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DRY CONVECTION
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GENERAL PRINCIPLES

1.1 Definition of convection

All motions that can be attributed to the action of a steady gravitational
field upon variations of density in a fluid may be called convective mo-
tions and thus almost all the kinetic energy of the earth’s atmosphere and
oceans and the bulk of that of the many fluid systems in the known uni-
verse results from convection; other fluid motions are attributable to tidal
and electrodynamic forces. In the atmospheric sciences, however, one gen-
erally uses a more restricted definition of convection which encompasses
only a class of relatively small-scale, thermally direct circulations which
result from the action of gravity upon an unstable vertical distribution of
mass, with “vertical” taken to mean “along the gravitational vector.” (We
make an exception in the case of slantwise convection, which is driven by
gravitational and centrifugal accelerations, though the underlying physics
is the same.) This restricted definition, which will be used throughout this
course, excludes the many motion systems that result from differential heat-
ing in the horizontal, including simple Hadley circulations and sea breezes,
as well as circulations that arise as a result of unstable distributions of
vorticity. Due to the geometry of the atmosphere of the earth, this distinc-
tion between “convective” and “nonconvective” motions is rendered less
academic, as the former is generally highly turbulent, whereas the latter
can often be regarded as laminar except near boundaries. The strong in-
fluence of an entire spectrum of smaller scale motions on most forms of
convection helps make this phenomenon among the most perplexing in the
atmospheric sciences, while the question of the interaction of convection
with circulations of larger scale has proven every bit as challenging. It is
fair to say that since Archimedes’ time, man’s understanding of convection
and related phenomena has progressed surprisingly slowly.

Even the restricted definition of convection embraces an enormous va-
riety of phenomena in planetary atmospheres, from the structure of some
planetary boundary layers to the dynamics of hurricanes. In the case of the
earth’s atmosphere, the elucidation of the nature of convection is greatly
impeded by the strong influence of phase changes of water, which accounts
for the prominence of convection in global budgets of clouds and precip-
itation and in the general circulation of the atmosphere. A most striking
aspect of moist convection is its organization over many scales, ranging
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from microscale turbulence to cloud-scale arrays of convective drafts to
squall lines and hurricanes which span hundreds of miles. The great com-
plexity of the interactions among convective motions on all these scales has
proven to be a major obstacle to progress in our ability to describe and
predict the behavior of the atmosphere; it is therefore a major objective of
this text to integrate the understanding of processes of all scales important
in moist convection.

1.2 The buoyancy force

As a first attempt to understand the nature of convection in the atmo-
sphere, it is useful to examine the accelerations imparted to an isolated
body of density ρ1 immersed in a fluid of density ρ2. We will suppose that
the body is prevented from actually moving by a fixed attachment to the
walls of the vessel containing the fluid (Figure 1.1). The total force acting
on the body is the sum of its weight and the pressure forces acting on its
surfaces. As the fluid is horizontally uniform, the horizontal pressure gradi-
ent is zero everywhere. The vertical pressure gradient of the ambient fluid
must be balanced by gravity, i.e.,

dp2
dz

= −ρ2g,

or since ρ2 is constant here,

p2 = ρ2gh,

where h is the depth below the surface of the fluid. Here, p2 is the pressure in
the environment. The force acting on the top surface of the box in Figure
1.1 will then be −ρ2gh1∆X∆Y , while that on the lower surface will be
ρ2gh2∆X∆Y . The total force acting vertically on the box will then be the
sum of the surface forces and the weight of the box:

F = ρ2g (h2 − h1) ∆X∆Y − ρ1g∆X∆Y∆Z,

or
F = g (ρ2 − ρ1) ∆X∆Y∆Z = W2 −W1,

whereW stands for “weight.” As Archimedes discovered, this force is simply
the difference between the weight of the body and that of the fluid it
displaces.

If the body were suddenly released, its initial acceleration would be

A =
F

M
= g

(
ρ2 − ρ1
ρ1

)
.
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Fig. 1.1 Buoyancy force acting upon a submerged body.

Once the body is in motion, frictional and dynamic pressure forces also
contribute to the net acceleration.

In the atmosphere, of course, we will not be interested in the buoy-
ancy of discrete, coherent bodies, but in the motions which result when
gravity acts upon variations in the density of the fluid. In general, these
motions will themselves alter the density anomalies through the effects of
mixing and advection, thus complicating the problem immensely. We may
nevertheless speak of buoyancy in a fluid and distinguish between buoy-
ancy and other forces operating in fluids. From the physical definition of
buoyancy-induced motions as those which arise from the action of gravity
upon density variations, we may define buoyancy mathematically by using
the vertical momentum equation. To do so, we will make the important
assumption that local density and pressure variations are small compared
to their respective mean values. This is equivalent to supposing that the
accelerations due to buoyancy are very much smaller than the acceleration
of gravity, an assumption which is well justified in most geophysical flows.

We begin by writing the vertical momentum equation for an ideal fluid

dw

dt
= −1

ρ

∂p

∂z
− g, (1.2.1)

where w is the vertical velocity. The pressure and density are now divided
into mean and deviation parts with the mean fields required to be horizon-
tally uniform and hydrostatic, so that all vertical accelerations arise from
the perturbations thus defined:

p = p+ p′
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and
ρ = ρ+ ρ′,

where by definition

−1

ρ

∂p

∂z
− g = 0.

Then (1.2.1) may be rewritten

dw

dt
= − 1

ρ+ ρ′
∂

∂z
(p+ p′)− g. (1.2.2)

The inverse density is now expanded in a geometric series:

1

ρ+ ρ′
=

1

ρ

(
1

1 + ρ′/ρ

)
=

1

ρ

[
1− ρ′

ρ
+

(
ρ′

ρ

)2

+ . . .

]
.

As ρ′/ρ is assumed small, we here drop all terms of second and higher
order. Then (1.2.2) becomes, after again dropping terms of second and
higher order:

dw

dt
= −1

ρ

∂p

∂z
− g − 1

ρ

∂p′

∂z
+

1

ρ

∂p

∂z

(
ρ′

ρ

)
.

The first two terms on the right cancel by definition, and substituting −g
for ρ−1 ∂p/∂z, the above becomes

dw

dt
= −1

ρ

∂p′

∂z
− g

(
ρ′

ρ

)
. (1.2.3)

The first term on the left is usually referred to as the nonhydrostatic pres-
sure gradient acceleration. This usually arises from dynamical effects of
forced momentum changes. The second term on the right is the buoyancy
acceleration which represents the action of gravity on density anomalies.
Henceforth, we shall use the notation

B ≡ −g
(
ρ′

ρ

)
.

Density anomalies in a fluid may be related to variations in pressure,
temperature, and concentrations of dissolved solids or suspensions of small
particles through the equation of state for a fluid. The contribution to
buoyancy of pressure variations may usually be neglected for flows in which
the maximum velocity variations are substantially subsonic. For an ideal
gas, for example, the equation of state is

p = ρRT, (1.2.4)
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where R is the ideal gas constant for the mixture of gases present in air
and T is the temperature. From (1.2.4) we have

ρ′

ρ
=
p′

p
− T ′

T
. (1.2.5)

We now compare the magnitudes of the two terms on the right of (1.2.5). To
accomplish this, consider the magnitude of the horizontal pressure gradient
that can be sustained within a “bubble” of gas characterized by pressure
and temperature anomalies p′ and T ′. Using the inviscid momentum equa-
tion in the x direction,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p′

∂x
,

we suppose that all the terms on the left have similar magnitude. If the
bubble is characterized by a typical velocity scale u0, then the order of
magnitude of the pressure gradient acceleration is

1

ρ

∂p′

∂x
∼ u0

∂u0
∂x

.

Using a mean value for density, this relation may also be written

∂

∂x

(
p′

ρ

)
' 1

2

∂

∂x
u20.

Integrating the above, we may relate the magnitude of the pressure per-
turbation to the velocity perturbation:

p′

ρ
∼ u20.

Using the ideal gas law p = ρRT , we find

p′

p
∼ u20
RT

= γ
u20
c2
,

where γ is the ratio of specific heats at constant pressure and constant
volume, respectively, and c is the speed of sound in an ideal isentropic
fluid:

c = (γRT )
1/2

.

Returning to (1.2.5), we see that in an ideal gas, the contribution of pressure
perturbations to buoyancy may be neglected so long as

u20
c2
� T ′

T
.
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When this is true, the buoyancy acceleration may be written in terms of
temperature alone in an ideal gas:

B ' g
(
T ′

T

)
.

For the most part, we will be concerned with buoyancy accelerations in an
ideal gas; nevertheless, it should be kept in mind that buoyancy is defined
in terms of density variations in a fluid. In general, we may write

dα

α
=

1

α

(
∂α

∂T

)
p,S

dT +
1

α

(
∂α

∂p

)
T,S

dp +
1

α

(
∂α

∂S

)
p,T

dS,

where α is the specific volume (= 1/ρ) and S is an unspecified variable that
allows us to incorporate (ad hoc) the effects of fluid inhomogeneities in the
equation of state. For example, S may represent the salinity of seawater,
and the quantity

1

α

(
∂α

∂S

)
p,T

expresses the fractional variation of specific volume with salinity. The quan-
tity

1

α

(
∂α

∂T

)
p,S

≡ β

is called the coefficient of thermal expansion. For small fractional variations
in density, then, we may write generally

B ' g

[
1

α

(
∂α

∂T

)
p,S

T ′ +
1

α

(
∂α

∂S

)
p,T

S′

]
, (1.2.6)

ignoring the effect of pressure fluctuations.



GENERAL PRINCIPLES 9

1.3 The Boussinesq and anelastic approximations

In the remainder of this chapter we employ the Navier-Stokes equations
together with the first law of thermodynamics and the mass continuity
equation to describe the behavior of simple one-dimensional convective el-
ements. It is assumed that the student is familiar with the derivation of
these equations.

The solution of the fully nonlinear set of equations is extremely ardu-
ous for most problems of meteorological interest; it is thus advantageous to
simplify the equations for specific problems. This is usually accomplished
first by scaling, which eliminates from consideration terms whose magni-
tudes are small compared to other terms of the same equation, and second
by linearization of the equations. The latter process is discussed in some de-
tail in Chapter 3; we provide here a scaling of the basic equations applicable
to problems dealing with convection.

We begin by writing the mass continuity equation:

1

ρ

dρ

dt
= −∂ui

∂xi
, (1.3.1)

where ui is the velocity component in the direction xi. From the ideal gas
law we have

1

ρ

dρ

dt
=

1

p

dp

dt
− 1

T

dT

dt
, (1.3.2)

and from the adiabatic form of the first law of thermodynamics,

1

p

dp

dt
=

cp
RT

dT

dt
, (1.3.3)

where cp is the specific heat at constant pressure. Combining (1.3.3) and
(1.3.2) with (1.3.1) there results

−∂ui
∂xi

=
cv
cp

1

p

dp

dt
=
cv
cp

(
∂

∂t
+ VH · ∇H + w

∂

∂z

)
ln p, (1.3.4)

where cv is the specific heat at constant volume and we have used the
relation cv + R = cp for an ideal gas. The subscript H denotes horizontal
components of velocity and the gradient operator.

In order to examine the relative magnitudes of the various terms of
(1.3.4), we equate the magnitude of both the dependent and the inde-
pendent variables to that of chosen constant scale factors. Because of the
geometry of the atmosphere and the influence of gravity, we choose vertical
length and velocity scales independently of horizontal scales. We then have

(u, v) = u0 (u′, v′) ,

(x, y) = L (x′, y′) ,

w = w0 (w′) ,

z = D (z′) .
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The primed variables are dimensionless and order unity. We next turn our
attention to the scaling of the pressure terms on the right side of (1.3.4).

On the basis of the vertical momentum equation, we take

∂ ln p

∂z
∼ − g

RT
≡ − 1

H
,

where H is the scale height of the atmosphere. We then scale both the
local time derivative and the horizontal pressure gradient by equating their
magnitudes to the inertial terms of the horizontal momentum equation:

∂ ln p

∂t
∼ u0

∂ ln p

∂x
∼ u20
RT

∂u0
∂x
∼ u30
RTL

.

The separate scalings for the various pressure derivatives are then

∂ ln p

∂z
=

1

H

(
∂ ln p

∂z

)′
,

∂ ln p

∂t
=

u30
RTL

(
∂ ln p

∂t

)′
,

∂ ln p

∂x
=

u20
RTL

(
∂ ln p

∂x

)′
.

Finally, we will assume that for convective motion, the various terms of the
velocity divergence have similar magnitude, so that

u0
L
∼ w0

D
.

With this scaling (1.3.4) may be written in terms of order unity dimension-
less variables:

− ∂u′i
∂x′i

=

u20
c2

[(
∂ ln p

∂t

)′
+ u′

(
∂ ln p

∂x

)′
+ v′

(
∂ ln p

∂y

)′]
+
cv
cp

D

H
w′
(
∂ ln p

∂z

)′
.

(1.3.5)
Here,

c =

(
cp
cv
RT

)1/2

is the adiabatic velocity of sound in an ideal gas.
On the basis of this scaling, we can usually neglect certain terms in

(1.3.5). For convection in the atmosphere and oceans on this planet, it is
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almost always true that the flow velocities are far less than the speed of
sound, that is,

u20
c2
� 1.

It is therefore appropriate to neglect the first term on the right of (1.3.5).
This is called the anelastic approximation; the resulting equation no longer
contains a time derivative and is therefore a diagnostic equation1 which
relates the velocity divergence to the vertical advection of mass. If it is also
true that the depth through which the convective motion occurs is much
less than the scale height (about 10 km for the earth’s atmosphere), then
the second term on the right of (1.3.5) may also be neglected; that is,

D

H
� 1,

and therefore
∂ui
∂xi
' 0. (1.3.6)

This is called the Boussinesq approximation. If, however, we were to use
this approximation in conjunction with the Navier-Stokes equations, we
would find that the system contains a spurious source of kinetic energy.

If we divide the density into time-independent and time-dependent
parts, the Navier-Stokes equations may be written:

(ρ+ ρ′)
dui
dt

= − ∂p

∂xi
− (ρ+ ρ′) fi

+
∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xj
− 2

3

∂uk
∂xk

δij

)
+ λ

∂uk
∂xk

δij

]
,

(1.3.7)

where µ is coefficient of viscosity, λ is the bulk viscosity, and the fi’s are
the body forces.

If the Boussinesq approximation (1.3.6) is now applied, the third term
on the right of (1.3.7) drops out, and it becomes necessary to drop the
time-dependent ρ′ where it multiplies the inertial term on the left in or-
der that the system be energetically consistent. Therefore, the Boussinesq
approximation neglects density variations in the fluid except when they are
coupled with gravity [fi in (1.3.7)].

If the pressure is divided into hydrostatic and nonhydrostatic parts,

p = p (z) + p′ (x, y, z, t) ,

with

−∂p
∂z

= ρg,

1 The distinction between a diagnostic and a predicative equation becomes very

important when one solves such equations numerically.
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the Boussinesq Navier-Stokes equations may be written in component form
as

du

dt
= −1

ρ

∂p′

∂x
+ ν∇2u, (1.3.8)

dv

dt
= −1

ρ

∂p′

∂y
+ ν∇2v, (1.3.9)

dw

dt
= −1

ρ

∂p′

∂z
+B + ν∇2w, (1.3.10)

with

cp
dT

dt
=

1

ρ

dp

dt
+ cpκ∇2T (first law for ideal gas), (1.3.11)

and
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (continuity). (1.3.12)

Here κ is the molecular coefficient of heat diffusion, ν is called the kinematic
viscosity, cp is the heat capacity at constant pressure, and B is related to
T by (1.2.6).

If we assume that the pressure perturbations are related to the inertial
terms of the horizontal momentum equation, and scale B by a quantity B0,
then we may use the following scaling to compare the remaining terms of
the momentum equations:

(u∗, v∗) = u0 (u, v) ,

t∗ =
L

u0
(t′) (advective time scale),

(x∗, y∗) = L (x, y) , (1.3.13)(
p′

ρ

)∗
= u20

(
p

ρ

)
,

w∗ =
u0D

L
(w) ,

z∗ = Dz,

where the asterisks denote the dimensional values. The scaled forms of the
momentum equations [(1.3.8)–(1.3.10)] are then

du

dt
= − ∂

∂x

(
p

ρ

)
+
L2

D2

1

Re
∇2u, (1.3.14)

dv

dt
= − ∂

∂y

(
p

ρ

)
+
L2

D2

1

Re
∇2v, (1.3.15)

D2

L2

dw

dt
= −1

ρ

(
∂p

∂z

)
+

1

F
B +

1

Re
∇2w. (1.3.16).
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Here, Re is the Reynolds number (= u0L/ν) and F is the Froude number
(= u20/B0D). We have assumed that the main contribution to the diffusion
terms comes from diffusion in the vertical in applying this scaling. For
most atmospheric and oceanic flows, the Reynolds number is very large
and molecular diffusion may be neglected. If the aspect ratio D/L is also
small, then the vertical acceleration may be neglected and (1.3.16) reduces
to the hydrostatic equation. The Froude number F is a measure of the
relative importance of buoyancy and inertial accelerations, with relatively
large pressure perturbations associated with large F .

Familiarity with the approximations involved in the derivation of the
Boussinesq equations [(1.3.8)–(1.3.12)] is essential as these equations will be
used extensively in the analysis of the behavior of atmospheric convection.

EXERCISES

1.1 Determine the total buoyancy force acting on a sample of air of di-
mensions 106 m3 with a uniform temperature of 28◦C, immersed in
air with a uniform temperature of 25◦C. Assume that air is an ideal
gas with a gas constant R of 287 J kg−1 K−1, at a pressure of 1000
millibars (1 millibar = 102 kg m−1 s−2). The acceleration of gravity
may be taken as 9.8 m s−2. Also determine the force per unit mass
acting on the sample.

1.2 Suppose that the buoyancy acceleration acting on the sample in Ex-
ercise 1.1 is maintained at a fixed value. Determine the velocity of the
sample at altitudes of 1, 2, 3, 4, and 5 km, if it starts from rest at
z = 0 km.

1.3 Estimate (but do not try to calculate exactly) the perturbation pres-
sure gradient acceleration acting on the sample of air described in
Exercise 1.1 when it reaches an altitude of 2 km. Assume that the
sample has a fixed volume of 106 m3 and that it has a square cross
section on horizontal planes passing through the sample. Also assume
that the pressure on the upper face of the volume is the stagnation
pressure (i.e., the pressure the ambient air has if it has no velocity
relative to the moving sample), while the pressure on the lower face
is the ambient pressure. (Ignore the direct contribution of pressure
perturbations to buoyancy.) Do this for the following five cases:

(a) The sample is ten times as tall as it is wide.
(b) The sample is twice as tall as it is wide.
(c) The sample is a cube.
(d) The sample is twice as wide as it is tall.
(e) The sample is ten times as wide as it is tall.

Express your answers as a fraction of the buoyancy acceleration.
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1.4 Determine the Mach number of the sample of air described in Exercises
1.1 and 1.2 when it reaches an altitude of 5 km. The Mach number is
the square of the ratio of the sample’s velocity to the speed of sound.
Take γ = 1.4, T = 0◦C, and R = 287 J kg−1 K−1. Is the anelastic
approximation justified in this case?


