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2. The Setting: Overview of the Tropical Atmosphere 
 

The tropical atmosphere is one of the last frontiers of meteorology. Formally, it is the portion of 

the atmosphere that lies between the Tropics of Cancer and Capricorn (23.87o north and south, 

respectively), comprising 40% of the mass of the atmosphere. But in a more colloquial sense, 

the tropical atmosphere is loosely defined as the part of the atmosphere in which radiation, 

moist convection, and thermally direct overturning circulations dominate the physics. For our 

purposes, we will take this to include places in which shallow convection prevails beneath a 

region in which net radiative cooling approximately balances warming associated with large-

scale subsidence. Such regions are often referred to as “sub-tropical”. It is important, though, to 

recognize that there are no real geographic boundaries between sub-tropical and tropical 

regimes; indeed, in many places there is an alternation between periods of deep and shallow 

convection.  

In coming to a conceptual understanding of complex fluid systems, it is often helpful to begin by 

identifying simple, often stationary, nonlinear solutions of the system and ask whether those 

systems are stable. If not, what is the nature of the instabilities that develop, and what kind of 

statistical equilibrium do they help establish?  

For example, in conceptualizing the behavior of synoptic and planetary scales at middle and 

high latitudes, it is helpful to begin with a simple, zonally symmetric, stably stratified atmosphere 

with a meridional temperature gradient in thermal wind balance with a zonal wind. In the 

absence of friction, topography, and diabatic processes, such a state is an exact solution of the 

governing equations. In elementary treatments of geophysical fluid dynamics and meteorology, 

the processes that establish and/or maintain such states are seldom dwelled upon, and many 

students think of such a state simply as the time mean state of the system1.  

Disturbances to such a state are usually idealized as being inviscid and adiabatic and thus 

contain a set of invariant quantities, the most important of which is the potential vorticity. If the 

time scales of the disturbances are sufficiently long compared to the inverse of the Coriolis 

parameter, then the disturbances themselves are approximately in geostrophic (and hydrostatic) 

balance, and the potential vorticity can be inverted, subject to certain boundary conditions, to 

obtain the balanced flow and thermodynamic variables. The conservation and invertibility of 

potential vorticity offers a compact way of understanding synoptic and planetary scales 

phenomena at middle and high latitudes. Once can then go on to ask how these disturbances 

affect the mean state. Frictional and diabatic processes are usually regarded as of secondary 

importance.  

By contrast, diabatic processes are of first-order importance of much of what happens in the 

tropics, and thus the tools we are accustomed to using at higher latitudes are of less utility in the 

tropics. In particular, it is seldom useful to regard the dynamics of tropical disturbances as 

adiabatic perturbations on a stably stratified background state. Even so, the concept of balance 

                                                 
1 Formally, the time mean, zonal mean state of an eddy-containing atmosphere cannot be in strict thermal 
wind balance because of Reynold stresses in the meridional momentum equation. 
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applies to a surprisingly large spectrum of tropical phenomena, though in some cases the 

balance is nonlinear and the geostrophic approximation is poor.  

Where the middle latitudes are characterized by strong horizontal temperature gradients, the 

tropics are relatively homogeneous, because strong temperature gradients cannot usually be 

maintained in the presence of small values of the Coriolis parameter. (But strong vortices can 

and do have strong local temperature gradients, an example of nonlinear balance.) Thus a 

natural starting point for the tropics is the state of radiative-convective equilibrium (RCE), in 

which there is a statistical equilibrium between radiation and deep moist convection and 

horizontal energy transport is neglected. In RCE, diabatic processes are not only non-negligible, 

they are central. And, unlike the case of a zonal wind in thermal wind balance, RCE is a 

statistical equilibrium state, definable only in terms of a space-time or ensemble average.  

Perturbations to RCE cannot logically be considered to be dry adiabatic, and in many cases it is 

not consistent to neglect associated perturbations in the radiation fields. Thus the middle 

latitude toolbox based on conservation of dry adiabatic invariants is not usually applicable to the 

tropics, and the paired principle of potential vorticity invertibility, based on geostrophic balance, 

can only be applied to certain large-scale tropical circulations and, in modified form, to strongly-

rotating local disturbances such as tropical cyclones.  

But if we must discard or modify our cherished middle latitude tools, we have one or two new 

ones that may serve to pave a pathway to conceptual understanding of many tropical 

phenomena. An important one, that we shall make extensive use of throughout this book, is the 

principle of convective criticality, which holds that the deep-convecting tropical atmosphere is in 

a state that is nearly neutral to deep moist convection. The lack of strong horizontal gradients in 

the properties of the tropical atmosphere and underlying surface makes it difficult to build up 

large amounts of convective inhibition or the convective available potential energy (CAPE) that 

often goes with it, so that deep convection is much more nearly in a state of statistical 

equilibrium with its large-scale environment, much as dry boundary layer convection is regarded 

as being in equilibrium with whatever is forcing it.  

In its simplest form, convective criticality implies that the (virtual) temperature profile of the 

deep-convective tropical atmosphere lies along some suitably defined moist adiabat. To the 

extent this is true, and if the motions may be considered hydrostatic, we will show that the 

vertical structure of the pressure field is pre-determined, placing strong constraints on the 

dynamics of motions that are strongly coupled to deep convection. In the limiting case of small 

amplitude perturbations with a rigid lid at the tropopause, the linear equations reduce to the 

shallow water equations.  

In locally balanced flows, such as tropical cyclones, the principle of convective criticality can be 

generalized to a statement that the vertical temperature profile along a vortex line (or angular 

momentum surface of a balanced, axisymmetric vortex) of the balanced flow lies along some 

suitably defined moist adiabat. If such a moist adiabat can be defined by the constancy of some 

saturated moist entropy variable, then it follows that a potential vorticity based on that variable is 

zero, since the dot product of the vorticity with the gradient of that entropy vanishes. Thus, to 

some level of approximation, the deep-convective portions of the tropical atmosphere may be 

characterized as having zero saturation potential vorticity. This quantity is constant not because 

it is conserved (it isn’t), but because convection forces it to vanish. Yet, under suitable balance 
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conditions, it is fully invertible. In this case, as in the Eady problem of baroclinic instability, all the 

dynamics collapses to time-dependent boundary conditions.  

Thus, when we make the intellectual journey from the middle latitudes to the tropics, we must 

abandon some of our traditional assumptions and tools, but on the other hand we gain some 

new ones, and other important concepts from higher latitudes do travel, in altered form, with us. 

To begin this journey we must familiarize ourselves with, and indeed learn to love, the physics 

of radiative transfer and water so neglected in most text books on middle latitude dynamics.  

2.1 Radiative transfer 
Understanding how electromagnetic radiation interacts with the atmosphere, the clouds within it, 

and the surface is critical for understanding much of what goes on in the tropics. This text is 

meant to provide an overview but can be no substitute for a full treatment of the subject; it 

assumes that the student has some working familiarity with the physics of radiative transfer. 

Those wishing a more comprehensive treatment are encouraged to read the excellent text by 

Pierrehumbert (2010). 

Let’s begin by reviewing the earth’s radiation budget, as determined from satellite and surface 

measurements of radiation and turbulent fluxes. Figure 2.1 summarizes in very broad form the 

fluxes of energy through the global atmosphere.  

Averaged over a year and over the whole surface area of the planet, about 
2342 Wm−
 of solar 

energy enters the “top of the atmosphere” (TOA), which can be thought of as the level below 

which 99.9% of the mass of the atmosphere lies. Of this, about 
230Wm−
(a little less than 9%) is 

reflected by the surface and another 
277Wm−
(around 22%) is backscattered to space from 

clouds and, to a lesser extent, aerosols and the gaseous constituents of the atmosphere itself. 

This yields a net planetary reflectivity (albedo) of around 
2107 Wm−
 or 30%.  

About 
267Wm−
, or 20%, of the incoming solar radiation is absorbed by the atmosphere and 

clouds and aerosols within it. Most of the gaseous absorption in the troposphere is by water 

vapor, which is somewhat more abundant in the tropical atmosphere than at higher latitudes, so 

this percentage is higher in the tropics. This helps create a diurnal cycle in tropical weather even 

over deep ocean waters whose surface temperature may not have a strong diurnal cycle. 

Only a little less than half (
2168Wm−
) of the TOA solar radiation makes it to the surface, on 

average. The surface radiates nearly as a blackbody with a characteristic temperature, in the 

tropics, of around 300 Kelvins. At this temperature, most of the 
2460Wm−
of emitted radiation 

(as well as the 
2390Wm−
for the globe as a whole) is in the infrared form. Much of this is 

absorbed in the lower atmosphere by greenhouse gases and clouds, which also re-emit infrared 

radiation. In the global mean, 
2324 Wm−
are re-radiated to and absorbed the surface; this 

number is quite a bit larger in the tropics. This back-radiation from the atmosphere constitutes 

what is known in common parlance as the “greenhouse effect”. Thus, again in the global mean, 

only about 
266Wm−
of the 

2168Wm−
of incoming solar radiation at the surface is lost in the form 

of infrared radiation, the rest is transmitted to the atmosphere by turbulent motions in the 

boundary layer. Over tropical oceans, the fraction lost by infrared radiation is appreciably less, 
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thanks to the greater water vapor content (and thus greenhouse effect) of the atmosphere, and 

most of the incoming solar radiation is balanced by evaporation of ocean water.  

 

Ultimately, the earth system radiates 
2235Wm−

back to space, in the form of mostly infrared 

radiation, to balance the incoming solar radiation less the fraction reflected back to space.  

In its most fundamental form, radiation can be characterized by its wavelength, energy intensity 

at that wavelength, and its direction. In particular, the radiant intensity, I , is the flux of energy 

per unit solid angle per unit wavelength of the radiation, and its relationship to the radiant flux 

density through a horizontal surface is illustrated in Figure 2.2. The monochromatic flux density 

(radiant energy flux per unit horizontal area per unit wavelength), F , is given by 

 cos ,F I d  


=     (2.1) 

where d  is the incremental solid angle. The total flux density (energy flux per unit horizontal 

area), F ,  is then just given by  

 
0

.F F d 


=    (2.2) 

 

 

Figure 2.1: Broad overview of the earth’s energy budget. 
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As a beam of photons of a given wavelength travels through the atmosphere, it may be partially 

absorbed, scattered, and added to by emissions from greenhouse gases, aerosols, and clouds. 

The fundamental equation governing the change of radiant intensity per unit distance, s  , is 

 

 

 

 ( ) ,
dI

I
ds


       = − + + +   (2.3) 

where   is the absorption coefficient,   is the scattering coefficient (both with dimensions of 

inverse length),   is the emission coefficient, and   is the scattering source function. 

Scattering by the gaseous constituents of the atmosphere is well approximated by Rayleigh 

scattering, in which the size of the scatterers (molecules of the constituents of air) is very small 

compared to the wave length of the radiation. This affects primarily the shortwave end of the 

visible spectrum through the ultraviolet and is responsible for the blue color of the sky. 

Scattering by clouds is more nearly in the Mie regime, where the particle sizes are comparable 

to the wavelengths being scattered, which includes much of the visible and slightly longer 

 

Figure 2.2: Relationship between the monochromatic flux density through a horizontal surface, the 

monochromatic radiant intensity, I , the incremental solid angle, d , and the zenith angle,   .  
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components of the solar spectrum. Scattering of terrestrial (infrared) radiation in our atmosphere 

is negligible.  

Provided local thermodynamic equilibrium (LTE) conditions apply, Kirchoff’s Law, which relates 

emissions to blackbody radiation is valid. This can be written 

 

 ( ),B T   =   (2.4) 

where ( )B T  is the blackbody intensity, given by Planck’s Law: 

 

2

5

2
( ) ,

1
hc

kT

hc
B T

e



=

 −
  

  (2.5) 

in which h  is the Planck constant, c  is the speed of light, k  is Boltzmann’s constant, and T  is 

the temperature. Local thermodynamic equilibrium is a good approximation for all the regions in 

which appreciable quantities of solar and infrared radiation are absorbed and emitted in our 

atmosphere. Using (2.5) allows us to write (2.3) as  

 ( ) ( ) .
dI

I B T
ds


        = − + + +   (2.6) 

If we can neglect scattering, (2.6) further simplifies to  

 ( ).
dI

I B T
ds


 


= − +   (2.7) 

The form of (2.7) shows that the natural scale over which radiant intensity changes is a 

dimensionless quantity called the optical depth,   , defined so that 

 .d ds     (2.8) 

In the absence of emissions, the radiant intensity decays by a factor of 1/ e  over an optical 

depth of unity. The physical distance s  over which this happens can be shown to be 

proportional to the mean free path of photons of wavelength  . Thus optical depth, rather than 

actual distance, is the natural coordinate for radiative transfer. Using (2.8) we can write (2.7) in 

the form 

 ( ).
dI

I B T
d


 


= − +   (2.9) 

We can make one more assumption that further simplifies matters. In a plane-parallel 

atmosphere, we assume that temperature and the concentration of absorbers are locally 

horizontally homogeneous, so that the variations in radiant intensity can be well approximated 

by vertical variations. In that case, since / cos( )ds dz = (see Figure 2.2), we can write (2.7) as 
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 cos( ) ( ),
dI

I B T
dz


 






= − +   (2.10) 

where   and T are assumed to be functions of altitude (z) alone. In this case, it makes better 

sense to define the optical depth from  

 

 .d dz     (2.11) 

We will use this second definition and write the equation of radiative transfer for a plane-parallel 

atmosphere in the absence of scattering as 

 cos( ) ( ).
dI

I B T
d


 






= − +   (2.12) 

Defining sec( )  , we can write (2.12) as  

 ( ) ,
d

I e B e
d

  

 






=   (2.13) 

which can be integrated, starting from an optical depth of zero, to 

 
'

0
(0) ( ) '.I I e e B T e d


 


  

   − −
= +    (2.14) 

Thus in a non-scattering, plane-parallel atmosphere, the monochromatic radiant intensity at any 

point is just that at the boundary, attenuated according to the optical depth times the secant of 

the zenith angle and added to by blackbody radiation from any emitters along the path, 

weighted by a function of the zenith angle, temperature, and the optical depth at that 

wavelength. To get the total radiant flux density through a horizontal plane at that wavelength, 

we would integrate the result using (2.1) and to get the flux over all wavelength we would use 

(2.2). The rate of radiative heating is just the vertical derivative of the flux.  

One very important point about radiative transfer is that it is non-local. Perturbing the 

temperature or concentration of absorbers/emitters at any level in the atmosphere affects the 

amount of radiation passing through (and potentially partially absorbed by) every other level. In 

general, radiative heating cannot be modeled as a Fickian diffusion or Newtonian relaxation. 

The non-local character of radiation plays an important role in various tropical weather systems, 

as we will describe later in this chapter.  

Apart from scattering, the physics clearly is wrapped up in the absorption coefficient,  , which 

also dictates what fraction of the blackbody radiation is emitted, according to Kirchoff’s Law 

(2.4). These physics are too extensive and complex to review here in any comprehensive way, 

but broadly, most of the absorption in our atmosphere is owing to transitions in the quantized 

vibrational, rotational, and combined rotational-transitional states of molecules. These quantum 

transitions result in absorption/emission at particular wavelengths, but these 

absorption/emission lines are widened by Doppler broadening, owing to the random molecular 

motion relative to the radiation source, and pressure broadening due to collisional effects.  
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Molecular oxygen (O2) and nitrogen (N2) together comprise almost 99% of the mole fraction of 

the dry atmosphere, with argon (Ar) adding another 0.93%.  Oxygen and nitrogen are simple 

homonuclear, diatomic molecules with no electric dipole moment and thus have very few 

degrees of freedom with which to interact with electromagnetic radiation. Likewise, argon has no 

interaction with radiation. Essentially all the absorption and emission in the atmosphere are 

owing to clouds, aerosols, and trace amounts of more complex molecules, notably water vapor  

 

Figure 2.3: Mass concentrations (ppm) of some of the most important greenhouse gases in the atmosphere, as a 
function of altitude.  

(H2O), which is far and away the most abundant of these trace gases in the troposphere, but is 

highly variable in space and time, carbon dioxide (CO2), methane (CH4), ozone (O3), carbon 

monoxide(CO), and nitrous oxide (N2O). The time-mean, global-mean vertical distributions of 

these gases are shown in Figure 2.3, but note that the long-lived species (nitrous oxide, 

methane and carbon dioxide) are quite well homogenized in three-dimensional space and time. 

Ozone is formed in the middle and upper stratosphere by photodissociation of molecular oxygen 

by the high energy ultraviolet portion of the solar spectrum followed by recombination of some of 

the atomic oxygen with ordinary diatomic molecular oxygen, forming O3. Ozone is unstable and 

itself breaks down into molecular and atomic oxygen by absorbing more ultraviolet radiation. 

These reactions absorb most of the ultraviolet portion of the solar spectrum, protecting life at the 

surface. Once formed, O3 also absorbs and re-emits infrared radiation and is therefore a 

greenhouse gas.  
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Quantitatively, water vapor is the most important greenhouse gas owing to its relatively great 

abundance. Near the surface in the tropics, it can constitute up to 5% of the mole fraction of the 

atmosphere. Its variability and the variability of it condensed phase in the form of clouds, play a 

major role in tropical meteorology.  

       

Figure 2.4 Absorption coefficient of water in its liquid (red), ice (blue), and vapor (green) phases in an important part 
of the terrestrial infrared spectrum, between 667 nm  and 200 m . Note that both axes are logarithmic.  

Next to water vapor, CO2 is the most abundant greenhouse gas, and its very long residence 

time in the atmosphere ensures that it is well mixed. CO2 and the other greenhouse gases play 

an important role in radiative transfer in the tropics and elsewhere, but unlike H2O, their 

variability plays no important role in tropical weather and short-term climate variations.  

Although the greenhouse gases constitute a very small fraction of the mass of the atmosphere, 

they collectively have a large effect on radiative transfer. An example of the complexity of 

atmospheric absorption is illustrated in Figure 2.4, which shows the absorption coefficient of 

water in all three of its phases, for wavelengths between 667 nm  and 200 m . Pressure and 

Doppler broadening lead to an appreciable overlap in many of the absorption bands2.  

Let’s examine some of the more prominent absorption/emission bands in our atmosphere. We 

begin by comparing the Planck (blackbody) curves of radiant flux density as a function of 

wavelength, for terrestrial and solar radiation, in the top panel of Figure 2.5. Because the 

effective emission temperatures of the two bodies are very different, there is hardly any overlap 

in their Planck functions and we can refer to solar and terrestrial radiation separately.(Note that 

                                                 
2 The reader is encouraged to explore the myriad absorption/emission bands relevant to our atmosphere 
through David Archer’s web-based program at http://climatemodels.uchicago.edu/modtran . 

http://climatemodels.uchicago.edu/modtran
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the solar intensity has been reduced by a very large factor to make it easier to compare the 

shape of the distributions.)  

                              

Figure 2.5: Overview of absorption and scattering in the atmosphere. Top:  Scaled blackbody curves for the sun (red) 
and the earth (black, blue, and magenta curves corresponding to different temperatures). The red and blue shaded 
areas represent the transmission of radiation. Middle: Fractional absorption and scattering of solar radiation passing 
downward toward the surface (left) and upward from the surface *right). Bottom panel:  Breakdown of absorption 
among the greenhouse gases, and Rayleigh scattering by the gaseous constituents of the atmosphere.  

The color shading in the upper panels of Figure 2.5 shows how much radiant energy is actually 

transmitted through the cloud-free atmosphere at each wavelength. Most of the visible part of 

the solar spectrum is transmitted, which is presumably why our eyes evolved to detect light in 

this part of the spectrum. But at the infrared end of the solar spectrum, there is quite a bit of 

absorption, mostly by water vapor (see middle and bottom panels of Figure 2.5). Bear in mind 

that water vapor is highly variable in space and time. In the tropics, heating due to absorption of 

the infrared portion of the solar spectrum by water vapor can be quite large. Almost all the 

ultraviolet end of the spectrum is scattered and/or absorbed, the latter through the 

aforementioned photochemical reactions involved in ozone creation and destruction.  

By contrast, much of the terrestrial spectrum is absorbed, with prominent absorption bands in 

water vapor (see Figure 2.4), carbon dioxide, methane, and nitrous oxide. There is a prominent 

window centered near 10 m , which is at the peak of the blackbody curve corresponding to 

about 260 K.  

The absorption spectra shown in Figure 2.5 do not include the effects of clouds. Clouds strongly 

absorb in the infrared and scatter solar radiation; the former acts to warm the surface while the 
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latter cools the surface. For a given infrared optical depth, high clouds are more effective at 

warming the surface than low clouds, because their effective emission temperature is lower.  

2.2 Radiative equilibrium 
Radiative equilibrium is achieved when each sample of the atmosphere, and the surface 

beneath it, emits as much radiation as it receives. Although the tropical troposphere is not near 

a state of radiative equilibrium, it is nevertheless of interest to calculate it since in a very loose 

sense, it is the state to which radiative processes are driving to drive the actual atmosphere. 

(This is only very roughly true because the presence of other processes, such as convection 

and large-scale circulation, changes the distributions of water vapor and clouds and so alter the 

radiative processes.)  

Before undertaking a comprehensive calculation of radiative equilibrium characteristic of the 

tropical atmosphere, it is instructive to obtain a set of very approximate solutions that 

demonstrate some important, general features of the equilibrium state. Let’s begin by making 

things as simple as possible. Beginning with the radiative transfer equation (2.14) in a non-

scattering, plane-parallel atmosphere, we will consider a single isothermal layer of gas with 

temperature T  at rest over a solid or liquid surface. We are going to make a radical (and 

obviously bad) approximation that the optical depth is independent of wavelength  . This is 

called the gray atmosphere approximation. We will refer to this wavelength-independent optical 

depth as just g , where the subscript “g” stands for “gray”. Thus we can write (2.14) as  

 
'

0
(0) ( ) ',

g
g gI I e e B T e d

  

   
− −

= +    (2.15) 

and since temperature is constant, we can take the blackbody function outside the integral and 

perform the integration, giving 

 ( )(0) ( ) 1 .g gI I e B T e
 

  

− −
= + −   (2.16) 

We next substitute this into (2.1), using sin( ) ,d d d   =  where   is azimuth. Carrying out the 

integration in (2.1) then gives 

 ( )1 (0) ( ),F F B T   = − +   (2.17) 

where   is an emissivity, given by 

 1 ,ge



−

 −   (2.18) 

where   is defined such that 

 
/2

0
2 cos( )sin( ) .g ge e d

 
  

− −
    

Finally, we can integrate (2.17) over all wavelengths to get the net flux per unit horizontal area, 

using Planck’s Law (2.5) for the blackbody intensity: 

 ( ) 41 (0) ,F F T = − +   (2.19) 
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where   is the Stefan-Boltzmann constant, given to three significant figures by 

 
5 4

8 2 4

2 3

2
5.67 10 .

15

k
Wm K

c h


 − − −= =    (2.20) 

Thus according to (2.19), the flux out one side of an isothermal, gray atmosphere is the 

incoming flux attenuated by 1 −   and added to by the   multiplied by the wavelength-

integrated blackbody radiation, which is proportional to the 4th power of the (absolute) 

temperature.  

Now let’s apply this to an isothermal atmosphere that is entirely transparent to solar radiation 

and completely opaque to infrared radiation ( 1) = , overlying a surface whose shortwave and 

longwave emissivity is also unity (Figure 2.6).  

 

Figure 2.6: Plane-parallel, isothermal, non-scattering gray atmosphere transparent to incoming solar radiation, 
s

F , 

and opaque ( 1) =  to infrared radiation. Atmospheric temperature is 
A

T  and surface temperature is 
s

T . 

First note that in the absence of an atmosphere, the total radiative flux from the surface would 

have to equal the incoming solar flux: 
4

s sT F = . For global mean, annual mean insolation, after 

subtracting the portion reflected to space, this would yield a surface temperature of 255 K, 

which we will henceforth refer to as the effective emission temperature ( )eT  of Earth. We can 

therefore represent the solar flux as 
4

eT . With the single opaque layer of isothermal gas shown 

in Figure 2.6, energy balance at the top of the atmosphere requires that 
4 4

A s eT F T = = , or 

A eT T= : The atmospheric temperature in this case is just the effective emission temperature of 

the planet. At the surface, however, energy balance requires that 

 
4 4 42 .s s A eT F T T  = + =   (2.21) 

That is, the surface must be warm enough that its blackbody emission balances solar radiation 

and infrared back-radiation from the atmosphere. In this simple model, the surface receives the 
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same quantity of back-radiation from the atmosphere as it does directly from the sun. This back-

radiation is conventionally called the greenhouse effect (though it has little to do with how an 

actual greenhouse works).  

We next look very crudely at how temperature in an IR-opaque gray atmopshere varies with 

altitude. This can be illustrated by extending the single layer in Figure 2.6 to two layers, in 

Figure 2.7  

 

Figure 2.7:  Extension of the one-layer model (Figure 2.6) to two layers. Incoming solar flux is expressed here as 
4

e
T .  

As before, energy balance at the top requires that 2 .eT T=  Energy balance in the middle layer 

requires that  

 
4 4 4

1 22 ,sT T T  = +   (2.22) 

while the surface energy balance can be written 

 
4 4 4

1 .s eT T T  = +   (2.23) 

Solving (2.22) and (2.23) yields 

 
1/4 1/4

13 , 2 .s e eT T T T= =   (2.24) 

It is straightforward to generalize this result to N  layers (each one having an emissivity of 

unity), in which case the temperature of the 
thn  layer, counting down from the top, is just 

1/4

en T , 

and the surface temperature is ( )
1/4

1 eN T+ . (Note here that adding opaque layers is somewhat 

like adding to the mass of greenhouse gases; it is not equivalent to dividing a fixed atmosphere 

into ever thinner layers, which would have progressively smaller emissivities.) 
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The top layer receives infrared radiation from the layer below it, but nothing from above, 

whereas the bottom layer receives radiation from both the surface the top layer, so it is hardly 

surprising that its temperature is higher than that of the top layer. In general, in radiative 

equilibrium in a gray atmosphere with uniform emissivity, temperature decreases with altitude.  

In this problem, the radiative transfer is effectively “local” in the sense that each layer only 

influences its neighbor, because each layer absorbs all the radiation incident upon it. But if we 

relax the assumption of unitary emissivities, then some radiation from each payer will penetrate 

through to be partially absorbed by all other layers. This makes the problem algebraically more 

complex.  

We look at two more cases in which we add two layers of very low emissivity, as illustrated in 

Figure 2.8.  

 

Figure 2.8: Two-layer model as in Figure 2.7, but with two additional layers of vanishingly small emissivities: one at 
the top, and once adjacent to the surface.  

The infrared emissivities of the new top and bottom layers are t  and A ,respectively. If we 

consider the limit in which they vanish, then these new layers will have no effect on the 

temperature of the main layers and the surface, given by (2.24) (together with 2 eT T= ). On the 

other hand, the energy balance of the top layer requires that 

 
4 4

22 ,t t tT T   =   (2.25) 

that is, the energy emitted up and down from this new layer must balance the partial absorption 

by this layer of energy upwelling from the second main layer. Thus 
1/42 .t eT T−=  Therefore, parts 

of an atmosphere in radiative equilibrium can have temperatures less that the effective emission 

temperature. (In fact, this is usually the case.)  
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Likewise, for the thin layer next to the surface, the energy balance is 

 
4 4 4

12 ,A A A A sT T T     = +   (2.26) 

or ( )4 4 4

1

1

2
A sT T T= + . The thin layer of air in contact with the surface has a temperature 

intermediate between that of the surface and that of the first main layer of gas. The essential 

point here, and one that is important for understanding a variety of tropical weather phenomena, 

including tropical cyclones, is that in radiative equilibrium, a discontinuity in emissivity (as 

between a gas and a solid or liquid surface) entails a discontinuity in temperature. Thus, for a 

gas overlying a surface, radiative equilibrium implies thermodynamic disequilibrium. We will 

return to this important point time and again, but for now note that for a variety of physical and 

biological systems, thermodynamic disequilibrium is the basis for the development of self-

organizing structures, even in otherwise chaotic background states (Nicolis and Prigogine, 

1977). 

We can obtain analytic radiative equilibrium solutions for a non-scattering, plane-parallel gray 

atmosphere that are continuous in the vertical for some special cases. We begin by re-writing 

(2.12) for a gray atmosphere that is transparent to solar radiation as  

 cos( ) ( ).
g

dI
I B T

d


 


= − +   (2.27) 

Because g  is independent of wavelength, we substitute (2.27) into (2.1) and (2.2) and integrate 

over solid angle in a single hemisphere, and wavelength to obtain 

 
4cos( ) ,

g

F
F T 




= − +


  (2.28) 

where cos( )  is a suitably defined mean cosine of the zenith angle. In deriving (2.28) we have 

not specified whether the flux is upward or downward, and it helpful to divide the flux at each 

level into upward and downward traveling components: 

 .F U D= −   (2.29) 

Defining / cos( ),v g    we write separate equations for the up and down components: 

 
4 ,

v

U
U T




= − +


  (2.30) 

and 

 
4.

v

D
D T




− = − +


  (2.31) 

Radiative equilibrium requires that there be no convergence of the net flux, U D− , through 

each level. Thus adding (2.30) to (2.31) gives 
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 ( ) 40 2 ,
v

U D U D T



− = = − − +


  (2.32) 

while subtracting (2.31) from (2.30) yields 

 ( ) .
v

U D U D



+ = − +


  (2.33) 

From (2.32) the net flux, U D−   must be independent of optical depth, and at the top of the 

atmosphere 0D =  and the upward flux, U , must equal the net absorbed solar flux (after 

subtracting the fraction reflected), ,S  so .U D S− =  The solutions to (2.33) that meet the 

boundary conditions at the top of the atmosphere, , 0U S D = = , are then 

 ( )4 1 ,
2

v v

S
T  = + −   (2.34) 

 ( ) ,
2

v v

S
D  = −   (2.35) 

and 

 ( )
1

1 .
2

v vU S  

 
= + −  

  (2.36) 

Here v   is the infrared optical depth of the whole atmosphere. Note that as v  approaches v   

at the top of the atmosphere, 
4

2

S
T → , which is the same solution (2.25) we found for the 

layer of small emissivity at the top of the layer model.  

Note also that the downward infrared flux at 0v =  is / 2vS  . So for optically thin atmospheres, 

there is hardly any downwelling infrared flux at the surface, while the flux can exceed the solar 

flux for optically thick atmospheres. If we insert, at z=0, a rigid or liquid surface of unitary 

emissivity, then the energy balance at the surface is 

 
4 (0) 1 .

2

v
sT S D S


  

= + = + 
 

  (2.37) 

Comparing to the air temperature at 0v = , from (2.34), we see that the difference between the 

surface and air temperatures is given by 

 ( )4 4(0) .
2

s

S
T T − =   (2.38) 
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Curiously, the difference in the fourth powers of the air and ground temperatures is one-half the 

incoming solar flux, regardless of infrared opacity. If we let (0) sT T T= −   and expand 
4 (0)T  to 

order one in T , assuming that / 1,sT T   then it is approximately true that 

 
3

(0) ,
8

s

s

S
T T

T
−   (2.39) 

So the ground-air temperature difference in radiative equilibrium drops off rapidly with surface 

temperature (and thus with infrared opacity).  

We can plot these solutions as a function of altitude or pressure, given a particular distribution of 

optical depth with altitude. Suppose, for example, that optical depth from the surface upwards 

increases linearly with the difference between actual and surface pressures, according to 

 0

0

,v v

p p

p
  

 −
=  

 
  (2.40) 

where 
0p is the surface pressure. The solutions (2.34) and (2.39) are plotted in Figure 2.9 for 

particular choices of v   and 
0p . Note that the plot is logarithmic in pressure, which is 

approximately linear in altitude in a hydrostatic atmosphere.  

                    

Figure 2.9: Radiative equilibrium temperature of a non-scattering, plane-parallel, gray atmosphere that does not 
absorb solar radiation, as given by (2.34) and (2.39) when the optical depth varies with pressure according to (2.40) 

with 
2

250S Wm
−

= , 2.7
v



= , and 

0
1010p hPa= . The red dot shows the solution for the surface temperature.  

As with the discrete layer models, temperature decreases with altitude, but since the infrared 

optical thickness becomes small in the upper atmosphere, the temperature becomes nearly 

isothermal. As we shall see presently, the actual temperature of the tropical atmosphere 
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increases in the stratosphere (above the level where the pressure is approximately 100 hPa), 

and this is due to absorption of high energy ultraviolet solar radiation in the middle and upper 

stratosphere. As noted previously, radiative equilibrium entails a profound thermodynamic 

disequilibrium between the surface and the atmosphere just above it, a fact of great 

consequence for tropical meteorology and climate.  

While the approximation of a gray atmosphere is very helpful in revealing some of the most 

essential aspects of radiative transfer and radiative equilibrium, it is quantitatively a poor 

approximation to the real atmosphere, with its very complex set of absorption/emission lines. 

Fortunately, the spectra for all the important greenhouse gases in the atmosphere have been 

calculated for a range of temperatures and pressures and are included in a comprehensive 

database known as HITRAN (high-resolution transmission molecular absorption database; see 

www.hitran.org ). But a comprehensive, line-by-line treatment of radiative transfer is too 

expensive to use in most atmospheric models and so we turn to band-averaged codes which 

are much faster and which have been carefully compared to both observations and HITRAN 

data.  

One such band-averaged radiation code is included as part of the online supplement to this 

book. This is coupled to a comprehensive representation of convection (about which more in 

due course), but for now we turn off the convection and look at the radiative equilibrium solution 

representative of the tropical atmosphere. This is problematic, because moist convection lofts 

water from its source at the surface into the free atmosphere; without it, there is no control on 

atmospheric water vapor, the most important greenhouse gas. Removing water vapor altogether 

would result in very low temperatures, but retaining values characteristic of the tropical 

atmosphere results in strong supersaturations in a pure radiative equilibrium calculation. We 

here choose the intermediate route of holding the relative humidity (the ration of the vapor 

pressure to its saturation value) to be a fixed function of altitude, characteristic of the tropical 

atmosphere.  

Figure 2.10 shows a calculation of pure radiative equilibrium using observed constant 

concentrations of carbon dioxide, methane, and nitrous oxide, CFC11, and CFC12, a fixed 

profile of ozone representing a global average, and water vapor calculated from the model 

predicted temperature and a fixed vertical profile of water vapor characteristic of the tropical 

atmosphere. This calculation does not include the effect of clouds on radiative transfer and uses 

instead a representative fixed albedo of 0.25 and a fixed, annual mean insolation at 23 degrees 

north latitude. The lower boundary is a thin slab of water whose temperature is also calculated 

from radiant energy balance; the equilibrium water temperature is shown by the red dot in 

Figure 2.10. The dashed blue line in Figure 2.10 represents the mean temperature profile over 

more than 800 balloon soundings from the equatorial North Pacific island of Kapingamorangi, 

taken as part of the TOGA COARE field campaign.  

http://www.hitran.org/
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Figure 2.10: Calculation of pure radiative equilibrium (red curve) for the tropical atmosphere, under the assumption 
that the relative humidity is fixed at a representative tropical profile. The calculated temperature of the underlying 
water slab is shown by the red dot. (See text for further details.) The dashed blue line represents the average of over 
800 rawinsonde temperature profiles from the equatorial North Pacific island of Kapingamarangi.  

The radiative equilibrium shares some features with the highly idealized analytic solution shown 

in Figure 2.9. Both have a temperature jump of around 20 K between the surface and the 

atmosphere just above it, and both show a rapid decay of temperature with altitude, tapering off 

toward a constant temperature higher up. But the band-averaged solution then shows some 

notable departures. Above 400 hPa, the temperature lapse rate increases again, reaching a 

sharp minimum at around 175 hPa. This is likely owing to a layer of relative high humidity in the 

upper troposphere which, in the moist convective atmosphere results from outflow from deep 

convective clouds. According to (2.34), if the infrared optical depth increases more rapidly, 

because of a layer of higher concentration of absorbers, the temperature should decrease more 

rapidly. In stark contrast to the simply solution, temperature increases rapidly above this 

tropopause, and this is owing to absorption of solar radiation by ozone in the stratosphere, 

which was neglected in the simple gray model.  

The radiative equilibrium solution shown in Figure 2.10 bears little resemblance to the 

temperature profiles seen in the real tropical atmosphere (dashed blue curve in Figure 2.10). 

The whole troposphere is substantially colder than reality, and the curvature of the temperature 

profile is mostly opposite to that seen in the real soundings. The relatively low surface 

temperature and the steep decline of temperature with altitude imply, though the Clausius-

Clapeyron equation coupled with our assumption of fixed relative humidity, that the water vapor 

concentration is much lower than in the real atmosphere. Since this is the most important 

greenhouse gas, the whole system is much colder than observed.  
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Why is the radiative equilibrium solution such a poor representation of the tropical atmosphere? 

Far and away the most important reason for this is that the radiative equilibrium solution is 

strongly unstable to convection, which is as important as radiation in transferring energy through 

the tropical atmosphere and which also serves to loft the most important greenhouse substance 

– water, in all three of its phases. Thus we turn to the important subject of convection. 

2.3 Dry convection 
A dynamical system in equilibrium is unstable if there are any small disturbances, added to the 

equilibrium state, that amplify with time. An unstable system will generally evolve to a state, 

which may be time-dependent, that differs from the original equilibrium. By contrast, small 

perturbations added to a stable equilibrium will either oscillate about that equilibrium or decay 

(or both), leaving the original equilibrium state essentially unaltered. A meta-stable equilibrium is 

stable to infinitesimal perturbations but unstable to a sufficiently large disturbance.  

A simple system that can exhibit each of these stability states is a frictionless marble on a wavy 

surface in a constant gravitational field. The marble sitting at the bottom of a depression, when 

displaced in any direction, will roll back towards the bottom and will oscillate around the lowest 

point. Naturally, this equilibrium is stable. A marble on a perfectly flat portion of the surface is 

neutrally stable; when displaced it will not accelerate in any direction. When the marble is 

balanced on the top of a hill, it is in equilibrium, but any displacement will cause it to accelerate 

toward a depression, so that equilibrium is unstable. Now imagine a marble at rest on a saddle 

point: The topography goes uphill in, say, the positive and negative x direction, but downhill in 

the positive or negative y direction. (Think of the shape of a horse saddle.) If displaced exactly 

in the x direction, it will accelerate back toward the saddle point, but in any other direction it will 

not return to its original position. This is also an unstable equilibrium because there is at least 

one perturbation that amplifies. Finally, think of a hill with a small depression at its top. A marble 

in the base of that depression is stable because if pushed very slightly in any direction it will 

accelerate back towards it initial state. On the other hand, if pushed hard enough, it will roll over 

the top of the rim and accelerate away from the hill. This equilibrium state is metastable.  

In thinking about the marble, you probably made some tacit assumptions about the system 

without necessarily being conscious of them. You almost certainly assumed that the mass of the 

marble is invariant….it did not accrete or lose mass on the way. You probably also assumed 

that after the initial displacement, the sum of the marble’s kinetic and potential energies is 

conserved; there are no demons around giving the marble a shove. Most stability problems 

assume the dynamical system has certain invariants, like mass and total energy.  

Now consider a horizontally homogeneous gas in hydrostatic equilibrium at rest over a rigid or 

solid surface, also in a state of radiative equilibrium. How can we tell if this system is stable? 

As with the marble on a wavy surface, we will test the system for stability by vertically displacing 

a sample adiabatically and reversibly, so that it conserves its entropy. If the sample displaced 

upward obtains positive buoyancy, it will accelerate upward and thus the state is unstable. 

(Likewise, if the parcel is displaced downward and obtains a negative buoyancy, the system is 

unstable.) The equations of motion can be used to show that buoyancy is proportional to the 

perturbation of specific volume (inverse density) along a surface of constant pressure.  

Thus, if the specific volume of a sample of air displaced upward is larger than that of its 

environment at the same pressure level, it will accelerate upward, in the same direction as the 
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original displacement, and the state will be unstable. But in a gas, specific volume is not 

conserved and so this is not a simple matter of that sample taking its original specific volume 

with it. So we have to identify an adiabatic invariant of the air that we can use to deduce the 

specific volume. Here we use the specific entropy, s , of the sample as a quantity conserved 

under reversible adiabatic displacements from which one can deduce specific volume.  

To relate specific volume to entropy we use one of many Maxwell relations from the field of 

thermodynamics. Not all students are familiar with these, so we will derive the relevant relation 

here. We begin with a statement of the first law of thermodynamics: 

 ,dk Tds dp= −   (2.41) 

where k  is the specific enthalpy, T  is temperature, s  is specific entropy,   is specific volume, 

and p  is pressure. From (2.41) it is evident that 

 ,
p

k
T

s

 
= 

 
  (2.42) 

and  

 ,
s

k

p


 
= 

 
  (2.43) 

where the subscripts on the partial derivatives denote quantities being held constant. Now in 

partial differentiation, the order of differentiation is immaterial, so 

 .
p ps s

k k

s p p s

         
=      

         
  (2.44) 

Using (2.42) and (2.43) in (2.44) gives 

 .
p s

T

s p

    
=   

    
  (2.45) 

This is the desired Maxwell relation and we will make extensive use of it through the rest of this 

book. It is valid for a homogeneous gas, in which any state variable can be written as a function 

of any other two state variables. So, using the chain law, we can write 

 .
p s

d ds dp
s p

 


   
= +   

    
  (2.46) 

Since buoyancy is proportional to perturbations of specific volume at constant pressure, we can 

use (2.45) and (2.46) to write an expression for perturbations of specific volume at constant 

pressure: 

 ' ',
s

T
s

p


 
=  

 
  (2.47) 
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where the primes denote perturbation of the sample’s properties from those of its environment. 

Finally, buoyancy itself is just the specific volume perturbation multiplied by the acceleration of 

gravity and divided by the mean state specific volume: 

 
'

',
s

g T
B g s

p



 

 
= =  

 
  (2.48) 

where g is the acceleration of gravity. Since the mean state is in hydrostatic balance, it is more 

compact to write (2.48) as  

 ',dB s=    (2.49) 

where d  is the dry adiabatic lapse rate, defined 

 .d

s

T

z

 
  − 

 
  (2.50) 

It is a simple exercise to derive from the first law of thermodynamics that, for a homogeneous 

gas, /d pg c = , where pc  is the heat capacity at constant pressure. In our atmosphere, the dry 

adiabatic lapse rate d , is nearly 1 /100K m .  

The relationship between buoyancy and entropy, given by (2.49), is extraordinarily simple and 

powerful. A homogeneous atmosphere in hydrostatic balance will be unstable if its entropy 

decreases with altitude. Under these circumstances, a sample displaced upward reversibly and 

adiabatically will carry its entropy with it, and since the environmental entropy decreases 

upward, it will have an entropy larger than that of its environment and accelerate upward, in the 

same direction as the original displacement. Conversely, a gas at rest with entropy increasing 

upward is stable and therefore supports oscillations, which in meteorology are referred to as 

internal gravity waves.  

Figure 2.11 shows the vertical distribution of the specific entropy of the radiative equilibrium 

temperature profile shown in Figure 2.10. From the first law of thermodynamics, the entropy 

may be expressed 

 0 0ln( / ) ln( / ),d p ds c T T R p p= −   (2.51) 

where 0T  is an arbitrary reference temperature and 0p  is an arbitrary reference pressure. (Note 

that entropy is arbitrary to within an additive constant; in calculating entropy here we have 

normalized temperature and pressure by representative values, and one effect of this is to make 

the entropy negative at certain altitudes.) We have added the subscript d to the entropy here to 

denote the entropy of dry air.  Also shown by the red dot in Figure 2.11 is the specific entropy of 

air at the same temperature as the underlying layer of liquid water.  



23 
 

          

Figure 2.11: Vertical distribution of specific entropy corresponding to the radiative equilibrium temperature profile 
shown in Figure 2.10. The specific entropy of air in thermodynamic equilibrium with the underlying surface is shown 
by the red dot. Note that the value of the specific entropy is arbitrary to within an additive constant.  

The profile is clearly unstable. A sample of air lifted upward from the surface will have a positive 

entropy perturbation up to about 400 hPa, while a sample that has been brought to the 

temperature of the underlying water (red dot) will be buoyant all the way up to about 300 hPa. 

Thus we would expect virtually the whole troposphere, starting from a state of radiative 

equilibrium, to convect.   

What form does the convection take, and what is the nature of the new equilibrium it 

establishes? In our atmosphere, the effective Reynolds Number of convective flows is extremely 

large, so that convection is always fully turbulent – molecular diffusion plays no direct role.  

As one might expect, turbulent convection consists of a spectrum of turbulent eddies with a 

strong correlation between vertical velocity and specific volume, so that that enthalpy is 

turbulently transported upward, heating the fluid aloft and cooling it at lower levels.  

In chaotic systems such as convection, we usually have to give up on deterministic models of 

individual convective elements and turn instead to statistical descriptions of the flows. These are 

often the most useful descriptions for the purpose of representing the ensemble effects of the 

turbulence on larger scales of motion that we do wish to predict more deterministically.  

Among the first questions we might raise about the nature of dry convective turbulence, is what 

determines characteristic scales for vertical velocity, plume radius, and buoyancy? How does 

the ensemble- or time-average temperature vary with altitude? How does the convection affect 

the temperature jump between the lower boundary and the atmosphere just above it? In 

confronting highly complex fluid flows to obtain answers to even simple questions such as 
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these, it is often useful to contemplate systems with an extremely limited set of control 

parameters. If they are sufficiently limited, then inferences can be made on strictly dimensional 

grounds, and tested against observations or laboratory experiments.  

A classic example of dimensional reasoning is the case of homogeneous, isotropic three-

dimensional turbulence in an infinite incompressible fluid. Kinetic energy is injected at large 

scales and cascades downscale ultimately to such small scales that it is dissipated by molecular 

diffusion. The critical hypothesis here is that above these smallest scales, molecular diffusion 

plays no significant role, and the only external parameter that matters is the rate of kinetic 

energy injection per unit mass. We must also assume that we are examining scales small 

enough that they are not directly affected by the large scale at which energy is presumed to be 

injected. 

This injection rate, call it I ,  has the dimensions of kinetic energy per unit time per unit mass, or 
2 3L t− , where L  represents length and t  represents time. Suppose we ask how the spectral 

density of kinetic energy per unit mass, 
kE ,  depends on wavenumber. That quantity has 

dimensions 
3 2L t− .  If 

kE depends only on I , then dimensionally there is only one choice: 

2/3 5/3

kE I k −
, where k  is the wavenumber. Thus the spectral kinetic energy density per unit 

mass must fall off as the 5/3 power of the wavenumber. The dimensionless constant of 

proportionality must be determined by experiment.  

This hypothesis, by the Russian mathematician Andrei Kolmogorov in 1941, has been tested 

experimentally in high Reynolds Number homogeneous flows in statistical equilibrium and found 

to be very well verified.  

If we consider scales so small that molecular viscosity,   (dimensions 
2 1L t− ), plays a role, then 

we can form a length scale, l , from I  and  : 
3/4 1/4I −

. This is called the Kolomogorov length 

and can be interpreted as an upper bound on the length scale of eddies influenced directly by 

molecular viscosity. Scales larger than this, but smaller than the scales at which energy is 

injected, are referred to as the inertial subrange and are the scales to which the Kolomogorov 

scaling applies. 

It is possible to formulate an equally simple problem for convection3. The setup is illustrated in 

Figure 2.12.  

                                                 
3 This formulation has been attributed to the German fluid dynamicist Ludwig Prandtl. 
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Figure 2.12: Semi-infinite, Boussinesq fluid subject to a constant rate of cooling, overlying a rigid plate held at fixed 

temperature 
0

T . 

Imagine a semi-infinite, Boussinesq fluid in a constant gravitational field and cooled at some 

constant rate per unit mass, overlying a rigid plate at fixed temperature, 0T . A Boussinesq fluid 

is one that is nearly incompressible, so that density fluctuations only matter in the buoyancy 

term of the equations of motion. Otherwise, the fluid may be considered incompressible and, in 

particular, obeys the incompressible version of the mass continuity equation.  

The fluid initially cools owing to the imposed cooling, but is heated from below by contact with 

the surface. This heating destabilizes the fluid and produces convection. After a very long time, 

the convergence of the upward flux of heat by the presumably turbulent convection comes into 

statistical equilibrium with the imposed cooling, and the system reaches a statistical equilibrium 

state. For overall energy balance, the heat flux F  through the lower boundary must equal the 

vertically integrated imposed cooling rate, Q : 

 
0

.F Qdz


=    (2.52) 

The surface heating produces temperature fluctuations, but according to the Boussinesq 

approximation, these only influence the system through the buoyancy. Thus the important 

external parameters is not the heat flux but the buoyancy flux: 
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 / ,B pF g F c=   (2.53) 

where   is the coefficient of thermal expansion of the fluid. Note from (2.54) that the imposed 

cooling per unit mass is infinitesimal, such that its integral through the infinite depth of the fluid 

is a finite constant. We might imagine that very close to the surface, the turbulent convective 

eddies are small, with their length scale constrained by their distance from the surface. We will 

assume that the boundary is thermally rough, with a typical thermal roughness scale 0

Tz , a scale 

we will consider to be large compared to the scales at which molecular diffusion is important.  

Above the roughness scale 0

Tz , we shall assume, in analogy to Kolomorogov’s hypothesis, that 

molecular diffusion plays no direct role. If that is the case, then the imposed cooling, as 

translated to the surface buoyancy flux per unit area (dimensions 
2 3L t− ), given by (2.53) is the 

only control parameter in the problem. If that is indeed the case, we can make several 

deductions on purely dimensional grounds: 

1. The characteristic size of the turbulent eddies scales with the altitude z  above the 

surface. 

2. The characteristic buoyancy of the eddies, | ' |,g T   scales as 
2 1

3 3
BF z

−
. 

3. The characteristic velocity of the eddies scales as ( )
1

3
BzF .  

While the characteristic velocity increases slowly with altitude, the characteristic buoyancy 

actually decreases. Note that these solutions are only valid for 
0.z z  

We can also make some inferences about the ensemble mean temperature gradient. On 

dimensional grounds,  

 
2 4

3 3
1 ,B

dT
g c F z

dz


−
= −   (2.54) 

where 1c  is just a constant. This can be integrated in the vertical to give 
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31 3 3
0 0

3
,T

B

c
T T F z z

g

− − = − −
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  (2.55) 

where we have used 0T T=  at 0

Tz z= . The mean temperature falls off with height and 

approaches an asymptotic value given by 

 ( )
12

31 3
0 0

3
.T

B

c
T T F z

g

−

 = −   (2.56) 

While this simple convection problem has an elegant dimensional solution, it is difficult to test it 

in the laboratory. Quite apart from not being able to achieve a good approximation to an infinite 

Boussinesq fluid, cooling a laboratory fluid uniformly through its depth is problematic. 

Fortunately, in a Boussinesq system, the equations are equivalent to a system in which there is 
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no cooling but the boundary temperature increases linearly in time. To the author’s knowledge, 

this has not actually been tried.  

Alternatively, we can make measurements of the actual atmosphere under circumstances that 

approximate the idealized problem. Boundary layers over deserts can extend upward to 5 km, 

and one might hope that the lower portions of these, away from the boundary layer top, will not 

be too affected by it. Also, air is not nearly incompressible, being close to an ideal gas. 

Fortunately, the Boussinesq approximation can be extended by a suitable change of the 

temperature variable to potential temperature,  , defined 
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  (2.57) 

where 
0p  is a reference pressure and R  is the gas constant for (dry) air. Note, by comparing 

(2.51) to (2.57), that the entropy is proportional to the natural logarithm of the potential 

temperature. In this case,  (or entropy) rather than T is the adiabatic invariant of the system, 

and buoyancy is defined 
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where the prime denotes a fluctuation away from the mean state, denoted by the overbar. The 

Boussinesq approximation can be shown to be valid in this case for convective layer depths 

much smaller than the density scale height of the atmosphere, which is roughly 8 km. Thus 

boundary layers extending to 5 km over deserts do not satisfy the Boussinesq approximation 

very well.  

A far more serious problem, however, is that close to the surface, most of the turbulence kinetic 

energy is generated mechanically by wind flowing over terrain rather than by convection. We 

shall return to this problem in Chapter 4. For now we will look at observations in a location with 

very strong surface heating and weak ambient winds. Figure 2.13 shows measurements of 

potential temperature over a desert during the middle of the day, made using an instrumented 

model airplane. The red dots show potential temperature in air moving upward while the blue 

dots are for downward moving air. The magenta curve is a solution of a relation formed by 

combining (2.55) and (2.56) and using potential rather than absolute temperature: 
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  (2.59) 

We plot the solution for  0 330 ,T K=  316.2 ,T K =  and 0 0.01 .Tz m=  To be sure, this is a weak 

test of the theory, but both the observations and the theory show that, except in a very thin layer 

near the surface, dry convection produces a mean state in which the potential temperature is 

nearly constant with height. (When there is significant variability of water vapor concentration, 

as in the tropical atmosphere, we must modify this statement to account for the effect of water 

vapor on specific volume. In Chapter 3 we show that accounting for this, in the absence of 

phase change of water convection produces a mean state in which the virtual potential 

temperature is constant with height.) 



28 
 

         

Figure 2.13:  Model aircraft measurements of potential temperature during a sunny day over a desert near 
Albuquerque, New Mexico, on 3 August 1993. Red dots show upward moving air; blue dots show downward moving 

air. Magenta curve shows the theoretical solution (2.55) with 
0

330 ,T K=  0 0.01 ,
T

mz =  and 
1

c  chosen so that

316.2T K

= .  

While this elegant and simple problem illustrates some of the most fundamental features of dry 

convection, real tropical boundary layers are strongly influenced by the presence of mean 

winds, which in practice drive much of the turbulence near the surface. We shall discuss this in 

much more detail in Chapter 3. We shall see that the general statement that (virtual) potential 

temperature tends to be constant with altitude in convecting boundary layers remains true even 

in the presence of mean wind. For now we make use of this observation to illustrate dry 

convective-radiative equilibrium.  

2.4 Dry convective-radiative equilibrium 
We next turn to a model of dry convective turbulence in statistical equilibrium with radiative 

forcing. Fundamentally, we have to add convective heat transfer to radiative transfer, making 

sure also to account for convective transfer from the surface to the atmosphere.  

One way to think about this is to recognize, from Figure 2.11, that radiation tries to drive the 

atmosphere to a state that is unstable to dry convection in much of the troposphere. Convection, 

on the other hand, transports enthalpy upward, trying to restabilize the atmosphere. This tug-of-

war results in a statistical equilibrium state in which the sum of the radiative (including solar) and 

convective fluxes vanishes at each altitude.  
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But this is far from an equal competition, because in our atmosphere, the time scale for 

perturbations to relax back to radiative equilibrium is much larger than the time it takes 

convection to erase entropy gradients.  

Let’s try to develop characteristic time scales for relaxation to radiative equilibrium and to 

convective neutrality. 

For radiation, we will return to our simple gray-body model given by (2.29) – (2.31). We will start 

with the equilibrium solution given by (2.34) – (2.36) and add infinitesimal temperature 

perturbations to it, denoted here by primes. The change in enthalpy at a given altitude is just the 

convergence of the net flux of energy: 
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where T  is the radiative equilibrium temperature (which is a function of v ). In deriving the right 

side of (2.60) we used (2.29) and (2.32), linearizing about the equilibrium state and assuming 

that the absorption coefficient is not a function of temperature. Now eliminating 'U  and 'D  

using the linearized versions of (2.30) and (2.31) yields 
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Here we have also used hydrostatic balance: v vg
z p

 


 
= −

 
. We are not going to actually 

solve (2.61) but rather use it to get an estimate of the radiative relaxation time scale. Suppose 

the temperature perturbations oscillate quasi-sinusoidally over a characteristic optical depth 

.v  We also neglect the time dependence of the lower boundary condition, equivalent to 

assuming that the surface temperature is fixed. Then it follows from (2.61) that a characteristic 

time scale for radiative relaxation is 
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  (2.62) 

Clearly the shortest time scales will be associated with temperature perturbations that vary 

rapidly with altitude, so that 1v  . For these, and calculating /v p   from (2.40), we get 
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For our atmosphere, this time scale is around 5 days. At the opposite limit, when the 

perturbations vary over long optical depths, the time scale would be around 35 days. (Later we 

will show that the characteristic radiative relaxation time scale in a moist atmosphere is 

somewhat longer, and if the surface temperature is also calculated, longer still.) 
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By contrast, a characteristic convective adjustment time scale is just the time it takes a turbulent 

plume to traverse the depth, H , of an unstable layer.  This is just H divided by a characteristic 

vertical velocity scale. For the simple convection problem we solved earlier, this vertical velocity 

scale is ( )
1/3

bF H , so the characteristic time scale is ( )
1/3

2 / .BH F  For typical values of the 

buoyancy flux and depth, this is a few hours, roughly two orders-of-magnitude faster than the 

radiative relaxation time. Thus in our atmosphere, in the competition between radiation and 

convection, the convection “wins” and the equilibrium state is much closer to convective 

neutrality than to radiative equilibrium. We expect radiative-dry convective equilibrium to be 

characterized by nearly constant (virtual) potential temperature.  

For this reason, the simplest conceivable way to account for convective heat transfer within the 

atmosphere is simply to adjust the profile of potential temperature to a constant wherever 

radiation forces it to decrease with altitude. We assume no external energy sources operate 

during the adjustment, so that the total energy content of the column is invariant during the 

adjustment. We assume that any kinetic energy generated by the convection is locally 

dissipated back into enthalpy, thus the mass-weighted vertical integral of the enthalpy must 

remain constant during the adjustment. So if the layer between pressure levels 1p  and 
2p  has 

decreasing potential temperature,  , then it would be adjusted so that 
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where c  is a constant determined so that enthalpy is conserved during the adjustment: 
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The adjustment will of course increase the potential temperature at the top of the initially 

unstable layer, and decrease it at the bottom. In so doing, it may cause the potential 

temperature to decrease between the top of the initially unstable layer and the air just above it, 

and/or between the air just below the layer and the base of the layer. So these will have to be 

adjusted as well. In general, this dry adiabatic adjustment is an iterative process.  

The thermodynamic disequilibrium between the surface and the air in contact with it, a general 

feature of radiative equilibrium, will give rise to a convective heat flux from the surface to the 

atmosphere, further altering the equilibrium state. In the case of pure convection, if we know the 

surface temperature and the potential temperature away from the surface, we can turn (2.56) 

around algebraically and model the surface buoyancy flux (which is proportional to the surface 

heat flux in a dry atmosphere) as 
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  (2.66) 

where s  is the surface potential temperature, a  is the ensemble mean potential temperature 

some distance above the surface, and we have made use of the fact that the coefficient of 

thermal expansion of an ideal gas is its inverse temperature. But as discussed in the next 

chapter, turbulence near the surface is dominated by shear production when even a weak wind 
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is present, and in cases where shear production dominates, the heat flux from the surface is 

better modelled as  

 ( )| | ,s k s aF C T T= −V   (2.67) 

where 
kC  is a dimensionless transfer coefficient that depends on surface roughness but is of 

order 
310−
,   is the near-surface air density, | |V  is the ensemble mean speed of the 

horizontal wind a short distance above the surface, sT  is the surface temperature, and aT  is the 

ensemble mean air temperature a short distance above the surface.  

 

To illustrate the profound effect of convection on the equilibrium state, we will apply dry 

convective adjustment to the same radiative model used to produce Figures 2.11 and 2.12, and 

use (2.67) with a fixed wind speed of 
15 ms−  to calculate surface sensible heat flux into the 

atmosphere. The fixed relative humidity profile is the same as was used in the calculation of 

pure radiative equilibrium. The result is shown by the magenta curve in Figure 2.14 and 

compared with both a mean tropical sounding (dashed blue curve) and the pure radiative 

equilibrium solution (solid blue curve). The magenta and blue dots at the bottom show the 

calculated sea surface temperatures in the two cases.  

             

Figure 2.14: Radiative-dry convective equilibrium (magenta curve) calculated using dry convective adjustment and 
surface fluxes given by (2.67). This is compared to the pure radiative equilibrium solution (solid blue) and mean 
tropical temperature profile (dashed blue). The magenta and blue dots at the bottom show the calculated sea surface 
temperatures for the adjusted and pure radiative cases, respectively.  
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The temperature profile is dry adiabatic up to about 300 hPa and the whole profile is 

considerably warmer, and closer to the tropical mean sounding, than the pure radiative 

equilibrium solution. The surface temperature is close to 36o C, considerably warmer than the 

pure radiative equilibrium solution and much warmer than observed sea surface temperatures in 

the tropics, which peak at around 30o C. The tropopause and the lower stratosphere are a bit 

warmer than the pure radiative equilibrium solution.  

The addition of a turbulent heat flux from the surface to the atmosphere cools the surface and 

heats the atmosphere; this is the main reason that the adjusted profile is warmer that the pure 

radiative equilibrium solution. This effect is amplified by water vapor feedback:  The warmer 

state, under the assumption of constant relative humidity, has more water vapor – an important 

greenhouse gas. Thus the system warms further.  

Note that heat transfer from the surface reduces but does not eliminate the temperature jump 

between the surface and the atmosphere. 

Figure 2.15 shows the rates of radiative and dry convective heating in equilibrium, expressed as 

degrees of temperature change per day. In equilibrium, the two must sum to zero and so they 

are mirror images of each other. The strong turbulent heat flux from the surface to the 

atmosphere causes so much warming that the whole troposphere up to about 300 hPa cools 

radiatively, at a remarkably constant rate of roughly 
11.5 K day−
, though a bit larger close to the 

surface. 

           

Figure 2.15:   Radiative (solid) and convective (dashed) heating rates in the radiative-dry convective equilibrium 
solution corresponding to Figure 2.14.  
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In reality, dry convection would rapidly homogenize the mass concentration of water (specific 

humidity) through the convecting layer, likely producing clouds in the upper part of the layer and 

thereby radically altering the radiative transfer. Nonetheless, the equilibrium state illustrated in 

Figures 2.14 and 2.15 serves to contrast the pure radiative equilibrium with a convectively 

adjusted equilibrium and sets the stage for the real problem, moist convection.  

2.5 Moist RCE, Part I 
The dynamics and physics of the tropical atmosphere are made vastly richer by phase changes 

of water. Most of these phase changes occur within cumulus and cumulonimbus clouds, whose 

presence is much of what makes tropical skyscapes so beautiful. Water plays a dual role: latent 

heat released and absorbed when water changes phase makes a first-order contribution to 

atmospheric thermodynamics, and at the same time, water in all its phases has a strong effect 

on radiative transfer. As we shall see, this makes even relatively simple problems like radiative-

convective equilibrium daunting, but far richer and more interesting than their dry counterpart. 

Our currently incomplete understanding of moist convection makes tropical meteorology still 

something of a frontier subject in atmospheric science and climate.  

The subject of moist convection is far too broad and deep to treat in anything like a 

comprehensive way in a book that attempts to cover the landscape of tropical meteorology; all 

we can do here is review some essential elements. In my years of teaching tropical meteorology 

at the graduate level I have found that dislodging cherished but flawed concepts developed at 

the undergraduate level more challenging than conveying wholly new material.  

One false conception that is particularly difficult to dislodge is the idea that large-scale tropical 

circulations are driven by latent heat release. This idea is widely expressed in textbooks and in 

research literature.  In the field of tropical cyclones this is expressed in the notion that such 

storms are driven by latent heat release within the deep cumulonimbi that surround the cyclone 

center. This idea is just as false as the statement that elevators are driven by counterweights, 

and for the same essential reason. It fails to recognize that convection in the one case, and the 

transmission of tension through steel cables in the other, are fast processes, and that the 

system dynamics are rate-limited by slower processes….radiation and surface enthalpy fluxes 

in the tropical atmosphere and the electric motor in the case of the elevator. We will begin by 

illustrating this point with a simple example. But first, we review some essential points about the 

thermodynamics and microphysics of moist convection: 

1. Condensation and evaporation of cloud condensate are nearly reversible processes. 

The very small super saturations needed for heterogeneous nucleation ensure that, 

except in rare circumstances, supersaturations are very small and water vapor and cloud 

condensate may be considered to be in thermodynamic equilibrium with each other.  

2. For this reason, condensation and evaporation can be considered internal processes 

that can best be handled by a redefinition of the adiabatic invariants of the system. They 

should not be treated in the same way as external heat sources and sinks. (This is not 

the case, however, for evaporation of precipitation, which is not usually a thermodynamic 

equilibrium process.)  
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3. The exotic nature of moist convection is therefore not owing to phase change per se but 

to key irreversible processes: the formation, fallout, and partial or total re-evaporation of 

precipitation, and mixing across sharp gradients of water concentration.   

To illustrate these points, we consider a variation on the very simple convection problem we 

considered in section 2.3. In this variation, we take the atmosphere to be saturated with respect 

to water vapor, and filled with cloud, such that the total water mass concentration per unit mass 

of dry air, tr  (also called the total water mixing ratio) is constant. We do not allow any 

precipitation or flux of water through the lower boundary, so that tr is a locally conserved 

variable. As in the original problem, we cool the atmosphere and keep the surface temperature 

fixed, so that the whole system is turbulently convecting, and this turbulent convection 

thoroughly mixes the total water concentration, which consequently is constant. Temperature 

will be decreasing with height, and thus, according to the Clausius-Clapeyron equation, the 

saturation vapor pressure decreases with height. Thus as we ascend, more and more of the 

total water concentration is in the form of cloud, and less and less in the form of vapor. This is 

illustrated by the shading in Figure 2.16. 

                   

Figure 2.16:  As in Figure 2.12 but for a water-saturated atmosphere with constant total water concentration, but 
whose cloud water content (shading) increases with altitude.  
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For this inhomogeneous gas, any state variable may be expressed as a function of any other 

three state variables (as opposed to two for homogeneous systems). Thus, if we like, we can 

express the specific volume as a function of the system entropy, pressure, and total water 

mixing ratio: 

 ( ), , ,ts p r =   (2.68) 

where here the entropy, s , is the entropy of a mixture of dry air, water vapor, and liquid water. 

(We ignore the ice phase here.) This may be written (e.g. see Emanuel, 1994) as 

 ( )
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ln( ) ln( ) ln( ) ,d v
pd t l d v l t

p L rT
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T p T
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where pdc  is the heat capacity at constant pressure of dry air, 
lc  is the heat capacity of liquid 

water, r  is the mixing ratio (mass of water vapor per unit mass of dry air), tr  is the total water 

mixing ratio (mass per unit mass of dry air), dR  is the gas constant for dry air, dp  is the partial 

pressure of dry air, vL  is the latent heat of vaporization, vR  is the gas constant for water vapor, 

and H  is the relative humidity, defined as the ratio of actual to saturation vapor pressure. As 

we may add arbitrary constants to the definition of entropy, we have included reference 

temperature and pressure, 0T  and 0p , and also added the very last term which is a function of 

another conserved variable; this makes what follows more compact.  In our problem, the air is 

always saturated – the relative humidity is 1 – and so the second to last term in (2.69) is absent.  

Using the chain rule, we can write perturbations to the specific volume, at constant pressure, as 
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remembering that the total water concentration is constant in the problem. Now, as in the dry 

case, we can develop a Maxwell relation from the definition of specific enthalpy, which for a 

mixture of dry air, water vapor, and liquid water may be written (Emanuel, 1994): 

 ( ) .pd t l vk c rc T L r= + +   (2.71) 

By differentiating (2.69) and (2.71), we can show that 
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By applying to (2.72) the following identity: 
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we arrive at the desired Maxwell relation: 
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which is practically identical to the dry case (2.45) except for the different definition of entropy 

and the factor 1 tr+ , which is close to unity in our atmosphere. From (2.70), the buoyancy, 

defined by (2.48), is then 
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 is the moist adiabatic lapse rate. This is very similar to the dry case 

(2.49) except for the different definition of entropy, the 1 tr+  factor, and the moist rather than dry 

adiabatic lapse rate.  

It is important to note that the moist adiabatic lapse rate varies with altitude, in contrast to the 

dry adiabatic lapse rate, which is a constant, assuming that the acceleration of gravity does not 

vary much over the depth of the convecting layer. Thus, according to (2.75), for a given entropy 

fluctuation, the buoyancy will vary depending on the altitude and it is no longer the case that the 

buoyancy flux is related to the heat flux by a fixed constant. Thus it would appear that the 

dimensional reasoning we used to deduce how various quantities vary with altitude in the dry 

case will not work for the present case, because there is an additional non-constant parameter, 

m .  

To see the problem, let’s look at the equation for the time mean, horizontally averaged 

turbulence kinetic energy. This is formed by representing all the quantities (velocities, buoyancy, 

and pressure) by the sum of a time mean, horizontally averaged component plus a fluctuating 

part. Symbolically, for any variable v ,  

 ( ) '( , , , ).v v z v x y z t= +   (2.76) 

We apply this decomposition to all the variables, substitute them into the Boussinesq equations, 

and form from them an equation for the kinetic energy. We then take the time and horizontal 

averages of this equation. Neglecting the molecular diffusion terms, as we did in the dry case, 

the result is 
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  (2.77) 

where, as a result of the Boussinesq approximation, 0  is a representative (constant) value of 

the specific volume and the overbars represent time and horizontal means. The far right side of 

(2.77) uses (2.75) for the buoyancy. Now to within the Boussinesq approximation, the 

convective heat flux, ,F  is just 0 ' ',T w s  where 0T  is a representative temperature. Thus we may 

write (2.77) as  
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The problem is that the right side of (2.78) varies with altitude and so we no longer have a one-

parameter problem. However, we can reduce this back to a problem involving a single constant 

parameter by defining a new vertical coordinate,  ,  that is linear in absolute temperature, 

rather than altitude, but has the same dimensions as altitude: 

 0 .
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  (2.79) 

Here T  is the absolute temperature along a moist adiabat (that is, a curve of constant entropy). 

We have from this that 
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Applying (2.80) to (2.78) transforms the latter to 
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Now the right had side is a constant, which we will call 
BF , and we are back to a one parameter 

problem. All the conclusions that we reached in the dry case apply to this case as well, with a 

very slightly different definition of BF  and with the alternative vertical coordinate defined by 

(2.79). Among these conclusions are 

4. The characteristic size of the turbulent eddies scales with the modified altitude   above 

the surface. 

5. The characteristic buoyancy of the eddies scales as 
2 1

3 3
BF 

−
. 

6. The characteristic velocity of the eddies scales as ( )
1

3
BF .  

Note from (2.80) that quantities vary more slowly with z  than they do with  , because 

.m d    For a surface temperature of 30 oC, the variations with z  would be only about 1/3 as 

fast as variations with  , but traveling upward into lower temperatures, the moist adiabatic 

lapse rate increases and asymptotically approaches the dry adiabatic lapse rate. Thus for low 

surface temperatures or in the upper troposphere,  is essentially equivalent to z . 

It can be seen from this simple example that the phase change of water does not materially 

change convection. Moist convection behaves pretty much like dry convection. One can always 

revert to a description of this system in terms of dry entropy (or potential temperature), in which 

case the thermodynamic equation would have large sources and sinks owing to condensation 

and evaporation. One could say that thermals are driven upward by latent heat release and 

downward by absorption of latent heat, but this would be a clumsy way of describing it. In 
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general, dynamical systems are described most compactly and intuitively by using the most 

conserved variables available.  

What makes real moist convection qualitatively different from dry convection is not latent heat 

release per se, but rather the strongly irreversible processes of the fall of precipitation and its re-

evaporation into unsaturated air.  

Suppose now that, in our simple convecting system, a demon removes condensed water as 

soon as it forms, so that while upward moving air is generally saturated, it contains a very small 

amount of condensed water (just enough to make the condensate visible as cloud). A slight 

downward displacement, by warming the sample, renders it unsaturated. Thus, broadly 

speaking, most upward moving air is saturated and experiences latent heat release, while most 

downward moving air is unsaturated. The form the convection takes is illustrated by Figure 2.17. 

 

Figure 2.17: Configuration of clouds in an atmosphere in which a uniform cooling is imposed above a liquid water 
surface held at fixed temperature. A demon removes condensed water as soon as it forms, leaving just enough to 
render the saturated air visible as cloud.  

The upward-moving saturated air, were it not for mixing, would follow a pseudo-adiabatic lapse 

rate of temperature. This is a defined by a process in which displaced air remains saturated, but 

any condensate that forms is removed. Condensate therefore does not contribute to the 

effective buoyancy of the air, nor does it contribute to it heat capacity. Since at each step the 

system’s state is defined uniquely by its temperature and pressure (with its water vapor content 

determined by Clausius-Clapeyron), it is possible to define a pseudo-entropy that is exactly 

conserved in a pseudo-adiabatic process. Although it is not possible to derive an exact closed-

form expression for the pseudo entropy, an empirical expression valid over the observed range 

of tropospheric temperature and pressure was developed by Bolton (1980). He chose to 

express it in terms of a temperature-like variable called the pseudo equivalent potential 

temperature, ep , whose logarithm is proportional to the pseudo entropy: 
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where r  is the mixing ratio and 
*T  is the saturation temperature; that is, the temperature at 

which air becomes saturated when displaced adiabatically. This is accurate to within 0.3 K for 

tropospheric conditions. Note that ep  is always larger than   and that 
0

lim ep
r

 
→

= ; the pseudo-

equivalent potential temperature asymptotically approaches ordinary potential temperature as 

the mixing ratio vanishes.  

Since pseudo-entropy is a function of temperature and pressure alone when the air is saturated 

(and thus the mixing ratio, r , is at is saturated value, which is itself a function of temperature 

and pressure alone), lines of constant saturation pseudo-entropy, usually referred to as moist 

adiabats, can be graphed on a thermodynamic diagram, as shown in Figure 2.18.  

             

Figure 2.18: A typical atmospheric thermodynamic diagram. This particular format is known as a Skew-T-log-p 
diagram, because isotherms run diagonally rather than vertically (so that typical atmospheric temperature profiles are 
more erect). Pressure forms the ordinate, at equal intervals of the logarithm of the pressure. The blue curves are dry 

adiabats (curves of constant  ) and the red curves are pseudo- moist adiabats (curves of constant 
ep

 ). Curves of 

constant saturation mixing ratio are shown in green. The heavy red lines shows an example of saturated, pseudo-
adiabatic ascent from 950 hPa and 25 oC to 200 hPa while the heavy blue curve illustrates dry adiabatic descent.  
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The particular thermodynamic diagram illustrated in Figure 2.18 is called a Skew-T diagram 

because isotherms run diagonally rather than vertically; this is done so that typical atmospheric 

temperature profiles are more vertical. Pressure forms the ordinate, at equal intervals of the 

logarithm of the pressure. The blue curves are dry adiabats (curves of constant  ) and the red 

curves are pseudo- moist adiabats (curves of constant ep ). Curves of constant saturation 

mixing ratio are shown in green.  

Suppose we consider a sample of air that is saturated at 25 oC and 950 hPa and lift it by a 

pseudo-adiabatic process to 200 hPa.  This is shown by the heavy red line in Figure 2.18. Now 

take that air and increase its pressure without adding or subtracting energy. Because it never 

has any condensed water in it, there is no evaporation, and the sample descends dry 

adiabatically, as shown by the thick blue curve in Figure 2.18.  

Note that the descending air is warmer than the ascending air, so that the rising air is negatively 

buoyant with respect to the descending air. This process would convert kinetic to potential 

energy and so would not happen spontaneously. (Were the air to descend all the way back 

down to 950 hPa, its temperature would be 88 oC; the difference between this and the starting 

temperature of the sample reflects the latent heat added to the sample during its ascent.)  

Thus there is a problem with the picture of moist RCE shown by Figure 2.17.  For the 

descending air to have a temperature equal to or lower than that of the ascending stream, it 

must lose energy, and in reality it does so by radiative cooling. Observations, which we shall 

review in the next section, show that there is in fact very little difference between the 

temperature of the ascending and descending streams, and that the temperature profile in the 

clouds is not far from moist adiabatic. The thermodynamic balance in the descending air is then 

 ,p e rad

T d
c w Q

dz





=   (2.83) 

where ew  is the vertical velocity and radQ  is the rate of radiative heating in the unsaturated air. 

As we shall show, radQ  is almost always negative, consistent with descent in between clouds. 

We expect that the potential temperature stratification, /d dz , is determined by the condition 

that the temperature profile be nearly moist adiabatic. Thus (2.83) really determines the descent 

rate in the clear air, given the rate of radiative cooling.  

In RCE, there can be no net mass flux through any level, otherwise the air density would be 

changing over time. Suppose that updrafts have a characteristic upward velocity cw  and cover a 

fractional area  . Then the flux of mass through any level, which must vanish, is given by 

 ( )1 0.c ew w  + − =   (2.84) 

For convenience, we define M  to be the net upward convective mass flux per unit area: 

 ( )1 .c eM w w   = − −   (2.85) 

Observations show that 1,   so that .eM w −  Since the clear-air velocity is determined by 

the rate of radiative cooling and the potential temperature stratification along a moist adiabat, it 
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follows that the net upward convective mass flux is very nearly determined by these two 

quantities.  

Note that where the convective mass flux, as given by (2.85) together with (2.83), decreases 

with altitude, mass must flow from the convective updrafts into the environment. Thus the water 

budget in the sinking air in between clouds (which occupies the majority of the volume of the 

system since 1  ) is given by 

 ( )* MAX ,0 ,e
e e

dr dM
w r r

dz dz


 
= − − 

 
  (2.86) 

where er  is the mixing ratio in the clear air. If the profile of radiative cooling and the system 

temperature are known, then (2.83) can be solved for ew  and thus M , using (2.85), and then 

(2.86) can be solved for the mixing ratio of the clear air, er .  

But note that this would require iterating through (2.83), (2.85), and (2.86) because the radiative 

heating rate depends strongly on the clear-air water vapor content. This illustrates the strongly 

nonlinear nature of moist RCE – radiative cooling drives the convection, which in turn 

determines the moisture of the free troposphere and thereby strongly affects the radiative 

cooling.  

In the case of radiative cooling that is constant with altitude, (2.83) shows that 
ew  and thus M

would increase with altitude, since the potential temperature stratification decreases upward 

along moist adiabats. In that case, the right side of (2.86) would be zero except for a delta 

function at the tropopause. Thus the mixing ratio of the whole troposphere above the subcloud 

layer would be equal to the saturation mixing ratio of the tropopause. Given that tropical 

tropopause temperatures are around -70 oC, this would be miniscule, and the relative humidity 

would thus be close to zero except very close to the tropopause. This is very far from what is 

observed in the tropics, or what is produced by numerical simulations of idealized moist RCE 

states, about which more in due course.  

Since in the real world, radiative cooling profiles are roughly constant with altitude in the 

troposphere, the excessive dryness of solutions to (2.86) is likely not owing to the lack of 

convective detrainment but almost certainly to our extreme assumption that all condensed water 

is removed from the system. This strong, highly artificial sink of water is responsible for the 

excessive dryness of the solution to (2.86). We must modify our simple picture of RCE to 

include the microphysics governing precipitation formation, fall, and re-evaporation.  

So we revise the conceptual picture of RCE of Figure 2.17 to include formation, fallout, and 

partial re-evaporation of precipitation, as shown in Figure 2.19. Saturated air ascends with mass 

flux uM  and re-evaporation of falling precipitation drives downward motion of mostly 

unsaturated air with mass flux dM  . We here redefine the “clear air” as the slowly subsiding air 

outside both the clouds and the unsaturated downdrafts. If we define the total convective mass 

flux as M  and the “clear air” as excluding both the cloud and rain areas, then (2.83) and (2.85) 

apply as with the pseudo-adiabatic case.  
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Figure 2.19: Moist RCE with precipitation. Broadly, saturated air ascends with mass flux 
u

M and re-evaporation of 

falling precipitation drives downward motion of mostly unsaturated air with mass flux 
d

M . We here redefine the 

“clear air” as the slowly subsiding air outside both the clouds and the unsaturated downdrafts.  

Rather than focus on the water budget of just the clear air, we will look at the flux of water 

through each level across the whole system. That flux must vanish, since in equilibrium water 

cannot accumulate above any level. This condition is given by 

 ( ) 0,t eM r r P− − =   (2.87) 

where tr  is the total water mixing ratio (including cloud water) inside the clouds, and P  is the 

total downward precipitation flux through the level in question. Rearranging this and using (2.85) 

for M  under the approximation that 1   gives 

 ,e t

e

P
r r

w
= −   (2.88) 

with ew  given by (2.83). This shows that the humidity of the clear air is governed by the 

microphysics that determine how much cloud water exists at a given level (which sets the 

amount by which tr  exceeds 
*r ) and how much precipitation is formed. More cloud water yields 

a moister environment, while more precipitation dries the environment.  

We can make this more intuitive with a simple example. Suppose that a fixed fraction p   of 

water condensed at any level is converted to precipitation, and that another fixed fraction, r  of 

the precipitation evaporates before reaching the level in question. The precipitation flux through 

any level z   is then given by 
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 ( )
*

1 ,
tz

z
r p

dr
P M dz

dz
= − −    (2.89) 

where 
tz  is the altitude of the clouds tops. The integrand in (2.89) is just the precipitation 

formation efficiency multiplied by the rate of condensation. Again using (2.85) with 1   and 

substituting (2.89) into (2.88) gives 

 
( ) *1

.
tr

e t p e

e

z

z

dr
r r w dz

w dz




−
= +    (2.90) 

One interesting special case of (2.90) is the case of ew  and p  constant with height, in which 

case (2.90) reduces to 

 ( ) ( )*1 ( ) .e t r p tr r r r z= − − −   (2.91) 

Note that we can recover the pseudo-adiabatic limit by setting 0r = , 1p = , and 
*.tr r=  In that 

case, ( )e tr r z=   as before.  

The relation (2.91) shows that the smaller the efficiency p  with which precipitation is formed, 

and the greater the re-evaporation of precipitation 
r
, the moister the environment. Note that 

smaller precipitation efficiency will also elevate the cloud water content, and thus the total water 

mixing ratio .tr   

Thus, unequivocally, the humidity of the clear air in RCE is set by cloud microphysical and 

radiative processes. The rate of radiative cooling and the ambient potential temperature 

stratification along a moist adiabat, which together determine ew , enter in a more subtle way. 

Note that if we simply multiply the radiative cooling everywhere by a constant factor, that factor 

cancels in (2.90) and there is no effect on the environmental mixing ratio. (However, the system 

temperature will be different, thus altering the relative humidity.) From (2.90) we can conclude 

that, all other things being equal, if the radiative subsidence ew increases in magnitude with 

altitude above the level in question, the air will be drier, whereas if it decreases with altitude, the 

air will be moister. Always remember that the water vapor content strongly influences the 

radiative cooling rate, so that ew depends on water. Moreover, the vapor content outside 

convective clouds is important in the formation of stratiform clouds, which themselves strongly 

affect radiative transfer in both the visible and infrared, so the actual problem of moist RCE is a 

strongly two-way process, with the radiation and surface fluxes driving the convection and the 

latter lofting water from its source of the surface and thereby influencing radiative transfer by 

altering the vapor and cloud water profiles outside the convective clouds themselves.  

We will return to a detailed treatment of moist RCE in the following section. But next we turn to 

the topic of moist convection itself. 

 

 



44 
 

References 

 

 

Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 
1046-1053. 

 
Emanuel, K. A., 1994: Atmospheric convection. Oxford Univ. Press, New York, 580 pp., 
translator. 

 
Nicolis, G., and I. Prigogine, 1977: Self-organization in nonequilibrium systems. John Wiley & 
Sons, New York, 490 pp., translator. 

 
Pierrehumbert, R. T., 2010: Principles of planetary climate. Cambridge University Press, New 
York, 652 pp., translator, 978-0-521-86556-2. 

 

 


