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1 Introduction

pyPI is a set of functions, scripts, and notebooks that compute and validate
tropical cyclone potential intensity (PI) calculations in Python. It is a port
of the Bister and Emanuel (2002) algorithm ([3], hereafter BE02) which was
originally written in FORTRAN—and then converted to MATLAB—by Prof.
Kerry Emanuel (MIT). The goals in developing and maintaining pyPI are to:

• supply a freely available validated Python potential intensity calculator,

• carefully document the BE02 algorithm and its Python implementation,
and

• demonstrate and encourage the use of potential intensity theory in tropical
cyclone analysis.

This document provides a full overview of the pyPI project, including (1)
how to get started as a new user, (2) a description of the codebase, (3) a val-
idation of pyPI against the existing gold-standard PI calculations module (i.e.
the BE02 MATLAB code), (4) example analyses with pyPI, and (5) an adequate
accounting of the physics and mathematics contained in the potential intensity
code. My intent is that any atmospheric scientist with a working knowledge
of Python, some appropriate climate data, and a basic understanding of trop-
ical meteorology, should be able to read this document, clone the repository,
and begin to quickly perform (and understand!) their own potential intensity
calculations.

2 Getting Started

The pyPI codebase was written and tested with Python v3.7.6. Jupyter note-
books for analyses and validation were developed with Jupyter Notebook 6.0.3.
pyPI dependencies are listed in requirements.txt, and are:

• NumPy 1.18.1

• Numba 0.48.0

• xarray 0.15.1

To implement pyPI, clone the repository. Calculating potential intensity for
a given set of environmental inputs requires passing them to the pi.py module.

An example run over a sample dataset is found in run sample.py (see
section 3.2); new users should begin by executing this code to ensure pyPI runs
locally on their machine.

> python run_sample.py

which should print to screen:
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Beginning PI computations...

...PI computation complete and saved

Performing PI analyses...

...PI analyses complete and saved

pyPI sample run finished!

If this returns an error, check that the local python environment has the
correct dependencies and Python version, and that the paths within the script
are suitable given the local directory structure. If problems persist, please report
at ∼/pyPI/issues. When run sample.py has completed its execution, view the
/data/ directory to ensure that the sample output files are updated. Users may
also proceed to the /notebooks/ directory and run each of them with Jupyter
Notebook to reproduce the repository output.

3 pyPI Codebase & Examples

3.1 Potential Intensity Module: pi.py Description

The potential intensity module, pi.py, is a direct port of the BE02 MATLAB
code pc min.m. It shares the same baseline input and output variables, with
additional adjustable parameters and with slight modifications for how flags
and missing data are handled (discussed more below). Section 4.2 provides a
full derivation of PI, using embedded code for reference. In this section I intro-
duce PI and describe how the calculation is handled by pi.py (inputs, outputs,
parameters, development decisions, and flags).

From [2, 19], the maximum (near-surface) potential intensity of a tropical
cyclone, Vmax, may be approximated by:

(Vmax)2 =
Ck
CD

(Ts − T0)

T0
(h∗o − h∗) (1)

where Ck and CD are the enthalpy and momentum surface exchange coeffi-
cients, respectively; Ts is the sea surface temperature (SST); T0 is the outflow
temperature; h∗o is the saturation moist static energy at the sea surface; and h∗

is the saturation moist static energy of the air above the boundary layer. The
ratio Ck

CD
is defined constant.

3.1.1 Inputs & Outputs

The PI module requires environmental state variable inputs of temperature
(T ) and mixing ratio (r) profiles on pressure levels (p), and concurrent Ts and
mean sea level pressures (pmsl). The algorithm is configured to output Vmax,
the tropical cyclone minimum central pressure (pmin), T0, an algorithm status
flag, and the outflow temperature level (OTL). The OTL is the level of neutral
buoyancy for a saturated air parcel lifted from sea level, and corresponding
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to the outflow temperature. Algorithm variables and parameters are shown in
Table 1.

Inputs:
Symbol Name pyPI variable Units Values
Ts Sea surface temperature SSTC ◦C —
pmsl Mean sea level pressure MSL hPa —
T (p) Temperature profile T ◦C —
r(p) Mixing ratio profile R g/kg —
Ck
CD

Ratio of exchange coefficients CKCD=0.9 unitless 0.17–1.05

— Ascent process flag ascent flag=0 — 0.0–1.0
— Dissipative heating flag diss flag=1 — 0 or 1
— Reduction of Gradient Winds V reduc=0.8 fraction 0.0–1.0
— Missing data flag miss handle=1 — 0 or 1

Outputs:
Vmax Potential intensity VMAX ms−1 —
pmin Minimum central pressure PMIN hPa —
— Algorithm status flag IFL — 0, 1, 2, or 3
T0 Outflow temperature TO K —

OTL Outflow temperature level LNB hPa —

Table 1: Input/output variables and adjustable algorithm parameters for the PI
calculation module pi.py. Default parameter values are provided in the “pyPI
variable” column. Parameters adjusted by the user should never be set outside
the “Values” column prescriptions without physical justification and/or module
modification.

To calculate PI the user should call:

> pi(SSTC, MSL, P, T, R, CKCD=0.9, \

ascent_flag=0, diss_flag=1, V_reduc=0.8, miss_handle=1)

which will return:

> return(VMAX, PMIN, IFL, TO, LNB)

corresponding to the input environmental conditions. The input profiles (T; R)
must be configured such that they are one-dimensional (along the P grid) and
with the lowest index corresponding to the lowest input profile level (highest
pressure).

3.1.2 Adjustable Parameters

Building on the hard-coded parameters in the BE02 MATLAB script, pyPI has
five adjustable parameters in pi.py. The user may set the values of these in
the module call, with the caveat that each should be chosen within the defined
“Values” column of Table 1. Parameters set outside these values could result in
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syntax errors or logical errors in the output, or could give rise to unreasonable
or unphysical PI estimates.

CKCD (default=0.9)
The ratio Ck

CD
an uncertain quantity, and its value is an ongoing area of field

and theoretical research [12]. The constant ratio depends on the sea state, and
scales the potential intensity linearly. Table 1 includes the 1σ range of the ratio
found with energy and momentum budget methods by the 2003 Coupled Bound-
ary Layers Air–Sea Transfer (CBLAST) field program, [1]. Several studies have
set Ck

CD
=0.9 when calculating PI (e.g. [37, 39, 19]), but it has not affected their

qualitative results; as a constant it cannot influence the variability of PI.

ascent flag (default=0)
The ascent process flag determines whether the air parcels displaced in each

CAPE calculation (cf. section 4.2) follow reversible adiabatic ascent (ascent flag=0)
or pseudoadiabatic ascent (ascent flag=1). In the case of reversible ascent, the
full moist entropy of the buoyant parcel is conserved along its displacement fol-
lowing a moist adiabat. In pseudoadiabatic ascent the heat capacity of liquid
water is neglected. Liquid water is assumed to fall out of the parcel as it con-
denses, while the parcel ascends following the pseudoadiabatic moist adiabat;
for more details see [14], their section 4.7. For practical applications using pyPI,
the ascent flag may be set to any value between 0.0 and 1.0, such that ascent
is any fraction intermediate to fully reversible and fully pseudoadiabatic ascent.

diss flag (default=1)
The dissipative heating flag determines whether dissipative heating is ac-

counted for (diss flag=1) or ignored (diss flag=0) in maximum potential
intensity theory (see [2], their Eqn. 22). When dissipative heating is included in
the PI calculation, the leading factor in the BE02 algorithm (Eqn. 4) is ( CkCD ∗

Ts
T0

),

where Ts
T0
> 1. In the absence of dissipative heating, the leading factor is ( CkCD ∗1)

following the original findings of [13, 8]. Thus, PI is considerably lower when
dissipative heating is neglected.

V reduc (default=0.8)
Raw potential intensities are maximum gradient wind speeds. As described in

[10], gradient winds calculated with the BE02 algorithm are not directly compa-
rable with observed intensities at the near-surface without some approximation
for the scaling between gradient and 10 meter winds. Following [26], a crude
reduction of 20% (V reduc=0.8) is typically applied to scale PI for comparison
with near-surface winds. The percent reduction in the gradient wind in terms
of V reduc is Preduc = 100% ∗ (1 − V reduc). Note that for some applications
of PI, such as using it as thermodynamic parameter in climate science—e.g.
incorporation into the Genesis Potential Index, [5]—V reduc should be set to
1.0 (no reduction).
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miss handle (default=1)
The missing data flag prescribes how missing values are handled in the

CAPE calculation (discussed in the next section). Following the BE02 MAT-
LAB code (miss handle=0), if missing values are found in the input temper-
ature profile1, then the algorithm will attempt to calculate PI for all available
levels above the missing values. However, the user may more conservatively
choose that any missing values in the input profile will immediately set the
entire PI calculation output to missing (miss handle=1).

3.1.3 Output Flags & Handling Missing Data

Mirroring the output flag convention of the BE02 MATLAB code: IFL=1 when
the pi.py algorithm successfully returns valid potential intensity ouputs, IFL=0
when the input data is improper for a PI calculation (e.g. if Ts < 5◦C), and
IFL=2 when the algorithm fails to converge.

The major difference between pyPI and the BE02 MATLAB code is in how
the algorithm handles missing data and the (related) flag provided in the output.
(Note: by convention in pyPI, missing input variables should always be assigned
the NumPy “Not-a-Number”—NaN, np.nan—to avoid logical or syntax errors.)
The BE02 MATLAB code default is that profiles may contain missing values
(specifically temperatures on pressure levels), and the algorithm computes PI
over the remaining valid levels.

Because missing values may sometimes be found at the surface—and the
primary CAPE calculation relies heavily on the assumption of lifting the parcel
within the storm and environment from that level—significant errors could arise
from estimating PI when ignoring buoyancy near the surface. In principle, PI
should be calculated only over data points with existent sea surface temperatures
and lowest profile level temperatures; but in practice missing data may arise
at the lowest profile level, leading to an errant PI calculation with the BE02
MATLAB code.

pyPI addresses this challenge in three ways. First, an adjustable parameter
(miss handle) is implemented to allow the user to specify how pyPI handles
the missing values. If miss handle=0, the code attempts to handle missing
values akin to the way that the BE02 MATLAB code did, although there still
remain some differences in the outputs between pyPI and MATLAB (see below).
Notably, in this case the CAPE calculation proceeds as normal only as long as
there are no missing values between the lowest valid (non-missing) level and the
OTL; otherwise, CAPE function outputs (and hence PI module outputs) are
returned as missing. Second, if miss handle=1, then the CAPE function will
automatically interpret temperature profiles with missing data as invalid, and
return missing values to the PI algorithm, resulting in the PI outputs being set
to missing in the return. Third and finally, a new output flag value (IFL=3) is
introduced in pyPI which is returned when missing values in the temperature

1Note that, following the BE02 MATLAB code, mixing ratios above the boundary layer
are unimportant, and may be set to zero if they are missing.
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profile results in a missing output return from pi.py (i.e. in either of the two
cases described above).

Figure 1 shows an example of the output algorithm status flags from pyPI cal-
culations with a month of MERRA2 data, and with the default miss handle=1.
The figure illustrates the few global points which had at least some missing data,
resulting in a missing PI return from pyPI (IFL=3; red grid points). In contrast,
these locations have an output (but likely errant) PI from the BE02 MATLAB
code. The majority of locations where missing input data results in missing
output PI are near land (e.g. the Caribbean and Indo-Pacific), where missing
values likely arise as an artifact of the differences between the sample data and
the land-sea mask applied (section 3.2). Missing values in the sample data (which
has lowest data pressure level of 1000 hPa) could also be in locations where the
monthly average pmsl is below 1000 hPa, resulting in T (1000 hPa)=NaN.

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150

90
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30
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0
-15
-30
-45
-60
-75
-90

PyPI Flags: Blue=Ok, Gray=Failed, Yellow=No Convergence, Red=Missing Values

Figure 1: pyPI status flags from September 2004 potential intensity calculations
when miss handle=1. Blue grid cells indicate the PI algorithm converged, gray
grid cells indicate the PI algorithm failed to pass a check, yellow grid cells
indicate the PI algorithm did not converge, and red grid cells indicate the PI
algorithm failed due to missing profile data.

In the example pyPI calculation presented in Fig. 1, there are no inputs for
which the algorithm did not converge (cf. [3]). One final complication is that
BE02 MATLAB code occasionally returns Vmax = 0 as an output. In these
cases, pyPI instead returns Vmax = NaN.

Overall, pyPI converges and outputs non-missing PI values for ∼43.3% of the
year-long/global sample data set (compared with the∼42.5% of non-missing/non-
zero PI values returned by the BE02 MATLAB code). In addition to how missing
data is handled, output differences may also arise from slight variations in nu-
merical computation between Python and MATLAB. All pyPI validation tests
presented below (section 3.3) are computed over the spatio-temporal locations
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for which both algorithms have non-missing/non-zero potential intensities (and
with miss handle=1).

It should be noted that (by definition) profile values in the mid troposphere
will have no impact on the PI calculation, so that missing values are not prob-
lematic above the boundary layer (hence mixing ratios above the boundary
layer may be neglected, see section 4.2). Continuing to refine the handling of
missing data in pyPI is a goal for future releases. Feedback or suggestions for
improvement on this methodology are particularly welcome.

3.2 Sample Data

Potential intensity calculations require environmental state variables: temper-
ature (T ) and specific humidity (q) profiles on a pressure grid (p), sea sur-
face temperatures (Ts), and mean sea level pressure (pmsl). The pyPI sample
data (stored in sample data.nc) are monthly means of these variables from
the second Modern-Era Retrospective Analysis for Research and Applications
(MERRA2, [18]) in 2004, interpolated onto a 2.5◦ x 2.5◦ global grid [19]. Note
that for these example pyPI calculations the water vapor mixing ratio, r, is ap-
proximated by substituting in the reanalysis specific humidity (as q ≡ r

1+r ≈ r,
because r � 1).

Note that potential intensity calculations are generally linear, i.e., mean
potential intensities may be estimated as a function of mean environmental
variables,

E[Vmax(Ts, pmsl, p, T, r)] ≈ Vmax(E[Ts], E[pmsl], E[p], E[T ], E[r]) (2)

where E[ · ] is the expected value of a function or variable. Using monthly mean
environmental conditions to compute climatological monthly means of potential
intensity (and the algorithm’s other output variables) generates a small bias of
<1 ms−1 anywhere globally and <0.5 ms−1 in the tropics [20]. This property is
convenient, because it reduces the scale of data needed to compute PI: daily or
hourly data are not needed for monthly or longer (climatological) applications.
Applications on shorter (e.g. operational or daily) timescales, however, should
use appropriately shorter frequency inputs to the algorithm.

For consistency with [19], the sample data uses the land-sea mask from the
European Centre for Medium-Range Weather Forecasts Interim (ERA-Interim,
[6]) on a 2.5◦ x 2.5◦ global grid. By definition, Vmax ≡ 0 where Ts = NaN
(i.e. over land); in some cases (e.g. if skin temperatures—valid over land—are
used in lieu of sea surface temperatures) PI may be mistakenly calculated over
land with pi.py. In these cases, users should assign all PI algorithm outputs
over land to the missing value in post-processing. As an alternative, in this pyPI
example input variables over land are set to missing in a pre-processing step
(see reference calculations.m). Note that the mismatch between using the
ERA-I land-sea mask and MERRA2 data in this example results in a set of
minor output artifacts caused by missing (MERRA2 land grid points) input
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data over ERA-I defined ocean grid points (and providing an illustration of the
missing data flag developed in pyPI).

3.3 pyPI Validation

Accompanying the environmental conditions in sample data.nc are outputs
from the BE02 MATLAB code, pc min.m, written by Kerry Emanuel (see
ftp://texmex.mit.edu/pub/emanuel/TCMAX) and revised by Daniel Gilford for
climatological research applications (see [19], [20], and MATLAB script refer-
ence calculations.m).

Potential intensities calculated over September 2004 with pyPI and the BE02
MATLAB code are compared in Figure 2 over the globe; their difference is
computed and plotted in Figure 3. There is excellent agreement between the
two algorithms, with the absolute maximum difference anywhere across the
sample calculations being 4.1×10−5 ms−1. Potential intensities calculated with
the Python algorithm exhibit a slightly negative bias relative to the MATLAB
calculations. But relative to the uncertainties in the PI calculation, such as the
ratio of surface exchange coefficients, these differences are negligible.

To further show this agreement, Figure 4 shows the scatter between all po-
tential intensity values calculated with the two algorithms over the sample data,
plotted against a 1-to-1 line (values lying on this line exhibit perfect agreement).
The R-squared of this comparison is R2 ≈ 1.0 to thirteen significant digits, such
that they are exactly identical. All other output variables (cf. Table 1) from the
two algorithms have similarly strong levels of agreement. I conclude that the PI
calculations made with pi.py are adequately validated against the BE02 MAT-
LAB code, and that pyPI is sufficiently accurate for use in research applications.

3.4 Sample Analyses: PI Annual Means

Global 2004 annual mean sea surface temperatures, and pyPI calculated poten-
tial intensities, outflow temperatures, and outflow temperature levels are shown
in Figure 5. The familiar pattern of warm SSTs in the tropics corresponds
with high Vmax values, suggesting that on an annual timescale PI is strongly
influenced by Ts. These warm and high-PI reigons are also accompanied by
outflow temperature levels with annual pressures below 100 hPa, in the trop-
ical tropopause region (e.g. [16]). Near the tropical tropopause, annual mean
outflow temperatures are remarkably cold, around 200 K. On average, the cold-
est outflow temperatures are found in the Western North Pacific basin, where
consistent deep convection and stratospheric circulation act to keep tropopause
temperatures very cold and highly variable (e.g. [29]).

3.5 Sample Analyses: PI Seasonal Cycles

A slightly more sophisticated application of pyPI is the calculation of potential
intensity seasonal cycles. Reproducing the methodology of [19] for only a sin-
gle year, Figure 6 shows the seasonal cycles of sea surface temperatures, and
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Figure 2: September 2004 mean potential intensities (ms−1) calculated with pyPI
(upper) and the BE02 MATLAB code (lower).

pyPI calculated outflow temperatures, outflow temperature levels, and poten-
tial intensities in 2004 averaged over tropical cyclone main development regions
(defined in [19], their Table 1).

The seasonal cycles of PI are known to be quite robust year-over-year and
exhibit clear differences between regions. Consistent with the findings of [19],
the Western North Pacific has a nearly flat seasonal cycle of PI, while the
other basins are more intraseasonally variable. While the muted sea surface
temperatures certainly play an important role in this damped cycle, the outflow
temperature pattern is typical of the cold-point tropopause seasonal cycle (e.g.
[40, 28])—which the OTLs are reaching—which acts to damp the seasonal cycle
further by decreasing PI in the boreal summer and increasing PI in the winter.
As a result, tropical cyclones in the Western North Pacific have higher speed
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Figure 3: September 2004 mean potential intensity differences (ms−1) between
those calculated with pyPI minus those calculated with the BE02 MATLAB
code.
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Figure 4: 2004 mean potential intensities (ms−1, blue dots) calculated with pyPI
(horizontal axis) and the BE02 MATLAB code (vertical axis). The black curve
is the 1-to-1 line.

limits during the winter months (described in detail below). Consistent with
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Figure 5: 2004 annual mean potential intensities (ms−1, top left), sea surface
temperatures (K, top right), outflow temperatures (bottom left, K), and outflow
temperature levels (bottom right, hPa) calculated with pyPI .

this finding, historical observed typhoons show intense wind speeds during the
winter and spring months [20]. For example, Typhoon Sudal reached category
4 strength, ∼67 ms−1, in early April 2004 when the monthly average PI was
about 75 ms−1.

The seasonal cycles of each basin illustrate the complex relationship between
sea surface temperatures, OTLs, and outflow temperatures. Figure 7 diagrams
this relationship in more detail, showing how one assumption in the pyPI algo-
rithm impacts the output PI values. pyPI (and the BE02 MATLAB code it is
based on) assumes during a PI calculation that the outflow temperature and
its level are derived by finding the level of neutral buoyancy assuming a sat-
urated parcel lifted from the sea surface with temperature, Ts. This implies
that, following a moist adiabat, the level of the neutral buoyancy is a function
of only Ts and the environmental temperature profile, T . Given a fixed tem-
perature profile, an increase in Ts (e.g. from SST1 → SST2 in Fig. 7) requires
that the associated OTL will be found at a higher altitude (OTL1 → OTL2
in Fig. 7) and the associated outflow temperature will likewise change. As the
atmosphere’s stratification increases into the lower stratosphere, increases in Ts
will be less effective at changing the OTL and its temperature, with the effect
nearly saturating when the outflow reaches the cold-point tropopause (e.g. 100
hPa in Fig. 7). At this point, Ts variability is almost completely decoupled from
T0 variability. Instead these T0 values become influenced by tropopause region
variability (e.g. [15, 27, 37, 39, 19]) which is controlled by radiation, dynamics,
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Figure 6: 2004 seasonal cycles of potential intensity (ms−1, top left), sea surface
temperature (K, top right), outflow temperature (bottom left, K), and outflow
temperature level (bottom right, hPa) calculated with pyPI and averaged over
the main development regions defined in [19] (their Table 1): the North Atlantic
(red), Eastern North Pacific (green), Western North Pacific (blue), North Indian
(yellow), and Southern Hemisphere (black).

and deep convection (e.g. [16, 28]).
These properties are borne out in the example 2004 seasonal cycles com-

puted by pyPI in Fig. 6. In the North Atlantic basin SST and OTL seasonal
cycles are inversely proportional: colder SSTs have higher pressure OTLs and
warmer outflow temperatures found in the upper troposphere (where dT

dz < 0)
in all months except August-September. In these late summer months the OTL
reaches near the cold-point tropopause, and the outflow temperature slightly
increases, following the seasonal cycle of warmer tropopause temperatures (e.g.
[40]). A contrasting pattern is seen in the Western North Pacific, where the
OTLs have almost no seasonal cycle: in this basin the calculated outflow al-
ways reaches the lowermost stratosphere (OTL ≤ 90 hPa). Accordingly, the
outflow temperature seasonal cycle perennially follows the seasonality of low-
ermost stratospheric temperatures, which minimize in the boreal winter and
maximize in the boreal summer ([40]). Comparing with Eqn. 1, this T0 season-
ality leads to relatively increased PI values in the boreal winter and relatively
decreased PI values in the boreal summer. Overall, the PI seasonal cycle in the
Western North Pacific is damped over the year—this pattern is also observed
in real-world tropical cyclone intensities (cf. [20]).
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Figure 7: Skew-T log-P thermodynamic diagram with isotherms (thin black
curves), dry adiabats (green curves), and moist adiabats (blue curves). The
bold black line is a mean environmental temperature profile from the North
Atlantic region ([19], their Table 1), the magenta curve is the moist adiabat
associated with a mean North Atlantic SST, and the red curve is the moist
adiabat associated with an SST 3 degrees warmer than the mean.

3.6 Sample Analyses: Decomposition

The relative contributions to potential intensity may be mathematically derived
by decomposing Eqn. 1. Taking the natural logarithm of both sides:

2× log(Vmax) = log(
Ck
CD

) + log(
Ts − T0
T0

) + log(h∗o − h∗) (3)

then PI variability is related to variability in either tropical cyclone efficiency
(Ts−T0

T0
) or thermodynamic disequilibrium (h∗o−h∗); recall that Ck

CD
is taken as a

constant. As an example following [19], Eqn. 3 is applied to pyPI calculated 2004
seasonal cycles of potential intensity (from Fig. 6). pyPI calculates PI directly,
and efficiency may be directly computed from input Ts and output T0; following
[39] the disequilibrium term is taken as a residual from Eqn. 3.

After finding each term in Eqn. 3 over each basin and seasonal cycle, the
amplitude (equivalent to the annual range on a monthly timescale) of each sea-
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Figure 8: Seasonal amplitudes of each PI decomposition term (Eqn. 3) in 2004
and each main development region, calculated with pyPI. Compare with [19],
their Table 2. By convention, negative amplitudes indicate the associated sea-
sonal cycle peaks in the boreal winter. For reference, the dashed black line
indicates the magnitude and sign of the seasonally invariant log( CkCD ).

sonal cycle is plotted in Figure 8. By convention ([19, 20]), negative amplitudes
indicate the ∼sinusoidal seasonal cycle reaches its maximum in the boreal winter
and minimum in the boreal summer.

In all basins, the disequilibrium term drives the largest portion of the sea-
sonal amplitude. This is consistent with seasonal cycles in SSTs which dominate
the disequilibrium variance (cf. SST seasonality in Fig. 6). The efficiency term is
smaller, and in each basin it follows the same cycle as thermodynamic disequi-
librium, with the exception of the Western North Pacific (where the efficiency
seasonal cycle maximizes in the boreal winter and minimizes in the boreal sum-
mer). Referring to the discussion in the previous section 3.5, this opposite signed
seasonality between disequilibrium and efficiency in the Western North Pacific
is directly related to the influential seasonality of the near-tropopause outflow
temperatures found with the pyPI calculations (see full discussions in [19, 20]).
Notably, the Southern Hemisphere shares this outflow temperature seasonality,
which actually amplifies the efficiency seasonal cycle through both SST and
outflow temperature intraseasonal variability. In all other basins, outflow tem-
perature seasonality is offset by the sea surface temperature seasonality, which
acts to mute the efficiency term and further lead to disequilibrium dominating
the seasonal cycle. Fig. 8 illustrates that, ultimately, the roles of environmental
conditions in PI seasonality are basin dependant.

These results show a few short examples of how pyPI may be used to study
tropical cyclone intensities, and likewise serve to illustrate the ability of pyPI to
reproduce work previously computed with the BE02 MATLAB code.
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4 Potential Intensity Theory & Computation

4.1 Background

The maximum potential intensity (PI) is the upper bound (sometimes collo-
quially known as the “speed limit”) on a tropical cyclone’s intensity, given its
environmental conditions and energetic constraints [13, 22]. The goal of this sec-
tion is provide a brief scientific background on PI, in order to provide context
for the PI computation and its usefulness in research applications. Two excel-
lent, helpful, and rather comprehensive reviews of tropical cyclone science and
advances by Kerry Emanuel (including discussions on PI) are found in [12] and
[9].

Tropical cyclones arise in response to a thermodynamic gap in the tropical
atmosphere (e.g. [11]). The tropical surface’s output longwave radiative cooling
is outpaced by the combined solar and longwave radiative heating (terrestrially
sourced by greenhouse gases and clouds) received at the surface. In the absence
of any balancing outgoing process, the resulting thermodynamic disequilibrium
would lead to a build-up of heat driving substantially higher surface tempera-
tures (e.g. [24]). Atmospheric convection steps in and plays the leading role in
removing this excess heat; tropical cyclones are a well-known expression of this
organized convection.

Driven by thermodynamic disequilibrium—which is largest in the summer
and autumn seasons—an existing and mature tropical cycle will transfer heat
from the surface to the atmospheric boundary layer, largely through (a) latent
heat release of evaporation and from the sea surface and (b) dissipative heating
[2]. Viewed from this perspective, it is useful and convenient to consider tropical
cyclones as Carnot heat engines which convert this fuel—i.e. thermodynamic
disequilibrium—to kinetic energy in the form of azimuthal winds. A diagram of
the Carnot cycle overlayed on a cross-section of a mature hurricane, along with
pyPI algorithm inputs and outputs, is provided in Figure 9.

Following the entropy gradient, air at the outer reaches of the storm spirals
inward (branch A) toward the minimum central pressure in the storm (i.e. in
the eye) and the entropy maximum near the radius of maximum winds (RMW).
Along its motion the air gathers entropy through isothermal heat absorption
(through the two processes noted above) with the temperature of the sea sur-
face, Ts. When the air reaches an entropy maximum at the RMW it bends
upward through adiabatic expansion (branch B), conserving its entropy as it
rises through the eyewall and then along the outflow at the storm top. In the
outflow layer the air undergoes isothermal radiative heat loss (branch C) with
temperature T0, transferring the entropy generated by the storm to its surround-
ings. Finally, the Carnot cycle closes as the air undergoes adiabatic compression
with lower entropy back towards the sea surface (branch D) while it temperature
rises once again.

An advantage of conceptualizing a tropical cyclone this way is that it permits
a formulation of the tropical cyclone’s PI (Eqn. 1) in terms of the heat engine’s
efficiency defined by the temperatures at each extent (reservoir) of the engine
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Figure 9: The cross-section (along the radius, R, and pressure, p) of an idealized
and developed axisymmetric tropical cyclone and its thermodynamic cycle. pyPI
inputs and outputs are in blue and red text, respectively. Bold blue lines and
black letters indicate the four branches of the Carnot cycle, A through D (see
text). The tropical cyclone maximum potential intensity (Vmax) is found at the
radius of maximum winds (RMW) and is directed into-the-page in the northern
hemisphere (e.g. in a North Atlantic hurricane). The minimum central pressure
(pmin) is found in the storm’s eye. Based on Carnot cycle illustrations in [11,
17].

(Ts−T0

T0
), and in terms of the heat source itself (thermodynamic disequilibrium,

h∗o − h∗). These quantities are readily calculated from real-world observations
of the atmosphere and ocean (section 3.2). In physically-based axisymmetric
models, tropical cyclones tend to reach their PI (e.g. [31]).

In reality, storms rarely attain their thermodynamically-constrained poten-
tial intensity. Combining climatologically-derived PI with observed tracks and
intensities of real-world storms, [10] showed that, statistically, any observed
storm has equal likelihood of attaining any lifetime maximum speed between
some lower bound (symbolized as “α” in [20]) and its along-track PI. This sta-
tistical property is incredibly useful and powerful if it holds, because it implies
that any shift in the PI distribution, either on short timescales such as dur-
ing an unseasonably cold summer or on long timescales such as a response to
the steady warming trends of climate change, will be accompanied by similar
shifts in the observed intensity distribution (cf. [38]). [20] showed that observed
intensity distributions which have at least 25 sample tropical cyclones of hur-
ricane strength or greater should be statistically robust enough to follow their
associated potential intensity distribution.
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Such links between observed and potential intensities have been shown on
seasonal ([34, 20]), interannual ([38, 32]), and climatological (e.g. [10]) timescales.
These links are more robust when PI is evaluated along the track of a storm
rather than as a basin-wide average ([38, 20]). Other studies have examined the
roles of volcanic eruptions/lower stratospheric variability (e.g. [15]), the Mon-
treal protocol ([25]), or climate change on potential intensity ([7, 35, 33], and
many others). Any oceanic or atmospheric variability or trend which alters the
thermodynamic properties in the regions of tropical cyclones could have some
effect on PI (though the relative importance and/or robustness of these effects
will vary). This last connection between tropical cyclone PI and climate change
will likely remain a critical topic to understand: the troposphere continues to
warm and gain water vapor in response to anthropogenic emissions of green-
house gases, while simultaneously the stratosphere is cooling (e.g. [23]).

4.2 pyPI Algorithm

Here I discuss the mathematical expression of potential intensity and its com-
ponents (primarily the convective available potential energy, CAPE) and show
how pyPI computes these components within in the code. Constants used in the
formulation and computation are recorded in Table 2.

Symbol Constant Name pyPI variable Value/Units
cpd Specific heat of dry air CPD 1005.7 J/kg.K
cpv Specific heat of water vapor CPV 1870 J/kg.K
c` Specific heat of liquid water CL 2500 J/kg.K
Rv Gas constant of water vapor RV 461.5 J/kg.K
Rd Gas constant of dry air RD 287.04 J/kg.K

ε Ratio of gas constants EPS Rd
Rv

= 0.6219...

Lv0 Latent heat of vaporization at 0◦C ALV0 2.501e6 J/kg
— Pressure upper boundary ptop 50 hPa

Table 2: Constants used in PI calculation.

4.2.1 PI Formulation

Following [3] and based on the formulation of [8], idealizing a tropical cyclone
as a Carnot heat engine, and assuming:

1. the work done against friction by the outflow is ignored,

2. when the storm intensity reaches its maximum, the anticyclone at the top
of the storm is fully developed, and

3. the gradient wind may be approximated by cyclostrophic wind at the
RMW,

then the Carnot cycle formulation yields an expression for the maximum poten-
tial intensity (which roughly scales with the approximated PI expression, Eqn.
1, [19, 39]):
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(Vmax)2 =
Ts
T0

Ck
CD

(CAPE∗ − CAPEe)|RMW (4)

where CAPE∗ is the convective available potential energy of saturated air lifted
from sea level to the OTL referencing the environmental profile, and CAPEe is
the convective available potential energy of the environment. Because the final
term is evaluated at the RMW and CAPE∗ is pressure dependant, an expression
for the surface pressure at the RMW is needed. Following [3] (cf. also [17], their
Eqn. 6), the minimum pressure of the tropical cyclone at the RMW, pm is found
with2:

RdTυlog(
pmsl
pm

) =
1

2
(Vmax)2 + CAPE|RMW , (5)

where Tυ is the surface environmental virtual temperature, and CAPE|RMW is
the environmental convective available potential energy evaluated at the RMW.
Because the boundary layer water vapor mixing ratio is higher in the tropical
cyclone eyewall than the storm’s outer region (assuming a constant relative hu-
midity in the boundary layer across the storm’s radius), CAPE|RMW is slightly
larger than CAPEe (discussed more below).

The pressure dependence of CAPE requires solving Eqn. 4 and 5 with nu-
merical iteration, which is performed in pyPI. In the following section I describe
the algorithm and each component of the PI numerical computation.

4.2.2 pyPI Computation

The algorithm to compute potential intensity is:

Potential Intensity Algorithm

input: Ts, pmsl, p, T (p), r(p)
1: Run checks to ensure inputs are appropriate
2: Calculate CAPEe
repeat

3: Calculate CAPE|RMW

4: Calculate CAPE∗, OTL, T0
5: Estimate pm at this ith iteration

until convergence... objective ∆i,i−1pm < 0.5 hPa
6: Calculate final pmin value
7: Calculate Vmax
return: Vmax, pmin, OTL, T0, flag.

2As noted in [17], Eqn. 4 in [3] mistakenly replaces Rd with cp. pc min.m, however,
includes the correct factor of Rd, which is carried over into pyPI.
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In addition to this detailed accounting of the potential intensity algorithm, each
line of pi.py has been commented for quick reference. I now review the algo-
rithm, stepping through line-by-line in pyPI (and ignoring unit conversions/if
statements/etc. when unnecessary):

We begin by checking to ensure that the input profiles are appropriate for
the PI calculation. If not, missing values are returned by the algorithm. Because
mixing ratios outside the boundary layer are unimportant, missing ratios are
replaced with 0 g/g (see BE02 MATLAB code).

Next, we calculate the surface saturated water vapor pressure, which is used
within the loop to estimate the saturated mixing ratio. The empirical expression
for saturated water vapor pressure (in hPa) is given empirically with T in ◦C
by [4] (their Eqn. 10):

es(T ) = 6.112 ∗ exp( 17.67 ∗ T
T + 243.5

). (6)

At the surface, the temperature is given by the sea surface temperature, so that
es(Ts) is found with:

> ES0=6.112*np.exp(17.67*SSTC/(243.5+SSTC))

After defining constants (Table 2), we compute CAPEe, which is needed to
compute PI (Eqn. 4):

> TP=T[NK]

> RP=R[NK]

> PP=P[NK]

> result = cape(TP,RP,PP,T,R,P,ascent_flag,ptop,miss_handle)

> CAPEA = result[0]

where NK=0 (the parcel is lifted from the lowermost input level in P). Below,
I describe the CAPE function which plays the central role in pi.py, before
returning to the base function to continue describing the PI algorithm.

∗ ∗ ∗

The CAPE calculation is made in an accompanying function within pi.py.
It assesses CAPE as the total positive and negative areas of buoyancy energy
(e.g. [14], their Eqn. 6.3.6, discussed more below). First, we check the user input
missing flag (miss handle), and return missing CAPE if the check is failed, or
if the input parcel is unsuitable for a CAPE calculation.

After defining constants within the CAPE function (Table 2), we find the
parcel moisture characteristics. By the Ideal Gas Law, we know ([4]. their Eqn.
16):

e =
r ∗ p
ε+ r

(7)

and after defining fractional relative humidity, RH ≡ e
es
≤ 1.0, we may find the

parcel’s saturated vapor pressure, partial vapor pressure, and relative humidity:
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> ESP=6.112*np.exp(17.67*TPC/(243.5+TPC))

> EVP=RP*PP/(EPS+RP)

> RH=EVP/ESP

> RH=min([RH,1.0])

Assuming the temperature dependence of specific heats is negligible over the
range of temperatures in the tropical atmosphere, and integrating Kirchoff’s
equation (e.g. [14], Eqn. 4.4.3-4.4.4) then the temperature dependence of the
latent heat of vaporization is:

Lv = Lv0 + (cpv − c`) ∗ T (8)

where T is in ◦C, so that we find Lv:

> ALV=ALV0+CPVMCL*TPC

Finally, we are equipped to calculate the parcel’s reversible total specific entropy
(per unit mass of dry air), s, given by [14] (their Eqn. 4.5.9):

s = (cpd + rT c`)log(T )−Rdlog(p) +
Lvr

T
− rRvlog(RH) (9)

where rT is the total water content mixing ratio, which is identical to the parcel
r at the surface. In the pi.py CAPE function, we find s of the parcel at the
surface:

> S=(CPD+RP*CL)*np.log(TP)-RD*np.log(PP-EVP)+ \

ALV*RP/TP-RP*RV*np.log(RH)

Next, the lifting condensation level (LCL) of the parcel must be found to parti-
tion the bouyancy calculation between saturated and non-saturated regions of
the profile. The pressure level of the LCL is found empirically with3:

pLCL = p ∗RH( T
A−B∗RH−T ) (10)

where A = 1669 and B = 122. In the BEO2 MATLAB code pLCL for the parcel
is estimated as:

> CHI=TP/(1669.0-122.0*RH-TP)

> PLCL=PP*(RH**CHI)

Here note that saturated parcels will have pLCL = p, so that the saturated
parcel’s LCL is its original pressure level. Likewise, parcels at levels below the
LCL are (by definition) not yet saturated. Starting here, the CAPE function
begins the “updraft loop”, where the positive and negative buoyancy of the

3This appears to be derived empirically from [4]; it was developed for [14] (Kerry Emanuel,
personal communication). Modern calculations of pLCL are made following the exact expres-
sions of [30]. A goal for a future release is to incorporate the modern LCL formulation into
pyPI.
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parcel is calculated for every jth level below the upper boundary on pressure
(ptop).

Starting with calculations at levels below the LCL (i.e. pj > pLCL), at each
jth level we find the unsaturated parcel temperature by following a dry adiabat
with the same temperature as the surface parcel (i.e. by Poisson’s equation):

Tk = T ∗ (
pk
p

)
Rd
cpd (11)

Because CAPE is proportional to the positive and negative areas enclosed by
the environmental and lifted parcel density temperatures (Tρ,e and Tρ, respec-
tively), we seek to calculate the density temperature ([14], their Eqn. 4.3.6):

Tρ = T ∗ (
1 + r/ε

1 + rT
) (12)

where the net water mixing ratio (rT ) is the same as the parcel water mixing
ratio at the surface, and in the environment below the LCL before condensation
has occurred (i.e. rT = r and rT,j = rj<LCL). The code accordingly calculates
the density temperatures of the environment, the parcel, and their differences
(which will be used to determine the buoyant areas):

> TG=TP*(P[j]/PP)**(RD/CPD)

> RG=RP

> TLVR=TG*(1.+RG/EPS)/(1.+RG)

> TVENV=T[j]*(1.+R[j]/EPS)/(1+R[j])

> TVRDIF[j,]=TLVR-TVENV

Next the code calculates the density temperature differences for all levels above
the LCL (i.e. pj > pLCL). Because the parcel is saturated above the LCL, its
moisture characteristics and temperature must be found iteratively at each jth

level. Rearranging Eqn. 7 to solve for r, the code sets initial conditions for the
iteration:

> TGNEW=T[j]

> TJC=T[j]-273.15

> ES=6.112*np.exp(17.67*TJC/(243.5+TJC))

> RG=EPS*ES/(P[j]-ES)

Until the numerical iteration converges (with objective for the parcel temper-
ature: ∆T < 0.001 K), we solve for parcel moisture characteristics which con-
serve the parcel’s reversible entropy s (Eqn. 9) following a moist adiabat; finding
these permits an estimation of the level’s density temperature differences. At
the beginning of the loop, we set the variables equal to the previous iteration’s
findings:

> TG=TGNEW

> TC=TG-273.15

> ENEW=6.112*np.exp(17.67*TC/(243.5+TC))

> RG=EPS*ENEW/(P[j]-ENEW)
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then we step forward updating the parcel’s temperature (and the dependant Lv
and water vapor mixing ratios) assuming the parcel’s entropy, S, is conserved fol-
lowing saturated reversible adiabatic displacement. Following Newton’s method

(i.e. Tn+1 = Tn + s(Tn)
ds(Tn)/dT

, [36]), when the difference between S and this itera-

tion’s entropy, SG, scaled by the rate of change of entropy with temperature, SL,
is small (i.e. S−SG

SL < AP ∗ 0.001), then the algorithm will converge (such that
we find the parcel temperature at this level, Tj):

> ALV=ALV0+CPVMCL*TC

> SL=(CPD+RP*CL+ALV*ALV*RG/(RV*TG*TG))/TG

> EM=RG*P[j]/(EPS+RG)

> SG=(CPD+RP*CL)*np.log(TG)-RD*np.log(P[j]-EM)+ALV*RG/TG

> TGNEW=TG+AP*(S-SG)/SL

Note that at saturation the final term in Eqn. 9 vanishes. Furthermore, the step
size (AP) changes dynamically depending upon the number of iterations (NC)
that have taken place. If the number of iterations exceeds 500 (an arbitrary
chosen excessive number of iterations), or if the water vapor pressure nears the
level pressure, then the algorithm fails to converge and returns zero CAPE.

When the algorithm has converged for a level, the final parcel mixing ratio is
set depending on the ascent type chosen by the user (section 3.1.2). For pseudoa-
diabatic ascent (ascent flag= 1), liquid water condensed in the parcel during
its ascent is assumed to drop out during ascent, such that the heat capacity of
liquid water is neglected (i.e. rT = rj). For reversible ascent (ascent flag= 0)
this water (and its heat capacity) is retained following the parcel (i.e. rT = r).

Note that the density temperature difference (and hence, a parcel’s buoy-
ancy) with height is not strictly higher under either assumption. Parcels lifted
reversibly always are warmer than those lifted psuedoadiabatically, but the
weight of the carried condensate also means these parcels are more dense until
they reach the upper troposphere ([14], their Table 4.2). Accordingly, [19] found
that psuedoadiabatic (typically more buoyant) PI calculations generally have
higher altitude OTLs than reversible (typically less buoyant) PI calculations on
monthly timescales.

The parcel’s mixing ratio is found following the flag set by the user:

> RMEAN=ascent_flag*RG+(1-ascent_flag)*RP

which is used to compute the density temperature for the parcel (Eqn. 12).
Similar to the approach for levels below the LCL, we find also find the environ-
mental density temperature at this level, and calculate the density temperature
differences:

> TLVR=TG*(1.+RG/EPS)/(1.+RMEAN)

> TENV=T[j]*(1.+R[j]/EPS)/(1.+R[j])

> TVRDIF[j,]=TLVR-TENV

Following the full calculation of Tρ − Tρ,e at each level, we are equipped
to calculate the parcel’s convective available potential energy. Parcel CAPE is
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given by the vertically integrated buoyant energy between the level from which
the parcel is initially lifted (j = 0) and the level of neutral buoyancy (LNB; this
is sometimes referred to as the “equilibrium level”; j = LNB). Following [14],
their Eqn. 6.3.6:

CAPE = PA−NA (13)

where

NA ≡ −
∫ pj=0

pj=LFC

Rd(Tρ − Tρ,e)dlog(p) (14)

PA ≡ +

∫ pj=LFC

pj=LNB

Rd(Tρ − Tρ,e)dlog(p) (15)

Negative areas (NA) are vertical regions of negative buoyancy which inhibit
spontaneous convection in the profile; positive areas (PA) are vertical regions
of positive buoyancy which cause the parcel to rise assuming an initial upward
displacement4. By definition, the level of free convection (LFC) separates regions
that are negatively buoyant (below) from regions that are positively buoyant
(above). When (j = LFC) > (j = LCL), then regions of the profile above the
LCL and below the LFC will still be negatively buoyant.

The CAPE function assesses Eqns. 13-15 in five steps:
First, we find the maximum level of positive buoyancy (INB), i.e. the highest

altitude jth level where Tρ − Tρ,e > 0:

> INB=0

> for j in range(nlvl-1, jmin, -1):

> if (TVRDIF[j] > 0):

> INB=max([INB,j])

If the highest level remains at j = 0, then there are no positively buoyant levels
and the function returns zero CAPE.

Second, noting that dp/(pmean,k) ≈ dlog(p)k at each layer, k, between two j
levels—where the average pressure of each kth layer is pmean,k = 1

2 (pj +pj+1)—
we find the positive and negative areas between the second-highest altitude
level (i.e. j = 1) and the the maximum level of positive buoyancy (taking care
to preserve the sign convention of Eqns. 14-15):

> for j in range(jmin+1, INB+1, 1):

> PFAC=RD*(TVRDIF[j]+TVRDIF[j-1])*(P[j-1]-P[j])/(P[j]+P[j-1])

> PA=PA+max([PFAC,0.0])

> NA=NA-min([PFAC,0.0])

Third, we find the residual negative area (if j = LFC > 0) or positive area
(if j = LFC = 0) of the mean layer composed of the parcel and the lowest level:

4Note that CAPE is not defined for parcels without positive areas.
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> PMA=(PP+P[jmin])

> PFAC=RD*(PP-P[jmin])/PMA

> PA=PA+PFAC*max([TVRDIF[jmin],0.0])

> NA=NA-PFAC*min([TVRDIF[jmin],0.0])

Fourth, we find level of neutral buoyancy, along with the residual positive
area of the mean layer between the the maximum level of positive buoyancy and
the LNB. We also find the temperature at the LNB:

> TOB=T[INB]

> LNB=P[INB]

> if (INB < nlvl-1):

> PINB=(P[INB+1]*TVRDIF[INB]-P[INB]*TVRDIF[INB+1]) \

/(TVRDIF[INB]-TVRDIF[INB+1])

> LNB=PINB

> PAT=RD*TVRDIF[INB]*(P[INB]-PINB)/(P[INB]+PINB)

> TOB=(T[INB]*(PINB-P[INB+1])+T[INB+1]*(P[INB]-PINB)) \

/(P[INB]-P[INB+1])

If the INB is found at the highest valid level (i.e. constrained by ptop), then the
LNB and its temperature are set at that level.

Finally, the negative and positive areas are added together (along with the
residual) following Eqn. 13:

> CAPED=PA+PAT-NA

After this last step in the CAPE function, we set the flag to indicate successful
computation (IFLAG=1) and return CAPE (CAPED), the temperature at the
LNB (TOB), the LNB itself (LNB), and the flag to the PI function.

∗ ∗ ∗

Returning to the PI function, we have found the environment’s CAPEe.
Next, we begin an iterative loop to numerically solve Eqns. 4 and 5 (with objec-
tive for the minimum pressure at the RMW: ∆i,i−1pm < 0.5 hPa). After setting
the initial conditions, begin the iteration by calculating environmental convec-
tive available potential energy at the radius of maximum winds, CAPE|RMW :

> TP=T[NK]

> PP=min([PM,1000.0])

> RP=EPS*R[NK]*MSL/(PP*(EPS+R[NK])-R[NK]*MSL)

> result = cape(TP,RP,PP,T,R,P,ascent_flag,ptop,miss_handle)

> CAPEM = result[0]

where Eqn. 7 has been rearranged to solve for the environmental parcel mixing
ratio, which has pressure dependence (r increases slightly as p→ pm approach-
ing the RMW, see [3]). Next, we calculate the saturation convective available
potential energy at the radius of maximum winds, CAPE∗. This calculates as-
sumes the parcel is lifted directly from the sea surface, such that T = Ts and
r = rs(Ts) (where rs is found given Ts via Eqns. 6 and 7):
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> TP=SSTK

> PP=min([PM,1000.0])

> RP=0.622*ES0/(PP-ES0)

> result = cape(TP,RP,PP,T,R,P,ascent_flag,ptop,miss_handle)

> CAPEMS, TOMS, LNBS, IFLAG = result

As discussed in section 3.1.1, the OTL is defined as the level of neutral buoyancy
for a saturated air parcel lifted from the sea level, and T0 is the corresponding
outflow temperature at that LNB. Critically, therefore, this step to find CAPE∗

also sets the OTL and the outflow temperature (T0) that will be output upon
convergence:

> TO=TOMS

> LNB=LNBS

The leading factor in Eqn. 4, the ratio Ts
T0

, is the scaling of PI by dissipative
heating, which increases PI when it is considered ([2]). We set this ratio with
the current iteration’s outflow temperature and the (fixed) input sea surface
temperature:

> RAT=SSTK/TO

The relevance of this ratio for the PI calculation is set by the user with the
adjustable parameter diss flag (section 3.1.2). If dissipative heating is allowed
to impact the tropical cyclone potential intensity (diss flag=1) then the ratio
remains as defined above. If dissipative heating is neglected in the potential

intensity calculation (diss flag=0) then��
��: 1

Ts/T0 :

> if (diss_flag == 0):

> RAT=1.0

We next seek to estimate pm at this step in the iteration, following Eqn.
5. The surface environmental virtual temperature, Tυ, is given the average of
virtual temperatures over the mean layer composed of the parcel (with tempera-
ture, Ts) and the lowest level, i.e. Tυ = 1

2 (Tυ,s+Tυ,j=0). The virtual temperature
is identical to the density temperature (Eqn. 12) at the surface (as rT = r), and
may be approximated at the lowest level with rT ≈ r:

> RS0=RP

> TV0=T[0]*(1.+R[0]/EPS)/(1.+R[0])

> TVAV=0.5*(TV0+SSTK*(1.+RS0/EPS)/(1.+RS0))

Combining Eqns. 4-5 to solve for pm, the algorithm iterates towards a new
pressure estimate:

> CAT=(CAPEM-CAPEA)+0.5*CKCD*RAT*(CAPEMS-CAPEM)

> CAT=max([CAT,0.0])

> PNEW=MSL*np.exp(-CAT/(RD*TVAV))
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If the number of iterations exceeds 200 (an arbitrary chosen excessive number
of iterations), or if the estimated pressure drops below the unphysical 400 hPa,
then the PI algorithm fails to converge and returns missing outputs.

When the algorithm has successfully converged on a stable minimum pres-
sure in the RMW, pm, then the final central minimum pressure must be set.
Assuming cyclostrophic balance and that the azimuthal velocity in the eye is
given by V = Vmax( R

RMW )b, we follow a power law scaling with exponent, b (see
also [8] their Eqns. 25-26). pyPI assumes (following the BE02 MATLAB code)
that b = 2, then pmin is found by scaling pm:

pmin = pmsl ∗ e(−
CAPE|RMW+1

2
(1+ 1

b
)V 2
max

RdTυ
) (16)

which we solve in the code to find the PMIN to be output by the algorithm:

> CATFAC=0.5*(1.+1/b)

> CAT=(CAPEM-CAPEA)+CKCD*RAT*CATFAC*(CAPEMS-CAPEM)

> CAT=max([CAT,0.0])

> PMIN=MSL*np.exp(-CAT/(RD*TVAV))

We note that the difference, CAPE|RMW −CAPEe, is typically small. Histor-
ically, when CAPEe was used to compute PI in the final term of Eqn. 4, it was
found to add noise to the PI calculations (Kerry Emanuel, personal communi-
cation). Therefore, we instead replace this term with CAPE∗ − CAPE|RMW

in the PI computation for tractability5.
Finally, we are equipped to find the tropical cyclone potential intensity.

Assuming that the raw computed maximum gradient wind speeds are scaled
to 10 m winds with some fraction V reduc (section 3.1.2), then:

> FAC=max([0.0,(CAPEMS-CAPEM)])

> VMAX=V_reduc*np.sqrt(CKCD*RAT*FAC)

This final step completes the PI computation in pyPI. We set the flag to indicate
successful computation of PI (IFLAG=1) and return Vmax (VMAX), pmin (PMIN),
the flag, T0 (TO) and the OTL (LNB) to the program level which is calling pi.py.
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5PI calculations with the original [3] formulation have identical OTLs and outflow temper-
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6 License & Citation

Permissions are provided following a modified MIT License; please see Li-
cense.md.

If you make use of pyPI, please include the following citation:

Gilford, D. M. 2020: pyPI: Potential Intensity Calculations in Python,
v1.0, Zenodo, doi:10.5281/zenodo.3756006.

7 Feedback?

If you have any questions, comments, suggestions for improvement, or spot an
error, please email daniel.gilford@rutgers.edu or visit ∼/pyPI/issues.
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