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Abstract

From a meteorological standpoint, the most important questios one needs to answer
about a given tropical cyclone is how strong the winds generated by the event can
become. From a climatological standpoint, it is critical to predict tropical cyclone
activity, or the collective destructive potential of all tropical cyclones in a given basin
and during a given period. Potential intensity (PI) is defined as a thermodynamic
bound on tropical cyclone maximum wind speeds, and is a good predictor of the
intensity of a single event but also of tropical cyclone activity. As such, PI is a useful
quantity to help answer both meteorological and climatological pressing questions
about tropical cyclones. First, this thesis adresses recent controversies about whether
the PI assumptions of inviscid free troposphere and steady-state make it inapplicable.
Comparing various forms of the PI bound to the corresponding bounded quantities
in low-mixing axisymmetric simulations shows that PI is in fact a valid bound on
tropical cyclone intensity. Then, a categorization of definitions of tropical cyclone
steady state used in the literature is introduced to clarify the conditions in which
simulations can be compared to theories such as PI. It is shown that most intensity
theories can be compared to the simulated period surrounding peak tropical cyclone
intensity, while theories for the structure of the storm requires the simulated storm
to have come into equilibrium with the surrounding environment. Next, turning to
climate, a linear model for interannual basin-wide PI variations is developed, which
captures almost all the PI variance in reanalysis products and provides a way to
partition global and local contributions to PI variations. The model notably shows
that tropical North-Atlantic PI variations over the last 40 years have been dominated
by local influences. The final part of the thesis evaluates the causes of the Atlantic
hurricane drought of the 1970s and 1980s. An anthropogenic nature of the hurricane
drought is proposed. Concurrent hemispherically asymmetric anthropogenic sulfate
emissions caused a drying of the Sahel region and enhanced the emissions of eolian
dust from the Sahara and the Sahel which is shown to be detrimental to hurricane
activity.

3



Thesis Supervisor: Kerry Emanuel
Title: Cecil & Ida Green Professor of Atmospheric Sciences

4



Acknowledgments

There are so many reasons to be grateful. First and foremost, I am grateful to my

advisor, Kerry Emanuel, for his valuable guidance and advice and for his patience

and humanity. Perhaps more importantly, I want to thank Kerry for fascinating and

uniquely insightful discussions which gave the long process of this PhD its value and

its flavor. I am also grateful to my committee members: Tim Cronin for his scientific

and academic advice, and Amato Evan and David McGee for their insight on the

causes of past and present dust variations. I especially want to thank my committee

for their continued support during the past year, which was, at best, stressful and tir-

ing for everyone. I am grateful to Richard Rotunno and George Bryan for welcoming

and mentoring me during an ASP graduate student visit at NCAR. I have very fond

memories of the time spent there and of working under their supervision. I also want

to thank the EAPS community for providing an environment conducive to successful

learning and research.

I am grateful to George Bryan for freely providing the CM1 code that was used

in chapters 2 and 3, to Brian Tang for freely providing the ASPECH code used in

chapter 2, and to Daniel Gilford for providing access to his ERA5 PI dataset which

was used in chapter 4 of this thesis. The research presented within this thesis was

funded by the Norman C. Rasmussen fellowships, the J.H. and E.V. Wade fellow-

ships, the NSF grant AGS-1520683, the NSF grant AGS-1906768, the Office of Naval

Research under grant N00014-18-1-2458 and the Natural Sciences and Engineering

Research Council of Canada under grant PGSD3-490041-2016.

I want to thank my friends and colleagues at MIT and abroad for their friendship and

scientific advice. In no particular order: Rohini, Julia, Tristan, Tom, Jonathan, Syd-

ney, Henri, Lyssa, Derek, Santi, Genia, Astrid, Sam, Megan, Dan, Margaret, Diamy,

Martín, Bruno, David, Katrina, Sylvester and many others all contributed to makes

these five years fun and interesting.

5



I am grateful to my ever-supportive family Jean-Claude, Cécile, Yann et Aude for the

love, the regular calls and the occasional visits, which much alleviated the distance

and the effort of the PhD. Finally, I could not have done this without my partner,

Florence. I am at a loss to find the right words to express how grateful I am for her

patience and understanding, so I will leave it at that.

6



Contents

1 Introduction 21

1.1 Tropical Cyclones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.1 General description . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.2 Potential intensity . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Chapter descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 An Evaluation of Hurricane Superintensity in Axisymmetric Numer-

ical Models 29

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 Definition and relevance of superintensity . . . . . . . . . . . . 30

2.1.2 New and existing forms of PI . . . . . . . . . . . . . . . . . . 33

2.1.3 Gradient wind PI . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.4 Azimuthal wind PI . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Surface PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.1 Sensitivity studies . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.2 In situ estimation of PI . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Simplifying approximations in 𝑃𝐼𝑔 and 𝑃𝐼𝑎 . . . . . . . . . . 45

2.4.2 Surface PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Superintensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7



3 A Thermodynamic Perspective on Steady-State Tropical Cyclones 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.1 Eliassen and Kleinschmidt Theory . . . . . . . . . . . . . . . . 58

3.1.2 Distinction between CS and ES . . . . . . . . . . . . . . . . . 59

3.1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.4 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.2 Role of the moistening . . . . . . . . . . . . . . . . . . . . . . 63

3.2.3 Trajectory integral . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.1 Trajectory integral results . . . . . . . . . . . . . . . . . . . . 68

3.3.2 Moisture relaxation timescale sensitivity . . . . . . . . . . . . 72

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.1 CS vs ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.2 Angular momentum . . . . . . . . . . . . . . . . . . . . . . . 76

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 A Weak Temperature Gradient Framework to Quantify the Causes

of Potential Intensity Variability in the Tropics 81

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Analytical estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.1 WTG PI sensitivity . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.2 RCE PI sensitivity . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Sensitivity experiment results . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1 𝐶𝑂2 sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.2 Imposed SST sensitivity . . . . . . . . . . . . . . . . . . . . . 91

4.4.3 Aerosol sensitivity . . . . . . . . . . . . . . . . . . . . . . . . 91

8



4.4.4 Wind sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Linear PI model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5.1 A linear model informed by theory and the a single-column model 95

4.5.2 Unsteadiness . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Application to reanalysis products . . . . . . . . . . . . . . . . . . . . 98

4.6.1 Other basins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6.2 Reanalysis coefficients . . . . . . . . . . . . . . . . . . . . . . 103

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.7.1 The East-Pacific . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.7.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Natural and Forced Contributions to the Hurricane Drought of the

1970s-1980s 111

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1.1 The causes of dust variability: A possible anthropogenic aerosol

dust feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.1 MIT single column model . . . . . . . . . . . . . . . . . . . . 119

5.2.2 Dust proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.1 Dust reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.2 Simulations of dust radiative impacts . . . . . . . . . . . . . . 123

5.3.3 Global pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.4 Local patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4.1 Natural vs forced variability . . . . . . . . . . . . . . . . . . . 130

5.4.2 The estimated effect of Sulfate-forced dust loading on SST . . 132

9



5.4.3 Contribution of different modes of SST variability to hurricane

activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6 Conclusion 141

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2.1 Follow-up to chapter 3 . . . . . . . . . . . . . . . . . . . . . . 144

6.2.2 Follow-up to chapter 4 . . . . . . . . . . . . . . . . . . . . . . 145

6.2.3 Follow-up to chapter 5 . . . . . . . . . . . . . . . . . . . . . . 146

10



List of Figures

1-1 Vertical cross section of tropical cyclone clouds, with arrows repre-

senting the primary (horizontal plane) and secondary (vertical plane)

circulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2-1 Showing two adjacent heat cycles of an axisymmetric, steady hurricane.

Cycle 1 is defined as A-B-C-D-A, and cycle 2 is defined as A-B’-C’-D-A. 38

2-2 Time series of the maximum azimuthal wind, 𝑉 , in ASPECH (left) and

CM1 (right) simulations for all values of 𝑙ℎ (color scale; the warmer

colors correspond to smaller 𝑙ℎ). . . . . . . . . . . . . . . . . . . . . 44

2-3 Time series of the maximum azimuthal velocity, 𝑉 (black), the gradient

potential intensity, 𝑃𝐼𝑔, (green) and the azimuthal potential intensity,

𝑃𝐼𝑎, (blue) for 𝑙ℎ = 2000 m (left) and 𝑙ℎ = 63 m (right). Simulated

using ASPECH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2-4 Contribution of simplifying assumptions to 𝑃𝐼𝑔 as a function of 𝑙ℎ, in

ASPECH, for the SST approximation (green), the dissipative heating

approximation (blue), the exchange coefficient approximation (red),

the radius of 𝑀 surfaces approximation (cyan), and the combined effect

of all assumptions (black). . . . . . . . . . . . . . . . . . . . . . . . . 47

2-5 Time series of the maximum magnitude of surface winds in ASPECH,

|V10| (black), in m s−1, and the surface potential intensity, 𝑃𝐼𝑠, (red)

for all simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

11



2-6 Averaged normalized SI as a function of 𝑙ℎ with respect to the surface

PI, 𝑆𝐼𝑠 (left, red), the azimuthal PI, 𝑆𝐼𝑎 (center, blue) and the gradient

PI, 𝑆𝐼𝑔 (right, green) for ASPECH (solid line) and CM1 (dashed line) . 49

2-7 Averaged normalized contribution of the imbalance to 𝑃𝐼𝑎 as a function

of 𝑙ℎ for ASPECH (solid line) and CM1 (dashed line). . . . . . . . . . 51

2-8 Averaged normalized SI in CM1 as a function of 𝑙ℎ with respect to

the surface potential intensity, 𝑆𝐼𝑠 (left, red), the azimuthal potential

intensity, 𝑆𝐼𝑎 (center, blue) and the gradient potential intensity, 𝑆𝐼𝑔

(right, green) for all values of 𝑙𝑣 (brighter colors indicate lower values

of 𝑙𝑣). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3-1 Conceptual schematic of maximum hurricane intensity over time in a

typical long (>10 days) axisymmetric simulation. Core-steady state

(CS) is identified by the dashed blue line and equilibrium-steady state

(ES) is identified by the dashed orange line. The decay period is iden-

tified by dashed gray lines. . . . . . . . . . . . . . . . . . . . . . . . . 58

3-2 Figure 30 from Eliassen and Kleinschmidt 1957, presenting a concep-

tual vertical cross section through a hurricane. The solid line with

arrows denotes the shape and direction of the secondary circulation.

Numbers indicate the transition between important segments, as dis-

cussed in the text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3-3 Time series of the maximum instantaneous azimuthal velocity for CTRL

(gray), RELAX (blue) and DRY (yellow). The time series are filtered

with a Lanczos filter and a cutoff frequency of 1 day. . . . . . . . . . 67

3-4 Day 0 to 40 Hovmöller diagrams of the near surface (z = 100 m) pseu-

doadiabatic entropy perturbation [J kg−1 K−1] for CTRL (left), RE-

LAX (center) and DRY (right). . . . . . . . . . . . . . . . . . . . . . 68

12



3-5 Illustration of thermodynamic conditions along the secondary circula-

tion in 𝑇 − 𝑠 space using two approaches: using actual entropy along a

trajectory (black); and using the integral of the entropy budget along

the same trajectory (colors). The trajectory begins and ends at point

[2] (the radius of maximum winds). The red dot indicates the final

point of the integrated budget in CTRL, since it differs from the initial

point; gray (left) is CTRL, blue (center) is RELAX, and yellow (right)

is DRY. Temperature decreases upwards and entropy decreases to the

right so that the 𝑇 − 𝑠 space is oriented in the same way as 𝑟 − 𝑧 space. 70

3-6 RELAX case parcel trajectory along the secondary circulation in 𝑇 −𝑠

(left) and physical (right) space. The trajectory is color-coded to out-

line the most important contributors to the entropy budget. Blue rep-

resent turbulence terms, white represent radiation and microphysics,

and yellow represents parameterized moisture relaxation. . . . . . . 71

3-7 Time series of the maximum instantaneous azimuthal velocity for REL1

(black, 𝜏 = 1 day), RELAX (gray, 𝜏 = 2 days) and REL4 (yellow, 𝜏 = 4

days). The time series are filtered with a Lanczos filter and a cutoff

frequency of 1 day. CS, Decay and ES time intervals are identified for

the purpose of comparing thermodynamic cycles in Fig.3-8. . . . . . . 73

3-8 𝑇 − 𝑠 cycles for CS (pale gray), Decay (gray) and ES (black) for REL1

(top left), RELAX (top right), REL4 (bottom left) and CTRL (bottom

right). There is no ES in CTRL, so a 𝑇 − 𝑠 cycle taken right as the

TC simulation ends (days 70 to 90) is plotted instead. . . . . . . . . . 74

3-9 Domain-integrated 𝑀 as a function of time (solid line) and domain-

integrated 𝑀 at 𝑡 = 0 plus the time-integrated surface momentum

sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

13



4-1 Sensitivity of PI (top row) and SST (bottom row) to changes in: 𝐶𝑂2

concentration (black), aerosol optical depth (blue), imposed SST (red)

and near-surface wind speed (gray). All plots superimpose the RCE

experiments (full line) to the WTG experiment (dashed line), except

for the 𝐶𝑂2 experiment, which is only performed in RCE. . . . . . . 90

4-2 Plot of 𝛿𝑃𝐼 against 𝛿𝑇 for 𝐶𝑂2 (black), dust aerosol (blue), SST (red)

and surface wind (gray) sensitivity experiments in RCE (circles), and

in WTG (squares). Linear fit for the 𝛿𝑃𝐼−𝛿𝑇 relations in RCE (black)

and in WTG (gray). . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4-3 Same RCE simulations and colors as in Fig.1, but in 𝛿𝑆𝑆𝑇 − 𝛿ℎ*
𝑚 space. 94

4-4 Evolution of PI towards RCE in a fixed SST single-column simulation,

when SST is perturbed by -2 K. Timeseries of algorithm PI (black) and

linear model PI (gray) and the equilibrium (red) and transient (blue)

components of linear model PI. The red and the blue lines correspond

respectively to the first and second terms on the RHS of Eq.4.12. . . 97

4-5 Tropical ocean basins for PI analysis plotted over a map of average PI

in ERA5 reanalysis from 1979 to 2018. SST is averaged seasonnaly and

over each basin: North-Atlantice (NA, blue), East Pacific (EP, green),

West Pacific (WP, red), Indian Oceam (IO, yellow), and a large basin

for the Southern Hemisphere (SH, magenta). Midlevel saturation MSE

is averaged over the area enclosed by the two black dashed lines. . . . 100

4-6 (a) Timeseries computed over the MDR and ASO of “true" algorithm

𝛿PI (black), of 𝛿PI estimated using the SCM-derived linear model

(blue) and of 𝛿PI estimated using an in-sample linear fit on 𝛿𝑇 and

𝛿ℎ*
𝑚 (gray). (b) Timeseries of SST change (𝛿T) over the MDR and

averaged over hurricane season partitioned between its RCE (red) and

WTG (blue) components. (c) Partition of 𝛿PI averaged over the MDR

and ASO, between its RCE (red) and WTG (blue) components. . . . 102

14



4-7 Timeseries computed over each basin of “true" algorithm 𝛿PI (black),

of 𝛿PI estimated using the SCM-derived linear model (colors) and of

𝛿PI estimated using an in-sample linear fit on 𝛿𝑇 and 𝛿ℎ*
𝑚 (gray) for

(a) the Eastern North Pacific, (b) the Western North Pacific, (c) the

Northern Indian Ocean and (d) the Southern Hemisphere basin. The

colors of LPI plots over each basin correspond to those used in Fig.4-5 103

4-8 Coefficient of determination between algorithm PI and LPI (black bars)

and between algorithm PI and SST (gray bars) for each basin. . . . . 104

4-9 Timeseries of SST change (𝛿T) averaged over each basin and the cor-

responding TC season partitioned between their RCE (red) and WTG

(blue) components for (a) the Eastern North Pacific, (b) the Western

North Pacific, (c) the Northern Indian Ocean and (d) the Southern

Hemisphere basin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4-10 a) Linear model coefficients 𝐶𝑊 derived from the SCM simulations

(black, SCM label) and derived from ERA5 PI regression on both 𝛿𝑇

and 𝛿ℎ*
𝑚 (black, basin labels), analytical estimate of 𝐶𝑊 using Eq.4.8

(red x), and coefficient of ERA5 PI regression on 𝛿𝑇 only (gray). b)

Combination of linear coefficients 𝐶𝑚(𝐶𝑅−𝐶𝑊 ) derived from the SCM

simulations (SCM label) and derived from ERA5 PI regression (basin

labels). The error bars denote 95% confidence interval on the regression

coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4-11 Comparison between tropical mean SST (black), and an estimate of

SST representative of global changes by our linear model (red). Both

quantities are averaged over the North-Atlantic hurricane season. . . 107

4-12 Correlation coefficients between PI and the square root of thermody-

namic disequilibrium for each basin. . . . . . . . . . . . . . . . . . . . 108

15



5-1 Average storm number per year and per category (left), average power

dissipation index (PDI) per year and per category (center) and average

PDI seasonal cycle (right) for the period from 1970 to 1990 (black bars)

and from 1990 to 2010 (gray bars). . . . . . . . . . . . . . . . . . . . 113

5-2 Scatter plot of power dissipation index (PDI) against main develop-

ment region SST anomaly (gray), and 7-year cutoff low-pass filtered

PDI against main development region SST anomaly (black). . . . . . 114

5-3 Top panel: Barbados summer dust measurements rescaled by satel-

lite measurements of main development region aerosol optical depth

(AOD) during the 1980s (black) and main development region AOD re-

construction based on the Sahel precipitation index (SPI) proxy (blue).

Dotted lines are not filtered, and solid lines are low-pass filtered. Bot-

tom panel: Low-pass filtered anthropogenic and volcanic sulfate AOD

asymmetry (black), and SPI (blue). The y-axis for the precipitation

index is reversed so that peaks indicate dry years. Dotted lines are not

filtered, and solid lines are low-pass filtered. . . . . . . . . . . . . . . 122

5-4 Left: simulated SST as a function of dust optical thickness (𝜏) at

0.55𝜇𝑚. Center: Simulated dust longwave surface forcing (black squares),

and estimate from Song et al. (2018) (dashed black line). Right: Simu-

lated dust shortwave surface forcing (black squares), and estimate from

Song et al. (2018) (dashed black line), and dust shortwave TOA forc-

ing (blue squares), and estimate from Song et al. (2018) (dashed blue

line). The faded profiles represent the simulations with 𝑔 between 0.6

and 0.8 and 𝜔0 between 0.78 and 0.98. . . . . . . . . . . . . . . . . . 125

5-5 Simulated potential intensity (PI, left), saturation deficit (𝜒, center)

and normalized thermodynamic component of the genesis potential in-

dex (𝐺𝑃𝐼𝑇 , right) as a function of dust optical thickness (𝜏) at 0.55𝜇𝑚.

The faded profiles represent the simulations with 𝑔 between 0.6 and 0.8

and 𝜔0 between 0.78 and 0.98. . . . . . . . . . . . . . . . . . . . . . . 126

16



5-6 Left: first (top), second (middle) and sixth (bottom) low-frequency

patterns (LFPs) of temperature (color shading) with main develop-

ment region identified (dotted black box). LFP2 is plotted along with

dust aerosol optical depth contours from (Evan and Mukhopadhyay,

2010) for 𝜏 = [0.150.30.45] (white contours). Right: corresponding

low-frequency components (LFCs) including variability at all frequen-

cies (gray) and only at low frequencies (black). . . . . . . . . . . . . . 128

5-7 Top: correlation coefficient between the tropical mean SST (TMST)

and each of the 10 first low-frequency components (LFCs). Bottom:

correlation coefficient between the Sahel precipitation index (SPI), and

each of the 10 first LFCs. . . . . . . . . . . . . . . . . . . . . . . . . . 131

5-8 Top: Square root of the variance of SST in the main development region

(MDR) for the 10 first low-frequency components (LFCs). Bottom:

contribution of each of the 10 first LFCs to the main development

region SST anomaly during the 1970s-1980s. . . . . . . . . . . . . . . 133

5-9 Top: Multitaper power spectral density estimate for yearly summer-

averaged temperature for main development region SST minus the first

low-frequency component (LFC1,black) with 90% confidence red noise

spectrum (red) and lowest frequency spectral peak (dashed blue). Mul-

titaper power spectral density estimate for yearly summer-averaged

temperature for main development region SST minus LFC1 and es-

timated dust impact on SST (gray) with 90% confidence red noise

spectrum (pink). Bottom: Multitaper power spectral density estimate

for yearly summer-averaged temperature for main development region

SST minus LFC1 and LFC2. . . . . . . . . . . . . . . . . . . . . . . . 136

5-10 Causal diagram of the proposed mechanism . . . . . . . . . . . . . . 138

17



6-1 Top panel: North-Atlantic PI monthly values computed using a non-

linear algorithm (black) and with the newly introduced linear model

(blue). Bottom panel: North-Atlantic PI anomalies with respect to

the seasonal cycle, computed using a nonlinear algorithm (black) and

with the newly introduced linear model (blue). . . . . . . . . . . . . . 145

6-2 Left: Right: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

18



List of Tables

2.1 Summary of the variables bounded, the diagnostic formulas and the SI

definitions for each form of PI. . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Summary of the time [days] it takes a parcel to travel along different

segments of the secondary circulation. The total time is the sum of the

inflow time, the outflow time and the subsidence time. . . . . . . . . 69

4.1 Basin definitions in terms of latitudinal extent, longitudinal extent,

and tropical storms season. . . . . . . . . . . . . . . . . . . . . . . . . 99

19



20



Chapter 1

Introduction

As far back as 1250, in Konungs Skuggsjá, a didactic book from the kingdom of Nor-

way, the authors ponder the latitudinal structure of climate on a spherical Earth,

hypothesizing a cold south pole and symmetry about the equator: “And if people live

as near the cold belt on the southern side as the Greenlanders do on the northern,

I firmly believe that the north wind blows as warm to them as the south wind to us.

For they must look north to see the midday and the sun’s whole course, just as we,

who dwell north of the sun, must look to the south." Hundreds of years before notions

of radiative transfer could explain their intuitions, the Norse hinted at fundamental

characteristics of our planet’s climate.

I like to think that not much has changed since the epoch of speculum literature.

The technology and cultural knowledge available to us has dramatically increased,

but the quest for understanding remains. Hence, this thesis is meant to take a very

small step on the age-old path to understanding a weather phenomenon that strikes

the imagination like few others: Tropical Cyclones. Tropical cyclones generate some

of the most extreme weather that can be found anywhere on the planet, and strike

suddenly in regions of the world where winds are otherwise generally quiescent.
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1.1 Tropical Cyclones

1.1.1 General description

Tropical cyclones can be defined as low pressure systems in the tropics, which import

energy by turbulent exchange from a sea surface warmer than the overlying air, and

export it by radiative cooling to space. Air spiralling around the storm and near

the surface is drawn radially inwards by the pressure gradient force, gaining kinetic

energy until it reaches the core of the storm, constituted of a radially-sloping eyewall

clouds (Houze Jr, 2010). While spiralling near the sea-surface, inflowing air loses

angular momentum to the sea surface so that angular momentum in the inflow in-

creases monotonically with radius. In the core of mature TCs, air parcels ascend in a

saturated environment, conserving moist entropy and angular momentum. The low

values of angular momentum of the ascending air lead to a reversal of the circulation

from cyclonic to anticyclonic as the air outflows from the storm at high levels. The

outflowing air cools radiatively to space and, on a timescale of a few tens of days, it

subsides back towards the surface. Assuming that tropical cyclones are axisymmetric,

which they can nearly be (Knaff et al., 2003), the circulation around the cyclones can

partitioned into two interdependent components; a primary circulation, spiralling in

the horizontal 𝑟 − 𝜃 plane, and a secondary circulation in the vertical 𝑟 − 𝑧 plane.

An artist rendition of both circulations along with a contour of the clouds associated

with the circulation are drawn in Fig.1-1.

1.1.2 Potential intensity

Similarly to heat engines, the amount of kinetic energy a tropical cyclone can gen-

erate is a function of the energy transfer through the system (Emanuel, 1988) and

of the temperature difference between hot and cold reservoirs. Based on this idea,

one can derive a thermodynamic bound on the maximum wind speeds called poten-
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Figure 1-1: Vertical cross section of tropical cyclone clouds, with arrows representing
the primary (horizontal plane) and secondary (vertical plane) circulations.

tial intensity. An important control on the rate of energy input to the TC system,

and hence on potential intensity, is the enthalpy difference between the sea-surface

and the overlying air - or thermodynamic disequilibrium. In general, the larger the

temperature difference between the ocean and the surface air, the larger the thermo-

dynamic disequilibrium and the stronger the tropical cyclone can be (Emanuel, 1988).

The tropics are characterized by strong solar radiation, and weak lateral atmospheric

energy transport and for that reason, on average, the region can reasonably be as-

sumed to be in a state of radiative-convective equilibrium (RCE, Manabe and Strick-

ler, 1964). In that state, radiative flux divergence in the vertical is balanced by convec-

tive heating, and the net radiative heating of the surface is balanced by environmen-

tal turbulent enthalpy fluxes. All else equal, the thermodynamic disequilibrium upon

which the intensity of tropical cyclones depends is proportional to those environmental

turbulent fluxes (Emanuel, 2007). Hence, a change in the net radiative heating of the

surface results in a change in the maximum intensity achievable by tropical cyclones,

which is why the increasing greenhouse gases in the atmosphere risk increasing the in-

tensity of tropical cyclones (Knutson et al., 2010). The tropics are also characterized

by weak values of the coriolis parameter which mean that inertial-gravity waves can

propagate very far from their source and that the mid-tropospheric temperature in
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the tropics is more or less horizontally uniform (WTG, Sobel and Bretherton, 2000).

This constrains the values of enthalpy in the atmospheric boundary layer and means

that the near-surface thermodynamic disequilibrium is much more sensitive to local

changes in sea-surface temperature than to tropics-wide changes. For that reason,

tropical cyclone potential intensity is very sensitive to local changes in sea-surface

temperature. Since tropical cyclone activity in a given basin depends on potential

intensity, to understand why TC activity varies, one needs to understand what causes

the SST to vary locally. For example, understanding the compared effects of ocean

heat flux convergence, environmental near surface winds or local aerosol loading on

SST is critical to identifying the causes of TC activity variability. Dust aerosol load-

ing over the Atlantic ocean is one such local aerosol which has large effects on TC

activity (e.g., Strong et al., 2018).

1.2 Chapter descriptions

In chapter 2, I evaluate the validity of potential intensity theories bounding the magni-

tude of the surface winds, the azimuthal winds and the gradient winds, by comparing

the PI bounds in numerical simulations to the corresponding numerically simulated

intensities. Reconciling PI theories with idealized numerical models is key to un-

derstanding the mechanism controlling TC maximum intensity, and to improving

numerical predictions of tropical cyclones, the skill of which has been stagnating in

recent years (e.g., DeMaria et al., 2014). This evaluation is rendered necessary by the

results of Hausman (2001) and Persing and Montgomery (2003) who reported that, in

high resolution and low-mixing axisymmetric simulations, the simulated wind speeds

greatly exceeded potential intensity. This phenomenon was called superintensity and

cast doubt on the validity of PI as a bound on wind speed. In this chapter, I find PI

to be valid so long as it is compared to the correspondingly defined intensity. This

chapter was published by Rousseau-Rizzi and Emanuel (2019) in the Journal of the

Atmospheric Sciences. 1 Some follow-up work was included in reponse to comments
1Chapter 2 is an edited version of: Rousseau-Rizzi, R., and K. Emanuel, 2019: An evaluation of

hurricane superintensity in axisymmetric numerical models. Journal of the Atmospheric Sciences,
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on that paper (Rousseau-Rizzi and Emanuel, 2020; Emanuel and Rousseau-Rizzi,

2020), but will not be included in this thesis.

In chapter 3, I establish the meaning of steady state in simulated tropical cyclones.

Previous work has argued that simulated TCs reach steady state after a few tens

of days and cannot be accurately compared to analytical theories at earlier times

(Hakim, 2011). This would imply that analytical theories are of limited use in un-

derstanding real TCs, which seldom live more than three weeks. Other research has

argued that simulated TCs decay by “running out" of angular momentum and infer

that real TCs never reach a steady state (Smith et al., 2014). In this chapter, I

disambiguate the concept of steady-state in TC simulations by introducing two phe-

nomenological definitions of steady state; one that only requires the core to evolve

slowly, which is reached after a few days, and the second which requires the entire

TC-environment system to reach equilibrium, which takes tens of days to achieve.

Theories that only require steady-state in the core, like PI theories can readily be

compared to the first definition, while theories on the steady-state structure of TCs

need to be compared to the second definition. I also find that the decay in simulated

TCs is not due to a decrease in available angular momentum, but to a decrease in

mid-tropospheric environmental entropy. This chapter was published by Rousseau-

Rizzi et al. (2021) in the Journal of the Atmospheric Sciences. 2

Because it limits the maximum wind speeds of TCs, potential intensity is an im-

portant predictor of TC activity and of their destructive potential. Hence, to help

understand past variations in TC activity, after establishing the validity and domain

of applicability of PI theories, in chapter 4, I focus on understanding its climate vari-

ability. To do so, I introduce a linear model for PI variations based on two predictors;

tropospheric saturation moist static energy, and sea-surface temperature. Assuming

76 (6), 1697–1708. © Copyright 2019 AMS
2Chapter 3 is an edited version of: Rousseau-Rizzi, R., R. Rotunno, and G. Bryan, 2021: A

thermodynamic perspective on steady-state tropical cyclones. Journal of the Atmospheric Sciences,
78 (2), 583-593. © Copyright 2021 AMS
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that the tropics are on average in a state of radiative-convective equilibrium (RCE),

and that horizontal temperature gradients are weak (WTG, Sobel and Bretherton,

2000), variations of the predictors can be partitioned between a correlated component,

which is coherent with a variation of the mean state of the tropics, and a decorrelated

component, which represents a departure from the RCE state. This in turn allows

one to partition PI variations between global forcing and local environmental changes.

The linear model explains between 80% and 96% of the interannual PI variance de-

pending on the ocean basin, and shows that, over the last 40 years the contribution

of global change has contributed to less than 10% of the North-Atlantic main devel-

opment region PI variability. I am currently addressing revisions for publishing this

chapter in the Journal of Climate.

Having established that local environmental changes are the main driver of recent

main development region North-Atlantic PI changes, in chapter 5, I set to under-

stand the local causes of the large Atlantic hurricane activity variations of the recent

decades, by understanding local SST anomaly variations. Our goal is to establish

whether those variations were due to natural basin-scale variability, or to anthro-

pogenic influences. To that end, I build upon the existing literature which establishes

1) that past Atlantic hurricane variability was in great part controlled by eolian Saha-

ran dust variability (Strong et al., 2018), 2) that Saharan dust lofting and transport

correlates well with drought conditions in the Sahel (Prospero et al., 2014) and 3)

that the ultimate cause of drought conditions in the Sahel is hemispherically asym-

metric sulfate forcing of anthropogenic and volcanic origin (Ackerley et al., 2011;

Haywood et al., 2013). I show that the slowest mode of variability of SST in the

North-Atlantic, apart from the global warming, is consistent with the so-called At-

lantic Multidecadal Oscillation, a mode of variability once believed to be natural and

now known to be forced by sulfate aerosols (Bellomo et al., 2018). In addition, this

slow mode is consistent with dry conditions over the Sahel and dusty conditions over

the Atlantic. I estimate that 40% of the multidecadal SST anomaly variations can

be explained by summer dust aerosol direct effect variations. I conclude that dust
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cannot be neglected when modelling climate variability of TC activity, and nor can

the anthropogenic drivers of dust variability. This chapter is in preparation for pub-

lication.

Finally, chapter 6 outlines the key results from the thesis and proposes future av-

enues of research arising from the results of chapters 2 to 5.
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Chapter 2

An Evaluation of Hurricane

Superintensity in Axisymmetric

Numerical Models

Abstract

Potential intensity (PI) is an analytical bound on steady, inviscid, axisymmetric hurri-
cane wind speed. Studies have shown that simulated hurricane azimuthal wind speed
can greatly exceed a potential intensity (PI) bound on the maximum gradient wind.
This disparity is called superintensity (SI) and has been attributed to the contribu-
tion of the unbalanced flow to the azimuthal wind. The goals of this chapter are 1)
to introduce a new surface wind PI (𝑃𝐼𝑠), based on a differential Carnot cycle and
bounding the magnitude of the surface winds, 2) to evaluate SI in numerical simula-
tions with respect to diagnostic PI bounds on gradient wind (𝑃𝐼𝑔), azimuthal wind
(𝑃𝐼𝑎) and surface wind (𝑃𝐼𝑠) and 3) to evaluate the validity of each PI bound based
on the SI computations. Here, we define superintensity as the normalized amount
by which each version of PI is exceeded by the quantity it bounds. Axisymmetric
tropical cyclone simulations are performed while varying the parameterized turbulent
mixing as a way of estimating SI in the inviscid limit. As the mixing length decreases,
all three bounded wind speeds increase similarly from a sub-PI state to a marginally
superintense state. This shows that all three forms of PI evaluated here are good
approximations to their respective metrics in numerical simulations.
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2.1 Introduction

2.1.1 Definition and relevance of superintensity

Tropical cyclones (TC), or hurricanes, are the single most destructive natural disaster

in the US, with a cumulative damage cost of $265 billion for 2017 alone (Office For

Coastal Management, 2018). While our ability to forecast hurricane intensity (wind

speed) has generally improved along with track forecasting, over the last 25 years,

24-h lead time forecast skill has improved very slowly (DeMaria et al., 2014). In

addition, it has been hypothesized that the forecasting of TC intensity with climate

change will become more difficult as the intensification rates are expected to increase

(Emanuel, 2017).

TCs are a complex phenomenon and, while our understanding of the underlying

physics has made large and regular progress over the last three decades, discrepan-

cies remain between analytical theories, numerical models and observations. In that

context, we must strive to reconcile analytical hurricane intensity theories with both

hurricane data and numerical simulations. This is a necessary step in understanding

the mechanisms of intensification and improving forecast models.

Analytical theories for hurricane intensity include the concept of potential intensity

(PI), a theoretical upper bound on inviscid, steady state and axisymmetric hurricane

wind speed. PI can be defined to bound various quantities such as the gradient wind

(Emanuel, 1986), the azimuthal wind (Bryan and Rotunno, 2009a) and the magnitude

of the surface winds (Bister and Emanuel, 1998). Each form of PI can be considered

to represent a different simplified picture of the relation between the TC dynamics

and thermodynamics.

Gradient wind balance is defined as the state in which the Coriolis and centrifu-

gal accelerations balance the pressure gradient acceleration in the radial momentum

equation; that is, the system is in steady state and the diffusive and advective terms
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are negligible. Under the assumption that TCs are in gradient wind balance, gradi-

ent wind PI (𝑃𝐼𝑔, arguably the most widespread PI theory) should also bound the

maximum azimuthal winds for any given storm. And indeed, gradient wind PI has

been shown to be generally well respected in nature (Emanuel, 2000). However, the

maximum azimuthal wind speeds within a few strong storms have been observed to

exceed the 𝑃𝐼𝑔 bound (Montgomery et al., 2006).

One of the main inconsistencies between numerical models and analytical theories

that has been discussed in the literature is called superintensity (Persing and Mont-

gomery, 2003). Superintensity (SI) as defined by Persing and Montgomery (2003)

occurs when the maximum steady-state azimuthal wind speed of a tropical cyclone

exceeds the gradient wind potential intensity, sometimes greatly. An alternative def-

inition of SI will be introduced and used later in this chapter. Superintensity has

mostly been studied in axisymmetric numerical models, which are easier to use and

compare more directly to PI theory than 3D numerical models.

In a sensitivity study, Hausman (2001) noticed that increasing the resolution in ax-

isymmetric hurricane models was associated with azimuthal wind speed increasing

beyond observed values for a similar environment. The subsequent study by Pers-

ing and Montgomery (2003) sought to understand this discrepancy and, noting that

the simulated winds well exceeded 𝑃𝐼𝑔, they coined the term superintensity. Their

explanation, that the import of high entropy air from the eye into the eyewall was

responsible for the high intensity, was later shown by Bryan and Rotunno (2009b)

not to be the dominant factor in SI. The work on SI by Bryan and Rotunno is very

relevant to this chapter and hereafter their papers will be referred to as BR09a,b,c.

Using the CM1 model (Bryan and Fritsch, 2002), Bryan and Rotunno (2009a) showed

hurricane intensity (and superintensity) to be very sensitive to the parameterized

mixing of enthalpy and momentum. Other studies with CM1, including Bryan and

Rotunno (2009c), Rotunno and Bryan (2012), and Bryan (2012) found that the inten-

31



sity of simulated axisymmetric TCs increased significantly with decreasing horizontal

mixing length (𝑙ℎ). The mixing length 𝑙ℎ influences the magnitude of the horizontal

mixing following the parameterization introduced in Rotunno and Emanuel (1987)

(hereafter RE87) axisymmetric TC model and based on the Smagorinsky (1963) tur-

bulence parameterization. Keeping the environment and all other parameters fixed,

BR09a found that decreasing 𝑙ℎ from values of about 3000 m to 125 m increases the

TC azimuthal wind from less than 𝑃𝐼𝑔 to 150% of 𝑃𝐼𝑔. Note that, according to the

PI assumption of inviscid flow, the intensity of the simulated TCs should converge to

PI when 𝑙ℎ decreases, and not exceed it. The sensitivity of azimuthal wind to 𝑙ℎ can

be likened to the sensitivity to resolution reported by Hausman (2001). Indeed, lower

mixing and, to a certain extent, higher resolution are both associated with stronger

radial gradients of entropy, and thus intensity.

BR09a found the gradient wind balance assumption in the Gradient PI (𝑃𝐼𝑔) theory

to be clearly violated in their simulations. This means that superintensity of the

azimuthal winds with respect to the gradient wind PI (𝑃𝐼𝑔) occurs because of gradi-

ent wind imbalance, namely supergradient flow. Using methods by Lilly (unpublished

manuscript) and Bister and Emanuel (1998), BR09a derived a PI expression based on

both thermodynamic and dynamic diagnostics to account for the contribution of un-

balanced winds in PI. This expression provides a good upper bound on the azimuthal

wind (called 𝑃𝐼+ in BR09a and 𝑃𝐼𝑎 hereafter). While bounds on the gradient wind

can be computed a priori, from the environment alone, including agradient winds

makes it very difficult to bound the azimuthal wind from the environment only, so

that it can only be evaluated diagnostically.

To summarize, BR09a show that, in the early studies of Hausman (2001) and Persing

and Montgomery (2003), SI was largely due to supergradient effects. They then ex-

plain why 𝑃𝐼𝑔 seems to work in constraining the observed azimuthal winds of tropical

cyclones.
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Willoughby (1990) showed that the azimuthal mean winds of certain observed TCs

are very close to gradient wind balance above the frictional layer. This agrees with

Emanuel’s 1986 assumption of thermal wind balance above the boundary layer, but

not with simulations, if we assume that the TCs are inviscid. BR09a reconcile this

disparity by pointing out that the TCs are indeed not inviscid and that horizontal

mixing tends to weaken the storm and favor gradient wind balance. 3D turbulence

has been shown to become important in intense storms, which limits the increase in

mean azimuthal wind velocity (e.g., Rotunno et al., 2009; Yang et al., 2007; Brown

and Hakim, 2013). However, even with an increase in three-dimensional turbulent

mixing, some storms are observed to have winds that are supergradient by up to 10

m s−1 (Kepert, 2006), which could explain the observed superintensity.

To summarize, studies evaluating PI have done so for gradient wind PI and azimuthal

wind PI in low mixing environments. The 𝑃𝐼𝑔 bound was shown not to work very

well for azimuthal winds and for small mixing lengths, but to work well for gradient

winds, outlining the fact that TC intensities should be compared to the appropriate

PI bound. Hereafter, SI will be defined as the discrepancy between a given form of

PI and the numerically simulated intensity it bounds, and will be used to evaluate

various PI theories in the same simulations.

Generally, SI in numerical models implies that there is a limitation either with the PI

bound or with the way hurricanes are represented in current models. In this chapter,

we will use SI to evaluate the different representations of the TC physics associated

with various forms of PI, assuming that the contribution from numerical errors is

negligible. The possible contribution of model numerics or parameterizations to SI is

deferred to future research.

2.1.2 New and existing forms of PI

This chapter aims to evaluate both new and existing forms of PI in numerical simu-

lations. Section 2.2 introduces a new derivation (briefly described in Emanuel, 2018)
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for a PI bound on the maximum surface winds, similar to the one derived in Bister

and Emanuel (1998). This new surface PI (𝑃𝐼𝑠) is derived with as few assumptions as

possible, using the concept of a differential Carnot cycle. It provides a thermodynamic

bound on the magnitude of the surface winds including the radial inflow component.

The expressions for gradient wind PI and azimuthal wind PI introduced respectively

by Emanuel (1986) and BR09a will be evaluated as well. A short derivation of these

two forms follows, while the third, new form is derived in Section 2.

2.1.3 Gradient wind PI

The most widely used analytical model of hurricane energetics was first published

in Emanuel (1986). This steady state, inviscid, axisymmetric model provides the

basis of what is now called potential intensity using: 1) The assumption of moist

slantwise neutrality, 2) the assumption of thermal wind balance (hydrostatic and

gradient wind balance combined) and 3) a boundary layer closure. The gradient wind

(𝑉𝑔) is defined as the azimuthal wind required so that the sum of the Coriolis and

centrifugal accelerations balance the radial pressure gradient acceleration. Assuming

moist slantwise neutrality is equivalent to assuming that the angular momentum

(𝑀) surfaces coincide with the saturation entropy (𝑠*) surfaces, neglecting the direct

contribution of variable water content to density. The angular momentum is given

by 𝑀 = 𝑉 𝑟 + 1/2𝑓𝑟2 , where 𝑉 is the azimuthal velocity (here, 𝑉 = 𝑉𝑔), 𝑟 is the

radius and 𝑓 is a constant Coriolis parameter. In Emanuel (1986), the thermal wind

relation is given by

1

𝑟3

(︁𝜕𝑀2

𝜕𝑝

)︁
𝑟
= −

(︁𝜕𝑇
𝜕𝑝

)︁
𝑠*

(︁𝜕𝑠*
𝜕𝑟

)︁
𝑝

(2.1)

where the subscripts denote quantities being held constant. Moist slantwise neu-

trality allows us to integrate Eq. (2.1) upwards along surfaces of constant angular

momentum, between the top of the boundary layer and the outflow, defined as the

point where the azimuthal velocity vanishes. This yields
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𝑉𝑔,𝑏

𝑟𝑏
= − 𝑑𝑠*

𝑑𝑀
(𝑇𝑏 − 𝑇𝑜𝑢𝑡) (2.2)

where subscript 𝑏 denotes the top of the boundary layer and subscript 𝑜𝑢𝑡 denotes

the outflow layer. Equation (2.1) indicates that the vertical shear is monotonic with

𝑇 so that the maximum velocity occurs at the top of the boundary layer. This means

that 𝑉𝑔,𝑏 is an upper bound on the gradient wind. From there, 𝑑𝑠*/𝑑𝑀 has to be

defined to get a diagnostic equation for maximum velocity. The boundary layer (BL)

closure states that 𝑑𝑠/𝑑𝑀 in the BL is the ratio of the surface fluxes of entropy (𝐹𝑠)

and angular momentum (𝑟𝜏𝜃). Further, 𝑑𝑠*/𝑑𝑀 = 𝑑𝑠/𝑑𝑀 at the top of the BL, so

that

𝑑𝑠*

𝑑𝑀
=

𝐹𝑠

𝑟𝜏𝜃
(2.3)

where 𝑟 is the vertically averaged radius of angular momentum surfaces. We

need to account for dissipative heating in the boundary layer because the inviscid

assumption is only applied to the interior flow, and because the numerical models

used in this chapter include dissipative heating parameterizations. We obtain

𝐹𝑠 =
𝜌

𝑇𝑠

(𝐶𝑘10|V10|(𝑘*
𝑠 − 𝑘10) + 𝐶𝐷10|V10|3) (2.4)

𝜏𝜃 = −𝜌𝐶𝐷10|V10|𝑉10. (2.5)

In these equations, the subscript 10 designates the near surface layer at 10 m

above the air-sea interface. |V10| is the magnitude of the surface winds. 𝐶𝑘10 and

𝐶𝐷10 are the bulk aerodynamic flux coefficients for enthalpy and momentum. 𝑘 =

(𝑐𝑝+𝑞𝑡𝑐𝑙)𝑇 +𝐿𝑣𝑞 is the enthalpy, where 𝑞 is the water vapor mixing ratio and 𝑞𝑡 is the

total water mixing ratio. 𝑘*
𝑠 is the saturation enthalpy at sea surface temperature (𝑇𝑠).

We note that, for adiabatic and hydrostatic transformations, the enthalpy difference

(𝑘*
𝑠 − 𝑘10) is equivalent to the moist static energy (MSE) difference (ℎ*

𝑠 −ℎ𝑏) between

the top of the boundary layer (ℎ𝑏) and the surface temperature saturated state (ℎ*
𝑠).
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The MSE is given by ℎ = 𝑘 + (1 + 𝑞𝑡)𝑔𝑧. Next, Eqs. (2.3), (2.4) and (2.5) are

substituted into Eq. (2.2). Assuming that the radius of the angular momentum

surfaces is similar at the top and at the bottom of the boundary layer, we get

𝑉𝑔,𝑏 =
1

𝑉10

𝑟𝑏
𝑟

(𝑇𝑏 − 𝑇𝑜𝑢𝑡)

𝑇𝑠

(︁𝐶𝑘10

𝐶𝐷10

(𝑘*
𝑠 − 𝑘10) + |V10|2

)︁
. (2.6)

Then, following Bister and Emanuel (1998), we assume that the momentum near

the surface equals that at the top of the boundary layer (𝑉10 ≈ 𝑉𝑔,𝑏, and 𝑟 ≈ 𝑟𝑏), that

𝑇𝑠 ≈ 𝑇𝑏 and finally, that the dissipative heating effects can be properly captured by

setting |V10|2 ≈ 𝑉 2
𝑔,𝑏. These assumptions allow us to simplify the equation further

and obtain

𝑃𝐼2𝑔 = 𝑉 2
𝑔,𝑏 =

𝐶𝑘10

𝐶𝐷10

(𝑇𝑏 − 𝑇𝑜𝑢𝑡)

𝑇𝑜𝑢𝑡

(𝑘*
𝑠 − 𝑘10) (2.7)

where we have redefined 𝑉𝑔,𝑏 as 𝑃𝐼𝑔, which denotes a potential intensity derived

from dynamical principles, that represents an upper bound on gradient wind (𝑉𝑔). The

validity of the simplifying approximations will be evaluated in the results section.

2.1.4 Azimuthal wind PI

Using the same boundary layer closure assumptions as in the 𝑃𝐼𝑔 derivation, along

with the assumption that 𝑀𝑏 ≈ 𝑉𝑏𝑟𝑏 in the inner core, the BR09a equation that

accounts for the supergradient contribution is written

𝑃𝐼2𝑎 = 𝑉 2
𝑚𝑎𝑥 = 𝑃𝐼2𝑔 + 𝑟𝑏𝜂𝑏𝑤𝑏

𝑇𝑠

𝑇𝑜

(2.8)

where 𝑟𝑏, 𝜂𝑏 and 𝑤𝑏 are the radius, the azimuthal vorticity and the vertical ve-

locity at the location of maximum winds. 𝑃𝐼𝑎 represents a bound on the maximum

azimuthal wind.
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2.1.5 Objectives

In summary, the main purpose of this chapter is to introduce a new derivation for sur-

face PI (hereafter 𝑃𝐼𝑠), based on the idea of a differential Carnot cycle and bounding

the magnitude of the surface winds, and to evaluate this theory along with previous

PI theories bounding the azimuthal winds and the gradient winds, by comparing them

to numerically simulated values.

First, section 2.2 introduces the derivation of the surface PI based on a differential

Carnot engine view of the TC. Then, section 2.3 presents the model and simulation

setup to investigate SI, and section 2.4 shows the results of these computations. Fi-

nally, section 2.5 compares the degree of superintensity for all forms of PI and all

simulations.

2.2 Surface PI

The energy cycle of a hurricane can be described in terms of a Carnot heat engine

(Emanuel, 1986; Pauluis and Zhang, 2017; Emanuel, 2018), which provides an inte-

gral constraint on the maximum surface winds. Here we derive a local constraint by

differentiating two adjacent cycles as shown in Figure 2-1. The advantage of using

a differential Carnot cycle instead of approximating the secondary circulation of the

hurricane as a full Carnot cycle is twofold. First, it provides an expression for the

maximum surface winds rather than an integral constraint on the surface winds for

the whole storm. Second, it does not require the entire secondary circulation of the

hurricane to satisfy the Carnot cycle’s assumptions, but only the portion of the cycle

located in the eyewall. Hakim (2011) showed that the secondary circulation of a sim-

ulated axisymmetric TC corresponds approximately to a Carnot cycle in the inflow

and in the eyewall, but not in the outflow and subsidence regions.

In Figure 2-1, Cycle 1 begins at point A very near the surface in the boundary

layer far outside the core and follows the spiraling inflow to point B incrementally
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Figure 2-1: Showing two adjacent heat cycles of an axisymmetric, steady hurricane.
Cycle 1 is defined as A-B-C-D-A, and cycle 2 is defined as A-B’-C’-D-A.

inside the radius of maximum winds. This leg is approximated as isothermal, with

strong input of enthalpy from the ocean and strong dissipation of kinetic energy. From

B the cycle follows air upward in the eyewall, and outward to point C, far outside

the storm center; this leg is approximated as moist adiabatic and at constant energy

and angular momentum. From point C, air sinks to point D while losing entropy and

energy owing to radiative cooling; point D is chosen as a point in the environment

that has the same moist entropy as point A. Leg C-D is approximated as isothermal,

and angular momentum is regained along this leg, presumably owing to irreversible

mixing. From D, the parcel sinks at constant angular momentum back to point A.

In the upper part of this leg, air loses entropy though radiative cooling, but regains

it through irreversible mixing as it approaches A. Cycle 2 is identical to Cycle 1 ex-

cept that the air turns upward in the eyewall at point B’ just outside the radius of

maximum winds, and follows a streamline and angular momentum surface to point

C’ just under point C, but then sinking to point D and back to its starting point A.

We can take points A and D to be the same in each cycle because they are in regions

of very weak spatial gradients of entropy and angular momentum. Both legs B-C and

B’-C’ are considered to occur at water saturation. A Carnot-like relationship between

entropy gained in A-B (and lost in C-D) and mechanical dissipation can be derived

from equations for conservation of moist entropy, 𝑠 and energy. We begin with by

differentiating (following a parcel) the reversible moist entropy using its definition in
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Emanuel (1994):

𝑇
𝑑𝑠

𝑑𝑡
= (𝑐𝑝𝑑 + 𝑐𝑙𝑞𝑡)

𝑑𝑇

𝑑𝑡
+

𝑑 (𝐿𝑣𝑞)

𝑑𝑡
− (1 + 𝑞𝑡)𝛼

𝑑𝑝

𝑑𝑡
−𝑅𝑣𝑇 ln (ℋ)

𝑑𝑞𝑡
𝑑𝑡

, (2.9)

where 𝑇 is temperature, 𝑝 is pressure, 𝑞 is the vapor mixing ratio, 𝑞𝑡 is the total water

mixing ratio, 𝛼 is the specific volume, 𝑐𝑝𝑑 is the specific heat capacity of dry air, 𝑐𝑙 is

the heat capacity of liquid water, 𝐿𝑣 is the latent heat of vaporization, 𝑅𝑣 is the gas

constant for water vapor, and ℋ is the relative humidity. The last term in (2.9) is an

irreversible source of entropy. Note that we neglect the ice phase here; including it

would add terms related to thermodynamically irreversible ice-phase effects such as

supercooling. By taking the dot product of the vector momentum equation with the

three-dimensional velocity vector, we obtain a relationship for the kinetic energy:

𝑑

𝑑𝑡

(︂
1

2
|V|2

)︂
= −𝛼

𝑑𝑝

𝑑𝑡
+V · F− 𝑤𝑔, (2.10)

where V is the three-dimensional velocity, 𝑤 is its vertical component, 𝑔 is the accel-

eration of gravity, and F is the frictional source of momentum. Eliminating pressure

𝑝 between (2.9) and (2.10) yields

𝑇
𝑑𝑠

𝑑𝑡
=

𝑑

𝑑𝑡

[︂
(𝑐𝑝𝑑 + 𝑐𝑙𝑞𝑡)𝑇 + 𝐿𝑣𝑞 + (1 + 𝑞𝑡)

(︂
1

2
|V|2 + 𝑔𝑧

)︂]︂
−V · F

− 𝑑𝑞𝑡
𝑑𝑡

[︂
𝑅𝑣𝑇 ln(ℋ) +

1

2
|V|2 + 𝑔𝑧

]︂
. (2.11)

We next integrate (2.11) around either A-B-C-D-A or A-B’-C’-D-A to obtain

∮︁
𝑇
𝑑𝑠

𝑑𝑡
= −

∮︁
V · F−

∮︁
𝑑𝑞𝑡
𝑑𝑡

[︂
𝑅𝑣𝑇 ln(ℋ) +

1

2
|V|2 + 𝑔𝑧

]︂
. (2.12)
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The first term on the right side of (2.11) is a perfect derivative and thus integrates

to zero around a closed loop. If we apply (2.12) first to the loop A-B-C-D-A and

subtract that from its application to A-B’-C’-D-A. we get a closed integral around

the loop B’-B-C-C’-B’:

∮︁
𝑖𝑛𝑛𝑒𝑟

𝑇
𝑑𝑠

𝑑𝑡
= −

∮︁
𝑖𝑛𝑛𝑒𝑟

V � F−
∮︁

𝑖𝑛𝑛𝑒𝑟

𝑑𝑞𝑡
𝑑𝑡

[︂
1

2
|V|2 + 𝑔𝑧

]︂
. (2.13)

The ln(ℋ) is not present as the inner loop is taken to be saturated. The last term

in (2.13) represents the irreversible entropy loss associated with lifting water mass

against gravity and changing its kinetic energy. It is quantitatively small compared

to the other terms in (2.13) and we henceforth neglect it, thus we will evaluate

∮︁
𝑖𝑛𝑛𝑒𝑟

𝑇
𝑑𝑠

𝑑𝑡
= −

∮︁
𝑖𝑛𝑛𝑒𝑟

V � F (2.14)

where the 𝑖𝑛𝑛𝑒𝑟 notation denotes the circuit B’-B-C-C’-B’. We note that B-C and

C’-B’ are adiabatic, and we assume that friction is only important in B’-B. (Emanuel,

1986, showed that there must also be frictional dissipation in the leg C-C’ associated

with a gain of angular momentum, but this will be small if the radius at which this

occurs is not too large.) Using classical aerodynamic flux formulae for the sea surface

source of enthalpy and sink of momentum, and taking the circuit B’-B-C-C’-B’ to be

of infinitesimal width yields

𝑇𝑠 − 𝑇𝑜𝑢𝑡

𝑇𝑠

[︀
𝐶𝑘10|V10| (𝑘*

0 − 𝑘10) + 𝐶𝐷10|V10|3
]︀
= 𝐶𝐷10|V10|3, (2.15)

where |V10| is now the 10 m wind speed at the radius of maximum winds, the ex-

change coefficients pertain to 10 m altitude, 𝑇𝑠 is the surface temperature, 𝑇𝑜𝑢𝑡 is the

temperature at C-C’, 𝑘*
𝑠 is the saturation enthalpy of the sea surface, and 𝑘10 is the

enthalpy at 10 m. Rearranging (2.15) yields an expression for what we refer to as the

surface PI, or :
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PI Form Variable Diagnostic SI Definition

𝑃𝐼𝑔 𝑉𝑔 𝑃𝐼2𝑔 = 𝐶𝑘10

𝐶𝐷10

(𝑇𝑏−𝑇𝑜𝑢𝑡)
𝑇𝑜𝑢𝑡

(𝑘*
𝑠 − 𝑘10) 𝑆𝐼𝑔 =

(max(𝑉𝑔)−𝑃𝐼𝑔)

𝑃𝐼𝑔

𝑃𝐼𝑎 𝑉 𝑃𝐼2𝑎 = 𝑃𝐼2𝑔 + 𝑟𝑏𝜂𝑏𝑤𝑏
𝑇𝑠

𝑇𝑜
𝑆𝐼𝑎 =

(max(𝑉 )−𝑃𝐼𝑎)
𝑃𝐼𝑎

𝑃𝐼𝑠 |V10| 𝑃𝐼2𝑠 = 𝐶𝑘10

𝐶𝐷10

(𝑇𝑠−𝑇𝑜𝑢𝑡)
𝑇𝑜𝑢𝑡

(𝑘*
𝑠 − 𝑘10) 𝑆𝐼𝑠 =

(max(|V10|)−𝑃𝐼𝑠)
𝑃𝐼𝑠

Table 2.1: Summary of the variables bounded, the diagnostic formulas and the SI
definitions for each form of PI.

𝑃𝐼2𝑠 = |V10|2 =
𝐶𝑘10

𝐶𝐷10

(𝑇𝑠 − 𝑇𝑜𝑢𝑡)

𝑇𝑜𝑢𝑡

(𝑘*
𝑠 − 𝑘10). (2.16)

No assumptions of gradient wind or hydrostatic balance have been made here. Note

that the expression for 𝑃𝐼𝑠 is almost identical to that for 𝑃𝐼𝑔, the only difference being

that 𝑇𝑠 appears instead of 𝑇𝑏, in the numerator of the thermodynamic efficiency ratio.

Summarizing the different versions of PI we will be using in this chapter: 𝑃𝐼𝑠 puts

an upper bound on the magnitude of the surface winds, 𝑃𝐼𝑎 bounds the maximum

azimuthal winds and 𝑃𝐼𝑔 bounds the maximum gradient winds. Similarly, we will

denote superintensity by 𝑆𝐼𝑠, 𝑆𝐼𝑎 and 𝑆𝐼𝑔 representing the amount by which the maxi-

mum winds exceed each version of PI. In this chapter, superintensity will be computed

as a relative, normalized quantity so that, for example, 𝑆𝐼𝑠 = (max(|V10|)−𝑃𝐼𝑠)/𝑃𝐼𝑠.

Hereafter |V10| refers to simulation data. Table 2.1 summarizes the forms of PI that

will be evaluated in this chapter.

2.3 Numerical simulations

The simulations in this chapter are conducted using two axisymmetric models, namely

ASPECH (Tang and Emanuel, 2012) and CM1 version 19, in an axisymmetric con-

figuration (BR09c). Both models’ equation sets conserve mass and internal energy in

saturated air and include dissipative heating. Most previous SI studies used CM1 but

we add in another model to assess the degree to which superintense behavior may be
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model dependent. Similarly to RE87, in both models the radiation is parameterized

by a simple Newtonian relaxation of potential temperature to the background, which

is capped at 2 K per day cooling. For simplicity, surface exchange coefficients are fixed

to 𝐶𝑘10/𝐶𝐷10 = 1 with 𝐶𝐷10 = 0.002 and 𝐶𝑘10 = 0.002. 𝐶𝐷10 is similar to the values

used in most models for high wind speeds, but the value of 𝐶𝑘10 = 0.002 resulting

from these choices is much higher than that generally considered to be most represen-

tative of intense hurricanes (𝐶𝑘10 = 0.0012). This choice was partly motivated by the

desire to simulate high intensity storms, more likely to exhibit superintensity. The

domains are 1500 km × 27 km, with a horizontal grid spacing of 2 km for the inner

300 km stretching to 8 km at the edge of the domain. The vertical grid spacing is 300

m for the lower 15 km, stretching to 500 m at the top of the domain in ASPECH, and

is uniformly 300 m in CM1. This resolution, lower than has been used for the CM1

simulations in BR09a, was chosen for ease of comparison with ASPECH, a somewhat

computationally slower model.

The initial vortex, in both simulations, is defined to have a maximum wind speed

of 15 m s−1 at a height of 1 km and a radius of 100 km. The vertical extent of the

vortex is 15 km and the radius of zero winds is 500 km. The microphysical parame-

terization used in both models is the simple liquid water scheme used in RE87 with a

terminal velocity of 𝑣𝑡 = 7 m s−1. BR09c showed that hurricane maximum intensity

is very sensitive to terminal velocity and that 𝑣𝑡 = 7 m s−1 yields intensities similar

to (but somewhat lower than) the pseudoadiabatic limit. Unless specified otherwise,

the asymptotic vertical mixing length is 𝑙𝑣 = 100 m. To ensure that conditional insta-

bility is small, the simulations are initialized with the RE87 sounding made available

by George Bryan1, which is essentially neutral. The sea surface temperature 𝑇𝑠 is 27
𝑜C in all simulations, with an initial air-sea temperature difference at 10-m of about

3.5 𝑜C.

1http://www2.mmm.ucar.edu/people/bryan/cm1/soundings/input_sounding_rotunno_
emanuel
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2.3.1 Sensitivity studies

The goal of the sensitivity analysis is to push the models from a state where the

simulated intensities (gradient, azimuthal and surface winds) do not reach their re-

spective PI bounds, to a superintense state. To do so, we decrease the horizontal

mixing length 𝑙ℎ by factors of two over six simulations from 𝑙ℎ = 2000 m to 𝑙ℎ = 62.5

m. Decreasing 𝑙ℎ decreases the mixing rate of enthalpy and momentum and allows

for stronger gradients to form, which in turn leads to more intense hurricanes.

2.3.2 In situ estimation of PI

Diagnostics of a given form of PI are realized in situ at the location where the value

bounded by that form of PI is maximum. For example, 𝑃𝐼𝑠 is computed using

using equation (2.16) at the radius of maximum surface winds. The thermodynamic

disequilibrium is computed as the difference between the surface saturation MSE and

the boundary layer MSE, here taken at the first model level (at a height of 150 m).

The outflow temperature is taken at the point where the azimuthal velocity changes

sign when ascending along a streamline from the PI evaluation point.

2.4 Results

First, Fig. 2-2 shows time series of the instantaneous maximum azimuthal velocity

for all simulations of the 𝑙ℎ sensitivity experiment and for both models. The time

series of both models are qualitatively similar with the exception of an initially faster

spinup rate in CM1. Since we are concerned with the steady state only, this does not

make much difference in the analysis. Consistent with previous studies (e.g. Bryan

and Rotunno, 2009a,c; Rotunno and Bryan, 2012; Bryan, 2012), it is clear that as the

mixing length decreases, the maximum intensity increases.

Next, in Fig. 2-3, we show again the ASPECH maximum azimuthal velocity time

series for 𝑙ℎ = 2000 m and 𝑙ℎ = 63 m alongside time series of diagnosed 𝑃𝐼𝑔 and
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Figure 2-2: Time series of the maximum azimuthal wind, 𝑉 , in ASPECH (left) and
CM1 (right) simulations for all values of 𝑙ℎ (color scale; the warmer colors correspond
to smaller 𝑙ℎ).

𝑃𝐼𝑎 for the same simulations. Consistent with BR09a and because of supergradient

flow, 𝑚𝑎𝑥(𝑉 ) > 𝑃𝐼𝑔, with the difference increasing at small mixing lengths. Again

consistent with BR09a, 𝑃𝐼𝑎 clearly represents a much better bound on max(𝑉 ), as

it is barely exceeded, even at small 𝑙ℎ. The difference between max(𝑉 ) and 𝑃𝐼𝑔

in Fig. 2-3 represents the definition of SI used in previous studies. Again, here

we aim at comparing PI bounds against the appropriate quantity, so that we define

𝑆𝐼𝑔 = (max(𝑉𝑔)−𝑃𝐼𝑔)/𝑃𝐼𝑔, the superintensity with respect to the gradient wind PI.

BR09a showed that gradient winds computed from the radial momentum equation

in low-mixing TCs will tend to be overestimated since the pressure gradient includes

a perturbation due to the unbalanced wind contribution. This computation will thus

also overestimate 𝑆𝐼𝑔. Throughout this chapter, 𝑉𝑔 will instead be computed using

BR09a’s Eq.16 (Emanuel’s 1986 Eq.11)

𝑟2|𝑀𝑔 = −𝑀
[︁ 𝑑𝑠

𝑑𝑀
(𝑇 − 𝑇𝑜𝑢𝑡)

]︁−1

, (2.17)

where the variables on the right hand side are taken along the angular momentum

surface passing through the position of maximum winds. The radius computed on the

left hand side can then be considered as the radius this angular momentum surface

would have if it were actually balanced. The velocity of air with the same angular
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Figure 2-3: Time series of the maximum azimuthal velocity, 𝑉 (black), the gradient
potential intensity, 𝑃𝐼𝑔, (green) and the azimuthal potential intensity, 𝑃𝐼𝑎, (blue) for
𝑙ℎ = 2000 m (left) and 𝑙ℎ = 63 m (right). Simulated using ASPECH.

momentum as that of the maximum winds, and located at a radius 𝑟|𝑀𝑔 , is then the

gradient wind.

This method avoids accounting for the unbalanced wind contribution but requires as-

suming hydrostatic balance and moist slantwise neutrality above the boundary layer,

which may impact the resulting 𝑉𝑔 as well as 𝑆𝐼𝑔. Indeed, moist slantwise neutrality

is not respected as well at large values of 𝑙ℎ as it is at small values. More precisely,

𝑑𝑠*/𝑑𝑀 decreases with height due to horizontal mixing (not shown), so that 𝑉𝑔 is

overestimated when 𝑙ℎ is large.

2.4.1 Simplifying approximations in 𝑃𝐼𝑔 and 𝑃𝐼𝑎

The validity of the main physical assumptions of the gradient PI theory, namely ther-

mal wind balance, moist slantwise neutrality and the boundary layer closure, has

been evaluated in BR09a. In a replication of BR09’s results, we verified that the

moist slantwise neutrality and boundary layer closure are fairly well satisfied in the

simulations presented here and as such will not discuss them further. However, the

simplifying approximations for 𝑃𝐼𝑔 and 𝑃𝐼𝑎, that allow one to go from Eq. 2.6 to

Eq. 2.7 have not been evaluated for various intensities. The 𝑃𝐼𝑔 derivation approx-
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imates 𝑇𝑠 ≈ 𝑇𝑏 for the purpose of computing thermodynamic efficiency, 𝑉10 ≈ 𝑉𝑔,𝑏

and 𝑟 ≈ 𝑟𝑏 to relate momentum at the top and bottom of the boundary layer, and

|V10|2 ≈ 𝑉 2
𝑔,𝑏 for the dissipative heating. These approximations are generally thought

to be small and largely cancel out. To verify this, we compare the average value of

the approximate 𝑃𝐼𝑔 to that of the unapproximated form of Eq. 2.6. The averaging

is done over the most intense part of the simulations, from day 8 to 12, corresponding

to the times at which we intend to evaluate superintensity. The contribution of each

individual assumption to the final result is also evaluated.

Figure 2-4 shows the mean of the normalized difference between 𝑃𝐼𝑔 and unapproxi-

mated gradient PI as a function of the mixing length. All results represent the relative

departure from the unapproximated form due to a given assumption. For example,

the temperature assumption plot (green profile) is really just (𝑇𝑠 − 𝑇𝑏)/𝑇𝑏. The as-

sumptions are multiplicative so that the combined effect of all the approximations

(black profile) is not equal to the sum of the individual approximations. Note that

while the errors owing to the assumptions about velocities, radius, and dissipative

heating can be as large as 20%, they end up cancelling for the most part, so that

𝑃𝐼𝑔 is within 10% of the unapproximated PI. This difference is even smaller (about

5%) at small mixing lengths, so that for the purpose of evaluating superintensity, we

will use the approximate 𝑃𝐼𝑔 and 𝑃𝐼𝑎 forms. In this chapter, the approximations

described above mostly serve to simplify the interpretation of the 𝑃𝐼𝑔 and 𝑃𝐼𝑎 forms.

However, computing an a priori gradient wind PI from only environmental variables

would require taking a similar set of approximations.

2.4.2 Surface PI

Next, we look at whether the surface PI (𝑃𝐼𝑠) is well respected in the ASPECH sim-

ulations. Contrarily to 𝑃𝐼𝑔, which needs to be compared to gradient wind computed

from the simulation data, 𝑃𝐼𝑠 is directly compared to output surface winds. As such,
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Figure 2-4: Contribution of simplifying assumptions to 𝑃𝐼𝑔 as a function of 𝑙ℎ, in
ASPECH, for the SST approximation (green), the dissipative heating approxima-
tion (blue), the exchange coefficient approximation (red), the radius of 𝑀 surfaces
approximation (cyan), and the combined effect of all assumptions (black).

assumptions enter only in the derivation of the surface PI, not in the quantity it is

compared to.

Figure 2-5 shows time series of the maximum surface winds and surface PI for all

simulations. The time series of 𝑃𝐼𝑠 do not extend to the start of the simulation,

because the outflow temperature is not initially well defined. The minimum values of

𝑃𝐼𝑠 during intensification are similar for all simulations, which is consistent with the

identical environment in all simulations. Note again that 𝑃𝐼𝑠 depends on a differen-

tial Carnot cycle, and the fact that Hakim (2011) showed that simulated steady state

hurricanes do not have a full Carnot thermodynamic cycle does not mean that there

is any problem with the 𝑃𝐼𝑠 derivation, as it only requires the inner core portion of

the Carnot cycle to be valid.

As |V10| tends to 𝑃𝐼𝑠, both time series covary surprisingly closely, with the in-

crease in 𝑃𝐼𝑠 following closely the intensification of |V10|. Variations of |V10| on

time scales of less than a day are also captured by 𝑃𝐼𝑠. This interesting result is

an indication that the Carnot energetic constraint is consistent with the relation be-
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Figure 2-5: Time series of the maximum magnitude of surface winds in ASPECH,
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Figure 2-6: Averaged normalized SI as a function of 𝑙ℎ with respect to the surface PI,
𝑆𝐼𝑠 (left, red), the azimuthal PI, 𝑆𝐼𝑎 (center, blue) and the gradient PI, 𝑆𝐼𝑔 (right,
green) for ASPECH (solid line) and CM1 (dashed line) .

tween the dynamics and the thermodynamics of the simulated TCs, even on short

time scales. It is not entirely clear why 𝑃𝐼𝑠 covaries with |V10| on short time scales

rather than on average, over steady periods as per the assumptions of PI. CM1 yields

similar results (not shown), but the surface winds exceed 𝑃𝐼𝑠 by up to 7% in the

𝑙ℎ = 63 m simulation.

2.5 Superintensity

First, we present the superintensities for each variable, normalized with respect to

the corresponding PI bound and averaged from day 8 to day 12. For example, for

the surface SI, 𝑆𝐼𝑠 = (max(|V10|) − 𝑃𝐼𝑠)/𝑃𝐼𝑠. The interpretation of SI is the fol-

lowing: 𝑆𝐼𝑠 = −0.2 for a given simulation means that the average magnitude of the

surface winds, during the most intense period, is smaller than 𝑃𝐼𝑠 by 20%. Con-

versely 𝑆𝐼𝑠 > 0 means that 𝑃𝐼𝑠 is exceeded on average during the same period by

the quantity it should bound. The same reasoning is applied in computing SI for the

azimuthal wind (𝑆𝐼𝑎) and for the gradient wind (𝑆𝐼𝑔). Figure 2-6 shows the various

SIs as a function of 𝑙ℎ and for both models.

For most computed superintensities, there is a clear positive tendency with decreas-

ing 𝑙ℎ. In CM1, 𝑆𝐼𝑠 increases from about −0.21 to 0.07, 𝑆𝐼𝑎 from about −0.17 to
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0.05, and 𝑆𝐼𝑔 from about −0.15 to 0.05. In ASPECH, 𝑆𝐼𝑠 increases from about −0.17

to 0.05, 𝑆𝐼𝑎 from about −0.13 to 0.02, and there is no clear trend for 𝑆𝐼𝑔. In both

models, 𝑆𝐼𝑠 seems to have smaller sensitivities at small mixing lengths. Analysing

𝑆𝐼𝑔 is a bit complicated since the discrepancy (𝑆𝐼𝑔) between 𝑉𝑔, diagnosed using

BR09a’s method and 𝑃𝐼𝑔, does not capture the effect of the departure from moist

slantwise neutrality and from hydrostatic balance. 𝑆𝐼𝑔, in this case, is due only to

the boundary layer assumptions and the simplifying approximations applied between

Eq.2.6 and Eq.2.7 .

At this point, it is important to note that the actual intensities and potential in-

tensities vary much more with 𝑙ℎ than does SI. For example, Fig. 2-3 shows that the

peak intensities increase by more than 100% over the range of 𝑙ℎ, while 𝑆𝐼𝑎 varies

by less than 20 % and is generally closer to 0 at small mixing lengths than at large

mixing lengths. This tells us that each PI and its bounded quantity both increase and

converge with decreasing 𝑙ℎ. This behavior is expected as PI theories are defined for

inviscid flow above the boundary layer. Larger mixing lengths imply a decrease in the

eyewall entropy gradient so that 𝑉𝑔 and 𝑉 do not reach 𝑃𝐼𝑔 and 𝑃𝐼𝑎, respectively. Al-

ternatively, it implies that the assumption of isentropic ascent is not quite satisfied so

that |V10| does not reach 𝑃𝐼𝑠. As 𝑙ℎ decreases, the PI assumptions are better satisfied.

Both models produce similar SI for surface winds. The surface PI diagnostic, 𝑃𝐼𝑠,

relies purely on model thermodynamics, and hence both models simulate a similar

relation among the thermodynamic disequilibrium, the thermodynamic efficiency and

the near surface winds. The simulations only become superintense with respect to

the surface PI at small 𝑙ℎ, with values of 𝑆𝐼𝑠 < 0.05 in ASPECH and 𝑆𝐼𝑠 < 0.07 in

CM1. Hence, since 𝑆𝐼𝑠 remains small at low mixing lengths, we conclude that 𝑃𝐼𝑠 is

a good bound for surface winds.

The azimuthal wind PI, 𝑃𝐼𝑎, however, depends both on thermodynamic and dy-

namical diagnosed components. Thus, even if the profiles of 𝑆𝐼𝑎 are similar in both
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Figure 2-7: Averaged normalized contribution of the imbalance to 𝑃𝐼𝑎 as a function
of 𝑙ℎ for ASPECH (solid line) and CM1 (dashed line).

models, the ratio of the dynamical and thermodynamic components may not be. In-

deed, Fig. 2-7 shows that the increase in 𝑃𝐼𝑎 due to the imbalance (the last term

of Eq.2.8, divided by 𝑃𝐼𝑎), varies more and reaches larger values in CM1 than in

ASPECH. In this study, the sensitivity of 𝑆𝐼𝑎 to 𝑙ℎ, which is clearly shown in Fig.

2-6, is larger than in BR09a, where 𝑆𝐼𝑎 ≈ 0 for all simulations.

The above discrepancy between CM1 and ASPECH may be due to differences

between the PBL schemes in both models and to an uncertainty in the computation

of the unbalanced contribution. Indeed, here 𝑃𝐼𝑎 is computed by taking in situ values

at a single point (point of maximum winds), as should be the case following BR09a.

However, at high intensities, the high vorticity (𝜂𝑏) and updraft (𝑤𝑏) regions each

collapse to one or two grid points that are not necessarily collocated so that diagnos-

ing the contribution of the imbalance yields a somewhat variable effect. We do not,

at this point, have an analysis explaining why this is the case but the inaccuracy of

the imbalance term may be due to the very large intensities simulated and the rela-

tively low horizontal resolution of the simulations (2000 m in contrast to 1000 m in

BR09a). However, 𝑃𝐼𝑎 still bounds azimuthal winds within 5% at low mixing lengths.

The vertical mixing length is also known to be important in controlling the struc-

ture and intensity of TCs (e.g. Bryan, 2012; Rotunno and Bryan, 2012). Thus to
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Figure 2-8: Averaged normalized SI in CM1 as a function of 𝑙ℎ with respect to the
surface potential intensity, 𝑆𝐼𝑠 (left, red), the azimuthal potential intensity, 𝑆𝐼𝑎 (cen-
ter, blue) and the gradient potential intensity, 𝑆𝐼𝑔 (right, green) for all values of 𝑙𝑣
(brighter colors indicate lower values of 𝑙𝑣).

further evaluate the various PI bounds, we performed additional simulations using

CM1 for the same values of 𝑙ℎ and for 𝑙𝑣 = 50 m, 100 m (control), 200 m and 400 m.

The results are shown in Fig. 2-8. 𝑆𝐼𝑎 profiles seem to flatten out and shift to higher

values (closer to 0 on average) as vertical mixing increases. Interestingly, 𝑆𝐼𝑠 profiles

seem to have an opposite trends, with the largest superintensities occurring at the

smallest vertical mixing lengths. Since we do not yet have a physical understanding

of these trends, Fig. 2-8 is mostly meant to show that the qualitative results of the

chapter are not fundamentally altered by modifying other turbulence parameters.

2.6 Conclusion

This chapter introduced a new form of potential intensity bounding the maximum

magnitude of the surface winds and based on the idea of a differential Carnot Cycle.

This derivation has the advantage of only requiring the Carnot cycle’s assumptions

to be valid for the part of the secondary circulation located in the eyewall of the TCs,

which is easier to satisfy.
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Previous studies showed that supergradient flow is an important contributor to the

azimuthal wind speed in superintense cyclones and that a gradient wind bound was

not appropriate in that context. From there, we redefined SI as being the state where

a quantity bounded by a given form of PI exceeds that bound. We evaluated three

forms of PI (and the associated forms of SI): the newly introduced 𝑃𝐼𝑠, and the exist-

ing 𝑃𝐼𝑎 and 𝑃𝐼𝑔, bounding the magnitude of the surface wind, azimuthal wind and

gradient wind respectively. The corresponding SI, (𝑆𝐼𝑔, 𝑆𝐼𝑎 and 𝑆𝐼𝑠) were defined as

normalized quantities, so that, for example: 𝑆𝐼𝑎 = (𝑉 − 𝑃𝐼𝑎)/𝑃𝐼𝑎.

The derivation of 𝑃𝐼𝑔 requires making a series of approximations so that its com-

putation only depends on thermodynamic variables. These approximations, namely

𝑇𝑠 ≈ 𝑇𝑏, 𝑉10 ≈ 𝑉𝑔,𝑏, 𝑟 ≈ 𝑟𝑏, and |V10|2 ≈ 𝑉 2
𝑔,𝑏 were shown to cancel out to within 10%

for 𝑙ℎ varying from 2000 m to 63 m.

𝑆𝐼𝑔 and 𝑆𝐼𝑎 are always less than 5%, so that 𝑃𝐼𝑔 and 𝑃𝐼𝑎 seem to be good bounds

on the maximum azimuthal winds, as was shown by BR09a. Finally, 𝑆𝐼𝑠 is generally

less than 5%, suggesting that the Carnot-analog to the derivation from dynamical

principles represents a good bound on the surface winds. Even if 𝑃𝐼𝑔 is a proper

limit for gradient wind, it applies only to gradient wind, an ideal construct that is

not necessarily realized. While 𝑃𝐼𝑎 applies to an actual wind speed and is very useful

in assessing the contribution of supergradient flow to azimuthal winds, its compu-

tation relies on dynamical diagnostics. 𝑃𝐼𝑠 on the other hand, is a straightforward

thermodynamic bound on surface winds, a quantity that is more relevant to hurricane

risk assessment.

Future research directions may include investigating the sensitivity of superinten-

sity to the numerical methods by modifying the scheme used in a given model. It

would also be interesting to include a simple boundary layer model in a dynamical

PI a priori method to estimate the unbalance in the boundary layer, and to estimate

the maximum azimuthal wind for a given environment.
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Chapter 3

A Thermodynamic Perspective on

Steady-State Tropical Cyclones

Abstract

Theories for the maximum intensity of tropical cyclones (TCs) assume steady state.
However, many TCs in simulations that run for tens of days tend to decay considerably
from an early steady state in the core (CS), before stabilizing at a final equilibrium
steady state (ES). This decay raises the question of whether CS or ES should be used
as a comparison to the maximum intensity theories. To understand the differences
between CS and ES, we investigate why TCs decay and attempt to simulate a TC
with steady intensity over a 100-day period. Using the axisymmetric Cloud Model 1,
we find that the CS TC decay is due to a large-scale drying of the subsidence region.
Such a drying is very pronounced in axisymmetric models because shallow-to-mid
level convection is not represented accurately enough to moisten air in the subsidence
region. Simulations with an added moisture relaxation term in the subsidence re-
gion and dry cyclones without any moisture both remain in a steady state for over
100 days, without decaying appreciably after the spin-up period. These simulations
indicate that the decay in TC simulations is due to the irreversible removal of precip-
itation combined with the lack of a moistening mechanism in the subsidence region.
Once either of these conditions is removed, the decay disappears and the CS and ES
intensities become essentially equivalent.
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3.1 Introduction

Our understanding of complex atmospheric phenomena, like tropical cyclones (TCs),

evolves as the result of a synergy between analytical theories, numerical modeling, and

observations. Each branch of the research process informs the other two. Interest-

ingly enough, simple analytical assumptions like that of an inviscid free troposphere,

or of a system in steady state, can be challenging to understand when taken in the

context of numerical modelling. For comparison with analytical theories derived using

steady state assumptions, idealized numerical studies of TCs that focus, for exam-

ple, on maximum winds or TC structure, conduct their analyses on a part of the

simulation considered to be in steady state (e.g., Tang and Emanuel, 2012; Chavas

and Emanuel, 2014; Persing and Montgomery, 2003). Theories of potential intensity

(PI), a thermodynamic bound on maximum TC velocity that depends on properties

of the environment, rely on such assumptions of steady state, and so do the numerical

studies of PI (Rotunno and Emanuel, 1987; Bryan and Rotunno, 2009a; Hakim, 2011;

Rousseau-Rizzi and Emanuel, 2019).

For all the instances where steady state is invoked in modelling studies, there does not

seem to be a generally accepted rule for what constitutes a steady state in TCs, and as

a result, different studies have quite different definitions. For example, Rotunno and

Emanuel (1987) simulate the TCs’ evolution for 6 days before they consider having

reached a steady state, Bryan and Rotunno (2009a) runs simulations out to 12 days,

and Hakim (2011) runs them for hundreds of days. Hakim (2011) performs axisym-

metric numerical simulations of TCs using the model CM1 (Bryan and Fritsch, 2002;

Bryan and Rotunno, 2009c) and notices that, after being quasi-steady for a few days,

the intensity of the storm, defined here as the maximum wind speed, decays over a

period of order ten days before becoming quasi-steady again at a much lower value.

This newly achieved intensity then remains essentially constant for over a hundred

days. Hakim (2011) argues that this latter intensity represents the physical steady

state of TCs to which PI should be compared, and that the higher intensities reached
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earlier on in the simulation are transient fluctuations due to either internal dynamics

of the TC, or to unbalanced initial conditions. A similar behavior is noted by Chavas

and Emanuel (2014). Smith et al. (2014) note that simulated TCs also decay in 3D

model simulations. Their explanation is that angular momentum sinks far outweigh

the sources and that the TC runs out of angular momentum. In this chapter, we wish

to elucidate why decays such as those noted by Hakim (2011) and Smith et al. (2014)

occur, and what differentiates various definitions of steady state. These questions are

important because they inform both our general understanding of TC energetics, and

the applicability of PI theories to real TCs, which are relatively short lived.

In general, the various definitions of steady-state intensity introduced in the liter-

ature can be grouped into two phenomenologically inspired categories, which we will

label core-steady-state (CS), and equilibrium-steady-state (ES). As shown by the

schematic of Fig. 3-1, CS is a definition that describes the state of the storm where

the intensity varies slowly around peak intensity, which can occur after just a few

days, depending on the numerical setup. ES describes the final state of a storm

where the intensity becomes statistically steady for as long as anyone cares to run a

simulation. It occurs later in time and is usually separated from CS by a decay period

of a few tens of days. The steady state definitions of Hakim (2011) and Chavas and

Emanuel (2014) fall in the ES category, while those of Rotunno and Emanuel (1987)

or Bryan and Rotunno (2009a) belong to the CS category.

To understand the difference between the meaning of CS and that of ES, it is useful

to understand the decay that separates them. To do so, we consider the evolution

of conserved variables along the secondary circulation. The secondary circulation is

the component of the TC circulation in radius-height (𝑟− 𝑧) cylindrical coordinates.

It captures most of the changes in the parcel properties that are relevant to TC

energetics (Eliassen and Kleinschmidt, 1957). It is most easily understood in terms

of the evolution of conserved or nearly conserved quantities that do not arise as the

residual of large cancelling terms. Angular momentum (𝑀) and pseudoadiabatic

57



Figure 3-1: Conceptual schematic of maximum hurricane intensity over time in a
typical long (>10 days) axisymmetric simulation. Core-steady state (CS) is identified
by the dashed blue line and equilibrium-steady state (ES) is identified by the dashed
orange line. The decay period is identified by dashed gray lines.

entropy (𝑠) are such variables. For an air parcel, time tendencies of 𝑀 can only

arise due to turbulence, while time tendencies of 𝑠 can only arise due to turbulence

or departure from the pseudoadiabatic assumptions (e.g. Bryan, 2008). This makes

it easier to identify the physical causes of changes in 𝑠 and 𝑀 along the secondary

circulation.

3.1.1 Eliassen and Kleinschmidt Theory

We consider the early theory of TC energetics introduced by Eliassen and Klein-

schmidt (1957), hereafter EK57. The theory of EK57 was the first one to our knowl-

edge to represent the steady state TC as a closed thermodynamic cycle. This cycle

is illustrated in Fig. 3-2, from EK57. In leg [1]-[2], air with environmental properties

gains moist entropy in the form of a large moisture gain, and a small temperature

increase, until the temperature is similar to the sea surface temperature (SST). After-

wards, the air ascends in the eyewall and into the outflow along leg [2]-[3], which is a

moist adiabat, where by definition moist entropy is constant. Finally, the air cools ra-

diatively, which causes it to subside along leg [3]-[1], back to its starting point. They

suggest that an estimate of the storm velocity can be obtained by integrating the

work done along that cycle. This is a method that has been used for some potential
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Figure 3-2: Figure 30 from Eliassen and Kleinschmidt 1957, presenting a conceptual
vertical cross section through a hurricane. The solid line with arrows denotes the
shape and direction of the secondary circulation. Numbers indicate the transition
between important segments, as discussed in the text

intensity (PI) theories (e.g., Emanuel, 1988).

One key fact is not made explicit in the model of EK57. The subsiding air will be

much drier than the initial environmental air at the surface, unless the system obeys

moist reversible thermodynamics (i.e., water condensed along leg 2-3 then evaporates

along leg 3-1), or unless moisture is somehow regained through convective or envi-

ronmental fluxes. Without regaining moisture, there would be a much lower moist

entropy at the end of circuit [1]-[2]-[3]-[1] than at the beginning. So while the se-

ries of processes [1]-[2]-[3]-[1] is represented as a closed thermodynamic cycle, it must

assume, perhaps implicitly in EK57, that the system is reversible or that entropy is

regained by mixing at some point along the subsiding leg of the TC. The inflowing leg

[1]-[2] and the ascent leg [2]-[3] each take ∼1 day to complete, while the radiatively

driven subsidence leg takes tens of days to complete. Similar to the evolution of 𝑠,

EK57 mention that 𝑀 is lost to the sea surface in leg [1]-[2] and conserved in leg

[2]-[3]. In order to have a closed cycle, 𝑀 must be regained in leg [3]-[1].

3.1.2 Distinction between CS and ES

Given a conserved variable 𝑐, the conservation equation is written
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𝑑𝑐

𝑑𝑡
=

𝜕𝑐

𝜕𝑡
+ 𝑢 ·∇𝑐 = 𝐷𝑐, (3.1)

where 𝑢 is the velocity vector in the 𝑟− 𝑧 plane and 𝐷𝑐 is the turbulent mixing ten-

dency of 𝑐. More comprehensively, CS is defined such that in the inflow and ascent

[1]-[2]-[3],

⃒⃒⃒𝜕𝑐
𝜕𝑡

⃒⃒⃒
<< |𝑢 ·∇𝑐|, (3.2)

and the subsidence leg is assumed to evolve slowly from the initial value. That is,

the local rate of change is small with respect to the balance between advection and

turbulence, and the environment through which the air subsides is taken to be nearly

fixed. ES, on the other hand, is defined as

∮︁
𝑠𝑐

1

𝑢𝑙

𝑑𝑐

𝑑𝑡
𝑑𝑙 ≈ 0 (3.3)

where 𝑠𝑐 denotes the fact that the integral is performed along the secondary circu-

lation, 𝑙 is position along 𝑠𝑐, and 𝑢𝑙 is the velocity along the secondary circulation,

at position 𝑙 . ES essentially requires the value of 𝑐 of a parcel to be the same at

the beginning and at the end of a loop along the secondary circulation. Hence, ES

requires the integral of the local tendencies along 𝑠𝑐, weighted by the inverse 𝑟 − 𝑧

velocity, to vanish. This means that low-velocity regions, such as the subsidence re-

gion, must have correspondingly smaller time tendencies to satisfy ES. For now, we

surmise that the difference (i.e., the decay) between CS and ES is due to a change in

the environment of the storm. The conserved variables we chose to compare between

the definitions of steady state are angular momentum 𝑀 and pseudoadiabatic entropy

𝑠 because their evolution and distribution capture, we believe, the most important

dynamics (via 𝑀) and thermodynamics (via 𝑠).
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3.1.3 Hypothesis

We further hypothesize that the decay noted by previous studies is due to a decrease of

the subsidence region pseudoadiabatic entropy, on the subsidence timescale. Indeed,

as we discussed, 𝑠 of the air parcel after subsiding down to the surface will be much

lower than the original environmental value, unless the parcel can somehow regain

water vapor when subsiding. There are essentially only two ways in which this can

happen. By vertical mixing, that is to say moistening by convection, or by horizontal

mixing with environmental air. However, it happens that, in axisymmetric models

like that of Hakim (2011), or in coarsely resolved subsidence regions like that of Smith

et al. (2014), shallow-to-mid level convection is strongly suppressed. In addition, these

models have closed boundary conditions so that no air “renews" the environment

as would in effect happen with a real TC moving into a new environment. The

implication of these model limitations is that moisture is unlikely to be regained

along the subsidence leg.

3.1.4 Goal

The aim of this chapter is twofold: 1) to compare the two different definitions of TC

intensity steady state defined above and 2) to quantify the physical processes required

to obtain a closed EK57 type thermodynamic cycle. First, section 3.2 presents the

model, simulation setup and methods to investigate the difference between CS and

ES and the closure of the thermodynamic cycle. Then, section 3.3 shows the results

of these computations and section 3.4 discusses the implications of the results and

evaluates an alternative interpretation based on angular momentum. Finally, section

3.5 sums up the chapter and concludes.

3.2 Methodology

In this chapter, we are using Cloud Model 1 (CM1), a compressible atmospheric

model in axisymmetric configuration (Bryan and Fritsch, 2002; Bryan and Rotunno,
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2009c). The model’s equation sets conserve mass and internal energy in saturated air

and includes dissipative heating. The domain outer radius is 1500 km and the height

is 25 km. The grid is radially uniform with a 2 km grid spacing in the inner 64 km

and then stretches to 4 km at the outer edge of the domain. The grid spacing is 100

m in the vertical in the lower 500 m of the domain, stretching to 500 m grid spacing

at the height of 6000 m. The vertical grid spacing is uniform above 6000 m.

The conversion of water vapor to hydrometeors is represented by the simple liquid

water scheme of Rotunno and Emanuel (1987). The terminal velocity of liquid water

is 7 m s−1, which was shown by Bryan and Rotunno (2009c) to yield intensities close

to the pseudoadiabatic limit. The advection scheme for both scalars and momenta

is a 5th order WENO scheme. The turbulence parameterization is similar to that of

Rotunno and Emanuel (1987) and is based on Smagorinsky (1963). The horizontal

mixing length is fixed at a value of 𝑙ℎ = 1000 m and the asymptotic vertical mixing

length is 𝑙𝑣 = 100 m. Both of these are typical values in simulated axisymmetric

TCs. The simulations use a surface exchange coefficients parameterization based on

Fairall et al. (2003), Donelan et al. (2004) and Drennan et al. (2007). The simulations

use a constant Coriolis parameter 𝑓 = 5 × 10−5 s−1. Radiation is parameterized by

a Newtonian relaxation of potential temperature to the initial environmental state.

The setup comprises two Rayleigh damping layers, within 5 km of the top boundary

and within 100 km of the outer boundary. The top damping layer acts on all three

components of velocity and on potential temperature, while the lateral damping layer

only acts on vertical velocity. The outer boundary is closed.

The initial vortex, in all simulations, is defined to have a maximum wind speed of

15 m s−1 at the surface and at a radius of 100 km. The vertical extent of the vortex

is 15 km, and the radius where the winds go to zero is 500 km. The initial thermo-

dynamic profile in all simulations is exactly moist neutral to vertical displacement,

using the model’s equations, and is nearly saturated throughout the troposphere (Fig

1 of Bryan and Rotunno (2009a)). It is useful for the purpose of this chapter to have
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a model sounding that is initially neutral to the model equations, as initial CAPE

adds to the unsteadiness of the solution (not shown). The sea surface temperature is

constant at 301 K, with an air-sea temperature difference of 3 K.

3.2.1 Simulations

In order to test our hypothesis that drying in the subsidence region is responsible for

the decaying intensity of simulated TCs, we run three main simulations. The first one

is a control case (CTRL), which uses the settings described above. The second one is

almost identical, except that moisture in the subsidence region is relaxed to the initial

value (RELAX) with a timescale of 2 days, as described below. The third one is a

dry simulation (DRY) which has three differences with the CTRL: 1) a dry adiabatic

troposphere in the environment, with a potential temperature lapse rate of 10K per

kilometer in the stratosphere, 2) no moisture included in the simulation and 3), a

large air-sea temperature difference (12 K). Everything else is kept identical to the

CTRL. Then, in order to further test the sensitivity of the intensity to the drying,

we also run two additional simulation named REL1 and REL4 that are similar to

RELAX but use relaxation timescales of 1 day and 4 days respectively.

3.2.2 Role of the moistening

In RELAX, REL1 and REL4, water vapor mixing ratio is relaxed to the initial envi-

ronmental state 𝑞𝑣0 using

𝜕𝑞𝑣
𝜕𝑡

= [...] + 𝜇
(︁𝑞𝑣0 − 𝑞𝑣

𝜏

)︁
, (3.4)

where the constant 𝜏 is 2 days in RELAX, 1 day in REL1 and 4 days in REL4.

𝜇 = 𝜇(𝑟, 𝑧) is a mask that determines the region over which this relaxation term is

applied. The mask excludes the core of the storm, the boundary layer and the upper-

tropopheric outflow of the storm. It is applied only to the midlevels in the subsidence

region. We note that this relaxation of water vapor is analogous to the Newto-

nian relaxation parameterization for radiation introduced in Rotunno and Emanuel
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(1987) and used in our study. Rotunno and Emanuel (1987) introduced the radiation

parameterization to balance the impact that a simulated TC would have on the en-

vironmental stratification inside a closed domain. The 𝑞𝑣 relaxation term introduced

here serves to balance excessive drying in the subsidence region. A similar moisture

relaxation term (albeit applied to the entire domain) was used by Frisius (2015) who

tested the sensitivity of TC size to varying simultaneously the timescale of both the

Newtonian relaxation of temperature and that of moisture. The intensity in the sim-

ulations of Frisius (2015) decayed by about 10 to 20 m s−1 from day 10 to 50 but

remained remarkably steady afterwards.

3.2.3 Trajectory integral

In order to understand the evolution of the entropy of a parcel along the secondary

circulation, we define a method to integrate budget equations for pseudoadiabatic

entropy 𝑠 along the parcel trajectory. First, following Bryan (2008), we define the

differential form of the pseudoatiabatic entropy equation

𝑇𝑑𝑠 = 𝑐𝑝𝑑𝑇 + 𝐿0𝑑𝑞𝑣 −
1

𝜌𝑑
𝑑𝑝, (3.5)

and the integrated form

𝑠 = 𝑐𝑝 ln(𝑇 )−𝑅𝑑 ln(𝑝𝑑) +
𝐿0𝑞𝑣
𝑇

−𝑅𝑣𝑞𝑣 lnℋ. (3.6)

where 𝑐𝑝 is the heat capacity of dry air at constant pressure, 𝑇 is the temperature,

𝑅𝑑 is the dry air gas constant, 𝑝 is the pressure, 𝑝𝑑 is the dry air pressure, 𝜌𝑑 is the

dry air density, 𝐿0 is a constant latent heat of vaporization, 𝑞𝑣 is the water vapor

mixing ratio, 𝑅𝑣 is the gas constant of water vapor and ℋ is the relative humidity.

Then, since CM1 outputs accurate budgets of potential temperature (𝜃) and 𝑞𝑣, we

write the budget equation for entropy in terms of 𝜃 and 𝑞𝑣. Following a trajectory,

we have

𝑑𝑠

𝑑𝑡
=

𝑐𝑝
𝜃

𝑑𝜃

𝑑𝑡
+

𝐿0

𝑇

𝑑𝑞𝑣
𝑑𝑡

, (3.7)
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which we can break down into budget terms

𝑑𝑠

𝑑𝑡
=

𝑐𝑝
𝜃
(𝐷𝜃 +𝑁𝜃 +𝑅𝜃 + 𝜖𝜃) +

𝐿0

𝑇
(𝐷𝑞𝑣 +𝑁𝑞𝑣 +𝑀𝑞𝑣), (3.8)

or equivalently

𝑑𝑠

𝑑𝑡
= 𝐷𝑠 +𝑁𝑠 +𝑅𝑠 + 𝜖𝑠 +𝑀𝑠, (3.9)

where 𝐷 is parameterized turbulence, 𝑁 is implicit diffusion, 𝑅 is radiation or 𝜃

relaxation, 𝑀 is moisture relaxation and 𝜖 is dissipative heating. The subscripts in-

dicate the variable to which the tendency term applies. By implicit diffusion 𝑁 , we

mean an estimate of the diffusive component in the advection scheme, computed us-

ing higher order expansion of the advection scheme, similar to the method of Wicker

and Skamarock (2002). This 𝑁 needs to be taken into account in the budget be-

cause along-trajectory budgets require an accurate computation of the Lagrangian

derivative, which by definition does not include source terms or diffusive effects, ei-

ther parameterized or implicit. The next step is to average the equation in time to

filter out high frequency variability like gravity waves. The Lagrangian derivative of

time-averaged entropy 𝑠 in a time averaged flow ū is

𝑑𝑠

𝑑𝑡
=

𝜕𝑠

𝜕𝑡
+ ū ·∇𝑠. (3.10)

We note that the time mean of the advection is not the same as the advection by the

time mean flow. As we take the time average of the advection budget term, we need

to account for the eddy mixing term,

u ·∇𝑠 = ū ·∇𝑠+ u′ ·∇𝑠′, (3.11)

where the overbar denotes a time average, and the prime a perturbation with respect

to that average. For example, 𝑠(𝑟, 𝑧, 𝑡) = 𝑠(𝑟, 𝑧) + 𝑠′(𝑟, 𝑧, 𝑡). On average, we are

therefore left with an additional eddy term which needs to be treated like a source

term,
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𝑑𝑠

𝑑𝑡
= 𝐷𝑠 +𝑁𝑠 +𝑅𝑠 + 𝜖𝑠 +𝑀𝑠 + 𝐸𝑠 (3.12)

where 𝐸𝑠 = −u′ ·∇𝑠′. The eddy term needs to be computed with the model’s ad-

vection scheme (because of the large higher order spatial derivatives near the eyewall

of the hurricane, a lower order advection scheme yields large errors). Since this bud-

get is applied to time-averaged flow, hereafter, “trajectories" will refer to nominal

trajectories in 𝑟 − 𝑧 space that are computed from the mean flow by integrating

𝑑𝑟

𝑑𝑡
= 𝑢,

𝑑𝑧

𝑑𝑡
= 𝑤. (3.13)

The different terms contributing to the budgets of 𝜃 and 𝑞𝑣 are interpolated onto the

trajectory and used to compute the entropy budget.

3.3 Results

Since we are concerned with the evolution of intensity and its steady state, in Fig.

3-3, we compare timeseries of the maximum instantaneous tangential velocity for 1)

the CTRL case (gray), 2) the RELAX case (blue) and 3) the DRY TC simulation

(yellow). The CTRL case reaches its peak intensity around day 9, remains quasi-

steady at about 73 m s−1 for 3 to 4 days and then decays to 37 m s−1 over the course

of about 50 days. The CTRL TC eventually dies out completely without reaching

ES, like a similar simulation in Hakim (2011). In the RELAX case, the simulation

reaches peak intensity around day 15, remains quasi-steady at about 85 m s−1 for a

few days, and then decays slowly by about 10 m s−1 before reaching ES around day

80, which holds for as far as we have run that simulation (200 days). Finally, the

DRY case reaches a maximum around 20 days and then remains statistically steady

for the rest of the simulation.

Figure 3-3 provides evidence that either relaxing moisture in the subsidence re-

gion or removing moisture altogether removes most of the decaying behavior of the

TC and essentially makes ES equivalent to CS. The tentative conclusion from that
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Figure 3-3: Time series of the maximum instantaneous azimuthal velocity for CTRL
(gray), RELAX (blue) and DRY (yellow). The time series are filtered with a Lanczos
filter and a cutoff frequency of 1 day.

result, combined with the discussion in the Introduction, is that moisture changes in

the environment cause CS to depart from ES. In order to further test that hypothe-

sis, an additional simulation was run with reversible thermodynamics (no fallout of

precipitation), which also removes the decay (not shown).

Figure 3-4 compares three Hovmöller (radius-time) diagrams of the evolution of

the entropy perturbation near the sea surface. The plots extend from a radius of

0 to 900 km, to encompass all of the inflow branch of the secondary circulation,

and from a time of 0 to 40 days, to encompass both intensification and decay in

the CTRL case. Extending the plots further in radius or time does not change the

conclusions. The colormaps extend from -50 to 50 [J kg−1 K−1]. For reference, 50

[J kg−1 K−1] is roughly the difference of entropy between the near surface layer at

the initial time and the outflow layer of CTRL at maximum intensity. A negative

value means that the entropy has decreased with respect to the initial value. In

the CTRL simulation, the moist entropy increases for about the first 10 days, with

the largest increase occurring in the eyewall region. Then, 𝑠 decreases substantially

under the subsidence region, to values well below the initial conditions. The radial

wind-induced increase in 𝑠 as the air spirals inwards from a radius of 400 km is not

sufficient to counteract that massive local decrease. This decrease in 𝑠 is due to
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Figure 3-4: Day 0 to 40 Hovmöller diagrams of the near surface (z = 100 m) pseu-
doadiabatic entropy perturbation [J kg−1 K−1] for CTRL (left), RELAX (center) and
DRY (right).

moisture decreases, as temperature and pressure cannot depart much from the initial

values. Surface and low-to-mid tropospheric mixing ratio exhibit similar signals (not

shown). In the RELAX simulation, the entropy increases everywhere near the surface,

as the storm intensifies, and remains higher than in the initial conditions. The DRY

case is similar to the RELAX case in the sense that the near surface entropy remains

everywhere higher than in the initial conditions, after intensification. Consistent with

the time series, the DRY case takes longer (≈20 days) to become steady on average

than the RELAX case (≈10 days), and has higher variability afterwards. Figure 3-4

along with Fig. 3-3 makes a strong case that the drying of the subsidence region is

responsible for the TC decay in the CTRL case.

3.3.1 Trajectory integral results

Using the trajectory integral method introduced earlier, we now look at the time it

takes an air parcel to travel along the different sections of the secondary circulation.

In Table 3.1 we see that for both the CTRL and RELAX cases, the parcel takes about

10 times longer to subside as it takes to travel from the inflow to the outflow of the

storm. In CTRL, the subsidence timescale of 39 days is essentially the time it takes
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Simulation Inflow
time

Outflow
time

Subsidence
time

CTRL 1.5 1.5 39
RELAX 2 2 37
DRY 2 0.8 1.7

Table 3.1: Summary of the time [days] it takes a parcel to travel along different
segments of the secondary circulation. The total time is the sum of the inflow time,
the outflow time and the subsidence time.

for all moisture to be removed from the subsidence region in the absence of some

process to replenish it. The drying starts as soon as air begins to subside, and the

environment becomes completely dry (𝑅𝐻 ≈ 0) around 39 days later. In addition,

the profile of moisture is exponential in temperature, which means that, for fixed

subsidence, the relative humidity at a given point in the subsidence region decreases

faster earlier in the simulation than later, shifting the impacts of the drying earlier

in the simulation. This is likely responsible for the maximum surface entropy (and

intensity) peaking earlier and at a lower value in CTRL than in RELAX (Figs. 3-3

and 3-4). In DRY, it takes about the same time to subside as it takes to ascend.

These results indicate that the assumption in the CS definition, that the subsidence

region varies slowly with respect to the core, is appropriate for CTRL and RELAX.

In DRY however, the subsidence region does not vary slowly with respect to the core.

Hence, the slowly varying inflow and outflow conditions required by CS only arise

when equilibrium is reached, and ES and CS must become equivalent in this case.

Next, we look at the integrals of 𝑠 along the cycle to better understand the defi-

nition of ES.

To gain insight into the decay of the control case, Fig. 3-5 shows plots of the

𝑇 − 𝑠 cycles of the three main simulations, along the trajectory that passes through

the position of maximum winds. The black lines illustrate conditions along the parcel

trajectories that cross the position of maximum winds in each simulation, in 𝑇 − 𝑠

space. The colored (gray, blue and yellow) lines are the values of the integrals in time

of the Lagrangian entropy budget, from the position of maximum winds onwards.

That is
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Figure 3-5: Illustration of thermodynamic conditions along the secondary circulation
in 𝑇 − 𝑠 space using two approaches: using actual entropy along a trajectory (black);
and using the integral of the entropy budget along the same trajectory (colors). The
trajectory begins and ends at point [2] (the radius of maximum winds). The red dot
indicates the final point of the integrated budget in CTRL, since it differs from the
initial point; gray (left) is CTRL, blue (center) is RELAX, and yellow (right) is DRY.
Temperature decreases upwards and entropy decreases to the right so that the 𝑇 − 𝑠
space is oriented in the same way as 𝑟 − 𝑧 space.

∮︁
𝑠𝑐

1

𝑢𝑙

(𝐷𝑠 +𝑁𝑠 +𝑅𝑠 + 𝜖𝑠 +𝑀𝑠 + 𝐸𝑠)𝑑𝑙. (3.14)

The averages here are performed from day 20 to 100 for both the DRY and the

RELAX case, which are quite steady, and performed from day 15 to 25 for the CTRL

simulation, which is decaying. In both RELAX and DRY, the 𝑠 integral computation

over the whole cycle matches the model simulated values of 𝑠 very well, indicating

that both RELAX and DRY are essentially in ES over the averaging period. In

addition, this indicates that the budget is accurate and quantitatively captures the

contribution of various source terms to the entropy variation along the trajectory. In

CTRL, one can observe two main differences with respect to the steady cases. First,

the budget does not close, which is unsurprising given that the simulation is obviously

decaying and not in an equilibrium steady state. If the tendency terms, averaged over

day 15-25 are integrated over the full trajectory, the result is a much lower entropy

than the starting value. Second, there is a massive decrease in entropy along the

trajectory as the temperature of subsiding air increases. The entropy of the subsiding
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Figure 3-6: RELAX case parcel trajectory along the secondary circulation in 𝑇 − 𝑠
(left) and physical (right) space. The trajectory is color-coded to outline the most
important contributors to the entropy budget. Blue represent turbulence terms, white
represent radiation and microphysics, and yellow represents parameterized moisture
relaxation.

air decreases to much lower values than the initial values of entropy near sea surface,

which once again, points to the lack of a mechanism to regain entropy while the air

subsides.

To gain additional insight into the processes involved in reaching ES, we break

down the entropy budget into its main components. Figure 3-6 shows again an in-

tegrated 𝑇 − 𝑠 cycle for the RELAX simulation, along with the trajectory of the

parcel in physical space. The plot is colored as a function of the three-way rela-

tive magnitude of terms in the entropy budget. Blue for turbulence terms, white

for radiation/relaxation and hydrometeor fallout (which is small), and yellow for pa-

rameterized moisture relaxation. The interpolation of these terms is presented in

the triangular colormap. This shows that segment [1]-[2] is dominated by turbu-

lence, driven by air-sea interaction. Next, segment [2]-[3] is dominated initially by

turbulence and then by radiation. Even though turbulence is the dominant term

in the vertical portion of [2]-[3], it has a small absolute magnitude there. Finally,

segment [3]-[1] is dominated initially by radiation, and then by 𝑞𝑣 relaxation, with

a large counteracting effect from radiation. This quantification of the mechanisms

entering in a hurricane thermodynamic cycle over the timescales of the secondary
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circulation verifies the requirements for a EK57-type TC. The CTRL case, without

𝑞𝑣 relaxation, shows a cycle that does not close because the radiation keeps driving

the entropy to lower values without counteracting effects (not shown). We note that

the secondary circulation in RELAX does not extend far radially compared to other

studies performing long term integrations (e.g., Chavas and Emanuel, 2014; Persing

et al., 2019). One possible explanation is the choice of Newtonian relaxation to a

background sounding rather than more realistic parameterized radiation such as the

Rapid Radiative Transfer Model. Newtonian relaxation does not account for cloud ra-

diative feedbacks (CRFs), and as was shown by Bu et al. (2014), CRFs act to greatly

enhance the radial extent of tropical cyclones. The lack of CRFs in our study, as

opposed to the relatively small domain (compared to these previous studies), might

result in this compact storm. Indeed, there is no evidence that the secondary circu-

lation reaches the outer wall in CTRL and RELAX. We further confirmed that the

domain size does not constrain the radial extend of the CTRL and RELAX storms

by rerunning those simulations for 80 days in 6000 km domains. We could not find

any appreciable difference in the structure and evolution of the CTRL and RELAX

storms in the two different domain sizes (not shown). In addition, other studies using

Newtonian relaxation also obtained similarly compact storms (e.g., Emanuel and Ro-

tunno, 2011; Frisius, 2015) for which the secondary circulation does not impinge on

the outer boundary. We acknowledge that the mid-tropospheric drying reported in

this chapter is likely to be sensitive to radiative and microphysical parameterizations

via their influence on the secondary circulation.

3.3.2 Moisture relaxation timescale sensitivity

CTRL does not have a clear ES, and while RELAX does, it is not very different from

its CS. In order to better understand the difference between CS and ES, and the

evolution from CS to ES, we now turn our attention towards REL1 and REL4, which

have different moisture relaxation timescales than RELAX, and should lead to differ-

ent ES. Figure 3-7 shows timeseries of the maximum velocity for REL1, RELAX and

REL4. From CS onwards, the smaller the 𝜏 , the closer EC becomes to CS. During CS,
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Figure 3-7: Time series of the maximum instantaneous azimuthal velocity for REL1
(black, 𝜏 = 1 day), RELAX (gray, 𝜏 = 2 days) and REL4 (yellow, 𝜏 = 4 days). The
time series are filtered with a Lanczos filter and a cutoff frequency of 1 day. CS, Decay
and ES time intervals are identified for the purpose of comparing thermodynamic
cycles in Fig.3-8.

REL1 is 3 m s−1 more intense than RELAX, and 6 m s−1 more intense than REL4.

The decay is more rapid and lasts longer at large 𝜏 so that the intensity differences

grow until a clear ES is reached for all three simulations. During ES, REL1 is 6 m

s−1 more intense than RELAX, and 25 m s−1 more intense than REL4.

Next, Fig.3-8 shows the thermodynamic cycles of REL1, RELAX and REL4 over

the CS, Decay and ES periods identified in Fig.3-7. Figure 3-8 also shows the ther-

modynamic cycles of CTRL over comparable CS (day 8 to 12) and decay (day 15 to

25) periods, and right before the storm simulation ends (day 70 to 90). Note that

the abscissa in CTRL has the same maximum value as those in the other plots, but

extends to much smaller values. The most obvious difference between the plots is

that, for a given period (CS, Decay or ES), the entropy in the core of the storm is

lower when 𝜏 is larger, and that difference grows as time goes on, until it stabilizes at

ES. The second thing to notice is that the area encompassed by the thermodynamic

diagram itself changes much less for smaller 𝜏 . This shows that CS and ES are not

only very similar in intensity at small 𝜏 , they are also similar in the area within the

𝑇 −𝑠 diagram. At larger 𝜏 , or in the CTRL case, the entropy in the core decreases as
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Figure 3-8: 𝑇 − 𝑠 cycles for CS (pale gray), Decay (gray) and ES (black) for REL1
(top left), RELAX (top right), REL4 (bottom left) and CTRL (bottom right). There
is no ES in CTRL, so a 𝑇 − 𝑠 cycle taken right as the TC simulation ends (days 70
to 90) is plotted instead.

the near surface entropy at large radius decreases. REL4 confirms that quasi-steady

intensity can exist both when the thermodynamic cycle is still far from equilibrium

(CS) and once it has reached equilibrium (ES). Examination of the thermodynamic

cycles of CTRL shows why the storm ultimately dies out. As too little entropy is

regained along the inflow to compensate that lost in the subsidence, 𝑠 decreases in

the core until it drops below the value in the upper troposphere subsidence region.

While the TC streamlines in physical space do not change much in REL1 and RELAX

between CS and ES, they do in REL4 and CTRL, where, over the decay period, the

outflow leg contracts radially from an extent of about 950 km in both cases to about

650 km in REL4 and 400km in CTRL (not shown).
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3.4 Discussion

3.4.1 CS vs ES

These results indicate that the decay in CTRL is due to the combination of the

irreversible precipitation removal in the ascent leg, and the lack of a moistening

mechanism in the subsidence leg. If we either add a rapid moistening mechanism

in the subsidence region (as in RELAX or REL1), remove moisture altogether from

the model (as in the DRY simulation) or prevent precipitation removal (not shown),

the decay mostly disappears. This is further confirmed by the sensitivity of ES to

𝜏 , which we would expect from the argument that drying is driving the decay and

explains the difference between CS and ES. Interestingly, CS is also sensitive to 𝜏 ,

albeit not as much. For example, the RELAX peak (CS) intensity is higher than that

of CTRL by 10 m s−1 while lower than that of REL1 by 3 m s−1. This indicates that

the CS assumption, that the environment does not have time to change before peak

intensity, is not very robust. In CTRL, subsidence drying results in a peak intensity

that is lower, even just 10 days after the beginning of the simulation. There remains

a small decay in RELAX after CS, which can be due to the moisture and tempera-

ture fields slowly reaching equilibrium or to the evolution of the 𝑀 field (discussed

below). In any case, the dominant effect on the decay in CTRL is the drying. The

DRY case is also interesting in that its inflow-ascent-outflow timescale is so similar

to its subsidence timescale that the theoretical difference between CS and ES disap-

pears. And indeed, DRY does not show any sign of decay after reaching peak intensity.

From our results it seems that the definition of ES would be quite difficult to gen-

eralize or to compare with environmental PI theories, that is, PI for a specified and

possibly arbitrary environmental profile. Indeed, while CS is very sensitive to a host

of model parameters like resolution (Hausman, 2001), terminal velocity (Bryan and

Rotunno, 2009c) or mixing length (Rotunno and Bryan, 2012), ES will additionally

be sensitive to any parameter that influences the equilibrium state of the model, like

𝜏 , or any parameterization for the radiation, surface fluxes, turbulence, or convec-
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tion. The foregoing sensitivities would defeat the purpose of using PI to predict the

intensity of a TC based on environmental parameters, and it seems that PI should

be compared to CS. In addition, the intensity is closer to reaching PI (computed

following Bryan and Rotunno, 2009a) during CS than during ES, because PI doesn’t

decrease as much as intensity during the decay (not shown). A possible explanation

for the fact that our CTRL simulation decays until it ends while other simulations

without moisture relaxation do not (e.g., Hakim, 2011; Chavas and Emanuel, 2014) is

the fact that these simulations used radiation parameterizations representing CRFs,

which enhance the radial extent of the cyclone, and entails more time for the air

spiraling inwards to regain entropy. As was shown by the 𝜏 sensitivity experiment, if

the entropy in the core does not decrease as much, a smaller decay should occur.

3.4.2 Angular momentum

Thus far, we have been silent about the evolution of other conserved variables, and

more specifically dynamical variables like 𝑀 . The goal was to demonstrate the role

of moisture before discussing additional possibilities. Previous literature (e.g., Smith

et al., 2014) has argued that the decay of simulated storms is primarily due to the

loss of angular momentum to the sea surface, which causes the angular momentum,

and thus the intensity to decrease at the radius of maximum winds. From the results

obtained in this chapter, it appears that the decrease in angular momentum at the

radius of maximum winds in CTRL, concurrent with the decay, is simply a conse-

quence of the TC failing to produce enough work to draw high angular momentum

air inwards at small radii.

As proposed by Smith et al. (2014), the mass-integrated angular momentum in the

domain initially decreases as a result of the stresses applied by the TC winds on the

lower boundary. However that decrease is small with respect to the domain-integrated

𝑀 . Figure 3-9 shows the domain-integrated 𝑀 as a function of time (full line), and

the initial value of the domain-integrated 𝑀 plus the time-integrated surface sink of

𝑀 along the inflow (dashed line). The two would be equivalent if the only sink or
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Figure 3-9: Domain-integrated 𝑀 as a function of time (solid line) and domain-
integrated 𝑀 at 𝑡 = 0 plus the time-integrated surface momentum sink

(dashed line) for CTRL (gray) and RELAX (blue). The momentum sink is
integrated in time and space in the inner 500 km from the start of the simulation.

source of momentum was along the surface inflow.

Eventually the domain-integrated 𝑀 stops decreasing after about 80 days in the

RELAX case, even as the slope of the momentum sink time-integral remains negative

and linear (implying that the surface sink of 𝑀 remains constant). This leveling-off

of domain-integrated 𝑀 is due to the fact that the anticyclone deepens until it starts

impinging on the stratospheric damping layer, at which point the imposed damping

starts to restore domain-integrated angular momentum by weakening the anticyclone.

In the secondary circulation (which is well below the damping layer), examination of

budget terms for 𝑀 shows that 𝑀 is regained by parameterized mixing with the en-

vironment while air subsides at the largest radius in the storm outflow. There, while

velocities are quite small, the radial derivative of angular velocity is large, which

causes turbulent mixing. This mixing, which occurs mostly over a thin 1 km layer,

around an altitude of 15 km, restores to the secondary circulation essentially all the

angular momentum lost to the sea surface by the circulating air, while slightly de-

creasing angular momentum in the environment.

Figure 3-9 shows that while the variables relevant to TC intensity can be steady after

just 10-20 days, the TC structure can take much longer to equilibrate. The higher

intensity in RELAX explains the larger magnitude of the 𝑀 sink and the smaller

domain-integrated 𝑀 in that case, which further supports the conclusion that in this

study, decay is not caused by a lack of angular momentum. We do not attempt to
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dispute that domain-wide angular momentum changes are important for the model

structure (as evidenced by Chavas and Emanuel, 2014; Smith et al., 2014; Persing

et al., 2019), but rather to point out that they do not seem to be the main drivers of

intensity variations after the spin-up period in these simulations.

3.5 Conclusion

In conclusion, the large decay in TC intensity seen in some very long simulations (e.g.,

Hakim, 2011; Smith et al., 2014) results primarily from a change of the environment

by the TC’s secondary circulation. This decay is ultimately due to the lack of shallow-

to-mid-level convection in axisymmetric models, and the lack of horizontal moisture

fluxes due to the TC translation, which lead to excessive drying and low entropy in

the subsidence region. The TCs do not appear, in this study, to be decaying because

of a lack of angular momentum. The drying occurs on the timescale of the secondary

circulation, of order 40 days.

The entropy decrease in the air that subsides into the boundary layer leads to an

entropy decrease in the core of the storm, as the source of entropy along the inflow

leg is insufficient to compensate the deficit in the subsidence region. This leads to

a decrease in the intensity of the TC, which is sensitive to the magnitude of the

drying in CS and especially in ES. Adding a moisture relaxation term in the subsi-

dence region reduces the decay. If the timescale of the moisture relaxation is small

enough, the difference between ES and CS disappears, both in intensity, and in the

area encompassed by the 𝑇 − 𝑠 cycle. These results suggest a large sensitivity of the

thermodynamic cycle of equilibrium TCs to the model configuration and parameter-

izations.

In general, for theories of potential intensity that just require steady state in the

core, like those of Emanuel (1986) or Bryan and Rotunno (2009a), theories can be

compared with CS, which is much less restrictive than ES, and allows examination
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of the role of the initial environment, with the caveat that the fixed environment

assumption is not very robust on timescales of 10 or more days. However, for theories

like the Carnot Cycle of Emanuel (1988) or EK57, one requires that steady state be

maintained on the timescale of a loop through the secondary circulation, because a

steady state environment is necessary to a closed thermodynamic cycle. Considering

that reaching ES takes longer than the lifetime of most real tropical cyclones, the CS

concept is much more applicable to real storms. Since the effects of the drying affects

peak intensity, just 10 days after the start of the simulations, it would be interesting

to see if such drying limits the intensity of real-life TCs, or if the shallow convec-

tion and continuous translation into new environment are sufficient to counteract the

effects of subsidence as does the moisture relaxation in RELAX.
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Chapter 4

A Weak Temperature Gradient

Framework to Quantify the Causes of

Potential Intensity Variability in the

Tropics

Abstract

Potential intensity (PI) has been shown to have a linear sensitivity to sea surface
temperature (SST) of about 8 m s−1 K−1, which is close to the sensitivity of PI in
simulations subject to a weak temperature gradient (WTG) approximation. This
suggests that most of the PI variance is associated with local rather than global SST
variations. We verify that PI perturbations are approximately linear in SST, with
slopes of 1.8±0.2 m s−1 K−1 in RCE and 9.1±0.9 m s−1 K−1 in WTG. To do so,
we simulate the sensitivity of both RCE and WTG states in a single-column model
(SCM) perturbed by changing in turn 𝐶𝑂2 concentration, aerosols, prescribed SST
and surface winds. While PI is much more sensitive to SST in WTG than in RCE
simulations, the SST itself is much less sensitive to radiative forcing in WTG than
in RCE because of the absence of large atmospheric feedbacks. Using these results,
we develop a linear model based on SST and midlevel saturation MSE perturbations.
This allows one to partition SST and PI perturbations between local components oc-
curring under a WTG constraint and global components that are representative of an
RCE state. The linear model explains up to 95% of the variability of PI in reanaly-
sis. The SCM-derived linear model coefficients are statistically indistinguishable from
coefficients from a linear fit of reanalysis PI to SST and midlevel saturation MSE,
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in most ocean basins. Our model shows that local and global forcings contribute
similarly to basin average SST variations, while PI variations are explained almost
entirely by local forcings.

4.1 Introduction

Potential intensity (PI, Emanuel, 1986, 1988; Bister and Emanuel, 1998; Bryan and

Rotunno, 2009a) is a theoretical bound on the maximum achievable wind speed in

tropical cyclones (TC). PI has been shown to provide fairly accurate bounds on the

maximum wind speed in TCs both in observations (Emanuel, 2000) and in models

(Rousseau-Rizzi and Emanuel, 2019), and can be seen as an indication of how favor-

able the thermodynamic environment is to the maintenance of strong TCs. It is one

of the main predictors of TC activity as represented by the power dissipation index

(PDI, Emanuel, 2007), an indication of the total amount of energy dissipated by all

TCs over a given basin and a given TC season. In other words, PI is an important

predictor of the amount of power dissipated by TCs and thus, of their destructive

potential. For that reason, understanding the causes of past PI variability is useful

to help predict future variability in TC activity.

TC intensity variability is often attributed to sea-surface temperature (SST) vara-

bility, and Vecchi and Soden (2007) showed that PI correlates well with sea-surface

temperature spatial anomalies and that the slope of the linear regression is near 8 m

s−1 K−1. PI can be expressed as

𝑃𝐼2 =
𝐶𝑘

𝐶𝐷

𝑇𝑠 − 𝑇𝑜

𝑇𝑜

(ℎ*
𝑠 − ℎ*

𝑚) (4.1)

(Bister and Emanuel, 1998; Wing et al., 2015) where 𝐶𝑘 and 𝐶𝐷 are the surface

exchange coefficients of entalpy and momentum, 𝑇𝑠 is the sea surface temperature,

𝑇𝑜 is the outflow temperature of the storm, ℎ*
𝑠 is the surface temperature saturation

moist static energy (MSE), and ℎ*
𝑚 is the tropospheric saturation MSE. Here we have
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made use of the fact that, within the assumption of quasi equilibrium (Arakawa and

Schubert, 1974) with a coupled boundary layer, ℎ𝑏 = ℎ*
𝑚, where ℎ𝑏 is the boundary

layer MSE.

PI and SST changes result from global (e.g., Sobel et al., 2019) or from local (e.g.,

Mann and Emanuel, 2006) forcing. Global forcing is generally understood as influenc-

ing the whole tropical region as if it were, on average, in a state of radiative-convective

equilibrium (RCE). In RCE, a positive forcing causes an increase in sea surface tem-

perature and ℎ*
𝑠, which tends to increase PI, and an increase in ℎ*

𝑚, which mitigates

the increase in PI. However, the tropical atmosphere has large Rossby radii of de-

formation, especially at low latitudes. According to the weak temperature gradient

approximation (WTG, Sobel and Bretherton, 2000), this means that ℎ*
𝑚 is almost

horizontally uniform and can only change globally, not regionally. The implication is

that a local forcing that increases SST also increases ℎ*
𝑠 but does not increase ℎ*

𝑚 since

the additional energy supplied to the atmosphere is exported in the form of gravity

waves. In the absence of a change in ℎ*
𝑚, PI is much more sensitive to SST changes

in a column constrained by WTG than to changes in RCE (Ramsay and Sobel, 2011;

Emanuel and Sobel, 2013). Ramsay and Sobel (2011) shows that the sensitivity of

PI to SST in an RCE system with imposed SST is around 1 m s−1 K−1, while in a

WTG-constrained column, it is near 8 m s−1 K−1, which is much larger. The PI-SST

regression coefficient found by Vecchi and Soden (2007) in reanalysis datasets is also

close to 8 m s−1 K−1, which suggests that local forcings and their effects on SST

dominate PI variability worldwide.

For this reason there is particular interest in understanding the forcings responsible

for local SST variability. Here, we will be focusing on SST as a proxy for PI variability

because SST variability is well measured and studied. In the tropical North-Atlantic

(TNA), SST multidecadal variability and the concurrent effects on PI have been at-

tributed to a variety of causes such as the Atlantic Multidecadal Oscillation (AMO,

Zhang and Delworth, 2006), sulfate aerosol forcing (Mann and Emanuel, 2006; Booth
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et al., 2012; Dunstone et al., 2013), Saharan dust forcing (Strong et al., 2015, 2018),

and surface wind and cloud feedbacks (e.g., Evan et al., 2011, 2016). Some of these

explanations such as dust and cloud feedbacks are complementary and some, like the

AMO and anthropogenic aerosols, are competing. Hence there exist multiple possible

mechanisms that can act to set the SST in the TNA and that could help explain

hurricane activity variability. Notably, the “hurricane drought" (decreased hurricane

activity) of the 1970s and 1980s, has resisted a single explanation (e.g., Villarini and

Vecchi, 2013). In this chapter we attempt to introduce a linear framework that can

be used to compare and contrast these influences on SST and PI, using a well known

strong constraint on tropical thermodynamics; WTG.

4.1.1 Objectives

In this chapter, we aim to:

1) Show that PI perturbations are approximately linear in SST, with different slopes

in WTG and RCE.

2) Show that SST perturbations can be partitioned between local and and global

components which allows one to partition PI variations as well.

3) Evaluate the local and global contributions to PI in the MDR and in other basins.

First, section 4.2 discusses the theoretical sensitivity of PI to SST in RCE and WTG,

then section 4.3 describes the SCM setup and the data and reanalyses used in the

chapter and section 4.4 describes and explains the results of the sensitivity experi-

ments. Next, section 4.5 introduces the linear model for PI and obtains its coefficients,

and section 4.6 applies the model to reanalysis products. Finally, section 4.7 discusses

the results and section 4.8 summarizes and concludes.
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4.2 Analytical estimates

Analytical estimates for PI sensitivity can be obtained fairly easily for WTG-constrained

columns. In such a system, the free troposphere is constrained to a constant value of

ℎ*, a thermodynamic variable, but it is not an energetically closed system. In RCE,

the main constraint in the free troposphere is that of energy balance, which is much

more complex as it relates to equilibrium climate sensitivity (ECS). For that reason,

it is easiest to approach PI sensitivity in WTG from thermodynamic forms of the PI

equation, and PI sensitivity in RCE from energy balance forms of the PI equation

(e.g., Emanuel, 2007).

4.2.1 WTG PI sensitivity

We start by taking the derivative of the log of PI equation (1) with respect to 𝑇𝑠,

along with the assumption that the outflow temperature is independent of the sea

surface temperature (𝑑𝑇𝑜/𝑑𝑇𝑠 = 0).

2

𝑃𝐼

𝑑𝑃𝐼

𝑑𝑇𝑠

=
1

𝑇𝑠 − 𝑇𝑜

+
1

(ℎ*
𝑠 − ℎ*

𝑚)

(︁𝑑ℎ*
𝑠

𝑑𝑇𝑠

− 𝑑ℎ*
𝑚

𝑑𝑇𝑠

)︁
, (4.2)

where subscript 𝑠 denotes the surface and 𝑚 denotes any point in the free tropo-

sphere. We write saturation MSE in the dilute limit

ℎ* = 𝑐𝑝𝑑𝑇 + 𝐿𝑣𝑟
* + Φ, (4.3)

where 𝑐𝑝𝑑 is the heat capacity of dry air at constant pressure, 𝐿𝑣 is the latent

heat of evaporation, 𝑟* is the water vapor saturation mixing ratio, and Φ is the

geopotential. Since 𝑟* is a function of 𝑇 and dry air pressure 𝑝𝑑, ℎ* is a function of

𝑇 , 𝑝𝑑 and Φ, and we have

𝑑ℎ*

𝑑𝑇𝑠

=
𝜕ℎ*

𝜕𝑇

𝑑𝑇

𝑑𝑇𝑠

+
𝜕ℎ*

𝜕𝑝𝑑

𝑑𝑝𝑑
𝑑𝑇𝑠

+
𝜕ℎ*

𝜕𝑝𝑑

𝑑Φ

𝑑𝑇𝑠

. (4.4)

Neglecting the sensitivity of latent heat to temperature and using the equation of

Clausius-Clapeyron, we have, within a few percent,
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𝜕ℎ*

𝜕𝑇
≈ 𝑐𝑝𝑑 +

𝐿2
𝑣𝑟

*

𝑅𝑣𝑇 2
, (4.5)

where 𝑅𝑣 is the ideal gas constant for water vapor. At the surface, 𝑑𝑇𝑠/𝑑𝑇𝑠 = 1,

and the geopotential is constant. We also neglect the contribution of surface 𝑝𝑑

changes to saturation MSE changes so that

𝜕ℎ*

𝜕𝑝𝑑

𝑑𝑝𝑑
𝑑𝑇𝑠

≈ 0. (4.6)

In addition, if we neglect virtual effects, the WTG approximation implies that ℎ*
𝑚

does not change in response to local SST changes. Hence, we can write

𝑑ℎ*
ℎ

𝑑𝑇𝑠

≈ 𝜕ℎ*

𝜕𝑇

⃒⃒⃒⃒
𝑠

,
𝑑ℎ*

𝑚

𝑑𝑇𝑠

≈ 0, (4.7)

and finally

𝑑𝑃𝐼

𝑑𝑇𝑠

≈ 𝑃𝐼

2

[︂
1

𝑇𝑠 − 𝑇𝑜

+
1

(ℎ*
𝑠 − ℎ*

𝑚)

[︁
𝑐𝑝𝑑 +

𝐿2
𝑣𝑟

*

𝑅𝑣𝑇 2
𝑠

]︁]︂
(4.8)

This allows one to estimate the sensitivity of PI to SST in a column in quasi-

equilibrium and under a WTG constraint. For typical values, it yields a sensitivity

of about 10.5 m s−1 K−1, which is somewhat higher than reported in the literature.

Since the derivation relies only on QE and WTG assumptions, and the result depends

only on thermodynamic variables, a departure between the PI sensitivity estimated

from the thermodynamic state using Eq.4.8, and observed or modelled sensitivity,

must arise from a violation of either QE or WTG assumptions. Next, we consider the

RCE problem, which is a tad more complicated.

4.2.2 RCE PI sensitivity

In RCE, PI sensitivity is best approached from an energy balance standpoint (Emanuel,

2007). Assuming surface energy balance we can start with
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𝑃𝐼2 =
𝑇𝑠 − 𝑇𝑜

𝑇𝑜

𝐹𝑠 +𝑄𝑜𝑐

𝜌𝑑𝐶𝐷|𝑉𝑠|
,

where 𝐹𝑠 is the net radiative flux at the surface, 𝑄𝑜𝑐 is the vertically integrated

ocean heat flux convergence and |𝑉𝑠| is the magnitude of the environmental surface

wind speed. In a climate change scenario, the response of all of the terms in this

equation needs to be considered, as a change in global radiative forcing will likely

affect the surface wind speed and the ocean heat flux convergence as well as the net

surface radiative flux. The complexity of the problem is that of the climate sensitivity

of the tropics. In equilibrium, we can write

𝐹𝑎𝑡𝑚 +𝑄𝑎𝑡𝑚 = 𝐹𝑠 +𝑄𝑜𝑐

where 𝐹𝑎𝑡𝑚 is the net radiative heat flux integrated over the whole atmosphere and

𝑄𝑎𝑡𝑚 is the net dynamical heat flux convergence integrated over the atmosphere. Any

study attempting to assess the full impact of a global forcing on PI would need to take

into account changes in the large scale circulation. Here, we focus on the narrower

topic of column RCE where the wind speed is imposed and there is no atmospheric

heat export. Then, when SST is determined by energy balance, 𝑄𝑜𝑐 = 0, and when

SST is imposed, 𝑄𝑜𝑐 is implied.

In single-column RCE, with 𝑄𝑜𝑐 = 0, we can think about the sensitivity of net

surface radiative flux in terms of net atmopsheric cooling, which is a function of the

atmosphere radiative properties. Hence neglecting changes in near surface density

and winds, we have

2

𝑃𝐼

𝑑𝑃𝐼

𝑑𝑇𝑠

=
1

𝑇𝑠 − 𝑇𝑜

+
1

𝐹𝑎𝑡𝑚

𝑑𝐹𝑎𝑡𝑚

𝑑𝑇𝑠

.

That is, the climate sensitivity of the turbulent enthalpy flux, at the surface is

equal to that of the net column-integrated radiative cooling of the atmosphere, 𝐹𝑎𝑡𝑚.

Obtaining an analytical estimate for 𝑑𝐹𝑎𝑡𝑚/𝑑𝑇𝑠 is beyond the scope of this chapter

but, using a combination of theory and modelling, Jeevanjee and Romps (2018) show

87



that

1

𝐹𝑎𝑡𝑚

𝑑𝐹𝑎𝑡𝑚

𝑑𝑇𝑠

≈ 3% 𝐾−1.

If we then take surface wind speed, exchange coefficients and density to be fixed

and we substitute this in the formula for PI along with 𝑇𝑜 = 200 K, 𝑇𝑠 = 300 K and

𝑃𝐼 = 75 m s−1, we get

𝑑𝑃𝐼

𝑑𝑇𝑠

≈ 1.5 𝑚𝑠−1𝐾−1,

which is very close to the simulation estimate of Ramsay and Sobel (2011). In-

terestingly, 1/4th of the total PI sensitivity comes from that of the thermodynamic

efficiency.

4.3 Methodology

Next we obtain the sensitivity of PI to SST in simulations. We use the MIT single-

column model (Bony and Emanuel, 2001), which uses the convection parameteriza-

tion of Emanuel and Živković-Rothman (1999) and the radiation parameterizations

of Fouquart et al. (1980) and Morcrette (1991). The simulations use fixed vertical

profiles of cloud fraction because allowing the cloud fraction to evolve adds a lot of

noise to the sensitivity experiment results. Water vapor and its effects on radiation

are allowed to evolve. The ocean is a 2 m deep slab ocean, to allow for sea surface

temperature to vary and to maintain energy balance in RCE, except for the pre-

scribed SST simulations. The small depth of the ocean allows the system to reach

equilibrium faster. In this chapter we are not concerned with the timescales of the

evolution towards equilibrium.

We run four series of experiments in RCE and three series under the WTG con-

straint. We test the sensitivity of the RCE state to CO2 concentration, and we test

both the sensitivity of RCE columns and of WTG-constrained columns to dust aerosol
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direct effect, to prescribed SST variations, and to near surface wind variations. CO2

is varied from 200 to 800 ppm, dust aerosol optical depth (AOD) is varied from 0

to 1, imposed SST is varied from 28.6 to 32.6 K and surface wind speed is varied

from 3 to 14 m s−1. The effect of imposing SST can be likened to imposing some

value of column-integrated ocean heat flux convergence. The variety of sensitivity

experiments aims to confirm that the choice of dynamical constraint (either RCE or

WTG) has a more important influence on the PI-SST relation than does the precise

cause of the system perturbation. These experiments are very similar to those of

Emanuel and Sobel (2013) who perturbed 𝐶𝑂2, SST, surface winds and the solar

constant in RCE and WTG simulations. The main difference between our choice of

experiments and theirs is that where they modified the solar constant, we perturbed

dust aerosol concentrations. Since dust is a fairly absorptive aerosol, it acts to heat

the atmosphere as it cools the surface.

All simulations are perturbed with respect to a control case which we try to choose

as representative of the mean state over the TNA main development region (MDR)

during the August-September-October hurricane season (ASO). In RCE sensitivity

experiments, the chosen control case broadly defines the center of the parameter space

to be explored and all simulations are independent from one another. In the WTG-

constrained column however, the control case also determines the virtual temperature

profile above the 850 hPa level based upon which the WTG vertical velocities will be

computed. In reanalysis (NOAA 20CR), the mean near surface wind speed during

ASO in the MDR is 4.8 m/s, so we take our control case to have a near surface wind

speed of 5 m/s. We’ll use an dust optical thickness of 0.3 as the ASO MDR-averaged

baseline based on Evan and Mukhopadhyay (2010). The control case has 360 ppm

CO2, which is representative of the near past.

In our simulations and in reanalysis data, PI is computed using a nonlinear itera-

tive algorithm developed by Bister and Emanuel (2002), which takes as an input sea

surface temperature and vertical profiles of pressure, temperature, and mixing ratio.
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Figure 4-1: Sensitivity of PI (top row) and SST (bottom row) to changes in: 𝐶𝑂2

concentration (black), aerosol optical depth (blue), imposed SST (red) and near-
surface wind speed (gray). All plots superimpose the RCE experiments (full line) to
the WTG experiment (dashed line), except for the 𝐶𝑂2 experiment, which is only
performed in RCE.

In cases where the boundary layer decouples from the free troposphere, PI can be

multi-valued. For example, an existing storm translating into such an environment

could be sustained and strong (upper PI value), but a new storm could likely not

develop (lower PI value) in this environment. When computing PI in simulations, we

purposely select the lowest of the possible PI values in the few cases where the BL

is decoupled because it is more appropriate to the development of our linear model.

Situations where decoupling affects the results will be discussed.

4.4 Sensitivity experiment results

Figure 4-1 introduces the results of the sensitivity experiments. Each point in the

figure represents either PI or 𝑇𝑠 at equilibrium in one simulation, plotted against the

corresponding perturbed parameter.
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4.4.1 𝐶𝑂2 sensitivity

In the 𝐶𝑂2 panels, we can see PI levelling off as temperature increases. This is partly

due to the effect of high 𝐶𝑂2 concentrations where the net infrared flux to the surface

stops increasing with temperature which causes the PI profile to flatten even though

SST keeps increasing (e.g., O’Gorman and Schneider, 2008). In addition, the fixed

cloud profile used in the simulations increases stability near the outflow of the TCs,

which prevents PI from increasing further. In our simulations, a doubling of 𝐶𝑂2 is

associated with an SST change of 1.5 to 2 K, which is on the low end of the response

expected from the Earth’s climate.

4.4.2 Imposed SST sensitivity

In the next experiment, SST is imposed, which is why the SST plot has a unique

slope of 1. The values are the same for both RCE and WTG. The PI-SST relationship

conforms reasonably well with the literature, with a slope of about 1.6 m s−1 K−1

in the RCE experiment, and a slope of about 9 m s−1 K−1 in the WTG experiment.

The RCE slope is very similar to the 1.4 m s−1 K−1 slope of (Ramsay and Sobel,

2011) and small modelling differences, such as control simulation background wind

can easily account for the difference. The WTG slope is somewhat higher than the

7.6 m s−1 K−1 introduced by (Ramsay and Sobel, 2011) which may be due to the

fact that in our simulations, the boundary layer decouples from the free troposphere

at low temperatures, which causes a slightly sharper decrease in PI. These plots do

not provide much new insight, but confirm that the simulations are not very different

from results from the literature.

4.4.3 Aerosol sensitivity

Now looking at the sensitivity of SST to aerosol optical thickness variations, we notice

that the slope of SST in WTG is much smaller than that in RCE (-1 K per unit AOD

by comparison to -8 K). We surmise that this is due to the atmospheric heat transport

by gravity waves implied by the WTG parameterization, which prevents any strong
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feedback between the atmosphere and the ocean and makes SST less sensitive to

aerosol forcing. An interesting consequence of this difference in SST sensitivities to

aerosol forcing is that the PI sensitivity to aerosol forcing in RCE is larger than

that in WTG, even though the PI-SST slope is much steeper in WTG (as will be

seen in Fig.4-2). Interestingly, this suggests that the reason why PI variability is

dominated by local variability is that the local variability of forcings (like ocean heat

flux convergence or aerosol forcing) is much larger than the global variability, and not

because PI is intrinsically more sensitive to a given forcing in WTG than in RCE (if

anything, it is less sensitive).

4.4.4 Wind sensitivity

The wind sensitivity experiments test wind speed variations from 3 [m s−1] to 14 [m

s−1] in unit increments. Contrarily to other parameters which produce very different

responses in RCE and in WTG, the results of the wind sensitivity experiments are

similar in both cases. Not only are both SST-|𝑉 | relations similar, the PI-|𝑉 | relations

are as well, and both cases have PI-SST slopes close to 9 m s−1 K−1. One way to

understand this similarity is that, in RCE, if we neglect the change in longwave radia-

tion emitted by the surface and assume a constant bowen ratio, then the atmospheric

properties remain identical as surface wind speeds change, and the ocean temper-

ature adjusts to keep the turbulent heat flux constant. This lack of tropospheric

temperature change is very similar to what would happen in a WTG scenario, and

correspondingly, surface wind perturbations in WTG do not cause large compensat-

ing vertical velocities. In other words, under the assumptions mentioned above, both

cases are equivalent.

4.5 Linear PI model

The idea we are pursuing here is to partition annual to multidecadal potential inten-

sity variations between global perturbations to the state of the tropical atmosphere,

approximated to be in RCE, and local perturbations to that RCE state, approxi-
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Figure 4-2: Plot of 𝛿𝑃𝐼 against 𝛿𝑇 for 𝐶𝑂2 (black), dust aerosol (blue), SST (red) and
surface wind (gray) sensitivity experiments in RCE (circles), and in WTG (squares).
Linear fit for the 𝛿𝑃𝐼 − 𝛿𝑇 relations in RCE (black) and in WTG (gray).

mated to occurs under a WTG constraint. To achieve this goal, we start by showing

that changes of PI in both RCE and WTG can reasonably be assumed to vary lin-

early with SST within the domain of observed SST variation. Hereafter, we write

𝑃𝐼 = 𝑃𝐼0 + 𝛿𝑃𝐼 and 𝑇 = 𝑇0 + 𝛿𝑇 , where 𝑃𝐼0 and 𝑇0 are climatological mean values

in a given basin, and 𝛿𝑃𝐼 and 𝛿𝑇 are departures from that mean.

Figure 4-2 shows the change of PI for a given change in SST, with respect to a

reference state and for all sensitivity experiments. The domain of the simulations

plotted is restricted to ±2 K to outline realistic variations with respect to the control

case. As can see, all the experiments fall more or less along two distinct linear slopes

(especially near the origin). The shallower slope (1.8 [m s−1 K−1]) is a regression of

𝛿𝑃𝐼 on 𝛿𝑇 for all experiments in RCE, except the wind. The steeper slope (9.0 [m

s−1 K−1]) is a similar regression for the aerosol, SST, and wind experiments in WTG.

The wind experiment was excluded from the RCE case because it behaves similarly

to the WTG case, and that remote wind changes should not impact PI much, by

comparison to remote SST or radiative forcing changes. The relation between 𝛿𝑃𝐼

and 𝛿𝑇 for imposed SST in WTG does not look as linear, because a decrease in

93



Figure 4-3: Same RCE simulations and colors as in Fig.1, but in 𝛿𝑆𝑆𝑇 − 𝛿ℎ*
𝑚 space.

SST from the control case leads to the uncoupling of the boundary layer from the

troposphere. Those regression slopes are similar to, if somewhat larger than, the re-

analysis PI sensitivity (Vecchi and Soden, 2007) or other modeled relations (Ramsay

and Sobel, 2011). To compute the regression, we have selected a similar number of

simulations for each sensitivity experiment included, roughly equally spaced to span

the 𝛿𝑇 domain. We note that, as reported in the literature (e.g., Sobel et al., 2019),

there are differences in the PI-SST relations between experiments in RCE. For ex-

ample, RCE PI is more sensitive to SST under an aerosol forcing than under a CO2

forcing. However, this is not a problem for our model since the difference between

the RCE and WTG cases is much larger.

This suggests that we can express PI as two linear functions: one for WTG and

the other for RCE perturbations. To achieve this, we need to partition observed SST

perturbations between their RCE and WTG components. To do so, we consider the

fact that because of the WTG constraint, any large change to the mid-tropospheric

saturation MSE (𝛿ℎ*
𝑚) must be due to changes in the RCE state. To simplify the

problem, we seek a unique function relating 𝛿ℎ*
𝑚 to 𝛿𝑇𝑅𝐶𝐸.

Figure 4-3 shows the RCE sensitivity experiments introduced earlier, plotted in
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𝛿𝑇−𝛿ℎ*
𝑚 space. The WTG simulations are omitted as ℎ*

𝑚 doesn’t change with SST in

WTG. Second we note that most RCE simulations fall on a single profile that is quite

linear over the plotted domain. That profile does not vary much between sensitivity

experiments. The regression coefficient for 𝛿𝑃𝐼 and 𝛿𝑇 for all RCE experiments but

the wind is about 2.28 × 10−4 kg K J−1. Finally, we note that ℎ*
𝑚 changes non-

monotonically with SST in the RCE-wind sensitivity experiment. This is due to the

model transitioning between two stable configurations and is a consequence of using

a single column model. We circumvent that issue by considering that local changes in

winds are much larger than tropics-wide changes (which is supported by reanalysis)

and by neglecting the wind contribution to RCE changes altogether. This leaves us

with two linear slopes for the 𝛿𝑃𝐼 − 𝛿𝑇 relation in RCE and WTG and one for the

𝛿𝑇 − 𝛿ℎ*
𝑚 relation in RCE.

4.5.1 A linear model informed by theory and the a single-

column model

To develop a linear model for 𝛿PI as a function of 𝛿T and 𝛿ℎ*
𝑚, we first partition 𝛿T,

the total SST change, between SST changes in RCE, and a perturbation with respect

to the RCE state. We pose

𝛿𝑇 = 𝛿𝑇𝑅 + 𝛿𝑇𝑊 , (4.9)

where 𝛿𝑇𝑅 is the SST change in RCE, and the 𝛿𝑇𝑊 is the remainder of the total

SST change. Then, 𝛿𝑇𝑅 can be related to 𝛿ℎ*
𝑚 by posing

𝛿𝑇𝑅 = 𝐶𝑚𝛿ℎ
*
𝑚, (4.10)

where 𝑚 refers to the mid-troposphere and from Fig.4-3, we have 𝐶𝑚 = 2.28×10−4

kg K J−1 is a constant. Defined in that way, the PI sensitivity to 𝛿𝑇𝑅 should be the

PI sensitivity to SST in RCE. The remainder 𝛿𝑇𝑊 , which is given by
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𝛿𝑇𝑊 = 𝛿𝑇 − 𝐶𝑚𝛿ℎ
*
𝑚, (4.11)

is not associated with any change in ℎ*
𝑚 and will control PI as if in WTG, hence

the subscript 𝑊 . Adding in the linear coefficients for PI sensitivity in RCE and WTG

from Fig.4-2, we introduce the fundamental partition we want to make:

𝛿𝑃𝐼 = 𝐶𝑅𝛿𝑇𝑅 + 𝐶𝑊 𝛿𝑇𝑊 , (4.12)

where 𝐶𝑅 =1.8 m s−1 K−1 and 𝐶𝑊 =9.0 m s−1 K−1. The quantity 𝛿𝑇 can be

readily retrieved from models or observations. The quantity 𝛿ℎ*
𝑚 is mostly a function

of temperature on a given pressure level (and to a small extent, of moisture), and can

also be retrieved from reanalysis products. Combining the equations, we obtain

𝛿𝑃𝐼 = 𝐶𝑅𝐶𝑚𝛿ℎ
*
𝑚 + 𝐶𝑊 (𝛿𝑇 − 𝐶𝑚𝛿ℎ

*
𝑚), (4.13)

where the first term on the RHS is the contribution to PI changes from changes to

the RCE state, and the second term is the contribution from changes in the WTG

state. Rearranging to combine the predictors we get

𝛿𝑃𝐼 = 𝐶𝑚(𝐶𝑅 − 𝐶𝑊 )𝛿ℎ*
𝑚 + 𝐶𝑊 𝛿𝑇. (4.14)

Here the physical interpretation of the two terms changes to provide further insight.

Since 𝐶𝑊 > 𝐶𝑅 and 𝐶𝑚 > 0, we can see that the coefficient of the first term is

negative, which reflects the fact that a positive 𝛿ℎ*
𝑚, in the absence of a compensating

increase in SST, will cause a decrease in PI. Conversely, the second coefficient is the

large positive increase in PI that occurs when SST increases locally, while the mid-

troposphere remains fixed. The coefficients for this form of the equation can be

obtained from both the SCM and from a linear fit based on reanalysis data, and

compared to verify the model.
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Figure 4-4: Evolution of PI towards RCE in a fixed SST single-column simulation,
when SST is perturbed by -2 K. Timeseries of algorithm PI (black) and linear model
PI (gray) and the equilibrium (red) and transient (blue) components of linear model
PI. The red and the blue lines correspond respectively to the first and second terms
on the RHS of Eq.4.12.

4.5.2 Unsteadiness

We note that the component of SST or PI we called "WTG" is for now just a compo-

nent that departs from the RCE state and does not entail that the SST perturbation

is local in space. This will have to be verified using reanalysis data. Consider the

application of the linear model to the time-dependent evolution of single-column sim-

ulation towards RCE. If our linear model is correct, we should be able to reproduce

PI variations based only on the departure of 𝛿𝑇 and 𝛿ℎ*
𝑚 from the initial conditions.

For example, let’s consider the evolution of the fixed SST simulation where SST is

perturbed by -2 K. Initially, as shown by Fig.4-4, we have 𝛿𝑃𝐼 = 𝐶𝑊 𝛿𝑇𝑊 and the

PI perturbation does not reflect any RCE change. For this plot, we have arbitrarily

taken 𝐶𝑊 = 7.5 m s−1 K−1 for best results. Our only goal here is to show that PI

can be represented at each point in the evolution by a linear model. As time goes on,

the RCE component increases and the transient component decreases. At the end,

as the system has reached RCE, 𝛿𝑃𝐼 = 𝐶𝑅𝛿𝑇𝑅, and there is no more departure from

RCE.

In between the initial time and equilibrium, 𝛿𝑇𝑅 increases and 𝛿𝑇𝑊 decreases,

and if we substitute both time dependent values in Eq.4.12, we can reproduce the

evolution of PI as captured by the Bister and Emanuel (2002) algorithm.
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This means that a linear model can’t, on it’s own, distinguish between WTG pertur-

bations and transience, but it can identify the part of SST variations that is coherent

with an RCE state. To show that the remainder of SST variations corresponds to a

state in WTG, we need to apply the linear model to reanalysis data, and show that

the use of a tropical average value of 𝛿ℎ*
𝑚 is sufficient to capture PI variations.

4.6 Application to reanalysis products

To verify that the linear model captures PI variations, we apply it to ERA5 reanal-

ysis (Hersbach et al., 2020) monthly-averaged data. The resulting linear model PI

(LPI) variations are then compared to a reference PI dataset computed using ERA5

data and pyPI (Gilford, 2020), a Python package for the nonlinear iterative algorithm

developed by Bister and Emanuel (2002). The PI dataset was graciously provided

by Daniel Gilford. In this dataset, which is most appropriate for the study of the

maintenance of TCs, the highest value of PI is selected when a decoupled BL results

in a multi-valued PI. As we will show, this causes linear PI variability to be under-

estimated in ocean basins where decoupling occurs frequently. To compute LPI for

each basin, the saturation MSE predictor 𝛿ℎ*
𝑚, which is assumed to be uniform over

the tropics, is averaged from -20 to 20 N and from -180 to 180 E, and the sea-surface

temperature predictor 𝛿𝑇 is averaged over each tropical ocean basin separately. The

averaging of PI and SST excludes land in all basins. As shown in Fig.4-5, we define

five ocean basins in total; the North-Atlantic (NA), eastern North-Pacific (EP), west-

ern North-Pacific (WP), northern Indian Ocean (IO), and a single large basin for the

southern hemisphere (SH), in the Pacific. To make sure that the quantities computed

are relevant to TC activity, PI variations are computed from predictors averaged over

the tropical storm season of each basin respectively. Table 4.1 summarizes the basin

and season definitions.

98



Basin Latitudinal
extent

Longitudinal
extent

averaging season

NA 6 to 18 N -60 to -20 W Aug-Oct
EP 5 to 15 N -170 to -90 W Jun-Sept
WP 5 to 15 N 130 to 180 E Jul-Nov
IO 5 to 20 N 50 to 110 E Apr-Nov
SH -18 to -5 S 60 to 180 E Jan-May

Table 4.1: Basin definitions in terms of latitudinal extent, longitudinal extent, and
tropical storms season.

We then apply the linear model to the spatially and seasonally averaged predictors

to compute one value of PI per basin per year. In the reference PI dataset, graciously

provided by Daniel Gilford, pyPI is applied to ERA5 monthly-averaged SST and ver-

tical profiles of 𝑝, 𝑇 and 𝑟 at each latitude-longitude point. The PI dataset is also

averaged over each basin and over the corresponding tropical storm season. A com-

parison between LPI and the algorithm PI allows one to evaluate the linear model,

but to ensure that our SCM-derived coefficients are valid, we also compute a linear

fit of the algorithm PI to our two LPI predictors, 𝛿𝑇 and 𝛿ℎ*
𝑚. This is equivalent to

employing Eq.4.14, with the coefficients of both predictors determined statistically

rather than numerically. To sum up we are left with three ways to compute potential

intensity: 1) LPI, 2) algorithm PI and 3) linear fit PI.

Figure 4-6a) shows that, in the tropical North-Atlantic main development region

(MDR), LPI captures very well the variations of the algorithm PI (𝑅 = 0.97) and is

almost indistinguishable from the linear fit PI. This shows that 𝛿𝑇𝑠 and 𝛿ℎ*
𝑚 are a

good choice of predictors, and also that the SCM-derived coefficients are very close to

the linear fit coefficients (as we will see later). This suggest that we can interpret past

PI variations in light of the SCM-derived coefficients, which provide physical meaning.

In Fig. 4-6b), we have used Eqs. 4.10 and 4.11 to partition the variations of SST

99



Figure 4-5: Tropical ocean basins for PI analysis plotted over a map of average PI in
ERA5 reanalysis from 1979 to 2018. SST is averaged seasonnaly and over each basin:
North-Atlantice (NA, blue), East Pacific (EP, green), West Pacific (WP, red), Indian
Oceam (IO, yellow), and a large basin for the Southern Hemisphere (SH, magenta).
Midlevel saturation MSE is averaged over the area enclosed by the two black dashed
lines.

into WTG and RCE contributions in the MDR. We can see that while the variations

of 𝛿𝑇𝑅 have been smaller than those of 𝛿𝑇𝑊 over the last 40 years, the magnitudes

are comparable. 𝛿𝑇𝑅 exhibits a positive trend in time which is likely due to global

warming. The detrended variability in 𝛿𝑇𝑅 correlates well with the Nino3.4 index

(not shown) because large-scale ocean heat flux has an important influence on the

global atmosphere. Determining the causes of 𝛿𝑇𝑊 , or 𝛿𝑃𝐼𝑊 , variability exceeds the

scope of the present chapter and will be the topic of subsequent research. Causes

can include aerosol radiative forcings, wind induced surface heat exchange and ocean

circulations like the Atlantic Meridional Overturning Circulation.

Finally, in Fig. 4-6c) we look at the partition of PI variations into global (𝛿𝑃𝐼𝑅)

and local (𝛿𝑃𝐼𝑊 ) contributions. Clearly, in the MDR, the global contribution to PI

variations is negligible compared to the local contribution, in the last 40 years. How-

ever, even though 𝛿𝑃𝐼𝑅 is small, we still need to know 𝛿𝑇𝑅, in order to be able to

estimate 𝛿𝑇𝑊 and have an accurate estimate of 𝛿𝑃𝐼𝑊 , which dominates the variabil-
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ity. Note that the fact that global effects on PI are small in the Atlantic MDR does

not mean that they are small polewards of the tropics.

4.6.1 Other basins

Figure 4-8 shows the coefficient of determination (𝑅2) of the linear model in all ocean

basins, and as we can see, LPI reproduces algorithm PI well in all basins. The basin

with the smallest 𝑅2 is the Eastern North Pacific with 80% of the interannual PI

variance captured by LPI. The maximum variance explained by the model is 95%, in

the North-Atlantic. It is not surprising that the linear model works best in the North-

Atlantic MDR since the simulations from which the model coefficients are derived vary

around a control simulation designed to resemble the conditions over that basin.

To illustrate the relative roles of global and local influences, Fig. 4-9 shows the

partition of SST between local and global contributions, in the four additional basins.

Since the global contribution to SST depends only on 𝛿ℎ*
𝑚, which is averaged over

the whole tropics and is common to all basins, the only difference between the 𝛿𝑇𝑅

timeseries across different basins is just the averaging season. If two basins had the

same TC season, they would have the same 𝛿𝑇𝑅 every year. In basins that have much

smaller SST variability than the NA, like the IO or the SH, the local contribution to

SST changes 𝛿𝑇𝑊 is smaller than 𝛿𝑇𝑅. In the SH basin 𝛿𝑇𝑅 very clearly shows El

Nino events, notably in 1983, 1998, 2010 and 2016, because the averaging includes

the months of January and February, during which the events tend to reach peak

magnitude. We have not included a figure showing the partition between 𝛿𝑃𝐼𝑅 and

𝛿𝑃𝐼𝑊 for all basins because the information can be retrieved by multiplying 𝛿𝑇𝑅 by

𝐶𝑅 = 1.8 m s−1 K−1 and 𝛿𝑇𝑊 by 𝐶𝑊 = 9.0 m s−1 K−1. The timeseries of 𝛿𝑃𝐼𝑅

is similar across all basins and is everywhere smaller than 𝛿𝑃𝐼𝑊 with the difference

being largest in basins with large SST variability like the ENP.
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Figure 4-6: (a) Timeseries computed over the MDR and ASO of “true" algorithm
𝛿PI (black), of 𝛿PI estimated using the SCM-derived linear model (blue) and of 𝛿PI
estimated using an in-sample linear fit on 𝛿𝑇 and 𝛿ℎ*

𝑚 (gray). (b) Timeseries of SST
change (𝛿T) over the MDR and averaged over hurricane season partitioned between
its RCE (red) and WTG (blue) components. (c) Partition of 𝛿PI averaged over the
MDR and ASO, between its RCE (red) and WTG (blue) components.
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Figure 4-7: Timeseries computed over each basin of “true" algorithm 𝛿PI (black),
of 𝛿PI estimated using the SCM-derived linear model (colors) and of 𝛿PI estimated
using an in-sample linear fit on 𝛿𝑇 and 𝛿ℎ*

𝑚 (gray) for (a) the Eastern North Pacific,
(b) the Western North Pacific, (c) the Northern Indian Ocean and (d) the Southern
Hemisphere basin. The colors of LPI plots over each basin correspond to those used
in Fig.4-5
.

4.6.2 Reanalysis coefficients

So far we have shown that LPI correlates well with algorithm PI across all basins.

Next, we want to show that the coefficients derived from the SCM simulations have

a physical meaning that can be used to interpret PI variations in reanalysis data. To

do so, we obtain linear fit coefficients by regressing PI on 𝛿𝑇 and 𝛿ℎ*
𝑚 in ERA5. This

yields a formula of the form 𝛿𝑃𝐼 = 𝐶1𝛿𝑇 +𝐶2𝛿ℎ
*
𝑚. This linear fit PI is plotted in gray

in Fig.4-6a) and unsurprisingly also captures PI variation very well. Comparison of

the linear fit with Eq.4.14 yields that, if the SCM model assumptions are valid, then

𝐶1 = 𝐶𝑊 and 𝐶2 = 𝐶𝑚(𝐶𝑅 − 𝐶𝑊 ). Figure 4-10a) shows coefficient 𝐶𝑊 derived from

SCM simulations (same as in Fig.4-2) along with coefficient 𝐶1 = 𝐶𝑊 for each ocean

basin, in black. The coefficients are plotted with 95% confidence intervals. This shows

that, except for EP, the coefficients from all ocean basins are indistinguishable from

the SCM-derived coefficient. The reason why EP has a different coefficient will be ex-
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Figure 4-8: Coefficient of determination between algorithm PI and LPI (black bars)
and between algorithm PI and SST (gray bars) for each basin.

plained below. The red "x" denotes an analytical estimate for coefficient 𝐶𝑊 , obtained

from the control simulation and Eq.4.8 and is just slightly higher than the model-

based estimate. Figure 4-10b) shows the combination of coefficients 𝐶𝑚(𝐶𝑅 − 𝐶𝑊 )

derived from SCM simulations along with coefficient 𝐶2 = 𝐶𝑚(𝐶𝑅 − 𝐶𝑊 ) for each

ocean basin. Although there is a lot of uncertainty on the coefficients in some basins,

like in the EP, all uncertainty bounds overlap so that all coefficients are indistinguish-

able from a value of about -1.5 m kg s−1 J−1. The negative value implies that, for an

unchanged SST, if ℎ*
𝑚 increases, potential intensity must decrease.

In Fig.4-10a), we have also plotted a coefficient of linear regression of PI on SST

alone such that 𝛿𝑃𝐼 ≈ 𝐶3𝛿𝑇 . Since 𝛿𝑇 is positively correlated with 𝛿ℎ*
𝑚 (not shown),

the coefficient 𝐶3 must be smaller than 𝐶𝑊 . If the correlation was perfect we should

have 𝐶3 ≈ 𝐶𝑅, so 𝐶𝑅 and 𝐶𝑊 are essentially lower and upper bounds on 𝐶3. In our

figure 4-10a), the SH basin, which has the largest correlation between 𝛿ℎ*
𝑚 and 𝛿𝑇

has the largest difference between 𝐶3 and 𝐶𝑅, and conversely for the EP basin which

has the smallest correlation. This is worth pointing out because it contextualises the

use of SST alone as a predictor of tropical cyclone intensity: it only works well if

that SST is independent of mid-tropospheric conditions. To support this, we look at

the coefficients of determination for SST alone in Fig.4-8 and notice they are always

smaller than the 𝑅2 of the SCM-derived model which also includes 𝛿ℎ*
𝑚. Further, the
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Figure 4-9: Timeseries of SST change (𝛿T) averaged over each basin and the cor-
responding TC season partitioned between their RCE (red) and WTG (blue) com-
ponents for (a) the Eastern North Pacific, (b) the Western North Pacific, (c) the
Northern Indian Ocean and (d) the Southern Hemisphere basin.

difference is again largest in the SH basin, where the correlation between 𝛿ℎ*
𝑚 and 𝛿𝑇

is strongest.

4.7 Discussion

Our results outline the importance of coefficient 𝐶𝑊 in determining the magnitude of

PI variations associated with a given SST perturbation. In addition, 𝐶𝑚 allows one

to define that perturbation based on the mean tropical state and is also important.

On the other hand, 𝐶𝑅 is not very important up to multidecadal time scales because

RCE PI changes account only for a small fraction of the total. The local coefficients

𝐶𝑊 found here are larger than those presented in (Vecchi and Soden, 2007), which

relied on fitting algorithm PI to a temperature anomaly computed with respect to

the tropical average at each time step. This method is the equivalent to setting

𝛿𝑇𝑊 = 𝛿𝑇 − 𝛿𝑇 , where 𝛿𝑇 are tropical mean SST changes. In addition, it assumes

𝛿𝑃𝐼𝑅 = 𝐶𝑅𝛿𝑇 ≈ 0, and we indeed have found 𝛿𝑃𝐼𝑅 to be small. So the main
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Figure 4-10: a) Linear model coefficients 𝐶𝑊 derived from the SCM simulations
(black, SCM label) and derived from ERA5 PI regression on both 𝛿𝑇 and 𝛿ℎ*

𝑚 (black,
basin labels), analytical estimate of 𝐶𝑊 using Eq.4.8 (red x), and coefficient of ERA5
PI regression on 𝛿𝑇 only (gray). b) Combination of linear coefficients 𝐶𝑚(𝐶𝑅 −𝐶𝑊 )
derived from the SCM simulations (SCM label) and derived from ERA5 PI regres-
sion (basin labels). The error bars denote 95% confidence interval on the regression
coefficients
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Figure 4-11: Comparison between tropical mean SST (black), and an estimate of
SST representative of global changes by our linear model (red). Both quantities are
averaged over the North-Atlantic hurricane season.

difference lies in the assumption that 𝛿𝑇 is representative of 𝛿ℎ*
𝑚, which depends not

only on SST, but on the degree of coupling of the sea surface to the atmosphere.We

illustrate this assumption in Fig.4-11, where we show a timeseries 𝛿𝑇 averaged over

tropical North-Atlantic hurricane season, along with 𝐶𝑚𝛿ℎ
*
𝑚 averaged over the same

season. As we can see, in general, 𝛿𝑇 ∝ 𝛿ℎ*
𝑚. The linear regression coefficient

between both variables over the last 40 years is (2.69± 0.64)× 10−4 kg K J−1, which

is indistinguishable from the value of the coefficient 𝐶𝑚. This is interesting because

the value of the linear regression coefficient between 𝛿𝑇 and 𝛿ℎ*
𝑚 is expected to depend

on the level of coupling between the sea-surface and the mid-troposphere. Hence this

result suggests that large-scale changes in coupling, for example due to global trade

wind changes, were not very important in the last 40 years. Further, we can notice

that the largest departures between 𝛿𝑇 and 𝐶𝑚𝛿ℎ
*
𝑚 occur during El-Nino years, where

large changes in the pattern of SST is bound to change the level of coupling on a large

scale. On multidecadal timescales, the assumption 𝛿𝑇 ∝ 𝛿ℎ*
𝑚 seems a good one, but

it is insufficient to capture the effects of interannual variability on PI.

4.7.1 The East-Pacific

The EP basin stands against an oceanic boundary with lots of cold water upwelling,

which causes the BL to decouple from the free troposphere much more frequently than

occurs in other basins. This decoupling causes PI to be multi-valued and to vary non-
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Figure 4-12: Correlation coefficients between PI and the square root of thermody-
namic disequilibrium for each basin.

monotonically in temperature, which results in a lower PI variability than predicted

by the SCM linear model. In other words, this is the reason why the EP linear fit

𝐶𝑊 coefficient is considerably lower than the linear model 𝐶𝑊 in Fig.4-10a). Figure

4-12 shows that the BL decouples far more often in the EP than in other basins,

by comparing the correlation coefficients between algorithm PI and the square root

of the thermodynamic disequilibrium in each basin. Examining the PI computation

algorithm (e.g., Gilford, 2020) shows that a frequent decoupling should decrease that

correlation. And we can see that correlations are about 0.95 for all basins except the

EP, where it is 0.65.

4.7.2 Applications

The goal of this chapter is to provide a framework for quantifying the causes of PI

variability in the tropics. So far, we have shown that PI variations are well captured

by a novel linear model based on two simple and intuitive predictors. This linearity

of PI, along with the fact that the model coefficients have a clear physical meaning,

constitute the basis of our framework. First, the linearity of PI will allow to study

the different local influences on SST perturbations independently from one another

and then convert the SST perturbations corresponding to each influence to PI per-

turbations. For example, if it is known that dust aerosol forcing accounts for twice

as much TNA SST variability as ocean heat flux convergence, then it also accounts

for twice as much PI variability. Then, the physical meaning of the model coefficients

108



allows us to obtain information on the cause of PI changes since SST and PI can be

partitioned between an RCE component, corresponding to large-scale changes to the

tropical atmosphere, and a WTG departure from those large scale changes.

The coefficient 𝐶𝑊 derives from Clausius-Clapeyron and could apply to any departure

from RCE, but the fact that the tropical average ℎ*
𝑚 predictor greatly improves the

linear model, confirms that these departures occur in WTG. Throughout all basins,

PI variations are dominated by WTG variations, at least over the last 40 years, which

suggests that changes in SST patterns due to global change might be more important

for PI and TC activity than the changes in global mean temperature themselves.

This highlights that any small domain simulation or idealized model that attempts

to capture the response of SST and PI to local parameter changes should be con-

strained by WTG. The coefficient 𝐶𝑚, however, is a fundamental property of Earth’s

atmosphere, that can be related to atmospheric cooling and indicates the slope of the

relation between midlevel saturation entropy and SST. This coefficient outlines why

PI is relatively insensitive to global warming.

We note that those coefficients were derived from equilibrium simulations but do not

actually require a steady-state to be applicable. For example, if large scale oceanic

fluxes like those due to ENSO increase rapidly and heat up the atmosphere, small

remote basins like TNA will see a drop in PI before their temperature adjusts, and

an increase afterwards. Conversely, rapid changes in large coupled basin SST will

result in large basin PI changes before the atmosphere has time to adjust, and more

modest ones afterwards. For example, the 2015-2016 El-Nino event is clearly visible

in Fig. 4-9, where there is a large increase in WTG-like perturbation temperature

in the EP basin, and a correspondingly large decrease in the WP basin. In those

plots, the fraction of SST that correlates with ℎ*
𝑚 is not very large, outlining that the

atmosphere has not adjusted yet to these perturbed SSTs during the Boreal summer.

Early the next year, during the averaging season of the SH in the Austral summer,

we can see that the RCE temperature component is much larger while the absolute
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anomalous component is much smaller than in the two other basins, earlier in the

year. This suggests that the SSTs are closer to equilibrium with the atmosphere then,

in the SH basin.

4.8 Conclusion

In this chapter, we introduced a new linear model for potential intensity, based on

SCM simulations, and on the sensitivities of PI to SST in atmospheres in RCE and

under WTG constraint. The model coefficients are derived from a control simulation

designed to be similar to Atlantic conditions, and from a set of sensitivity experiments

to 𝐶𝑂2 in RCE and to dust optical depth, imposed SST changes, and surface winds,

in RCE and under WTG constraints. The resulting linear model allows us to parti-

tion SST and PI changes into local and global components, and explains up to 95%

of the inter-annual to multidecadal basin-averaged seasonal PI variance. The basin

where the model works best is the NA, which may be due to the fact that the control

simulation was designed to have similar conditions as the NA. The basin where the

model captures the least variance is the EP, which may be due to cold water upwelling

intermittently decoupling the boundary layer from the midlevels, and decreasing PI

sensitivity. Apart from the EP, the linear model coefficients derived from SCM simula-

tions are indistinguishable in all basins from linear fit coefficients derived using ERA5.

Future work will demonstrate applications of this framework, including estimating

the relative contributions of various mechanisms to the historical PI variations, and

quantifying the thermodynamic effect of ENSO on Atlantic hurricane activity. In

addition, the results suggest that it would be interesting to evaluate the sensitivity

of PI and SST to direct and indirect dust aerosol effects, and the associated cloud

feedbacks, in WTG-constrained cloud resolving model simulations.
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Chapter 5

Natural and Forced Contributions to

the Hurricane Drought of the

1970s-1980s

Abstract

Multidecadal climate variability around the Atlantic basin is due to volcanic and
anthropogenic sulfate aerosol forcing. However, to explain the full variability of hur-
ricane activity at those time scales, the radiative effects of Saharan mineral dust over
the tropical North-Atlantic must also be considered. In this chapter, we argue that
sulfate aerosol and dust radiative forcings are not independent. Instead, we propose
that by causing drought conditions in the Sahel, which enhanced dust emissions, past
sulfate aerosols emissions contributed not only directly, but also indirectly to hurri-
cane variability. Using Sahel precipitation records as a proxy, we estimate the dust
optical depth over the hurricane main development region. This dust proxy correlates
well with an AMO-like mode of sea-surface temperature (SST) anomaly variations.
Using single-column model simulations, we then estimate the sensitivity of SST to
dust optical depth, and we find that about 40% of the SST anomaly variability at
time scales from 30 to 100 years can be explained by dust direct forcing, from 1900 to
the present day. Since simulated sulfate aerosol radiative forcing alone is insufficient
to explain main development region SST variability, and that Sahel drought condi-
tions are known to be caused by sulfate forcing, we conclude that the dust feedback
is necessary to explain the observed past SST and hurricane activity variations.
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5.1 Introduction

Tropical cyclone (TC) activity can be envisioned as a measure of the destructive po-

tential of all tropical cyclones in a given basin and in a given year. North-Atlantic

hurricane activity, as defined by the power dissipation index (Emanuel, 2007) or the

accumulated cyclone energy (Bell et al., 2000), was multiple times smaller during

the 1970s and 1980s than in the preceding or following decades. The high hurricane

activity we have witnessed in the recent decades (Emanuel, 2005) poses the pressing

question of whether the “hurricane drought" of the 1970s and 1980s was natural or

anthropogenic in nature. In the former case, we can expect similar “droughts" to

occur periodically, providing a respite from hurricane hazards. In the latter case we

need to consider the recent hurricane activity as the new normal and prepare accord-

ingly.

Hurricane activity depends on the number of hurricanes during each season, their

intensity and their duration. These in turn depend on a variety of proximal envi-

ronmental causes like variations in mid-tropospheric saturation deficit, vertical wind

shear, horizontal vorticity and potential intensity (Emanuel, 1988; Rousseau-Rizzi

and Emanuel, 2019). The differences in TC activity between the 1970s-1980s and the

two following decades are illustrated in Fig. 5-1. The left panel shows that, during

the hurricane drought, there was a smaller number of storms of all categories, with

the largest relative differences occurring for major hurricances. The center panel then

shows that major hurricances are responsible for almost all of the difference in power

dissipation index between the two periods and result in a total power dissipation in-

dex that is about twice as large in 1990-2010 than in 1970-1990 (not shown but can

be inferred from the figure). The power dissipation index is computed using the Ib-

TRACS dataset (Knapp et al., 2010). Finally, the right panel shows the differences in

seasonal cycle between the two periods and outlines that the decrease in TC activity

was not confined to only a part of the season.
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Figure 5-1: Average storm number per year and per category (left), average power
dissipation index (PDI) per year and per category (center) and average PDI seasonal
cycle (right) for the period from 1970 to 1990 (black bars) and from 1990 to 2010
(gray bars).

Fortunately, to explain the ultimate cause of hurricane activity variability, as defined

by the power dissipation index, we mostly need to explain variations in sea-surface

temperature anomaly (SST) in the tropical North Atlantic main development region

during hurricane season (August-September-October) since both variables are well

correlated (Emanuel, 2007; Villarini and Vecchi, 2012). This is illustrated in Fig.5-2

which shows a scatter plot of main development region SST anomaly against power

dissipation index, over the 40 years period described above. Over that period, the

linear correlation coefficient between SST anomaly and the power dissipation index is

𝑅 = 0.75. When we consider only the low-frequency variability, by filtering out the in-

terannual variability using a 7 years low-pass Lanczos filter we obtain 𝑅 = 0.84, which

is very high. The focus on low-frequency variability is appropriate to help explain

multidecadal variability like the hurricane drought, and the 7 years cutoff was chosen

to filter out El-Nino Southern Oscillation. Considering all years over which we can

reasonably trust the power dissipation index estimate, from 1950 to the present day,

and without applying any filtering, we still obtain 𝑅 = 0.6, with most of the decrease

in correlation occurring in the latest decade (not shown). This is still a surprisingly

strong correlation, considering that we have no reason to expect the relation between

the power dissipation index and SST to be linear. These analyses warrant the use

of main development region SST anomaly as a predictor of Atlantic hurricane activity.

Multiple mechanisms have been proposed to explain past changes in tropical North
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Figure 5-2: Scatter plot of power dissipation index (PDI) against main development
region SST anomaly (gray), and 7-year cutoff low-pass filtered PDI against main
development region SST anomaly (black).

Atlantic SST anomaly, and hurricane activity. Most prominently, basin-wide natural

multidecadal variability, called the Atlantic Multidecadal Oscillation (AMO, Zhang

and Delworth, 2006; Zhang et al., 2013), was for a while thought to be an impor-

tant driver of tropical North Atlantic SST and hurricane activity. On the other

hand, the evidence presented in a steadily growing number of papers using both sta-

tistical (Mann and Emanuel, 2006), and numerical (Booth et al., 2012; Dunstone

et al., 2013; Villarini and Vecchi, 2013) methods suggests an important role of an-

thropogenic aerosol direct and indirect effects in setting basin-wide SSTs. Further,

the North-Atlantic-wide 70-year period spectral peak attributed to the AMO in pa-

leoclimate records and CMIP5 preindustrial simulations was recently shown to result

from volcanic aerosol emissions (Mann et al., 2021), and more precisely from a mul-

tidecadal periodicity in explosive volcanic eruptions as reported by Ammann and

Naveau (2003). Similarly, 20th century multidecadal variability attributed to the

AMO was shown not to require an interactive ocean (Clement et al., 2015) but in-

stead to be due to anthropogenic (Murphy et al., 2017; Mann et al., 2020; Si et al.,

2020) and volcanic (Birkel et al., 2018) radiative forcing. Throughout this chapter,

we will use the acronym AMO to denote a hypothetical mode of natural multidecadal

variability. To qualify Atlantic multidecadal variability without implying that it is

due to natural causes, we will use the adjective “AMO-like”.

114



Despite the evidence that SST multidecadal variations on the scale of the North-

Atlantic do not result from internal variability, climate model simulations focusing

more narrowly on the effects of anthropogenic sulfate aerosols in the tropics, and on

hurricane activity, fail to capture the full observed variability, missing specifically the

magnitude of the multidecadal drought of the 1970s and 1980s (Dunstone et al., 2013;

Villarini and Vecchi, 2013). The large statistical dependence of TC activity on the

emissions of SO2 (e.g., Mann and Emanuel, 2006), a sulfate aerosol precursor, along

with this relatively small modelled dependence suggests that the effects of anthro-

pogenic sulfates could be amplified locally by positive climate feedbacks that are not

well captured in climate models.

In the present chapter we propose such a positive feedback, by which sulfate aerosol

forcing can enhance Saharan dust lofting and transport over the tropical North At-

lantic. Saharan dust is an environmental factor that was recently shown as key in

accounting for the magnitude of the hurricane drought (Strong et al., 2015, 2018) and

that is poorly represented in climate models (Evan, 2018). A deeper understanding of

the mechanisms controlling dust variability is important for tropical cyclone climate

predictions as it will allow us to better constrain near-future TC variability. Thus far,

the literature on tropical cyclones has been silent about the causes of dust variation.

In this chapter, we will argue that most of the 20th century dust variability cannot be

considered to be internal to the climate system, but should be considered a feedback

to anthropogenic sulfate forcing that might possibly exceed the direct and indirect

effects of sulfates themselves in the tropical North Atlantic main development region.

Perturbations to SST in the tropical North Atlantic are also thought to be enhanced

by surface wind speed and cloud feedbacks (e.g., Bellomo et al., 2016). This is an

interesting hypothesis that relates to the effects of dust (Evan et al., 2011, 2013;

Doherty and Evan, 2014) and to which we will return, in future research.
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5.1.1 The causes of dust variability: A possible anthropogenic

aerosol dust feedback

Sulfates aerosols originating from European SO2 emissions are swept South by dom-

inant lower tropospheric winds, across the Mediterranean and over North Africa

(Lelieveld et al., 2002; Kallos et al., 2007). There, during the peak in precursor emis-

sions and atmospheric concentration of the early 1980s (Mylona, 1996; Preunkert

et al., 2001; Smith et al., 2011; Hoesly et al., 2018), the aerosol direct shortwave

forcing was about -2.7 W m−2 at the top of the atmosphere (Marmer et al., 2007).

Afterwards, the sulfates from Europe, along with additional anthropogenic aerosols

emitted over North-Africa, are swept West over the tropical Atlantic where they mix

with the Saharan dust plume and are scavenged by the eolian dust. Measurements

show that this scavenging largely decreases the direct radiative effects of the sul-

fates over the tropical North Atlantic (Li et al., 1996; Li-Jones and Prospero, 1998)

which stands in contrast with the idea that sulfate aerosol direct forcing was the main

proximal cause for the tropical North Atlantic SST variability of the 1970s and 1980s.

Outside of the Saharan dust plume, the radiative forcing by sulfate aerosols origi-

nating in the northern hemisphere acts to weaken the inter-hemispheric temperature

gradient during summer (Zeng, 2003; Held et al., 2005). This causes a reduction of the

northward extent of the African monsoon and has been shown by multiple studies to

cause or worsen drought conditions in the Sahel (Giannini et al., 2003; Rotstayn and

Lohmann, 2002; Biasutti, 2011; Martin et al., 2014; Allen et al., 2015; Ackerley et al.,

2011; Xue et al., 2016; Westervelt et al., 2017, 2018; Giannini and Kaplan, 2019). In

turn, the dust which covers the Atlantic correlates well with drought conditions in the

Sahel (Prospero and Lamb, 2003; Prospero et al., 2014). Rather than the drought it-

self, the associated large-scale low-level wind changes (e.g., Newell and Kidson, 1984;

Grist and Nicholson, 2001; Nicholson, 2009) are thought to be the proximal cause of

enhanced emission and transport of dust (Ridley et al., 2013, 2014; Doherty et al.,

2014; Wang et al., 2015; Evan et al., 2016), but here, similarly to (Mahowald et al.,
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2010), we will use drought as a proxy for windy and dusty conditions. Precipitation

has been directly observed for over two centuries in the Sahel (Nicholson et al., 2012)

making drought a more reliable proxy for dust than reanalysis wind data for the first

part of the 20th century.

The sulfate forcing, Sahelian drought and dust optical depth over the ocean all reach

a maximum in the 1970s and 1980s, at the same time as the poorly explained de-

crease in hurricane activity. The enormous amounts of dust lofted in warm Saharan

air get transported over the North-Atlantic all the way to the Caribbeans. This far

from the source, dust originating from the Sahara-Sahel (Bozlaker et al., 2018) still

has the largest direct radiative effect of any aerosol species present (Prospero and

Carlson, 1972; Li et al., 1996), the effect of which on the climate acts to reduce hur-

ricane activity (Dunion and Velden, 2004; Strong et al., 2018). The fact that the

mean and variance of dust emissions are vastly underrepresented in climate mod-

els, at least up to CMIP5 (Evan et al., 2014; Evan, 2018), might explain why thus

far, GCM simulations of hurricane activity failed to capture the observed variabil-

ity, unless dust optical thickness was prescribed (e.g., Strong et al., 2018). Similarly

to anthropogenic aerosols, volcanic stratospheric aerosols have been hypothesized to

modulate drought conditions in the Sahel, especially when they are asymmetric about

the equator (Haywood et al., 2013). This bolsters the argument that hemispherically

asymmetric aerosol forcing is responsible for the enhanced dust concentrations of the

1970s and 1980s.

Hence we suggest that past hurricane activity has been controlled by local dust forc-

ing, the variability of which has been modulated by remote sulfate aerosol forcing. A

paleoclimate analogue to this hypothesis can be found in the case of the mid-holocene

green Sahara, which was due to orbital forcing changes (e.g., Kutzbach and Liu, 1997)

and associated with large dust emissions and transport reductions (Williams et al.,

2016), which would have reduced tropical cyclone activity (Pausata et al., 2017).
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5.1.2 Objectives

In summary, in this chapter, we propose an indirect mechanism through which sulfate

forcing may have further enhanced the hurricane drought; by enhancing dust emis-

sions. To help explain the 1970-1990 TC drought, we first aim to establish a relation

between dust cover over the tropical North-Atlantic and sulfates, by relating dust to

basin-wide multidecadal SST variability and to Sahel drought conditions, which have

been shown to be due to sulfate forcing. Then, we aim to show that dust direct radia-

tive effects can explain a large fraction of the SST anomaly multidecadal variability in

the hurricane main development region, and hence is necessary to explain the hurri-

cane drought of the 1970s-1980s. First, section 5.2 exposes the methods used to reach

those goals. Then, section 5.3 describes the main results and section 5.4 discusses

the interpretation and relevance of the findings. Finally, section 5.5 summarizes and

concludes the chapter.

5.2 Methods

Since forced SST response in the Atlantic is thought to have longer time scales than

natural variability (Bellomo et al., 2018), we aim to isolate low-frequency variability

modes by using the low-frequency component analysis method introduced by (Wills

et al., 2018). This method finds linear combinations of the leading empirical or-

thogonal functions in a dataset, that maximize the ratio of low-frequency to total

variance while retaining variance at all frequencies. This method can be thought

of as a signal-to-noise maximizing empirical orthogonal functions analysis method

(e.g., Ting et al., 2009). The results are low-frequency patterns (LFPs), which are

not orthogonal to one-another, and the associated low-frequency components (LFCs),

which are uncorrelated. The resulting modes are sorted by the ratio of low-frequency

to total variance, so that we expect the first LFC, named LFC1, to have the longest

time scale. This method has two input parameter: the low-pass filter cutoff, used

to define low-frequency, and the number of leading empirical orthogonal functions

used. Here, we set the low-pass filter cutoff at 7 years, to filter out the interannual
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variability associated with El-Nino Southern Oscillation while retaining interdecadal

variability in the Atlantic, and the number of leading empirical orthogonal functions

to 25, based on previous work (Wills et al., 2018, 2019). The results are not very sen-

sitive to the choice of parameters. This method has been shown to capture accurately

both forced (global warming) and natural (El-Nino Southern Oscillation) modes of

variability, and we apply it here to gain insight into the modes of variability of the

tropical North Atlantic SST and to see whether we can isolate the signal of the sulfate

aerosols and the dust feedback. We analyse SST data from the the Hadley Centre

Global Sea Ice and Sea Surface Temperature (HadISST) dataset (Rayner et al., 2003)

from 1870 to the present. The mean seasonal cycle is removed from the data, but the

global warming trend is not.

5.2.1 MIT single column model

In order to see if the amplitude of the main development region SST anomaly can

be attributed to dust, we run simulations using the MIT single column model (SCM)

(Bony and Emanuel, 2001) under a weak temperature gradient (WTG) constraint,

with added aerosols. We use the MIT SCM along with the two-spectral-intervals

radiation scheme of Fouquart et al. (1980) and Morcrette (1991). The model uses the

convection parameterization of Emanuel and Živković-Rothman (1999) to compute

the evolution of water vapor. The simulations do not allow for cloud feedbacks on ra-

diation and instead use fixed profiles of cloud fraction to decrease the noisiness of the

sensitivity experiments. Despite this simplification, we acknowledge that the feedback

of clouds in WTG is an important topic in its own right which may be relevant to

main development region SSTs, as suggested by the observational results of Bellomo

et al. (2016). The ocean is a 2 m deep slab which allows the system to equilibrate

rapidly. Even with slab depths representative of summer mixed layers mixed-layer

(∼70 m), WTG-contrained simulations equilibrate within a few months, much faster

than radiative convective equilibrium simulations.

To gain insight into the sensitivity of SST, potential intensity and other TC-relevant

119



quantities like the genesis potential index (Emanuel and Nolan, 2004) to dust opti-

cal thickness, we adjust the simulated dust shortwave (SW) asymmetry parameter

(𝑔) and single scattering albedo (𝜔0), and the longwave (LW) extinction efficiency

of dust to produce similar surface and top-of-atmosphere (TOA) forcing efficiencies

as documented by Song et al. (2018). Forcing efficiency is defined as the aerosol di-

rect radiative forcing, normalized by the optical thickness (𝜏) at 0.55 𝜇𝑚 (e.g., Zhou

et al., 2005). We take 𝑔 = 0.70 and a single scattering albedo of 𝜔0 = 0.88 for SW.

We retain the assumption of the scheme of Morcrette (1991) that aerosols do not

scatter LW and set 𝜏10𝜇𝑚/𝜏0.55𝜇𝑚 = 0.5. As will be shown later, these parameters

are broadly consistent with dust observations and, more importantly, yield similar

dust forcing efficiencies as those derived from observations. As a reference and to

test the sensitivity of the results to the dust optical properties, we vary 𝑔 between

0.6 and 0.8 and 𝜔0 between 0.78 and 0.98, both implausibly low and implausibly high

values for dust optical properties. The vertical dust profile is gaussian shaped with

a maximum at 700 hPa and a standard deviation of 100 hPa. This is an idealized

version of the Saharan air layer dust profile as it moves from West Africa over the

ocean (e.g., Kuciauskas et al., 2018). As the dust moves further West the altitude of

the layer decreases progressively, which might impact its longwave radiative effects.

5.2.2 Dust proxy

In order to get an estimate of dust optical thickness as a function of time over the

main development region during the 20th century, we combine three different datasets.

First we convert boundary layer dust concentration measured at Barbados (Prospero,

2015) from 1965 to 2012 to dust optical depth over the main development region

by using satellite measurements (Evan and Mukhopadhyay, 2010) of the peak dust

period of the early 1980s. The Barbados dataset includes both high-dust and low-

dust decades and, along with the satellite measurements, it provides an estimate of

the multidecadal dust optical thickness variations over the main development region.

Then, to further extend the dust record in time, we make use of the strong correlation

between Barbados dust and Sahel rainfall and compute a regression of Barbados dust
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on a Sahel precipitation index (mm/month) extending from 1901 to 2017 (Mitchell,

2013). This is a method similar to that employed by Mahowald et al. (2010).

5.3 Results

5.3.1 Dust reconstruction

The top panel of Fig. 5-3 shows the reconstructed aerosol optical depth over the

main development region, based on the Barbados dust record (black) and on the

Sahel precipitation index (gray). The timeseries are low-pass filtered with a 7 years

period to remove the influence of El-Nino Southern Oscillation on precipitation and

dust, but the filtering does not change the results qualitatively. The dust at Barbados

is rescaled by the aerosol optical depth and seasonally averaged from May to October,

and we just take the annual average Sahel precipitation index since almost all of the

precipitation in Sahel falls during the summer when dust concentration is high over

the tropical North Atlantic main development region. We consider dust cover up to

a few months before the start of hurricane season because of the thermal inertia of

the ocean mixed layer. The correlation between the low-pass filtered dust and the

Sahel precipitation index is 𝑅 = −0.85, which is very strong and consistent with

the similarity between the Barbados record and the Sahel precipitation index proxy

(without low-pass filtering, the correlation is 𝑅 = −0.71).

The bottom panel of Fig. 5-3 shows the Sahel precipitation index in mm/month

(blue) computed over the region [20-10N, 20W-10E], along with a simulated hemi-

spheric asymmetry in sulfate aerosol optical depth of volcanic and anthropogenic

origins (black). The aerosol optical depth asymmetry is an ad hoc index for the ra-

diative forcing, computed from GISS-E2-1-G climate model (Bauer et al., 2020; Miller

et al., 2021) CMIP6 simulations, over the region from 60 S to 60 N, and 35 W to 55

E, to focus on Africa and Europe. The asymmetry is due in large part to the change

in anthropogenic emissions in the northern hemisphere since southern hemisphere

emissions are comparatively small in the region considered. The correlation between
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Figure 5-3: Top panel: Barbados summer dust measurements rescaled by satellite
measurements of main development region aerosol optical depth (AOD) during the
1980s (black) and main development region AOD reconstruction based on the Sahel
precipitation index (SPI) proxy (blue). Dotted lines are not filtered, and solid lines
are low-pass filtered. Bottom panel: Low-pass filtered anthropogenic and volcanic
sulfate AOD asymmetry (black), and SPI (blue). The y-axis for the precipitation
index is reversed so that peaks indicate dry years. Dotted lines are not filtered, and
solid lines are low-pass filtered.

this sulfate aerosol asymmetry index and the Sahel precipitation index is 𝑅 = −0.76,

supporting the idea that European sulfate emissions enhanced Sahel drought.

The contribution of the volcanoes to the asymmetry index, like that of the an-

thropogenic emissions, depends on the location of the aerosols. Explosive volcanic

eruptions like that of Pinatubo (1991) expel long-lived stratospheric sulfate aerosols

causing large radiative forcings, but the eruptions that have the largest influence on

Sahel precipitation are not always the strongest, but the most asymmetric (Haywood
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et al., 2013). For example, the northern hemisphere radiative forcing associated with

the Pinatubo eruption (1991) was larger than that associated with the El Chichon

eruption (1982) but it was also much more symmetric about the equator (e.g., Thoma-

son et al., 2018) and isn’t associated with a spike in Sahel drought conditions. The

strongly asymmetric El Chichon eruption, on the other hand, is associated with the

most severe drought on record in the Sahel, and the dustiest year on record in Bar-

bados. One other notable example is the eruption of Novarupta (1912) which was

confined to the northern hemisphere and is also associated with a spike in drought

conditions early in the record. We also note that while hemispherically symmetric

large eruptions like that of Pinatubo might not impact Sahel drought conditions and

dust emissions as strongly as asymetric eruptions, the increased planetary albedo will

still decrease global precipitation (Trenberth and Dai, 2007) and will affect sea surface

temperatures directly (Birkel et al., 2018).

Other factors influencing drought conditions in the Sahel may include global warm-

ing (Hill et al., 2017, 2018) and vegetation feedbacks (Yu et al., 2015; Tierney et al.,

2017). In addition, a dust feedback on drought was proposed in multiple studies,

by which dust optical scattering and absorption influence the precipitation over the

Sahara-Sahel (e.g., Miller and Tegen, 1998; Wang et al., 2012; Colarco et al., 2014;

Pausata et al., 2016; Jordan et al., 2018). However, the sign of this feedback itself

remains unclear due to uncertainty over the optical properties of dust. As evidenced

by (Strong et al., 2015), for scattering dust, the feedback is positive and destabilizing,

and for absorbing dust, the feedback is negative and stabilizing. Recent research sug-

gests that dust might be more absorptive than previously thought (e.g., Kok et al.,

2017; Song et al., 2018) and so here we will consider that if dust acts on Sahel drought

in any way, it is as a negative feedback.

5.3.2 Simulations of dust radiative impacts

Figure 5-4 (left panel) shows the sensitivity of SCM simulations to dust aerosol direct

radiative effect , under a WTG constraint. The aerosols optical depth (𝜏) is varied
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from from 0 to 0.5 in increments of 0.05. The sensitivity of SST to the optical depth

is linear and has a value 𝛿𝑆𝑆𝑇/𝛿𝜏 = -1.4 K 𝜏−1. We note that this sensitivity is very

dependent on the choice of dynamical constraint applied to the SCM. Simulations

run to radiative-convective equilibrium have a sensitivity to optical thickness almost

an order of magnitude larger (not shown), but the WTG constraint is more appro-

priate to simulating the effects of dust over a limited area of ocean (Rousseau-Rizzi

and Emanuel, In review). Comparatively, modifying the single scattering albedo and

asymmetry parameter to implausibly low or high values yield sensitivities between

𝛿𝑆𝑆𝑇/𝛿𝜏 = -0.8 K 𝜏−1 and 𝛿𝑆𝑆𝑇/𝛿𝜏 = -2.0 K 𝜏−1, which is not all that different

from -1.4 K 𝜏−1. Another aspect to consider is that stratocumulus feedbacks in WTG

could enhance the sensitivity of SST to dust aerosol optical depth, but this effect is

not captured here because we fixed the cloud profiles. The center and right panels

show the forcing efficiency of the prescribed aerosols as a function of optical thickness.

Black squares denote a surface forcing efficiency and blue squares a TOA efficiency.

The horizontal dashed lines are state-of-the-art estimates of dust forcing efficiency

computed by Song et al. (2018), based on particle size distributions from the 2011

Fennec aircraft campaign (Ryder et al., 2013a,b), refractive indices from Colarco et al.

(2014) in the SW and Biagio et al. (2017) in the LW, and particle shape distribu-

tions from Dubovik et al. (2006). At high values of dust concentration (𝜏 > 0.3), the

forcing efficiencies produced by the MIT SCM are within 10% of the state-of-the-art

estimates of Song et al. (2018). Considering different models for particle size distri-

bution, refractive indices and particle shape distributions, yields a broader range of

radiative forcing efficiencies than the ones simulated here (Song et al., 2018). This

correspondence is a consequence of setting 𝑔 = 0.70, 𝜔0 = 0.88 and 𝜏10𝜇𝑚/𝜏0.5𝜇𝑚 =

0.5 purposely to reproduce the observed forcing efficiency (all parameter values are

reasonable).

Since we are confident that our simulated forcing efficiency is reasonable, we turn

our attention to the sensitivity of TC activity-relevant physical parameters to dust

aerosol optical depth . Figure 5-5 (left panel), shows equilibrium potential intensity
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Figure 5-4: Left: simulated SST as a function of dust optical thickness (𝜏) at 0.55𝜇𝑚.
Center: Simulated dust longwave surface forcing (black squares), and estimate from
Song et al. (2018) (dashed black line). Right: Simulated dust shortwave surface
forcing (black squares), and estimate from Song et al. (2018) (dashed black line), and
dust shortwave TOA forcing (blue squares), and estimate from Song et al. (2018)
(dashed blue line). The faded profiles represent the simulations with 𝑔 between 0.6
and 0.8 and 𝜔0 between 0.78 and 0.98.

(PI) as a function of aerosol optical depth . Over the range of aerosol optical depth

used in these simulations, potential intensity varies by about 6 m s−1, very linearly.

Over the range of aerosol optical depth values occurring on multidecadal time scales

over the main development region, potential intensity varies by about 3 m s−1. The

potential intensity sensitivity to SST under a WTG constraint corresponds well to

values reported in the literature (e.g. Rousseau-Rizzi and Emanuel, In review), with

𝛿𝑃𝐼/𝛿𝑆𝑆𝑇 ≈ 8.6 m s−1 K−1. The center panel of Fig.5-5 shows saturation deficit

(𝜒), defined as

𝜒 =
𝑠*𝑚 − 𝑠𝑚
𝑠*0 − 𝑠*𝑚

(5.1)

where 𝑠 is entropy, * denotes saturation, 0 denotes the surface and 𝑚 denotes the

mid-troposphere at 600 hPa. 𝜒 is a component of the genesis potential index and is

an indication of the dryness of the mid-troposphere. The increase in 𝜒 indicates that

the aerosols lead to large-scale descent and drying. Finally, the right panel of Fig.5-5

shows the thermodynamic component of the genesis potential index of Emanuel and
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Figure 5-5: Simulated potential intensity (PI, left), saturation deficit (𝜒, center) and
normalized thermodynamic component of the genesis potential index (𝐺𝑃𝐼𝑇 , right)
as a function of dust optical thickness (𝜏) at 0.55𝜇𝑚. The faded profiles represent
the simulations with 𝑔 between 0.6 and 0.8 and 𝜔0 between 0.78 and 0.98.

Nolan (2004) defined as

𝐺𝑃𝐼𝑇 = 𝜒−4/3(𝑃𝐼 − 35)2, (5.2)

with 𝐺𝑃𝐼𝑇 being normalized by its "high dust" value at 𝜏 = 0.3. This shows that,

suppressing dust entirely from an ocean basin where 𝜏 = 0.3 would lead to an increase

in 𝐺𝑃𝐼𝑇 of about 55% if all dynamical parameters stay identical. Since the Saha-

ran air layer that carries dust is generally associated with a high shear environment

(Dunion and Velden, 2004), it is likely that the increase in 𝐺𝑃𝐼𝑇 would be larger.

We note that while this is a large relative difference, the statistical linear sensitivity

of PDI to SST anomaly is such that PDI drops by about a factor 5 over less than a

degree difference. This is larger than can be expected from thermodynamics alone,

and points to the likely contribution of changes in vertical shear that correlate with

the changes in SST (E.g., Dunstone et al., 2013).

5.3.3 Global pattern

Figure 5-6 shows the two first low-frequency components (LFCs) and low-frequency

patterns (LFPs) because they have the highest low-frequency to total variance ratios
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and jointly represent most of the low-frequency variability, along with LFPC6 and

LFP6 which are important in the main development region. We first look at LFC1

and LFP1 and notice that they look very similar to global warming signals. This isn’t

surprising since (Wills et al., 2018, 2019) reported a similar result and we used the

same method. To verify that the first component captures all of the global warming

signal, we compute correlations between the first 10 LFCs and the tropical mean SST.

The tropical mean SST is computed using the same data set, and filtered using the

same 7-year low-pass threshold. The top panel of Fig. 5-7 shows that indeed, the

correlation between tropical mean SST and LFC1 is very high (𝑅 = 0.98), even if

the low-frequency component analysis is restricted to the Atlantic Ocean, which is

a fairly small part of the global oceans. The correlations between the next 9 modes

and tropical mean SST are very small, which is expected given that the modes are

uncorrelated. Correlations between LFCs and the global mean ocean temperature are

very similar (not shown). This indicates that none of the other modes of variability

are representative of global changes.

Clearly identifying the global warming signal gives us confidence that this method

can precisely identify forced signals that are distinct from natural variability. In

addition, the variations of SST associated with this global mode and averaged over

the main development region have a regression coefficient with the tropical mean SST

of 0.97. This means that for every degree the tropics warm, the main development

region warms by very nearly a degree in this pattern. This is a very useful result

because it allow us to treat all the other patterns as local anomalies with respect to

the tropical average. It has been shown that potential intensity, and thus the genesis

potential index, is much more sensitive to local SST changes than to global ones, so

long as the global changes are not due to near surface wind speed changes (e.g., Vecchi

and Soden, 2007; Ramsay and Sobel, 2011; Emanuel and Sobel, 2013; Rousseau-Rizzi

and Emanuel, In review). In addition, potential intensity varies very linearly with

SST perturbations in the tropics, with a slope of about 9 m s−1 K−1. This means that

in LFC1, changes in SST are not associated with large changes in potential intensity

or TC activity in the tropics and that, in any mode other than LFC1, a 1 K variation
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Figure 5-6: Left: first (top), second (middle) and sixth (bottom) low-frequency pat-
terns (LFPs) of temperature (color shading) with main development region identified
(dotted black box). LFP2 is plotted along with dust aerosol optical depth contours
from (Evan and Mukhopadhyay, 2010) for 𝜏 = [0.150.30.45] (white contours). Right:
corresponding low-frequency components (LFCs) including variability at all frequen-
cies (gray) and only at low frequencies (black).

128



of SST over the main development region will correspond fairly precisely to a 9 m s−1

variation of potential intensity.

5.3.4 Local patterns

TC activity being more sensitive to local changes than global ones means that, over

a timescale of a few decades, the first low-frequency component, LFC1 is unimpor-

tant for hurricane activity relative to several higher order modes (e.g., Rousseau-Rizzi

and Emanuel, In review). Hence we next look at the remaining LFCs to explain the

variance in potential intensity and in TC activity. To do so, we look for the pat-

terns associated with the largest main development region SST anomaly. Figure 5-8

(top panel) shows the square root of the low-frequency main development region SST

variance associated with each low-frequency component analysis mode. Apart from

LFC1, which we argued not to be as important an influence on potential intensity

as some of the other modes, the component with the highest low-frequency variance

in the main development region is LFC2. The index "2" means that the associated

low-frequency variance is the second largest over the whole of the Atlantic basin.

Figure 5-6 shows the second low-frequency pattern LFP2 along with LFC2, which

closely resemble the pattern and time series of the AMO as defined by Trenberth

and Shea (2006). This is not surprising considering that our LFC1 correlates very

well with global temperatures, and that the AMO of Trenberth and Shea (2006) is

defined with respect to the global mean temperature, and not with respect to a linear

trend, as defined for example in Murphy et al. (2017). In the NH, LFP2 exhibits

a large variability in a horseshoe pattern starting from a maximum in the region of

the subpolar gyre and decreasing progressively until the tropical North Atlantic. The

amplitude of the pattern in the SH is much smaller and almost uniformly of opposite

sign to the NH. Finally, Fig.5-6 also shows LFP6 and LFC6, which explain the most

SST variability in the main development region after LFC2. This component only has

the sixth highest low-frequency to total variance ratio because it has comparatively

less variability in the subpolar regions than other components, but still explains a

substantial part of the SST variance in the main development region. Interestingly,
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multidecadal time scales are much less important in LFC6 than in LFC2, with time

scales of 10 to 15 years being much more prominent. Since the timescale of LFC6 is

not much larger than the low-pass filter cutoff, it is possible that the signal is some-

what damped.

Since we are mostly interested in the 1970s and 1980s, we look at the pattern respon-

sible for the main development region SST anomaly during that period by averaging

the product of the LFPs and the LFCs over the main development region and from

1970 to 1990. As can be seen in Fig. 5-8 (bottom), LFP2×LFC2 is responsible for the

vast majority of the main development region SST anomaly during that period. Its

contribution is multiple times larger than that of any other component when averaged

over those two decades. Note that LFC1 is still plotted for comparison, but it reflects

a global change, not an anomaly.

5.4 Discussion

5.4.1 Natural vs forced variability

The low-frequency component analysis method is objective and, in itself, tells us

nothing about the physical origin of the components, which must be deduced inde-

pendently. For example, we have established a posteriori that the first low-frequency

component, LFC1 is the global warming signal. Similarly, LFC2 is an AMO-like sig-

nal, which we will interpret in light of the recent literature on the topic. Notably,

(Murphy et al., 2017; Birkel et al., 2018; Mann et al., 2020) show that the ultimate

cause of the multidecadal component of the Atlantic ocean SST variability is sul-

fate aerosol loading, from volcanic and anthropogenic origins. In addition, a LFC

forced by asymmetric sulfate loading and dust feedbacks should have a large inter-

hemispheric temperature contrast. This is coherent with the second low-frequency
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Figure 5-7: Top: correlation coefficient between the tropical mean SST (TMST) and
each of the 10 first low-frequency components (LFCs). Bottom: correlation coefficient
between the Sahel precipitation index (SPI), and each of the 10 first LFCs.
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pattern, LFP2, which has the largest interhemispheric temperature contrast of all

25 LFPs, by about a factor 3. The relative contribution of LFP2 to the total inter-

hemispheric temperature contrast was even more important during 1970-1990 (not

shown). Further, a LFC associated with sulfate emissions should correlate well with

Sahel precipitation. Figure 5-7 shows the correlation of the 10 first LFCs with a Sa-

hel precipitation index (Joint Institute for the Study of the Atmosphere and Ocean,

doi:10.6069/H5MW2F2Q) based on the dataset of (Becker et al., 2013). None of

the LFCs correlate well with the Sahel precipitation index, except for LFC2 which

has a correlation coefficient 𝑅 = 0.69. Such a correlation coefficient is surprisingly

large considering that the Sahel precipitation index timeseries extends back to 1900.

Interestingly, correlating the whole summer main development region anomaly or

the North-Atlantic SST index (NASSTI) with Sahel precipitation yields considerably

smaller correlations (𝑅 = 0.40 and 𝑅 = 0.30 respectively). This suggests a relation

between LFC2 and Sahel precipitation, or a common driver, and strenghtens the ar-

gument that this AMO-like mode is associated with dust emissions. Finally, we will

also add that the low-frequency variance of LFC2 during the first half of the record,

from 1870 to 1950 is about half that during the period from 1950 to 2018, which

is coherent with the results of (Si et al., 2020) and is expected from anthropogenic

aerosol loading increasing in the second half of the 20th century.

5.4.2 The estimated effect of Sulfate-forced dust loading on

SST

We will now compare the three independent analyses we performed. First, we re-

scaled summer dust measured at Barbados by measured aerosol optical depth over

the main development region during the dusty period of the early 1980s. Based on

the strong correlation between Sahel drought conditions and dust measurements at

Barbados, we then used the Sahel precipitation index as a proxy to establish an es-
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Figure 5-8: Top: Square root of the variance of SST in the main development region
(MDR) for the 10 first low-frequency components (LFCs). Bottom: contribution of
each of the 10 first LFCs to the main development region SST anomaly during the
1970s-1980s.
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timate of aerosol optical depth variations over the last century (shown in Fig.5-3).

Second, we tested the sensitivity of a SCM under a WTG constraint to dust loading.

The dust optical properties were chosen to ensure that the dust radiative efficiency

was similar to that obtained by state-of-the-art measurements and radiative transfer

models. From these simulations, we obtained (𝛿𝑆𝑆𝑇/𝛿𝜏)𝑆𝐶𝑀 = -1.4 K 𝜏−1. Third,

we applied the low-frequency component analysis method to the HadISST dataset

and obtained an AMO-like component consistent with a sulfate forcing and associ-

ated with Sahel drought (second low-frequency component).

It follows that this pattern must also be associated with dust variations above the

main development region. To verify this, we regress the main development region-

averaged SST variations associated with the second low-frequency component, LFC2,

onto our century dust estimate over the main development region, and obtain a re-

gression coefficient (𝛿𝑆𝑆𝑇/𝛿𝜏)𝑟𝑒𝑔 = −1.3±0.3 K 𝜏−1, which is indistinguishable from

that obtained using SCM simulations. We note that the SCM SST sensitivity to

dust is only valid for a WTG-constrained system. Similar simulations without the

WTG constraint, in which the system reaches radiative-convective equilibrium, yield

an SST sensitivity that is an order-of-magnitude too large, suggesting that the WTG

constraint is appropriate for the main development region, as shown by (Rousseau-

Rizzi and Emanuel, In review).

This is a central result because it indicates that the SST variations associated with

the AMO-like pattern are consistent with those expected from the estimated concur-

rent dust loading. Based on the fact that the AMO-like variability and the associated

drought are likely caused by sulfate forcing (e.g., Mann et al., 2021; Biasutti, 2011),

we propose that the dominant effect of the sulfate aerosol emissions on the main de-

velopment region SST is via their effect on dust lofting and transport. This is also

coherent with a somewhat reduced effect of anthropogenic sulfate aerosols over the

main development region, due to scavenging by Saharan dust (Li-Jones and Prospero,

1998). Volcanic aerosols cannot be scavenged by dust due to the altitude difference.
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Hence, the second low-frequency pattern, LFP2, is seen here as resulting from anthro-

pogenic and volcanic sulfate forcing outside of the Saharan dust plume, and mostly

from the dust feedback in the main development region. We note that, while our

estimate of dust effects is sufficient to explain the LFC2 SST variations in the main

development region, that estimate itself is uncertain. The effects of dust may in-

clude cloud feedbacks as well, as they have been invoked as a tropical North-Atlantic

feedback (Evan et al., 2016; Bellomo et al., 2016). This cloud feedback may occur

in response to changes in the boundary layer energy balance or to dust acting as

condensation nuclei (e.g., Twohy et al., 2009). The tropical North-Atlantic pattern

can also be likenened to the Atlantic Meridional Mode, an SST mode of variability

that is proposed to be forced by dust (Evan et al., 2011).

5.4.3 Contribution of different modes of SST variability to

hurricane activity

So far we have seen that the low-frequency component analysis method identifies the

global warning pattern and an AMO-like pattern which we hypothesize to be due

to sulfate forcing and dust feedbacks. To evaluate the contribution of those first two

modes to total hurricane-season SSTs, we average the SST associated with each mode

over the main development region and over the August-September-October period for

each year. Then, the resulting yearly hurricane-season global warning and AMO-like

SST signals are removed from the total hurricane season main development region

SST. The remaining time series only has significant spectral peaks at ∼15 years pe-

riods or less. This remainder includes mostly higher-frequency modes like LFC6 and

is hypothesized to be due to natural variability. Both the removed components and

the remaining timeseries retain variance up to the 1/2 yr−1 Nyquist frequency.

The results are illustrated in Fig.5-9, which shows the power spectral density for the

sum of all low-frequency components (LFCs) but LFC1 (top panel) and the power
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Figure 5-9: Top: Multitaper power spectral density estimate for yearly summer-
averaged temperature for main development region SST minus the first low-frequency
component (LFC1,black) with 90% confidence red noise spectrum (red) and lowest
frequency spectral peak (dashed blue). Multitaper power spectral density estimate for
yearly summer-averaged temperature for main development region SST minus LFC1
and estimated dust impact on SST (gray) with 90% confidence red noise spectrum
(pink). Bottom: Multitaper power spectral density estimate for yearly summer-
averaged temperature for main development region SST minus LFC1 and LFC2.

spectral density of all LFCs but LFC1 and LFC2 (bottom panel). In the first case,

only the global warming signal has been removed, and we can see that the lowest-

frequency peak is located around a period of 68 years, which is consistent with the

literature on AMO-like variability. In the second case, the AMO-like LFC2 is removed

as well, and the lowest-frequency significant peak is now found around a period of

12 years. Note that the power spectrum does not go to zero at periods of less than

7-year because we retained variance up to the Nyquist frequencies.

Since past sulfate forcing varied mostly on multidecadal timescales, the lack of

a multidecadal peak when the AMO-like mode is removed reinforces the idea that the

effects of the sulfate forcing that do not correlate with the global mean temperature

are captured by the AMO-like mode. In addition, since Bellomo et al. (2018) showed
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that Atlantic ocean SST variability at periods of less than 25 years did not differ

significantly between historical and preindustrial simulations using the Community

Earth System Model Large Ensemble, we will consider that all LFCs excluding LFC1

and LFC2 result from internal variability. We will not attempt to find a cause for

these remaining LFCs but we will also point out that the shape of LFP6 is very

similar to the climatological average wind speeds over the Atlantic, and that surface

wind speed changes could explain the ∼10-15 years main development region SST

variability. We will also point out that some of the significant 3-to 4-year peaks on

the bottom of Fig.5-9 may be due to El-Nino Southern Oscillation.

Assuming that the peak around 68 years is due to African mineral dust mediated

by anthropogenic and volcanic sulfate forcings, and the associated climate feedbacks,

we then try to estimate the contribution of the dust forcing to the multidecadal com-

ponent of the variance. To do so, we utilize Parceval’s theorem and we evaluate the

percentage of variance (𝑃𝑣) that is associated with periods between 30 and 100 years.

30 years was loosely chosen as an upper frequency bound to define multidecadal vari-

ability. In effect, we compute a multidecadal-to-total variance ratio given by

𝑃𝑣 =
[︁ ∫︁ 𝑓ℎ

𝑓𝑙

𝑃𝑆𝐷 𝑑𝑓
⧸︁∫︁ 𝑓𝑛𝑦𝑞

𝑓0

𝑃𝑆𝐷 𝑑𝑓
]︁
× 100%, (5.3)

where 𝑓𝑙 = 1/100 year−1, 𝑓ℎ = 1/30 year−1, 𝑓0 is the lowest frequency that can

be captured by the timeseries and 𝑓𝑛𝑦𝑞 is the Nyquist frequency. When we consider

main development region SST minus LFC1, we get 𝑃𝑣 = 17%, and the remainder of

the variance is due to higher frequencies. If we then remove LFC2 and consider main

development region SST minus LFC1 and LFC2, we get 𝑃𝑣 = 2%, which illustrates

that, apart from from the global warming signal, the vast majority of the multidecadal

variability associated with main development region SST is due to LFC2. This leads

to the question of how much of the multidecadal variability is explained by dust forc-

ing only. To answer that question, we evaluate 𝑃𝑣 for all LFCs minus LFC1 and an
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Figure 5-10: Causal diagram of the proposed mechanism

estimate of the direct effects of dust. This estimate is obtained by multiplying the

dust Sahel precipitation index proxy by the SCM-derived coefficient (𝛿𝑆𝑆𝑇/𝛿𝜏)𝑆𝐶𝑀

= 1.4 K 𝜏−1. The resulting power spectrum is shown in gray in the top panel of

Fig.5-9. For that spectrum, We get 𝑃𝑣 = 12%, which shows that subtracting the

direct effects of dust decreases the multidecadal-to-total variance ratio by about 40%,

compared to the case where dust is not subtracted. We surmise that the remainder

of multidecadal variability is associated with the sulfate radiative forcing itself, and

possibly to cloud feedbacks.

To sum up, Fig.5-10, presents the causal diagram of the proposed mechanism. It

outlines the most important assumptions we made, such as separate roles for inter-

nal and forced variability, which are hypothesized to cause respectively low-frequency

and high-frequency activity variations. In addition, it incorporates the novel proposed

dust feedback.
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We have also discussed that the signal associated with tropical warming, since it

occurs at the same rate as main development region warming, cannot explain the

observed magnitude of power dissipation index variations. For that reason, it is not

included in the causal diagram. However, global warming can cause storms of similar

intensity to produce more intense rainfall, which increases their destructiveness, even

though it might not affect the power dissipation index (Knutson et al., 2010). In

addition, midlatitude warming could allow category 1 and 2 hurricanes to travel fur-

ther poleward, strongly impacting ill-prepared communities (e.g., Kossin et al., 2014).

Since power dissipation index is dominated by major hurricanes, a poleward shift of

weak hurricanes will not be captured by power dissipation index estimates, and is un-

likely to depend much on main development region SST anomaly. In addition, since

the power dissipation index correlates better with the full main development region

SST anomaly than with any LFC alone (not shown), the higher frequency natural

variability LFCs influencing SST must be considered as influencing power dissipa-

tion index, albeit on shorter time scales than the LFC2 AMO-like mode. Finally, on

centennial timescale, it is likely that the global mode will become important for TC

activity.

5.5 Conclusion

In this chapter, we introduced the idea that Saharan dust radiative forcing varies

in response to sulfate aerosol hemispherically asymmetric forcing. This idea is sup-

ported by the fact that Saharan dust is known to covary with drought conditions in

the Sahel, and that sulfate forcing from Europe in the 1970s-1980s contributed to

Sahel drought in the second half of the 20th century. Such a feedback explains why

models, most of which do not capture dust variability, struggle to capture the full

variability of SST and hurricane activity in the North-Atlantic.

First, using a low-frequency component analysis method, we obtained objective com-
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ponents of SST variability. The first component corresponds to global warming and

can, within a few assumptions, mostly be ignored for the purpose of studying activ-

ity metrics like power dissipation index on multidecadal timescales. The remaining

components correspond to SST anomalies, and the most important of these is an

AMO-like mode which is associated with almost all of the SST variance in the main

development region, on time scales longer than 30 years. The AMO-like mode cor-

relates with drought conditions, and hence with eolian dust over the ocean, back to

the early 1900. Since different low-frequency components are uncorrelated, the main

development region anomaly associated with this mode must include the contribution

of dust and of sulfate aerosols. Then, using SCM simulations, we show that the direct

radiative effect of dust in a WTG-constrained system could explain about 40% of the

multidecadal SST anomalies in the main development region during summer.

Since those SST anomalies are associated with significant changes in potential inten-

sity and the genesis potential index, the evidence presented herein strongly suggests

that the Atlantic hurricane drought of the 1970s and 1980s was caused by anthro-

pogenic sulfur emissions mediated through Saharan drought and African mineral dust.

Our results leave little room for a multidecadal natural oscillation of the system, but

outline a potentially important role of natural, quasi-decadal variability. These re-

sults are consistent with the most recent research on the Atlantic basin multidecadal

variability.
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Chapter 6

Conclusion

6.1 Summary

This thesis is meant to advance my understanding of tropical cyclones on two dif-

ferent fronts, and to contribute to the scientific knowledge on the topic. To do so, I

first studied tropical cyclone thermodynamics with the goal of advancing fundamen-

tal tropical meteorology. Then, I transferred that knowledge to the study of tropical

cyclone activity climate variability with the goal of addressing a pressing societal

problem.

In chapter 2, “An Evaluation of Hurricane Superintensity in Axisymmetric Numerical

Models”, my coauthor and I worked towards reconciling idealized numerical simula-

tions of tropical cyclones with potential intensity theories. To do so, we compared

potential intensity bounds on gradient wind, azimuthal wind, and the magnitude of

the surface winds to the corresponding simulated values in axisymmetric simulations

with various parameterized mixing lengths. As parameterized mixing decreases, sim-

ulated intensities increase, approaching the corresponding PI bound. In some cases,

the PI bound is exceeded by up to 5% which is small and may be due to differences

between the representation of thermodynamic disequilibrium in PI theories and in

the numerical models. In general, PI is found to be an appropriate bound on

TC intensity in idealized simulations. This result is important because it reaf-
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firms that PI can be useful in predicting how strong a TC can become in a given

environment. In addition, having a set of idealized simulations which are coherent

with theory allows to quantify how the representation of more realistic processes in

those simulations can make the simulated intensity depart from theory.

In chapter 3, “A Thermodynamic Perspective on Steady-State Tropical Cyclones”,

we attempted to clarify the meaning of “steady state” in tropical cyclone simulations

and theories by establishing two categories of definitions frequently used in the lit-

erature: core steady-state and equilibrium steady-state. Core steady-state (CS) is

usually reached early, in a tropical cyclone life, as its intensity peaks, and applies

to situations where balance in the inner core of the storm is required, but the en-

vironment can still evolve slowly. Equilibrium steady-state (ES) is reached after a

decay occuring over tens of days and requires the tropical cyclone environment far

from the core to have reached equilibrium with the core. The difference between

ES and CS was found to be mostly due to the drying of the environment

in the subsidence region, which caused low-entropy air to mix with the

boudary layer inflow of the storm. Moistening the subsidence region or simu-

lating a completely dry tropical cyclone removes the intensity difference between CS

and ES. This contradicts the previous hypothesis presented in the literature (e.g.,

Smith et al., 2014), that simulated tropical cyclones decay because they run out of

angular momentum, and instead suggests that the decrease in angular momentum

in the inner core, as the tropical cyclone decays, is due to the system not producing

enough work to draw high angular momentum air inwards. These findings are useful

because they categorize which theories should be compared to which stages in the

life-cycle of the storm. Most potential intensity theories can be compared to the CS

period, while most theories for the TC structure far from the core of the storm need

to be compared to the ES period.

In Chapter 4, “A Weak Temperature Gradient Framework to Quantify the Causes of

Potential Intensity Variability in the Tropics”, we tried to understand why PI varies
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in nature. To do so, we developed a linear model for PI, based on two predictors: the

local SST, which is well observed and studied, and the tropical average midlevel sat-

uration MSE. The linear model partitions PI into two components, which correspond

to global and local environmental changes respectively. The first one is consistent

with a tropical atmosphere-ocean system in RCE and the second one represents a

departure from that RCE state. Model coefficients are obtained from single-column

model simulations sensitivity experiments in RCE and under a WTG constraint. The

linear model captures between 80% and 96% of the PI variance, depending on the

ocean basin. Further, it shows that, during the last four decades, in the

tropical Atlantic, global changes have accounted for only about 10% of

the PI variability, the rest being due to local changes. These results explain

why local SST anomalies are such a good predictor of PI, and by extension, of trop-

ical cyclone activity. The fact that PI is shown to vary very linearly with SST and

midlevel saturation MSE means that we can evaluate the contribution of different

environmental mechanism to the total PI change, via their contribution to the SST

change.

Finally, in chapter 5 entitled “Natural and Forced Contributions to the Hurricane

Drought of the 1970s-1980s”, we utilized the relation between local SST anomalies and

hurricane activity to investigate the causes of a large and poorly explained decrease

in Atlantic hurricane activity during the 1970s and 1980s. Using objective compo-

nent analysis we show that the most important mode of SST anomaly variability is

an AMO-like mode which includes almost all of the SST variability at multidecadal

timescales. This mode of variability correlates well with drought conditions in the

Sahel, and hence with dust cover over the North-Atlantic main development region.

In that region, we estimate that dust direct radiative effects during sum-

mer can explain up about 40% of the multidecadal SST variability. Since

both multidecadal SST variability and the drought in the Sahel have been shown in

the literature to be due to sulfate forcing, we propose that the dust variability and

its effects on SST are in fact a feedback to anthropogenic forcing. The circumstantial
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evidence tying dust variability back to anthropogenic forcing has important impli-

cations because, since the sulfate forcing responsible for dust variations peaked due

to pollution and declined due to clean air regulations, it means that the hurricane

drought of the 1970s and 1980s was a one-time event, not a recurring natural oscilla-

tion. In other words, we should expect TC activity to remain high in the upcoming

decades, and not decrease back again.

6.2 Future work

Nearing the end of this thesis, we recall that it is but a very small step on the path to

understanding tropical cyclones and our climate in general. It provided a few answers

but many questions which, although less visible than answers, are as valuable a part

of the scientific progress. To close this thesis, we introduce a few questions that arise

from the results of chapters 3, 4 and 5, along with ideas on how to answer them.

6.2.1 Follow-up to chapter 3

In this chapter, we have shown that a subsidence-induced decrease in simulated tropi-

cal cyclone environmental moisture leads to a decrease in tropical cyclone peak inten-

sity, and to a long intensity decay afterwards. This result raises the question of how

much environmental moisture fluxes, or equivalently transient moisture decrease, con-

tribute to the energy budget of real tropical cyclones. In general, studies of tropical

cyclone thermodynamic cycles use a differential form of the first law of thermody-

namics applied during the period of peak intensity to identify the sources of energy of

the cycle or compute its efficiency (e.g., Pauluis and Zhang, 2017). The integration

of a differential form of the first law along the secondary circulation assumes steady-

state. Hence, its application to the period of peak intensity, where we have shown the

thermodynamic cycle not to be in steady-state, obscures the contribution of transient

effects like environmental moisture decreases to the thermodynamic cycle. Here we

propose using a general form of the first law to evaluate how much of the enthalpy

exported by the system originates in the environment versus the ocean surface.
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Figure 6-1: Top panel: North-Atlantic PI monthly values computed using a nonlinear
algorithm (black) and with the newly introduced linear model (blue). Bottom panel:
North-Atlantic PI anomalies with respect to the seasonal cycle, computed using a
nonlinear algorithm (black) and with the newly introduced linear model (blue).

6.2.2 Follow-up to chapter 4

In this chapter we have shown that interannual PI variations can be captured by a

linear model that depends only on SST and mid-tropospheric saturation MSE vari-

ations. As shown in Fig.6-1 the linear model happens to also capture well the PI

seasonal cycle, and anomalies with respect to the seasonal cycle, especially in the At-

lantic. This means that the effects of midlevel entropy changes on PI can be captured

even at monthly time scales. Since the mechanisms controlling the thermodynamic

effects of ENSO on tropical cyclones are still poorly understood, we suggest using this

framework to try to understand how the tropical atmosphere stabilization brought

about by ENSO can impact potential intensity.

To illustrate this concept, on Fig. we show a preliminary composite of the effect of

the three strongest El-Nino events captured by the ERA5 record, on the Atlantic PI.

As we can see, as the global contribution to SST increases, due to a midlevel increase

145



Figure 6-2: Left: Right:

in entropy, the local SST anomaly component becomes negative. Starting in January,

as the increase of the global component slows down, the local component of SST

starts increasing again towards zero, possibly due to reduced turbulent surface fluxes.

Eventually, after the month of April, the Atlantic SST has more or less equilibrated

with the large scale and the local anomaly is near zero. From the PI perspective, what

this means is that immediately after a sharp increase in the strength of an El-Nino

event, PI drops abruptly (∼ 5 m s−1 here). However, as time goes on and the surface

temperature adjusts to the midlevel change, PI reincreases and the PI perturbation

even exceeds zero. All three El-Nino events composited here peaked in March and

do not have much relevance for TC season. However, this preliminary result suggests

that PI changes associated with midlevel perturbations in the Atlantic are only very

transiently a function of the magnitude of the perturbation.

6.2.3 Follow-up to chapter 5

In chapter 5, we have sought to relate anthropogenic sulfate aerosol radiative forcing

to the hurricane drought of the 1970s-1980s. To refine our nascent understanding of

the relation between sulfate aerosol forcing and dust emissions, we need to address the

failure of most GCMs to represent dust emissions due to the low mean and variance

of grid-scale surface winds (Evan, 2018). To do so, two possibilities are to:

1. Modify the dust emission schemes of existing geochemical transport models to

account for the subgrid scale distribution of wind speeds. This was done with
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some success by (Ridley et al., 2013, 2014) who developed a scale-aware parame-

terization using a Weibull probability density function with MERRA reanalysis

winds to drive the GEOS-Chem model. My suggestion here is to similarly mod-

ify the output of CMIP5 models to force GEOS-Chem with wind distributions

derived from ensembles of simulations with and without anthropogenic aerosols,

to assess the effect of the aerosols on dust emissions.

2. Downscale surface winds in the Sahel by running the regional climate config-

uration of the WRF model (Liang et al., 2012), which is shown to adequately

represent precipitation variability in the Sahel (Kim et al., 2014), forced by

CMIP5 simulation outputs with and without anthropogenic aerosols. This is a

computationnally expensive option which would allow to obtain more resolved

variability in near surface winds, to force a dust emission scheme.

I expect the results to confirm that the sulfate radiative forcing of the 70s and

80s caused a sufficiently large enhancement of dust production to explain most of the

tropical North-Altantic PI decrease during that period. A caveat is that the methods

suggested here cannot capture an eventual feedback of dust radiative forcing on dust

production.
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