thoroughly discussed the physical basis for such
a representation of convection. The basic idea can be
illustrated using the vertically averaged budget of en-
tropy (s, = ¢, Inf,) in the subcloud layer:

ds, _ 1 *

+ (My + wo) (s, — sa) + hg'ﬂ, (1)
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where A is the depth of the subcloud layer, T, and |V, |
are the near-surface air temperature and wind speed,
Cp is an exchange coefficient, k, is the enthalpy of air
near the sea surface (k = [c,(1 — g) + cg]lT + Lg,
where T and q are the temperature and specific humid-
ity, c,q and ¢, are the heat capacity at constant pressure
of dry air and the heat capacity of liquid water, respec-
tively, and L, is the latent heat of vaporization}, k¥ is
the saturation enthalpy at sea surface temperature, M,
is the convective downdraft volume flux at cloud base,
w, is the vertical velocity outside of the clouds at the
top of the subcloud layer (assumed negative bere), s,
is the entropy of air above the subcloud layer, and 0,4
is the radiative cooling in the subcloud layer. It has
been assumed that dry turbulence at the top of the sub-
cloud layer and convective downdrafts both import the
same value of entropy, s, into the subcloud layer ; this
has been done for simplicity but is not necessary for
the following development.

The quasi-equilibrium assumption for the subcloud-
layer entropy neglects the time tendency of entropy and
the radiative cooling terms in comparison to the surface
and downdraft fluxes, which are thus assumed to be in
equilibrium, yielding
- CDIvbI(kr =~ kb)

+ w.
M+ we = To(sp =~ Sm) (2)
At the same time, mass continuity at the top of the
subcloud layer demands that
My+w,+ M, =w,, 3)

where M, is the net convective updraft mass flux at
cloud base, and w, is the total (large-scale) vertical
velocity at cloud base. Combining (3) and (2) gives

Co| Vsl (k¥ — k)

M, s
Tp(S6 — Sm)

=W++

4)
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subject to M, = 0. [This is nearly identical to (11) of
Emanuel (1993).] Thus, the convective updraft mass
flux is related to the mean ascent at the top of the sub-
cloud layer and the surface enthalpy flux. In most trop-
ical circulations, the contribution to M, from w is some-
what larger than that from variable surface fluxes, but
in waves such as the Madden—Julian oscillation
(MJO), the phase of the surface flux term contributes
to wave growth, while that from w alters the phase
speed of the disturbances but does not amplify them.

Although (4) provides a diagnostic expression for
the convective updraft mass flux at the top of the sub-
cloud layer, the net convective mass flux, M, + M,, is
needed to predict temperature changes in the free at-
mosphere, for it is this sum that forces compensating
subsidence. We begin by writing the equation for po-
tential temperature just above the top of the subcloud
layer, 6, :

dh 1n0+ d In6 de
S = (M, + M, —w, + , (5
dr ( e — W) oz T, (5)
where
d, 0
a- ot V'V,

V is the horizontal velocity vector, and T, is the tem-
perature just above the subcloud layer.

It is clear from (5) that a relationship between the
convective updraft and downdraft mass fluxes is
needed. This must be provided, in general, by a cloud
model. For the purposes of constructing a maximally
simple model of the MJO, Yano and Emanuel (1991)
and Emanuel (1993 ) related M, to M, just above cloud
base by

Md = '—(1 - Ep)]‘lu? (6)

where ¢, is a bulk precipitation efficiency, which is in
general a function of cloud water distributions and en-
vironmental temperature and humidity. If all the rain
evaporates, €, = 0 and M, = —M,,, consistent with the
fact that there is then no net latent heat release. If, on
the other hand, ¢, = 1, M, = 0: there is no evaporation
to drive a downdraft.’ In this model, €, will be specified
as a function of environmental relative humidity only.
We now substitute (4) and (6) into (5) to obtain

dhln0+_ € CDlvbI(k;k_kb)_(l_e)w
dt P Ty(sy — Sw) T
Ol Q.
X + =2
aZ cpT+ (7)

' Raymond (1995) uses an expression like (6) but with a replacing
1 — ¢,. We emphasize that (6) is a crude approximation; in a more
complete treatment M, must be related to M,, through a cloud model.
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This shows that actual temperature changes just above
the top of the subcloud layer are driven by surface en-
thalpy fluxes, radiative cooling, and adiabatic cooling
related to large-scale ascent. Note that the effective
stratification is proportional to 1 — ¢,; Yano and Eman-
vel (1991) and Emanuel (1993) argue that this ac-
counts for the small phase speed of the MJO, consistent
with observations and with models using linearizations
of the Betts—Miller cumulus parameterization (Neelin
and Yu 1994; Emanuel et al. 1994).

Before proceeding, we express (7) in a slightly dif-
ferent form by using the saturation entropy, s*, in place
of 6. (The saturation entropy is the entropy the air
would have were it saturated at the same pressure and
temperature; it is a state variable and may also be ex-
pressed as ¢, Inf¥*, where 6% is the saturation equiva-
lent potential temperature.) The relationship between
fluctuations at constant pressure of s* and Iné is (e.g.,
see Emanuel 1994a)

G,8% = c,,-ll-:ié,, Ind, (8)
where ¢, is a heat capacity at constant pressure and I'y
and T, are the dry and moist adiabatic lapse rates, re-
spectively. Using (8), (7) may be written

dst [ ColValCkr—k)

dt ”[e” T,(sp — Sm) = edw
Fd 0 In8 I-‘d Qrad
AL} NG
F,,., aZ I‘m T+ ’ ( )

where s* is the saturation entropy just above the sub-
cloud layer.

We now argue that to a first approximation, s* is
constant through the depth of the convecting layer. To
begin with, several arguments have been advanced
(e.g., Bretherton and Smolarkiewicz 1989) that en-
trainment, and therefore mass flux, is related to the vari-
ation of cloud buoyancy with height. This supports the
device, used in many convective schemes (e.g., Man-
abe et al. 1965; Betts 1986) of driving actual lapse rates
toward moist adiabatic lapse rates. We shall assume
here that the lapse rate in the convecting layer is main-
tained by convection at its moist adiabatic value. Ne-
glecting the direct effect of water substance on density,
this is equivalent to assuming that s* is constant with
height and equal to its value, s, just above the top of
the subcloud layer. This assumption was also made by
Emanuel (1993). Thus (9) may be regarded as a pre-
diction equation for temperature throughout the depth
of the convecting layer. In general, this depth must also
be predicted or diagnosed; here we take it to have a
fixed value for simplicity.

Up until now we have assumed that convection re-
sponds instantly to changes in the large-scale forcing.
But even though it is small, the timescale of convection
has been shown to have important effects in global
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models (Betts and Miller 1986) and in idealized mod-
els of intraseasonal oscillations in the Tropics (Eman-
uel 1993; Neelin and Yu 1994). We account for this
timescale here using the same approach as Emanuel
(1993). We regard (4) as an expression for the equi-
librium updraft mass flux, M,, ,

Cp|V,|(k¥ — k)
Tb(sb - sm)

and relax the actual updraft mass flux to this value
using

Ailum =w, + ’ (10)

th,, Mueq - Mu
d ’ (D

Te

with M, given by (10) and 7 taken to be on the order
of a few hours. The saturation entropy through the
depth of the convecting layer (which is assumed equal
to s¥) is then predicted using (5), (6), and (8):

dhs* Fd 0 Inf Fd de

a M WIT T,
It should be understood that all the quantities on the
right side of (12) are to be evaluated just above the top
of the subcloud layer.

Finally, it is necessary to predict the distributions of
subcloud-layer entropy, s,, and the entropy at the
- source level for downdrafts, s,,, used in (10). [In the
linearized version of (10) used by Yano and Emanuel
(1991) and Emanuel (1993), fluctuations of s, and s,,
in (10) were ignored, so this was not necessary.] In
regions where it exists, convection can be assumed to
tie the subcloud-layer entropy to the value of s* at the
subcloud-layer top, so that the subcloud-layer air is ap-
proximately neutral to small upward displacements. In
regions of strong large-scale descent, however, deep
convection may cease, and in that case it is necessary
to solve the subcloud-layer entropy equation (1). In
general, the subcloud-layer entropy may always be de-
termined by (1) subject to the constraint

(12)

S, = 5%,

(13)

where s* is the saturation entropy above the subcloud
layer.

We summarize this approach to representing deep
convection as follows. '

1) The equilibrium deep convective downdraft mass
flux is determined by requiring equilibrium of the sub-
cloud-layer entropy; this results in (2).

2) The equilibrium deep convective updraft mass
flux is related to the equilibrium downdraft mass flux
and the large-scale vertical velocity by mass continuity,
resulting in (10).

3) The actual deep convective mass flux is relaxed
to its equilibrium value over a finite timescale, 7.,
using (11).
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4) The determination of the saturation entropy just
above the top of the subcloud layer requires knowledge
of the total convective mass flux (the sum of the updraft
and downdraft mass fluxes); this in turn requires a re-
lationship between M, and M,. The simplest approach
relates the two linearly; this results in (12) for the sat-
uration entropy, s¥, just above the subcloud layer.

5) To get the temperature (or equivalently, s*)
through the rest of the convecting layer, it is assumed
that the layer temperature relaxes toward a moist adi-
abat (s* constant with height) at some rate. Assump-
tions about the magnitude of this rate vary greatly. We
follow Emanuel (1993) and assume that s* is constant
with height at all times, but relax the strict equilibrium
of the boundary layer by introducing (11).

6) The entropy of the subcloud layer is obtained by
assuming convective neutrality, s, = s*, except where
large-scale conditions prohibit deep convection, in
which case the subcloud-layer entropy budget must be
explicitly calculated using (1). Both cases may be
satisfied simply by solving (1) subject to the con-
straint (13).

7) A budget equation for the entropy, s,, at the
source level for convective downdrafts must be solved.

Note that point 1 is a gquasi-equilibrium assumption
on boundary-layer entropy, which does vary slowly and
is predicted according to point 6. Other aspects of this
way of representing moist convection are discussed in
some detail in Raymond (1995).

When a version of this simple way of representing
convection is used in a model of the equatorial beta
plane, linearized about mean easterly fiow, unstable
modes representing slow, eastward-propagating plan-
etary Kelvin waves and westward-propagating synop-
tic-scale waves with structures similar to mixed
Rossby—gravity modes emerge. Emanuel (1993) also
showed that in order to model these properly, the small
time lags over which convection relaxes the tropo-
spheric temperature to a moist adiabat are crucial; strict
quasi-equilibrium of the Arakawa—Schubert (1974)
kind results in spurious high-frequency modes.

The purpose of this paper is to show that the simple
way of representing convection reviewed above also
performs very well in a simple hurricane model.

2. Hurricane model?

Except for the convective parameterization and a few
minor changes, the hurricane model used here is iden-
tical to that of Emanuel (1989, hereafter E89). We here
summarize the properties of the model and the changes
that have been made to E89; the actual model equations
are presented in the appendix.

2 The model described herein is available from the author at eman-
uel@texmex.mit.edu.
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FIG. 1. Structure of the model. Potential radius, R, is used as the
model radial coordinate; r, is the physical radius of R surfaces at the
sea surface; and r, is the physical radius of R surfaces at the tropo-
pause. These are predicted quantities. The thermodynamic variables
are x;, x*, and x,,, and the mass streamfunction ¢ is defined in the
midtroposphere. Term #, is the diagnosed streamfunction at the top
of the subcloud layer.

The model is axisymmetric and phrased in angular
momentum coordinates, using the potential radius R,
defined such that

iR"’ErV+f—r2.

2 5 (14)

Here fis the Coriolis parameter (assumed constant), r
the (physical) radius from the storm center, and V the
azimuthal velocity. The right side of (14) is the total
angular momentum per unit mass.

The model consists of two parts: a subcloud layer
and the rest of the troposphere (see Fig. 1). The latter
is assumed always to be in hydrostatic and gradient
wind balance and to be neutral to slantwise moist con-
vection, a condition approximated by constant s * along
angular momentum (R) surfaces. The primary dynamic
variables of the model are

r,  the radius of R surfaces at the sea surface;

r,  the radius of R surfaces at the tropopause;

¢ the mean mass streamfunction in the midtropo-

sphere;*

Yo the mass streamfunction at the top of the bound-
ary layer;*

the convective updraft mass flux at the boundary-
layer top;

the convective downdraft mass flux at the bound-
ary-layer top.

*In ER9, ¢ and i, were defined in terms of the airflow between
convective clouds; here they represent the total mass streamfunctions.
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All the entropy variables are replaced by a new quan-
tity, x, defined by

X = (T, — T)(s — Sui),

where T, and 7, are the surface and tropopause absolute
temperatures (assumed constant), s is the entropy, and
s,; is the entropy of the ambient subcloud layer. Thus,
the subcloud-layer entropy variable used in the model
is x,, the troposphere entropy variable is x,,, and the
saturation entropy of the troposphere is x*:

Xo = (T — T)(sp — Spi)>
Xm = (T; — T,)(Sm — Spi)s
x* = (T, — T)(s* — sp).

(15)

(16)

Clearly, x, = x* = 0 in the ambient environment
(which is assumed to be convectively neutral) and y,,
< 0.

All the entropy variables, x, are scaled in the model
by the ambient value of x at saturation at sea surface
temperature:

Xs = (T, — T)(s% — su),

where s} is the ambient saturation entropy of the ocean
surface. (Here s¥* varies with radius because of the de-
pendence of s* on pressure.) The quantity x, has the
units of velocity squared, with typical values around
3600 m? s~2. E89 showed that a characteristic maxi-
mum surface wind speed in tropical cyclones is x./2,
of order 60 m s™'.

All the dependent and independent variables are
made dimensionless according to the scaling in Table
1, which also shows typical numerical values of the
scaling parameters, and the definitions and values of
the nondimensional model parameters are given in Ta-
ble 2.

(17)

TABLE 1. Scaling parameters.

Variable Scaled by* Typical value®

Dependent:

Xbs Xms X* Xs 3600 l‘l’l2 S_2

Thos 1y Dlf 1000 km

1% Ve 60ms™'

¥, do 1hcoop,8X° f 72 4% 10" kgms™>

We, W, M, My 0o VX 6cms™'

In(p/po) Xs/R. T, 0.04
Independent:

R i 1000 km

T <o RT, AP T2 15 hours

g P

* See E89 for definitions of the parameters that appear here.
® Assuming 7, = 27°C, T, = —70°C, % = 80%, f = 5 X 107° 57},
Po = 1000 mb, AP = 400 mb, cp, = 107°.



3964

The fundamental change from E89 consists of re-
placing the buoyancy closure for convection used there
with the subcloud-layer equilibrium scheme described
here in section 1. That is, we use, with some modifi-
cation, (6), (10), (11), and (12) phrased in potential
radius coordinates and scaled according to Table 1. In
addition, the scaled form of the subcloud-layer entropy
equation, (1), is actually solved, but subject to the con-
straint (13), which takes the form

One important modification of the new closure is
necessary in applying it to the hurricane problem.
This consists of taking into account radial entropy
advection in the subcloud layer. Accordingly, the di-
mensionless version of (1) contains a radial advec-
tion term, and consequently so does the equilibrium
mass flux, whose dimensionless form is given in the
- appendix by (A9). In other words, the equilibrium
downdraft mass flux into the subcloud layer is as-
sumed to balance surface fluxes and radial entropy
advection by the Ekman flow.

There are two further critical aspects of the
new closure that must be addressed. First, E89
showed that the quintessential physical process
leading to tropical cyclone genesis in the model is
the cessation of convective downdrafts owing to sat-
uration of the middle and lower troposphere on the
mesoscale. Thus, unlike in the linear analyses of
tropical intraseasonal oscillations (Emanuel 1993),
we must here allow for a variable bulk precipitation
efficiency ¢,. Qualitatively, one would expect ¢, to
vary with the relative humidity of the lower and
middle troposphere. Accordingly, we choose the
function

Xm — Xmo

€, = R
X6 — Xmo

» (18)
where X, 15 the initial entropy deficit of the midtro-
posphere. Thus, ¢, is zero in the environment and ap-
proaches unity as x, = x... At first, this may appear to
be an extreme variation of ¢,, but it should be noted
that we are also applying a Newtonian cooling in place
of real radiative cooling. As this cooling vanishes in
the environment of the storm, so too must the convec-
tive heating for a balance to be maintained.

The second critical process is the moistening of the
lower and midtroposphere by convection, since this is
the essential process that saturates the troposphere in

the incipient cyclone core and allows downdraft-free -

convection to develop there. The effect of convection
on free-atmosphere entropy can be broken into two
parts: entropy advection by subsiding air in the cloud
environment, and detrainment of high entropy, cloudy
air. As we shall see, the development of tropical cy-
clones in the model is sensitive to the distribution and
magnitude of moistening of the lower troposphere by
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convection. In the present model, the detrainment of
entropy into the lower troposphere is formulated as

Mu(Xb - Xm)[Amax(l - €p) + Aminep]v (19)

where A... and A, are parameters that govern the rate
of detrainment of high-entropy, cloudy air into the
lower troposphere. Both A,,,x and A, are less than
unity, and it is assumed that that portion of the entropy

" detrainment that does not occur in the lower tropo-

sphere takes place in the upper troposphere so as to
satisfy integral entropy conservation. When ¢, = 0, it
is assumed that a greater fraction of detrainment occurs
in the lower troposphere, while when ¢, is close to
unity, most of the detrainment happens in the upper
troposphere. Note that the entropy of the upper tropo-
sphere is not a model variable.

Aside from the representation of convection, the
model differs from that of E89 in the following re-
spects.

1) Momentum diffusion has been added to the top
layer. This has the cosmetic effect of preventing real
discontinuities from forming at the model top but is
observed to have little effect otherwise.

2) The enthalpy surface exchange coefficient is al-
lowed to differ from the surface drag coefficient.

3) The magnitude of the radiative cooling, while
still capped, is not turned off in regions of positive Ek-
man pumping as in E89.

4) The other variables, x * and w,, used in E89 are
not needed here.

5) There is no downward advection of entropy from
the upper to the lower troposphere.

Most of these differences are minor in comparison
to the implementation of the new representation of con-
vection and have the effect of simplifying the model.

3. Results

Figure 2 shows the evolution with time of the max-
imum azimuthal velocity in a control run and compares
it with the result of running the original model of E89.
Both have been initialized using the warm-core vortex
and boundary conditions described in E89, with param-
eter values listed in Table 2. The evolutions, as well as
the radial distributions of variables (not shown), are
very similar in the two cases. Given that the only sub-
stantive difference here is the use of a cumulus scheme
based on subcloud-layer equilibrium, the similarity of
the results of running both models supports the conclu-
sion of E89 that the hurricane subcloud layer is very
nearly in equilibrium, even during rapid development.

In other respects, as well, the reformulated model
behaves very similarly to the original, displaying the
same sensitivity to the control parameters and initial
conditions. The sensitivity to the convective relaxation
timescale 7., which appears in (A10), is weak. On the
other hand, the model proves very sensitive to the pa-
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TasLE 2. Nondimensional model parameters.

Value used in control

Parameter Name Definition* experiment
Control parameters: o
. . F.J = olng
0 Static stability r—m T, — T)x;'AP (—E> 2
T.-T, . .
T Thermodynamic efficiency — 153
.4 Ambient surface relative —
humidity 0.8
Cy Ratio of exchange 1.0
-(,_‘; coefficients — .
7} Isothermal expansion X
parameter RT. 0.042
Te Convective timescale Cpo £ P X1, 0.05
¢ RT, AP ¢
12
l Eddy mixing scale Lif V7 epd? (RLgT: —AI-’—P) 0.03AR
(]
b Radiative relaxation rate <he % ApP P 2
(1]
c Wind dependence of coicoox:”
surface fluxes ° 2
Apax Maximum entropy —
detrainment coefficient 0.6
Anin Minimum entropy —
detrainment coefficient 0.3
¥y Boundary-layer relative AP, AP
depth 0.1
Initial conditions:
Y Radius of maximum —
winds 0.05
o Radius of vanishing wind — 0.35
Vo Maximum azimuthal wind —_ 0.3
Xm0 Lower-tropospheric —_
entropy deficit -1.0
Numerical parameters:
NR Number of nodes —
(including boundaries) 30
AT Time step - 0.001
Ry Radius of outer wall — 1.0

 See E89 for definitions of parameters.

rameters An,, and A, that are present in the lower-
tropospheric entropy equation, (A8), as illustrated in
Fig. 3. This is hardly surprising in view of the argu-
ments set forth in section 2.

As suggested by E89, the near saturation of a meso-
scale column of the troposphere at the cyclone core is
a necessary condition for intensification. This conjec-
ture is also supported by the results of a recent field
experiment (Emanuel 1994b). Only when the tropo-
sphere is nearly saturated are the downdrafts that nor-
mally accompany deep convection suppressed; this al-
lows surface fluxes to actually increase the entropy of
the subcloud layer and, through moist adiabatic ad-
justment, the temperature of the troposphere. This con-
clusion is also supported by an experiment in which the
initial vortex is very weak but a mesoscale column is

saturated initially. As shown in Fig. 4, the small initial
disturbance grows rapidly, whereas the same distur-
bance in the normal tropical atmosphere, with low 6,
aloft everywhere, dies.

One interesting aspect of the model’s behavior is the
appearance of multiple eyewalls when the initial rela-
tive humidity of the troposphere is high. Figure 5 shows
the updraft mass flux as a function of radius at a par-
ticular time for an experiment in which x,,, = —0.25
(compared to —1.0 in the control case). Outer eyewalls
form and gradually move inward, while the inner eye-
walls dissipate, resembling the observed behavior of
concentric eyewall cycles (Willoughby et al. 1982).
The mean position of the eyewall as well as the entire
storm circulation expand very gradually in the radial
direction during these model cycles.
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FiG. 2. Evolution with (nondimensional) time of the maximum
(nondimensional) azimuthal velocity for the control run of the present
model (solid) and of the original E89 model (dashed) run with the
same parameters and initial and boundary conditions.

4. Summary

Scaling analysis and experience with numerical
models (e.g., E89) strongly suggest that subcloud lay-
ers are nearly in thermodynamic equilibrium, with heat
fluxes from the surface nearly balancing convective and
small-scale turbulent fluxes of entropy through the sub-
cloud-layer top. Assuming such a balance leads to a
restraint (4) on equilibrium convective updraft mass
flux, which shows that it is proportional to the surface
enthalpy flux and the large-scale ascent rate just above
the subcloud layer. A closed convective representation
also requires a relationship between downdraft and up-
draft mass fluxes and a link between tendencies of tem-
perature in the lower and upper troposphere; both of
these require a cloud model. (A cloud model is also
required to predict the moistening of the free-tropo-
sphere by convection.) But for the purposes of a simple
model, we assume that the convective updraft and
downdraft mass fluxes are proportional, with the pro-
portionality related to a (variable) bulk precipitation
efficiency, as in (6). The specification of both the con-
vective updraft and downdraft mass fluxes allows for
the prediction of lower-tropospheric saturation entropy
(i.e., temperature), and the subcloud-layer entropy is
diagnosed by assuming that it is equal to the lower-
tropospheric saturation entropy in regions of convec-
tion.

Use of such a subcloud equilibrium-based convec-
tion scheme was shown by Emanuel (1993) to yield
realistic phase speeds and amplification rates of large-
scale equatorial disturbances, provided small lags in the
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FiG. 3. Evolution with time of the maximum azimuthal velocity
for three different values of the parameter A, which influences the
rate of moistening of the lower troposphere by convection.

convective mass flux response were used. Here we have
shown that this type of convection scheme also works
very well in a simple model of tropical cyclones, with
an expected sensitivity to the dependence of the bulk
precipitation efficiency on environmental parameters
such as relative humidity. These results support the

1.2

10}l T, ;

04} !

0.2 e

0 1 1 ] 1 1 | |
Y 2 4 6 8 10 12 14 16
Time

FiG. 4. Evolution with time of the maximum azimuthal velocity
for a run identical to the control but starting with a velocity amplitude
of only 0.05 (solid), and a similar run but starting from a condition
in which the whole atmospheric column is saturated inside the radius
R = 0.15 (dashed).
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b /I “‘ ,, \“ - 87' ( u d Br,z X ( )
1
0.0 (/v w, - The model equation for the subcloud-layer entropy
: { is (1), subject to the condition (13), transformed into
T . 6 0 160 T potential radius coordinates, and nondimensionalized

Radius (km)

FiG. 5. The convective updraft volume flux (M,) and clear-air ver-
tical velocity (w.) at 6.8 days, plotted as a function of radius from
the storm center, in a run identical to the control but with the initial
entropy deficit of the midtroposphere, x .o reduced to —0.25. For
perspective, the radius and velocity scales have been expressed in
dimensional terms using the typical scaling values shown in Table 1.
A new eyewall has just formed near 80-km radius; it then moved
slowly inward while the inner eyewall dissipated.

conclusion of Raymond (1995) that thermodynamic
quasi equilibrium of the subcloud layer may provide
an important and useful closure condition in the rep-
resentation of the ensemble effects of cumulus convec-

tion.
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APPENDIX
Summary of Model Equations

The equations governing the model dynamics are the
same as those of E89 except for the changes noted in
section 2. The nondimensional model equations are
summarized as follows, with the scaling of the depen-
dent and independent variables given in Table 1. Typ-
ical values of the scaling parameters are also shown in
Table 1, and the definitions of all the nondimensional
parameters are given in Table 2.

Thermal wind:

(A1)

according to Table 1.

Subcloud-layer entropy:

, 2
or
0
= ¢o~"—”——(|we| — W+ | M| = M) (X = Xn)
+Sas VDIVl (x* — x»),  (A6)
Cp
subject to the constraint
Xo = x* (A7)

Lower-tropospheric entropy:

OXm

or

——(|W|+W)(xb Xom)

+ Mu(Xb - Xm)[Amax(l - 6p) + Aminep]

rm
T, rad. (A8)
The convective mass fluxes are given by nondimen-
sional forms of (4), (6), and (11), transformed into
potential radius coordinates and nondimensionalized
according to Table 1. Note, however, that owing to the
highly baroclinic nature of the hurricane eyewall, we
must include horizontal entropy advection in the en-
tropy balance:
9 ‘/’0 +(1+C|Vb|)|Vb|(X§k_Xb)
%o
or?

M, =

Xb — Xm

(A9)

“The term D, was omitted in E89; see section 2.
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%) M, M, — M,

E__Iw_“=loa_2.+(_m____)y (A10)

or or; T,
M,=—(1-¢,)M,. (All)

There are, in addition, the following diagnostic rela-
tions.

Azimuthal velocity:
1R*—r}
V, =~ To (A12)
2 r,
Momentum diffusion in boundary layer:
1o d (R?
Dy=———|riv,—(—}].
b R OR _r,,u,, or, ( rﬁ)] (AL3)
Momentum diffusion, top layer:
1o 9 (R?
D=—-=—1rv,—(—=}]|. Al4
R OR _’”ar,<r,2)] (Al4)
Eddy viscosities:
0 (R?
vy = ? rba_rb <r_§) s
8 [(R?
v, =1? r,a—r’ (r_,2> (A15)
Heat diffusion:
1s) T Ox*
D, = 5r_§ (r,,llb\6—rb> (A16)
Radiation:
rad = —by*, (A17)
subject to
rad < rad..
Saturation entropy of sea surface:
T, - T, 1
¥=1--—~P+ P —1). (Al
X T P 1—3€(e 1). (Al8)
Surface pressure ( cyclostrophic relation):
0 1/R* 1 R?
— | P+x*+sl=S+ri)|=2—=5.
6R[ XT3 (r,% r”)] 27 A9
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Clear air vertical velocity at boundary-layer top:

0
wo=22_ p,— M, (A20)
67‘ b
Bulk precipitation efficiency:
€ = Xm — Xmo . (A21)
Xb = Xmo
Radius of R surfaces in midtroposphere:
1 1/1 1
S==|S5+=]. A22
rz2 2 <r§ r,z) (A22)

The model consists of (Al)—(A22) with nondi-
mensional parameters described in Table 2.
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