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ABSTRACT

The impact of differences in analysis–forecast systems on dispersion of an ensemble forecast is examined for
a case of cyclogenesis. Changes in the dispersion properties between two 25-member ensemble forecasts with
different cumulus parameterization schemes and different initial analyses are compared. The statistical signifi-
cance of the changes is assessed.

Error growth due to initial condition uncertainty depends significantly on the analysis–forecast system. Quan-
titative precipitation forecasts and probabilistic quantitative precipitation forecasts are extremely sensitive to the
specification of physical parameterizations in the model. Regions of large variability tend to coincide with a
high likelihood of parameterized convection. Analysis of other model fields suggests that those with relatively
large energy in the mesoscale also exhibit highly significant differences in dispersion.

The results presented here provide evidence that the combined effect of uncertainties in model physics and
the initial state provides a means to increase the dispersion of ensemble prediction systems, but care must be
taken in the construction of mixed ensemble systems to ensure that other properties of the ensemble distribution
are not overly degraded.

1. Introduction

An ensemble forecast (EF), as originally proposed by
Epstein (1969a) and Leith (1974) for weather prediction,
denotes the running of multiple forecasts starting from
the same time with different but equally plausible initial
states consistent with analysis uncertainty. The defini-
tion has expanded today to include ensembles run as a
function of either plausible uncertainties in the initial
state and/or model formulations (e.g., Brooks et al.
1995). A direct outcome from any EF is probabilistic
information on predictand uncertainties obtained from
the dispersion of ensemble members (Tracton et al.
1996).

Mesoscale predictability and the merit of short-range
(1–2 day) ensemble forecasting, or SREF, especially ap-
plied to quantitative precipitation forecasts (QPFs) and

* Current affiliation: National Centers for Environmental Predic-
tion, Washington, D.C.

Corresponding author address: Dr. Steven L. Mullen, Department
of Atmospheric Sciences, PAS Building #81, The University of Ar-
izona, Tucson, AZ 85721.
E-mail: mullen@atmos.arizona.edu

probabilistic QPFs (PQPFs), are areas of high interest
(Anthes 1986; Brooks et al. 1995; Fritsch et al. 1998).
Extreme sensitivity to initial condition uncertainty
(ICU) marks QPF. Du et al. (1997, hereafter DMS) find
for a case of explosive cyclogenesis that ICU can lead
to variations in 6-h QPFs ranging from zero to 3.50 at
individual grid points by 112 h, despite relatively little
dispersion of the sea level pressure field as judged from
cyclone position and central pressure (Mullen and Du
1994). Results from cloud ensemble models (CEMs) are
even more spectacular, with differences in temperature
of 618C or in specific humidity of 61 gm kg21, well
within realistic estimates of analysis error (Daley and
Mayer 1986), making the difference between no storm
and a severe thunderstorm (e.g., Brooks et al. 1993;
Crook 1996). These studies imply very short predict-
ability limits for QPF and convectively produced pre-
cipitation. In the presence of such sensitivity to ICU,
and presumably short deterministic limits, it is not sur-
prising that a PQPF from an SREF would be more re-
liable than a single forecast at higher resolution. In fact,
recent results from pilot studies by DMS and Hamill
and Colucci (1998) indicate just that.

While these studies establish the potential of SREF
with perturbed initial conditions applied to PQPF, Stens-
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rud and Fritsch (1994a,b) demonstrate that precipitation
simulations in a convective environment are strongly
impacted by both ICU and changes in physical param-
eterizations. They argue that SREF should consider the
impacts of both sensitivities. An important question not
addressed by prior studies is how ICU sensitivity varies
with changes in model physics, or in the case of the
operational environment varies with changes in the anal-
ysis–forecast system. Consider the practical conse-
quences of the hypothetical situation where one can-
didate SREF system exhibits a negligible bias but a
relatively large dispersion, as judged from verification
of rank statistics (e.g., Anderson 1996; Hamill and Col-
ucci 1997), while the second candidate has a smaller
dispersion but a larger bias. Because of its larger dis-
persion, the first system requires larger ensemble sizes
to obtain reliable estimates of probability density func-
tions (PDFs) and moments thereof. Yet because of com-
putational constraints and the relative ease of mitigating
biases through postprocessing, one might consider im-
plementing the second system.

In this note we examine the dependence of ensemble
dispersion on the specification of the analysis–forecast
system. A limited-area model, with lateral boundary
conditions supplied by forecasts from a global model,
is used to produce two ensemble forecasts for a case of
cyclogenesis. The storm occurred on 14–15 December
1987 over the midwestern United States (see Schneider
1990; Mass and Schultz 1993; Powers and Reed 1993
and DMS for synoptic overviews), where the dense sur-
face rain gauge network allows for an optimal verifi-
cation of precipitation. Because of their importance and
difficulty, we focus as before (DMS) on evaluating fore-
casts of precipitation accumulated during 6-h periods.
We also briefly examine the behavior for a limited num-
ber of other model fields and parameters.

2. Methodology

a. Model descriptions and perturbation design

Two numerical forecast models are employed in this
study: the global National Center for Atmospheric Re-
search (NCAR) Community Climate Model version 1
(CCM1) and the limited-area Pennsylvania State Uni-
versity–NCAR Mesoscale Model version 4 (MM4). The
following is only a brief description of each model in-
cluding the options we selected. For general information
on the models, readers are referred to Williamson et al.
(1987) for the CCM1 and to Anthes et al. (1987) and
Zhang et al. (1988) for the MM4.

The version of CCM1 used in this study has 12 ver-
tical layers. The global CCM1 uses the spectral trans-
form method to compute horizontal derivatives and per-
form linear operations. The spectral resolution is tri-
angular 42 (T42), which is roughly equivalent to a uni-
form 2.88 latitude–longitude gridpoint resolution. The
model includes the following parameterized physical

processes: convection, condensation, shortwave and
longwave radiative transfers, surface fluxes of heat,
moisture and momentum, and interaction with subgrid-
scale motions through diffusion. The model forecasts
start at 1200 UTC 14 December 1987 and are run for
36 h. Initial analyses for the CCM1 forecasts are ob-
tained by bilinearly interpolating global analyses on a
uniform 2.58 latitude–longitude that are produced by the
National Meteorological Center (NMC, now the Na-
tional Centers for Environmental Predication or NCEP)
to the model grid.

Like the global CCM1, the MM4 is run for 36 h from
1200 UTC 14 December 1987. Fifteen vertical layers
are used for the MM4 forecasts. The grid spacing is 80
km with mesh of 126 3 101 points, a horizontal res-
olution and domain size comparable to the operational
Nested Grid Model (e.g., Hoke et al. 1989) and the pilot
Eta Model ensembles (e.g., Hamill and Colucci 1998;
Stensrud et al. 1999). To simulate the operational en-
vironment and allow for unbounded predictability error
growth (e.g., Errico and Baumhefner 1987; Warner et
al. 1997), the lateral boundary conditions for the MM4
are provided by the CCM1 forecasts and updated every
3 h assuming linear variation between updates. The pa-
rameterizations of the surface and planetary boundary
layers follow Blackadar (1979) and Zhang and Anthes
(1982). One ensemble uses a combination of an explicit
moisture scheme (Hsie et al. 1984) and an Arakawa–
Schubert (1974) cumulus parameterization, as modified
by Grell et al. (1991, hereafter referred to as the GEX
ensemble). The other uses just a Kuo (1974) cumulus
scheme, as modified by Anthes (1977, hereafter referred
to as the KUO ensemble) and no explicit scheme. Initial
analyses for the GEX ensemble are obtained by first
interpolating from the NMC 2.58 latitude–longitude
grids to the MM4 grid, then performing a modified
Cressman (1959) objective analysis (see Manning and
Haagensen 1992) using the NMC values as a first guess.
The Cressman step was not done for the KUO ensemble,
a choice that yields somewhat smoother analyses over
data rich North America with a poorer fit to the radio-
sonde observations. The use of slightly different basic
states upon which to superimpose initial perturbations
is patterned after the operational environment, where
different analysis–forecast systems always produce dif-
ferent initial analyses because data assimilation depends
upon the first-guess forecast and model configuration.

An ensemble is obtained for each model configuration
by integrating 25 forecasts starting from slightly per-
turbed initial conditions. An unperturbed forecast and
24 perturbed ones are run for each ensemble. Rather
than choosing perturbations that are dynamically con-
ditioned such as singular vectors (e.g., Molteni et al.
1996) or bred modes (Toth and Kalnay 1993), we ran-
domly generate perturbation fields that represent equally
probable estimates of truth and are consistent with prior
estimates of analysis uncertainty (e.g., Daley and Mayer
1986; Augustine et al. 1991). Anderson (1997) argues
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FIG. 1. Spatial distribution of the ensemble mean for 6-h quantitative precipitation forecasts for
the GEX ensemble (left panels) and the KUO ensemble (right panels) for each six 6-h period [(a)–
(f ) in chronological order]. Contour lines are 0.010, 0.10, 0.50, and 1.00, etc. The shading denotes
areas of 0.01–0.50, 1.0–2.00, 3.0–4.00, etc.

that unconstrained perturbations can have a number of
advantages over dynamically constrained perturbations,
such as yielding unbiased estimates of higher moments
and PDFs. The method of perturbing initial fields is
essentially the same as that used by Errico and Baum-
hefner (1987), Mullen and Baumhefner (1989, 1994),
and DMS. The same perturbation fields are added to the
CCM1, GEX, and KUO initial analyses. Because the
perturbations are unbalanced, nonlinear normal mode
initialization (Errico 1983) is used to remove most of
the energy associated with inertial–gravitational modes.
Thus, the final, initialized perturbations project strongly
on the slow manifold of the models.

The experimental design crudely mimics the type of
differences that might arise in the operational environ-
ment between two forecast ensembles based on different
regional analysis–forecast systems with identical reso-
lutions, time varying lateral boundary conditions, and
perturbation strategies. Except for the use of different
MM4 cumulus parameterizations and the slightly dif-

ferent basic states upon which the same perturbations
(prior to initialization) are superimposed, the two fore-
cast ensembles are identical.

b. Assessment of statistical significance

The statistical problem is to determine whether the
use of a different analysis–forecast system yields a sig-
nificant change in the spatial distributions of the ensem-
ble mean and the standard deviation of forecast fields.
The problem can be tested using the Pool-Permutation
Procedure (PPP) of Preisendorfer and Barnett (1983)
and their SITES and SPREAD measures, metrics that
quantify the separation of ensemble means and the en-
semble variances, respectively. Their procedure, which
is based on Monte Carlo permutation techniques, can
be used to estimate the statistical significance of dif-
ferences in spatial distributions of fields that are inter-
correlated, so-called field or global significance. The use
of Monte Carlo techniques to estimate field significance
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FIG. 1. (Continued )

of geophysical datasets has two primary advantages
over parametric tests such as the Student’s t-test (e.g.,
Livezey and Chen 1983): it requires neither an a priori
assumption of the background distribution of the sample
populations (e.g., equal variances), nor an a priori es-
timate of the number of spatial degrees of freedom.

The PPP technique first pools together all members
from both ensembles. Two, 25-member ensembles are
then randomly selected from the pool. The SITES
(SPREAD) value is next computed based on that sam-
pling from the pool. The randomization procedure is
repeated 1000 times, and an empirical distribution of
the SITES (SPREAD) values, that is, a background cu-
mulative distribution function (Wilks 1995) or CDF, is
formed from the permutations. The SITES (SPREAD)
value for the 25-member Grell and Kuo ensembles is
finally compared against the background CDF. If the
SITES (SPREAD) value for the Grell–Kuo ensemble
exceeds the 95% value of the CDF, then the Grell–Kuo
means (variances/standard deviations) are deemed dif-
ferent at the 5% significance level, the probability of
incorrectly rejecting the null hypothesis. Here, we test

the null hypothesis that two ensemble mean distributions
(or standard deviations) are equal. In this study, an a
priori significance level of 5% is selected as an ac-
ceptable probable error of rejecting the null hypothesis
by just a fortuitous random sampling of ensemble states.
We apply the testing procedure over the spatial domain
shown in Fig. 1.

3. Results

a. Precipitation

Figure 1 shows spatial distributions of the ensemble
mean of 6-h accumulated precipitation for the GEX (left
panels) and the KUO (right panels) forecast ensembles.
While the two ensembles exhibit a comparable total area
covered by measurable precipitation, there are obvious
differences between them. In particular, the KUO fore-
casts average more rainfall than the GEX forecasts at
all times except the first 6 h. The PPP method applied
to the SITES values (results not shown) indicates that
differences between the distributions of the ensemble
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FIG. 2. As in Fig. 1 except for standard deviation.

mean are significant at the 0.1% confidence level at all
projections. A high level of significance is not surpris-
ing, and is consistent with a plethora of prior studies
(e.g., Orlanski and Katzfey 1987; Kuo and Reed 1988;
Mullen and Baumhefner 1988; Kuo and Low-Nam
1990, among others) that show model simulations of
explosive cyclogenesis can sometimes be extremely sen-
sitive to physics parameterizations in terms of cyclone
position and central pressure.

Spatial distributions of the standard deviation of 6-h
accumulated precipitation are given in Fig. 2. Both en-
sembles exhibit a tendency for regions with high vari-
ance to coincide with areas with a large mean, a result
previously noted in ensemble forecasts of precipitation
(Hamill and Colucci 1998). Consistent with that notion,
and of particular importance, is the relatively large size
of the KUO variance: except for first 6-h period of model
‘‘spin up,’’ the KUO values exceed the GEX values in
virtually all locations. The SPREAD values (results not
shown) indicate that differences between the spatial dis-
tributions are also significant at the 0.1% confidence
level at all projections. It follows that the forecast dis-

persion and the predictability error growth for the KUO
ensemble are significantly faster than for the GEX en-
semble, at least for this case of cyclogenesis and choice
of model configurations.

These differences in the dispersion characteristics are
reflected in extrema for the two ensembles, as shown
by volumetric 6-h accumulations (results not shown)
and cumulative storm totals (Fig. 3). The data reveal
wider spreads for the KUO group after 6 h. The larger
spread leads to the desirable outcome of the KUO en-
semble encompassing the verification for a longer fore-
cast period than GEX ensemble, but not without a severe
penalty: the accuracy of the KUO PQPFs fares worse
than the GEX PQPFs at all times. Biases, equitable
threat scores (Schaefer 1990), and Ranked Probabilities
Scores (Epstein 1969b; Murphy 1971) for five mutually
exclusive, collectively exhaustive categories1 are less

1 The five categories are no measurable precipitation (pp , 0.010),
0.010 # pp , 0.100, 0.100 # pp , 0.500, 0.500 # pp , 1.000, and
pp $ 1.000.
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FIG. 2. (Continued )

accurate for the KUO ensemble at all projections (results
not shown).

Figure 4 shows the probability pc that the 6-h pre-
cipitation from the cumulus parameterization scheme
exceeds 0.010 for the 25-member GEX ensemble. As
noted earlier, prior studies with CEMs (Brooks et al.
1993; Crook 1996) show that ensemble forecasts of con-
vection can be very sensitive to ICU. A visual com-
parison of Figs. 2 and 4 indeed reveals that a high like-
lihood of convective precipitation tends to coincide with
large variance for this case, especially for the 18-h pe-
riod of 6–24 h when forecast convection is most frequent
and 6-h precipitation is largest. To quantify this rela-
tionship, we computed a spatial correlation coefficient
r between (1) the probability of measurable convective
rainfall (Fig. 4) and (2) a ‘‘chi-square’’ statistic x2 based
on probabilities for the same categories used to compute
the RPS values

J

2 2x 5 p (i) ,O t
i51

where pt(i) is the probability for rainfall category i and

J 5 5 is the total number of categories. Note that the
limiting values of x2 are 1/J for a flat distribution (all
categories equally populated) and 1.0 for a spike dis-
tribution (one category contains all members), so a
strong relationship between large spread and high like-
lihood of convective precipitation would be reflected as
large negative correlation. The correlation was com-
puted only over the area where the probability of mea-
surable rainfall exceeded zero (e.g., Fig. 18 of DMS),
a more stringent criterion than computing r over the
entire domain of Fig. 4, which gives much stronger
correlations. Values of r varied between 20.5 and 20.6
during the 36-h forecast period, with the strongest cor-
relations during the 18-h period of 6–24 h. If the prob-
ability fields (Fig. 4) are correlated against the spread
(Fig. 2), r strengthens to 0.6 to 0.8. A value of r #
20.5 differs significantly from zero at the 5% level
based on a one-tailed test of the Student’s t-distribution
(Spiegel 1975, p. 267) under the conservative assump-
tion of a total of 10 spatial degrees of freedom. This
indicates that a significant correlation exists between the
dispersion of the precipitation forecasts and the likeli-
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FIG. 3. Spatially averaged, storm total precipitation of forecast extrema for the (a) GEX and (b)
KUO ensembles along with the verifying amount.

hood of parameterized convection being activated in the
GEX ensemble. It is also consistent with the notion that
ensemble forecasts of convectively produced precipi-
tation are extremely sensitive to ICU.

We also examined the distribution of convective pre-
cipitation for the KUO scheme and found that no mem-
bers produced a 6-h accumulation greater than 0.010 at
all forecast projections. Wang and Seaman (1997) com-
pared the behavior of six different convective param-
eterization schemes in a mesoscale model at grid spac-
ings of 36 km and 12 km, much finer than our 80-km

grid. They found that the partitioning of rainfall into
subgrid scale and grid resolvable scale was very sen-
sitive to the particular scheme. They noted that the ratio
of subgridscale to total rainfall could vary between one
and zero for 1-h accumulations, but unlike our results,
their implementation of a Kuo–Anthes scheme yielded
on average the highest ratios. While differences in the
synoptic events and model configurations of Wang and
Seaman (1997) prevent meaningful detailed or quanti-
tative comparisons with our results, it does appear that
the partitioning of rainfall between grid scale and sub-
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FIG. 4. Probability that the 6-h accumulated precipitation from convective parameterization for
the GEX ensemble exceeds 0.010 for each 6-h period [(a)–(f ) in chronological order]. Contour
lines are 10%, 30%, 50%, 70%, and 90%. Shading denotes regions $50%.

grid scale is an issue that warrants careful attention in
the construction of operational ensemble prediction sys-
tems (EPSs) that contain cumulus parameterizations.

b. Other fields and parameters

Lorenz (1982) estimates that an upper bound on the
predictability of the instantaneous 500-mb geopotential
height field, a variable with peak variance in the plan-
etary and large synoptic scales, is about 10 days. He
concludes, however, that his predictability estimates for
500-mb geopotential height ‘‘may be quite unrealistic
for such elements as . . . rainfall.’’ Our results for the
cyclogenesis of 14–15 December 1987 support his con-
jecture, and the large spreads relative to the ensemble
means and flat probability distributions are consistent
with much shorter limits for parameterized convective
precipitation on an 80-km mesh. Stamus et al. (1992)
show that the limits for second-order quantities with
relatively greater power at much smaller scales, pre-

sumably those that are most important to forcing con-
vective precipitation (e.g., vertical velocity, stability in-
dices, moisture flux divergence), are also much shorter
than 10 days. Although a comprehensive analysis of the
predictability characteristics for the two forecast ensem-
bles is beyond the scope of this note, it is also of interest
to examine forecast dispersion for secondary variables
of operational importance or dynamic/thermodynamic
consequence. For this reason, we analyzed the SITES
and SPREAD measures for the limited number of fields,
pressure levels, and forecast projections shown in
Table 1.

The SITES values for the ensemble means (results
not shown) indicate significance at the 0.1% level for
all fields at all forecast projections. We find this result
not surprising. What we find more intriguing is an ap-
parent relationship in the significance of the SPREAD
(Table 1) among the various fields. About 85% (18/21)
of the parameters of Table 1, which explicitly appear in
a water vapor balance and/or the continuity equation for
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TABLE 1. Significance levels of difference between the GEX and KUO ensemble dispersion, as judged from the SPREAD measure and
Pool-Permutation Procedure of Preisendorfer and Barnett (1983), for the fields and forecast projections indicated below. The label ‘‘NS’’
indicates not significant at the 5% level, while the label ‘‘NA’’ indicates that the field was not available/not saved and thus its significance
level was not computed.

Field 06 h 12 h 18 h 24 h 30 h 36 h

300-mb vorticity
300-mb divergence
500-mb height
850-mb moisture flux div.
850-mb specific humidity
Lowest s-level vorticity
Lowest s-level divergence
Sea level pressure

0.1%
0.1%
NS
0.1%
NS
NA
NA
NS

NS
0.1%
1.0%
0.1%
0.5%
5.0%
0.1%
NS

NS
0.1%
NS
0.1%
0.1%
NA
NA
0.5%

NS
0.1%
5.0%
0.1%
5.0%
NS
0.1%
NS

5.0%
0.1%
NS
0.1%
NS
NA
NA
NS

5.0%
5.0%
NS
0.1%
NS
NS
0.1%
NS

water vapor (specific humidity, divergence, moisture
flux divergence), exhibit significant differences. In con-
trast, only a third (7/21) of the others (vorticity, sea-
level-pressure, 500-mb height) achieve significance at
the 5% level. The difference between the proportions is
significant at the 1% (5%) level with only eight (three)
degrees of freedom (Spiegel 1975, p. 215). Evidently
the dispersion of the moisture and divergence fields for
these cyclogenesis forecasts is more sensitive to the
changes in the analysis–forecast system than the dis-
persion for the rotational wind and mass fields.

We also examined the variability of the central pres-
sure and position forecasts for the surface cyclone (re-
sults not shown). Similar to the QPF results, variability
is largest among the KUO members, especially for cy-
clone position. Standard deviations run, on average,
around 110 km for KUO, or 70% larger than for GEX.
In terms of area confidence bounds for cyclone position
(Mullen and Du 1994), this equates to a factor of 3
increase in area for the same level of confidence for the
KUO ensemble.

4. Discussion

Our results can also be interpreted in terms of the
reliability test discussed by Tribbia and Baumhefner
(1988). They point out that analysis–forecast systems
contain two error sources, that due to model deficiencies
(the external error source) and that due to the growth
of initial data errors (the internal error source). Because
the two sources are relatively independent early in the
forecast while the error growth is linear or only weakly
nonlinear, they propose the use of the internal error
growth to judge the significance of any source of ex-
ternal error growth and vice versa. Whenever external
error due to a change in the model formulation exceeds
the internal error by a certain level (see Fig. 1 of Tribbia
and Baumhefner and associated discussion), then the
model change can be readily identified against the back-
ground ‘‘noise’’ of classic predictability error growth
(e.g., Lorenz 1982). Interpreted in terms of their test,
the strong significance (0.1% level) of the SITES values
by 16 h indicates that the differences due to our changes
in cumulus parameterizations (Fig. 1) can also be readily

measured against forecast dispersion owing to initial
data error (Fig. 2) at short projections. It further suggests
that uncertainties in specification of cumulus parame-
terizations denote a more important error source for QPF
than growth of initial data error, at least for this case
and experimental design.

Because the SITES and SPREAD metrics combine
the effects of differences in the magnitude and spatial
distribution of errors, what cannot be gleaned from them
is information on the relative importance of the two
effects. To explore this issue, we show CDFs for the
root-mean-square (rms) differences for 6-h accumulated
precipitation (Fig. 5) and SLP (Fig. 6), computed over
the same area as SITES and SPREAD. The Tribbia–
Baumhefner reliability test can also be applied to these
figures to determine the impact of differences in spa-
tially averaged magnitude only. Comparison of the rain-
fall CDFs (Fig. 5) indicates that rms differences among
individual forecasts ending at 18 h, 24 h, and 30 h do
pass the reliability test at the 5% level, but not at the
1% level, whereas the SITES values are significant at
the 0.1% confidence level for all times. It follows that
differences in the spatial distribution must be playing a
crucial role in the high level of significance of SITES.
On the other hand, the SLP fields (Fig. 6) are not close
to being significant at any projection.

This example shows that assessment of field signif-
icance, when applied to the evaluation of ensemble fore-
casts, augments the Tribbia–Baumhefner reliability test
by including the impact of the spatial distribution of the
error. We believe that the estimation of field significance
can play a useful role in the verification and validation
of EPSs, the estimation of predictability limits, and the
interpretation of forecast dispersion.

The fact that significant differences occur between
the forecast dispersions for the two ensembles has im-
plications on estimates of mesoscale predictability lim-
its. Our results, albeit for only one case, remind us that
estimates of predictability error growth depend critically
upon the variability characteristics of the model, no mat-
ter what the temporal–spatial scale of the phenomenon
of interest or forecast projection. These differences also
bring to mind the importance of thorough model vali-
dation in an era of ensemble forecasting. It is far from
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FIG. 5. Cumulative distribution functions for rms differences among individual forecasts of 6-
h accumulated precipitation for (a) GEX and (b) KUO ensembles. The 10%, 25%, 50%, 75%, and
90% percentiles are shown as dashed lines, the 0% and 100% as solid lines.

adequate to judge performance of an EPS only in terms
of biases or first moments. A viable EPS should produce
reliable probability distributions. At a minimum, the
EPS model should produce accurate means, variances,
and covariances for those scales (both temporal and spa-
tial) and weather phenomena that one wishes to predict,
because as Leith (1974) point outs, ‘‘the mean and var-
iance . . . provides, of course, the lowest two moments
which contribute much to the definition of such a prob-
ability distribution.’’ For the same reasons discussed by
Palmer (1995) for medium-range and seasonal forecasts,
if a candidate mesoscale model for an EPS is to be
successful predicting heavy QPF events at projections
beyond nowcasting (6–12 h), it should also be able to
simulate such events when run as a climate model. Un-
like the case of medium-range and seasonal forecasting,
however, mesoscale prediction and the operational im-
plementation of EPS faces a far greater challenge in
obtaining the observations at the small spatial and short
temporal scales needed to verify and improve the mod-
els. In the absence of sufficient verifying observations,
a distinct possibility for the foreseeable future especially
over the data-sparse oceans and for meso-b and meso-g
scales, an operational EPS would have to rely on in-

formation gleaned from much higher resolution models
that explicitly resolve processes not resolved by the
EPS, such as in the case of using statistics from cloud
ensemble model (CEMs) to validate and improve cu-
mulus parameterizations (e.g., Xu 1993).

Our results also provide insight into why the use of
‘‘mixed’’ or ‘‘grand’’ ensembles (Richardson et al.
1996), an ensemble constructed by including predictions
from all available operational EPSs, improves perfor-
mance. A ubiquitous feature of current ensemble pre-
diction systems based solely on perturbed initial fields
is insufficient dispersion (e.g., Anderson 1996; Buizza
1997; Hamill and Colucci 1997, 1998): verification lies
outside the ensemble distribution more frequently than
expected by just chance. Comparison of Figs. 1 and 2
reveals that the total dispersion for a mixed ensemble
comprised of all 50 members would be greater than the
dispersion for just the GEX or KUO ensembles alone.
Analysis of variance (Spiegel 1975, p. 307) indicates
that the total forecast variance (i.e., the square of the
ensemble dispersion about the ensemble mean) equals
the sum of the variance within groups and the variance
between groups. It follows that the use of different phys-
ics parameterizations increases forecast dispersion as
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FIG. 6. As in Fig. 5 except for the SLP field.

long as differences among the ensemble means for the
individual physics schemes are not zero and the same
perturbation strategy is employed for all the schemes.
This reasoning can be applied to all models, forecast
projections and weather elements, not just the synoptic
event and experimental design of this study. It is only
for a ‘‘perfect ensemble system’’ (Buizza 1997), one
with no model error and initial perturbations that pre-
cisely reflect the distribution of analysis error, that one
should expect perfect dispersion characteristics.

5. Conclusions

The impact of different analysis–forecast systems on
the dispersion of QPFs was examined for a case of cy-
clogenesis. Significant differences in dispersion were
found between two, 25-member ensemble forecasts that
used different cumulus parameterization schemes and
slightly different basic states upon which the same per-
turbations were superimposed. QPFs and PQPFs were
particularly sensitive to model specification, with re-
gions of large dispersion coinciding with a high like-
lihood of parameterized convection. Analysis of other
model fields suggests that those with relatively large
power in the mesoscale also exhibit highly significant
differences in dispersion.

Because the results presented here are for only one
case, we caution against generalizing our results. We
believe that our results, if anything, denote an under-
estimate of the likely impact of different analysis–fore-
cast systems on dispersion. Recall that we only changed
cumulus parameterizations and slightly altered the basic
initial state. Inclusion of different model resolutions,
boundary layer parameterizations, data assimilation pro-
cedures, perturbation strategies, and coupled systems
would undoubtedly yield greater differences in disper-
sion. Clearly more synoptic events need to be examined,
and the sensitivity to an array of different analysis–
model configurations needs to be considered. Even with
these shortcomings in experimental design, our results
support the recommendations of prior investigators
(Stensrud and Fritsch 1994ab; Brooks et al. 1995;
Bresch and Bao 1996; Fritsch et al. 1998) who suggest
that the sensitivity to model parameterizations, their tun-
ings or their stochastic representation be considered,
especially as a way to increase the dispersion of ensem-
ble prediction systems. However, this study also indi-
cates that care must be taken in the construction of
mixed ensemble systems to ensure that other properties
of the ensemble distribution are not overly degraded.
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